Apache ShardingSphere document

Apache ShardingSphere

Jun 10, 2025

Contents

What is ShardingSphere
1.1 IntroduCtion v v v v v i it et e e e e e e e e e e e e e e e e e e
1.1.1 ShardingSphere-JDBC i i i it e e e e e e e e
1.1.2 ShardingSphere-Proxy o vt v v v i it it e e e e e e
1.2 ProductFeatures v i i v it e e e e e e e e e e e e e e e e e
1.3 AdVantagesS . . v v v i e
Design Philosophy
2.1 Connect: Create database upperlevelstandard
2.2 Enhance: Database computing enhancementengine
2.3 Pluggable: Building database functionecology
231 LlKernelLayer vttt v vttt ittt e e e e e e e e
2.3.2 L2FeatureLayer i i e e e e e e e e
2.3.3 L3EcosystemLayer i e e e
Deployment
3.1 Using ShardingSphere-JDBC i 0 i i i et e e e e e e e e
3.2 Using ShardingSphere-Proxy« o i i i i i i i i ittt et
3.3 Hybrid Architecture e e e e e e e e
Running Modes 11
4.1 StandaloneMode o i it e e e e e e e e e e e e e e e e e e
4.2 ClusterMode . . . v v v i i e
Roadmap 12
Get Involved 13
Quick Start 14
7.1 ShardingSphere-JDBC i it e e e e e e e e e e e e e e
711 SCENATIOS « v v v v v v v e e e e e e e e e e e e e e e e e e e
7.1.2 LImMitationsS . .« o v o v o e

7.1.3 Requirements i i ittt e e e e e e e e e e e e e e e

(o) W) NN Y Y I N N N B = = -

O o0 NN

7.2

8 Features

8.1

8.2

714 ProcedUre v v v v it e e e e e e e e e e e e e e e 14
ShardingSphere-Proxy o o v v v vt i it e e e e e e e 16
7.2.1 SCENATIOS « v v v v v e 16
7.2.2 LImitations . . . v v v v v i e e e e e e e e e e e e e e e e e 16
7.2.3 ReqUITEMENTS . . ¢ v v v v vt e 17
724 ProcedUre v v it it e e e e e e e e e e e e 17
19

Sharding e e e e e e e e e e e e e e e e 19
8.1.1 Background e e e e e e e e 19
Vertical Sharding o . o i e e e e e e e 20
Horizontal Sharding 0 i i i i i i i e e e e e 21

8.1.2 Challenges o i i i it i e e e e e e e e e e e e e e e e e e 22
8.1.3 Goal ... e e e e e e e e 22
8.1.4 Application Scenarios ittt e e e e e e e e e e 22
Mass data high concurrency in OLTP scenarios v v v v v v v v v v v v v v 22

Mass data real-time analysis in OLAP scenarios« v v v v v v v v v v v 23

8.1.5 RelatedReferences @ @ it 23
8.1.6 CoreConcept i i i i i i it it e e e e e e 23
Table . . . o . e e e e e e e e e e 23
DataNodes . . . v v v v vt e e e e e e e e e e e e e e e 25
Sharding L e e e e e e e e e e e 26

8.1.7 LimitationsS . . .« v v v v v i e 29
Stable SUPPOTt . . v v v v v e e e e e 29
Experimental SUPPOTrt i i e e e e e e e e e e e e e e 31
DonotSupport v i i e e e e e e e 32

8.1.8 Appendix with SQL operator v v v v ittt 33
Distributed Transaction o o vt v i it e e e e e e e e e e 33
8.2.1 Background e e e e e e e e e e e e e e e e 33
8.2.2 Challenge i i i i i i e e e e e e e e e e e e 34
823 Goal ... e e e e e 34
824 HOWItWOrKS o o v i i it e e e e e e e e e e e e e e 34
LOCAL Transaction . . v v v v v v v v v vt e e et e e e e e e et e e e e e u s 35
XATransaction . . v v v v v v v v v vt v e et et e e e e e e e e e 35

BASE Transaction v v v v v v v vt e e e et e e e e e e e e e e e 36

8.2.5 Application Scenarios v v it e it e e e e e e e e e e e e 37
Application Scenarios for ShardingSphere XA Transactions 37
Application Scenarios for ShardingSphere BASE Transaction 37
Application Scenarios for ShardingSphere LOCAL Transaction 37

8.2.6 Relatedreferences i i i i i e e e e e e 37
8.2.7 CoreConcCept . . v v v v i i e 37
XAProtocol . . . v v v v v e e e e e e e e e e e e e 37

828 Limitations. v v v v i i e e e e e e 38
LOCAL Transaction v v v v v v v vt e it et e e e e e e e e e e e e e 38
XATransaction . . v v v v v v v v v i it e e e e e e e e e e 38

8.3

8.4

8.5

8.6

BASE Transaction v v v v v i e 38

8.2.9 Appendixwith SQL operator v i it i it 38
Readwrite-splitting« v v v i e e e e e e e e e e e e 39
8.3.1 Background e e e e e 39
8.3.2 Challenges v v v v i e 40
8.3.3 Goal ... e e e e e e e e 40
8.3.4 Application Scenarios Lot e e e e e e 40
Complex primary-secondary database architecture. 40
8.3.5 RelatedReferences it 41
8.3.6 CoreConcept . . . v i i i it e 41
Primarydatabase e e e e 41
Secondarydatabase oLl e e e e e e 41
Primary-Secondary synchronization e 41
Load balancerpolicy v v i i i i i i e 41
83.7 Limitations v v v v i i e e e e e e e e 41
DBGateway v v v i i e 42
8.4.1 Backgroundt e 42
8.4.2 Challenges o v i i i i i e e e e e e e e e e e e e e e e e e 42
843 Goal ... e e e e e e e 42
8.4.4 Application Scenarios ittt e e e e e e e e e e 42
8.45 CoreConcept . . . v v v v i i i i i e e e e e e e e 42
SQLDIaleCt v v v v vt it e 42
8.4.6 Limitations. o v v v i i e e e e e e e e 43
TrafficGovernance v v v v i i i e e e e e e e e e e e 43
8.5.1 Background e e e e e e e e e e e e 43
8.5.2 Challenges o v v i i i i e e e e e e e e e e e e e e e e e e e 43
853 Goal ... e e e e e e 43
8.5.4 Application Scenarios ittt i e e e e e e e e e e e 43
Overloaded compute node protection oot 43
Storage node trafficlimit i e e e e e e 44
8.5.5 CoreConcept . . . v i i i it e e e e e e e e e e e e e e e e e e e 44
Circuit Breaker o i i it e 44
RequestLimit o v o v v v i e e e e e e e 44
Data MiIgration v v v v e 44
8.6.1 Background e e e e e e e e 44
8.6.2 Challenges« o v i i i e e e e e e e e e e 44
8.6.3 Goal e e e e e e e e e e 45
8.6.4 Application Scenarios i it e e e e e e e e e e e e e e 45
8.6.5 Related References i i 45
8.6.6 CoreConcept . . . v i v i ittt e e e e e e e e e e e e e e 45
Nodes . . v v it e e e e e e e e e e e e e e e e e e e 45
CIUStEr . & v v et e e e e e e e e e e e e e e e e e e 45
SOUICE . . v o v o e e e e e e e e e e e e 45
Target . . . o o e e e e e e e e e e e e e e e e e 45
Data Migration Process v v v it i e e e e e e e 46

8.7

8.8

8.9

8.10

StOCK Data . . . v e 46

IncrementalData v v v i it e e e e e e 46
8.6.7 LImitationsS o v v v v i e e e e e e e e e e e e e e e e 46

Procedures Supported i e e e e e e e 46

Procedures notsupported it e e e e e e e e e e e e 46
Encryption . . v v v v v v it e 46
8.7.1 Background e e e e e e e 46
8.7.2 Challenges v v v v i it e e e e e e e e e e e e e e e 47
8.7.3 Goal ... e e e e e e e e 47
8.7.4 Application Scenarios Lt e e e e e e e e e e e 47
8.7.5 RelatedReferences @ @ i 47
8.7.6 CoreConcept v i i i i i i e e e e e e e e e e e e e 47

Logiccolumn o v i e 47

Ciphercolumn i it it e e e e e e 48

Assisted querycolumn L e e e e e e 48

Like querycolumn ottt it e e e e e e e 48
8.7.7 LImitations . . .« v v v v v v e e e e e e e e e e e e e e e 48
8.7.8 Appendix with SQL operator o v v i i v i i et e 48
DataMasking v o o i it e e e e e e e e e e e e e e e e e e e 49
8.8.1 Background e e e e e 49
8.8.2 Challenges v v v v i i it e e e e e e e e e e e e 49
8.8.3 Goal ... e e e e e e e 49
8.8.4 Application Scenarioso e e e e e e e e 49
8.8.5 RelatedReferences i ittt 49
8.8.6 CoreConcept v v i i it it it e e e e e e e e e 50

Logiccolumn v i v i e e e e e e e e e e e e e e e e e 50
88.7 Limitations . . . v v v v v i i e e e e e e e e e e e 50
Shadow o i i e e e e e e e 50
8.9.1 Background e e e e e e e e e e e e 50
8.9.2 Challenges v v v i it e e e e e e e e e e e e e e e e e e 50
8.9.3 Goal ... e e e e e e e 51
8.9.4 ApplicationScenariol e e e e e e e 51
8.9.5 RelatedReferences it 51
8.9.6 CoreConcept . . v v v v v i it e 51

ProductionDatabase o i i e 51

Shadow Database i i i i i e e e e e e e e e 51

Shadow Algorithm i e 51
8.9.7 Limitations v v i i e e e e e e e e e e e e e e e 52

Hint based shadow algorithm 52

Column based shadow algorithm 52
Observability o v v i e e e e e e e e e e e e e 53
8.10.1 Background e 53
8.10.2 Challenges o v v i it i e e e e e e e e e e e e e e e e e e 55
8.10.3 Goal e e e e e e e e e e e e 55
8.10.4 Application Scenarios ittt e e e e e e e e e e e 55

Monitoring panel L e e e e e e e e e e e e e e 55

Monitoring application performanceo 55
Tracing applicationlinks L 55

8.10.5 Related References v v v i v v i i i e i e e e e e e e e e e 56
8.10.6 Core CoNnCePt . . v v v v v it e 56
Agent . Lo e e e e e e e e e e e e e e e e e 56

APM . o e e e e e e e 56
Tracing . . o v v v v i e 56

1Y 1= 56
Logging o v i i e e e e e e e e e e e e e e e e e e e 56

8.11 SQLFederation v v v v v i v et e 57
8.11.1 Background e e e e e e e 57
8.11.2 Challenges . . . v v v v v v e 57
8.11.3 Goal e 57
8.11.4 Application Scenario L i e e e e e e e e 57
8.11.5 Related References v v v i v v i i i e i e e e e e e e e e e e 58
8.11.6 Limitations . . . « v v v v v v v it e e e e e e e e e e e e e e 58
9 User Manual 59
9.1 ShardingSphere-JDBC o i i v ittt e e e e e e e e e e e 59
9.1.1 YAML Configuration . . « v v v v v v v v e 60
OVEIVIEW & v v v v e 60

Usage . . o v v i e e e e e e e e e e e e e e 60
YAML Syntax Explanationottt 61

Mode . . v v v e e e e e e e e e e 61
DataSource e e e e 63

Rules . . o v v i it e e e e 65
Algorithm e e e e e e 86

JDBC DIIVET v v v v e 88

9.1.2 Java API e e e e e e e e e e e 98
OVEIVIEW & v v i v v e 98

Usage . . . v i i i e e e e e e e e e e e e e 98

Mode . . v v vt e e e e e e e e e e 99
DataSource i e e e e e 102

Rules . . . o v i e e 103
Algorithm e e e e e e e e 131

9.1.3 Special APL e 133
Sharding e e e e e e e e e e e e e e 133
Readwrite-splitting L e 136
Transaction v v v v i e 138

9.1.4 Optional PIugins o o v i i e e e e e e e e e e e e e e e e 157
CHCKHOUSE . . v v v e 159
Firebird o o e e e e e e e 164
HiveServer2 o i i i i e 168
Presto o o e e e e e e 181

9.2

9.1.5 UnsupportedItems o v v v v v i e et e e e e e e e e e 185
Configuration v v v v i e 185
DataSource Interface o o i i e e e e e e e e 185
ConnectionInterface i i i i i i i e e e e e e e 185
Statement and PreparedStatement Interface 186
ResultSetInterface e 186
JDBC 4.1 . o oot e i e 186

9.1.6 Observability o . e e e e e e e e e e 186
Agent . . L L e e e e e e e e e e e e e e e e e 186
UsSage . . v v i i e 189
MetriCS . v v v v v o e e e e e e e e e e e e e e 191

9.1.7 GraalVM Native Image v v v v vttt e e e e 192
Background Information oLt e e e e e e e 192
Usage restriCtions . . . v v v v v v i v e et e e e e e e e e e e e e e e e e e 194
Developmentandtest o o i e e e e e e 199

ShardingSphere-Proxy v v i i e e e e e e e 205

9.2.1 Startup e 206
UseBINaryTar. . o« v v v v v v e et et e e e e e e e e e e e e 206
UseDOoCKer . . . o i v ittt e et e e e e e e e e e 208
Build GraalVM Native Image(Alpha)o v v v 209
UseHelm i i ittt e e e e e e e e e e e e 218
Adddependencies. i L.t e e e e e e e e e e e e e e e e e 225

9.2.2 YamlConfiguration ¢ i i i it i it e e e e 226
Authentication & Authorization 226
Properties o i e e e e 229
Rules . . o v v e e e e e 231
DataSource i e e e e e 232

9.23 DistSQL . . . v v i i e e e e e e e e e e e e e 233
Definition v i v i i e 233
Related CONCEPts . . v v v v v v i e 233
ImpactontheSystem i e e e e 234
Limitations ¢ v v i i e e e e e e e e e e e e e e e e e e e 235
HOW It WOTKS & . v v v e i e 235
Related References i v i i i i it i e e e 236
Syntax e e e e e e e e e e e e e e e 236
Usage . . o v v i e e e e e e e e e e e e e e 434

9.2.4 DataMigration v v v it e e e e e e e e e e e e 441
Introduction o o v e e e e e e e e e e 441
Build e e e e e e e e e e e e 441
Manual. 0 0 e e e e 444

9.2.5 Observability v v v v i i e e e e 459
Agent . . L L e e e e e e e e e e e e e e e e e e e 459
USage . . v v i i e 461
MetriCS . v v v v v o e e e e e e e e e e e e e e e e 462

9.2.6 Optional Plugins« o o v v i i e e e e e 462

Vi

Seata AT Mode transactions . . v v v v v v v v v e e e e e e e e e e e e e e e 464

9.2.7 SessionManagement i ittt e e e e e e e e e e 474
Usage . . o v v i e e e e e e e e e e e e e 474

9.2.8 Logging Configuration v vt i ittt 475
Background e e e e e e e e e e e e e e e e e 475
Procedure i v i i e e e e e e e e 475

9.29 CDC. . . v i e e e e e e e e e e e e e e e 476
Build e 476
Manual. e e e e e e e e 482
Precautions v v v v i i i i e e e e e e e e e e 489

9.3 Common Configuration v v v v v v it v e e e e e e e e e 489
9.3.1 Properties Configuration 489
Background e e e e e e e e e e e e e e e e e 489
Parameters e e e e e e e e e e 490
Procedure i v i i e e e e e e e 491

NOteS . v v v i i e e e e e e e e e e e 491
Sample e 491

9.3.2 Builtin Algorithm e e e e e 491
Introduction v v v e e e e e e e 491

Usage . . v v v i e e e e e e e e e e e e e e 491
Metadata Repository v v v v i i e e e e e e e e e e 492
Sharding Algorithm i i e e e e e e 495

Key Generate Algorithm e 502

Load Balance Algorithm 504
Encryption Algorithm o e 506
Shadow Algorithm e 507

SQL Translator v v v v it et et e 509
Sharding Audit Algorithm 509

Data Masking Algorithm e 510

Row Value EXPressions v v v v v v v v v e e e e e e e e e e e e e 514

9.3.3 SQLHINt v it e 519
Background e e e e e e e e e e 519
Usespecification i i it i it e e e e e 520
Parameters L e e e e e e e e e e 520

) P & 1\ R 521

9.4 ErrorCode i i i e e e e e e e e e e 523
9.4.1 SQLErrorCode . . . v v v v i v v it e e e e e e e e e e e e e e e e e 523
Kernel EXCeption v v v i i v i i e e e e e e e e e e e e e e e e e e 523
Feature Exception o o i i e e e e e e e e e e e e 528

Other Exception o i i i it et e e e e e e 531

9.4.2 ServerError Code i i it e e e e e e e e e e 531
10 Dev Manual 532
10.1 Mode . . v v e 532
10.1.1 StandalonePersistRepository v v v i ittt e 532

vii

Fully-qualified classname i 532

Definition o o o i i e e e e e e e e e 532
Implementationclasses. ot ool 533

10.1.2 ClusterPersistRepository i i i i it e e e e e e 533
Fully-qualified classname o v i i e 533
Definition o o i i i e e e e e e e e e 533
Implementationclasses. L L e e e e 534

10.2 SQLPATSET '« v v v v v ot e et e 534
10.2.1 DatabaseTypedSQLParserFacade v v v v v v v v oo v, 534
Fully-qualified classname 534
Definition« o o i i i e e e e e e e e e e e 535
Implementationclasses. v v vttt 536

10.2.2 SQLStatementVisitorFacade« . i i i e e e e e e 537
Fully-qualified classname 537
Definition o o o i i e e e e e e e e e 537
Implementationclasses. v vttt e e e e e e 538

10.3 DataSharding . . . v v v v v v v e 539
10.3.1 ShardingAlgorithm e 539
Fully-qualified classname i i i it i ittt e 539
Definition v v v i i e e e e e e e e e e e e e e e e e 539
Implementation classes. v vt et e e e e e e 540

10.3.2 ShardingAuditAlgorithm 541
Fully-qualified classname i i i it i it e e 541
Definition v v vt e e e e e e e e e e e e e e e e e e e 541
Implementation classes. v v i et e e e e e e 541

10.3.3 DatetimeService v v v v i v i e e e e e e e e e e e e e e 541
Fully-qualified classname i i i it i ittt e 541
Definition o v v i i i e e e e e e e 542
Implementation classes. v v i et e e e e e e e 542

10.3.4 InlineExpressionParser v v v v v v bt e e e e e e e e e e e e . 542
Fully-qualified classname v it i it e et e 542
Definition« v v i i i e e e e e e e e 542
Implementation classes. v v i e e e e e e e e 543

10.4 Infraalgorithm o v v i it et e e e e e e e e e e e e e e e e e e e 543
10.4.1 LoadBalanceAlgorithm 543
Fully-qualified classname ittt 543
Definition o o i i i i e e e e e e e e e e e 544
Implementation classes v v v it e e e e e e e e e e e e e 545

10.4.2 KeyGenerateAlgorithm o i e e 546
Fully-qualified classname i i i i ittt e 546
Definition o o i i i i e e e e e e e e e e 546
Implementation classes v v v v i i e e e e e e e e e e e e e e e 546

10.4.3 MessageDigestAlgorithm 547
Fully-qualified classname i i i i it ittt 547
Definition o o i i i i it e e e e e e e e e e 547

Implementation classes.« v v i et e e e e 547

10.5 SQLAUGIE « v v v v e e e e e e e e e e 547
10.5.1 SQLAUItOr v v vt e e e e e e e e e e e e e e e e e e 547
Fully-qualified classname 0 i it 547

Definition v v v v i i i e e e e e e e e e 548
Implementationclasses. it i e e e e e e 548

10.6 Encryption o v i it e 548
10.6.1 EncryptAlgorithm oo it 548
Fully-qualified classname o i i e 548

Definition o o i i i e e e e e e e e e e 548
Implementationclasses. L L e e e e 549

10.7 DataMasking v v v v v i e 549
10.7.1 MaskAlgorithm e e e e e e . 549
Fully-qualified classname 549

Definition o o o i i e e e e e e e e e 549
Implementationclasses. v vttt e e e e e e 551

10.8 Shadow DB i it e e e e e e e e e e e e e e e 552
10.8.1 ShadowAlgorithm e 552
Fully-qualified classname i i i it i ittt e 552

Definition v v v i i e e e e e e e e e e e e e e e e e 552
Implementation classes. v vt et e e e e e e 553

109 Observability v v v v e e e e e e e e e e e 553
10.9.1 PluginLifecycleService v v v i i i i i e e e e e e e e 553
Fully-qualifiedclassnameot i i ittt ittt it 553

Definition o v v it i e e e e e e e e e e e 554
Implementation classes v v i it e e e e e e e e e e e e e 554

11 Test Manual 555
11.1 IntegrationTeSt. . . . v v v v v i i e 555
11.2 ModuleTest . o v v v v v v e 555
11.3 Performance Test. v v v v v i i e 555
11.4 Sysbench Test. . . . o o v v v i i i e e e e e e e e e e e e e e 556
11.5 Integration TeSt. . . . v v v v v i i e 556
11.5.1 DeSIZN v v v v o e 556
Testcase o L L e e e e e e 556
Testenvironment o v v v vttt e e e e e e e e e e e e e 556

TeStengine v v v i i e 557

11.5.2 UserGuide . . . v v v v v v o i e e e e e e e e e e e e e 557

Test case configuration v v v ittt e e e e e e e e e e e 557
Environment configurationo it e e e e e e 558
Runthetestengine i i i i i i i i i i e e e e e 559

11.6 Performance Test. o o v i i i it e e e e e e e e e e e e e e e e e e e 562
11.6.1 SysBench ShardingSphere-Proxy Empty Rule Performance Test 562
ObjectiVes v v v e e e e e e e e e 562

Setup thetestenvironmentttt 562

Testphase o v i i e 564

11.6.2 BenchmarkSQL ShardingSphere-Proxy Sharding Performance Test 565
Objective o i e e e e e e e e e e e e 565

Method v v it e 566

Finetuning totesttools v v i i i i e e e e e e e e e e e e e 566

Stress testing environment or parameter recommendations 566

AppendixX e e e e e e e e e e e e e 568
BenchmarkSQL 5.0 PostgreSQL statementlist 571

11.7 ModuleTest . o v v v v v v et e 579
11.7.1 SQL Parser Test . . . v v v v v i i i e e e e e e e e e e e e e e e e e e e 579
PrepareData. o o i e e e e e e 579

11.7.2 SQLRewrite Test o v v v i i e e e e e e e e e e 581
Target . . . o v o e 581

11.8 Pipeline E2ETeSt v v v i i e 582
11.8.1 ODbjJectiVES . . . v v i i e 582
11.8.2 Testenvironmenttype. v v v v vttt i i 583
11.8.3 UsSerguide . . v v v v v v v i e 583
EnvironmentSetup o v v v v v i e e e e e e e e e e e e e e e e e e e 583

Testcase L L e e e e e e e 583
Runningthetestcase v v v i i e 583

12 Reference 585
12.1 Database Compatibility o e 585
12.2 Database Gateway v v v vt v i e e e e e e e e e e e e e e e e 586
12.3 Management v i i e 586
12.3.1 Data Structurein RegistryCenter v i ittt 586
JTULES . . s e 589

JPTOPS v v v e e e e e e e e e e e e e e e e 589
/metadata/${databaseName}/data_sources/units/ds_0/versions/0 589
/metadata/${databaseName}/data_sources/nodes/ds_0/versions/0 589
/metadata/${databaseName}/rules/sharding/tables/t_order/versions/0 590
/metadata/database Name/schemas/{schemaName}/tables/t_order/versions/0 . . 590
/nodes/compute_nodes i e 591
/nodes/qualified_data_souUrces v v v v it e e e e e e e e e e 591

12.4 Sharding v it e 591
1241 SQLPArser . . . o v v v i i it e e e e e e e e e e e e 592
12.4.2 SQLRoUte v i i i i e e e e e e e e e e e e e e e 593
12.4.3 SQLREWTItE . & . v v i i e 593
12.4.4 SQLEXECULION . . . ¢ v v v e i e e e e e e e e et e e e e e e e e e e e e e 593
12.4.5 Result Merger v v v v v v ittt et ettt e e e e e e 593
12.4.6 Query Optimization v v v v v v it vt s e e e e e e e 593
12.4.7 ParseEngine e e e e e e e e e e e e 593
AbstractSyntaxTree o v i i i i i e e e e e e e e e e e e 593

SQLParser Engine e e 594

12.4.8 RouteEngine. i i e e e e e e e e e 596

12.5

12.6

12.7

Sharding Route o v i it i i e e e e e e e e e e e e e e e e 597

BroadcastRoute o L o i e e 599
12.49 RewriteEngine e e 601
Rewriting for Correctness o v v v v it i it e e e e e e 601
Identifier ReWriting o v i i e e e e e e e e e e e e e e e 601
Column Derivation . . . v v v v v v v i ittt e e e e e e e e e e e 603
Pagination Correction o v i v i it i i e e e e e e 605
Batch Split o o o e e e e e e e e e 606
Rewriting for Optimization i i v i it e e e e 607
12.4.10 Execute Engine i it e e e e e e e e e e e e e 608
ConnectionMode v v v i e e e 608
Automatic ExecutionEngine o000 oo 610
12.4.11 Merger Engine o it i i e e e e e e e e e e e e e 614
Traversal Merger v v v v v v i e 614
Order-by Merger o v v i i i e e e e e e e e e e e e e 614
Group-by Merger i i i e e e e e 616
Aggregation Merger o v v v i it e e e e e e e e e e e e e e e 619
Pagination Merger i v v i i i i i e e e e e e e e e e e e e 619
Transaction v v v vt e e e e e e e e e e e e e e e 620
12.5.1 Navigation o v v vt it e e e e e e e e 620
12.5.2 XA Transaction . . . v v v v v v v v vttt e e e e e e e e e e e 620
Transaction Begin i . e e e e e e e e e 621
Execute actual sharding SQL e 621
CommitorRollback o i i e e e 622
12.5.3 Seata BASEtransactiono v i v v vt it ittt 622
InitSeata Engine i i e e e e e e e e e e e e e 623
TransactionBegin L e e e e e e 623
Execute actual sharding SQL 623
CommitorRollback o i e 624
Data MiIgration v v v v i e 624
12.6.1 Explanation i e e e e e e e e e e e 624
12.6.2 Execution Stage Explained oo, 625
Preparation v v i i i i i e e e e e e e e e e e e 625
Stockdata migration i it e e e e e e e e e 625
The Synchronization of incrementaldata 625
Traffic Switching o o it i i e 625
12.6.3 References v v v v v i i i e e e e e e e e e e e e e e e e e e e 626
Encryption . . . v v o i i i e 626
12.7.1 Overall Architecture o v v v v it e e e 626
12.7.2 EncryptionRules 627
12.7.3 Encryption Process i e e 628
Detailed Solution v v i i it i e e e e e e 629
The advantages of Middleware encryption service 631
SOIUtION . . v v v o e e e e e e 631
12.7.4 EncryptAlgorithm o oo 631

Xi

12.8 Mask . . . v i e 632
12.8.1 Overall Architecture v v v v v it e e e e e 632
12.8.2 MaskRules L oL 632
12.8.3 MaskProcess . . . o v v v v it it e e e e e e e e e e e e e e 634

129 Shadow . . . v v i i e e e e e e e e e e e e e e e 634
1291 HOWItWOrkS . . v v v v v v o i i e e e e e e e e e e e e e e e 634

DML Sentence v o v v v v i it e i et e e e e e e e e e e e e 635
DDLsentence v vt i i ittt ittt e e e e e e e e 636
12.9.2 References v v v v i i e 636

12,10 Oberservability v v v v i i e e e e e e e 636
12.10.1 HowWitworks . . v v v v v v o e e e e e e e e e e e e e e 636

1211 Architecture o v v it e 637

13 FAQ 639

13.1 JDBC & v vt e 639

13.1.1 Found a JtaTransactionManager in spring boot project when integrating with
XAtransaction. « . v v v v v v v it e e e e e e e e e e e e e 639

13.1.2 The tableName and columnName configured in yaml or properties leading in-
correct result when loading Oracle metadata? 639

13.1.3 SQLException: Unable to unwrap to interface com.mysql.jdbc.
Connection exception thrown when using MySQL XA transaction 640

13.2 PrOXY v v v v v e 641

13.2.1 In Windows environment, could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how tosolveit? 641
13.2.2 How to add a new logic database dynamically when use ShardingSphere-Proxy? 641
13.2.3 How to use suitable database tools connecting ShardingSphere-Proxy? 641
13.2.4 When using a client to connect to ShardingSphere-Proxy, if ShardingSphere-
Proxy does not create a database or does not register a storage unit, the client
connectionwillfail? L 642

13.3 Sharding o e e e e e e e e e e e e e e e e e 642

13.3.1 How to solve Cloud not resolve placeholder :-:in string value -
=5) 642
13.3.2 Why does float number appear in the return result of inline expression? 642

13.3.3 If sharding database is partial, should tables without sharding database & table

13.3.4 When generic Long type SingleKeyTableShardingAlgorithmisused, why
does the ClassCastException: Integer can not cast to Long
eXCEPION APPEATY + & v v v v e 643
13.3.5 [Sharding:raw-latex:PROXY] When implementing the StandardShardingAl-
gorithm custom algorithm, the specific type of Comparable is specified as
Long, and the field type in the database table is bigint, a ClassCastExcep-
tion: Integer can not cast to Longexceptionoccurs. 643
13.3.6 Why is the default distributed auto-augment key strategy provided by Sharding-

Sphere not continuous and most of them end with even numbers? 643

Xii

13.3.7 How to allow range query with using inline sharding strategy (BETWEEN AND,
D T T 643
13.3.8 Why does my custom distributed primary key do not work after implementing
KeyGenerateAlgorithminterface and configuring type property?. 644
13.3.9 In addition to internal distributed primary key, does ShardingSphere support
other native auto-incrementkeys? o oo, 644
13.4 Singletable L L e e e e e e e e e e e e e e e 644
13.4.1 Table or view %s does not exist. How to solve the exception? 644
13.5 DiStSOL & v v v v v e e e e e e e e e 645
13.5.1 How to set custom JDBC connection properties or connection pool properties
when adding a data source using DistSQL? 645
13.5.2 How to solve Storage unit [xxx] is still used by [SingleRule].
exception when dropping a data source using DistSQL? 646
13.5.3 How to solve Failed to get driver -nstance for jdbcURL=xxx.
exception when adding a data source using DistSQL? 646
13.6 Other . . . v e e e e e e e e e e e e e e e e e e e 646
13.6.1 How to debug when SQL can not be executed rightly in ShardingSphere? 646
13.6.2 Why do some compiling errors appear? Why did not the IDEA index the gener-
atedcodes? Lo e e e e e e 646
13.6.3 In SQLSever and PostgreSQL, why does the aggregation column without alias
throw exception? i i i i e e e e e e e e e e e 647
13.6.4 Why does Oracle database throw “Order by value must implements Compara-
ble” exception when using Timestamp Order By? 647
13.6.5 In Windows environment,when cloning ShardingSphere source code through
Git, why prompt filename too long and how tosolveit? 648
13.6.6 Howto solve Type s requirederror? v v v v v v v uen.. 649
13.6.7 How to speed up the metadata loading when service startsup? 649
13.6.8 The ANTLR plugin generates codes in the same level directory as src, which is
easy to commit by mistake. Howtoavoidit? 649
13.6.9 Why is the database sharding result not correct when using Proxool? 650
14 Downloads 651
14.1 LatestReleases v v v v i i i i i e e e e e e e e e e e e 651
14.1.1 Apache ShardingSphere - Version: 5.5.2 (Release Date: January 16th, 2025) . . 651
14.2 AILRElEASES .« v v v v vt e 651
14.3 VerifytheReleases o o v i i i i i it e e e e e e e e e 651

xiii

What is ShardingSphere

1.1 Introduction

Apache ShardingSphere is an ecosystem to transform any database into a distributed database system,
and enhance it with sharding, elastic scaling, encryption features & more.

The project is committed to providing a multi-source heterogeneous, enhanced database platform and
further building an ecosystem around the upper layer of the platform. Database Plus, the design phi-
losophy of Apache ShardingSphere, aims at building the standard and ecosystem on the upper layer of
the heterogeneous database. It focuses on how to make full and reasonable use of the computing and
storage capabilities of existing databases rather than creating a brand new database. It attaches greater
importance to the collaboration between multiple databases instead of the database itself.

1.1.1 ShardingSphere-JDBC

ShardingSphere-JDBC is a lightweight Java framework that provides additional services at Java’ s JDBC
layer.

1.1.2 ShardingSphere-Proxy

ShardingSphere-Proxy is a transparent database proxy, providing a database server that encapsulates
database binary protocol to support heterogeneous languages.

Apache ShardingSphere document

1.2 Product Features

F ea tu
re

Definition

Da ta
Sh ar di
ng

D is tr
ib ut ed
T ra ns
action
Re ad
/W ri te
S plitti
ng
DataM
ig ra ti
on

Q ue ry
Federa
ti on
Da ta
En cr
yption
Sh ad
ow Da
ta ba se

Data sharding is an effective way to deal with massive data storage and computing. Shard-
ingSphere provides a distributed database solution based on the underlying database,
which can scale computing and storage horizontally.

Transactional capability is key to ensuring database integrity and security and is also one
of the databases’ core technologies. With a hybrid engine based on XA and BASE transac-
tions, ShardingSphere provides distributed transaction capabilities on top of standalone
databases, enabling data security across underlying data sources.

Read/write splitting can be used to cope with business access with high stress. Sharding-
Sphere provides flexible read/write splitting capabilities and can achieve read access load
balancing based on the understanding of SQL semantics and the ability to perceive the
underlying database topology.

Data migration is the key to connecting data ecosystems. ShardingSphere provides migra-
tion capabilities to help users migrate the data from other data sources, while simultane-
ously performing data sharding.

Federated queries are effective in utilizing data in a complex data environment. Sharding-
Sphere provides complex data query and analysis capabilities across data sources, simpli-
fying the data aggregation from different data locations.

Data Encryption is a basic way to ensure data security. ShardingSphere provides a com-
plete, transparent, secure, and low-cost data encryption solution.

In full-link online load testing scenarios, ShardingSphere supports data isolation in com-
plex load testing scenarios through the shadow database function. Execute your load test-
ing scenarios in a production environment without worrying about test data polluting your

production data.

1.3 Advantages

» Ultimate Performance

Having been polished for years, the driver is close to a native JDBC in terms of efficiency, with ultimate

performance.

+ Ecosystem Compatibility

The proxy can be accessed by any application using MySQL/PostgreSQL protocol, and the driver can

connect to any database that implements JDBC specifications.

« Zero Business Intrusion

In response to database switchover scenarios, ShardingSphere can achieve smooth business migration

without business intrusion.

1.2. Product Features

Apache ShardingSphere document

« Low Ops & Maintenance Cost

ShardingSphere offers a flat learning curve to DBAs and is interaction-friendly while allowing the orig-
inal technology stack to remain unchanged.

« Security & Stability

It can provide enhancement capability based on mature databases while ensuring security and stability.
- Elastic Extension

It supports computing, storage, and smooth online expansion, which can meet diverse business needs.
* Open Ecosystem

It can provide users with flexibility thanks to custom systems based on multi-level (kernel, feature, and

ecosystem) plugin capabilities.

1.3. Advantages 3

Design Philosophy

ShardingSphere adopts the database plus design philosophy, which is committed to building the stan-
dards and ecology of the upper layer of the database and supplementing the missing capabilities of the

database in the ecology.

Design Philosophy: Database Plus

SDK

= x@’w IV Ee @B A python [l @ust Ty

SQL/DistSQLjE jI @

Database Plus

[ol

LN
Heterogeneous Databases
SQL< NoSQL - NewSQL,

1

N

Database Plus is our design concept of distributed
database system.

It aims to build a standard layer and ecosystem above
fragmented databases and minimize or eliminate the
challenges caused by underlying databases. Guided by this
concept, ShardingSphere not only links all applications and
databases, but also provides enhanced capabilities such as

data sharding and data encryption.

4»

Pluggable

~
I

Enhance

(&)

Connect

Apache ShardingSphere document

2.1 Connect: Create database upper level standard

Through flexible adaptation of database protocols, SQL dialects, and database storage, it can quickly
build standards on top of multi-modal heterogeneous databases, while providing standardized connec-

tion mode for applications through built-in DistSQL.

2.2 Enhance: Database computing enhancement engine

It can further provide distributed capabilities and traffic enhancement functions based on native
database capabilities. The former can break through the bottleneck of the underlying database in com-
puting and storage, while the latter provides more diversified data application enhancement capabili-

ties through traffic deformation, redirection, governance, authentication, and analysis.

2.3 Pluggable: Building database function ecology

Database Plus Link Enhance Pluggable
Build criterion and ecosystem above Link databases and services focus Capture database access entry Micro kernel for pluggable
multi-model databases on cooperation with multi- to provide additional features oriented everything is
modelsamong databases transparently pluggable with 3 layers
App End User ‘
o
Standard SQL .ig L Standalone “ ’ Cluster —[
& ‘

Native DB protocols

L3: Ecosystem Layer

Adaptor

ShardingSphere-JDBC L2: Feature Layer
ShardingSphere-Proxy

| L1: Kernel Layer | ¢ SQL Audit Multi-tenant
DistSQL | ‘

— ‘ —
Query Optimizer Ti + Storage J
I. A= | Tronsachien | | - SQL Traslate | SQL Firewall

WSl | | mosrgresl | | CGracke EMefndafn j EAufhorifyj SchedulingA—I
E— I——— | T
|
sharding Readwrite-split Scale-out DB-HA Encrypt Shadow
SQL Server Gthers...

- . '
E Database Protocol SQL Parser j Database Storage Adaptor |

Apache ShardingSphere

The pluggable architecture of Apache ShardingSphere is composed of three layers - L1 Kernel Layer, L2

Feature Layer and L3 Ecosystem Layer.

2.1. Connect: Create database upper level standard 5

Apache ShardingSphere document

2.3.1 L1Kernel Layer

An abstraction of databases’ basic capabilities. All the components are required and the specific im-
plementation method can be replaced thanks to plugins. It includes a query optimizer, distributed

transaction engine, distributed execution engine, permission engine and scheduling engine.

2.3.2 L2 Feature Layer

Used to provide enhancement capabilities. All components are optional, allowing you to choose
whether to include zero or multiple components. Components are isolated from each other, and mul-
tiple components can be used together by overlaying. It includes data sharding, read/write splitting,
data encryption and shadow database and so on. The user-defined feature can be fully customized and
extended for the top-level interface defined by Apache ShardingSphere without changing kernel codes.

2.3.3 L3 Ecosystem Layer

It is used to integrate and merge the current database ecosystems. The ecosystem layer includes
database protocol, SQL parser and storage adapter, corresponding to the way in which Apache Shard-
ingSphere provides services by database protocol, the way in which SQL dialect operates data, and the
database type that interacts with storage nodes.

2.3. Pluggable: Building database function ecology 6

Deployment

Apache ShardingSphere includes two independent clients: ShardingSphere-JDBC & ShardingSphere-
Proxy. They all provide functions of data scale-out, distributed transaction and distributed governance,
applicable in a variety of scenarios such as Java isomorphism, heterogeneous languages, and a cloud-

native environment.

3.1 Using ShardingSphere-JDBC

ShardingSphere-JDBC is a lightweight Java framework that provides additional services at Java’ s JDBC
layer. With the client connecting directly to the database, it provides services in the form of jar and
requires no extra deployment and dependence. It can be considered as an enhanced version of the
JDBC driver, which is fully compatible with JDBC and all kinds of ORM frameworks.

« Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC
Template, or direct use of JDBC;

« Support any third-party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP;

+ Support any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any
JDBC adapted databases.

Apache ShardingSphere document

Java Application

Java Application

|

; Business Code J-"r Gnv;;ﬂnce Tt 1 Business Code
ShardingSphere-TDBC —— ShardingSphere-TDBC

‘l_ |

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL

Connections Count Cost More Less

Heterogeneous language Java Only Any

Performance Low loss Relatively High loss

Decentralization Yes No

Static entry No Yes

3.2 Using ShardingSphere-Proxy

ShardingSphere-Proxy is a transparent database proxy, providing a database server that encapsulates

database binary protocol to support heterogeneous languages. Currently, MySQL and PostgreSQL pro-

tocols are provided. It can use any kind of terminal that is compatible with MySQL or PostgreSQL pro-

tocol to operate data, which is more friendly to DBAs.

- Transparent to applications, it can be used directly as MySQL/PostgreSQL;

« Compatible with MySQL-based databases, such as MariaDB, and PostgreSQL-based databases,

such as openGauss;

+ Applicable to any kind of client that is compatible with MySQL/PostgreSQL protocol, such as

MySQL Command Client, MySQL Workbench, etc.

3.2. Using ShardingSphere-Proxy

Apache ShardingSphere document

Application Application

Business Code Business Code

r‘* o e q{
|

T

\ P /
Governance Center —|d——— ShardingSphere-Proxy MySQL/PostgreSQL Cli
| | L . S -]
%""ﬂ WySQLPostgresQLEUT |
f"x : 1

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost More Less

Heterogeneous language Java Only Any

Performance Low loss Relatively High loss
Decentralization Yes No

Static entry No Yes

3.3 Hybrid Architecture

ShardingSphere-JDBC adopts a decentralized architecture, applicable to high-performance light-weight
OLTP applications developed with Java. ShardingSphere-Proxy provides static entry and supports all
languages, applicable to OLAP applications and the sharding databases management and operation

situation.

Apache ShardingSphere is an ecosystem composed of multiple access ports. By combining
ShardingSphere-JDBC and ShardingSphere-Proxy, and using the same registry to configure sharding
strategies, it can flexibly build application systems for various scenarios, allowing architects to freely
adjust the system architecture according to the current businesses.

3.3. Hybrid Architecture 9

Apache ShardingSphere document

Java Application Java Application

‘ Business Code ‘ r Business Code

f“* ShardingSphere-JDBC ShardingSphere-JDBC

Governance Center Runtime or Lightweight

Admin or Heavyweight

&

ShardingSphere-Proxy MySQL/Postgres Cli '
/\ MySQL/Postgres GUT ’
Application Application

Business Code 1 Business Code

3.3. Hybrid Architecture 10

Running Modes

Apache ShardingSphere provides two running modes: standalone mode and cluster mode.

4.1 Standalone Mode

It can achieve data persistence in terms of metadata information such as data sources and rules, but it
is not able to synchronize metadata to multiple Apache ShardingSphere instances or be aware of each
other in a cluster environment. Updating metadata through one instance causes inconsistencies in

other instances because they cannot get the latest metadata.

It is ideal for engineers to build a ShardingSphere environment locally.

4.2 Cluster Mode

It provides metadata sharing between multiple Apache ShardingSphere instances and the capability to
coordinate states in distributed scenarios.

It provides the capabilities necessary for distributed systems, such as horizontal scaling of computing
capability and high availability. Clustered environments need to store metadata and coordinate nodes’
status through a separately deployed registry center.

We suggest using cluster mode in production environment.

11

Roadmap

1.x 2.x

. o 3.x o 4.x
Lf:) .,_,‘> —1>

2016 2017 2018 2019

Sharding-JDBC To Cluster Sharding-Proxy ~ Apache ShardingSphere

Initial version, based on a Can coordinate in a distributed Using a proxy to mock a For Apache software foundation version,
JDBC driver, and for data environment, with ZooKeeper as database, copatible with all change the brand, and support more
sharding only. registry center. programming languages and databases except MySQL.

database workbenches.
m!

