弹性调度是 ElasticJob 最重要的功能,也是这款产品名称的由来。 它是一款能够让任务通过分片进行水平扩展的任务处理系统。

分片

ElasticJob 中任务分片项的概念,使得任务可以在分布式的环境下运行,每台任务服务器只运行分配给该服务器的分片。 随着服务器的增加或宕机,ElasticJob 会近乎实时的感知服务器数量的变更,从而重新为分布式的任务服务器分配更加合理的任务分片项,使得任务可以随着资源的增加而提升效率。

任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。

举例说明,如果作业分为 4 片,用两台服务器执行,则每个服务器分到 2 片,分别负责作业的 50% 的负载,如下图所示。

分片作业

分片项

ElasticJob 并不直接提供数据处理的功能,而是将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与业务的对应关系。 分片项为数字,始于 0 而终于分片总数减 1。

个性化分片参数

个性化参数可以和分片项匹配对应关系,用于将分片项的数字转换为更加可读的业务代码。

例如:按照地区水平拆分数据库,数据库 A 是北京的数据;数据库 B 是上海的数据;数据库 C 是广州的数据。 如果仅按照分片项配置,开发者需要了解 0 表示北京;1 表示上海;2 表示广州。 合理使用个性化参数可以让代码更可读,如果配置为 0=北京,1=上海,2=广州,那么代码中直接使用北京,上海,广州的枚举值即可完成分片项和业务逻辑的对应关系。

资源最大限度利用

ElasticJob 提供最灵活的方式,最大限度的提高执行作业的吞吐量。 当新增加作业服务器时,ElasticJob 会通过注册中心的临时节点的变化感知到新服务器的存在,并在下次任务调度的时候重新分片,新的服务器会承载一部分作业分片,如下图所示。

作业扩容

将分片项设置为大于服务器的数量,最好是大于服务器倍数的数量,作业将会合理的利用分布式资源,动态的分配分片项。

例如:3 台服务器,分成 10 片,则分片项分配结果为服务器 A = 0,1,2,9;服务器 B = 3,4,5;服务器 C = 6,7,8。 如果服务器 C 崩溃,则分片项分配结果为服务器 A = 0,1,2,3,4; 服务器 B = 5,6,7,8,9。 在不丢失分片项的情况下,最大限度的利用现有资源提高吞吐量。

高可用

当作业服务器在运行中宕机时,注册中心同样会通过临时节点感知,并将在下次运行时将分片转移至仍存活的服务器,以达到作业高可用的效果。 本次由于服务器宕机而未执行完的作业,则可以通过失效转移的方式继续执行。如下图所示。

作业高可用

将分片总数设置为 1,并使用多于 1 台的服务器执行作业,作业将会以 1 主 n 从的方式执行。 一旦执行作业的服务器宕机,等待执行的服务器将会在下次作业启动时替补执行。开启失效转移功能效果更好,如果本次作业在执行过程中宕机,备机会立即替补执行。

ElasticJob-Lite 实现原理

ElasticJob-Lite 并无作业调度中心节点,而是基于部署作业框架的程序在到达相应时间点时各自触发调度。 注册中心仅用于作业注册和监控信息存储。而主作业节点仅用于处理分片和清理等功能。

弹性分布式实现

  • 第一台服务器上线触发主服务器选举。主服务器一旦下线,则重新触发选举,选举过程中阻塞,只有主服务器选举完成,才会执行其他任务。
  • 某作业服务器上线时会自动将服务器信息注册到注册中心,下线时会自动更新服务器状态。
  • 主节点选举,服务器上下线,分片总数变更均更新重新分片标记。
  • 定时任务触发时,如需重新分片,则通过主服务器分片,分片过程中阻塞,分片结束后才可执行任务。如分片过程中主服务器下线,则先选举主服务器,再分片。
  • 通过上一项说明可知,为了维持作业运行时的稳定性,运行过程中只会标记分片状态,不会重新分片。分片仅可能发生在下次任务触发前。
  • 每次分片都会按服务器IP排序,保证分片结果不会产生较大波动。
  • 实现失效转移功能,在某台服务器执行完毕后主动抓取未分配的分片,并且在某台服务器下线后主动寻找可用的服务器执行任务。

注册中心数据结构

注册中心在定义的命名空间下,创建作业名称节点,用于区分不同作业,所以作业一旦创建则不能修改作业名称,如果修改名称将视为新的作业。 作业名称节点下又包含5个数据子节点,分别是 config, instances, sharding, servers 和 leader。

config 节点

作业配置信息,以 YAML 格式存储。

instances 节点

作业运行实例信息,子节点是当前作业运行实例的主键。 作业运行实例主键由作业运行服务器的 IP 地址和 PID 构成。 作业运行实例主键均为临时节点,当作业实例上线时注册,下线时自动清理。注册中心监控这些节点的变化来协调分布式作业的分片以及高可用。 可在作业运行实例节点写入 TRIGGER 表示该实例立即执行一次。

sharding 节点

作业分片信息,子节点是分片项序号,从零开始,至分片总数减一。 分片项序号的子节点存储详细信息。每个分片项下的子节点用于控制和记录分片运行状态。 节点详细信息说明:

子节点名 临时节点 描述
instance 执行该分片项的作业运行实例主键
running 分片项正在运行的状态
仅配置 monitorExecution 时有效
failover 如果该分片项被失效转移分配给其他作业服务器,则此节点值记录执行此分片的作业服务器 IP
misfire 是否开启错过任务重新执行
disabled 是否禁用此分片项

servers 节点

作业服务器信息,子节点是作业服务器的 IP 地址。 可在 IP 地址节点写入 DISABLED 表示该服务器禁用。 在新的云原生架构下,servers 节点大幅弱化,仅包含控制服务器是否可以禁用这一功能。 为了更加纯粹的实现作业核心,servers 功能未来可能删除,控制服务器是否禁用的能力应该下放至自动化部署系统。

leader 节点

作业服务器主节点信息,分为 election,sharding 和 failover 三个子节点。 分别用于主节点选举,分片和失效转移处理。

leader节点是内部使用的节点,如果对作业框架原理不感兴趣,可不关注此节点。

子节点名 临时节点 描述
election\instance 主节点服务器IP地址
一旦该节点被删除将会触发重新选举
重新选举的过程中一切主节点相关的操作都将阻塞
election\latch 主节点选举的分布式锁
为 curator 的分布式锁使用
sharding\necessary 是否需要重新分片的标记
如果分片总数变化,或作业服务器节点上下线或启用/禁用,以及主节点选举,会触发设置重分片标记
作业在下次执行时使用主节点重新分片,且中间不会被打断
作业执行时不会触发分片
sharding\processing 主节点在分片时持有的节点
如果有此节点,所有的作业执行都将阻塞,直至分片结束
主节点分片结束或主节点崩溃会删除此临时节点
failover\items\分片项 一旦有作业崩溃,则会向此节点记录
当有空闲作业服务器时,会从此节点抓取需失效转移的作业项
failover\items\latch 分配失效转移分片项时占用的分布式锁
为 curator 的分布式锁使用

流程图

作业启动

作业启动

作业执行

作业执行