1

6.x <ﬁ 5.x

2021

7.x

A

]

? To Ecosystem To Cloud To Pluggable

To be continued... Provide Database Plus production, The ShardingSphere ecosystem is Micro kernel for pluggable
build a standard via expanding to include cloud oriented, everything is
DistSQL, and an ecosystem with a solutions with Helm Charts and pluggable with 3 layers, add
plugin oriented platform and Operator. Operator and Helm more features except sharding,
features. Charts allow you to deploy such as encrypt.

ShardingSphere on Kubernetes,
including services such as AWS

EKS, self-hosted Kubernetes, or
minikube.

12

Get Involved

ShardingSphere became an Apache Top-Level Project on April 16, 2020. You are welcome to check out

the mailing list and discuss via mail.

13

https://apache.org/index.html#projects-list
mailto:dev@shardingsphere.apache.org

Quick Start

In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere.

Example Codes: https://github.com/apache/shardingsphere/tree/master/examples

7.1 ShardingSphere-JDBC

7.1.1 Scenarios

There are two ways you can configure Apache ShardingSphere: Java and YAML. Developers can choose
the preferred method according to their requirements.

7.1.2 Limitations

Currently only Java language is supported.

7.1.3 Requirements

The development environment requires Java JRE 8 or later.

7.1.4 Procedure

1. Rules configuration.
Please refer to User Manual for more details.

2. Import Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${latest.release.version}</version>
</dependency>

14

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/

Apache ShardingSphere document

Notice: Please change ${latest.release.version} to the actual version.

3. Create YAML configuration file
JDBC database name. In cluster mode, use this parameter to connect ShardingSphere-
JDBC and ShardingSphere-Proxy.

Default: logic_db
databaseName (?):

mode:
dataSources:

rules:
- IFOO_XXX

- IBAR_XXX

props:
key_1: value_1
key_2: value_2

4. Take spring boot as an example, edit application.properties.

Configuring DataSource Drivers
spring.datasource.driver-class—-name=org.apache.shardingsphere.driver.
ShardingSphereDriver

Specify a YAML configuration file
spring.datasource.url=jdbc:shardingsphere:classpath:xxx.yaml

For details, see Spring Boot.

7.1. ShardingSphere-JDBC 15

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/jdbc-driver/spring-boot/

Apache ShardingSphere document

7.2 ShardingSphere-Proxy

7.2.1 Scenarios

Business Code Business Code

| Governance Center —Id——f ShardingSphere-Proxy MySQL/PostgreSQL Cli J
R — | (o — —
— — ——l
\{ MySQL/PostgreSQL GUT
]

T

l—\ Application ‘| Appl ication %

I

\r

e

ShardingSphere-Proxy is positioned as a transparent database proxy. It theoretically supports any client
operation data using MySQL, PostgreSQL and openGauss protocols, and is friendly to heterogeneous

languages and operation and maintenance scenarios.

7.2.2 Limitations

Proxy provides limited support for system databases / tables (such as information_schema, pg_catalog).
When connecting to Proxy through some graph database clients, the client or proxy may have an er-
ror prompt. You can use command-line clients (mysql, psql, gsql, etc.) to connect to the Proxy s

authentication function.

7.2. ShardingSphere-Proxy 16

Apache ShardingSphere document

7.2.3 Requirements

Starting ShardingSphere-Proxy with Docker requires no additional dependency. To start the Proxy using

binary distribution, the environment must have Java JRE 8 or higher.

7.2.4 Procedure

1. Get ShardingSphere-Proxy.

ShardingSphere-Proxy is available at: - Binary Distribution - Docker - Helm
2. Rule configuration.

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/global.yaml.

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/database-xxx.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the proxy extract path. for example: /opt/
shardingsphere-proxy-bin/

Please refer to Configuration Manual for more details.
3. Import dependencies.
If the backend database is PostgreSQL or openGauss, no additional dependencies are required.

If the backend database is MySQL, please download mysql-connector-java-5.1.49.jar or mysql-
connector-java-8.0.11.jar and put it into the %$SHARDINGSPHERE_PROXY_HOME%/ext-11b directory.

4. Start server.

« Use the default configuration to start

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

The default port is 3307, while the default profile directory is %SHARDINGSPHERE _PROXY_HOME%
conf/.

+ Customize port and profile directory

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${proxy_port} ${proxy_conf_directory}

5. Use ShardingSphere-Proxy.
Use MySQL or PostgreSQL or openGauss client to connect ShardingSphere-Proxy.

Use the MySQL client to connect to the ShardingSphere-Proxy:

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}

Use the PostgreSQL client to connect to the ShardingSphere-Proxy:

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

Use the openGauss client to connect to the ShardingSphere-Proxy:

7.2. ShardingSphere-Proxy 17

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/docker/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/helm/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.49/mysql-connector-java-5.1.49.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document

gsql -r -h ${proxy_host} -p ${proxy_port} -U ${proxy_username} -W ${proxy_password}

7.2. ShardingSphere-Proxy 18

Features

Apache ShardingSphere provides a variety of features, from database kernel and database distributed
solution to applications closed features.

There is no boundary for these features, warmly welcome more open source engineers to join the com-
munity and provide exciting ideas and features.

8.1 Sharding

8.1.1 Background

The traditional solution that stores all the data in one concentrated node has hardly satisfied the re-

quirement of massive data scenario in three aspects, performance, availability and operation cost.

In performance, the relational database mostly uses B+ tree index. When the data amount exceeds the
threshold, deeper index will increase the disk IO access number, and thereby, weaken the performance
of query. In the same time, high concurrency requests also make the centralized database to be the
greatest limitation of the system.

In availability, capacity can be expanded at a relatively low cost and any extent with stateless service,
which can make all the pressure, at last, fall on the database. Butthe single data node or simple primary-
replica structure has been harder and harder to take these pressures. Therefore, database availability
has become the key to the whole system.

From the aspect of operation costs, when the data in a database instance has reached above the thresh-
old, DBA’ s operation pressure will also increase. The time cost of data backup and data recovery will
be more uncontrollable with increasing amount of data. Generally, it is a relatively reasonable range
for the data in single database case to be within 1TB.

Under the circumstance that traditional relational databases cannot satisfy the requirement of the In-
ternet, there are more and more attempts to store the data in native distributed NoSQL. But its incom-
patibility with SQL and imperfection in ecosystem block it from defeating the relational database in the
competition, so the relational database still holds an unshakable position.

Sharding refers to splitting the data in one database and storing them in multiple tables and databases

19

Apache ShardingSphere document

according to some certain standard, so that the performance and availability can be improved. Both
methods can effectively avoid the query limitation caused by data exceeding affordable threshold.
What” s more, database sharding can also effectively disperse TPS. Table sharding, though cannot ease
the database pressure, can provide possibilities to transfer distributed transactions to local transac-
tions, since cross-database upgrades are once involved, distributed transactions can turn pretty tricky
sometimes. The use of multiple primary-replica sharding method can effectively avoid the data con-
centrating on one node and increase the architecture availability.

Splitting data through database sharding and table sharding is an effective method to deal with high
TPS and mass amount data system, because it can keep the data amount lower than the threshold and
evacuate the traffic. Sharding method can be divided into vertical sharding and horizontal sharding.

Vertical Sharding

According to business sharding method, it is called vertical sharding, or longitudinal sharding, the core
concept of which is to specialize databases for different uses. Before sharding, a database consists of
many tables corresponding to different businesses. But after sharding, tables are categorized into dif-
ferent databases according to business, and the pressure is also separated into different databases. The
diagram below has presented the solution to assign user tables and order tables to different databases
by vertical sharding according to business need.

SELECT * FROM t_user

SELECT * FROM t_order

SELECT * FROM t_user

SELECT * FROM t_order

Vertical sharding requires to adjust the architecture and design from time to time. Generally speaking,
it is not soon enough to deal with fast changing needs from Internet business and not able to really

solve the single-node problem. it can ease problems brought by the high data amount and concurrency

8.1. Sharding 20

Apache ShardingSphere document

amount, but cannot solve them completely. After vertical sharding, if the data amount in the table still
exceeds the single node threshold, it should be further processed by horizontal sharding.

Horizontal Sharding

Horizontal sharding is also called transverse sharding. Compared with the categorization method
according to business logic of vertical sharding, horizontal sharding categorizes data to multiple
databases or tables according to some certain rules through certain fields, with each sharding con-
taining only part of the data. For example, according to primary key sharding, even primary keys are
put into the 0 database (or table) and odd primary keys are put into the 1 database (or table), which is
illustrated as the following diagram.

SELECT * FROM t_user WHERE id=1

SELECT * FROM t_user WHERE id=2

SELECT * FROM +_user WHERE id=1 [iqs 221

SELECT * FROM t_user WHERE id=2 id%2=0

Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma-
chine and can be extended relatively freely, so it can be taken as a standard solution to database sharding

and table sharding.

8.1. Sharding 21

Apache ShardingSphere document

8.1.2 Challenges

Although data sharding solves problems regarding performance, availability, and backup recovery of

single points, the distributed architecture has introduced new problems while gaining benefits.

One of the major challenges is that application development engineers and database administrators
become extremely overwhelmed with all these operations after such a scattered way of data sharding.
They need to know from which specific sub-table can they fetch the data needed.

Another challenge is that SQL that works correctly in one single-node database does not necessarily
work correctly in a sharded database. For example, table splitting results in table name changes, or
incorrect handling of operations such as paging, sorting, and aggregate grouping.

Cross-library transactions are also tricky for a distributed database cluster. Reasonable use of table
splitting can minimize the use of local transactions while reducing the amount of data in a single table,
and appropriate use of different tables in the same database can effectively avoid the trouble caused
by distributed transactions. In scenarios where cross-library transactions cannot be avoided, some
businesses might still be in the need to maintain transaction consistency. The XA-based distributed
transactions are not used by Internet giants on a large scale because their performance cannot meet
the needs in scenarios with high concurrency, and most of them use flexible transactions with ultimate

consistency instead of strong consistent transactions.

8.1.3 Goal

The main design goal of the data sharding modular of Apache ShardingSphere is to try to reduce the
influence of sharding, in order to let users use horizontal sharding database group like one database.

8.1.4 Application Scenarios

Mass data high concurrency in OLTP scenarios

Most relational databases use B+ tree indexes, but when the amount of data exceeds the threshold, the
increase in index depth will also increase the number of I/O in accessing the disk, which will lower the
query performance. Data sharding through ShardingSphere enables data stored in a single database
to be dispersed into multiple databases or tables according to a business dimension, which improves
performance. The ShardingSphere-JDBC access port can meet the performance requirements of high

concurrency in OLTP scenarios.

8.1. Sharding 22

Apache ShardingSphere document

Mass data real-time analysis in OLAP scenarios

In traditional database architecture, if users want to analyze data, they need to use ETL tools first, syn-
chronize the data to the data platform, and then perform data analysis. However, ETL tools will greatly
reduce the effectiveness of data analysis. ShardingSphere-Proxy provides support for static entry and
heterogeneous languages, independent of application deployment, which is suitable for real-time anal-

ysis in OLAP scenarios.

8.1.5 Related References

« User Guide: sharding

+ Developer Guide: sharding

8.1.6 Core Concept

Table

Tables are a key concept for transparent data sharding. Apache ShardingSphere adapts to the data
sharding requirements under different scenarios by providing diverse table types.

Logic Table

The logical name of the horizontally sharded database (table) of the same structure is the logical identi-
fier of the table in SQL. Example: Order data is split into 10 tables according to the primary key endings,
are t_order_0to t_order_9, and their logical table names are t_order.

Actual Table

Physical tables that exist in the horizontally sharded databases. Those are, t_order_0to t_order_9

in the previous example.

Binding Table

Refers to a set of sharded tables with consistent sharding rules. When using binding tables for multi-
table associated query, a sharding key must be used for the association, otherwise, Cartesian product
association or cross-library association will occur, affecting query efficiency.

For example, if the t_order table and t_order_itemtable are both sharded according to order_id
and are correlated using order_id, the two tables are binding tables. The multi-table associated
queries between binding tables will not have a Cartesian product association, so the associated queries
will be much more effective. Here is an example,

If SQL is:

8.1. Sharding 23

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

SELECT 1i.* FROM t_order o JOIN t_order_item i ON o.order_1id=1i.order_id WHERE o.
order_id in (10, 11);

In the case where no binding table relationships are being set, assume that the sharding key order_-id
routes the value 10 to slice 0 and the value 11 to slice 1, then the routed SQL should be 4 items, which

are presented as a Cartesian product:

SELECT 1i.* FROM t_order_0 o JOIN t_order_item_0O i ON o.order_id=1i.order_id WHERE o.
order_id in (10, 11);

SELECT 1i.* FROM t_order_0O o JOIN t_order_item_1 i ON o.order_id=1i.order_id WHERE o.
order_id in (10, 11);

SELECT 1i.* FROM t_order_1 o JOIN t_order_item_0O i ON o.order_id=1i.order_id WHERE o.
order_id in (10, 11);

SELECT 1i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=1.order_id WHERE o.
order_id in (10, 11);

After the relationships between binding tables are configured and associated with order_id, the routed
SQL should then be 2 items:

SELECT 1i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=1i.order_id WHERE o.
order_id in (10, 11);

SELECT 1i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=1i.order_id WHERE o.
order_id in (10, 11);

The t_order table will be used by ShardingSphere as the master table for the entire binding table since
it specifies the sharding condition. All routing calculations will use only the policy of the primary table,
then the sharding calculations for the t_order_item table will use the t_order condition.

Note: multiple sharding rules in the binding table need to be configured according to the combination

of logical table prefix and sharding suffix, for example:

rules:
— !SHARDING
tables:
t_order:
actualDataNodes: ds_s${0..1}.t_order_${0..1}
t_order_item:
actualDataNodes: ds_s${0..1}.t_order_item_${0..1}
bindingTables:
- t_order, t_order_item

8.1. Sharding 24

Apache ShardingSphere document

Broadcast data frame

Refers to tables that exist in all data sources. The table structure and its data are identical in each
database. Suitable for scenarios where the data volume is small and queries are required to be associ-
ated with tables of massive data, e.g., dictionary tables.

Single Table

Refers to the only table that exists in all sharded data sources. Suitable for tables with a small amount
of data and do not need to be sharded.

Note: Single tables that meet the following conditions will be automatically loaded: - A single table
showing the configuration in rules such as encrypt and mask - A single table created by users executing
DDL statements through ShardingSphere

For other single tables that do not meet the above conditions, ShardingSphere will not automatically
load them, and users can configure single table rules as needed for management.

Data Nodes

The smallest unit of the data shard, consists of the data source name and the real table. Example:
ds_0.t_order_0.

The mapping relationship between the logical table and the real table can be classified into two forms:

uniform distribution and custom distribution.

Uniform Distribution

refers to situations where the data table exhibits a uniform distribution within each data source. For

example:

dbo

}— t_ordero0

L t_orderl
db1

}— t_order0

L t_orderl

The configuration of data nodes:

db0.t_order®, db0.t_orderl, dbl.t_order0®, dbl.t_orderl

8.1. Sharding 25

Apache ShardingSphere document

Customized Distribution

Data table exhibiting a patterned distribution. For example:

dbo

|—— t_order0

L t_orderl
db1

|—— t_order2
}— t_order3

L t_order4

configuration of data nodes:

db0.t_order®, dbe.t_orderl, dbl.t_order2, dbl.t_order3, dbl.t_order4

Sharding

Sharding key

A database field is used to split a database (table) horizontally. Example: If the order primary key in
the order table is sharded by modulo, the order primary key is a sharded field. If there is no sharded
field in SQL, full routing will be executed, of which performance is poor. In addition to the support for
single-sharding fields, Apache ShardingSphere also supports sharding based on multiple fields.

Sharding Algorithm

Algorithm for sharding data, supporting =, >=, <=, >, <, BETWEEN and IN. The sharding algorithm can
be implemented by the developers themselves or can use the Apache ShardingSphere built-in sharding

algorithm, syntax sugar, which is very flexible.

Automatic Sharding Algorithm

Sharding algorithm—syntactic sugar is for conveniently hosting all data nodes without users having
to concern themselves with the physical distribution of actual tables. Includes implementations of
common sharding algorithms such as modulo, hash, range, and time.

8.1. Sharding 26

Apache ShardingSphere document

Customized Sharding Algorithm

Provides a portal for application developers to implement their sharding algorithms that are closely
related to their business operations, while allowing users to manage the physical distribution of actual
tables themselves. Customized sharding algorithms are further divided into: - Standard Sharding Algo-
rithm Used to deal with scenarios where sharding is performed using a single key as the sharding key
=, IN, BETWEEN AND, >, <, >=, <=. - Composite Sharding Algorithm Used to cope with scenarios where
multiple keys are used as sharding keys. The logic containing multiple sharding keys is very compli-
cated and requires the application developers to handle it on their own. - Hint Sharding Algorithm For

scenarios involving Hint sharding.

Sharding Strategy

Consisting of a sharding key and sharding algorithm, which is abstracted independently due to the
independence of the sharding algorithm. What is viable for sharding operations is the sharding key +
sharding algorithm, known as sharding strategy.

Mandatory Sharding routing

For the scenario where the sharded field is not determined by SQL but by other external conditions,
you can use SQL Hint to inject the shard value. Example: Conduct database sharding by employee login
primary key, but there is no such field in the database. SQL Hint can be used both via Java API and SQL
annotation. See Mandatory Sharding Routing for details.

Row Value Expressions

Row expressions are designed to address the two main issues of configuration simplification and inte-
gration. In the cumbersome configuration rules of data sharding, the large number of repetitive con-
figurations makes the configuration itself difficult to maintain as the number of data nodes increases.

The data node configuration workload can be effectively simplified by row expressions.

For the common sharding algorithm, using Java code implementation does not help to manage the
configuration uniformly. But by writing the sharding algorithm through line expressions, the rule con-

figuration can be effectively stored together, which is easier to browse and store.

A Row Value Expressions consists of two parts as a string, the Type Name part of the corresponding SPI
implementation at the beginning of the string and the expression part.

Take <GROOVY>t_order_${1..3} as sample, the GROOVY substring in the part of the <GROOVY>
string is the Type Name used by the corresponding SPI implementation for this Row Value Expres-
sions, which is identified by the <> symbol. And the t_order_${1. .3} string is the expression part
of this Row Value Expressions. When a Row Value Expressions does not specify a Type Name, such as
t_order_${1. .3}, the Row Value Expressions defaults to parse expressions by GROOVY implemen-
tation for InlineExpressionParser SPI.

The following sections describe the syntax rules for the GROOVY implementation.

8.1. Sharding 27

Apache ShardingSphere document

Row expressions are very intuitive, just use ${ expression }or $->{ expression } inthe config-
uration to identify the row expressions. Data nodes and sharding algorithms are currently supported.
The content of row expressions uses Groovy syntax, and all operations supported by Groovy are sup-
ported by row expressions. For example:

${begin..end} denotes the range interval
${[unitl, unit2, unit_x]} denotesthe enumeration value

If there are multiple ${ expression }or $->{ expression } expressionsin a row expression,
the final result of the whole expression will be a Cartesian combination based on the result of each

sub-expression.

e.g. The following row expression:

${['online', 'offline']}_tables${1..3}

Finally, it can be parsed as this:

online_tablel, online_table2, online_table3, offline_tablel, offline_table2,
offline_table3

Distributed Primary Key

In traditional database software development, automatic primary key generation is a basic require-
ment. Various databases provide support for this requirement, such as self-incrementing keys of
MySQL, self-incrementing sequences of Oracle, etc. After data sharding, it is very tricky to generate
global unique primary keys for different data nodes. Self-incrementing keys between different ac-
tual tables within the same logical table generate repetitive primary keys because they are not mu-
tually aware. Although collisions can be avoided by constraining the initial value and step size of self-
incrementing primary keys, additional operational and maintenance rules are necessary to be intro-
duced, rendering the solution lacking in completeness and scalability.

Many third-party solutions can perfectly solve this problem, such as UUID, which relies on specific al-
gorithms to self-generate non-repeating keys, or by introducing primary key generation services. To
facilitate users and meet their demands for different scenarios, Apache ShardingSphere not only pro-
vides built-in distributed primary key generators, such as UUID and SNOWFLAKE but also abstracts
the interface of distributed primary key generators to enable users to implement their own customized

self-extending primary key generators.

8.1. Sharding 28

Apache ShardingSphere document

8.1.7 Limitations

Compatible with all commonly used SQL that routes to single data nodes; SQL routing to multiple data
nodes is divided, because of complexity issues, into three conditions: stable support, experimental

support, and no support.

Stable Support

Full support for DML, DDL, DCL, TCL, and common DALs. Support for complex queries such as pag-
ing, de-duplication, sorting, grouping, aggregation, table association, etc. Support SCHEMA DDL and
DML statements of PostgreSQL and openGauss database. When no schema is specified in SQL, default
accessto ‘public’ schema. Other schemas need to declare before the table name, and do not support
‘SEARCH_PATH’ to modify the schema search path.

Normal Queries

« main statement SELECT

SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE pred-icates]

[GROUP BY {col_name | position} [ASC | DESC], ...]

[ORDER BY {col_name | position} [ASC | DESC], ...]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]

- select_expr

x|

[DISTINCT] COLUMN_NAME [AS] [alias] |

(MAX | MIN | SUM | AVG) (COLUMN_NAME | alias) [AS] [alias] |
COUNT(* | COLUMN_NAME | alias) [AS] [alias]

« table_reference

tbl_name [AS] alias] [index_hint_1list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON
conditional_expr | USING (column_list)]

Sub-query

Stable support is provided by the kernel when both the subquery and the outer query specify a shard
key and the values of the slice key remain consistent. e.g:

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 1;

Sub-query for pagination can be stably supported by the kernel. e.g.:

8.1. Sharding 29

https://shardingsphere.apache.org/document/current/en/features/sharding/limitation/#pagination-query

Apache ShardingSphere document

SELECT * FROM (SELECT row_.x, rownum rownum_ FROM (SELECT * FROM t_order) row_ WHERE
rownum <= ?) WHERE rownum > ?;

Pagination Query

MySQL, PostgreSQL, and openGauss are fully supported, Oracle and SQLServer are only partially sup-

ported due to more intricate paging queries.

Pagination for Oracle and SQLServer needs to be handled by subqueries, and ShardingSphere supports

paging-related subqueries.

« Oracle Support pagination by rownum

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id
FROM t_order o JOIN t_order_item i ON o.order_id = i.order_id) row_ WHERE rownum <=
?) WHERE rownum > ?

+ SQL Server Support pagination that coordinates TOP + ROW_NUMBER() OVER

SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS
rownum, * FROM t_order o) AS temp WHERE temp.rownum > ? ORDER BY temp.order_id

Support pagination by OFFSET FETCH after SQLServer 2012

SELECT * FROM t_order o ORDER BY id OFFSET ? ROW FETCH NEXT ? ROWS ONLY

« MySQL, PostgreSQL and openGauss all support LIMIT pagination without the need for sub-query:

SELECT * FROM t_order o ORDER BY id LIMIT ? OFFSET ?

Aggregation

Support MAX, MIN, SUM, COUNT, AVG, BIT_XOR, GROUP_CONCAT and so on.

Shard keys included in operation expressions

When the sharding key is contained in an expression, the value used for sharding cannot be extracted
through the SQL letters and will result in full routing.

For example, assume create_time is a sharding key.

SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01';

8.1. Sharding 30

Apache ShardingSphere document

LOAD DATA / LOAD XML

Support MySQL LOAD DATA and LOAD XML statements to load data to single table and broadcast table.

View

1. Support create, alter and drop view based on a single table or multiple single tables on the same

storage node;

2. Support create, alter and drop view based on any broadcast table;

3. Support create, alter and drop view based on any sharding table. The view must be configured

with same sharding rules as sharding table, the view and sharding table must be in same binding

table rule;

4. Support create, alter and drop view based on broadcast tables and sharding tables. The sharding

table rules are same as create view using sharding tables alone;

5. Support create, alter and drop view based on broadcast tables and single tables;

6. Support MySQL SHOW CREATE TABLE viewName to show create statement of the view.

Experimental Support

Experimental support refers specifically to support provided by implementing Federation execution

engine, an experimental product that is still under development. Although largely available to users, it

still requires significant optimization.

Sub-query

The Federation execution engine provides support for subqueries and outer queries that do not both

specify a sharding key or have inconsistent values for the sharding key.

e.g:

SELECT * FROM
SELECT % FROM
SELECT * FROM
SELECT * FROM

(SELECT

(SELECT

(SELECT

(SELECT

*

*

*

*

FROM t_order) o;

FROM t_order) o WHERE o.order_id = 1;

FROM t_order WHERE order_id = 1) o;

FROM t_order WHERE order_-id

1) o WHERE o.order_id = 2;

8.1. Sharding

31

Apache ShardingSphere document

Cross-database Associated query

When multiple tables in an associated query are distributed across different database instances, the
Federation execution engine can provide support. Assuming that t_order and t_order_item are sharded
tables with multiple data nodes while no binding table rules are configured, and t_user and t_user_role
are single tables distributed across different database instances, then the Federation execution engine
can support the following common associated queries.

SELECT * FROM t_order o INNER JOIN t_order_item i ON o.order_id = i.order_id WHERE

o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user u ON o.user_id = u.user_id WHERE o.user_1id
= l;

SELECT * FROM t_order o LEFT JOIN t_user_role r ON o.user_id = r.user_id WHERE o.
user_id = 1;

SELECT * FROM t_order_item i LEFT JOIN t_user u ON 1i.user_id = u.user_id WHERE 1.

user_id = 1;

SELECT * FROM t_order_titem i RIGHT JOIN t_user_role r ON 1i.user_id = r.user_id WHERE

j.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role r ON u.user_id = r.user_id WHERE u.

user_id = 1;

Do not Support

CASE WHEN

The following CASE WHEN statements are not supported: - CASE WHEN contains sub-query - Logic

names are used in CASE WHEN(Please use an alias)

Pagination Query

Due to the complexity of paging queries, there are currently some paging queries that are not supported
for Oracle and SQLServer, such as: - Oracle The paging method of rownum + BETWEEN is not supported
at present

+ SQLServer Currently, pagination with WITH xxx AS (SELECT ...) is not supported. Since
the SQLServer paging statement automatically generated by Hibernate uses the WITH statement,
Hibernate-based SQLServer paging is not supported at this moment. Pagination using two TOP +
subquery also cannot be supported at this time.

8.1. Sharding 32

Apache ShardingSphere document

Aggregation

When a query contains multiple aggregate functions at the same time, it does not support mixing ag-
gregate functions with DISTINCT and aggregate functions without DISTINCT.

LOAD DATA / LOAD XML

Not support MySQL LOAD DATA and LOAD XML statements to load data to sharding table.

8.1.8 Appendix with SQL operator

Limited supported SQL:

« When using getGeneratedKeys interface of JDBC specification to return auto-increment key, it
isnecessary to use a distributed key generator that supports auto-increment, and does not support
other types of distributed key generators

Unsupported SQL:

« CASE WHEN contains sub-query

Logical table names are used in CASE WHEN(Please use an alias)

INSERT INTO tbl_name (coll, col2, -*-) SELECT * FROM tbl_name WHERE col3 =? (The SELECT
clause does not support * and the built-in distributed primary key generator)

REPLACE INTO tbl_name (coll, col2, ---) SELECT * FROM tbl_name WHERE col3 = ? (The SELECT

clause does not support * and the built-in distributed primary key generator)

SELECT MAX(tbl_name.coll) FROM tbl_name (If the query column is a function expression, use
the table alias instead of the table name)

Other:

* You should keep actual tables, sharding columns and key generate columns in sharding rule same

capitalization with tables and columns in database.

8.2 Distributed Transaction

8.2.1 Background
Database transactions should satisfy the features of ACID (atomicity, consistency, isolation and dura-
bility).

 Atomicity: transactions are executed as a whole, and either all or none is executed.

+ Consistency: transactions should ensure that the state of data remains consistent after the tran-

sition.

8.2. Distributed Transaction 33

Apache ShardingSphere document

« Isolation: when multiple transactions execute concurrently, the execution of one transaction
should not affect the execution of others.

+ Durability: when a transaction committed modifies data, the operation will be saved persistently.

In single data node, transactions are only restricted to the access and control of single database re-
sources, called local transactions. Almost all the mature relational databases have provided native sup-
port for local transactions. But in distributed application situations based on micro-services, more and
more of them require to include multiple accesses to services and the corresponding database resources

in the same transaction. As a result, distributed transactions appear.

Though the relational database has provided perfect native ACID support, it can become an obstacle to
the system performance under distributed situations. How to make databases satisfy ACID features un-
der distributed situations or find a corresponding substitute solution, is the priority work of distributed

transactions.

8.2.2 Challenge

For different application situations, developers need to reasonably weight the performance and the
function between all kinds of distributed transactions.

Highly consistent transactions do not have totally the same API and functions as soft transactions, and
they cannot switch between each other freely and invisibly. The choice between highly consistent trans-
actions and soft transactions as early as development decision-making phase has sharply increased the
design and development cost.

Highly consistent transactions based on XA is relatively easy to use, but is not good at dealing with long
transaction and high concurrency situation of the Internet. With a high access cost, soft transactions
require developers to transform the application and realize resources lock and backward compensa-

tion.

8.2.3 Goal

The main design goal of the distributed transaction modular of Apache ShardingSphere is to integrate
existing mature transaction cases to provide an unified distributed transaction interface for local trans-
actions, 2PC transactions and soft transactions; compensate for the deficiencies of current solutions to
provide a one-stop distributed transaction solution.

8.2.4 How it works

ShardingSphere provides begin/ commit/rollback traditional transaction interfaces externally, and pro-
vides distributed transaction capabilities through LOCAL, XA and BASE modes.

8.2. Distributed Transaction 34

Apache ShardingSphere document

LOCAL Transaction

LOCAL mode is implemented based on ShardingSphere’ s proxy database interfaces, that is be-
gin/commit/rolllback. For a logical SQL, ShardingSphere starts transactions on each proxied database
with the begin directive, executes the actual SQL, and performs commit/rollback. Since each data node
manages its own transactions, there is no coordination and communication between them, and they
do not know whether other data node transactions succeed or not. There is no loss in performance, but
strong consistency and final consistency cannot be guaranteed.

XA Transaction

XA transaction adopts the concepts including AP(application program), TM(transaction manager) and
RM(resource manager) to ensure the strong consistency of distributed transactions. Those concepts are
abstracted from DTP mode which is defined by X/OPEN group. Among them, TM and RM use XA pro-
tocol to carry out both-way communication, which is realized through two-phase commit. Compared
to traditional local transactions, XA transaction adds a preparation stage where the database can also
inform the caller whether the transaction can be committed, in addition to passively accepting commit
instructions. TM can collect the results of all branch transactions and make atomic commit at the end

to ensure the strong consistency of transactions.

Classic DTP Application Program (AP)
Resource Manager (RM) { —> —l

Transaction Manager

Resource Manager (RM)
(TM)

v

Resource Manager (RM) ¢————»

ShardingSphere DTP Apache ShardingSphere

F’r‘ansqcﬂon Manager (TM) ——————» Resource Manager (RM)

Application Program

XA | 4————1—» | Resource Manager (RM)
(AP)
S E—
| BASE | ————— > Pesource Manager (RM)
L _ :I |
. . I~ — — |
Ve e | XA Transaction Manager | | BASE Transaction Manager |
[‘ ‘ - i
Atomikos | [Saufq__ 3 |
| — - —
| [Narayana | |j Others... |
‘ r Bifronix_ _"
| Others T\
L —— |

XA transaction is implemented based on the interface of ShardingSphere’ s proxy database xa

start/end/prepare/commit/rollback/recover.

For a logical SQL, ShardingSphere starts transactions in each proxied database with the xa begin direc-
tive, integrates TM internally for coordinating branch transactions, and performs xa commit /rollback.

8.2. Distributed Transaction 35

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Apache ShardingSphere document

Distributed transactions based on XA protocol are more suitable for short transactions with fixed exe-
cution time because the required resources need to be locked during execution. For long transactions,
data exclusivity during the entire transaction will have an impact on performance in concurrent sce-

narios.

BASE Transaction

If a transaction that implements ACID is called a rigid transaction, then a transaction based on a BASE
transaction element is called a flexible transaction. BASE stands for basic availability, soft state, and

eventual consistency.

« Basically Available: ensure that distributed transaction parties are not necessarily online at the
same time.

« Soft state: system status updates are allowed to have a certain delay, and the delay may not be
recognized by customers.

- Eventually consistent: guarantee the eventual consistency of the system by means of messaging.

ACID transaction puts a high demand for isolation, where all resources must be locked during the exe-
cution of transactions. Flexible transaction is to move mutex operations from the resource level to the
business level through business logic. Reduce the requirement for strong consistency in exchange for
higher system throughput.

ACID-based strong consistency transactions and BASE-based final consistency transactions are not a
jack of all trades and can fully leverage their advantages in the most appropriate scenarios. Apache
ShardingSphere integrates the operational scheme taking SEATA as the flexible transaction. The fol-
lowing table can be used for comparison to help developers choose the suitable technology.

LOCAL XA BASE
Business transf None None Seata Server needed
ormation
Con sistency Not supported Supported Final consistency
I solation Not supported Supported Business side guaran-
teed
Co ncurrent per no loss severe loss slight loss
formance
Applied s cenar- Inconsistent processing by short transaction & low- long transaction &
ios the business side level concurrency high concurrency

8.2. Distributed Transaction

36

Apache ShardingSphere document

8.2.5 Application Scenarios

The database’s transactions can meet ACID business requirements in a standalone application scenario.
However, in distributed scenarios, traditional database solutions cannot manage and control global

transactions, and users may find data inconsistency on multiple database nodes.

ShardingSphere distributed transaction makes it easier to process distributed transactions and provides
flexible and diverse solutions. Users can select the distributed transaction solutions that best fit their

business scenarios among LOCAL, XA, and BASE modes.

Application Scenarios for ShardingSphere XA Transactions

Strong data consistency is guaranteed in a distributed environment in terms of XA transactions. How-
ever, its performance may be degraded due to the synchronous blocking problem. It applies to business

scenarios that require strong data consistency and low concurrency performance.

Application Scenarios for ShardingSphere BASE Transaction

In terms of BASE transactions, final data consistency is guaranteed in a distributed environment. Unlike
XA transactions, resources are not locked during the whole transaction process, so its performance is
relatively higher.

Application Scenarios for ShardingSphere LOCAL Transaction

In terms of LOCAL transactions, the data consistency and isolation among database nodes are not guar-
anteed in a distributed environment. Therefore, the business sides need to handle the inconsistencies
by themselves. This applies to business scenarios where users would like to handle data inconsistency
in a distributed environment by themselves.

8.2.6 Related references

« YAML distributed transaction configuration

8.2.7 Core Concept

XA Protocol

The original distributed transaction model of XA protocol is the “X/Open Distributed Transaction Pro-
cessing (DTP)” model, XA protocol for short, which was proposed by the X/Open international consor-

tium.

8.2. Distributed Transaction 37

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/

Apache ShardingSphere document

8.2.8 Limitations

Although Apache ShardingSphere aims at being compatible with all distributed scenario and provid-
ing the best performance, under the CAP theorem guidance, there is no sliver bullet with distributed

transaction solution.

The Apache ShardingSphere community chose instead to give the users the ability to choose their pre-
ferred distributed transaction type and use the most suitable solution according to their scenarios.

LOCAL Transaction

Unsupported

+ Does not support the cross-database transactions caused by network or hardware crash. For ex-
ample, when updating two databases in transaction, if one database crashes before commit, then
only the data of the other database can commit.

XA Transaction

Unsupported

+ Recover committing and rolling back in other machines after the service is down.

« MySQL, in the transaction block, the SQL execution is abnormal, and run Commit, and data re-

mains consistent.

- After XA transactions are configured, the maximum length of the storage unit name cannot exceed

45 characters.

BASE Transaction

Unsupported

« Does not support isolation level.

8.2.9 Appendix with SQL operator

Unsupported SQL:
« RAL and RDL operations of DistSQL that are used in transactions.
+ DDL statements that are used in XA transactions.

Privileges required for XA transactions:

In MySQLS8, you need to grant the user XA_RECOVER_ADMIN privileges, otherwise, the XA transaction
manager will report an error when executing the XA RECOVER statement.

8.2. Distributed Transaction 38

Apache ShardingSphere document

8.3 Readwrite-splitting

8.3.1 Background

Database throughput has faced the bottleneck with increasing TPS. For the application with massive
concurrence read but less write in the same time, we can divide the database into a primary database
and a replica database. The primary database is responsible for the insert, delete and update of trans-
actions, while the replica database is responsible for queries. It can significantly improve the query
performance of the whole system by effectively avoiding row locks.

One primary database with multiple replica databases can further enhance processing capacity by dis-
tributing queries evenly into multiple data replicas. Multiple primary databases with multiple replica
databases can enhance not only throughput but also availability. Therefore, the system can still run

normally, even though any database is down or physical disk destroyed.

Different from the sharding that separates data to all nodes according to sharding keys, readwrite-
splitting routes read and write separately to primary database and replica databases according SQL

analysis.

UPDATE t_user SET status='OK' WHERE id=1

SELECT * FROM t_user WHERE id-1

J L
UPDATE t_user SET status='OK' WHERE id=1 e
¥
SELECT * FROM t_user WHERE id=1 Replica

Data in readwrite-splitting nodes are consistent, whereas that in shards is not. The combined use of

sharding and readwrite-splitting will effectively enhance the system performance.

8.3. Readwrite-splitting 39

Apache ShardingSphere document

8.3.2 Challenges

Though readwrite-splitting can enhance system throughput and availability, it also brings inconsis-
tent data, including that among multiple primary databases and among primary databases and replica
databases. What’ s more, it also brings the same problem as data sharding, complicating developer and
operator’ s maintenance and operation. The following diagram has shown the complex topological rela-
tions between applications and database groups when sharding used together with readwrite-splitting.

t_order_O +_order_1 +_order_2
F ®

\ . .
t_order_3 " t_order_4 "\. +_order_5 | °

read

Application 1 "; Application 2 :; Application n syne

write

t_order_0 ||+ +_order_1 |} T_order_2 ||+

t_order_3 T_order_4 +_order_5

8.3.3 Goal

The main design goal of readwrite-splitting of Apache ShardingSphere is to try to reduce the influence

of readwrite-splitting, in order to let users use primary-replica database group like one database.

8.3.4 Application Scenarios

Complex primary-secondary database architecture

Many systems rely on the configuration of primary-secondary database architecture to improve the
throughput of the whole system. Nevertheless, this configuration can make it more complex to use

services.

After accessing ShardingSphere, the read/write splitting feature can be used to manage primary-
secondary databases and achieve transparent read/write splitting, enabling users to use databases with

primary/secondary architecture just like using one single database.

8.3. Readwrite-splitting 40

Apache ShardingSphere document

8.3.5 Related References

Java API YAML Configuration

8.3.6 Core Concept

Primary database

The primary database is used to add, update, and delete data operations. Currently, only single primary

database is supported.

Secondary database

The secondary database is used to query data operations and multi-secondary databases are supported.

Primary-Secondary synchronization

It refers to the operation of asynchronously synchronizing data from a primary database to a secondary
database. Due to the asynchronism of primary-secondary synchronization, data from the primary and
secondary databases may be inconsistent for a short time.

Load balancer policy

Channel query requests to different secondary databases through load balancer policy.

8.3.7 Limitations

+ Data synchronization of primary and secondary databases is not supported.

« Data inconsistency resulting from data synchronization delays between primary and secondary

databases is not supported.
« Multi-write of primary database is not supported.

« Transactional consistency between primary and secondary databases is not supported. In the
primary-secondary model, both data reads and writes in transactions use the primary database.

8.3. Readwrite-splitting 41

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting

Apache ShardingSphere document

8.4 DB Gateway

8.4.1 Background

With the trend of database fragmentation, using multiple types of databases together has become the
norm. The scenario of using one SQL dialect to access all heterogeneous databases is increasing.

8.4.2 Challenges

The existence of diversified databases makes it difficult to standardize the SQL dialect accessing the
database. Engineers need to use different dialects for different kinds of databases, and there is no uni-
fied query platform.

Automatically translate different types of database dialects into the dialects used by the database, so
that engineers can use any database dialect to access all heterogeneous databases, which can reduce

development and maintenance cost greatly.

8.4.3 Goal

The goal of database gateway for Apache ShardingSphere is translating SQL automatically among vari-
ous databases.

8.4.4 Application Scenarios

As business scenarios and database products of enterprises become increasingly diversified, the con-
nection between business applications and various database products becomes extremely complex.
ShardingSphere database gateway can shield the connection between business applications and the
underlying diversified databases. At the same time, it provides a unified access protocol and syntax
system for different business scenarios, which can help enterprises quickly build a unified data access
platform.

8.4.5 Core Concept

SQL Dialect

SQL dialect means database dialect, and it indicates that some database projects have their own unique
syntax in addition to SQL, which are also called dialects. Different database projects may have different
SQL dialects.

8.4. DB Gateway 42

Apache ShardingSphere document

8.4.6 Limitations

The SQL dialect translation of Apache ShardingSphere is experimental.

Currently, only MySQL/PostgreSQL dialects can be automatically translated. Engineers can use MySQL
dialects and protocols to access PostgreSQL databases and vice versa.

8.5 Traffic Governance

8.5.1 Background

As the scale of data continues to expand, a distributed database has become a trend gradually. The
unified management ability of cluster perspective, and control ability of individual components are
necessary ability in modern database system.

8.5.2 Challenges

The challenge is ability which are unified management of centralized management, and operation in

case of single node in failure.

Centralized management is to uniformly manage the state of database storage nodes and middleware
computing nodes, and can detect the latest updates in the distributed environment in real time, further
provide information with control and scheduling.

In the overload traffic scenario, circuit breaker and request limiting for a node to ensure whole database

cluster can run continuously is a challenge to control ability of a single node.

8.5.3 Goal

The goal of Apache ShardingSphere management module is to realize the integrated management abil-

ity from database to computing node, and provide control ability for components in case of failure.

8.5.4 Application Scenarios

Overloaded compute node protection

When a compute node in a ShardingSphere cluster exceeds its load, the circuit breaker function is used
to block the traffic to the compute node, to ensure that the whole cluster continues to provide stable

services.

8.5. Traffic Governance 43

Apache ShardingSphere document

Storage node traffic limit

In the read-write splitting scenario where a storage node responsible for the read traffic in a Shard-
ingSphere cluster receives overloaded requests, the traffic limit function is used to block traffic from
compute nodes to the storage node, to ensure normal response of the storage node cluster.

8.5.5 Core Concept

Circuit Breaker

Fuse connection between Apache ShardingSphere and the database. When an Apache ShardingSphere
node exceeds the max load, stop the node’ s access to the database, so that the database can ensure
sufficient resources to provide services for other Apache ShardingSphere nodes.

Request Limit

Inthe face of overload requests, open request limiting to protect some requests can still respond quickly.

8.6 Data Migration

8.6.1 Background

In a scenario where the business continues to develop and the amount of data and concurrency reaches
a certain extent, the traditional single database may face problems in terms of performance, scalability
and availability.

Although NoSQL solutions can solve the above problems through data sharding and horizontal scale-

out, NoSQL databases generally do not support transactions and SQL.

ShardingSphere can also solve the above problems and supports data sharding and horizontal scale-out,
while at the same time, also supporting distributed transactions and SQL.

The data migration scheme provided by ShardingSphere can help the traditional single database
smoothly switch to ShardingSphere.

8.6.2 Challenges

The data migration process should not affect the running services. So the first challenge is to minimize
the time window during which data is not available.

Next, data migration should not affect existing data. So the second challenge is to ensure the data cor-
rectness.

8.6. Data Migration 44

Apache ShardingSphere document

8.6.3 Goal

The major goal of Apache ShardingSphere in performing data migration is to reduce the impact of data

migration on services and provide a one-stop universal data migration solution.

8.6.4 Application Scenarios

Application scenario one: when an application system is using a traditional single database, and the
amount of data in a single table reaches 100 million and is still growing rapidly, a single database that
continues to run with a high load will become the bottleneck of the system.

Once the database becomes the bottleneck, it is useless to scale out the application server. Instead, it

is the database that needs to be scaled out.

8.6.5 Related References

« Configurations of data migration

« Reference of data migration

8.6.6 Core Concept

Nodes

Instances for running compute or storage tier component processes. These can either be physical ma-

chines, virtual machines, or containers, etc.

Cluster

Multiple nodes that are assembled together to provide a specified service.

Source

The storage cluster where the original data resides.

Target

The target storage cluster to which the original data is to be migrated.

8.6. Data Migration 45

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/migration/
https://shardingsphere.apache.org/document/current/en/reference/migration/

Apache ShardingSphere document

Data Migration Process

The entire process of replicating data from one storage cluster to another.

Stock Data

The data that was already in the data node before the data migration operation started.

Incremental Data

New data generated by operational systems during the execution of data migration operations.

8.6.7 Limitations

Procedures Supported

 Migration of peripheral data to databases managed by Apache ShardingSphere.

« Target proxy without rule or configure any rule.

Migration of single column primary key or unique key table, the first column type could be: inte-
ger data type, string data type and part of binary data type (e.g. MySQL VARBINARY).

+ Migration of multiple column primary keys or unique keys table.

Procedures not supported
« Migration on top of the current storage node is not supported, so a brand new database cluster
needs to be prepared as the migration target cluster.
« Target proxy table rule contains HINT strategy.
« Use different target table schema from source table schema.

« Source table DDL changes during migration.

8.7 Encryption

8.7.1 Background

Security control has always been a crucial link of data governance, data encryption falls into this cat-
egory. For both Internet enterprises and traditional sectors, data security has always been a highly
valued and sensitive topic. Data encryption refers to transforming some sensitive information through
encrypt rules to safely protect the private data. Data involves client’ s security or business sensibil-
ity, such as ID number, phone number, card number, client number and other personal information,

requires data encryption according to relevant regulations.

8.7. Encryption 46

Apache ShardingSphere document

For data encryption requirements, there are the following situations in realistic business scenarios:

+ When the new business start to launch, and the security department stipulates that the sensitive
information related to users, such as banks and mobile phone numbers, should be encrypted and
stored in the database, and then decrypted when used.

8.7.2 Challenges

In the real business scenario, the relevant business development team often needs to implement and
maintain a set of encryption and decryption system according to the needs of the company’ s secu-
rity department. When the encryption scenario changes, the encryption system often faces the risk of
reconstruction or modification. In addition, for the online business system, it is relatively complex to
realize seamless encryption transformation with transparency, security and low risk without modifying
the business logic and SQL.

8.7.3 Goal

Provides a security and transparent data encryption solution, which is the main design goal of Apache
ShardingSphere data encryption module.

8.7.4 Application Scenarios

For scenarios requiring the quick launch of new services while respecting encryption regulations. The
ShardingSphere encryption feature can be used to quickly achieve compliant data encryption, without
requiring users to develop complex encryption systems.

At the same time, its flexibility can also help users avoid complex rebuilding and modification risks

caused by encryption scenario changes.

8.7.5 Related References

« Configuration: Data Encryption

+ Developer Guide: Data Encryption

8.7.6 Core Concept

Logic column

Itis used to calculate the encryption and decryption columns and it is the logical identifier of the column
in SQL. Logical columns contain ciphertext columns (mandatory), query-helper columns (optional),

like-query columns (optional), and plaintext columns (optional).

8.7. Encryption 47

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document

Cipher column

Encrypted data columns.

Assisted query column

It is a helper column used for queries. For some non-idempotent encryption algorithms with higher

security levels, irreversible idempotent columns are provided for queries.

Like query column

It is a helper column used for like queries.

8.7.7 Limitations

You need to process the original data on stocks in the database by yourself.
The 11ike query supports %, _, but currently does not support escape.
Case insensitive queries are not supported for the encrypted fields.

Comparison operations are not supported for encrypted fields, such as GREATER THAN, LESS
THAN, ORDER BY, BETWEEN.

Calculation operations are not supported for encrypted fields, such as AVG, SUM, and computation

expressions.

When projection subquery contains encrypt column, you must use alias.

8.7.8 Appendix with SQL operator

Unsupported SQL:

The case-insensitive queries are not supported by encrypted fields.

Comparison operations are not supported for encrypted fields, such as GREATER THAN, LESS
THAN, ORDER BY, BETWEEN.

Calculation operations are not supported for encrypted fields, such as AVG, SUM, and computation

expressions.

SQL that contains encrypt column in subquery and uses asterisks for outer projection is not sup-

ported.
SQL that contains encrypt column in WITH is not supported.
SQL that contains encrypt column in INSERT SELECT is not supported.

SQL that contains encrypt column in UNION, INTERSECT, and EXCEPT statements is not sup-
ported.

Other:

8.7. Encryption 48

Apache ShardingSphere document

* You should keep encrypt columns, assisted columns and like columns in encrypt rule same capi-
talization with columns in database.

8.8 Data Masking

8.8.1 Background

With the introduction of laws on user data protection, the protection of personal privacy data has risen
to the legal level. Traditional application systems generally lack protection measures for personal pri-
vacy data. Data masking can achieve special encryption, masking and replacement of the data returned
by the production database according to user-defined masking rules without any changes to the data in
the production database to ensure the sensitivity of the production environment data can be protected.

8.8.2 Challenges

In real business scenarios, relevant DevOps teams often need to implement and maintain a set of mask-
ing functions by themselves according to data masking requirements, and the masking functions are
often coupled in various business logics. Additionally different business systems are difficult to reuse.
When the masking scenario changes, the masking function maintained by itself often faces the risk of

refactoring or modification.

8.8.3 Goal

According to industry needs for data masking and the pain points of business transformation, it pro-
vides a complete, safe, transparent, and low transformation cost data masking integration solution,
which is the main design goal of the Apache ShardingSphere data masking module.

8.8.4 Application Scenarios

Whether it is a new business that is launched quickly or a mature business that has already been
launched, you can access the data masking function of ShardingSphere to quickly complete the con-
figuration of mask rules. Customers can use data masking function transparently without developing
a masking function coupled to the business system, and without changing any business logic and SQL.

8.8.5 Related References

« Configuration: Data Mask

¢ Developer Guide: Data Mask

8.8. Data Masking 49

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/

Apache ShardingSphere document

8.8.6 Core Concept

Logic column

The logical name used to calculate masked column, which is logical identifier of column in SQL.

8.8.7 Limitations

« Masked columns only support string types, not other non-string types.

8.9 Shadow

8.9.1 Background

Under the distributed application architecture based on microservices, business requires multiple ser-
vices to be completed through a series of services and middleware calls. The pressure testing of a single

service can no longer reflect the real scenario.

In the test environment, the cost of rebuild complete set of pressure test environment similar to the
production environment is too high. It is usually impossible to simulate the complexity and data of the

production environment.

So, it is the better way to use the production environment for pressure test. The test results obtained
real capacity and performance of the system accurately.

8.9.2 Challenges

pressure testing on production environment is a complex and huge task. Coordination and adjustments
between microservices and middlewares required to cope with the transparent transmission of differ-
ent flow rates and pressure test tags. Usually we will build a complete set of pressure testing platform
for different test plans.

Data isolation have to be done at the database-level, in order to ensure the reliability and integrity of
the production data, data generated by pressure testing routed to test database. Prevent test data from

polluting the real data in the production database.

This requires business applications to perform data classification based on the transparently transmit-
ted pressure test identification before executing SQL, and route the corresponding SQL to the corre-
sponding data source.

8.9. Shadow 50

Apache ShardingSphere document

8.9.3 Goal

Apache ShardingSphere focuses on data solutions in pressure testing on production environment.

The main goal of the Apache ShardingSphere shadow Database module is routing pressure testing data
to user defined database automatically.

8.9.4 Application Scenario

In order to improve the accuracy of stress testing and reduce the testing cost under the distributed appli-
cation architecture based on microservices, stress testing is usually carried out in production environ-
ments, which will notably increase testing risks. However, the ShardingSphere shadow DB function,
combined with the flexible configuration of the shadow algorithm, can address data pollution, improve
database performance, and meet the requirements of online stress testing in complex business scenar-

ios.

8.9.5 Related References

 Java API: shadow DB

* YAML configuration: shadow DB

8.9.6 Core Concept

Production Database

Database for production data

Shadow Database

The Database for stress test data isolation. Configurations should be the same as the Production
Database.

Shadow Algorithm

Shadow Algorithm, which is closely related to business operations, currently has 2 types.

+ Column based shadow algorithm Routing to shadow database by recognizing data from SQL. Suit-
able for stress test scenario that has an emphasis on data list.

« Hint based shadow algorithm Routing to shadow database by recognizing comments from SQL.
Suitable for stress test driven by the identification of upstream system passage.

8.9. Shadow 51

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/

Apache ShardingSphere document

8.9.7 Limitations

Hint based shadow algorithm

No

Column based shadow algorithm

SQL does not support lists: - Does not support DDL.

« Does not support scope, group, subqueries such as BETWEEN, GROUP BY ‘:-HAVING, etc.

SQL support list
+ INSERT
SQL support or not
INSERT INTO table (column,-) VALUES (value,-**) support
INSERT INTO table (column,---) VALUES (value,---),(value, "), support

INSERT INTO table (column,---) SELECT columnl from tablel where columnl =

do not sup-

valuel port
« SELECT/UPDATE/DELETE

condition ¢ ate- SQL S upport or

gories not

= SELECT/UPDATE/DELETE ---WHERE column = value s upport

LIKE/NOT LIKE SELECT/UPDATE/DELETE ---WHERE column LIKE/NOT LIKE value s upport

IN/NOT IN SELECT/UPDATE/DELETE ---WHERE column IN/NOT IN support
(valuel,value2,--+)

BETWEEN SELECT/UPDATE/DELETE ---WHERE column BETWEEN valuel AND do not s
value2 upport

GROUP BY SELECT/UPDATE/DELETE ---WHERE ---GROUP BY column HAVING do not s

HAVING- column > value upport

Sub Query SELECT/UPDATE/DELETE ---WHERE column = (SELECT column do not s
FROM table WHERE column = value) upport

8.9. Shadow 52

Apache ShardingSphere document

8.10 Observability

8.10.1 Background

In order to grasp the distributed system status, observe running state of the cluster is a new challenge.
The point-to-point operation mode of logging in to a specific server cannot suite to large number of dis-
tributed servers. Telemetry through observable data is the recommended operation and maintenance
mode for them. Tracking, metrics and logging are important ways to obtain observable data of system
status.

APM (application performance monitoring) is to monitor and diagnose the performance of the system
by collecting, storing and analyzing the observable data of the system. Its main functions include per-

formance index monitoring, call stack analysis, service topology, etc.

Apache ShardingSphere is not responsible for gathering, storing and demonstrating APM data, but pro-
vides the necessary information for the APM. In other words, Apache ShardingSphere is only respon-
sible for generating valuable data and submitting it to relevant systems through standard protocols or
plug-ins. Tracing is to obtain the tracking information of SQL parsing and SQL execution. Apache
ShardingSphere provides support for OpenTelemetry, SkyWalking by default. It also supports users to
develop customized components through plug-in.

+ Use OpenTelemetry OpenTelemetry was merged by OpenTracing and OpenCencus in 2019. In this
way, you only need to fill in the appropriate configuration in the agent configuration file according
to OpenTelemetry SDK Autoconfigure Guide. Data can be exported to Jaeger, Zipkin.

+ Use SkyWalking Enable the SkyWalking plug-in in configuration file and need to configure the
SkyWalking apm-toolkit.

+ Use SkyWalking’ s automatic monitor probe Cooperating with Apache SkyWalking team, Apache
ShardingSphere team has realized ShardingSphere automatic monitor probe to automatically
send performance data to SkyWalking. Note that automatic probe in this way cannot be used
together with Apache ShardingSphere plug-in probe.

Metrics used to collect and display statistical indicator of cluster. Apache ShardingSphere supports

Prometheus by default.

8.10. Observability 53

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://skywalking.apache.org/

Apache ShardingSphere document

Metrics

Prometheus

Observability

— _
ShardingSphere [Tracing _,
|

N Metrics

-~

|

|

R = —
en

L g —

OpenTracing

Tracing OpenTelemetry

SkyWalking

Logging —

Zipkin

10
il

Jaeger

'

Logging

system class loader load agent jar

AppClassLoader — » shardingsphere-agent.jar

Custom class loader

AgentPluginClassLoader

load plugins jar

agent plugins jar

8.10. Observability 54

Apache ShardingSphere document

8.10.2 Challenges

Tracing and metrics need to collect system information through event tracking. Lots of events tracking

make kernel code mess, difficult to maintain, and difficult to customize extend.

8.10.3 Goal

The goal of Apache ShardingSphere observability module is providing as many performance and sta-
tistical indicators as possible and isolating kernel code and embedded code.

8.10.4 Application Scenarios

ShardingSphere provides observability for applications through the Agent module, and this feature ap-
plies to the following scenarios:

Monitoring panel

The system’ s static information (such as application version) and dynamic information (such as the
number of threads and SQL processing information) are exposed to a third-party application (such as
Prometheus) using a standard interface. Administrators can visually monitor the real-time system sta-

tus.

Monitoring application performance

In ShardingSphere, a SQL statement needs to go through the processes of parsing, routing, rewriting,
execution, and result merging before it is finally executed and the response can be output. If a SQL
statement is complex and the overall execution takes a long time, how do we know which procedure

has room for optimization?

Through Agent plus Tracing, administrators can learn about the time consumption of each step of SQL
execution. Thus, they can easily locate performance risks and formulate targeted SQL optimization

schemes.

Tracing application links

In a distributed application plus data sharding scenario, it is tricky to figure out which node the SQL
statement is issued from and which data source the statement is finally executed on. If an exception

occurs during SQL execution, how do we locate the node where the exception occurred?
Agent + Tracing can help users solve the above problems.

Through tracing the full link of the SQL execution process, users can get complete information such as
“where the SQL comes from and where it is sent to” .

They can also visually observe the SQL routing situation through the generated topological graph, make
timely responses, and quickly locate the root cause of problems.

8.10. Observability 55

Apache ShardingSphere document

8.10.5 Related References

« Usage of observability
« Dev guide: observability

+ Implementation

8.10.6 Core Concept

Agent

Based on bytecode enhancement and plugin design to provide tracing, metrics and logging features.

Only after the plugin of the Agent is enabled, the monitoring indicator data can be output to the third-
party APM for display.

APM

APM is an acronym for Application Performance Monitoring.

Focusing on the performance diagnosis of distributed systems, its main functions include call chain
display, application topology analysis, etc.

Tracing

Tracing data between distributed services or internal processes will be collected by agent. It will then
be sent to third-party APM systems.

Metrics

System statistical indicators are collected through probes for display by third-party applications.

Logging

The log can be easily expanded through the agent to provide more information for analyzing the system

running status.

8.10. Observability 56

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/observability/
https://shardingsphere.apache.org/document/current/en/dev-manual/agent/
https://shardingsphere.apache.org/document/current/en/reference/observability/

Apache ShardingSphere document

8.11 SQL Federation

8.11.1 Background

When users use data sharding to horizontally split massive amounts of data, although it can effectively

solve database performance bottlenecks, it also brings some new problems in business.

For example, in the following scenarios: cross database association queries, sub queries, pagination,

sorting, aggregation queries.

When implementing business operations, it is important to pay attention to the usage range of SQL
queries and avoid cross database instance queries as much as possible, which limits the functionality

of the business at the database level.

8.11.2 Challenges

User business queries in SQL are often complex and variable, and it is costly to integrate them into

ShardingSphere through business SQL transformation.

Convert the original queries on the business side into distributed queries and perform corresponding
SQL optimization in distributed query scenarios, which can be completed across database instances:
associated queries, sub queries, pagination, sorting, and aggregation queries.

In terms of business implementation, it can enable R&D personnel to no longer care about the scope of
SQL usage, focus on business function development, and reduce functional limitations at the business

level.

8.11.3 Goal

Implementing distributed SQL for cross database instance queries is the main design goal of Apache

ShardingSphere federated queries.

8.11.4 Application Scenario

When cross database association queries, sub queries, and aggregate queries are required. No need
to modify SQL, enabling federated queries through configuration can complete the execution of dis-
tributed query statements.

8.11. SQL Federation 57

Apache ShardingSphere document

8.11.5 Related References

+ SQL Federation Configuration

8.11.6 Limitations

The SQL federation query of Apache ShardingSphere is experimental.

8.11. SQL Federation 58

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-federation/

User Manual

This chapter describes how to use projects of Apache ShardingSphere.

9.1 ShardingSphere-JDBC

Configuration is the only module in ShardingSphere-JDBC that interacts with application devel-
opers, through which developers can quickly and clearly understand the functions provided by
ShardingSphere-JDBC.

This chapter is a configuration manual for ShardingSphere-JDBC, which can also be referred to as a
dictionary if necessary.

ShardingSphere-JDBC has provided 2 kinds of configuration methods for different situations. By con-
figuration, application developers can flexibly use data sharding, readwrite-splitting, data encryption,

shadow database or the combination of them.

Mixed rule configurations are very similar to single rule configuration, except for the differences from
single rule to multiple rules.

It should be noted that the superposition between rules are data source and table name related. If
the previous rule is data source oriented aggregation, the next rule needs to use the aggregated logical
data source name configured by the previous rule when configuring the data source; Similarly, if the
previous rule is table oriented aggregation, the next rule needs to use the aggregated logical table name
configured by the previous rule when configuring the table.

Please refer to Example for more details.

59

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example-generator

Apache ShardingSphere document

9.1.1 YAML Configuration
Overview

YAML configuration provides interaction with ShardingSphere JDBC through configuration files. When
used with the governance module together, the configuration of persistence in the configuration center
is YAML format.

Note: The YAML configuration file supports more than 3MB of configuration content.

YAML configuration is the most common configuration mode, which can omit the complexity of pro-

gramming and simplify user configuration.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

YAML Format

ShardingSphere-JDBC YAML file consists of database name, mode configuration, data source map, rule
configurations and properties.

Note: The example connection pool is HikariCP, which can be replaced with other connection pools

according to business scenarios.

JIDBC logic database name. Through this parameter to connect ShardingSphere-JDBC
and ShardingSphere-Proxy.

Default value: logic_db

databaseName (?):

mode:

dataSources:

rules:
- IFOO_XXX

- IBAR_XXX

props:

9.1. ShardingSphere-JDBC 60

Apache ShardingSphere document

key_1: value_1
key_2: value_2

Please refer to Mode Configuration for more mode details.

Please refer to Data Source Configuration for more data source details.

Please refer to Rules Configuration for more rule details.

Create Data Source

The ShardingSphereDataSource created by YamlShardingSphereDataSourceFactory implements the

standard JDBC DataSource interface.

File yamlFile = // Indicate YAML file

DataSource dataSource = YamlShardingSphereDataSourceFactory.

createDataSource(yamlFile);

Use Data Source

Same with Java API.

YAML Syntax Explanation

!' | means instantiation of that class

! means self-defined alias

- means one or multiple can be included

[1 means array, can substitutable with - each other

Mode

Parameters

mode (?): # Default value is Standalone

type: # Type of mode configuration. Values could be:

repository (?): # Persist repository configuration

Standalone, Cluster

9.1. ShardingSphere-JDBC

61

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules

Apache ShardingSphere document

Standalone Mode

mode:
type: Standalone
repository:
type: # Type of persist repository
props: # Properties of persist repository
foo_key: foo_value

bar_key: bar_value

Cluster Mode (recommended)

mode:
type: Cluster
repository:
type: # Type of persist repository
props: # Properties of persist repository
namespace: # Namespace of registry center
server-lists: # Server lists of registry center
foo_key: foo_value
bar_key: bar_value

Notes

1. Cluster mode deployment is recommended for production environment.

2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information

there.

Sample

Standalone Mode

mode:
type: Standalone
repository:
type: JIDBC

9.1. ShardingSphere-JDBC

62

Apache ShardingSphere document

Cluster Mode (recommended)

mode:
type: Cluster
repository:
type: ZooKeeper
props:
namespace: governance
server-Llists: localhost:2181
retryIntervalMilliseconds: 500
timeTolLiveSeconds: 60

Using the persistent repository requires additional introduction of the corresponding Maven depen-
dencies. It is recommended to use:

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-cluster-mode-repository-zookeeper</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Related References

« Installation and Usage of ZooKeeper Registry Center
« Please refer to Builtin Persist Repository List for more details about the type of repository.

« Please refer to ShardingSphere-JDBC Optional Plugins for more implementations of the persistent
repository.

Data Source

Background

ShardingSphere-JDBC Supports all JDBC drivers and data source connection pools.

In this example, the database driver is MySQL, and the connection pool is HikariCP, which can
be replaced with other database drivers and connection pools. When using ShardingSphere JDBC,
the property name of the JDBC pool depends on the definition of the respective JDBC pool and
is not defined by ShardingSphere. For related processing, please refer to the class org.apache.
shardingsphere.infra.datasource.pool.creator.DataSourcePoolCreator. For exam-
ple, with Alibaba Druid 1.2.9, using url instead of jdbcUrl in the example below is the expected be-

havior.

9.1. ShardingSphere-JDBC 63

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/optional-plugins/

Apache ShardingSphere document

Parameters

dataSources: # Data sources configuration, multiple <data-source-name> available
<data_source_name>: # Data source name

dataSourceClassName: # Data source class name

driverClassName: # The database driver class name is subject to the
configuration of the data source connection pool itself

jdbcUrl: # The database URL connection 1is subject to the configuration of the
data source connection pool +itself

username: # Database username, subject to the configuration of the data source
connection pool itself

password: # The database password is subject to the configuration of the data

source connection pool 1ditself

... Other properties of data source pool
Sample
dataSources:
ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:
ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root

password:

Configure other data sources

9.1. ShardingSphere-JDBC

64

Apache ShardingSphere document

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a YAML rule configuration manual
for ShardingSphere-JDBC.

Sharding

Background

Data sharding YAML configuration is highly readable. The dependencies between sharding rules can
be quickly understood through the YAML format. ShardingSphere automatically creates the Sharding-
SphereDataSource object according to YAML configuration, which can reduce unnecessary coding for

users.

Parameters

rules:
- !'SHARDING
tables: # Sharding table configuration
<logic_table_name> (+): # Logic table name
actualDataNodes (?): # Describe data source names and actual tables (refer to
Inline syntax rules)
databaseStrategy (?): # Databases sharding strategy, use default databases
sharding strategy if absent. sharding strategy below can choose only one.
standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name
complex: # For multiple sharding columns scenario
shardingColumns: # Sharding column names, multiple columns separated with
comma
shardingAlgorithmName: # Sharding algorithm name
hint: # Sharding by hint
shardingAlgorithmName: # Sharding algorithm name
none: # Do not sharding
tableStrategy: # Tables sharding strategy, same as database sharding strategy
keyGenerateStrategy: # Key generator strategy
column: # Column name of key generator
keyGeneratorName: # Key generator name
auditStrategy: # Sharding audit strategy
auditorNames: # Sharding auditor name
- <auditor_name>
- <auditor_name>
allowHintDisable: true # Enable or disable sharding audit hint
autoTables: # Auto Sharding table configuration
t_order_auto: # Logic table name

actualDataSources (?): # Data source names

9.1. ShardingSphere-JDBC 65

Apache ShardingSphere document

shardingStrategy: # Sharding strategy
standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Auto sharding algorithm name
bindingTables (+): # Binding tables
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>
defaultDatabaseStrategy: # Default strategy for database sharding
defaultTableStrategy: # Default strategy for table sharding
defaultKeyGenerateStrategy: # Default Key generator strategy

defaultShardingColumn: # Default sharding column name

Sharding algorithm configuration
shardingAlgorithms:
<sharding_algorithm_name> (+): # Sharding algorithm name
type: # Sharding algorithm type
props: # Sharding algorithm properties
#

Key generate algorithm configuration
keyGenerators:
<key_generate_algorithm_name> (+): # Key generate algorithm name
type: # Key generate algorithm type
props: # Key generate algorithm properties
#

Sharding audit algorithm configuration
auditors:
<sharding_audit_algorithm_name> (+): # Sharding audit algorithm name
type: # Sharding audit algorithm type
props: # Sharding audit algorithm properties
#

— IBROADCAST
tables: # Broadcast tables
- <table_name>
- <table_name>

Procedure

1. Configure data sharding rules in YAML files, including data source, sharding rules, and global

attributes and other configuration items.

2. Call createDataSource method of the object YamlShardingSphereDataSourceFactory. Create
ShardingSphereDataSource according to the configuration information in YAML files.

9.1. ShardingSphere-JDBC 66

Apache ShardingSphere document

Sample

The YAML configuration sample of data sharding is as follows:

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_07?serverTimezone=UTC&useSSL=false&
useUnicode=true&characterEncoding=UTF-8
username: root
password:
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&
useUnicode=true&characterEncoding=UTF-8
username: root

password:

rules:
— ISHARDING
tables:
t_order:
actualDataNodes: ds_s${0..1}.t_order_s${0..1}
tableStrategy:
standard:
shardingColumn: order_1id
shardingAlgorithmName: t_order_inline
keyGenerateStrategy:
column: order_1id
keyGeneratorName: snowflake
auditStrategy:
auditorNames:
- sharding_key_required_auditor
allowHintDisable: true
t_order_item:
actualDataNodes: ds_s${0..1}.t_order_item_${0..1}
tableStrategy:
standard:
shardingColumn: order_1id
shardingAlgorithmName: t_order_item_inline
keyGenerateStrategy:
column: order_1item_-id
keyGeneratorName: snowflake
t_account:
actualDataNodes: ds_s${0..1}.t_account_s${0..1}
tableStrategy:
standard:

9.1. ShardingSphere-JDBC 67

Apache ShardingSphere document

shardingAlgorithmName: t_account_inline
keyGenerateStrategy:
column: account_1id
keyGeneratorName: snowflake
defaultShardingColumn: account_-id
bindingTables:
- t_order,t_order_item
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: database_inline
defaultTableStrategy:

none:

shardingAlgorithms:
database_inline:
type: INLINE
props:
algorithm-expression: ds_S${user_id % 2}
t_order_inline:
type: INLINE
props:
algorithm-expression: t_order_S${order_id % 2}
t_order_item_inline:
type: INLINE
props:
algorithm-expression: t_order_item_S${order_id % 2}
t_account_inline:
type: INLINE
props:
algorithm-expression: t_account_s${account_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE
auditors:
sharding_key_required_auditor:
type: DML_SHARDING_CONDITIONS

- !IBROADCAST
tables: # Broadcast tables
- t_address

props:
sql-show: false

Read the YAML configuration to create a data source according to the createDataSource method of Yaml-
ShardingSphereDataSourceFactory.

9.1. ShardingSphere-JDBC 68

Apache ShardingSphere document

YamlShardingSphereDataSourceFactory.createDataSource(getFile("/META-INF/sharding-
databases-tables.yaml"));

Related References

+ Core Feature: Data Sharding

+ Developer Guide: Data Sharding

Broadcast Table

Background

Broadcast table YAML configuration is highly readable. The broadcast rules can be quickly understood
thanks to the YAML format. ShardingSphere automatically creates the ShardingSphereDataSource
object according to the YAML configuration, which reduces unnecessary coding for users.

Parameters

rules:
— !BROADCAST
tables: # Broadcast tables
- <table_name>
- <table_name>

Procedure

1. Configure broadcast table list in the YAML file.

2. Call the createDataSource method of the object YamlShardingSphereDataSourceFac-
tory. Create ShardingSphereDataSource according to the configuration information in YAML
files.

Sample

The YAML configuration sample of the broadcast table is as follows:

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_07?serverTimezone=UTC&useSSL=false&
useUnicode=true&characterEncoding=UTF-8
username: root

9.1. ShardingSphere-JDBC 69

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

password:
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_l?serverTimezone=UTC&useSSL=false&
useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !BROADCAST
tables:

- t_address

Read the YAML configuration to create a data source according to the createDataSource method of
YamlShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile("/META-INF/broadcast-
databases-tables.yaml"));

Readwrite-splitting

Background

Read/write splitting YAML configuration is highly readable. The YAML format enables you to quickly
understand the dependencies between read/write sharding rules. ShardingSphere automatically cre-
ates the ShardingSphereDataSource object according to the YAML configuration, which reduces unnec-
essary coding for users.

Parameters

Readwrite-splitting

rules:
- !READWRITE_SPLITTING
dataSourceGroups:
<data_source_group_name> (+): # Logic data source group name of readwrite-

splitting, which uses Groovy's Row Value Expressions SPI implementation to parse by
default

write_data_source_name: # Write data source name, which uses Groovy's Row
Value Expressions SPI implementation to parse by default

read_data_source_names: # Read data source names, multiple data source names
separated with comma, which uses Groovy's Row Value Expressions SPI +implementation
to parse by default

transactionalReadQueryStrategy (?): # Routing strategy for read query within a

9.1. ShardingSphere-JDBC 70

Apache ShardingSphere document

transaction, values include: PRIMARY (to primary), FIXED (to fixed data source),
DYNAMIC (to any data source), default value: DYNAMIC
loadBalancerName: # Load balance algorithm name

Load balance algorithm configuration
loadBalancers:
<load_balancer_name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
#

Please refer to Built-in Load Balance Algorithm List for more details about type of algorithm.

Procedure

1. Add read/write splitting data source.
2. Set the load balancer algorithm.

3. Use read/write data source.

Sample

rules:
- !READWRITE_SPLITTING
dataSourceGroups:
readwrite_ds:
writeDataSourceName: write_ds
readDataSourceNames:
- read_ds_0
- read_ds_1
transactionalReadQueryStrategy: PRIMARY
loadBalancerName: random
loadBalancers:
random:
type: RANDOM

Related References

+ Read-write splitting-Core features

« Java API: read-write splitting

9.1. ShardingSphere-JDBC

71

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/

Apache ShardingSphere document

Distributed Transaction

Background

ShardingSphere provides three modes for distributed transactions LOCAL, XA, BASE.

Parameters

transaction:
defaultType: # Transaction mode, optional value LOCAL/XA/BASE
providerType: # Specific implementation of the mode

Procedure

Use LOCAL Mode

The content of the global.yaml configuration file is as follows:

transaction:
defaultType: LOCAL

Use XA Mode

The content of the global.yaml configuration file is as follows:

transaction:
defaultType: XA
providerType: Narayana/Atomikos

To manually add Narayana-related dependencies:

jta-5.12.7.Final.jar

arjuna-5.12.7.Final.jar

common-5.12.7.Final.jar
jboss-connector-api_1.7_spec-1.0.0.Final.jar
jboss-logging-3.2.1.Final.jar
jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
jboss-transaction-spi-7.6.1.Final.jar
narayana-jts-integration-5.12.7.Final.jar

shardingsphere-transaction-xa—-narayana-x.x.x-SNAPSHOT. jar

9.1. ShardingSphere-JDBC

72

Apache ShardingSphere document

Use BASE Mode

The content of the global.yaml configuration file is as follows:

transaction:
defaultType: BASE

providerType: Seata

Build a Seata Server, add relevant configuration files and Seata dependencies, see ShardingSphere In-
tegrates Seata Flexible Transactions

Encryption

Background

The YAML configuration approach to data encryption is highly readable, with the YAML format enabling
a quick understanding of dependencies between encryption rules. Based on the YAML configuration,
ShardingSphere automatically completes the creation of ShardingSphereDataSource objects, reducing

unnecessary coding efforts for users.

Parameters

rules:
- !'ENCRYPT
tables:
<table_name> (+): # Encrypt table name
columns:
<column_name> (+): # Encrypt logic column name
cipher:
name: # Cipher column name
encryptorName: # Cipher encrypt algorithm name
assistedQuery (?):
name: # Assisted query column name
encryptorName: # Assisted query encrypt algorithm name
likeQuery (?):
name: # Like query column name

encryptorName: # Like query encrypt algorithm name

Encrypt algorithm configuration
encryptors:
<encrypt_algorithm_name> (+): # Encrypt algorithm name
type: # Encrypt algorithm type
props: # Encrypt algorithm properties
i ooo

Please refer to Built-in Encrypt Algorithm List for more details about type of algorithm.

9.1. ShardingSphere-JDBC 73

https://community.sphere-ex.com/t/topic/404
https://community.sphere-ex.com/t/topic/404
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document

Procedure

1. Configure data encryption rules in the YAML file, including data sources, encryption rules, global
attributes, and other configuration items.

2. Usingthe createDataSource of calling the YamlShardingSphereDataSourceFactory object to create
ShardingSphereDataSource based on the configuration information in the YAML file.

Sample

The data encryption YAML configurations are as follows:

dataSources:
unique_ds:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds?serverTimezone=UTC&useSSL=false&
useUnicode=true&characterEncoding=UTF-8
username: root

password:

rules:
- JENCRYPT
tables:
t_user:
columns:
username:
cipher:
name: username
encryptorName: aes_encryptor
assistedQuery:
name: assisted_query_username
encryptorName: assisted_encryptor
likeQuery:
name: like_query_username
encryptorName: like_encryptor
pwd:
cipher:
name: pwd
encryptorName: aes_encryptor
assistedQuery:
name: assisted_query_pwd
encryptorName: assisted_encryptor
encryptors:
aes_encryptor:
type: AES
props:
aes—key-value: 123456abc

9.1. ShardingSphere-JDBC 74

Apache ShardingSphere document

digest-algorithm-name: SHA-1
assisted_encryptor:
type: MD5
like_encryptor:
type: CHAR_DIGEST_LIKE

Read the YAML configuration to create a data source according to the createDataSource method of Yaml-
ShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile());

Related References

+ Core Feature: Data Encryption

+ Developer Guide: Data Encryption

Data Masking

Background

The YAML configuration approach to data masking is highly readable, with the YAML format enabling
a quick understanding of dependencies between mask rules. Based on the YAML configuration, Shard-
ingSphere automatically completes the creation of ShardingSphereDataSource objects, reducing
unnecessary coding efforts for users.

Parameters

rules:
- IMASK
tables:
<table_name> (+): # Mask table name
columns:
<column_name> (+): # Mask logic column name
maskAlgorithm: # Mask algorithm name

Mask algorithm configuration
maskAlgorithms:
<mask_algorithm_name> (+): # Mask algorithm name
type: # Mask algorithm type
props: # Mask algorithm properties
...

Please refer to Built-in Mask Algorithm List for more details about type of algorithm.

9.1. ShardingSphere-JDBC 75

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask

Apache ShardingSphere document

Procedure

1. Configure data masking rules in the YAML file, including data sources, mask rules, global at-

tributes, and other configuration items.

2. Using the createDataSource of calling the YamlShardingSphereDataSourceFactory ob-
ject to create ShardingSphereDataSource based on the configuration information in the
YAML file.

Sample

The data masking YAML configurations are as follows:

dataSources:
unique_ds:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds?serverTimezone=UTC&useSSL=false&
useUnicode=true&characterEncoding=UTF-8
username: root

password:

rules:
- IMASK
tables:
t_user:
columns:
password:
maskAlgorithm: md5_mask
email:
maskAlgorithm: mask_before_special_chars_mask
telephone:
maskAlgorithm: keep_first_n_last_m_mask

maskAlgorithms:
md5_mask:
type: MD5
mask_before_special_chars_mask:
type: MASK_BEFORE_SPECIAL_CHARS
props:
special-chars: '@'
replace-char: 'x!'
keep_first_n_last_m_mask:
type: KEEP_FIRST_N_LAST_M
props:
first-n: 3
last-m: 4
replace-char: 'x'

9.1. ShardingSphere-JDBC 76

Apache ShardingSphere document

Read the YAML configuration to create a data source according to the createDataSource method of
YamlShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile());

Related References

+ Core Feature: Data Masking

+ Developer Guide: Data Masking

Shadow DB

Background

Please refer to the following configuration in order to use the ShardingSphere shadow DB feature in
ShardingSphere-Proxy.

Parameters

rules:
- !'SHADOW
dataSources:
shadowDataSource:
productionDataSourceName: # production data source name
shadowDataSourceName: # shadow data source name
tables:
<table_name>:
dataSourceNames: # shadow table associates shadow data source name Llist
- <shadow_data_source>
shadowAlgorithmNames: # shadow table associates shadow algorithm name list
- <shadow_algorithm_name>
defaultShadowAlgorithmName: # default shadow algorithm name (option)
shadowAlgorithms:
<shadow_algorithm_name> (+): # shadow algorithm name
type: # shadow algorithm type

props: # shadow algorithm attribute configuration

Please refer to Built-in shadow algorithm list for more details.

9.1. ShardingSphere-JDBC 77

https://shardingsphere.apache.org/document/current/en/features/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document

Procedure

1. Configure shadow DB rules in the YAML file, including data sources, shadow library rules, global
properties and other configuration items;

2. Call the createDataSource() method of the YamlShardingSphereDataSourceFactory
object to create a ShardingSphereDataSource based on the configuration information in the YAML
file.

Sample

The YAML configuration sample of shadow DB is as follows:

dataSources:

ds:
url: jdbc:mysql://127.0.0.1:3306/ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

shadow_ds:
url: jdbc:mysql://127.0.0.1:3306/shadow_ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
jdleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50

minPoolSize: 1

rules:
- ISHADOW
dataSources:
shadowDataSource:
productionDataSourceName: ds
shadowDataSourceName: shadow_ds
tables:
t_order:
dataSourceNames:
- shadowDataSource
shadowAlgorithmNames:
- user_id_insert_match_algorithm
- sql_hint_algorithm
shadowAlgorithms:
user_id_insert_match_algorithm:

9.1. ShardingSphere-JDBC 78

Apache ShardingSphere document

type: REGEX_MATCH
props:
operation: insert
column: user_id
regex: "[1]"
sql_hint_algorithm:
type: SQL_HINT

Related References

» Core Features of Shadow DB

+ JAVA API: Shadow DB Configuration

SQL-parser
Background

The SQL parser YAML configuration is readable and easy to use. The YAML files allow you to separate
the code from the configuration, and easily modify the configuration file as needed.

Parameters

sqlParser:
sqlStatementCache: # SQL statement local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache
parseTreeCache: # Parse tree local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache

Procedure

1. Setlocal cache configuration.
2. Set parser configuration.

3. Use a parsing engine to parse SQL.

9.1. ShardingSphere-JDBC 79

https://shardingsphere.apache.org/document/current/en/features/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/

Apache ShardingSphere document

Sample

sqlParser:
sqlStatementCache:
initialCapacity: 2000
maximumSize: 65535
parseTreeCache:
initialCapacity: 128

maximumSize: 1024

Related References

+ JAVA API: SQL Parsing

SQL Translator

Background

The SQL translator YAML configuration is readable and easy to use. The YAML files allow you to separate
the code from the configuration, and easily modify the configuration file as needed.

Parameters

sqlTranslator:

type: # SQL translator type

useOriginalSQLWhenTranslatingFailed: # Whether use original SQL when translating
failed

Procedure

1. Set SQL translator type.

2. Set useOriginalSQLWhenTranslatingFailed to decide whether use original SQL when translating
failed.

9.1. ShardingSphere-JDBC 80

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/

Apache ShardingSphere document

Sample

sqlTranslator:
type: Native
useOriginalSQLWhenTranslatingFailed: true

Related References

+ JAVA API: SQL Translator

Mixed Rules
Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, and data
encryption. These features can be used independently or in combination. Below, you will find the
parameters’ explanation and configuration samples based on YAML.

Parameters

rules:
- !'SHARDING
tables:
<logic_table_name>: # Logical table name:
actualDataNodes: # consists of logical data source name plus table name (refer
to Inline syntax rules)
tableStrategy: # Table shards strategy. The same as database shards strategy
standard:
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name
keyGenerateStrategy:
column: # Auto-increment column name. By default, the auto-increment primary
key generator is not used.
keyGeneratorName: # Distributed sequence algorithm name
defaultDatabaseStrategy:
standard:
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name
shardingAlgorithms:
<sharding_algorithm_name>: # Sharding algorithm name
type: INLINE
props:
algorithm-expression: # INLINE expression
t_order_inline:
type: INLINE

9.1. ShardingSphere-JDBC 81

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/sql-translator/

Apache ShardingSphere document

props:
algorithm-expression: # INLINE expression
keyGenerators:
<key_generate_algorithm_name> (+): # Distributed sequence algorithm name
type: # Distributed sequence algorithm type
props: # Property configuration of distributed sequence algorithm
- !'ENCRYPT
encryptors:
<encrypt_algorithm_name> (+): # Encryption and decryption algorithm name
type: # Encryption and decryption algorithm type
props: # Encryption and decryption algorithm property configuration
<encrypt_algorithm_name> (+): # Encryption and decryption algorithm name
type: # Encryption and decryption algorithm type
tables:
<table_name>: # Encryption table name
columns:
<column_name> (+): # Encrypt logic column name
cipher:
name: # Cipher column name
encryptorName: # Cipher encrypt algorithm name
assistedQuery (?):
name: # Assisted query column name
encryptorName: # Assisted query encrypt algorithm name
likeQuery (?):
name: # Like query column name
encryptorName: # Like query encrypt algorithm name

Samples
rules:
— !SHARDING
tables:
t_order:
actualDataNodes: replica_ds_s${0..1}.t_order_s{0..1}
tableStrategy:
standard:
shardingColumn: order_1id
shardingAlgorithmName: t_order_inline
keyGenerateStrategy:

column: order_id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: database_inline
shardingAlgorithms:
database_inline:

9.1. ShardingSphere-JDBC 82

Apache ShardingSphere document

type: INLINE
props:
algorithm-expression: replica_ds_s${user_id % 2}
t_order_inline:
type: INLINE
props:
algorithm-expression: t_order_S${order_id % 2}
t_order_item_inline:
type: INLINE
props:
algorithm-expression: t_order_item_${order_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE
- JENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes—key-value: 123456abc
digest-algorithm-name: SHA-1
assisted_encryptor:
type: MD5
like_encryptor:
type: CHAR_DIGEST_LIKE

tables:
t_encrypt:
columns:
user_1id:
cipher:
name: user_cipher
encryptorName: aes_encryptor
assistedQuery:
name: assisted_query_user
encryptorName: assisted_encryptor
likeQuery:
name: like_query_user
encryptorName: like_encryptor
order_1id:

cipher:
name: order_cipher

encryptorName: aes_encryptor

9.1. ShardingSphere-JDBC 83

Apache ShardingSphere document

Cache for Sharding Route
Background

This feature is experimental and needs to be used with the data sharding rule. The cache for sharding
route will put the logical SQL, the parameter value of the shard key, and the routing result into the cache,
exchange space for time, and reduce CPU usage of the routing logic.

We recommend enabling it only if the following conditions are met: - Pure OLTP scenarios. - The CPU
of the machine which deployed the ShardingSphere process has reached the bottleneck. - Most of the
CPUs are used by ShardingSphere routing logic. - All SQLs are optimized and each SQL execution could
be routed to a single data node.

If the above conditions are not met, the execution delay of SQL may not be significantly improved, and
the memory pressure will be increased.

Parameters

rules:
- !'SHARDING
tables:
shardingAlgorithms:
% o0oo
shardingCache:
allowedMaxSqlLength: 512 # Allow cached SQL length limit
routeCache:
initialCapacity: 65536 # Initial capacity
maximumSize: 262144 # Maximum capacity

softValues: true # Whether to use soft references

Related References

+ Core Feature: Data Sharding

Single Table
Background

Single rule is used to specify which single tables need to be managed by ShardingSphere, or to set the
default single table data source.

9.1. ShardingSphere-JDBC 84

https://shardingsphere.apache.org/document/current/en/features/sharding/

Apache ShardingSphere document

Parameters

rules:

- ISINGLE
tables:

#

MySQL style

ds_0.t_single # Load specified single table

ds_1.x # Load all single tables 1in the specified data source
"x.x" # Load all single tables

PostgreSQL style

ds_0.public.t_config

ds_l.public.*

ds_2.%.%

||* * *ll

defaultDataSource: ds_0 # The default data source is used when executing CREATE

TABLE

statement to create a single table. The default value is null, indicating

random unicast routing.

Related References

« Single Table

SQL Federation

Background

This function is an experimental one and is currently not suitable for use in core system production

environments. When multiple tables in a join query are distributed across different database instances,

enabling federated query allows for cross-database join queries, as well as subqueries.

Parameters

sqlFederation:

sqlFederationEnabled: # SQL federation enabled configuration

allQueryUseSQLFederation: # all query use SQL federation configuration

executionPlanCache: # execution plan cache configuration

initialCapacity: 2000 # execution plan local cache initial capacity

maximumSize: 65535 # execution plan local cache maximum size

9.1. ShardingSphere-JDBC 85

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/#single-table

Apache ShardingSphere document

Sample

sqlFederation:
sqlFederationEnabled: true
allQueryUseSQLFederation: false
executionPlanCache:
initialCapacity: 2000
maximumSize: 65535

Related References

+ JAVA API: SQL Federation

Algorithm

Sharding

shardingAlgorithms:
algorithmName is specified by users, and its property has to be consistent with
that of shardingAlgorithmName in the sharding strategy.
<algorithmName>:
type and props, please refer to the built-in sharding algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-

algorithm/sharding/
type: xxx
props:
XXX: XXX
Encryption
encryptors:

encryptorName is specified by users, and its property should be consistent with
that of encryptorName in encryption rules.
<encryptorName>:

type and props, please refer to the built-in encryption algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/

type: xxx

props:

XXX XXX

9.1. ShardingSphere-JDBC 86

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/sql-federation/

Apache ShardingSphere document

Read/Write Splitting Load Balancer

loadBalancers:
loadBalancerName is specified by users, and its property has to be consistent
with that of loadBalancerName 1in read/write splitting rules.

type and props, please refer to the built-in read/write splitting algorithm
load balancer: https://shardingsphere.apache.org/document/current/en/user—-manual/
common-config/builtin-algorithm/load-balance/

type: xxx

props:

XXX XXX

Shadow DB

shadowAlgorithms:

shadowAlgorithmName is specified by users, and its property has to be consistent
with that of shadowAlgorithmNames in shadow DB rules.

<shadowAlgorithmName>:

type and props, please refer to the built-in shadow DB algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/

type: xxx

props:

XXX XXX

High Availability

discoveryTypes:
discoveryTypeName is specified by users, and its property has to be consistent
with that of discoveryTypeName in the database discovery rules.

type: xxx
props:
XXX: XXX

Data Masking

maskAlgorithms:
maskAlgorithmName is specified by users, and its property should be consistent
with that of maskAlgorithm in mask rules.
<maskAlgorithmName>:
type and props, please refer to the built-in mask algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-

algorithm/mask/

9.1. ShardingSphere-JDBC 87

Apache ShardingSphere document

type: Xxxx
props:

XXX XXX

JDBC Driver

Background

ShardingSphere-JDBC provides a JDBC Driver, which can be used only through configuration changes
without rewriting the code.

Parameters

Driver Class Name

org.apache.shardingsphere.driver.ShardingSphereDriver

URL Configuration and sample

Refer to known Implementation.

Procedure

1. Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

2. Use drive

 Use native drivers:

Class.forName("org.apache.shardingsphere.driver.ShardingSphereDriver");
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id
WHERE o.user_id=? AND o.order_id=?";
try (
Connection conn = DriverManager.getConnection(jdbcUrl);
PreparedStatement ps = conn.prepareStatement(sql)) {
ps.setInt(l, 10);
ps.setInt(2, 1000);

9.1. ShardingSphere-JDBC 88

./known-implementation/_index.en.md

Apache ShardingSphere document

try (ResultSet rs = preparedStatement.executeQuery()) {
while(rs.next()) {

/]
}
}
}
+ Use database connection pool:
String driverClassName = "org.apache.shardingsphere.driver.ShardingSphereDriver";

String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

// Take HikariCP as an example

HikariDataSource dataSource = new HikariDataSource();
dataSource.setDriverClassName (driverClassName) ;
dataSource.setJdbcUr1(jdbcUrl);

String sql = "SELECT i.x FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id
WHERE o.user_id=? AND o.order_id=?";

try (
Connection conn = dataSource.getConnection();

PreparedStatement ps = conn.prepareStatement(sql)) {
ps.setInt(l, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {
while(rs.next()) {
/1l

Known Implementation
Background Information

For the driver class of org.apache.shardingsphere.driver.ShardingSphereDriver,
by implementing the SPI of org.apache.shardingsphere.infra.url.
ShardingSphereURLLoader, allows YAML configuration files to be fetched from multiple sources
and File Systems and parsed into ShardingSphere. If there is no specific statement, the following
implementations all use YAML 1.1 as the YAML writing specification. This does not prevent custom
implementations of org.apache.shardingsphere.infra.url.ShardingSphereURLLoader
from being manually converted to YAML from files such as XML or JSON.

After parsing and loading the YAML file into ShardingSphere’ s metadata, the next behavior will be
determined again through the relevant configuration of Mode Configuration. Discuss two situations,

1. ShardingSphere’ s metadata does not exist in the Metadata Repository, and local metadata will

9.1. ShardingSphere-JDBC 89

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/mode

Apache ShardingSphere document

be stored in the Metadata Repository.

2. The metadata of ShardingSphere already exists in the Metadata Repository. Regardless of whether
it is the same as the local metadata, the local metadata will be overwritten by the metadata of the
Metadata Repository.

For the configuration of the Metadata Repository, please refer to Metadata Repository.

How to load configuration files

Load configuration files from classpath

The configuration file is xxx.yaml. When placeholder-type is none or is not specified, the con-
figuration file format is consistent with YAML configuration. When placeholder-type exists and is
not none, the configuration file format is defined in the JDBC URL Parameters section of this article.

Example:
« jdbc:shardingsphere:classpath:config.yaml
* jdbc:shardingsphere:classpath:config.yaml?placeholder-type=none
« jdbc:shardingsphere:classpath:config.yaml?placeholder-type=environment

« jdbc:shardingsphere:classpath:config.yaml?placeholder-type=system_props

Load configuration file from absolute path

The configuration file is xxx.yaml. When placeholder-type is none or is not specified, the con-
figuration file format is consistent with YAML configuration. When placeholder-type exists and is
not none, the configuration file format is defined in the JDBC URL Parameter ssection of this article.

Example:
* jdbc:shardingsphere:absolutepath:/path/to/config.yaml

* jdbc:shardingsphere:absolutepath:/path/to/config.yaml?
placeholder-type=none

* jdbc:shardingsphere:absolutepath:/path/to/config.yaml?
placeholder-type=environment

* jdbc:shardingsphere:absolutepath:/path/to/config.yaml?
placeholder-type=system_props

9.1. ShardingSphere-JDBC 90

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document

JDBC URL parameters

For implementations of org.apache.shardingsphere.infra.url.
ShardingSphereURLLoader, not all JDBC URL parameters must be parsed, this involves how to
implement org.apache.shardingsphere.infra.url.ShardingSphereURLLoader.load().

placeholder-type

Thereisaplaceholder-type attribute for optional loading of configuration files containing dynamic
placeholders. The default value of placeholder-type is none. When placeholder-type is set to
something other than none, allows setting the value of specific YAML properties via dynamic place-
holders in the involved YAML file, and configuring optional default values. The name of a dynamic
placeholder and its optional default value are separated by : : and wrapped in the outermost layer by

$${and }.
Discuss two situations,

1. When the corresponding dynamic placeholder value does not exist, the value of this YAML at-
tribute will be set to the default value on the right side of : :.

2. When neither the corresponding dynamic placeholder value nor the default value on the right
side of : : exists, this attribute will be set to empty.

Single dynamic placeholder

none

The configuration file is xxx . yam1l, and the configuration file format is consistent with YAML config-

uration.

Example:
« jdbc:shardingsphere:classpath:config.yaml
« jdbc:shardingsphere:classpath:config.yaml?placeholder-type=none
* jdbc:shardingsphere:absolutepath:/path/to/config.yaml

« jdbc:shardingsphere:absolutepath:/path/to/config.yaml?
placeholder-type=none

9.1. ShardingSphere-JDBC 91

Apache ShardingSphere document

environment

When loading a configuration file containing environment variables, users need to set place-
holder-type to environment, which is commonly used in Docker Image deployment scenarios.
The configuration file is xxx.yam1, and the configuration file format is basically the same as YAML

configuration.
Assume that the following set of environment variables exists,

1. The existing environment variable FIXTURE_JDBC_URL is jdbc:h2:mem:foo_ds_1;
DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MySQL.

2. The existing environment variable FIXTURE_USERNAME is sa.

Then for the intercepted fragment of the following YAML file,

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: $${FIXTURE_DRIVER_CLASS_NAME::org.h2.Driver}
jdbcUrl: $${FIXTURE_JDBC_URL::jdbc:h2:mem:foo_ds_do_not_use}
username: $$S{FIXTURE_USERNAME::}
password: $${FIXTURE_PASSWORD::}

This YAML snippet will be parsed as,

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:foo_ds_1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MySQL
username: sa

password:
Example:

« jdbc:shardingsphere:classpath:config.yaml?placeholder-type=environment

« jdbc:shardingsphere:absolutepath:/path/to/config.yaml?
placeholder-type=environment

system_props

When loading a configuration file containing system properties, users need to set placeholder-type
to system_props. The configuration file is xxx .yam1, and the configuration file format is basically

the same as YAML configuration.

Assume the following set of system properties exists,

1. The existing system property fixture.config.driver.jdbc-url is
jdbc:h2:mem: foo_ds_1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;
MODE=MySQL.

2. The existing system property fixture.config.driver.usernameis sa.

9.1. ShardingSphere-JDBC 92

Apache ShardingSphere document

Then for the intercepted fragment of the following YAML file,

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: $${fixture.config.driver.driver-class-name::org.h2.Driver}
jdbcUrl: $${fixture.config.driver.jdbc-url::jdbc:h2:mem:foo_ds_do_not_use}
username: $${fixture.config.driver.username::}

password: $${fixture.config.driver.password::}

This YAML snippet will be parsed as,

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:foo_ds_1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MySQL
username: sa

password:

In real situations, system variables are usually defined dynamically. Assume that none of the above
system variables are defined, and there is a YAML file config.yaml containing the above YAML in-
terception fragment, users can refer to the following method to create a DataSource instance using the
HikariCP Java API.

import com.zaxxer.hikari.HikariConfig;

import com.zaxxer.hikari.HikariDataSource;
import javax.sql.DataSource;

public class ExampleUtils {
public DataSource createDataSource() {
HikariConfig config = new HikariConfig();
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
config.setJddbcUrl("jdbc:shardingsphere:classpath:config.yaml?placeholder-
type=system_props");
try {
assert null == System.getProperty("fixture.config.driver.jdbc-url");
assert null == System.getProperty("fixture.config.driver.username");
System.setProperty("fixture.config.driver.jdbc-url", "jdbc:h2:mem:foo_
ds_1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MySQL");
System.setProperty("fixture.config.driver.username", "sa");
return new HikariDataSource(config);
} finally {
System.clearProperty("fixture.config.driver.jdbc-url");

System.clearProperty("fixture.config.driver.username");

9.1. ShardingSphere-JDBC 93

Apache ShardingSphere document

Example:
« jdbc:shardingsphere:classpath:config.yaml?placeholder-type=system_props

* jdbc:shardingsphere:absolutepath:/path/to/config.yaml?
placeholder-type=system_props

multiple dynamic placeholders

On top of a single dynamic placeholder, users can use multiple dynamic placeholders in a single line of
YAML. When configuring the value of a YAML attribute, if part of the value of the YAML attribute needs
to be replaced dynamically, you can implement this by configuring multiple dynamic placeholders.

Assume the following set of environment variables or system properties exists,
1. The existing environment variable or system property FIXTURE_HOST is 127.0.0. 1,
2. The existing environment variable or system property FIXTURE_PORT is 3306,
3. The existing environment variable or system property FIXTURE_DATABASE is test,
4. The existing environment variable or system property FIXTURE_USERNAME is sa,

Then for the intercepted fragment of the following YAML file,

ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource

driverClassName: S$$S{FIXTURE_DRIVER_CLASS_NAME::com.mysql.cj.jdbc.Driver}

jdbcUrl: jdbc:mysql://$${FIXTURE_HOST::}:$$S{FIXTURE_PORT::}/$${FIXTURE_DATABASE::}
?ss1Mode=REQUIRED

username: $${FIXTURE_USERNAME::}

password: $${FIXTURE_PASSWORD::}

This YAML snippet will be parsed as,

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://127.0.0.1:3306/test?ss1Mode=REQUIRED
username: sa

password:

Other implementations

For details, please refer to https://github.com/apache/shardingsphere-plugin.

9.1. ShardingSphere-JDBC 94

https://github.com/apache/shardingsphere-plugin

Apache ShardingSphere document

Spring Boot
Overview

ShardingSphere provides a JDBC driver, and developers can configure ShardingSphereDriver in
Spring Boot to use ShardingSphere.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

Configure Spring Boot Properties

Configuring DataSource Drivers
spring.datasource.driver-class—-name=org.apache.shardingsphere.driver.
ShardingSphereDriver

Specify a YAML configuration file

spring.datasource.url=jdbc:shardingsphere:classpath:xxx.yaml

The YAML configuration file in ‘spring.datasource.url’ currently support in multiple ways, refer to

Known Implementation.

Use Data Source

Use this data source directly; or configure ShardingSphereDataSource to be used in conjunction with
ORM frameworks such as JPA, Hibernate, and MyBatis.

Handling for Spring Boot 0SS 3

Spring Boot 0SS 3 has made a “big bang” upgrade to Jakarta EE and Java 17, with all complications

involved.

ShardingSphere’ s XA distributed transactions are not yet ready on Spring Boot OSS 3. This limitation
also applies to other Jakarta EE 9+ based Web Frameworks, such as Quarkus 3, Micronaut Framework
4 and Helidon 3.

Users only need to configure as follows.

9.1. ShardingSphere-JDBC 95

Apache ShardingSphere document

<project>
<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
</dependencies>
</project>

Special handling for earlier versions of Spring Boot OSS 2

All features of ShardingSphere are available on Spring Boot OSS 2, but earlier versions of Spring Boot
0SS may require manually specifying version 2.2 for SnakeYAML. This is reflected in Maven’ s pom. xm1l

as follows.

<project>
<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.yaml</groupId>
<artifactId>snakeyaml</artifactId>
<version>2.2</version>
</dependency>
</dependencies>

</project>

If the user created the Spring Boot project from https://start.spring.io/, users can simplify configuration

by following things.

<project>
<properties>
<snakeyaml.version>2.2</snakeyaml.version>

</properties>

<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
</dependencies>
</project>

9.1. ShardingSphere-JDBC 96

https://start.spring.io/

Apache ShardingSphere document

Spring Namespace
Overview

ShardingSphere provides a JDBC driver. To use ShardingSphere, developers can configure Sharding-
SphereDriver in Spring.

Operation

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

Configure Spring Bean

Configuration Item Explanation

Name Type Description

driverClass Attribute Database Driver, need to use ShardingSphereDriver
url Attribute YAML configuration file path

Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.
xsd">

<bean [id="shardingDataSource" class="com.zaxxer.hikari.HikariDataSource">
<property name="driverClass" value="org.apache.shardingsphere.driver.
ShardingSphereDriver" />
<property name="url" value="jdbc:shardingsphere:classpath:xxx.yaml" />
</bean>
</beans>

9.1. ShardingSphere-JDBC 97

Apache ShardingSphere document

Use Data Source

Same with Spring Boot.

9.1.2 Java APl

Overview

Java API is the basic configuration methods in ShardingSphere-JDBC, and other configurations will
eventually be transformed into Java API configuration methods.

The Java API is the most complex and flexible configuration method, which is suitable for the scenarios
requiring dynamic configuration through programming.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Create Data Source

ShardingSphere-JDBC Java API consists of database name, mode configuration, data source map, rule
configurations and properties.

The ShardingSphereDataSource created by ShardingSphereDataSourceFactory implements the stan-
dard JDBC DataSource interface.

String databaseName = "foo_schema"; // Indicate logic database name
ModeConfiguration modeConfig = ... // Build mode configuration
Map<String, DataSource> dataSourceMap = ... // Build actual data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build concentrate rule
configurations

Properties props = ... // Build properties

DataSource dataSource = ShardingSphereDataSourceFactory.

createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

Please refer to Mode Configuration for more mode details.
Please refer to Data Source Configuration for more data source details.

Please refer to Rules Configuration for more rule details.

9.1. ShardingSphere-JDBC 98

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules

Apache ShardingSphere document

Use Data Source

Developer can choose to use native JDBC or ORM frameworks such as JPA, Hibernate or MyBatis through
the DataSource.

Take native JDBC usage as an example:

// Create ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

String sql = "SELECT i.x FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id
WHERE o.user_id=? AND o.order_id=?";
try (
Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {
ps.setInt(l, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {
while(rs.next()) {

//
}
}
3
Mode
Background

Build the running mode through Java API.

Parameters

Class name: org.apache.shardingsphere.infra.config.mode.ModeConfiguration

Attributes:

9.1. ShardingSphere-JDBC 99

Apache ShardingSphere document

. Da taType Description DefaultValue
Name*
type String Type of mode configu- Stan dalone
rationValues could be:
Standalone or Cluster
repository Pe rsistRe positor Persist repository

yConfig uration configurationStan-
dalone type uses
StandalonePer-
sistRepositoryCon-
figurationCluster
type uses ClusterPer-
sistRepositoryConfig-

uration

Standalone Persist Configuration

Class name: org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepositoryConfiguration

Attributes:

Name DataType Description

type String Type of persist repository
props Properties Properties of persist repository

Cluster Persist Configuration

Class name: org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration

Attributes:

Name Data Type Description

type String Type of persist repository
namespace String Namespace of registry center
server-lists String Server lists of registry center
props Properties Properties of persist repository

9.1. ShardingSphere-JDBC 100

Apache ShardingSphere document

Notes

1. Cluster mode deployment is recommended for production environment.
2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information

there.

Procedure

Introduce Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${latest.release.version}</version>
</dependency>

Notice: Please change ${latest.release.version} to the actual version.

Sample

Standalone Mode

ModeConfiguration modeConfig = createModeConfiguration();

Map<String, DataSource> dataSourceMap = ... // Building real data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build property configuration

DataSource dataSource = ShardingSphereDataSourceFactory.

createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);
private ModeConfiguration createModeConfiguration() {
return new ModeConfiguration("Standalone", new

StandalonePersistRepositoryConfiguration("JDBC", new Properties()));

}

Cluster Mode (Recommended)

ModeConfiguration modeConfig = createModeConfiguration();

Map<String, DataSource> dataSourceMap = ... // Building real data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build property configuration

DataSource dataSource = ShardingSphereDataSourceFactory.

createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

9.1. ShardingSphere-JDBC 101

Apache ShardingSphere document

private ModeConfiguration createModeConfiguration() {

return new ModeConfiguration("Cluster", new
ClusterPersistRepositoryConfiguration("ZooKeeper", "governance-sharding-db",
"localhost:2181", new Properties()));
}

Related References

« Installation and Usage of ZooKeeper Registry Center

« Please refer to Builtin Persist Repository List for more details about type of repository.

Data Source

Background

ShardingSphere-JDBC supports all database JDBC drivers and connection pools.

This section describes how to configure data sources through the JAVA API.

Procedure

1. Import Maven dependency.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<versijon>${latest.release.version}</version>
</dependency>

Notice: Please change ${latest.release.version} to the actual version.

Sample

ModeConfiguration modeConfig = // Build running mode

Map<String, DataSource> dataSourceMap = createDataSources();
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build attribute configuration

DataSource dataSource = ShardingSphereDataSourceFactory.

createDataSource (databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private Map<String, DataSource> createDataSources() {
Map<String, DataSource> dataSourceMap = new HashMap<>();

// Configure the 1st data source

9.1. ShardingSphere-JDBC 102

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document

HikariDataSource dataSourcel = new HikariDataSource();
dataSourcel.setDriverClassName("com.mysql.jdbc.Driver");
dataSourcel.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSourcel.setUsername("root");
dataSourcel.setPassword("");

dataSourceMap.put("ds_1", dataSourcel);

// Configure the 2nd data source

HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");

dataSourceMap.put("ds_2", dataSource2);

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a java rule configuration manual

for ShardingSphere-JDBC.

Sharding

Background

The Java API rule configuration for data sharding, which allows users to create ShardingSphereData-

Source objects directly by writing Java code, is flexible enough to integrate various types of business

systems without relying on additional jar packages.

Parameters
Root Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

Attributes:

9.1. ShardingSphere-JDBC

103

Apache ShardingSphere document

Name DataType Description Default Value
tables (+) Coll ec- Sharding table rules .
tion<ShardingTabl
eRuleConfiguration>
autoTables (+) Collecti Sharding auto table .
on<ShardingAutoTabl rules
eRuleConfiguration>
bindi ngTableGroups Collection<String> Binding table rules Empty
*)
defau ItDatabaseSha ShardingSt rategyCon- Default database Not sharding
rdingStrategy (?) figuration sharding strategy
de faultTableSha rd- ShardingSt rategyCon- Default table sharding Not sharding
ingStrategy (?) figuration strategy
defaultKeyGen erateS- KeyGen eratorConfig- Default key generator S nowflake
trategy (?) uration
default AuditStrategy ShardingAuditSt rate- Default key auditor DML_SHA RDING_CO
@ gyConfiguration NDITIONS
defaultS hardingCol- String Default sharding col- None
umn (?) umn name
shard ingAlgorithms Map<String, Algo Sharding algorithm None
(+) rithmConfiguration> name and configura-
tions
keyGenerators (?) Map<String, Algo Key generate algo- None
rithmConfiguration> rithm name and
configurations
auditors (?) Map<String, Algo Sharding audit al- None
rithmConfiguration> gorithm name and

configurations

Sharding Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

Attributes:

9.1. ShardingSphere-JDBC

104

Apache ShardingSphere document

. Da taType Description Default Value
Name*
logic Table String Name of sharding logic .
table
actua 1Data Nodes (?) String Describe data source Broadcast table or
names and actual databases sharding
tables, delimiter as only
point. Multiple data
nodes split by comma,
support inline expres-
sion
data baseS hardi ngStr S harding Strateg Databases sharding Use default databases
ategy (?) yConlfig uration strategy sharding strategy
t ableS hardi ngStr at- S harding Strateg Tables sharding strat- Use default tables
egy (?) yConfig uration egy sharding strategy

keyG enera teStr ategy
@)
aud itStr ategy (?)

KeyG enerato rConfig
uration

Shardi ngAudit Strateg
yConfig uration

Key generator configu-
ration

Sharding audit strat-
egy configuration

Use default key gener-
ator
Use default auditor

Sharding Auto Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

Attributes:

Name DataType Description Default Value

1 ogicTable String Name of sharding logic .
table

actualDa taSources (?) String Data source names. Use all configured data
Multiple data nodes sources
split by comma

shardin gStrategy (?) Shardin gStrategyCo Sharding strategy Use default sharding

nfiguration strategy

k eyGenerat eStrategy
®)

Key GeneratorCo nfig-

uration

Key generator configu-

ration

Use default key gener-

ator

9.1. ShardingSphere-JDBC

105

Apache ShardingSphere document

Sharding Strategy Configuration

Standard Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumn String Sharding column name
shardingAlgorithmName String Sharding algorithm name

Complex Sharding Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

Attributes:
Name DataType Description
shardingColumns String Sharding column name, separated by commas

shardingAlgorithmName String Sharding algorithm name

Hint Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding. HintShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingAlgorithmName String Sharding algorithm name

None Sharding Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration
Attributes: None

Please refer to Built-in Sharding Algorithm List for more details about type of algorithm.

9.1. ShardingSphere-JDBC 106

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding

Apache ShardingSphere document

Distributed Key Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration

Attributes:

Name DataType Description
column String Column name of key generate
keyGeneratorName String key generate algorithm name

Please refer to Built-in Key Generate Algorithm List for more details about type of algorithm.

Sharding audit Strategy Configuration

Classname:org.apache.shardingsphere.sharding.api.config.strategy.audit.ShardingAuditStrategyConfiguration

Attributes:
Name DataType Description
auditorNames Collection<String> Sharding audit algorithm name
allowHintDisable Boolean Enable or disable sharding audit hint

Please refer to Built-in Sharding Audit Algorithm List for more details about type of algorithm.

Procedure

1. Create an authentic data source mapping relationship, with key as the logical name of the data
source and value as the DataSource object.

2. Create the sharding rule object ShardingRuleConfiguration, and initialize the sharding table ob-
jects—ShardingTableRuleConfiguration, the set of bound tables, the set of broadcast tables, and
parameters like library sharding strategy and the database sharding strategy, on which the data
sharding depends.

3. Using the ShardingSphereDataSource method of calling the ShardingSphereDataSourceFactory
subject to create the ShardingSphereDataSource.

9.1. ShardingSphere-JDBC 107

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit

Apache ShardingSphere document

Sample

public final class ShardingDatabasesAndTablesConfigurationPrecise {

@Override
public DataSource getDataSource() throws SQLException {
return ShardingSphereDataSourceFactory.
createDataSource(createDataSourceMap(), Arrays.
asList(createShardingRuleConfiguration(), createBroadcastRuleConfiguration())), new
Properties());
}

private ShardingRuleConfiguration createShardingRuleConfiguration() {
ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables() .add(getOrderTableRuleConfiguration());
result.getTables().add(getOrderItemTableRuleConfiguration());
result.getBindingTableGroups () .add(new
ShardingTableReferenceRuleConfiguration("foo", "t_order, t_order_item"));
result.setDefaultDatabaseShardingStrategy (new
StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy (new
StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", "demo_ds_S${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration(
"INLINE", props));
result.getShardingAlgorithms().put("standard_test_tbl", new
AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration(
"SNOWFLAKE", new Properties()));
result.getAuditors().put("sharding_key_required_auditor", new
AlgorithmConfiguration("DML_SHARDING_CONDITIONS", new Properties()));
return result;

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(
"t_order", "demo_ds_${0..1}.t_order_${[0, 1]1}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_1id
", "snowflake"));
result.setAuditStrategy(new ShardingAuditStrategyConfiguration(Collections.
singleton("sharding_key_required_auditor"), true));

return result;

private ShardingTableRuleConfiguration getOrderItemTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(
"t_order_item", "demo_ds_${0..1}.t_order_item_${[0, 1]}");

9.1. ShardingSphere-JDBC 108

Apache ShardingSphere document

result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_
item_id", "snowflake"));

return result;

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>();
result.put("demo_ds_0", DataSourceUtil.createDataSource("demo_ds_0"));
result.put("demo_ds_1", DataSourceUtil.createDataSource("demo_ds_1"));

return result;

private BroadcastRuleConfiguration createBroadcastRuleConfiguration() {

return new BroadcastRuleConfiguration(Collections.singletonList("t_address
"))
}

Related References

+ Core Feature: Data Sharding

+ Developer Guide: Data Sharding

Broadcast Table
Background
The Java API rule configuration for broadcast, which allows users to create ShardingSphereDataSource

objects directly by writing Java code, is flexible enough to integrate various types of business systems

without relying on additional jar packages.

Parameters

Class: org.apache.shardingsphere.broadcast.config.BroadcastRuleConfiguration

Attributes:

name DataType Description Default Value

tables (+) Collection<String> Broadcast table rules

9.1. ShardingSphere-JDBC 109

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

Sample

The following is an example of the broadcast table Java API configuration:

public final class ShardingDatabasesAndTablesConfigurationPrecise {

@Override
public DataSource getDataSource() throws SQLException {
return ShardingSphereDataSourceFactory.
createDataSource(createDataSourceMap(), Arrays.
asList(createBroadcastRuleConfiguration()), new Properties());

}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>();
result.put("demo_ds_0", DataSourceUtil.createDataSource("demo_ds_0"));
result.put("demo_ds_1", DataSourceUtil.createDataSource("demo_ds_1"));
return result;

private BroadcastRuleConfiguration createBroadcastRuleConfiguration() {
return new BroadcastRuleConfiguration(Collections.singletonList("t_address

"))
}

Related References

« YAML Configuration: Broadcast

Readwrite-splitting
Background
The read/write splitting configured in Java API form can be easily applied to various scenarios without

relying on additional jar packages. Users only need to construct the read/write splitting data source

through java code to be able to use the read/write splitting function.

9.1. ShardingSphere-JDBC 110

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/broadcast/

Apache ShardingSphere document

Parameters Explained

Entry

Classname: org.apache.shardingsphere.readwritesplitting.config.ReadwriteSplittingRuleConfiguration

Configurable Properties:

Name DataType Description

dataS Collect ion<ReadwriteSplittingDat Data sources of write and reads

ources (+) aSourceRuleConfiguration>

1 oadBal Map<String, AlgorithmConfiguration> Load balance algorithm name and configura-
ancers (*) tions of replica data sources

Primary-secondary Data Source Configuration

Classname: org.apache.shardingsphere.readwritesplitting.config.rule.ReadwriteSplittingDataSourceGroupRuleConfig

Configurable Properties:

Name Dat aType Description

Default Value*

name String Readwrite-splitting

data source name

write DataSou rce- String Write data source .
Name name

readD ataSour ce- List<S tring> Read data sources list .
Names

tr ansacti onalRea Transa ctiona lIReadQ Routing strategy for DYNAMIC
dQuerysS trategy (?) uerySt rategy read query within a
transaction, values
include: PRIMARY
(to primary), FIXED
(to fixed data source),
DYNAMIC (to any data
source)
lo adBalan cerName (?) String Load balance algo- Round robin load bal-
rithm name of replica ance al gorithm

sources

Please refer to Built-in Load Balance Algorithm List for details on algorithm types.

9.1. ShardingSphere-JDBC 111

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance

Apache ShardingSphere document

Operating Procedures

1. Add read-write splitting data source
2. Setload balancing algorithms

3. Use read-write splitting data source

Configuration Examples

public DataSource getDataSource() throws SQLException {

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfig = new
ReadwriteSplittingDataSourceRuleConfiguration(

"demo_read_query_ds", "demo_write_ds", Arrays.asList("demo_read_ds_0
", "demo_read_ds_1"), "demo_weight_1b");

Properties algorithmProps = new Properties();

algorithmProps.setProperty("demo_read_ds_0", "2");

algorithmProps.setProperty("demo_read_ds_1", "1");

Map<String, AlgorithmConfiguration> algorithmConfigMap = new HashMap<>(1);

algorithmConfigMap.put("demo_weight_1b", new AlgorithmConfiguration("WEIGHT
", algorithmProps));

ReadwriteSplittingRuleConfiguration ruleConfig = new
ReadwriteSplittingRuleConfiguration(Collections.singleton(dataSourceConfig),
algorithmConfigMap) ;

Properties props = new Properties();

props.setProperty("sql-show", Boolean.TRUE.toString());

return ShardingSphereDataSourceFactory.
createDataSource(createDataSourceMap(), Collections.singleton(ruleConfig), props);

}

private Map<String, DataSource> createDataSourceMap() {

Map<String, DataSource> result = new HashMap<>(3, 1);

result.put("demo_write_ds", DataSourceUtil.createDataSource("demo_write_ds
"))

result.put("demo_read_ds_0", DataSourceUtil.createDataSource("demo_read_ds_0
"))

result.put("demo_read_ds_1", DataSourceUtil.createDataSource("demo_read_ds_1
"))

return result;

9.1. ShardingSphere-JDBC 112

Apache ShardingSphere document

References

+ Read-write splitting-Core features

« YAML Configuration: read-write splitting

Distributed Transaction

Root Configuration

org.apache.shardingsphere.transaction.config.TransactionRuleConfiguration

Attributes:
name DataType Description
defaultType String Default transaction type
providerType (?) String Transaction provider type
props (?) Properties Transaction properties
Encryption
Background

The data encryption Java API rule configuration allows users to directly create ShardingSphereData-
Source objects by writing java code. The Java API configuration method is very flexible and can inte-
grate various types of business systems without relying on additional jar packages.

Parameters
Root Configuration

Class name: org.apache.shardingsphere.encrypt.config.EncryptRuleConfiguration

Attributes:

Name DataType Description DefaultVal
ue

tables (+) Collection<En cryptTableRule Con- Encrypt table rule configurations
figuration>
encryptors Map<String, Algorithm Configura- Encrypt algorithm name and con-

+) tion> figurations

9.1. ShardingSphere-JDBC 113

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/

Apache ShardingSphere document

Encrypt Table Rule Configuration

Class name: org.apache.shardingsphere.encrypt.config.rule.EncryptTableRuleConfiguration

Attributes:

Name DataType Description

name String Table name

columns Co llection<EncryptColu mnRuleConfigura- Encrypt column rule configura-
(+) tion> tions

Encrypt Column Rule Configuration

Class name: org.apache.shardingsphere.encrypt.config.rule.EncryptColumnRuleConfiguration

Attributes:
Name DataType Description
name String Logic column name
cipher Encrypt ColumnltemRuleConfiguration Cipher column config

assistedQuery (?) Encrypt ColumnltemRuleConfiguration Assisted query column config
likeQuery (?) Encrypt ColumnltemRuleConfiguration Like query column config

Encrypt Column Item Rule Configuration

Class name: org.apache.shardingsphere.encrypt.config.rule.EncryptColumnItemRuleConfiguration

Attributes:

Name DataType Description
name String encrypt column item name
encryptorName String encryptor name

Encrypt Algorithm Configuration

Class name: org.apache.shardingsphere.infra.algorithm.core.config.AlgorithmConfiguration

Attributes:

9.1. ShardingSphere-JDBC 114

Apache ShardingSphere document

Name DataType Description
name String Encrypt algorithm name
type String Encrypt algorithm type

properties Properties Encrypt algorithm properties

Please refer to Built-in Encrypt Algorithm List for more details about type of algorithm.

Procedure

1. Create a real data source mapping relationship, where key is the logical name of the data source

and value is the datasource object.

2. Create the encryption rule object EncryptRuleConfiguration, and initialize the encryption table
object EncryptTableRuleConfiguration, encryption algorithm and other parameters in the object.

3. Call createDataSource of ShardingSphereDataSourceFactory to create ShardingSphereData-

Source.

Sample

public final class EncryptDatabasesConfiguration {

public DataSource getDataSource() throws SQLException {

Properties props = new Properties();

props.setProperty("aes-key-value", '"123456");

props.setProperty("digest-algorithm-name", "SHA-1");

EncryptColumnRuleConfiguration columnConfigAes = new
EncryptColumnRuleConfiguration("username", new EncryptColumnItemRuleConfiguration(
"username", '"name_encryptor"));

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", new EncryptColumnItemRuleConfiguration("pwd",
"pwd_encryptor"));

columnConfigTest.setAssistedQuery(new EncryptColumnItemRuleConfiguration(
"assisted_query_pwd", "pwd_encryptor"));

columnConfigTest.setLikeQuery(new EncryptColumnItemRuleConfiguration("like_
pwd", "like_encryptor"));

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest));

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new HashMap<>
O3

encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration(
"AES", props));

encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(
"assistedTest", props));

9.1. ShardingSphere-JDBC 115

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document

encryptAlgorithmConfigs.put("like_encryptor", new AlgorithmConfiguration(
"CHAR_DIGEST_LIKE", new Properties()));

EncryptRuleConfiguration encryptRuleConfig = new
EncryptRuleConfiguration(Collections.singleton(encryptTableRuleConfig),
encryptAlgorithmConfigs);

return ShardingSphereDataSourceFactory.createDataSource(DataSourceUtil.
createDataSource("demo_ds"), Collections.singleton(encryptRuleConfig), props);

}

Related References

« The feature description of Data Encryption

+ Dev Guide of Data Encryption

Data Masking
Background
The data masking Java API rule configuration allows users to directly create ShardingSphereDataSource

objects by writing java code. The Java API configuration method is very flexible and can integrate vari-

ous types of business systems without relying on additional jar packages.

Parameters
Root Configuration

Class name: org.apache.shardingsphere.mask.config.MaskRuleConfiguration

Attributes:
Name DataType Description .
Default Value*
tables (+) Collection<MaskT Mask table rule config-
ableRuleConfigura- urations
tion>

maskA lgorithms (+) Map<String, A 1go- Mask algorithm name
rithmConfiguration> and configurations

9.1. ShardingSphere-JDBC 116

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document

Mask Table Rule Configuration

Class name: org.apache.shardingsphere.mask.config.rule.MaskTableRuleConfiguration

Attributes:
Name DataType Description
name String Table name

columns (+) Collecti on<MaskColumnRuleConfiguration> Mask column rule configurations

Mask Column Rule Configuration

Class name: org.apache.shardingsphere.mask.config.rule.MaskColumnRuleConfiguration

Attributes:

Name DataType Description
logicColumn String Logic column name
maskAlgorithm String Mask algorithm name

Mask Algorithm Configuration

Class name: org.apache.shardingsphere.infra.algorithm.core.config. AlgorithmConfiguration

Attributes:

Name DataType Description
name String Mask algorithm name
type String Mask algorithm type

properties Properties Mask algorithm properties

Please refer to Built-in Data Masking Algorithm List for more details about type of algorithm.

Procedure

1. Create a real data source mapping relationship, where key is the logical name of the data source
and value is the datasource object.

2. Create the data masking rule object MaskRuleConfiguration, and initialize the mask table object
MaskTableRuleConfiguration, mask algorithm and other parameters in the object.

3. Call createDataSource of ShardingSphereDataSourceFactory to create ShardingSphereData-
Source.

9.1. ShardingSphere-JDBC 117

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask

Apache ShardingSphere document

Sample

import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Properties;

public final class MaskDatabasesConfiguration {

@Override
public DataSource getDataSource() throws SQLException {

MaskColumnRuleConfiguration passwordColumn = new
MaskColumnRuleConfiguration("password", "md5_mask'");

MaskColumnRuleConfiguration emailColumn = new MaskColumnRuleConfiguration(
"email", "mask_before_special_chars_mask");

MaskColumnRuleConfiguration telephoneColumn = new
MaskColumnRuleConfiguration("telephone", '"keep_first_n_last_m_mask");

MaskTableRuleConfiguration maskTableRuleConfig = new
MaskTableRuleConfiguration("t_user", Arrays.asList(passwordColumn, emailColumn,
telephoneColumn));

Map<String, AlgorithmConfiguration> maskAlgorithmConfigs = new LinkedHashMap
<>(3, 1);

maskAlgorithmConfigs.put("md5_mask", new AlgorithmConfiguration("MD5", new
Properties()));

Properties beforeSpecialCharsProps = new Properties();

beforeSpecialCharsProps.put("special-chars", "@");

beforeSpecialCharsProps.put("replace-char", "x");

maskAlgorithmConfigs.put("mask_before_special_chars_mask", new
AlgorithmConfiguration("MASK_BEFORE_SPECIAL_CHARS", beforeSpecialCharsProps));

Properties keepFirstNLastMProps = new Properties();

keepFirstNLastMProps.put("first-n", "3");

keepFirstNLastMProps.put("last-m", "4");

keepFirstNLastMProps.put("replace-char', "x");

maskAlgorithmConfigs.put("keep_first_n_last_m_mask", new
AlgorithmConfiguration("KEEP_FIRST_N_LAST_M", keepFirstNLastMProps));

MaskRuleConfiguration maskRuleConfig = new MaskRuleConfiguration(Collections.
singleton(maskTableRuleConfig), maskAlgorithmConfigs);

return ShardingSphereDataSourceFactory.createDataSource(DataSourceUtil.
createDataSource("demo_ds"), Collections.singleton(maskRuleConfig), new
Properties());

}

9.1. ShardingSphere-JDBC 118

Apache ShardingSphere document

Related References

 The feature description of Data Masking

+ Dev Guide of Data Masking

Shadow DB

Background

Inthe distributed application architecture based on microservices, businesses require multiple services

to be completed through a series of services and middleware, so the stress test of a single service can

no longer meet the needs of real scenarios. If we reconstruct a stress test environment similar to the

production environment, it is too expensive and often fails to simulate the complexity and traffic of the

online environment. For this reason, the industry often chooses the full link stress test, which is per-

formed in the production environment, so that the test results can accurately reflect the true capacity

and performance of the system.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.shadow.config.ShadowRuleConfiguration

Attributes:
Name Data Type Description
dataSources Map<String, ShadowD ataSource- shadow data source mapping name
Configuration> and configuration
tables Map<String, Sh adowTableConfig- shadow table name and configuration
uration>
sha dowAlgorithms Map<String, AlgorithmConfigura- shadow algorithm name and configu-

defaultShadow Algo-
rithmName

tion>

String

ration

default shadow algorithm name

9.1. ShardingSphere-JDBC

119

https://shardingsphere.apache.org/document/current/en/features/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/

Apache ShardingSphere document

Shadow Data Source Configuration

Class name: org.apache.shardingsphere.shadow.config.datasource.ShadowDataSourceConfiguration

Attributes:

Name DataType Description
productionDataSourceName String Production data source name
shadowDataSourceName String Shadow data source name

Shadow Table Configuration

Class name: org.apache.shardingsphere.shadow.config.table.ShadowTableConfiguration

Attributes:
Name Data Type Description
data SourceNames Collect shadow table associates shadow data source mapping
ion<String> name list
shadowAlg orithm- Collect shadow table associates shadow algorithm name list
Names ion<String>

Shadow Algorithm Configuration

Class name: org.apache.shardingsphere.infra.algorithm.core.config.AlgorithmConfiguration

Attributes:

Name Data Type Description

type String shadow algorithm type
props Properties shadow algorithm configuration

Please refer to Built-in Shadow Algorithm List.

Procedure

1. Create production and shadow data source.
2. Configure shadow rule.

« Configure shadow data source

« Configure shadow table

+ Configure shadow algorithm

9.1. ShardingSphere-JDBC 120

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document

Sample

public final class ShadowConfiguration {

@Override
public DataSource getDataSource() throws SQLException {
Map<String, DataSource> dataSourceMap = createDataSourceMap();
return ShardingSphereDataSourceFactory.createDataSource(dataSourceMap,
createRuleConfigurations(), createShardingSphereProps());

}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new LinkedHashMap<>();
result.put("ds", DataSourceUtil.createDataSource("demo_ds"));

result.put("ds_shadow'", DataSourceUtil.createDataSource("shadow_demo_ds"));
return result;

private Collection<RuleConfiguration> createRuleConfigurations() {
Collection<RuleConfiguration> result = new LinkedList<>();
ShadowRuleConfiguration shadowRule = new ShadowRuleConfiguration();
shadowRule.setDataSources (createShadowDataSources());
shadowRule.setTables(createShadowTables());
shadowRule.setShadowAlgorithms (createShadowAlgorithmConfigurations());
result.add(shadowRule) ;
return result;

private Map<String, ShadowDataSourceConfiguration> createShadowDataSources() {
Map<String, ShadowDataSourceConfiguration> result = new LinkedHashMap<>();

result.put("shadow-data-source", new ShadowDataSourceConfiguration("ds",
"ds_shadow"));

return result;

private Map<String, ShadowTableConfiguration> createShadowTables() {
Map<String, ShadowTableConfiguration> result = new LinkedHashMap<>();
result.put("t_user", new ShadowTableConfiguration(Collections.singletonList(
"shadow-data-source'"), createShadowAlgorithmNames()));
return result;

private Collection<String> createShadowAlgorithmNames() {
Collection<String> result = new LinkedList<>();
result.add("user-id-insert-match-algorithm");
result.add("simple-hint-algorithm");
return result;

9.1. ShardingSphere-JDBC 121

Apache ShardingSphere document

private Map<String, AlgorithmConfiguration>
createShadowAlgorithmConfigurations() {
Map<String, AlgorithmConfiguration> result = new LinkedHashMap<>();
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_type");
userIdInsertProps.setProperty("value", "1");
result.put("user-id-insert-match-algorithm", new AlgorithmConfiguration(
"VALUE_MATCH", userIdInsertProps));
return result;

Related References

Features Description of Shadow DB

SQL Parser
Background

SQL is the standard language for users to communicate with databases. The SQL parsing engine is
responsible for parsing the SQL string into an abstract syntax tree for Apache ShardingSphere to un-
derstand and implement its incremental function. Currently, MySQL, PostgreSQL, SQLServer, Oracle,
openGauss and SQL dialects conforming to SQL92 specifications are supported. Due to the complexity
of SQL syntax, there are still a few unsupported SQLs. By using SQL parsing in the form of Java API, you
can easily integrate into various systems and flexibly customize user requirements.

Parameters

Class: org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration

Attributes:
name DataType Description
parseTreeCache (?) CacheOption Parse syntax tree local cache configuration

sqlStatementCache (?) CacheOption sql statement local cache configuration

9.1. ShardingSphere-JDBC 122

https://shardingsphere.apache.org/document/current/en/features/shadow/

Apache ShardingSphere document

Cache option Configuration

Class: org.apache.shardingsphere.sql.parser.api.CacheOption

Attributes:
na me . Des cription Default Value
DataType™
ini tia 1Ca pac ity int Initial capacity of local parser syntax tree lo-
cache cal cache default value
128, SQL statement
cache default value
2000
ma xim umsS ize (?) long Maximum capacity of The default value of

local cache

local cache for pars-
ing syntax tree is 1024,
and the default value
of sql statement cache
is 65535

Procedure

1. Setlocal cache configuration.
2. Set resolution configuration.

3. Use the parsing engine to parse SQL.

Sample

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine =
ParseASTNode parseASTNode =
tablel AS t ORDER BY t.did DESC;", false);
SQLStatementVisitorEngine visitorEngine =
MySQLStatement sqlStatement =

System.out.println(sglStatement.toString());

new SQLParserEngine("MySQL", cacheOption);
parserEngine.parse("SELECT t.id, t.name, t.age FROM

new SQLStatementVisitorEngine("MySQL");
visitorEngine.visit(parseASTNode);

9.1. ShardingSphere-JDBC

123

Apache ShardingSphere document

Related References

* YAML Configuration: SQL Parser

SQL Translator
Background

By using SQL translator in the form of Java API, you can easily integrate into various systems and flexibly

customize user requirements.

Parameters

Class: org.apache.shardingsphere.sqltranslator.config.SQLTranslatorRuleConfiguration

Attributes:
name Data Description
Type
type S tring SQL translator type
useOrigina ISQLWhenTranslatingFailed bo olean Whether use original SQL when translating
® failed
Procedure

1. Set SQL translator type.

2. Set useOriginalSQLWhenTranslatingFailed to decide whether use original SQL when translating
failed.

Sample

SQLTranslatorRuleConfiguration ruleConfig = new SQLTranslatorRuleConfiguration(
"Native", new Properties(), false);
String translatedSQL = new SQLTranslatorRule(ruleConfig).translate();

9.1. ShardingSphere-JDBC 124

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/

Apache ShardingSphere document

Related References

* YAML Configuration: SQL Translator

Mixed Rules

Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, high avail-
ability, and data encryption. These features can be used independently or in combination. Below, you
will find the configuration samples based on JAVA API.

Samples

// Sharding configuration
private ShardingRuleConfiguration createShardingRuleConfiguration() {
ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables().add(getOrderTableRuleConfiguration());
result.setDefaultDatabaseShardingStrategy (new
StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy (new
StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", '"demo_ds_S${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration("INLINE
", props));
result.getShardingAlgorithms().put("standard_test_tbl", new
AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration("SNOWFLAKE
", new Properties()));

return result;

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration("t_
order", "demo_ds_${0..1}.t_order_s${[0, 1]1}");
result.setKeyGenerateStrategy (new KeyGenerateStrategyConfiguration("order_id",
"snowflake"));

return result;

// Read/write splitting configuration

private static ReadwriteSplittingRuleConfiguration

createReadwriteSplittingConfiguration() {
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfigurationl = new

ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_0", Arrays.asList(

9.1. ShardingSphere-JDBC 125

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-translator/

Apache ShardingSphere document

"readwrite_ds_0"), true), "");

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_1", Arrays.asList(
"readwrite_ds_1"), true), "");

Collection<ReadwriteSplittingDataSourceRuleConfiguration> dataSources = new
LinkedList<>();

dataSources.add(dataSourceRuleConfigurationl);

dataSources.add(dataSourceRuleConfiguration2);

return new ReadwriteSplittingRuleConfiguration(dataSources, Collections.
emptyMap()) ;

}

// Data encryption configuration
private static EncryptRuleConfiguration createEncryptRuleConfiguration() {

Properties props = new Properties();

props.setProperty("aes-key-value", "123456");

props.setProperty("digest-algorithm-name", "SHA-1");

EncryptColumnRuleConfiguration columnConfigAes = new
EncryptColumnRuleConfiguration("username", new EncryptColumnItemRuleConfiguration(
"username", '"name_encryptor"));

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", new EncryptColumnItemRuleConfiguration("pwd",
"pwd_encryptor"));

columnConfigTest.setAssistedQuery(new EncryptColumnItemRuleConfiguration(
"assisted_query_pwd", "pwd_encryptor"));

columnConfigTest.setLikeQuery(new EncryptColumnItemRuleConfiguration("like_pwd",
"like_encryptor"));

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest));

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new HashMap<>();

encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration("AES",
props));

encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(
"assistedTest", props));

encryptAlgorithmConfigs.put("like_encryptor", new AlgorithmConfiguration("CHAR_
DIGEST_LIKE", new Properties()));

return new EncryptRuleConfiguration(Collections.
singleton(encryptTableRuleConfig), encryptAlgorithmConfigs);

}

9.1. ShardingSphere-JDBC 126

Apache ShardingSphere document

Cache for Sharding Route

Background

This feature is experimental and needs to be used with the data sharding rule. The cache for sharding

route will put the logical SQL, the parameter value of the shard key, and the routing result into the cache,

exchange space for time, and reduce CPU usage of the routing logic.

We recommend enabling it only if the following conditions are met: - Pure OLTP scenarios. - The CPU

of the machine which deployed the ShardingSphere process has reached the bottleneck. - Most of the

CPUs are used by ShardingSphere routing logic. - All SQLs are optimized and each SQL execution could

be routed to a single data node.

If the above conditions are not met, the execution delay of SQL may not be significantly improved, and

the memory pressure will be increased.

Parameters

Class: org.apache.shardingsphere.sharding.api.config.cache.ShardingCacheConfiguration

Attributes:
name DataType Desc ription DefaultValue
allowe dMaxSqlLength int TUVFRAERY SQL KR .
il
routeCache org.apache.shar ding- B&HZRTF

sphere.sharding.api.con
e.ShardingCacheOption:

Class: org.apache.shardingsphere.sharding.api.config.cache.ShardingCacheOptionsConfiguration

Attributes:
name DataType Description Default Value
softValues boolean RWE | HEFEE .
initialCapacity int RIS .
maximumSize int RERAA = .

9.1. ShardingSphere-JDBC

127

Apache ShardingSphere document

Sample

public final class ShardingDatabasesAndTablesConfigurationPrecise {

@Override
public DataSource getDataSource() throws SQLException {
return ShardingSphereDataSourceFactory.
createDataSource(createDataSourceMap(), Arrays.
asList(createShardingRuleConfiguration(), createBroadcastRuleConfiguration())), new
Properties());
}

private ShardingRuleConfiguration createShardingRuleConfiguration() {

ShardingRuleConfiguration result = new ShardingRuleConfiguration();

result.getTables() .add(getOrderTableRuleConfiguration());

result.getTables().add(getOrderItemTableRuleConfiguration());

//

result.setShardingCache(new ShardingCacheConfiguration(512, new
ShardingCacheConfiguration.RouteCacheConfiguration(65536, 262144, true)));

return result;

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {

ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(
"t_order", "demo_ds_${0..1}.t_order_s${[0, 1]}");

result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_1id
", "snowflake"));

result.setAuditStrategy(new ShardingAuditStrategyConfiguration(Collections.
singleton("sharding_key_required_auditor"), true));

return result;

private ShardingTableRuleConfiguration getOrderItemTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(
"t_order_item", "demo_ds_${0..1}.t_order_item_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_
item_id", "snowflake"));

return result;

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>();
result.put("demo_ds_0", DataSourceUtil.createDataSource("demo_ds_0"));
result.put("demo_ds_1", DataSourceUtil.createDataSource("demo_ds_1"));
return result;

private BroadcastRuleConfiguration createBroadcastRuleConfiguration() {

9.1. ShardingSphere-JDBC 128

Apache ShardingSphere document

return new BroadcastRuleConfiguration(Collections.singletonList("t_address

"))

Related References

+ Core Feature: Data Sharding

Single Table

Background

Single rule is used to specify which single tables need to be managed by ShardingSphere, or to set the
default single table data source.

Parameters

Class: org.apache.shardingsphere.single.config.SingleRuleConfiguration

Attributes:
name DataType Description Default Value
tables (+) Coll ection<String> single tables .
def aultDataSource (?) String single table default
data source
Procedure

1. Initialize SingleRuleConfiguration;

2. Add a single table to be loaded and configure the default data source.

9.1. ShardingSphere-JDBC 129

https://shardingsphere.apache.org/document/current/en/features/sharding/

Apache ShardingSphere document

Sample

SingleRuleConfiguration ruleConfig = new SingleRuleConfiguration();
ShardingSphereDataSourceFactory.createDataSource(createDataSourceMap(), Arrays.
asList(ruleConfig), new Properties());

Related References

« Single Table

SQL-federation
Background
This function is an experimental one and is currently not suitable for use in core system production

environments. When multiple tables in a join query are distributed across different database instances,

enabling federated query allows for cross-database join queries, as well as subqueries.

Parameters

Class: org.apache.shardingsphere.sqglfederation.config.SQLFederationRuleConfiguration

Attributes:
name DataType Description De fault V alue
sqlFederat ionEnabled boolean SQL federation en- .
abled configuration
allQ ueryUseSQL Fed- boolean all query use SQL fed- .
eration eration configuration
executio nPlanCache org. execution plan cache .

apache.shardingsphere. configuration
l.parser.api.CacheOptior

Cache option Configuration

Class: org.apache.shardingsphere.sql.parser.api.CacheOption

Attributes:

9.1. ShardingSphere-JDBC 130

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/#single-table

Apache ShardingSphere document

name D ataT Description Default Value
ype
i nitialC int Initial capacity of local execution plan local cache default value of
apacity cache 2000
maxi mum- long Maximum capacity of lo- execution plan local cache maximum default
Size cal cache value 65535
Sample

private SQLFederationRuleConfiguration createSQLFederationRuleConfiguration() {
CacheOption executionPlanCache = new CacheOption(2000, 65535L);

return new SQLFederationRuleConfiguration(true, false, executionPlanCache);

Related References

« YAML Configuration: SQL Federation

Algorithm

Sharding

ShardingRuleConfiguration ruleConfiguration = new ShardingRuleConfiguration();

// algorithmName is specified by users and should be consistent with the sharding
algorithm in the sharding strategy.

// type and props, please refer to the built-in sharding algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/sharding/
ruleConfiguration.getShardingAlgorithms().put("algorithmName", new
AlgorithmConfiguration("xxx", new Properties()));

Encryption

// encryptorName is specified by users, and its property should be consistent with
that of encryptorName in encryption rules.

// type and props, please refer to the built-in encryption algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/

Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("encryptorName", new AlgorithmConfiguration("xxx", new
Properties()));

9.1. ShardingSphere-JDBC 131

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-federation/

Apache ShardingSphere document

Read/Write Splitting Load Balancer

// loadBalancerName is specified by users, and its property has to be consistent
with that of loadBalancerName in read/write splitting rules.

// type and props, please refer to the built-in read/write splitting algorithm load
balancer: https://shardingsphere.apache.org/document/current/en/user—-manual/common-
config/builtin-algorithm/load-balance/

Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("loadBalancerName", new AlgorithmConfiguration("xxx", new
Properties()));

Shadow DB

// shadowAlgorithmName is specified by users, and its property has to be consistent
with that of shadowAlgorithmNames in shadow DB rules.

// type and props, please refer to the built-in shadow DB algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/

Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("shadowAlgorithmName", new AlgorithmConfiguration("xxx", new
Properties()));

High Availability

// discoveryTypeName is specified by users, and its property has to be consistent
with that of discoveryTypeName in database discovery rules.

Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("discoveryTypeName", new AlgorithmConfiguration("xxx", new
Properties()));

Data Masking

// maskAlgorithmName is specified by users, and its property should be consistent
with that of maskAlgorithm in mask rules.

// type and props, please refer to the built-in mask algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/mask/

Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("maskAlgorithmName", new AlgorithmConfiguration("xxx", new
Properties()));

9.1. ShardingSphere-JDBC 132

Apache ShardingSphere document

9.1.3 Special API

This chapter will introduce the special API of ShardingSphere-JDBC.

Sharding

This chapter will introduce the Sharding API of ShardingSphere-JDBC.

Hint
Background

Apache ShardingSphere uses ThreadLocal to manage sharding key values for mandatory routing. A
sharding value can be added by programming to the HintManager that takes effect only within the
current thread.

Main application scenarios for Hint: - The sharding fields do not exist in the SQL and database table
structure but in the external business logic. - Certain data operations are forced to be performed in

given databases.

Procedure

1. Call HintManager.getInstance() to obtain an instance of HintManager.

2. Use HintManager.addDatabaseShardingValue, HintManager.addTableShardingValue to set the
sharding key value.

3. Execute SQL statements to complete routing and execution.

4. Call HintManager.close to clean up the contents of ThreadLocal.

Sample
Hint Configuration

Hint algorithms require users to implement the interface of org.apache.shardingsphere.api.
sharding.hint.HintShardingAlgorithm. org.apache.shardingsphere.sharding.api.
sharding.hint.HintShardingAlgorithm has two built-in implementations,

« org.apache.shardingsphere.sharding.algorithm.sharding.hint.
HintInlineShardingAlgorithm

« org.apache.shardingsphere.sharding.algorithm.sharding.classbased.
ClassBasedShardingAlgorithm

Apache ShardingSphere will acquire sharding values from HintManager to route.

Take the following configurations for reference:

9.1. ShardingSphere-JDBC 133

Apache ShardingSphere document

rules:
- !'SHARDING
tables:
t_order:
actualDataNodes: demo_ds_s${0..1}.t_order_${0..1}
databaseStrategy:
hint:
shardingColumn: order_id
shardingAlgorithmName: hint_class_based
tableStrategy:
hint:
shardingColumn: order_1id
shardingAlgorithmName: hint_inline
shardingAlgorithms:
hint_class_based:
type: CLASS_BASED
props:
strategy: STANDARD
algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
hint_inline:
type: HINT_INLINE
props:
algorithm-expression: t_order_$->{value % 4}
defaultTableStrategy:
none:
defaultKeyGenerateStrategy:
type: SNOWFLAKE

column: order_1id
props:

sql-show: true

Get HintManager

HintManager hintManager = HintManager.getInstance();

Add Sharding Value

+ Use hintManager.addDatabaseShardingValue to add sharding key value of data source.
« Use hintManager.addTableShardingValue to add sharding key value of table.

Users can use hintManager.setDatabaseShardingValue to set sharding value in hint
route to some certain sharding database without sharding tables.

9.1. ShardingSphere-JDBC 134

Apache ShardingSphere document

Clean Hint Values

Sharding values are saved in ThreadLocal, so it is necessary to use hintManager.close() to clean
ThreadLocal.

""HintManager" " has implemented " *AutoCloseable’*. We recommend to close it automatically with
*“try with resource"".

Codes:

// Sharding database and table with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();

PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
//

// Sharding database and one database route with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();

PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {
/]

Related References

+ Core Feature: Data Sharding

+ Developer Guide: Data Sharding

9.1. ShardingSphere-JDBC 135

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

Readwrite-splitting

This chapter will introduce the Readwrite-splitting API of ShardingSphere-JDBC.

Hint

Background

Apache ShardingSphere uses ThreadLocal to manage primary database routing marks for mandatory

routing. A primary database routing mark can be added to HintManager through programming, and

this value is valid only in the current thread.

Hint is mainly used to perform mandatory data operations in the primary database for read/write split-

ting scenarios.

Procedure

1. Call HintManager.getInstance() to obtain HintManager instance.
2. CallHintManager.setWriteRouteOnly () method to setthe primary database routing marks.
3. Execute SQL statements to complete routing and execution.

4, Call HintManager.close() to clear the content of ThreadLocal.

Sample
Primary Route with Hint
Get HintManager

The same as sharding based on hint.

Configure Primary Database Route

« Use hintManager.setWriteRouteOnly to configure primary database route.

Clean Hint Value

The same as data sharding based on hint.

9.1. ShardingSphere-JDBC 136

Apache ShardingSphere document

Code:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.setWriteRouteOnly() ;
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {

/7

Route to the specified database with Hint

Get HintManager

The same as sharding based on hint.

Configure Database Route

« Use hintManager.setDataSourceName to configure database route.

Code:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();

PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.setDataSourceName("ds_0");
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {
/]

9.1. ShardingSphere-JDBC 137

Apache ShardingSphere document

Related References

« Core Feature: Read/write Splitting

 Developer Guide: Read/write Splitting

Transaction

Using distributed transaction through Apache ShardingSphere is no different from local transaction. In
addition to transparent use of distributed transaction, Apache ShardingSphere can switch distributed

transaction types every time the database accesses.

Supported transaction types include local, XA and BASE. It can be set before creating a database con-

nection, and default value can be set when Apache ShardingSphere startup.

Use Java API

Background

With ShardingSphere-JDBC, XA and BASE mode transactions can be used through the API.

Prerequisites

Introducing Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

<!-- This module is required when using XA transactions -->

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using the Narayana mode with XA transactions -->

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${project.version}</version>

</dependency>

<!-- This module is required when using BASE transactions -->
<dependency>

9.1. ShardingSphere-JDBC 138

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/dev-manual/infra-algorithm/

Apache ShardingSphere document

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Procedure

Perform the business logic using transactions

Sample

// Use ShardingSphereDataSource to get a connection and perform transaction
operations.
try (Connection connection = dataSource.getConnection()) {
connection.setAutoCommit(false);
PreparedStatement preparedStatement = connection.prepareStatement("INSERT INTO
t_order (user_id, status) VALUES (?, ?2)");
preparedStatement.setObject(1l, 1000);
preparedStatement.setObject(2, "init");
preparedStatement.executeUpdate();

connection.commit();

Atomikos Transaction

Background

Apache ShardingSphere provides XA transactions, and the default XA transaction manager is Atomikos.

Procedure

1. Configure the transaction type

2. Configure Atomikos

9.1. ShardingSphere-JDBC 139

Apache ShardingSphere document

Sample
Configure the transaction type

Yaml:

transaction:
defaultType: XA

providerType: Atomikos

Configure Atomikos

Atomikos configuration items can be customized by adding jta.properties to the project’ s class-

path.

See Atomikos™ s official documentation for more details.

Data Recovery

xa_tx. log is generated in the logs directory of the project. This is the log required for recovering
XA crash. Do not delete it.

Narayana Transaction
Background

Apache ShardingSphere provides XA transactions that integrate with the Narayana implementation.

Prerequisites

Introducing Maven dependency

<properties>
<narayana.version>5.12.7.Final</narayana.version>
<jboss-transaction-spi.version>7.6.1.Final</jboss-transaction-spi.version>
<jboss-logging.version>3.2.1.Final</jboss-logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

<!-- This module is required when using XA transactions -->

9.1. ShardingSphere-JDBC 140

https://www.atomikos.com/Documentation/JtaProperties

Apache ShardingSphere document

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.jboss.narayana.jta</groupId>
<artifactId>jta</artifactId>
<version>${narayana.version}</version>
</dependency>
<dependency>
<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana-jts-integration</artifactId>
<version>${narayana.version}</version>
</dependency>
<dependency>
<groupId>org.jboss</groupIld>
<artifactId>jboss-transaction-spi</artifactId>
<version>${jboss-transaction-spi.version}</version>
</dependency>
<dependency>
<groupId>org.jboss.logging</groupIld>
<artifactId>jboss-logging</artifactId>
<version>${jboss-logging.version}</version>
</dependency>

Procedure

1. Configure Narayana

2. Set the XA transaction type

Sample
Configure Narayana

Narayana configuration items can be customized by adding jbossts-properties.xml to the

project’ s classpath.

See Narayana s Official Documentation for more details.

9.1. ShardingSphere-JDBC 141

https://narayana.io/documentation/index.html

Apache ShardingSphere document

For the minimum configuration of jbossts-properties.xml, ShardingSphere requires that
Narayana’ s CoreEnvironmentBean.nodeIdentifier property be defined. If Narayana s ob-
ject store is not shared between different Narayana instances, you can set this value to 1. A possible
jbossts-properties.xml configuration is as follows,

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="CoreEnvironmentBean.nodeIdentifier">1</entry>
</properties>

In certain cases, you may not want to use XML files, then you need to manually set CoreEnviron-
mentBean.nodeIdentifier in the bootstrap class of your own Java project. You can refer to the
following methods to call Narayana Java API.

import com.arjuna.ats.arjuna.common.CoreEnvironmentBeanException;

import com.arjuna.ats.arjuna.common.arjPropertyManager;

public class ExampleUtils {
public void initNarayanaInstance() {
try {
arjPropertyManager.getCoreEnvironmentBean() .setNodeIdentifier("1");
} catch (CoreEnvironmentBeanException e) {

throw new RuntimeException(e);

Set the XA transaction type

Yaml:

transaction:
defaultType: XA

providerType: Narayana

Seata Transaction
Background

Apache ShardingSphere provides BASE transactions that integrate the Seata implementation. All ref-
erences to Seata integration in this article refer to Seata AT mode.

9.1. ShardingSphere-JDBC 142

Apache ShardingSphere document

Prerequisites

ShardingSphere’ s Seata integration is only available in apache/incubator-seata:v2.3.0 or
higher. For Seata Client corresponding to the org.apache.seata:seata-all Maven module, this
limitation applies to both HotSpot VM and GraalVM Native Image. Introduce Maven dependencies and
exclude the outdated Maven dependency of org.antlr:antlr4-runtime:4.8 in org.apache.
seata:seata-all.

<project>
<dependencies>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.seata</groupId>
<artifactId>seata-all</artifactId>
<version>2.3.0</version>
<exclusions>

<exclusion>
<groupId>org.antlr</groupId>
<artifactId>antlr4-runtime</artifactId>
</exclusion>

</exclusions>

</dependency>

</dependencies>
</project>

Affected by Calcite, commons-lang: commons-1lang and org.apache.commons:commons-pool2
used by ShardingSphere JDBC have dependency conflicts with Seata Client. Users need to consider
whether to resolve dependency conflicts based on actual scenarios. If dependency conflicts are not
resolved, build tools such as Maven will randomly use a version of the conflicting dependency in the
classpath.

When using ShardingSphere’ s Seata integration module, the database instance connected to Sharding-
Sphere should implement both ShardingSphere’ s dialect parsing support and Seata AT mode’ s dialect
parsing support. This type of database includes but is not limited to mysql, gvenzl/oracle-free,
gvenzl/oracle-xe, postgres, mcr.microsoft.com/mssql/server and other Docker Images.

9.1. ShardingSphere-JDBC 143

Apache ShardingSphere document

undo_Tlog table restrictions

In each real database instance involved in ShardingSphere, an undo_log table needs to be created.
The SQL content of each database is based on the corresponding database in https://github.com/apach
e/incubator-seata/tree/v2.3.0/script/client/at/db .

Related configuration

Write the following content in the YAML configuration file of ShardingSphere of your own project, refer
to Distributed Transaction. If Java API is used when initializing ShardingSphere JDBC DataSource, refer

to Distributed Transaction.

transaction:
defaultType: BASE

providerType: Seata

Add the seata. conf file to the root directory of the classpath. For the configuration file format, refer
to the JavaDoc of org.apache.seata.config.FileConfiguration.

seata.conf has four properties,

1. shardingsphere.transaction.seata.at.enable, when this value is true, enable Shard-

ingSphere’ s Seata AT integration. The default value is true

2. shardingsphere.transaction.seata.tx.timeout, global transaction timeout (seconds).
The default value is 60

3. client.application.id, application unique primary key, used to set applicationId of

Seata Transaction Manager Client and Seata Resource Manager Client

4. client.transaction.service.group, transaction group, used to set transactionSer-
viceGroup of Seata Transaction Manager Client and Seata Resource Manager Client. The default

valueisdefault

A fully configured seata.conf is as follows,

shardingsphere.transaction.seata.at.enable = true
shardingsphere.transaction.seata.tx.timeout = 60

client {
application.id = example
transaction.service.group = default_tx_group

A minimally configured seata.conf is as follows. In seata.conf managed by Sharding-
Sphere, the default value of client.transaction.service.group is default for historical rea-
sons. Assuming that registry.type and config.type are both file in registry.conf of
Seata Server and Seata Client used by the user, then for registry.file.name of registry.
conf, the transaction group name in the .conf file configured by config.file.name is de-

9.1. ShardingSphere-JDBC 144

https://github.com/apache/incubator-seata/tree/v2.3.0/script/client/at/db
https://github.com/apache/incubator-seata/tree/v2.3.0/script/client/at/db
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/transaction
https://github.com/apache/incubator-seata/blob/v2.3.0/config/seata-config-core/src/main/java/org/apache/seata/config/FileConfiguration.java

Apache ShardingSphere document

fault_tx_group in apache/incubator-seata:v1l.5.1 and later, and my_test_tx_group be-
fore apache/incubator-seata:v1.5.1.

client.application.id = example

Modify Seata’ s registry.conf file according to the actual scenario.

Operation steps

1. Start Seata Server
2. Create undo_log table

3. Add Seata configuration

Configuration Example
Start Seata Server and MySQL Server

Write Docker Compose file to start Seata Server and MySQL Server.

services:
apache-seata-server:
image: apache/seata-server:2.3.0
ports:
- "8091:8091"
mysql:
image: mysql:9.1.0
environment:
MYSQL_ROOT_PASSWORD: example
volumes:
- ./mysql/docker-entrypoint-initdb.d:/docker-entrypoint-initdb.d
ports:
- "3306:3306"

The . /docker-entrypoint-initdb.d folder contains the file init. sh, the content is as follows,

#!/bin/bash
set -e

mysql -uroot -p"$MYSQL_ROOT_PASSWORD" <<EOSQL
CREATE DATABASE demo_ds_0;

CREATE DATABASE demo_ds_1;

CREATE DATABASE demo_ds_2;

EOSQL

for i in "demo_ds_0" "demo_ds_1" "demo_ds_2"
do

9.1. ShardingSphere-JDBC 145

Apache ShardingSphere document

mysql -uroot -p'"$MYSQL_ROOT_PASSWORD" "$4i" <<'EOSQL'
CREATE TABLE IF NOT EXISTS \undo_log\

(

‘branch_1id"’ BIGINT NOT NULL COMMENT 'branch transaction id',

“xid® VARCHAR(128) NOT NULL COMMENT 'global transaction id',

‘context’ VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as
serialization',

‘rollback_info™ LONGBLOB NOT NULL COMMENT 'rollback info',

“log_status® INT(11) NOT NULL COMMENT '@:normal status,l:defense status',

‘log_created’ DATETIME(6) NOT NULL COMMENT 'create datetime',
‘log_modified’ DATETIME(6) NOT NULL COMMENT 'modify datetime',
UNIQUE KEY ‘“ux_undo_log™ ('xid’, “branch_id")
) ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8mb4 COMMENT ='AT
transaction mode undo table';
ALTER TABLE “undo_log® ADD INDEX “1ix_log_created’ (log_created’);

CREATE TABLE IF NOT EXISTS t_order (
order_id BIGINT NOT NULL AUTO_INCREMENT,
order_type INT(11),
user_id INT NOT NULL,
address_id BIGINT NOT NULL,
status VARCHAR(50),

PRIMARY KEY (order_1id)

)3

EOSQL

done

Create seata.conf in the classpath of the business project

Create seata.conf in the classpath of the business project, with the following content,

service {
default.grouplist = "127.0.0.1:8091"
vgroupMapping.default_tx_group = "default"

Create file.conf in the classpath of the business project

Create file.conf in the classpath of the business project, with the following content,

client {
application.id = test
transaction.service.group = default_tx_group

9.1. ShardingSphere-JDBC 146

Apache ShardingSphere document

Create registry.conf in the classpath of the business project

Create a registry.conf in the classpath of the business project with the following content:

registry {
type = "file"
file {
name = "file.conf"
}
3
config {
type = "file"
file {
name = "file.conf"
}
}

Add JDBC Driver to the business project and create ShardingSphere configuration file

After the business project introduces the dependencies involved in the prerequisites, add the Maven
dependency of MySQL JDBC Driver.

<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<version>9.1.0</version>

</dependency>

Write the ShardingSphere data source configuration file demo.yam1l on the classpath of the business

project.

dataSources:

ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?ss1Mode=REQUIRED
username: root
password: example

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?ss1Mode=REQUIRED
username: root
password: example

ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_2?ss1Mode=REQUIRED

9.1. ShardingSphere-JDBC 147

Apache ShardingSphere document

username: root
password: example

rules:
— ISHARDING
tables:
t_order:
actualDataNodes: ds_$->{0..2}.t_order
keyGenerateStrategy:

column: order_-id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_-id
shardingAlgorithmName: inline
shardingAlgorithms:
inline:
type: INLINE
props:
algorithm-expression: ds_S${user_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE
transaction:
defaultType: BASE

providerType: Seata

Enjoy integration

You can start enjoying integration on ShardingSphere’ s data source.

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;
import java.sql.SQLException;
@SuppressWarnings ({"SqlNoDataSourceInspection", "AssertWithSideEffects"})
public class ExampleTest {
void test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setJddbcUrl("jdbc:shardingsphere:classpath:demo.yaml");
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
try (HikariDataSource dataSource = new HikariDataSource(config)) {
try (Connection conn = dataSource.getConnection()) {
try {
conn.setAutoCommit(false);
conn.createStatement() .executeUpdate ("INSERT INTO t_order (user_
id, order_type, address_id, status) VALUES (2024, 1, 2024, 'INSERT_TEST')");

9.1. ShardingSphere-JDBC 148

Apache ShardingSphere document

conn.createStatement() .executeUpdate("INSERT INTO t_order_does_
not_exist (test_id_does_not_exist) VALUES (2024)");
conn.commit();
} catch (final SQLException dignored) {
conn.rollback();
} finally {
conn.setAutoCommit(true);

}
try (Connection conn = dataSource.getConnection()) {
assert !conn.createStatement().executeQuery("SELECT * FROM t_order_

item WHERE user_id = 2024").next();
b

Usage restrictions

ShardingSphere’ s Seata integration does not support isolation levels.

ShardingSphere’ s Seata integration places the obtained Seata global transaction into the thread’ s
local variables. And org.apache.seata.spring.annotation.GlobalTransactionScanner
uses Dynamic Proxy to enhance the method. This means that when using ShardingSphere’ s Seata
integration, users should avoid using the Java API of org.apache.seata:seata-all, unless the

user is mixing ShardingSphere’ s Seata integration with the TCC mode feature of Seata Client.
For ShardingSphere data source, 7 situations are discussed.

1. Manually obtain the java.sql.Connection instance created from the ShardingSphere data
source and manually call the setAutoCommit (), commit() and rollback() methods. This
is allowed.

2. Usethe javax.transaction.Transactionalannotation of Jakarta EE 8 on the function. This
is allowed.

3. Use the jakarta.transaction.Transactional annotation of Jakarta EE 9/10 on the func-
tion. This is allowed.

4. Use the org.springframework.transaction.annotation.Transactional annotation
of Spring Framework on the function. This is allowed.

5. Manually obtain an org.springframework.transaction.support.
TransactionTemplate instance created from an org.springframework.transaction.
PlatformTransactionManager instance, anduse org.springframework.transaction.
support.TransactionTemplate#fexecute(org.springframework.transaction.
support.TransactionCallback), which is allowed.

6. Use the org.apache.seata.spring.annotation.GlobalTransactional annotation on
a function, which is not allowed.

9.1. ShardingSphere-JDBC 149

Apache ShardingSphere document

7. Manually create an org.apache.seata.tm.api.GlobalTransaction instance from an
org.apache.seata.tm.api.GlobalTransactionContext, and call the begin(), com-
mit(),and rollback() methodsoftheorg.apache.seata.tm.api.GlobalTransaction
instance, which is not allowed.

In actual scenarios where Spring Bootisused, com.alibaba.cloud:spring-cloud-starter-alibaba-seata
and org.apache.seata:seata-spring-boot-starter are often transitively imported by

other Maven dependencies. To avoid transaction conflicts, users need to set the property seata.
enable-auto-data-source-proxy to false in the Spring Boot configuration file. A possible

dependency relationship is as follows.

<project>
<dependencies>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>S${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.seata</groupId>
<artifactId>seata-spring-boot-starter</artifactId>
<version>2.3.0</version>
<exclusions>

<exclusion>
<groupId>org.antlr</groupId>
<artifactId>antlr4-runtime</artifactId>
</exclusion>

</exclusions>

</dependency>

</dependencies>
</project>

The corresponding application.yml under classpath needs to contain the following configuration.
In this case, the equivalent configuration of Seata’ s registry.conf defined in Spring Boot’ s ap-
plication.yaml is still valid. When downstream projects use the Maven module of org. apache.
shardingsphere:shardingsphere-transaction-base-seata-at, it is always encouraged to
use registry.conf to configure Seata Client.

seata:

enable-auto-data-source-proxy: false

9.1. ShardingSphere-JDBC 150

Apache ShardingSphere document

Mixed use with Seata TCC mode features

For the case of setting up ShardingSphere’ s Seata integration, In business functions unrelated to Shard-
ingSphere JDBC DataSource, if you need to use Seata Client” s Seata TCC mode-related features in busi-
ness functions, you can instantiate a non-proxy ordinary TCC interface implementation class, and then
use org.apache.integration.tx.api.util.ProxyUtil to create a proxy TCC interface class,
and call the functions corresponding to the three stages of the TCC interface implementation class Try,

Confirm,and Cancel.

For the org.apache.seata.spring.annotation.GlobalTransactional annotation intro-
duced by the Seata TCC mode or the business functions involved in the Seata TCC mode that need to
interact with the database instance, ShardingSphere JDBC DataSource should not be used in the busi-
ness functions marked by this annotation. Instead, a javax.sql.DataSource instance should be

created manually or obtained from a custom Spring Bean.

Transactional propagation across service calls

Transactional propagationn in cross-service call scenarios is not as out-of-the-box as transaction oper-
ations within a single microservice. For Seata Server, transactional propagation in cross-service call
scenarios requires passing XID to the service provider through service calls and binding it to org.
apache.seata.core.context.RootContext. Refer to https://seata.apache.org/docs/user/api/ .
This requires discussing two situations,

1. In the scenario of using ShardingSphere JDBC, transaction scenarios across multiple microser-
vices need to consider using org.apache.seata.core.context.RootContext.getXID()
to obtain Seata XID in the context of the starting microservice, and passing it to the end microser-
vice through HTTP or RPC, and processing it in the Filter or Spring WebMVC HandlerInterceptor
of the end microservice. Spring WebMVC HandlerInterceptor is only applicable to Spring Boot

microservices and is invalid for Quarkus, Micronaut Framework and Helidon.

2. Inthe scenario of using ShardingSphere Proxy, multiple microservices operate local transactions
against the logical data source of ShardingSphere Proxy. This will be converted into distributed
transaction operations on the server side of ShardingSphere Proxy, without considering additional
Seata XID.

Introduce a simple scenario to continue discussing the transactional propagation across service calls
in the scenario of using ShardingSphere JDBC.

1. MySQL database instance a-mysq€l, all databases have created UNDO_LOG table and business ta-
ble.

2. MySQL database instance b-mysq1, all databases have created UNDO_LOG table and business ta-
ble.

3. Seata Serverinstance a-seata-server using file as configuration center and registration cen-

ter.

4. Microservice instance a-service. This microservice creates a ShardingSphere JDBC Data-
Source that only configures the database instance a-mysql. This ShardingSphere JDBC Data-

9.1. ShardingSphere-JDBC 151

https://seata.apache.org/docs/user/api/

Apache ShardingSphere document

Source configuration uses the Seata AT integration connected to the Seata Server instance
a-seata-server, whose Seata Application Id is service-a, whose Seata transaction group
is default_tx_group, and the Seata Transaction Coordinator cluster group pointed to by its
Virtual Group Mappingisdefault. This microservice instance a-service exposes a sin-
gle Restful API GET endpoint as /hello, and the business function aMethod of this Restful API
endpoint uses a common local transaction annotation. If this microservice is based on Spring
Boot 2,

import org.springframework.transaction.annotation.Transactional;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class DemoController {
@Transactional
@GetMapping("/hello")
public String aMethod() {
// ... Perform an UPDATE operation on the database instance “a-mysql’
return "Hello World!";

5. Microservice instance b-service. This microservice creates a ShardingSphere JDBC Data-

Source that only configures the database instance b-mysql. This ShardingSphere JDBC Data-
Source configuration uses the Seata AT integration connected to the Seata Server instance
a-seata-server, whose Seata Application Id is service-b, whose Seata transaction group
isdefault_tx_group, and whose Virtual Group Mapping points to the Seata Transaction
Coordinator cluster group as default. The business function bMethod of this microservice in-
stance b-service uses a normal local transaction annotation, and calls the /hello Restful API

endpoint of the microservice instance a-serv-ice through the HTTP Client in bMethod. If this
microservice is based on Spring Boot 2,
import org.springframework.boot.web.client.RestTemplateBuilder;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.web.client.RestTemplate;
@Service
public class DemoService {
@Transactional
public void bMethod() {
RestTemplate restTemplate = new RestTemplateBuilder().build();
restTemplate.getForEntity("http://a-service/hello", String.class);
// ... Perform an UPDATE operation on the database instance "b-mysql’
}
}
For this simple scenario, there is a single Seata Server Cluster, which contains a single Virtual Group
9.1. ShardingSphere-JDBC 152

Apache ShardingSphere document

asdefault. This Virtual Group contains a single Seata Server instance as a-seata-server.

Discuss transaction propagation for single service calls. When the business function aMethod of the
microservice instance a-service throws an exception, the changes to the MySQL database instance

a-mysql in the business function will be rolled back normally.

Discuss transaction propagation for cross-service calls. When the business function bMethod of the
microservice instance b-service throws an exception, the changes to the MySQL database instance
b-mysqg1 in the business function will be rolled back normally, and the org.apache.seata.core.
context.RootContext of the microservice instance a—-service is not bound to the Seata XID of
the business function bMethod of the microservice instance b-service, so the changes to the MySQL

database instance a-mysq1l in the business function will not be rolled back.

In order to achieve that when the business function bMethod of the microservice instance b-service
throws an exception, the changes to the MySQL database instances a-mysql and b-mysql in the busi-
ness function are rolled back normally, discuss the common processing solutions in different scenar-

ios.

1. The microservice instances a-service and b-service are both Spring Boot 2 microservices
based on Jakarta EE 8. Users can use org.springframework.web.client.RestTemplate
in the business function bMethod of the microservice instance b-service to pass the XID to the
microservice instance a-service through the service call. The possible transformation logic is
as follows.

import org.apache.seata.core.context.RootContext;

import org.springframework.boot.web.client.RestTemplateBuilder;
import org.springframework.stereotype.Service;

import org.springframework.transaction.annotation.Transactional;

import org.springframework.web.client.RestTemplate;

@Service
public class DemoService {
@Transactional
public void bMethod() {
RestTemplate restTemplate = new RestTemplateBuilder().
additionalInterceptors((request, body, execution) -> {
String xid = RootContext.getXID();
if (null != xid) {
request.getHeaders() .add(RootContext.KEY_XID, xid);

}

return execution.execute(request, body);
)
.build();

restTemplate.getForEntity("http://a-service/hello", String.class);
// ... Perform an UPDATE operation on the database instance “b-mysql’

At this time, a custom org.springframework.web.servlet.config.annotation.
WebMvcConfigurer implementation needs to be added to the microservice instance a-service.

9.1. ShardingSphere-JDBC 153

Apache ShardingSphere document

import org.apache.seata.integration.http.TransactionPropagationInterceptor;
import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class CustomWebMvcConfigurer -implements WebMvcConfigurer {

@Override
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(new TransactionPropagationInterceptor());

At this time, when the business function bMethod of the microservice instance b-serv-ice throws

an exception, the changes to the MySQL database instances a-mysql and b-mysql in the business

function are rolled back normally.

2. The microservice instances a-service and b-service are both Spring Boot 3 microservices

based on Jakarta EE 9/10. Users can use org.springframework.web.client.RestClient
in the business function bMethod of the microservice instance b-service to pass the XID to the

microservice instance a-service through a service call. The possible transformation logic is as

follows.

import org.apache.seata.core.context.RootContext;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import org.springframework.web.client.RestClient;

@Service
public class DemoService {
@Transactional
public void bMethod() {
RestClient restClient = RestClient.builder().requestInterceptor((request,
body, execution) -> {
String xid = RootContext.getXID();
if (null != xid) {
request.getHeaders() .add(RootContext.KEY_XID, xid);

}
return execution.execute(request, body);
b
.build();
restClient.get() .uri("http://a-service/hello").retrieve().body(String.
class);
// ... Perform an UPDATE operation on the database instance "b-mysql’
}
}

9.1. ShardingSphere-JDBC

154

Apache ShardingSphere document

At this time, a custom org.springframework.web.servlet.config.annotation.
WebMvcConfigurer implementation needs to be added to the microservice instance a-service.

import org.apache.seata.integration.http.JakartaTransactionPropagationInterceptor;
import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class CustomWebMvcConfigurer -implements WebMvcConfigurer {

@Override
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(new JakartaTransactionPropagationInterceptor());

At this time, when the business function bMethod of the microservice instance b-serv-ice throws
an exception, the changes to the MySQL database instances a-mysql and b-mysql in the business
function are rolled back normally.

3. The microservice instances a-service and b-service are both Spring Boot microservices,
but the API gateway middleware used blocks all HTTP requests containing the HTTP Header of
TX_XID. The user needs to consider changing the HTTP Header used to pass XID to the microser-
vice instance a-service through service calls, or use the RPC framework to pass XID to the
microservice instance a-service through service calls. Refer to https://github.com/apache/in

cubator-seata/tree/v2.3.0/integration .

4. The microservice instances a-service and b-serv-ice are both microservices such as Quarkus,
Micronaut Framework and Helidon. In this case, Spring WebMVC HandlerInterceptor cannot be
used. You can refer to the following Spring Boot 3 custom WebMvcConfigurer implementation to
implement Filter.

import org.apache.seata.common.util.StringUtils;
import org.apache.seata.core.context.RootContext;
import jakarta.servlet.http.HttpServletRequest;
import jakarta.servlet.http.HttpServletResponse;
import org.springframework.context.annotation.Configuration;
import org.springframework.lang.NonNull;
import org.springframework.web.servlet.HandlerInterceptor;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
@Configuration
public class CustomWebMvcConfigurer -implements WebMvcConfigurer {
@Override
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(new HandlerInterceptor() {
@Override
public boolean preHandle(@NonNull HttpServletRequest request, @NonNull

9.1. ShardingSphere-JDBC 155

https://github.com/apache/incubator-seata/tree/v2.3.0/integration
https://github.com/apache/incubator-seata/tree/v2.3.0/integration

Apache ShardingSphere document

HttpServletResponse response, @NonNull Object handler) {
String rpcXid = request.getHeader (RootContext.KEY_XID);
String xid = RootContext.getXID();
if (StringUtils.disBlank(xid) && StringUtils.isNotBlank(rpcXid)) {
RootContext.bind(rpcXid);

}

return true;
}
@Override

public void afterCompletion(@NonNull HttpServletRequest request,
@NonNull HttpServletResponse response, @NonNull Object handler, Exception ex) {
if (RootContext.inGlobalTransaction()) {
String rpcXid = request.getHeader (RootContext.KEY_XID);
String xid = RootContext.getXID();
if (StringUtils.isNotBlank(xid)) {
String unbindXid = RootContext.unbind();
if (!StringUtils.equalsIgnoreCase(rpcXid, unbindXid)) {
if (StringUtils.disNotBlank(unbindXid)) {
RootContext.bind (unbindXid);

s

5. Both microservice instances a-service and b-service are Spring Boot microservices, but the
components used are Spring WebFlux instead of Spring WebMVC. ShardingSphere JDBC cannot
handle R2DBC DataSource under the reactive programming API, only JDBC DataSource. Avoid
creating ShardingSphere JDBC DataSource in Spring Boot microservices using WebFlux compo-

nents.

Log Configuration

After starting Seata Client in a business project, you may see the following Error Log.

[ERROR] 2024-12-20 11:46:43.878 [ForkJoinPool.commonPool-worker-1] o.a.s.config.
ConfigurationFactory - failed to load non-spring configuration :not found service
provider for : org.apache.seata.config.ConfigurationProvider
org.apache.seata.common. loader.EnhancedServiceNotFoundException: not found service

provider for : org.apache.seata.config.ConfigurationProvider

According to https://github.com/apache/incubator-seata/issues/6886 , throwing this exception is the
expected behavior of Seata Client. Users can configure the log of Seata Client by placing logback.xml
in the classpath of the business project.

9.1. ShardingSphere-JDBC 156

https://github.com/apache/incubator-seata/issues/6886

Apache ShardingSphere document

9.1.4 Optional Plugins

ShardingSphere only includes the implementation of the core SPI by default, and there is a part of
the SPI that contains third-party dependencies in Git Source Implemented plugins are not included.

Retrievable at https://central.sonatype.com/.

SPI and existing implementation classes of SPI corresponding to all plugins can be retrieved at https:

//shardingsphere.apache.org/document/current/cn/dev-manual/.
All the built-in plugins for ShardingSphere-JDBC are listed below in the form of ‘groupld:artifactld’ .

« org.apache.shardingsphere:shardingsphere-authority-core, the user authority to
load the logical core

« org.apache.shardingsphere:shardingsphere-cluster-mode-core, the persistent
definition core of cluster mode configuration information

» org.apache.shardingsphere:shardingsphere-db-discovery-core, high availability

core
« org.apache.shardingsphere:shardingsphere-encrypt-core, data encryption core

« org.apache.shardingsphere:shardingsphere-infra-context, the kernel operation
and metadata refresh mechanism of Context

« org.apache.shardingsphere:shardingsphere-mask-core, data masking core

+ org.apache.shardingsphere:shardingsphere-mysql-dialect-exception, MySQL
implementation of database gateway

« org.apache.shardingsphere:shardingsphere-parser-core, SQL parsing core

« org.apache.shardingsphere:shardingsphere-postgresql-dialect-exception,
PostgreSQL implementation of database

» org.apache.shardingsphere:shardingsphere-readwrite-splitting-core, read-
write splitting core

« org.apache.shardingsphere:shardingsphere-shadow-core, shadow library core
« org.apache.shardingsphere:shardingsphere-sharding-core, data sharding core

« org.apache.shardingsphere:shardingsphere-single-core, single-table (only the
only table that exists in all sharded data sources) core

« org.apache.shardingsphere:shardingsphere-sql-federation-core, federation

query executor core

« org.apache.shardingsphere:shardingsphere-sql-parser-mysql, MySQL dialect im-
plementation of SQL parsing

« org.apache.shardingsphere:shardingsphere-sql-parser-postgresql, PostgreSQL
dialect implementation of SQL parsing

« org.apache.shardingsphere:shardingsphere-sql-parser-opengauss, OpenGauss
dialect implementation of SQL parsing

9.1. ShardingSphere-JDBC 157

https://central.sonatype.com/
https://shardingsphere.apache.org/document/current/cn/dev-manual/
https://shardingsphere.apache.org/document/current/cn/dev-manual/

Apache ShardingSphere document

« org.apache.shardingsphere:shardingsphere-sql-parser-oracle, Oracle dialect

implementation of SQL parsing

« org.apache.shardingsphere:shardingsphere-sql-parser-sqlserver, SQL Server
dialect implementation of SQL parsing

« org.apache.shardingsphere:shardingsphere-sql-parser-doris, Doris dialect im-
plementation of SQL parsing

« org.apache.shardingsphere:shardingsphere-sql-parser-presto,Prestodialectim-
plementation of SQL parsing

« org.apache.shardingsphere:shardingsphere-sql-parser-sql92,the SQL 92 dialect

implementation of SQL parsing

« org.apache.shardingsphere:shardingsphere-standalone-mode-core, the persis-

tence definition core of single-machine mode configuration information

« org.apache.shardingsphere:shardingsphere-standalone-mode-repository-jdbc-h2,

H2 implementation of persistent definition of configuration information in stand-alone mode
- org.apache.shardingsphere:shardingsphere-traffic-core, traffic governance core

« org.apache.shardingsphere:shardingsphere-transaction-core, XA Distributed

Transaction Manager Core

If ShardingSphere-JDBC needs to use optional plugins, you need to download the JAR containing its SPI
implementation and its dependent JARs from Maven Central.

All optional plugins are listed below in the form of groupId:artifactId.
« Cluster mode configuration information persistence definition

- org.apache.shardingsphere:shardingsphere-cluster-mode-repository-zookeeper,

Zookeeper based persistence

- org.apache.shardingsphere:shardingsphere-cluster—-mode-repository-etcd,

Etcd based persistence
+ XA transaction manager provider definition

- org.apache.shardingsphere:shardingsphere-transaction-xa-narayana, XA

distributed transaction manager based on Narayana
« Row Value Expressions definition

- org.apache.shardingsphere:shardingsphere-infra-expr-espresso, Row
Value Expressions that uses the Groovy syntax based on GraalVM Truffle’ s Espresso

implementation
« Database type identification

- org.apache.shardingsphere:shardingsphere-infra-database-hive, Adapta-
tion of jdbcURL for JDBC support of Hive, and metadata loading implementation

- org.apache.shardingsphere:shardingsphere-infra-database-presto, Adap-
tation of jdbcURL for JIDBC support of Presto, and metadata loading implementation

9.1. ShardingSphere-JDBC 158

Apache ShardingSphere document

+ SQL parsing

- org.apache.shardingsphere:shardingsphere-parser-sql-clickhouse, Click-
House dialect implementation of SQL parsing

- org.apache.shardingsphere:shardingsphere-parser-sql-hive, Hive dialect
implementation of SQL parsing

In addition to the above optional plugins, ShardingSphere community developers have contributed a
number of plugin implementations. These plugins can be found in ShardingSphere Plugins repository.
Plugins in ShardingSphere Plugin repository would remain the same release plan with ShardingSphere,
you can build plugin jar by yourself, and install into ShardingSphere.

ClickHouse

Background Information

ShardingSphere does not provide support for driverClassName of com.clickhouse.jdbc.
ClickHouseDriver by default. ShardingSphere’ s support for ClickHouse JDBC Driver is in the op-

tional module.

Prerequisites

Tousea jdbcUrllike jdbc:ch://localhost:8123/demo_ds_0 for the data node in the Sharding-
Sphere configuration file, the possible Maven dependencies are as follows,

<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-parser-sql-clickhouse</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>com.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<classifier>http</classifier>
<version>0.6.3</version>
</dependency>
</dependencies>

9.1. ShardingSphere-JDBC 159

https://github.com/apache/shardingsphere-plugin

Apache ShardingSphere document

Configuration example

Start ClickHouse

Write a Docker Compose file to start ClickHouse.

services:
clickhouse-server:
image: clickhouse/clickhouse-server:25.4.5.24
ports:
- "8123:8123"

Create business tables

Use a third-party tool to create some business databases and business tables in ClickHouse. Tak-
ing DBeaver Community as an example, if you use Ubuntu 22.04.4, you can quickly install it through
Snapcraft.

sudo apt update && sudo apt upgrade -y
sudo snap install dbeaver-ce

snap run dbeaver-ce

In DBeaver Community, use jdbcUr1l of jdbc:ch://localhost:8123/default, username of
default to connect to ClickHouse, and leave password blank. Execute the following SQL,

-- noinspection SqlNoDataSourceInspectionForFile
CREATE DATABASE demo_ds_0;
CREATE DATABASE demo_ds_1;
CREATE DATABASE demo_ds_2;

Use jdbcUrl of jdbc:ch://localhost:8123/demo_ds_0, jdbc:ch://localhost:8123/
demo_ds_1 and jdbc:ch://localhost:8123/demo_ds_2 to connect to ClickHouse and execute
the following SQL.

-- noinspection SqlNoDataSourceInspectionForFile
create table IF NOT EXISTS t_order (

order_1id Int64 NOT NULL,

order_type Int32,

user_id Int32 NOT NULL,

address_id Int64 NOT NULL,

status VARCHAR (50)
) engine = MergeTree

primary key (order_id)

order by (order_id);

TRUNCATE TABLE t_order;

9.1. ShardingSphere-JDBC 160

Apache ShardingSphere document

Create ShardingSphere data source in business project

After the business project introduces the dependencies involved in prerequisites, write the Shard-
ingSphere data source configuration file demo.yaml on the classpath of the business project.

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.clickhouse.jdbc.ClickHouseDriver
jdbcUrl: jdbc:ch://localhost:8123/demo_ds_0
username: default
password:
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.clickhouse.jdbc.ClickHouseDriver
jdbcUrl: jdbc:ch://localhost:8123/demo_ds_1
username: default
password:
ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.clickhouse.jdbc.ClickHouseDriver
jdbcUrl: jdbc:ch://localhost:8123/demo_ds_2
username: default
password:
rules:
— ISHARDING
tables:
t_order:
actualDataNodes: <LITERAL>ds_0.t_order, ds_1.t_order, ds_2.t_order
keyGenerateStrategy:
column: order_-id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: inline
shardingAlgorithms:
inline:
type: INLINE
props:
algorithm-expression: ds_s${user_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

9.1. ShardingSphere-JDBC 161

Apache ShardingSphere document

Enjoy integration

Create a ShardingSphere data source to enjoy integration,

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
public class ExampleUtils {
void test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setJddbcUrl("jdbc:shardingsphere:classpath:demo.yaml");
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
try (HikariDataSource dataSource = new HikariDataSource(config);
Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement()) {
statement.execute("INSERT INTO t_order (user_id, order_type, address_id,
status) VALUES (1, 1, 1, 'INSERT_TEST')");
statement.executeQuery ("SELECT * FROM t_order™");
statement.execute("alter table t_order delete where user_id=1");

Usage Limitations
SQL Limitations

ShardingSphere JDBC DataSource does not yet support executing ClickHouse’ s create table, trun-
cate table, and drop table statements. Users should consider submitting a PR containing unit

tests for ShardingSphere.

Key Generate restrictions

The column type corresponding to the Key Generate function of ClickHouse itself is UUID, and UUID is
received as java.util.UUID in ClickHouse JDBC Driver, refer to https://github.com/ClickHouse/Cl
ickHouse/issues/56228 . The column type corresponding to the Key Generate SPI implementation of
ShardingSphere’ s SNOWFLAKE is UInt64, which is received as java. lang. Long in ShardingSphere
JDBC Driver.

When configuring ShardingSphere to connect to ClickHouse, if ShardingSphere is also configured to use
the Key Generate SPI implementation of SNOWFLAKE, the column type in the ClickHouse real database
used by ShardingSphere’ s Key Generate function should not be set to UUID.

9.1. ShardingSphere-JDBC 162

https://github.com/ClickHouse/ClickHouse/issues/56228
https://github.com/ClickHouse/ClickHouse/issues/56228

Apache ShardingSphere document

Because com.clickhouse.jdbc.ClickHouseConnection#prepareStatement(String,
int) of com.clickhouse:clickhouse-jdbc:0.6.3:http Maven module inten-
tionally throws an exception when autoGeneratedKeys is java.sql.Statement.
RETURN_GENERATED_KEYS, to prevent ShardingSphere from proxying com.clickhouse.jdbc.
internal.ClickHouseConnectionImpl normally, therefore, if users need to obtain the Key
generated by ShardingSphere from the JDBC business code, they need to set autoGeneratedKeys to
java.sql.Statement.NO_GENERATED_KEYS.

A possible example is as follows,

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.*;
public class ExampleTest {
long test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setddbcUrl("jdbc:shardingsphere:classpath:demo.yaml");
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
try (HikariDataSource dataSource = new HikariDataSource(config);
Connection connection = dataSource.getConnection();
PreparedStatement preparedStatement = connection.prepareStatement(
"INSERT INTO t_order (user_id, order_type, address_id, status)
VALUES (1, 1, 1, 'INSERT_TEST')",
Statement.NO_GENERATED_KEYS
) 1
preparedStatement.executeUpdate();
try (ResultSet resultSet = preparedStatement.getGeneratedKeys()) {
if (resultSet.next()) {
return resultSet.getlLong(1l);
}

throw new RuntimeException();

Transaction Limitations

ClickHouse does not support local transactions at the ShardingSphere integration level, XA transac-
tions, or AT mode transactions for Seata, More discussion is at https://github.com/ClickHouse/clickh

ouse-docs/issues/2300 .

This has nothing to do with the Transactions, Commit, and Rollback feature provided by
https://clickhouse.com/docs/en/guides/developer/transactional for ClickHouse, but only with com.
clickhouse.jdbc.ConnectionImpl not implementing java.sql.Connection#rollback().
See https://github.com/ClickHouse/clickhouse-java/issues/2023 .

9.1. ShardingSphere-JDBC 163

https://github.com/ClickHouse/clickhouse-docs/issues/2300
https://github.com/ClickHouse/clickhouse-docs/issues/2300
https://clickhouse.com/docs/en/guides/developer/transactional
https://github.com/ClickHouse/clickhouse-java/issues/2023

Apache ShardingSphere document

Embedded ClickHouse Limitations

The embedded ClickHouse chDB Java client has not been released yet. ShardingSphere does not do
integration testing for the SNAPSHOT version of https://github.com/chdb-io/chdb-java . Refer to
https://github.com/chdb-io/chdb/issues/243 .

Firebird

Background Information

ShardingSphere does not provide support for driverClassName of org.firebirdsql.jdbc.
FBDriver by default. ShardingSphere’ s support for Firebird JDBC Driver is in an optional module.

Prerequisites

To use a jdbcUrl like jdbc:firebird://localhost:3050//var/1lib/firebird/data/
demo_ds_0. fdb for the data node in the ShardingSphere configuration file, the possible Maven
dependencies are as follows,

<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-parser-sql-firebird</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.firebirdsql.jdbc</groupId>
<artifactId>jaybird</artifactId>
<version>5.0.6.java8</version>
</dependency>
</dependencies>

Configuration example
Start Firebird

Write a Docker Compose file to start Firebird.

services:
firebird:

9.1. ShardingSphere-JDBC 164

https://github.com/chdb-io/chdb-java
https://github.com/chdb-io/chdb/issues/243

Apache ShardingSphere document

image: firebirdsql/firebird:5.0.1
environment:
FIREBIRD_ROOT_PASSWORD: masterkey
FIREBIRD_USER: alice
FIREBIRD_PASSWORD: masterkey
FIREBIRD_DATABASE: mirror.fdb
FIREBIRD_DATABASE_DEFAULT_CHARSET: UTF8
ports:
- "3050:3050"

Create business databases

Create some business databases in Firebird through third-party tools.

Third-party tools including DBeaver Community cannot create databases for Firebird. Below is the Java
API of the Maven module org. firebirdsql.jdbc:jaybird:5.0.6.java8 as an example.

import org.firebirdsgl.management.FBManager;
import org.firebirdsql.management.PageSizeConstants;
class Solution {
void test() throws Exception {
try (FBManager fbManager = new FBManager()) {
fbManager.setServer ("localhost");
fbManager.setUserName("alice");
fbManager.setPassword("masterkey") ;
fbManager.setFileName("/var/lib/firebird/data/mirror.fdb");
fbManager.setPageSize(PageSizeConstants.SIZE_16K);
fbManager.setDefaultCharacterSet ("UTF8");
fbManager.setPort (3050);
fbManager.start();
fbManager.createDatabase("/var/lib/firebird/data/demo_ds_0.fdb", "alice
", "masterkey");
fbManager.createDatabase("/var/lib/firebird/data/demo_ds_1.fdb", "alice
", "masterkey");
fbManager.createDatabase("/var/lib/firebird/data/demo_ds_2.fdb", "alice
", "masterkey");

}

9.1. ShardingSphere-JDBC 165

Apache ShardingSphere document

Create ShardingSphere data source in business project

After the business project introduces the dependencies involved in the prerequisites, write the

ShardingSphere data source configuration file demo. yaml on the classpath of the business project.

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.firebirdsql.jdbc.FBDriver
jdbcUrl: jdbc:firebird://localhost:3050//var/lib/firebird/data/demo_ds_0.fdb
username: alice
password: masterkey
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.firebirdsql.jdbc.FBDriver
jdbcUrl: jdbc:firebird://localhost:3050//var/lib/firebird/data/demo_ds_1.fdb
username: alice
password: masterkey
ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.firebirdsql.jdbc.FBDriver
jdbcUrl: jdbc:firebird://localhost:3050//var/lib/firebird/data/demo_ds_2.fdb
username: alice
password: masterkey
rules:
— ISHARDING
tables:
t_order:
actualDataNodes: <LITERAL>ds_0.t_order, ds_1.t_order, ds_2.t_order
keyGenerateStrategy:
column: order_-id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: inline
shardingAlgorithms:
inline:
type: INLINE
props:
algorithm-expression: ds_s${user_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

9.1. ShardingSphere-JDBC

166

Apache ShardingSphere document

Enjoy integration

Create a ShardingSphere data source to enjoy the integration,

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
class Solution {
void test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setJddbcUrl("jdbc:shardingsphere:classpath:demo.yaml");
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
try (HikariDataSource dataSource = new HikariDataSource(config);
Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement()) {
statement.execute("CREATE TABLE t_order (order_id BIGINT generated by
default as identity PRIMARY KEY, order_type INT, user_id INT NOT NULL, address_-id
BIGINT NOT NULL, status VARCHAR(50))");
statement.execute("INSERT INTO t_order (user_id, order_type, address_id,
status) VALUES (1, 1, 1, 'INSERT_TEST')");
statement.executeQuery ("SELECT * FROM t_order");
statement.execute("DELETE FROM t_order WHERE user_id=1");
statement.execute("DROP TABLE t_order");

Usage Limitations
Transaction Limitations

Firebird supports local transactions at the ShardingSphere integration level, but does not support XA

transactions or Seata’ s AT mode transactions.
Discussions on XA transactions are at https://github.com/apache/shardingsphere/issues/34973 .

For Seata’ s AT mode transactions, a PR containing the corresponding implementation should be sub-
mitted at https://github.com/apache/incubator-seata .

9.1. ShardingSphere-JDBC 167

https://github.com/apache/shardingsphere/issues/34973
https://github.com/apache/incubator-seata

Apache ShardingSphere document

HiveServer2

Background Information

ShardingSphere does not provide support for driverClassName of org.apache.hive.jdbc.
HiveDriver by default.

ShardingSphere’ s support for HiveServer2 JDBC Driver is in the optional module.

Prerequisites

To use a jdbcUr1like jdbc:hive2://localhost: 10000/ for the data node in the ShardingSphere

configuration file, The possible Maven dependencies are as follows.

<dependencies>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-parser-sql-hive</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>4.0.1</version>

</dependency>

<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-service</artifactId>
<version>4.0.1</version>

</dependency>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.3.6</version>
<exclusions>

<exclusion>
<groupId>x</groupId>
<artifactId>*</artifactId>
</exclusion>

</exclusions>

</dependency>

</dependencies>

9.1. ShardingSphere-JDBC 168

Apache ShardingSphere document

Optional shortcut to resolve dependency conflicts

Using org.apache.hive:hive-jdbc:4.0. 1 directly will cause a large number of dependency con-
flicts. If users do not want to manually resolve potentially thousands of lines of dependency conflicts,
they can use a third-party build of the HiveServer2 JDBC Driver Thin JAR. The following is an example
of a possible configuration,

<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-parser-sql-hive</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>io.github.linghengqian</groupId>
<artifactId>hive-server2-jdbc-driver-thin</artifactId>
<version>1.7.0</version>
<exclusions>
<exclusion>
<groupId>com.fasterxml.woodstox</groupId>
<artifactId>woodstox-core</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.commons</groupId>
<artifactId>commons-text</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.3.6</version>
<exclusions>
<exclusion>
<groupId>x</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>

9.1. ShardingSphere-JDBC 169

Apache ShardingSphere document

Configuration Example

Start HiveServer2

Write a Docker Compose file to start HiveServer?2.

services:
hive-server2:
image: apache/hive:4.0.1
environment:
SERVICE_NAME: hiveserver2
ports:
- "10000:10000"

Create business tables

Use a third-party tool to create some business databases and business tables in HiveServer2. Tak-
ing DBeaver Community as an example, if you use Ubuntu 22.04.4, you can quickly install it through
Snapcratft.

sudo apt update && sudo apt upgrade -y
sudo snap install dbeaver-ce

snap run dbeaver-ce

In DBeaver Community, use the jdbcUr1l of jdbc:hive2://localhost:10000/ to connect to
HiveServer2, and leave username and password blank. Execute the following SQL,

-— noinspection SqlNoDataSourceInspectionForFile
CREATE DATABASE demo_ds_0;
CREATE DATABASE demo_ds_1;
CREATE DATABASE demo_ds_2;

Use the jdbcUrl of jdbc:hive2://localhost:10000/demo_ds_0, jdbc:hive2://
localhost:10000/demo_ds_1 and jdbc:hive2://localhost:10000/demo_ds_2 to connect
to HiveServer2 to execute the following SQL,

-— noinspection SqlNoDataSourceInspectionForFile
CREATE TABLE IF NOT EXISTS t_order

(
order_1id BIGINT NOT NULL,
order_type INT,
user_id INT NOT NULL,
address_id BIGINT NOT NULL,
status string,
PRIMARY KEY (order_id) disable novalidate
) STORED BY ICEBERG STORED AS ORC TBLPROPERTIES ('format-version' = '2");

9.1. ShardingSphere-JDBC 170

Apache ShardingSphere document

TRUNCATE TABLE t_order;

Create ShardingSphere data source in business projects

After the business project introduces the dependencies involved in prerequisites, write the Shard-

ingSphere data source configuration file demo.yaml on the classpath of the business project.

dataSources:
ds_0:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource

driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: jdbc:hive2://localhost:10000/demo_ds_0
ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource

driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: jdbc:hive2://localhost:10000/demo_ds_1
ds_2:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource

driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: jdbc:hive2://localhost:10000/demo_ds_2
rules:
— !SHARDING
tables:
t_order:

actualDataNodes: <LITERAL>ds_0.t_order, ds_l.t_order, ds_2.t_order

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: inline
shardingAlgorithms:
inline:
type: INLINE
props:
algorithm-expression: ds_${user_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

9.1. ShardingSphere-JDBC

171

Apache ShardingSphere document

Enjoy the integration

Create a ShardingSphere data source to enjoy the integration.

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
public class ExampleUtils {
void test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setddbcUrl("jdbc:shardingsphere:classpath:demo.yaml");
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
try (HikariDataSource dataSource = new HikariDataSource(config);
Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement()) {
statement.execute("INSERT INTO t_order (user_id, order_type, address_id,
status) VALUES (1, 1, 1, 'INSERT_TEST')");
statement.executeQuery ("SELECT * FROM t_order");
statement.execute("DELETE FROM t_order WHERE user_id=1");

External Integration

Connect to HiveServer2 with ZooKeeper Service Discovery enabled

jdbcUr1 in the ShardingSphere configuration file can be configured to connect to HiveServer2 with

ZooKeeper Service Discovery enabled.

For discussion, assume that there is the following Docker Compose file to start HiveServer2 with
ZooKeeper Service Discovery.

name: test-1
services:
zookeeper:
image: zookeeper:3.9.3-jre-17
ports:
- "2181:2181"
apache-hive-1:
image: apache/hive:4.0.1
depends_on:
- zookeeper
environment:
SERVICE_NAME: hiveserver2

9.1. ShardingSphere-JDBC 172

Apache ShardingSphere document

SERVICE_OPTS: >-
-Dhive.server2.support.dynamic.service.discovery=true
-Dhive.zookeeper.quorum=zookeeper:2181
-Dhive.server2.thrift.bind.host=0.0.0.0
-Dhive.server2.thrift.port=10000

ports:
- "10000:10000"

In DBeaver Community, use jdbcUrl of jdbc:hive2://127.0.0.1:2181/;
serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2 to connect to
HiveServer2, leave username and password blank. Execute the following SQL,

-— noinspection SqlNoDataSourceInspectionForFile
CREATE DATABASE demo_ds_0;
CREATE DATABASE demo_ds_1;
CREATE DATABASE demo_ds_2;

Use jdbcUrlof jdbc:hive2://127.0.0.1:2181/demo_ds_0;serviceDiscoveryMode=zooKeeper;
zooKeeperNamespace=hiveserver2, jdbc:hive2://127.0.0.1:2181/demo_ds_1;
serviceDiscoveryMode=zooKeeper ;zooKeeperNamespace=hiveserver2 and
jdbc:hive2://127.0.0.1:2181/demo_ds_2;serviceDiscoveryMode=zooKeeper;
zooKeeperNamespace=hiveserver2 to connect to HiveServer2 and execute the following

SQL,

-- noinspection SqlNoDataSourceInspectionForFile
CREATE TABLE IF NOT EXISTS t_order

(
order_1id BIGINT NOT NULL,
order_type INT,
user_id INT NOT NULL,
address_id BIGINT NOT NULL,
status string,
PRIMARY KEY (order_id) disable novalidate
) STORED BY ICEBERG STORED AS ORC TBLPROPERTIES ('format-version' = '2");

TRUNCATE TABLE t_order;

After the business project introduces the dependencies involved in the prerequisites, write the
ShardingSphere data source configuration file demo. yaml on the classpath of the business project.

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: jdbc:hive2://127.0.0.1:2181/demo_ds_0;
serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource

9.1. ShardingSphere-JDBC 173

Apache ShardingSphere document

driverClassName: org.apache.hive.jdbc.HiveDriver

jdbcUrl: jdbc:hive2://127.0.0.1:2181/demo_ds_1;
serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2

ds_2:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource

driverClassName: org.apache.hive.jdbc.HiveDriver

jdbcUrl: jdbc:hive2://127.0.0.1:2181/demo_ds_2;
serviceDiscoveryMode=zooKeeper ;zooKeeperNamespace=hiveserver2

rules:
- !'SHARDING
tables:
t_order:
actualDataNodes: <LITERAL>ds_0.t_order, ds_1.t_order, ds_2.t_order
keyGenerateStrategy:

column: order_-id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: inline
shardingAlgorithms:
inline:
type: INLINE
props:
algorithm-expression: ds_s${user_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

At this point, you can create the ShardingSphere data source normally and execute logical SQL on the
virtual data source.

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
public class ExampleUtils {
void test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setddbcUrl("jdbc:shardingsphere:classpath:demo.yaml");
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
try (HikariDataSource dataSource = new HikariDataSource(config);
Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement()) {
statement.execute("INSERT INTO t_order (user_id, order_type, address_id,
status) VALUES (1, 1, 1, 'INSERT_TEST')");

9.1. ShardingSphere-JDBC 174

Apache ShardingSphere document

statement.executeQuery ("SELECT * FROM t_order™");
statement.execute("DELETE FROM t_order WHERE order_id=1");

At this point, if the HiveServer2 example with the service named apache-hive-1 is manually de-
stroyed, start the second HiveServer2 instance through another Docker Compose file with the following
content,

name: test-2
services:
apache-hive-2:
image: apache/hive:4.0.1
environment:
SERVICE_NAME: hiveserver2
SERVICE_OPTS: >-
-Dhive.server2.support.dynamic.service.discovery=true
-Dhive.zookeeper.quorum=zookeeper:2181
-Dhive.server2.thrift.bind.host=0.0.0.0
-Dhive.server2.thrift.port=20000
ports:
- "20000:20000"
networks:
- test-1_default
networks:
test-1_default:
external: true

In DBeaver Community, use jdbcUrl of jdbc:hive2://127.0.0.1:2181/;
serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2 to connect to
HiveServer2, leave username and password blank. Execute the following SQL,

-— noinspection SqlNoDataSourceInspectionForFile
CREATE DATABASE demo_ds_0;
CREATE DATABASE demo_ds_1;
CREATE DATABASE demo_ds_2;

Use jdbcUrlof jdbc:hive2://127.0.0.1:2181/demo_ds_0;serviceDiscoveryMode=zooKeeper;
zooKeeperNamespace=hiveserver2, jdbc:hive2://127.0.0.1:2181/demo_ds_1;
serviceDiscoveryMode=zooKeeper ;zooKeeperNamespace=hiveserver2 and
jdbc:hive2://127.0.0.1:2181/demo_ds_2;serviceDiscoveryMode=zooKeeper;
zooKeeperNamespace=hiveserver2 to connect to HiveServer2 and execute the following

SQL,

-— noinspection SqlNoDataSourceInspectionForFile
CREATE TABLE IF NOT EXISTS t_order

(

9.1. ShardingSphere-JDBC 175

Apache ShardingSphere document

order_1id BIGINT NOT NULL,
order_type INT,

user_id INT NOT NULL,
address_id BIGINT NOT NULL,
status string,
PRIMARY KEY (order_id) disable novalidate
) STORED BY ICEBERG STORED AS ORC TBLPROPERTIES ('format-version' = '2");

TRUNCATE TABLE t_order;

At this point, the old ShardingSphere JDBC DataSource can still be switched to the HiveServer2 instance
named apache-hive-2in the serv-ice to execute the logical SQL without recreating the JDBC Data-
Source.

import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
public class ExampleUtils {
void test(HikariDataSource dataSource) throws SQLException {
try (Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement()) {
statement.execute("INSERT INTO t_order (user_id, order_type, address_id,
status) VALUES (1, 1, 1, 'INSERT_TEST')");
statement.executeQuery ("SELECT * FROM t_order");
statement.execute ("DELETE FROM t_order WHERE order_id=1");

Usage Restrictions
Version Restrictions
The lifecycle of HiveServer2 2. x and HiveServer2 3. x releases has ended. Refer to https://lists.apache

.org/thread/0mh4hvpllzv877bkx1f9srv1c3hlbtt9 and https://lists.apache.org/thread/mpzrv7vlihqqo4c
mpO0zorswnbvd7ltmbp . ShardingSphere is only integrated tested for HiveServer2 4.0. 1.

9.1. ShardingSphere-JDBC 176

https://lists.apache.org/thread/0mh4hvpllzv877bkx1f9srv1c3hlbtt9
https://lists.apache.org/thread/0mh4hvpllzv877bkx1f9srv1c3hlbtt9
https://lists.apache.org/thread/mpzrv7v1hqqo4cmp0zorswnbvd7ltmbp
https://lists.apache.org/thread/mpzrv7v1hqqo4cmp0zorswnbvd7ltmbp

Apache ShardingSphere document

Uber JAR Limitation of HiveServer2 JDBC Driver

Affected by https://issues.apache.org/jira/browse/HIVE-28445, users should not use org.apache.
hive:hive-jdbc:4.0.1 with classifier as standalone to avoid dependency conflicts.

Embedded HiveServer2 Limitation

Embedded HiveServer2 is no longer considered user-friendly by the Hive community, and users should
not try to start embedded HiveServer2 through ShardingSphere’ s configuration file. Users should
always start HiveServer2 through HiveServer2’ s Docker Image apache/hive:4.0.1. Reference ht
tps://issues.apache.org/jira/browse/HIVE-28418.

Hadoop Limitations

Users can only use Hadoop 3. 3. 6 as the underlying Hadoop dependency of HiveServer2 JDBC Driver
4.0.1. HiveServer2 JDBC Driver 4. 0. 1 does not support Hadoop 3.4. 1. Reference https://github.c
om/apache/hive/pull/5500 .

For HiveServer2 JDBC Driver org.apache.hive:hive-jdbc:4.0.1 or org.apache.
hive:hive-jdbc:4.0.1 with classifier as standalone, there is actually no additional
dependency on org.apache.hadoop:hadoop-mapreduce-client-core:3.3.6.

Butorg.apache.shardingsphere:shardingsphere-infra-database-hive’sorg.apache.
shardingsphere.infra.database.hive.metadata.data.loader.HiveMetaDatalLoader
uses org.apache.hadoop.hive.conf.HiveConf, which further uses org.apache.
hadoop:hadoop-mapreduce-client-core:3.3.6" sorg.apache.hadoop.mapred.JobConf
class.

ShardingSphere only needs to use the org.apache.hadoop.mapred.JobConf
class, so it is reasonable to exclude all additional dependencies of org.apache.
hadoop:hadoop-mapreduce-client-core:3.3.6.

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.3.6</version>
<exclusions>
<exclusion>
<groupId>*</groupId>
<artifactId>x</artifactId>
</exclusion>
</exclusions>
</dependency>

9.1. ShardingSphere-JDBC 177

https://issues.apache.org/jira/browse/HIVE-28445
https://issues.apache.org/jira/browse/HIVE-28418
https://issues.apache.org/jira/browse/HIVE-28418
https://github.com/apache/hive/pull/5500
https://github.com/apache/hive/pull/5500

Apache ShardingSphere document

SQL Limitations

HiveServer2 does not guarantee that every insert related DML SQL can be executed successfully, al-
though no exception may be thrown.

ShardingSphere JDBC DataSource does not yet support executing HiveServer2’ s set, create table,
truncate table, and drop tab'le statements. Users should consider submitting a PR containing
unit tests for ShardingSphere.

Use initFile parameter to partially bypass SQL restrictions

Affected by https://issues.apache.org/jira/browse/HIVE-28835 , the initFile parameter of

HiveServer2 JDBC Driver is only available in Linux environment.

SQL statements represented by set can be easily configured dynamically at the HiveServer2 Client
level. Even though ShardingSphere JDBC does not support executing HiveServer2’ s set statement on
a virtual DataSource, users can directly execute a series of SQLs for the real DataSource through the
Hive Session parameter of initFile. For discussion, the possible ShardingSphere configuration files

are as follows,

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: jdbc:hive2://localhost:10000/demo_ds_0;initFile=/tmp/init.sql
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: jdbc:hive2://localhost:10000/demo_ds_0;initFile=/tmp/init.sql
ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: jdbc:hive2://localhost:10000/demo_ds_0;initFile=/tmp/init.sql

The possible contents of /tmp/init.sql are as follows,

-— noinspection SqlNoDataSourceInspectionForFile
set metastore.compactor.initiator.on=true;
set metastore.compactor.cleaner.on=true;

set metastore.compactor.worker.threads=1;

set hive.support.concurrency=true;
set hive.exec.dynamic.partition.mode=nonstrict;

set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

Affected by https://issues.apache.org/jira/browse/HIVE-28317 , the initFile parameter can only
use absolute paths. However, ShardingSphere JDBC Driver has a placeholder-type parameter to
dynamically define YAML properties. Further discussion, possible ShardingSphere configuration files

9.1. ShardingSphere-JDBC 178

https://issues.apache.org/jira/browse/HIVE-28835
https://issues.apache.org/jira/browse/HIVE-28317

Apache ShardingSphere document

are as follows,

dataSources:

ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: $${fixture.hive.ds0.jdbc-url::}

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: $${fixture.hive.dsl.jdbc-url::}

ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: org.apache.hive.jdbc.HiveDriver
jdbcUrl: $${fixture.hive.ds2.jdbc-url::}

When using ShardingSphere JDBC Driver, user can pass in the absolute path of the file on the classpath

of the business project by concatenating strings.

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import javax.sql.DataSource;
import java.nio.file.Paths;
public class ExampleUtils {
public DataSource createDataSource() {
HikariConfig config = new HikariConfig();
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
config.setJddbcUrl("jdbc:shardingsphere:classpath:demo.yaml?placeholder-
type=system_props");
try {
assert null == System.getProperty("fixture.hive.ds0.jdbc-url");
assert null == System.getProperty("fixture.hive.dsl.jdbc-url");
assert null == System.getProperty("fixture.hive.ds2.jdbc-url");
String absolutePath = Paths.get("src/test/resources/init.sql").
toAbsolutePath() .toString();
System.setProperty ("fixture.hive.ds0.jdbc-url", "jdbc:hive2://
localhost:10000/demo_ds_0;initFile=" + absolutePath);
System.setProperty("fixture.hive.dsl.jdbc-url", "jdbc:hive2://
localhost:10000/demo_ds_1;initFile=" + absolutePath);
System.setProperty ("fixture.hive.ds2.jdbc-url", "jdbc:hive2://
localhost:10000/demo_ds_2;initFile=" + absolutePath);
return new HikariDataSource(config);
} finally {
System.clearProperty("fixture.hive.ds0.jdbc-url");
System.clearProperty("fixture.hive.dsl.jdbc-url");
System.clearProperty("fixture.hive.ds2.jdbc-url");

9.1. ShardingSphere-JDBC 179

Apache ShardingSphere document

Prerequisites for using DML SQL statements on ShardingSphere data sources

In order to be able to use DML SQL statements such as de'lete, users should consider using only ACID-
supported tables in ShardingSphere JDBC when connecting to HiveServer2. apache/hive provides
multiple transaction solutions.

The first option is to use ACID tables. The possible table creation process is as follows. ACID tables use
the outdated directory-based table format.

-— noinspection SqlNoDataSourceInspectionForFile
set metastore.compactor.initiator.on=true;
set metastore.compactor.cleaner.on=true;

set metastore.compactor.worker.threads=1;

set hive.support.concurrency=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

create table IF NOT EXISTS t_order

(
order_1id BIGINT NOT NULL,
order_type INT,

user_id INT NOT NULL,
address_id BIGINT NOT NULL,
status VARCHAR(50) ,

PRIMARY KEY (order_id) disable novalidate
) CLUSTERED BY (order_id) INTO 2 BUCKETS STORED AS ORC TBLPROPERTIES ('transactional

''= 'true');

The second option is to use Iceberg tables. The possible table creation process is as follows. Apache
Iceberg table format is expected to replace the traditional Hive table format in the next few years. Refer
to https://blog.cloudera.com/from-hive-tables-to-iceberg-tables-hassle-free/ .

-- noinspection SqlNoDataSourceInspectionForFile
CREATE TABLE IF NOT EXISTS t_order

(
order_1id BIGINT NOT NULL,
order_type INT,
user_-id INT NOT NULL,
address_id BIGINT NOT NULL,
status string,
PRIMARY KEY (order_id) disable novalidate
) STORED BY ICEBERG STORED AS ORC TBLPROPERTIES ('format-version' = '2');

Iceberg table format supports relatively few Hive types. Executing SQL set -diceberg.mr.schema.
auto.conversion=true; for HiveServer2 can help alleviate this problem. SQL set +iceberg.mr.

9.1. ShardingSphere-JDBC 180

https://blog.cloudera.com/from-hive-tables-to-iceberg-tables-hassle-free/

Apache ShardingSphere document

schema.auto.conversion=true; hasthe drawbacks mentioned in https://issues.apache.org/jira
/browse/HIVE-26507 .

Transaction Limitations

HiveServer2 does not support local transactions at the ShardingSphere integration level, XA transac-
tions, or Seata’ s AT mode transactions. For more discussion, please visit https://cwiki.apache.org/c

onfluence/display/Hive/Hive+Transactions.

This has nothing to do with the Table rollback feature provided by https://iceberg.apache
.org/docs/1.7.0/hive/#table-rollback for HiveServer2, but only with org.apache.hive.jdbc.
HiveConnection not implementing java.sql.Connection#rollback().

DBeaver Community Version Limitations

When users use DBeaver Community to connect to HiveServer2, they need to ensure that the DBeaver

Community version is greater than or equal to 24.2.5.

See https://github.com/dbeaver/dbeaver/pull/35059 .

Presto

Background Information

ShardingSphere does not provide support for driverClassName of com. facebook.presto.jdbc.
PrestoDriver by default. ShardingSphere’ s support for Presto JDBC Driver is in an optional module.

Prerequisites

Touse a jdbcUr1llike jdbc:presto://localhost:8080/iceberg/demo_ds_0 for the data node

in the ShardingSphere configuration file, Possible Maven dependencies are as follows,

<dependencies>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-parser-sql-presto</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>com.facebook.presto</groupId>
<artifactId>presto-jdbc</artifactId>

9.1. ShardingSphere-JDBC 181

https://issues.apache.org/jira/browse/HIVE-26507
https://issues.apache.org/jira/browse/HIVE-26507
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://iceberg.apache.org/docs/1.7.0/hive/#table-rollback
https://iceberg.apache.org/docs/1.7.0/hive/#table-rollback
https://github.com/dbeaver/dbeaver/pull/35059

Apache ShardingSphere document

<version>0.292</version>
</dependency>
</dependencies>

Configuration Example

Start Presto

Write a Docker Compose file to start Presto. This will start a Presto node that is both a coordinator and
a worker node, and configure the Iceberg Connector for the node. In addition, this Iceberg Connector
will start a Hive Metastore Server using a local file system directory.

services:
presto:
image: prestodb/presto:0.292
ports:
- "8080:8080"
volumes:

- ./iceberg.properties:/opt/presto-server/etc/catalog/iceberg.properties

The same folder contains the file iceberg.properties, the contents are as follows,

connector.name=1iceberg

iceberg.catalog.type=hive

hive.metastore=file
hive.metastore.catalog.dir=file: /home/iceberg_data

Create business-related schemas and tables

Use third-party tools to create business-related schemas and tables in Presto. Taking DBeaver Commu-
nity as an example, if you use Ubuntu 24.04, you can quickly install it through Snapcraft.

sudo apt update && sudo apt upgrade -y
sudo snap install dbeaver-ce
snap run dbeaver-ce

In DBeaver Community, use jdbcUr1 of jdbc:presto://localhost:8080/iceberg, username
of test to connect to Presto, and leave password blank. Execute the following SQL,

-- noinspection SqlNoDataSourceInspectionForFile
CREATE SCHEMA -iceberg.demo_ds_0;
CREATE SCHEMA -iceberg.demo_ds_1;
CREATE SCHEMA -ceberg.demo_ds_2;

Use the jdbcUr1 of jdbc:presto://localhost:8080/1iceberg/demo_ds_0, jdbc:presto:/
/localhost:8080/1iceberg/demo_ds_1 and jdbc:presto://localhost:8080/1iceberg/

9.1. ShardingSphere-JDBC 182

Apache ShardingSphere document

demo_ds_2 to connect to Presto and execute the following SQL,

-- noinspection SqlNoDataSourceInspectionForFile
CREATE TABLE IF NOT EXISTS t_order (
order_id BIGINT NOT NULL,

order_type INTEGER,

user_id INTEGER NOT NULL,
address_id BIGINT NOT NULL,

status VARCHAR(50)
)

truncate table t_order;

Create ShardingSphere data source in business project

After the business project introduces the dependencies involved in Prerequisites, write the Shard-

ingSphere data source configuration file demo.yaml on the classpath of the business project.

dataSources:
ds_0:
dataSourceClassName:

driverClassName: com.

jdbcUrl: jdbc:presto:

username: test
ds_1:
dataSourceClassName:

driverClassName: com.

jdbcUrl: jdbc:presto:

username: test
ds_2:
dataSourceClassName:

driverClassName: com.

jdbcUrl: jdbc:presto:

com.zaxxer.hikari.HikariDataSource
facebook.presto.jdbc.PrestoDriver
//localhost:8080/1iceberg/demo_ds_0

com.zaxxer.hikari.HikariDataSource
facebook.presto.jdbc.PrestoDriver
//localhost:8080/1iceberg/demo_ds_1

com.zaxxer.hikari.HikariDataSource
facebook.presto.jdbc.PrestoDriver
//localhost:8080/iceberg/demo_ds_2

username: test
rules:
— ISHARDING
tables:
t_order:

actualDataNodes: <LITERAL>ds_0.t_order, ds_l.t_order, ds_2.t_order

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: inline
shardingAlgorithms:
inline:
type: INLINE

9.1. ShardingSphere-JDBC

183

Apache ShardingSphere document

props:
algorithm-expression: ds_${user_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

Enjoy integration

Create a ShardingSphere data source to enjoy integration,

import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
public class ExampleUtils {
void test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setJddbcUrl("jdbc:shardingsphere:classpath:demo.yaml");
config.setDriverClassName("org.apache.shardingsphere.driver.
ShardingSphereDriver");
try (HikariDataSource dataSource = new HikariDataSource(config);
Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement()) {
statement.execute("INSERT INTO t_order (user_id, order_type, address_id,
status) VALUES (1, 1, 1, '"INSERT_TEST')");
statement.executeQuery ("SELECT * FROM t_order");
statement.execute("DELETE FROM t_order WHERE user_id=1");
statement.execute("DROP TABLE IF EXISTS t_order");

9.1. ShardingSphere-JDBC 184

Apache ShardingSphere document

Usage Limitations
SQL Limitations

ShardingSphere JDBC DataSource does not yet support the execution of Presto’ s create table and

truncate table statements.

Transaction Limitations

Presto does not support local transactions, XA transactions, or Seata’ s AT mode transactions at the
ShardingSphere integration level. There are bugs with Presto’ s own transaction support, see https:
//github.com/prestodb/presto/issues/25204 .

Connector Limitations

Affected by https://github.com/prestodb/presto/issues/23226 , there are known issues with the health
check of the Presto Memory connector, developers should not connect to the Presto Memory connector
in the ShardingSphere configuration file.

9.1.5 Unsupported Items
Configuration

« Do not support configuring multiple logic databases

DataSource Interface

« Do not support timeout related operations

Connection Interface

Do not support operations of stored procedure, function and cursor
« Do not support native SQL

+ Do not support savepoint related operations

« Do not support Schema/Catalog operation

« Do not support self-defined type mapping

9.1. ShardingSphere-JDBC 185

https://github.com/prestodb/presto/issues/25204
https://github.com/prestodb/presto/issues/25204
https://github.com/prestodb/presto/issues/23226

Apache ShardingSphere document

Statement and PreparedStatement Interface

+ Do not support statements that return multiple result sets (stored procedures, multiple pieces of
non-SELECT data)

+ Do not support the operation of international characters

ResultSet Interface

« Do not support getting result set pointer position

Do not support changing result pointer position through none-next method
« Do not support revising the content of result set

+ Do not support acquiring international characters

« Do not support getting Array

JDBC4.1

+ Do not support new functions of JDBC 4.1 interface

For all the unsupported methods, please read org.apache.shardingsphere.driver.jdbc.
unsupported package.

9.1.6 Observability
Agent
Compile source code

Download Apache ShardingSphere from GitHub,Then compile.

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean 1install -DskipITs -DskipTests -Prelease,default-dep

Agent artifact is distribution/agent/target/apache-shardingsphere-${latest.
release.version}-shardingsphere-agent-bin.tar.gz

9.1. ShardingSphere-JDBC 186

Apache ShardingSphere document

Directory structure

Create agent directory, and unzip agent distribution package to the directory.

mkdir agent

tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin.
tar.gz -C agent

cd agent

F—— conf

| L agent.yaml

F—— plugins

| | uib

| | F—— shardingsphere-agent-metrics-core-${latest.release.version}.jar
| | L— shardingsphere-agent-plugin-core-${latest.release.version}.jar
|

|

|

|

|

|
L

F—— logging

| L shardingsphere-agent-logging-file-${latest.release.version}.jar
F—— metrics
| L shardingsphere-agent-metrics-prometheus-${latest.release.version}.jar
— tracing

F—— shardingsphere-agent-tracing-opentelemetry-${latest.release.version}.jar
shardingsphere-agent-${latest.release.version}.jar

Configuration

conf/agent.yaml is used to manage agent configuration. Built-in plugins include File, Prometheus,

OpenTelemetry.

plugins:
Tlogging:

File:

props:

level: "INFO"

metrics:

Prometheus:

host: "localhost"

port: 9090

props:

jvm-information-collector-enabled: "true"

tracing:

OpenTelemetry:

props:

otel.service.name: "shardingsphere"

otel.traces.exporter: "jaeger"

otel.exporter.otlp.traces.endpoint: "http://localhost:14250"

9.1. ShardingSphere-JDBC 187

Apache ShardingSphere document

otel.traces.sampler: "always_on"

Plugin description

File

Currently, the File plugin only outputs the time-consuming log output of building metadata, and has no

other log output for the time being.

Prometheus

Used for exposure monitoring metrics.

« Parameter description

Name Description
host host IP
port port

jvm-i nformation-collector-enabled whether to collect JVM indicator information

OpenTelemetry

OpenTelemetry can export tracing data to Jaeger, Zipkin.

« Parameter description

Name

Description

otel.service.name
otel.traces.exporter
otel.exporter.otlp.traces.endpoint

otel.traces.sampler

service name
traces exporter
traces endpoint

traces sampler

Parameter reference OpenTelemetry SDK Autoconfigure

9.1. ShardingSphere-JDBC

188

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure

Apache ShardingSphere document

Usage

« 1 The SpringBoot project ready to integrate ShardingSphere-JDBC, test-project.jar

+ 2 Startup project

java -javaagent:/agent/shardingsphere-agent-${latest.release.version}.jar -jar test-
project.jar
+ 3 Access to started service

* 4 Check whether the corresponding plug-in is effective

Docker

Local Build

ShardingSphere Agent has a Docker f1i le available for easy distribution. You can execute the following
command to build a Docker Image,

git clone git@github.com:apache/shardingsphere.git
cd ./shardingsphere/
./mvnw -am -pl distribution/agent -Prelease,default-dep,docker -T1C -DskipTests

clean package

If you add the following statement in your custom Docker f1ile, it will copy the ShardingSphere Agent
directory to /shardingsphere-agent/.

COPY --from=ghcr.io/apache/shardingsphere-agent:latest /usr/agent/ /shardingsphere-
agent/

Community Build

Since ShardingSphere 5.5.2, ShardingSphere Agent has released community builds at https://github.c
om/apache/shardingsphere/pkgs/container/shardingsphere-agent . This Docker Image is not part of

the ASF distribution, but is provided for convenience.
If you add the following statement in a custom Dockerfile, it will copy the ShardingSphere Agent
directory to /shardingsphere-agent/.

COPY --from=ghcr.io/apache/shardingsphere-agent:5.5.2 /usr/agent/ /shardingsphere-
agent/

9.1. ShardingSphere-JDBC 189

https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-agent
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-agent

Apache ShardingSphere document

Nightly Build

ShardingSphere Agent has a nightly built Docker Image at https://github.com/apache/shardingsphere
/pkgs/container/shardingsphere-agent .

If you add the following statement in your custom Docker f1i le, it will copy the ShardingSphere Agent
directory to /shardingsphere-agent/.

COPY --from=ghcr.io/apache/shardingsphere-agent:latest /usr/agent/ /shardingsphere-
agent/

Using Dockerfile

Introduce a typical scenario,

1. Assume that the Jaeger All in One Docker Container is deployed through the following Bash com-

mand,

docker network create example-net
docker run --rm -d \
--name jaeger \
-e COLLECTOR_ZIPKIN_HOST_PORT=:9411 \
--network example-net \
jaegertracing/all-in-one:1.62.0

2. Assume . /custom-agent.yaml contains the configuration of ShardingSphere Agent, and the

content may be as follows,

plugins:
tracing:
OpenTelemetry:
props:
otel.service.name: "example"
otel.exporter.otlp.traces.endpoint: "http://jaeger:4318"

3. Assuming . /target/example.jar is an Uber JAR of Spring Boot that will use ShardingSphere
Agent, you can use the ShardingSphere Agent in the nightly built Docker Image for a JAR like
example. jar through a Dockerf1ile like the following.

FROM ghcr.io/apache/shardingsphere-agent:latest

COPY ./target/example.jar /app.jar

COPY ./custom-agent.yaml /usr/agent/conf/agent.yaml

ENTRYPOINT ["java",'"-javaagent:/usr/agent/shardingsphere-agent.jar","-jar","/app.
jar"]

If you build the Docker Image of ghcr.io/apache/shardingsphere-agent:latest locally, the

Docker f1ile may be as follows,

9.1. ShardingSphere-JDBC 190

https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-agent
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-agent

Apache ShardingSphere document

FROM ghcr.io/apache/shardingsphere-agent:latest

COPY ./target/example.jar /app.jar

COPY ./custom-agent.yaml /usr/agent/conf/agent.yaml

ENTRYPOINT ["java",'"-javaagent:/usr/agent/shardingsphere-agent.jar","-jar","/app.
jar"]

4. Enjoy it,

docker build -t example/gs-spring-boot-docker:latest .
docker run --network example-net example/gs-spring-boot-docker:latest

Metrics

Name Ty pe Description

build_info G AU GE Build information

p arsed_sql_total COUNT Total count of parsed by type (INSERT, UPDATE, DELETE, SE-
ER LECT, DDL, DCL, DAL, TCL, RQL, RDL, RAL, RUL)

r outed_sql_total COUNT Total count of routed by type (INSERT, UPDATE, DELETE, SE-
ER LECT)

rout ed_result_total COUNT Total count of routed result (data source routed, table routed)
ER

jdbc_state GAUGE Status information of ShardingSphere-JDBC. 0 is OK; 1 is CIR-

CUIT BREAK; 2 is LOCK
jdbc _meta_data_info GAUGE Meta data information of ShardingSphere-JDBC
jdbc_statemen G AU GE Total number of statements executed
t_execute_total
jdbc_ state- GAUGE Total number of statement execution errors
ment_execu
te_errors_total
jdbc_st ate- H IS TO Statement execution latency
ment_execute _la- GRAM
tency_millis
jdbc_tra nsac- GAUGE Total number of transactions, classify by commit and rollback

tions_total

9.1. ShardingSphere-JDBC 191

Apache ShardingSphere document

9.1.7 GraalVM Native Image

Background Information

ShardingSphere JDBC has been validated for availability under GraalVM Native Image.

Build GraalVM Native containing Maven dependencies of org.apache.
shardingsphere:shardingsphere-jdbc:${shardingsphere.version} Image, you need
to resort to GraalVM Native Build Tools. GraalvVM Native Build Tools provides Maven Plugin and Gradle
Plugin to simplify long list of shell commands for GraalVM CE’ s native-image command line tool.

ShardingSphere JDBC requires GraalVM Native Image to be built with GraalVM CE as follows or higher.
Users can quickly switch JDK through SDKMAN!. Same reason applicable to downstream distributions
of GraalVM CE such as https://sdkman.io/jdks#graal , https://sdkman.io/jdks#nik and https:
//sdkman.io/jdks#mandrel .

+ GraalVM CE For JDK 22.0.2, corresponding to 22.0.2-graalce of SDKMAN!

Users can still use the old versions of GraalVM CE such as 21.0.2-graalce on SDKMAN! to build
the GraalVM Native Image product of ShardingSphere. However, this will cause the failure of build-
ing the GraalvVM Native Image when integrating some third-party dependencies. A typical example
is related to the org.apache.hive:hive-jdbc:4.0.1 HiveServer2 JDBC Driver, which uses AWT-
related classes. GraalVM CE only supports AWT for GraalVM CE For JDK22 and higher versions.

com.sun.beans.introspect.ClassInfo was unintentionally initialized at build time. To
see why com.sun.beans.introspect.ClassInfo got initialized use --trace-class-
initialization=com.sun.beans.introspect.ClassInfo

java.beans.Introspector was unintentionally initialized at build time. To see why
java.beans.Introspector got initialized use --trace-class-initialization=java.beans.
Introspector

Maven Ecology

Users need to actively use the GraalVM Reachability Metadata central repository. The following config-
uration is for reference to configure additional Maven Profiles for the project, and the documentation
of GraalVM Native Build Tools shall prevail.

<project>
<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
</dependencies>

<build>
<plugins>

9.1. ShardingSphere-JDBC 192

https://sdkman.io/jdks#graal
https://sdkman.io/jdks#nik
https://sdkman.io/jdks#mandrel
https://sdkman.io/jdks#mandrel

Apache ShardingSphere document

<plugin>
<groupId>org.graalvm.buildtools</groupId>
<artifactId>native-maven-plugin</artifactId>
<version>0.10.6</version>
<extensions>true</extensions>
<configuration>
<buildArgs>
<buildArg>-H:+AddAllCharsets</buildArg>
</buildArgs>
</configuration>
<executions>
<execution>
<id>build-native</id>
<goals>
<goal>compile-no-fork</goal>
</goals>
<phase>package</phase>
</execution>
<execution>
<id>test-native</id>
<goals>
<goal>test</goal>
</goals>
<phase>test</phase>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

Gradle Ecosystem

Users need to actively use the GraalVM Reachability Metadata central repository. The following config-
uration is for reference to configure additional Gradle Tasks for the project, and the documentation of
GraalVM Native Build Tools shall prevail. Due to the limitations of https://github.com/gradle/gradle/iss
ues/17559 , users need to introduce the JSON file of Metadata Repository through Maven dependency.
Reference https://github.com/graalvm/native-build-tools/issues/572 .

plugins {
id 'org.graalvm.buildtools.native' version '0.10.6'

dependencies {
implementation 'org.apache.shardingsphere:shardingsphere-jdbc:${shardingsphere.
version}'

implementation(group: 'org.graalvm.buildtools', name: 'graalvm-reachability-

9.1. ShardingSphere-JDBC 193

https://github.com/gradle/gradle/issues/17559
https://github.com/gradle/gradle/issues/17559
https://github.com/graalvm/native-build-tools/issues/572

Apache ShardingSphere document

metadata', version: '0.10.6', classifier: 'repository', ext: 'zip')

}

graalvmNative {
binaries {
main {
buildArgs.add('-H:+AddAllCharsets"')

}

test {
buildArgs.add('-H:+AddAllCharsets"')

}

}
metadataRepository {

enabled.set(false)

For build tools such as sbt that are not supported by GraalVM Native Build Tools

Such requirements require opening additional issues at https://github.com/graalvm/native-build-tools
and providing the Plugin implementation of the corresponding build tool.

Usage restrictions

1. The following algorithm classes are not available under GraalvVM Native Image due to the involve-
ment of https://github.com/oracle/graal/issues/5522.

» org.apache.shardingsphere.sharding.algorithm.sharding.inline.
InlineShardingAlgorithm

» org.apache.shardingsphere.sharding.algorithm.sharding.inline.
ComplexInlineShardingAlgorithm

» org.apache.shardingsphere.sharding.algorithm.sharding.hint.
HintInlineShardingAlgorithm

For general cases, users can simulate the behavior of GroovyShell by themselves through the
CLASS_BASE algorithm. For example, take the following configuration.

rules:
- ISHARDING
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: inline
shardingAlgorithms:
inline:
type: INLINE

9.1. ShardingSphere-JDBC 194

https://github.com/graalvm/native-build-tools
https://github.com/oracle/graal/issues/5522

Apache ShardingSphere document

props:
algorithm-expression: ds_${user_id % 2}

allow-range-query-with-inline-sharding: false

You can first define the implementation class of CLASS_BASE.

package org.example.test;

import org.apache.shardingsphere.sharding.api.sharding.standard.
PreciseShardingValue;

import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.
StandardShardingAlgorithm;

import java.util.Collection;

public final class TestShardingAlgorithmFixture implements StandardShardingAlgorithm
<Integer> {

@Override
public String doSharding(final Collection<String> availableTargetNames, final
PreciseShardingValue<Integer> shardingValue) {
String resultDatabaseName = "ds_" + shardingValue.getValue() % 2;
for (String each : availableTargetNames) {
if (each.equals(resultDatabaseName)) {

return each;

}
}
return null;
}
@Override

public Collection<String> doSharding(final Collection<String>
availableTargetNames, final RangeShardingValue<Integer> shardingValue) {
throw new RuntimeException("This algorithm class does not support range
queries.");

}

Modify the relevant YAML configuration as follows.

rules:
— ISHARDING
defaultDatabaseStrategy:
standard:
shardingColumn: user_-id
shardingAlgorithmName: 1inline
shardingAlgorithms:

inline:

9.1. ShardingSphere-JDBC 195

Apache ShardingSphere document

type: CLASS_BASED
props:
strategy: STANDARD
algorithmClassName: org.example.test.TestShardingAlgorithmFixture

Add the following content to src/main/resources/META-INF/native-image/

exmaple-test-metadata/reflect-config.json to used normally under GraalVM Native
Image.

[

{
"name":"org.example.test.TestShardingAlgorithmFixture",
"methods": [{"name":"<init>","parameterTypes":[] }]

}

]

2. Forthe ReadWrite Splitting feature, you need to use other implementations of Row Value
Expressions SPI to configure logic database name,writeDataSourceName and read-
DataSourceNames when bypassing calls to GroovyShell. One possible configuration is to use
the Row Value Expressions SPIimplementation of LITERAL.

rules:
- !READWRITE_SPLITTING
dataSourceGroups:
<LITERAL>readwrite_ds:
writeDataSourceName: <LITERAL>ds_0
readDataSourceNames:
- <LITERAL>ds_1
- <LITERAL>ds_2

The same applies to actualDataNodes for the Sharding feature.

- !'SHARDING
tables:
t_order:
actualDataNodes: <LITERAL>ds_0.t_order_0, ds_0.t_order_1, ds_1l.t_order_0,
ds_1.t_order_1
keyGenerateStrategy:
column: order_id

keyGeneratorName: snowflake

3. Users still need to configure GraalVM Reachability Metadata for independent files in the src/
main/resources/META-INF/native-image folder or src/test/resources/META-INF/
native-image folder. Users can quickly collect GraalVM Reachability Metadata through the
GraalVM Tracing Agent of GraalvVM Native Build Tools.

4. Maven modules such as com.microsoft.sqlserver:mssql-jdbc, represented by the JDBC
Driver of MS SQL Server, will dynamically load different character sets based on the encoding used

in the database, which is unpredictable behavior. When encountering the following Error, users

9.1. ShardingSphere-JDBC 196

Apache ShardingSphere document

need to add the buildArg of ~H:+AddAl1Charsets to the configuration of GraalVM Native
Build Tools.

Caused by: java.io.UnsupportedEncodingException: Codepage Cpl252 1is not supported by

the Java environment.
com.microsoft.sqlserver.jdbc.Encoding.checkSupported(SQLCollation.java:572)
com.microsoft.sqlserver.jdbc.SQLCollation$SortOrder.getEncoding(SQLCollation.

java:473)
com.microsoft.sqlserver.jdbc.SQLCollation.encodingFromSortId(SQLCollation.java:501)
[...]

5. To discuss the steps required to use XA distributed transactions under the GraalVM Native Image
of ShardingSphere JDBC, additional known prerequisites need to be introduced,

» org.apache.shardingsphere.transaction.xa.jta.datasource.swapper.
DataSourceSwapper#loadXADataSource(String) will instantiate the javax.sql.
XADataSource implementation class of each database driver through java.lang.
Class#getDeclaredConstructors.

» The full class name of the javax.sql.XADataSource implementation class of each
database driver is stored in the metadata of ShardingSphere by implementing the SPI of
org.apache.shardingsphere.transaction.xa.jta.datasource.properties.
XADataSourceDefinition.

In the GraalVM Native Image, this actually requires the definition of the GraalVM Reachability Metadata
of the third-party dependencies, while ShardingSphere itself only provides the corresponding GraalVM
Reachability Metadata for com.h2database:h2.

GraalVM Reachability Metadata of other database drivers such as com.mysql:mysql-connector—-j
should be defined by themselves, or the corresponding JSON should be submitted to https://github.c

om/oracle/graalvm-reachability-metadata .

Take the com.mysql.cj.jdbc.MysqlXADataSource class of com.
mysql:mysql-connector-j:9.0.0 as an example, which is the implementation of javax.
sql.XADataSource of MySQL JDBC Driver. Users need to define the following JSON in the re-
flect-config.jsonfileinthe /META-INF/native-image/com.mysql/mysql-connector-j/
9.0.0/ folder of their own project’ s claapath, to define the constructor of com.mysql.cj.jdbc.
MysqglXADataSource inside the GraalVM Native Image.

[
{
"condition":{"typeReachable":"com.mysql.cj.jdbc.MysqlXADataSource"},
"name":"com.mysql.cj.jdbc.MysqlXADataSource",
"allPublicMethods": true,
"methods": [{"name":"<init>","parameterTypes":[] }]
3
]

6. When using the ClickHouse dialect through ShardingSphere JDBC, users need to manually in-
troduce the relevant optional modules and the ClickHouse JDBC driver with the classifier http.

9.1. ShardingSphere-JDBC 197

https://github.com/oracle/graalvm-reachability-metadata
https://github.com/oracle/graalvm-reachability-metadata

Apache ShardingSphere document

In principle, ShardingSphere’ s GraalVM Native Image integration does not want to use com.
clickhouse:clickhouse-jdbc with classifier all, because Uber Jar will cause the collection
of duplicate GraalvVM Reachability Metadata. Possible configuration examples are as follows,

<project>
<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-parser-sql-clickhouse</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>com.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.6.3</version>
<classifier>http</classifier>
</dependency>
</dependencies>
</project>

7. Affected by https://github.com/grpc/grpc-java/issues/10601 , should users incor-
porate org.apache.hive:hive-jdbc into their project, it is imperative to create a file
named native-image.properties within the directory META-INF/native-image/io.
grpc/grpc-netty-shaded of the classpath, containing the following content,

Args=--initialize-at-run-time=\
io.grpc.netty.shaded.io.netty.channel.ChannelHandlerMask,\
jo.grpc.netty.shaded.io.netty.channel.nio.AbstractNioChannel,\
io.grpc.netty.shaded.io.netty.channel.socket.nio.SelectorProviderUtil,\
jo.grpc.netty.shaded.io.netty.util.concurrent.DefaultPromise,\
jo.grpc.netty.shaded.io.netty.util.internal.MacAddressUtil,\
jo.grpc.netty.shaded.io.netty.util.internal.SystemPropertyUtil,\
jo.grpc.netty.shaded.io.netty.util.NetUtilInitializations,\
io.grpc.netty.shaded.io.netty.channel.AbstractChannel,\
io.grpc.netty.shaded.io.netty.util.NetUtil,\
jo.grpc.netty.shaded.io.netty.util.internal.PlatformDependent,\
io.grpc.netty.shaded.io.netty.util.internal.PlatformDependent0,\
jo.grpc.netty.shaded.io.netty.channel.DefaultChannelPipeline,\
jo.grpc.netty.shaded.io.netty.channel.DefaultChannelld,\
io.grpc.netty.shaded.io.netty.util.ResourcelLeakDetector,\
jo.grpc.netty.shaded.io.netty.channel.AbstractChannelHandlerContext,\
jo.grpc.netty.shaded.io.netty.channel.ChannelOutboundBuffer,\
io.grpc.netty.shaded.io.netty.util.internal.InternalThreadlLocalMap,\
jo.grpc.netty.shaded.io.netty.util.internal.CleanerJava9g,\

9.1. ShardingSphere-JDBC 198

https://github.com/grpc/grpc-java/issues/10601

Apache ShardingSphere document

jo.grpc.netty.shaded.io.netty.util.internal.StringUtil,\
io.grpc.netty.shaded.io.netty.util.internal.CleanerJava6,\
jo.grpc.netty.shaded.io.netty.buffer.ByteBufUtil$HexUtil,\
jo.grpc.netty.shaded.io.netty.buffer.AbstractByteBufAllocator,\
io.grpc.netty.shaded.io.netty.util.concurrent.FastThreadLocalThread,\
jo.grpc.netty.shaded.io.netty.buffer.PoolArena,\
jo.grpc.netty.shaded.io.netty.buffer.EmptyByteBuf,\
io.grpc.netty.shaded.io.netty.buffer.PoolThreadCache,\
jo.grpc.netty.shaded.io.netty.util.AttributeKey

ShardingSphere’ s unit test only uses the Maven module jo.github.
linghenggian:hive-server2-jdbc-driver-thin to verify the availability under GraalVM
Native Image.

8. Due to https://github.com/oracle/graal/issues/7979 , the Oracle JDBC Driver corresponding to the
com.oracle.database.jdbc:ojdbc8 Maven module cannot be used under GraalvVM Native
Image.

9. Due to https://github.com/apache/doris/issues/9426, when connecting to Apache Doris FE via
Shardinghere JDBC, users need to provide GraalVM Reachability Metadata related to the apache/

doris integration module.

Development and test

This article aims to introduce potential developers how to participate in the development and contribute
to GraalVM Reachability Metadata related to ShardingSphere.

Background Information

When developer find that GraalVM Reachability Metadata of a third-party library not related to Shard-
ingSphere is missing, the best solution is to open a new issue at https://github.com/oracle/graalvm-rea
chability-metadata and submit a PR containing the GraalvVM Reachability Metadata of the dependent,
missing third-party library.

To simplify the process, ShardingSphere proactively hosts GraalVM Reachability Metadata of some
third-party libraries in the Maven module shardingsphere-infra-reachability-metadata.

ShardingSphere verifies the availability under GraalVM Native Image through the Maven Plugin sub-
project of GraalVM Native Build Tools. By running unit tests under JVM and tagging the unit tests with
Junit, then build it as GraalVM Native Image for nativeTest to test the unit test coverage under GraalVM

Native Image.

ShardingSphere defines, 1. shardingsphere-test-native Maven Module, which is used to provide
a small unit test subset for nativeTest. This unit test subset avoids the use of third-party libraries that
cannot be used under nativeTest. 2. nativeTestInShardingSphere Maven Profile, which is used to
compile the GraalvVM Native Image required for unit testing for the shardingsphere-test-native
module and execute nativeTest. 3. generateMetadata Maven Profile, which is used to carry GraalvVM

9.1. ShardingSphere-JDBC 199

https://github.com/oracle/graal/issues/7979
https://github.com/apache/doris/issues/9426
https://github.com/oracle/graalvm-reachability-metadata
https://github.com/oracle/graalvm-reachability-metadata

Apache ShardingSphere document

Tracing Agent to execute unit tests under GraalvVM JIT Compiler to collect preliminary GraalvM Reach-
ability Metadata.

Prerequisites

Developer must have installed on their devices,

1. GraalVM CE 22.0.2, or a GraalVM downstream distribution compatible with GraalVM CE 22.0.2.
Refer to GraalVM Native Image.

2. The native toolchain required to compile the GraalVM Native Image. Refer to https://www.graalv

m.org/latest/reference-manual/native-image/#prerequisites .

3. Docker Engine that can run Linux Containers, or a Container Runtime compatible with
testcontainers-java. Refer to https://java.testcontainers.org/supported_docker_environment/ .

This article does not discuss LLVM Backend for Native Image. The following sections discuss the

possible required operations under Ubuntu, Windows, and Windows Server.

Ubuntu

It is assumed that the developer is on a fresh Ubuntu 22.04.5 LTS instance with git configured.

GraalVM CE can be installed using SDKMAN ! in bash using the following command.

sudo apt dinstall unzip zip -y

curl -s "https://get.sdkman.io" | bash
source "$SHOME/.sdkman/bin/sdkman-init.sh"
sdk install java 22.0.2-graalce

sdk use java 22.0.2-graalce

Developer can use the following command in bash to install the local toolchain required to compile
GraalVM Native Image.

sudo apt-get install build-essential zliblg-dev -y

Developer can install Docker Engine in rootful mode by running the following command in bash. This
article does not discuss changing the default logging driver in /etc/docker /daemon.json.

sudo apt update && sudo apt upgrade -y

sudo apt-get remove docker.io docker-doc docker-compose docker-compose-v2 podman-—
docker containerd runc

cd /tmp/

sudo apt-get install ca-certificates curl

sudo install -m 0755 -d /etc/apt/keyrings

sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/
docker.asc

sudo chmod a+r /etc/apt/keyrings/docker.asc

9.1. ShardingSphere-JDBC 200

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/graalvm-native-image
https://www.graalvm.org/latest/reference-manual/native-image/#prerequisites
https://www.graalvm.org/latest/reference-manual/native-image/#prerequisites
https://java.testcontainers.org/supported_docker_environment/

Apache ShardingSphere document

echo \

"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/Llinux/ubuntu \

$(. /etc/os-release && echo "SVERSION_CODENAME") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin
docker-compose-plugin -y

sudo groupadd docker

sudo usermod -aG docker SUSER

newgrp docker

Windows

It is assumed that the developer is on a fresh Windows 11 Home 24H2 instance with
git-for-windows/git and PowerShell/PowerShell installed and configured.

GraalVM CE can be installed using version-fox/vfox in Powershell 7 using the following command.

winget install version-fox.vfox

if (-not (Test-Path -Path $PROFILE)) { New-Item -Type File -Path SPROFILE -Force };
Add-Content -Path S$PROFILE -Value 'Invoke-Expression "$(vfox activate pwsh)"'

At this time, developer need to open a new Powershell 7 terminal

vfox add java

vfox install java@22.0.2-graalce

vfox use --global java@22.0.2-graalce

When Windows pops up a window asking developer to allow an application with a path like C:\
users\shard\.version-fox\cache\java\v-22.0.2-graalce\java-22.0.2-graalce\
bin\java.exe to pass through Windows Firewall, developer should approve it. Background
reference https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-f
irewall-654559af-3f54-3dcf-349f-71ccd90bec5ce .

Developer can install the local toolchain required to compile GraalVM Native Image using the following
command in Powershell 7. In certain cases, developer may need to purchase a license for the use of
Visual Studio.

winget install --id Microsoft.VisualStudio.2022.Community

Open Visual Studio Installer to modify Workloads of Visual Studio Community 2022,
check Desktop development with C++of Desktop apps and mobile appsandclick Change.

Developer can enable WSL2 and set Ubuntu WSL as the default Linux distribution in Powershell 7 with
the following command.

wsl --install

9.1. ShardingSphere-JDBC 201

https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5c
https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5c

Apache ShardingSphere document

After enabling WSL2, download and install rancher-sandbox/rancher-desktop from https://ra
ncherdesktop.io/ and set up Container Engine using dockerd(moby). This article does not dis-
cuss changing the default logging driver in /etc/docker/daemon. json of the Linux distribution
rancher-desktop.

Windows Server

For a regular Windows Server 2025 instance, the operation is equivalent to Windows 11 Home 24H2.
But the Github Actions Runner instance of windows-1latest cannot run Linux Containers, so Shard-
ingSphere does not set up CI for nativeTest for Windows.

Handling unit tests

Execute unit tests under GraalVM JIT Compiler

If developer only need to execute nativeTest related unit tests under GraalvVM JIT Compiler, that is, avoid
compiling GraalVM Native Image, developer can execute the following command.

git clone git@github.com:apache/shardingsphere.git
cd ./shardingsphere/
./mvnw -PgenerateMetadata -e -T 1C clean test

Execute unit tests under GraalVM Native Image

Developer can use the following commands to compile the GraalVM Native Image required for unit
testing for the shardingsphere-test-native submodule and execute nativeTest.

git clone git@github.com:apache/shardingsphere.git
cd ./shardingsphere/
./mvnw -PnativeTestInShardingSphere -e -T 1C clean test

When Windows pops up a window asking developer to allow an app with a path like C:\users\
shard\shardingsphere\test\native\target\native-tests.exe.exeto passthrough Win-
dows Firewall, developer should approve it. Background reference https://support.microsoft.com/en-u
s/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5e .

Generate and modify GraalVM Reachability Metadata

If nativeTest fails, generate preliminary GraalVM Reachability Metadata for the unit tests, and
manually adjust the contents of the META-INF/native-image/org.apache.shardingsphere/
shardingsphere-infra-reachability-metadata/ folder in the classpath of the sharding-
sphere-infra-reachability-metadata submodule to fix nativeTest. If necessary, use the org.
junit.jupiter.api.condition.DisabledInNativeImage annotation or the org.graalvm.

9.1. ShardingSphere-JDBC 202

https://rancherdesktop.io/
https://rancherdesktop.io/
https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5c
https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5c

Apache ShardingSphere document

nativeimage.imagecode System Property to block some unit tests from running under the GraalvVM
Native Image.

The generateMetadata Maven Profile will generate or overwrite the existing GraalVM Reach-
ability Metadata file in the shardingsphere-infra-reachability-metadata submod-
ule’ s classpath, under the META-INF/native-image/org.apache.shardingsphere/
generated-reachability-metadata/ folder. This process can be easily handled by the following

command.

git clone git@github.com:apache/shardingsphere.git
cd ./shardingsphere/
./mvnw -PgenerateMetadata -e -T 1C clean test native:metadata-copy

Developer may still need to manually adjust specific JSON entries and adjust the filter
chain of Maven Profile and GraalVM Tracing Agent as appropriate. For the sharding-
sphere-infra-reachability-metadata submodule, manually added, deleted, and modified
JSON entries should be located in the META-INF/native-image/org.apache.shardingsphere/
shardingsphere-infra-reachability-metadata/ folder, while the entries in META-INF/
native-image/org.apache.shardingsphere/generated-reachability-metadata/
should only be generated by the Maven Profile of generateMetadata.

For GraalVM Reachability Metadata used independently by test classes and test files, developer should
place it in the classpath of the shardingsphere-test-native submodule under META-INF/
native-image/shardingsphere-test-native-test-metadata/.

Known limitations
resource-config.json limitations

Affected by https://github.com/apache/shardingsphere/issues/33206, after developers exe-
cute . /mvnw -PgenerateMetadata -T 1C -e clean test native:metadata-copy,
infra/reachability-metadata/src/main/resources/META-INF/native-image/org.
apache.shardingsphere/generated-reachability-metadata/resource-config.json
will generate unnecessary JSON entries containing absolute paths.

For Ubuntu, it is similar to the following,

"resources":{
"includes": [{
"condition":{"typeReachable":"org.apache.shardingsphere.proxy.backend.
config.ProxyConfigurationLoader"},
"pattern":"\\Qhome/runner/work/shardingsphere/shardingsphere/test/native/
src/test/resources/test-native/yaml/proxy/databases/postgresql//global.yaml\\E"
s, {
"condition":{"typeReachable":"org.apache.shardingsphere.proxy.backend.
config.ProxyConfigurationLoader"},

"pattern":"\\Qhome/runner/work/shardingsphere/shardingsphere/test/native/

9.1. ShardingSphere-JDBC 203

https://github.com/apache/shardingsphere/issues/33206

Apache ShardingSphere document

src/test/resources/test-native/yaml/proxy/databases/postgresql/\\E"
s, {
"condition":{"typeReachable":"org.apache.shardingsphere.proxy.backend.
config.ProxyConfigurationLoader"},
"pattern":"\\Qhome/runner/work/shardingsphere/shardingsphere/test/native/
src/test/resources/test-native/yaml/proxy/features/sharding//global.yaml\\E"
b, {
"condition":{"typeReachable":"org.apache.shardingsphere.proxy.backend.
config.ProxyConfigurationLoader"},
"pattern":"\\Qhome/runner/work/shardingsphere/shardingsphere/test/native/
src/test/resources/test-native/yaml/proxy/features/sharding/\\E"

Hit,
"bundles": []

Contributors who need to submit PRs for ShardingSphere should always manually remove these JSON
entries containing absolute paths and wait for https://github.com/oracle/graal/issues/8417 to be
resolved.

Unit test library limitations

For the Maven Module of shardingsphere-test-native, Avoid using test libraries such as io.
kotest:kotest-runner-junit5-jvm:5.5.4 whichhavethe failed to discover testsissue
in Junit’ stest listener mode.

Since Mockito Inline cannot run under GraalVM Native Image, avoid using Mockito in unit tests of this

Maven module.

For testcontainers, theuse of org. testcontainers.utility.MountableFile#forClasspathResource(Stri
should be changed to org.testcontainers.utility.MountableFile#forHostPath(java.
nio.file.Path), to avoid the impact of https://github.com/testcontainers/testcontainers-java/issu

es/7954. For example,

import org.junit.jupiter.api.Test;
import org.testcontainers.containers.PostgreSQLContainer;
import org.testcontainers.utility.MountableFile;
class SolutionTest {
@Test
void test() {
try (PostgreSQLContainer<?> container = new PostgreSQLContainer<>(
"postgres:17.5-bookworm") .withCopyFileToContainer (
MountableFile.forClasspathResource("test-native/sh/postgres.sh"),
""/docker-entrypoint-initdb.d/postgres.sh")) {

container.start();

9.1. ShardingSphere-JDBC 204

https://github.com/oracle/graal/issues/8417
https://github.com/testcontainers/testcontainers-java/issues/7954
https://github.com/testcontainers/testcontainers-java/issues/7954

Apache ShardingSphere document

Should be changed to,

import org.junit.jupiter.api.Test;
import org.testcontainers.containers.PostgreSQLContainer;
import org.testcontainers.utility.MountableFile;
import java.nio.file.Paths;
class SolutionTest {
@Test
void test() {
try (PostgreSQLContainer<?> container = new PostgreSQLContainer<>(
"postgres:17.5-bookworm") .withCopyFileToContainer (
MountableFile.forHostPath(Paths.get("src/test/resources/test-native/
sh/postgres.sh").toAbsolutePath()),
""/docker-entrypoint-initdb.d/postgres.sh")) {
container.start();

Known issues with unit testing

Affected by https://github.com/apache/shardingsphere/issues/35052 , the unit test of org.
apache.shardingsphere.test.natived.jdbc.modes.cluster.EtcdTest cannot be run un-
der GraalVM Native Image compiled by Windows 11 Home 24H2.

org.apache.shardingsphere.test.natived.proxy.transactions.base.SeataTest has
been disabled because executing this unit test in Github Actions Runner will cause JDBC connection

leaks in other unit tests.

9.2 ShardingSphere-Proxy

Configuration is the only module in ShardingSphere-Proxy that interacts with application devel-
opers, through which developer can quickly and clearly understand the functions provided by
ShardingSphere-Proxy.

This chapter is a configuration manual for ShardingSphere-Proxy, which can also be referred to as a
dictionary if necessary.

ShardingSphere-Proxy provided YAML configuration, and used DistSQL to communicate. By config-
uration, application developers can flexibly use data sharding, readwrite-splitting, data encryption,
shadow database or the combination of them.

Rule configuration keeps consist with YAML configuration of ShardingSphere-JDBC. DistSQL and YAML
can be replaced each other.

9.2. ShardingSphere-Proxy 205

https://github.com/apache/shardingsphere/issues/35052

Apache ShardingSphere document

9.2.1 Startup

This chapter will introduce the deployment and startup of ShardingSphere-Proxy.

Use Binary Tar

Background

This section describes how to start ShardingSphere-Proxy by binary release packages

Premise

Start the Proxy with a binary package requires an environment with Java JRE 8 or later.

Steps

1. Obtain the binary release package of ShardingSphere-Proxy
Obtain the binary release package of ShardingSphere-Proxy on the download page.
2. Configure conf/global.yaml

ShardingSphere-Proxy’ s operational mode is configured on global.yaml, and its configuration mode
is the same with that of ShardingSphere-JDBC. Refer to mode of configuration.

Please refer to the following links for other configuration items: * Permission configuration * Property

configuration
3. Configure conf/database-*.yaml

Modify files named with the prefix database- in the conf directory, such as conf/
database-sharding.yaml file and configure sharding rules and read/write splitting rules.
See Confuguration Mannual for configuration methods. The * part of the database-*.yaml file can

be named whatever you want.

ShardingSphere-Proxy supports multiple logical data sources. Each YAML configuration file named
with the prefix database- is a logical data source.

4. Introduce database driver (Optional)

If the backend is connected to a PostgreSQL or openGauss database, no additional dependencies need
to be introduced.

If the backend is connected to a MySQL database, please download mysql-connector-java-5.1.49.jar or

mysql-connector-java-8.0.11.jar, and put it into the ext-11b directory.
5. Introduce dependencies required by the cluster mode (Optional)

ShardingSphere-Proxy integrates the ZooKeeper Curator client by default. ZooKeeper is used in cluster

mode without introducing other dependencies.

9.2. ShardingSphere-Proxy 206

https://shardingsphere.apache.org/document/current/en/downloads/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/authority/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.49/mysql-connector-java-5.1.49.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document

If the cluster mode uses Etcd, please copy vertx-grpc 4.5.1 and vertx-core 4.5.1 that Etcd depends on
into the ext-11ib directory.

6. Introduce dependencies required by distributed transactions (Optional)
It is the same with ShardingSphere-JDBC. Please refer to Distributed Transaction for more details.
7. Introduce custom algorithm (Optional)
If you need to use a user-defined algorithm class, you can configure custom algorithm in the following

ways:

1. Implement the algorithm implementation class defined by ‘ShardingAlgorithm’.

2. Create a "META-INF/services directory under the project "resources’ directory.
3. Create file “org.apache.shardingsphere.sharding.spi.ShardingAlgorithm® under the
directory 'META-INF/services’.

4. Writes the fully qualified class name of the implementation class to a file “org.
apache.shardingsphere.sharding.spi.ShardingAlgorithm®

5. Package the above Java files into jar packages.

6. Copy the above jar package to the “ext-1lib’ directory.

7. Configure the Java file reference of the above custom algorithm implementation
class in a YAML file, see [Configuration rule](https://shardingsphere.apache.org/
document/current/en/user-manual/shardingsphere-proxy/yaml-config/) for more details.

8. Start ShardingSphere-Proxy

In Linux or macOS, run bin/start.sh. In Windows, run bin/start.bat to start ShardingSphere-
Proxy. The defaultlistening portis 3307 and the default configuration directory is the conf directory in
Proxy. The startup script can specify the listening port and the configuration file directory by running
the following command:

bin/start.sh [port] [/path/to/conf]

9. Connect ShardingSphere-Proxy with client
Run the MySQL/PostgreSQL/openGauss client command to directly operate ShardingSphere-Proxy.

Connect ShardingSphere-Proxy with MySQL client:

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}
Connect ShardingSphere-Proxy with PostgreSQL:

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

Connect ShardingSphere-Proxy with openGauss client:

gsql -r -h ${proxy_host} -p S${proxy_port} -U S${proxy_username} -W ${proxy_password}

9.2. ShardingSphere-Proxy 207

https://repo1.maven.org/maven2/io/vertx/vertx-grpc/4.5.1/vertx-grpc-4.5.1.jar
https://repo1.maven.org/maven2/io/vertx/vertx-core/4.5.1/vertx-core-4.5.1.jar
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/special-api/transaction/

Apache ShardingSphere document

Use Docker

Background

This chapter is an introduction about how to start ShardingSphere-Proxy via Docker

Notice

Using Docker to start ShardingSphere-Proxy does not require additional package supoort.

Steps

1. Acquire Docker Image

» Method 1 (Recommended): Pull from DockerHub

docker pull apache/shardingsphere-proxy
« Method 2: Acquire latest master branch image master: https://github.com/apache/shardingsphe
re/pkgs/container/shardingsphere-proxy

+ Method 3: Build your own image

git clone https://github.com/apache/shardingsphere
./mvnw clean install
cd shardingsphere-distribution/shardingsphere-proxy-distribution

./mvnw clean package -Prelease,default-dep,docker

If the following problems emerge, please make sure Docker daemon Process is running.

I/0 exception (java.io.IOException) caught when processing request to {}->unix://
localhost:80: Connection refused?
2. Configure conf/global.yaml and conf/database-*.yaml

Configuration file template can be attained from the Docker container and can be copied to any direc-

tory on the host:

docker run -d --name tmp --entrypoint=bash apache/shardingsphere-proxy
docker cp tmp:/opt/shardingsphere-proxy/conf /host/path/to/conf

docker rm tmp

Since the network conditions inside the container may differ from those of the host, if errors such as
“cannot connect to the database” occurs, please make sure that the IP of the database specified in the
conf/database-*.yaml configuration file can be accessed from inside the Docker container.

For details, please refer to ShardingSphere-Proxy quick start manual - binary distribution packages.

3. (Optional) Introduce third-party dependencies or customized algorithms

9.2. ShardingSphere-Proxy 208

https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/

Apache ShardingSphere document

If you have any of the following requirements: * ShardingSphere-Proxy Backend use MySQL Database;
* Implement customized algorithms; * Use Etcd as Registry Center in cluster mode.

Please create ext-11b directory anywhere inside the host and refer to the steps in ShardingSphere-

Proxy quick start manual - binary distribution packages.
4. Start ShardingSphere-Proxy container

Mount the conf and ext-11b directories from the host to the container. Start the container:

docker run -d \

-v /host/path/to/conf:/opt/shardingsphere-proxy/conf \
/host/path/to/ext-1ib:/opt/shardingsphere-proxy/ext-1lib \
—-e PORT=3308 -p13308:3308 apache/shardingsphere-proxy:latest

<

ext-11ibisnotnecessary during the process. Users can mount it at will. ShardingSphere-Proxy default
portal 3307 can be designated according to environment variable ~e PORT Customized JVM related

parameters can be set according to environment variable JVM_OPTS
Note:

Support setting environment variable CGROUP_ MEM_ OPTS: used to set related memory parameters

in the container environment. The default values in the script are:

-XX:InitialRAMPercentage=80.0 -XX:MaxRAMPercentage=80.0 -XX:MinRAMPercentage=80.0

5. Use Client to connect to ShardingSphere-Proxy

Please refer to ShardingSphere-Proxy quick start manual - binary distribution packages.

Build GraalVM Native Image(Alpha)

Background information

This section mainly introduces how to build the GraalVM Native Image of ShardingSphere Proxy
through the native-image command line tool of GraalVM CE, and the Docker Image containing
this GraalVM Native Image. The GraalVM Native Image of ShardingSphere Proxy refers to
ShardingSphere Proxy Native in this article.

All Docker Images involved in this section are not distributed through ASF official channels such as
https://downloads.apache.org and https://repository.apache.org.

Docker Images are only provided in downstream channels such as GitHub Packages and Docker
Hub for easy use.

ShardingSphere Proxy Native can execute DistSQL, which means that no YAML file defining the logical
database is actually required. By default, ShardingSphere Proxy Native only contains,

1. A series of JAR compiled products consistent with the default configuration of ShardingSphere
Proxy

2. ShardingSphere’ s own and some third-party dependent GraalVM Reachability Metadata

9.2. ShardingSphere-Proxy 209

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://downloads.apache.org
https://repository.apache.org

Apache ShardingSphere document

This section assumes one of the following system environments,
1. Linux (amd64, aarch64)
2. MacOS (amdé64, aarch64/M1)
3. Windows (amd64)

This section is still limited by the recorded content of GraalVM Native Image on the ShardingSphere
JDBC side.

If users need to use third-party JAR in ShardingSphere Proxy Native, or use UPX to compress and
compile GraalVM Native Image, then they need to modify the source code of the Maven module
org.apache.shardingsphere:shardingsphere-proxy-native-distribution. Refertothe

Build from source code section below.

If you do not need to modify the default configuration of ShardingSphere Proxy Native, developers can
start from the Use through the nightly built Docker Image section.

Use through nightly built Docker Image

The Docker Image containing ShardingSphere Proxy Native is built nightly at https://github.com/apa

che/shardingsphere/pkgs/container/shardingsphere-proxy-native .

The default port of ShardingSphere Proxy Native is 3307, and the configuration file is loaded from /
opt/shardingsphere-proxy/conf.

The nightly built Docker Image has multiple variant Docker Image Tags of GraalVM Native Image.

Dynamically linked GraalVM Native Image

Assuming that there is a conf folder containing global.yaml as . /custom/conf, developers can
test ShardingSphere Proxy Native in the form of dynamically linked GraalVM Native Image
through the following Docker Compose file.

services:
apache-shardingsphere-proxy-native:
image: ghcr.io/apache/shardingsphere-proxy-
native:da826af47804dae79b1ba5717af86792726745fd
volumes:
- ./custom/conf:/opt/shardingsphere-proxy/conf
ports:
- "3307:3307"

Asasupplement, the Docker Image Tag of ghcr.io/apache/shardingsphere-proxy-native:latest
will point to the dynamically linked GraalVM Native Image.

9.2. ShardingSphere-Proxy 210

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/graalvm-native-image
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy-native
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy-native

Apache ShardingSphere document

Mostly statically linked GraalVM Native Image

This section is limited to the Container Runtime that supports running 1inux/amd64 OS/Arch Con-

tainers.

Assuming that there is a conf folder containing global.yaml as . /custom/conf, developers can
test ShardingSphere Proxy Native in the form of mostly statically linked GraalVM Native
Image through the following Docker Compose file. Just add the -mostly suffix to the Docker Image
Tag corresponding to the specific, dynamically linked GraalVM Native Image.

services:
apache-shardingsphere-proxy-native:
image: ghcr.io/apache/shardingsphere-proxy-
native:da826af47804dae79b1ba5717af86792726745fd-mostly
volumes:
- ./custom/conf: /opt/shardingsphere-proxy/conf
ports:
- "3307:3307"

Fully statically linked GraalVM Native Image

This section is limited to Container Runtime that supports running 1inux/amd64 OS/Arch Containers.

Assuming that there is a conf folder containing global.yaml as . /custom/conf, Developers can
test ShardingSphere Proxy Native in the form of fully statically linked GraalVM Native
Image through the following Docker Compose file. Just add the -static suffix to the Docker Image
Tag corresponding to the specific, dynamically linked GraalVM Native Image.

services:
apache-shardingsphere-proxy-native:
image: ghcr.io/apache/shardingsphere-proxy-
native:da826af47804dae79b1ba5717af86792726745fd-stat1ic
volumes:
- ./custom/conf:/opt/shardingsphere-proxy/conf
ports:
- "3307:3307"

Build from source code

If you build from source code, developers have two options,

1. Build a Linux Docker Image containing ShardingSphere Proxy Native products without in-
stalling a local toolchain

2. Build a ShardingSphere Proxy Native product with a local toolchain installed. For Windows, you
can create a GraalVM Native Image in the form of . exe in this way

9.2. ShardingSphere-Proxy 211

Apache ShardingSphere document

Use JARs with custom SPl implementations or third-party dependent JARs

Developers may need to use JARs with custom SPI implementations or third-party dependent JARs.
Before building from source code, modify the dependencies section of the distribution/
proxy-native/pom.xml file. An example of adding a MySQL JDBC Driver dependency is as follows.
The relevant JAR should be pre-placed in the local Maven repository or a remote Maven repository such
as Maven Central.

<dependencies>
<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<version>9.3.0</version>
</dependency>
</dependencies>

Build Linux Docker Image

Prerequisites

Contributors must have installed on their devices,
1. OpenJDK 11 or higher
2. Docker Engine that can run Linux Containers

The following sections discuss possible required operations under Ubuntu and Windows respectively.

Ubuntu

It is assumed that the contributor is on a fresh Ubuntu 22.04.5 LTS instance with git configured.

Open]DK 21 can be installed using SDKMAN ! in bash using the following command.

sudo apt install unzip zip -y

curl -s "https://get.sdkman.io" | bash
source "$SHOME/.sdkman/bin/sdkman-init.sh"
sdk install java 21.0.7-ms

sdk use java 21.0.7-ms

You can install Docker Engine in rootful mode by running the following command in bash. This article
does not discuss changing the default logging driver in /etc/docker/daemon. json.

sudo apt update && sudo apt upgrade -y

sudo apt-get remove docker.io docker-doc docker-compose docker-compose-v2 podman-
docker containerd runc

cd /tmp/

sudo apt-get install ca-certificates curl

9.2. ShardingSphere-Proxy 212

Apache ShardingSphere document

sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/
docker.asc

sudo chmod a+r /etc/apt/keyrings/docker.asc

echo \

"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/linux/ubuntu \

$(. /etc/os-release && echo "SVERSION_CODENAME") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin
docker-compose-plugin -y

sudo groupadd docker

sudo usermod -aG docker SUSER

newgrp docker

Windows

Assuming the contributor is on a fresh Windows 11 Home 24H2 instance with git-for-windows/git
and PowerShell/PowerShell installed and configured.

Open]DK 21 can be installed using version-fox/vfox in Powershell 7 using the following command.

winget install version-fox.vfox

if (-not (Test-Path -Path $PROFILE)) { New-Item -Type File -Path S$SPROFILE -Force };
Add-Content -Path S$PROFILE -Value 'Invoke-Expression "$(vfox activate pwsh)"'

At this time, you need to open a new Powershell 7 terminal

vfox add java

vfox install java@21.0.7-ms

vfox use --global java@21.0.7-ms

When Windows pops up a window asking you to allow an application with a path like C:\users\
lingh\.version-fox\cache\java\v-21.0.7-ms\java-21.0.7-ms\bin\java.exe to pass
through Windows Firewall, you should approve it. Background reference https://support.microsof
t.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71c
cd90bccse .

You can enable WSL2 and set Ubuntu WSL as the default Linux distribution in Powershell 7 with the

following command.

wsl —--install

After enabling WSL2, download and install rancher-sandbox/rancher-desktop from https://ra
ncherdesktop.io/ and set up Container Engine using dockerd(moby). This article does not dis-
cuss changing the default logging driver in /etc/docker/daemon.json of the Linux distribution
rancher-desktop.

9.2. ShardingSphere-Proxy 213

https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5c
https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5c
https://support.microsoft.com/en-us/windows/risks-of-allowing-apps-through-windows-firewall-654559af-3f54-3dcf-349f-71ccd90bcc5c
https://rancherdesktop.io/
https://rancherdesktop.io/

Apache ShardingSphere document

Build a Docker Image with a dynamically linked GraalVM Native Image

You can execute the following command to build.

git clone git@github.com:apache/shardingsphere.git
cd ./shardingsphere/
./mvnw —am -pl distribution/proxy-native -T1C "-Pdocker.build.native.linux" "-

DskipTests" clean package

A possible Docker Compose example is,

services:
apache-shardingsphere-proxy-native:
image: apache/shardingsphere-proxy-native:5.5.3-SNAPSHOT
volumes:
- ./custom/conf: /opt/shardingsphere-proxy/conf
ports:
- "3307:3307"

Build a Docker Image containing most of the statically linked GraalVM Native Image

You can execute the following command to build.

git clone git@github.com:apache/shardingsphere.git

cd ./shardingsphere/

./mvnw —am -pl distribution/proxy-native -T1C "-Pdocker.build.native.linux" "-
Dproxy.native.dockerfile=Dockerfile-linux-mostly" "-Dproxy.native.image.tag=5.5.3-
SNAPSHOT-mostly" "-DskipTests" clean package

A possible Docker Compose example is,

services:
apache-shardingsphere-proxy-native:
image: apache/shardingsphere-proxy-native:5.5.3-SNAPSHOT-mostly
volumes:
- ./custom/conf:/opt/shardingsphere-proxy/conf
ports:
- "3307:3307"

9.2. ShardingSphere-Proxy 214

Apache ShardingSphere document

Build a Docker Image containing a fully statically linked GraalVM Native Image

You can execute the following command to build.

git clone git@github.com:apache/shardingsphere.git

cd ./shardingsphere/

./mvnw —am -pl distribution/proxy-native -T1C "-Pdocker.build.native.linux" "-
Dproxy.native.dockerfile=Dockerfile-linux-static" "-Dproxy.native.image.tag=5.5.3-
SNAPSHOT-static" "-DskipTests" clean package

A possible Docker Compose example is,

services:
apache-shardingsphere-proxy-native:
image: apache/shardingsphere-proxy-native:5.5.3-SNAPSHOT-stat1ic
volumes:
- ./custom/conf:/opt/shardingsphere-proxy/conf
ports:
- "3307:3307"

Build only

Prerequisites

Contributors must have installed on their devices,

1. GraalVM CE 22.0.2, or a GraalVM downstream distribution compatible with GraalVM CE 22.0.2.
Refer to GraalVM Native Image.

2. The native toolchain required to compile GraalVM Native Image. Refer to https://www.graalvm.

org/latest/reference-manual/native-image/#prerequisites .

The possible required operations under Ubuntu and Windows are consistent with Development and
test. However, it is not necessary to install Container Runtime.

Native toolchain for static compilation

Developers who want to buildamostly statically linked GraalVM Native Imageorafully
statically linked GraalVM Native Image, will need to build musl from source as described

in https://www.graalvm.org/latest/reference-manual/native-image/guides/build-static-executables/ .

9.2. ShardingSphere-Proxy 215

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/graalvm-native-image
https://www.graalvm.org/latest/reference-manual/native-image/#prerequisites
https://www.graalvm.org/latest/reference-manual/native-image/#prerequisites
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/graalvm-native-image/development
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/graalvm-native-image/development
https://www.graalvm.org/latest/reference-manual/native-image/guides/build-static-executables/

Apache ShardingSphere document

Build a dynamically linked GraalVM Native Image

You can execute the following command to build it.

git clone git@github.com:apache/shardingsphere.git

cd ./shardingsphere/

./mvnw —am -pl distribution/proxy-native -T1C -DskipTests "-Prelease.native" clean
package

Build most statically linked GraalVM Native Images

You can execute the following command to build.

git clone git@github.com:apache/shardingsphere.git

cd ./shardingsphere/

./mvnw —am -pl distribution/proxy-native -T1C -DskipTests "-Prelease.native" "-
DbuildArgs=-H:+AddAllCharsets,-H:+StaticExecutableWithDynamicLibC" clean package

Build a fully statically linked GraalVM Native Image

You can execute the following command to build.

git clone git@github.com:apache/shardingsphere.git

cd ./shardingsphere/

./mvnw —am -pl distribution/proxy-native -T1C -DskipTests "-Prelease.native" "-
DbuildArgs=-H:+AddAllCharsets,--static,--libc=musl" clean package

Use GraalVM Native Image

No matter what variant the GraalvVM Native Image is, you need to bring 3 parameters to start the Native
Image through the command line.

1. The first parameter is the port used by ShardingSphere Proxy Native,

2. The second parameter is the folder containing the global.yaml configuration file written by
the user,

3. The third parameter is the host to listen to. If itis 0. 0. 0. 0, any database client can access Shard-

ingSphere Proxy Native.

The binary file of the built GraalVM Native Image can only set command line parameters. This means
that,

1. Users can only set JVM parameters during the process of building GraalvVM Native Image

2. Users cannot set JVM parameters for the binary file of the built GraalVM Native Image

9.2. ShardingSphere-Proxy 216

Apache ShardingSphere document

On Ubuntu, assuming that the conf folder containing global.yamlis /tmp/conf, possible example

is,

cd ./shardingsphere/

cd ./distribution/proxy-native/target/apache-shardingsphere-5.5.3-SNAPSHOT-
shardingsphere-proxy-bin/bin

./proxy-native "3307" "/tmp/conf" "0.0.0.0"

On Windows, assuming that a conf folder containing global.yaml already exists at C:\Users\
shard\Downloads\conf, a possible example is,

cd ./shardingsphere/

cd ./distribution/proxy-native/target/apache-shardingsphere-5.5.3-SNAPSHOT-
shardingsphere-proxy-bin/bin

./proxy-native.exe "3307" "C:\Users\shard\Downloads\conf" "0.0.0.0"

Usage restrictions

GraalVM Native Image variant selection

In general, developers only need to use dynamically linked GraalVM Native Image.

When developers only use the Container Runtime that can run 1inux/amd64 OS/Arch Containers and
want to get a smaller Docker Image, consider usingmostly statically linked GraalVM Native
Imageor fully statically linked GraalVM Native Image.

For background, see https://www.graalvm.org/latest/reference-manual/native-image/guides/build-sta
tic-executables/ and https://github.com/oracle/graal/issues/2589. Mostly statically linked executables
are an alternative to statically linked musl libc implementations promoted by golang/go.

Observability

For ShardingSphere Proxy Native, the observability capabilities it provides are not consistent with Ob-

servability.

Users can use a series of command-line tools or visualization tools provided by https://www.graalv
m.org/latest/reference-manual/tools/ to observe the internal behavior of GraalVM Native Image,
and use VSCode under Linux to complete the debugging work according to their requirements. If the
user is using Intelli] IDEA and wants to debug the generated GraalVM Native Image, the user can follow
https://blog.jetbrains.com/idea/2022/06/intellij-idea-2022-2-eap-5/#Experimental_GraalVM_Native_
Debugger_for_Java and its successors. If the user is not using Linux, the GraalVM Native Image cannot
be debugged. Please pay attention to https://github.com/oracle/graal/issues/5648 which has not been
closed.

For the use of Java Agents such as ShardingSphere Agent, the native-image component of
GraalVM does not fully support the use of javaagent when building Native Image. Users need to pay
attention to https://github.com/oracle/graal/issues/8177 which has not been closed. If users expect

9.2. ShardingSphere-Proxy 217

https://www.graalvm.org/latest/reference-manual/native-image/guides/build-static-executables/
https://www.graalvm.org/latest/reference-manual/native-image/guides/build-static-executables/
https://github.com/oracle/graal/issues/2589
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/observability
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/observability
https://www.graalvm.org/latest/reference-manual/tools/
https://www.graalvm.org/latest/reference-manual/tools/
https://blog.jetbrains.com/idea/2022/06/intellij-idea-2022-2-eap-5/#Experimental_GraalVM_Native_Debugger_for_Java
https://blog.jetbrains.com/idea/2022/06/intellij-idea-2022-2-eap-5/#Experimental_GraalVM_Native_Debugger_for_Java
https://github.com/oracle/graal/issues/5648
https://github.com/oracle/graal/issues/8177

Apache ShardingSphere document

to use such Java Agents under ShardingSphere Proxy Native, they need to pay attention to the changes
involved in https://github.com/oracle/graal/pull/8077.

linux/riscv64 0S/Arch limitation

Currently, ShardingSphere Proxy Native does not provide availability on linux/riscv64 OS/Arch. If
developers use the linux/riscv64 device, they should refer to https://medium.com/graalvm/graal
vm-native-image-meets-risc-v-899be38eddd9 to modify the build configuration of Proxy Native.

Since https://github.com/oracle/graal/issues/6855, LLVM backend needs to be built from the source
code of GraalVM to be used.

See https://github.com/oracle/graal/blob/master/substratevm/src/com.oracle.svm.core.graal.llvm/s

rc/com/oracle/svm/core/graal/llvm/LLVMBackend.md .

Windows Containers Limitations

ShardingSphere Proxy Native can build GraalVM Native Image on Windows out of the box with a local
toolchain containing Microsoft.VisualStudio.2022.Community.

Currently affected by https://github.com/graalvm/container/issues/106, ShardingSphere does not
provide the build configuration required to build Docker Image for Dynamically Linked GraalVM
Native Image compiled through Windows.

Wasm Module Limitations

Although Oracle GraalVM Early Access Builds For JDK 25 EA 24 already supports building
GraalVM Native Image in the form of Wasm Module, ShardingSphere is not yet ready to test CI under
Open]DK 25.

Currently, ShardingSphere Proxy Native does not provide the build configuration required to compile
toWasm Module.

Use Helm

Background

Use Helm to provide guidance for the installation of ShardingSphere-Proxy instance in a Kubernetes
cluster. For more details, please checkout ShardingSphere-on-Cloud.

9.2. ShardingSphere-Proxy 218

https://github.com/oracle/graal/pull/8077
https://medium.com/graalvm/graalvm-native-image-meets-risc-v-899be38eddd9
https://medium.com/graalvm/graalvm-native-image-meets-risc-v-899be38eddd9
https://github.com/oracle/graal/issues/6855
https://github.com/oracle/graal/blob/master/substratevm/src/com.oracle.svm.core.graal.llvm/src/com/oracle/svm/core/graal/llvm/LLVMBackend.md
https://github.com/oracle/graal/blob/master/substratevm/src/com.oracle.svm.core.graal.llvm/src/com/oracle/svm/core/graal/llvm/LLVMBackend.md
https://github.com/graalvm/container/issues/106
https://helm.sh/
https://github.com/apache/shardingsphere-on-cloud

Apache ShardingSphere document

Requirements

« Kubernetes 1.18+
» kubectl
« Helm 3.2.0+

« StorageClass of PV (Persistent Volumes) can be dynamically applied for persistent data (Optional)

Procedure

Online installation

1. Add ShardingSphere-Proxy to the local helm repo:

helm repo add shardingsphere https://shardingsphere.apache.org/charts

2. Install ShardingSphere-Proxy charts:

helm 1install shardingsphere-proxy shardingsphere/shardingsphere-proxy

Source installation

1. Charts will be installed with default configuration if the following commands are executed:

git clone https://github.com/apache/shardingsphere-on-cloud.git
cd charts/shardingsphere-proxy/charts/governance

helm dependency build

cd ../..

helm dependency build

cd ..

helm install shardingsphere-proxy shardingsphere-proxy

Note:
1. Please refer to the configuration items description below for more details:

2. Execute helm list to acquire all installed releases.

9.2. ShardingSphere-Proxy 219

Apache ShardingSphere document

Uninstall

1. Delete all release records by default, add --keep-history to keep them.

helm uninstall shardingsphere-proxy

Parameters

Governance-Node parameters

Name Description Va lue
gover nance.enabled Switch to enable or disable the governance helm chart " true™
Governance-Node ZooKeeper parameters
Name Description Value
gover nance.zookeeper.enabled Switch to enable or disable the true
ZooKeeper helm chart
governance .zookeeper. Number of ZooKeeper nodes 1
replicaCount
governance.zookee per. Enable persistence on ZooKeeper false

persistence.enabled

governance.zookeeper.p ersis-
tence.storageClass
governance.zookeeper. persis-
tence.accessModes
governance.zoo keeper.
persistence.size

governance.zoo keeper.

resources.limits
governance.zookeeper.re
sources.requests.memory
governance.zookeeper
resources.requests.cpu

using PVC(s)
Persistent Volume storage class

Persistent Volume access modes

Persistent Volume size

The

ZooKeeper containers

resources limits for the
The requested memory for the
ZooKeeper containers

The

ZooKeeper containers

requested cpu for the

["ReadWrit
eOnce"]
8Gi

{3

256M1i

250m

9.2. ShardingSphere-Proxy

220

Apache ShardingSphere document

Compute-Node ShardingSphere-Proxy parameters

Name Description Value

compute. mage. Image name of ShardingSphere-Proxy. a pache/sharding
repository sphere-proxy
compute. i mage. The policy for pulling ShardingSphere- " IfNotPresent '
pullPolicy Proxy image

co mpute.image.tag ShardingSphere-Proxy image tag 5olo2
compute.i magePullSe- Specify docker-registry secret names as []

crets an array

compute.r esources. The resources limits for the {}

limits ShardingSphere-Proxy containers

c ompute.resources. The requested memory for the 2Gi
requests.memory ShardingSphere-Proxy containers

compute.resourc es. The requested cpu for the 200m
requests.cpu ShardingSphere-Proxy containers

c ompute.replicas Number of cluster replicas 3

compu te.service.type ShardingSphere-Proxy network mode ClusterIP
compu te.service.port ShardingSphere-Proxy expose port 3307
compute.mysqlCo nnec- MySQL connector version 5.1.49
tor.version

co mpute.startPort ShardingSphere-Proxy start port 3307

compu te.serverConfig

Server Configuration file for

ShardingSphere-Proxy

Sample

values.yaml

H B H O HF HF O H OH O HF O OH OH O H O H OB OH

Licensed to the Apache Software Foundation (ASF) under one or more

contributor license agreements.

See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0

(the "License"); you may not use this file except in compliance with

the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

9

.2. ShardingSphere-Proxy

221

Apache ShardingSphere document

@section Governance-Node parameters
@param governance.enabled Switch to enable or disable the governance helm chart
##
governance:
enabled: true
@section Governance-Node ZooKeeper parameters
zookeeper:
@param governance.zookeeper.enabled Switch to enable or disable the ZooKeeper
helm chart
##
enabled: true
@param governance.zookeeper.replicaCount Number of ZooKeeper nodes
##
replicaCount: 1
ZooKeeper Persistence parameters
ref: https://kubernetes.io/docs/user-guide/persistent-volumes/
@param governance.zookeeper.persistence.enabled Enable persistence on
ZooKeeper using PVC(s)
@param governance.zookeeper.persistence.storageClass Persistent Volume
storage class
@param governance.zookeeper.persistence.accessModes Persistent Volume access
modes
@param governance.zookeeper.persistence.size Persistent Volume size
##
persistence:
enabled: false
storageClass: ""
accessModes:
- ReadWriteOnce
size: 8Gi
ZooKeeper's resource requests and limits
ref: https://kubernetes.io/docs/user-guide/compute-resources/
@param governance.zookeeper.resources.limits The resources limits for the
ZooKeeper containers
@param governance.zookeeper.resources.requests.memory The requested memory
for the ZooKeeper containers
@param governance.zookeeper.resources.requests.cpu The requested cpu for the
ZooKeeper containers
##
resources:
Timits: {}
requests:
memory: 256Mi
cpu: 250m

@section Compute-Node parameters

9.2. ShardingSphere-Proxy 222

Apache ShardingSphere document

##
compute:
@section Compute-Node ShardingSphere-Proxy parameters
ref: https://kubernetes.io/docs/concepts/containers/images/
@param compute.image.repository Image name of ShardingSphere-Proxy.
@param compute.image.pullPolicy The policy for pulling ShardingSphere-Proxy
image
@param compute.image.tag ShardingSphere-Proxy 1image tag
##
image:
repository: "apache/shardingsphere-proxy"
pullPolicy: IfNotPresent
Overrides the image tag whose default 1is the chart appVersion.
##
tag: "5.1.2"
@param compute.imagePullSecrets Specify docker-registry secret names as an array
e.g:
imagePullSecrets:
- name: myRegistryKeySecretName
##
imagePullSecrets: []
ShardingSphere-Proxy resource requests and limits
ref: https://kubernetes.io/docs/concepts/configuration/manage-resources-
containers/
@param compute.resources.limits The resources limits for the ShardingSphere-
Proxy containers
@param compute.resources.requests.memory The requested memory for the
ShardingSphere-Proxy containers
@param compute.resources.requests.cpu The requested cpu for the ShardingSphere-
Proxy containers
##
resources:
limits: {}
requests:
memory: 2Gi
cpu: 200m
ShardingSphere-Proxy Deployment Configuration
ref: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
ref: https://kubernetes.io/docs/concepts/services-networking/service/
@param compute.replicas Number of cluster replicas
##
replicas: 3
@param compute.service.type ShardingSphere-Proxy network mode
@param compute.service.port ShardingSphere-Proxy expose port
##
service:
type: ClusterIP
port: 3307

9.2. ShardingSphere-Proxy 223

Apache ShardingSphere document

MySQL connector Configuration

ref: https://shardingsphere.apache.org/document/current/en/quick-start/
shardingsphere-proxy-quick-start/

@param compute.mysqglConnector.version MySQL connector version

##

mysqlConnector:

version: "5.1.49"

@param compute.startPort ShardingSphere-Proxy start port

ShardingSphere-Proxy start port

ref: https://shardingsphere.apache.org/document/current/en/user-manual/
shardingsphere-proxy/startup/docker/

##

startPort: 3307

@section Compute-Node ShardingSphere-Proxy ServerConfiguration parameters

NOTE: If you use the sub-charts to deploy Zookeeper, the server-lists field
must be "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.Namespace }}",

otherwise please fill 1in the correct zookeeper address

The global.yaml is auto-generated based on this parameter.

If it is empty, the global.yaml is also empty.

ref: https://shardingsphere.apache.org/document/current/en/user-manual/
shardingsphere-jdbc/yaml-config/mode/

ref: https://shardingsphere.apache.org/document/current/en/user-manual/common-
config/builtin-algorithm/metadata-repository/

##

serverConfig:

@section Compute-Node ShardingSphere-Proxy ServerConfiguration authority
parameters

NOTE: It is used to set up 1initial user to login compute node, and authority
data of storage node.

ref: https://shardingsphere.apache.org/document/current/en/user-manual/
shardingsphere-proxy/yaml-config/authentication/

@param compute.serverConfig.authority.privilege.type authority provider for
storage node, the default value is ALL_PERMITTED

@param compute.serverConfig.authority.users[0].password Password for compute
node.

@param compute.serverConfig.authority.users[0].user Username,authorized host
for compute node. Format: <username>@<hostname> hostname is % or empty string means
do not care about authorized host

##

authority:

privilege:

type: ALL_PRIVILEGES_PERMITTED
users:
- password: root

user: root@%

@section Compute-Node ShardingSphere-Proxy ServerConfiguration mode
Configuration parameters

@param compute.serverConfig.mode.type Type of mode configuration. Now only

9.2. ShardingSphere-Proxy 224

Apache ShardingSphere document

support Cluster mode
@param compute.serverConfig.mode.repository.props.namespace Namespace of
registry center
@param compute.serverConfig.mode.repository.props.server-lists Server lists
of registry center
@param compute.serverConfig.mode.repository.props.maxRetries Max retries of
client connection
@param compute.serverConfig.mode.repository.props.
operationTimeoutMilliseconds Milliseconds of operation timeout
@param compute.serverConfig.mode.repository.props.retryIntervalMilliseconds
Milliseconds of retry interval
@param compute.serverConfig.mode.repository.props.timeToLiveSeconds Seconds
of ephemeral data live
@param compute.serverConfig.mode.repository.type Type of persist repository.
Now only support ZooKeeper
@param compute.serverConfig.mode.overwrite Whether overwrite persistent
configuration with local configuration
##
mode:
type: Cluster
repository:
type: ZooKeeper
props:
maxRetries: 3
namespace: governance_ds
operationTimeoutMilliseconds: 5000
retryIntervalMilliseconds: 500
server-lists: "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.
Namespace }}"
timeTolLiveSeconds: 60

overwrite: true

Add dependencies

This chapter mainly introduces how to download optional dependencies of ShardingSphere.

Add Narayana dependencies

Add Narayana dependencies

Adding Narayana dependencies requires downloading the following jar files and adding them under
ext-11ib path.

9.2. ShardingSphere-Proxy 225

Apache ShardingSphere document

jar file downloads

+ arjuna-5.12.7.Final.jar

« common-5.12.7.Final.jar

« jboss-connector-api_1.7_spec-1.0.0.Final.jar

+ jboss-logging-3.2.1.Final.jar

« jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
« jboss-transaction-spi-7.6.1.Final.jar

+ jta-5.12.7.Final.jar
 narayana-jts-integration-5.12.7.Final.jar

« shardingsphere-transaction-xa-narayana.jar

Please download the corresponding shardingsphere-transaction-xa-narayana.jar file ac-

cording to the proxy version.

9.2.2 Yaml Configuration

The YAML configuration of ShardingSphere-JDBC is the subset of ShardingSphere-Proxy. In globa'l.
yaml file, ShardingSphere-Proxy can configure authority feature and more properties for Proxy only.
Note: The YAML configuration file supports more than 3MB of configuration content.

This chapter will introduce the extra YAML configuration of ShardingSphere-Proxy.

Authentication & Authorization

Background

In ShardingSphere-Proxy, user authentication and authorization information is configured through au-
thority.

Thanks to ShardingSphere’ s pluggable architecture, Proxy provides two levels of privilege providers,

namely:

« ALL_PERMITTED: each user has all privileges without special authorization. (Will be removed in

a future version)

« DATABASE_PERMITTED: grants the user privileges on the specified logical databases, defined by
user-database-mappings. (Recommended)

The administrator can choose which privilege provider to use as needed when configuring authority.

9.2. ShardingSphere-Proxy 226

https://repo1.maven.org/maven2/org/jboss/narayana/arjunacore/arjuna/5.12.7.Final/arjuna-5.12.7.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/common/5.12.7.Final/common-5.12.7.Final.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/resource/jboss-connector-api_1.7_spec/1.0.0.Final/jboss-connector-api_1.7_spec-1.0.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/logging/jboss-logging/3.2.1.Final/jboss-logging-3.2.1.Final.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/transaction/jboss-transaction-api_1.2_spec/1.0.0.Alpha3/jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
https://repo1.maven.org/maven2/org/jboss/jboss-transaction-spi/7.6.1.Final/jboss-transaction-spi-7.6.1.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jta/jta/5.12.7.Final/jta-5.12.7.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jts/narayana-jts-integration/5.12.7.Final/narayana-jts-integration-5.12.7.Final.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-narayana

Apache ShardingSphere document

Parameters

authority:
users:

- user: # Specify the username, and authorized host for logging in to the
compute node. Format: <username>@<hostname>. When the hostname is % or an empty
string, it indicates that the authorized host is not limited, username and hostname
are case-insensitive

password: # Password
admin: # Optional, administrator identity. If true, the user has the highest
authority. The default value 1is false
authenticationMethodName: # Optional, used to specify the password
authentication method for the user
authenticators: # Optional, not required by default, Proxy will automatically
choose the authentication method according to the frontend protocol type
authenticatorName:
type: # Authentication method type
defaultAuthenticator: # Optional, specify an authenticator as the default password
authentication method
privilege:
type: # Privilege provider type. The default value is ALL_PERMITTED

Sample

Minimalist configuration

authority:
users:
- user: root@%
password: root
- user: sharding

password: sharding

Explanation: - Two users are defined: root@% and sharding; - authenticationMethodName is not
specified for root@127.0.0. 1, Proxy will automatically choose the authentication method according
to the frontend protocol; - Privilege provider is not specified, the default ALL_PERMITTED will be used,

9.2. ShardingSphere-Proxy 227

Apache ShardingSphere document

Authentication configuration

The custom authentication configuration allows users to greater leeway to set their own custom config-
urations according to their scenarios. Taking openGauss as the frontend protocol type as an example,
its default authentication method is scram-sha-256. Ifthe user shardingneedsto use an old version
of the psql client (which does not support scram-sha-256) to connect to the Proxy, the administra-
tor may allow sharding to use the md5 method for password authentication. The configuration is as
follows:

authority:
users:
- user: root@l127.0.0.1
password: root
- user: sharding
password: sharding
authenticationMethodName: md5
authenticators:
md5:
type: MD5
privilege:
type: ALL_PERMITTED

Explanation: - Two users are defined: root@127.0.0.1 and sharding; - Use MD5 method for pass-
word authentication for sharding; - Authentication method is not specified for root@127.0.0.
1, Proxy will automatically choose one according to the frontend protocol; - The privilege provider
ALL_PERMITTED is specified.

Authorization configuration

ALL_PERMITTED (Will be removed in a future version)

authority:
users:
- user: root@127.0.0.1
password: root
- user: sharding
password: sharding
privilege:
type: ALL_PERMITTED

Explanation: - Two users are defined: root@127.0.0.1 and sharding; - authenticators and
authenticationMethodName are not defined, Proxy will automatically choose the authentication
method according to the frontend protocol; - The privilege provider ALL_PERMITTED is specified.

9.2. ShardingSphere-Proxy 228

Apache ShardingSphere document

DATABASE_PERMITTED (Recommended)

authority:
users:
- user: root@l27.0.0.1
password: root
admin: true
- user: sharding
password: sharding
- user: test
password: sharding
privilege:
type: DATABASE_PERMITTED
props:
user-database-mappings: sharding@¥%=*, test@%=test_db, test@%=sharding_db

Explanation: - Three users are defined: root@127.0.0.1, shardingand test, which root@127.0.
0.1is an admin user; - authenticators and authenticationMethodName are not defined, Proxy
will automatically choose the authentication method according to the frontend protocol; - The privilege
provider DATABASE_PERMITTED is specified, authorize sharding@% to access all logical databases
(), and user test can only access test_db and sharding_db.

Properties

Background

Apache ShardingSphere provides a wealth of system configuration properties, which users can config-
ure through global.yaml.

9.2. ShardingSphere-Proxy 229

Apache ShardingSphere document

Parameters

Name*

DataType*

Description

Default*

DynamicUpda
te*

sql -show (?)

sql-s imple (?)

kerne l-exe cutor -

size (?)

max-c onnec
tions -size -per-

query (2

boolean

boolean

int

Whether to print
SQL in logs.
Printing SQL can
help developers
quickly locate
system problems.
Logs contain
the following
contents: logical
SQL, authentic
SQL and SQL
parsing result.
If configuration
is enabled, logs
will use Topic
Sharding-
Sphere-SQL,
and log level is
INFO.

Whether to print
simple SQL in
logs.

Set the size of
the thread pool
for task pro-
cessing. Each
ShardingSphere-
DataSource uses
an independent
thread pool, and
different data
sources on the
same JVM do
not share thread
pools.

The maximum
number of con-
nections that a

query request

false

false

infinite

True

True

False

True

9.2. ShardingSphere-Proxy

che ck-ta ble-m

boolean

CdlIl UST iIl Ed(,}l
database in-
stance.

Whether shard

false

230

True

Apache ShardingSphere document

Properties can be modified online through DistSQL#RAL. Properties that support dynamic change can
take effect immediately. For the ones that do not support dynamic change, the effect will be imple-
mented after a restart.

Sample

For a complete sample, please refer to global.yaml in ShardingSphere’ s repository: https://github
.com/apache/shardingsphere/blob/612cd5d8e802d0d712a3a4d89da8fdc048d23879/proxy/bootstrap/s
rc/main/resources/conf/global.yaml#L71-189

Rules

Background

This section explains how to configure the ShardingSphere-Proxy rules.

Parameters Explained

Rules configuration for ShardingSphere-Proxy is the same as ShardingSphere-JDBC. For details, please
refer to ShardingSphere-JDBC Rules Configuration.

Notice

Unlike ShardingSphere-JDBC, the following rules need to be configured in ShardingSphere-Proxy s
global.yaml:

+ SQL Parsing

sqlParser:
sqlStatementCache:
initialCapacity: 2000
maximumSize: 65535
parseTreeCache:
initialCapacity: 128
maximumSize: 1024

 Distributed Transaction

transaction:
defaultType: XA
providerType: Atomikos

+ SQL Translator

9.2. ShardingSphere-Proxy 231

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/
https://github.com/apache/shardingsphere/blob/612cd5d8e802d0d712a3a4d89da8fdc048d23879/proxy/bootstrap/src/main/resources/conf/global.yaml#L71-L89
https://github.com/apache/shardingsphere/blob/612cd5d8e802d0d712a3a4d89da8fdc048d23879/proxy/bootstrap/src/main/resources/conf/global.yaml#L71-L89
https://github.com/apache/shardingsphere/blob/612cd5d8e802d0d712a3a4d89da8fdc048d23879/proxy/bootstrap/src/main/resources/conf/global.yaml#L71-L89
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-translator/

Apache ShardingSphere document

sqlTranslator:

type:
useOriginalSQLWhenTranslatingFailed:

+ SQL Federation

sqlFederation:
sqlFederationEnabled: true
allQueryUseSQLFederation: false
executionPlanCache:
initialCapacity: 2000
maximumSize: 65535

Data Source

Background

ShardingSphere-Proxy supports common data source connection pools: HikariCP, C3P0, DBCP (C3P0,
DBCP need download plugin from shardingsphere-plugins repository).

The connection pool can be specified through the parameter dataSourceClassName. When not spec-
ified, the default data source connection pool is HikariCP.

Parameters

dataSources: # Data sources configuration, multiple <data-source-name> available
<data_source_name>: # Data source name
dataSourceClassName: # Data source connection pool full class name
url: # The database URL connection
username: # Database username

password: # The database password

... Other properties of data source pool
Sample
dataSources:
ds_1:

url: jdbc:mysql://localhost:3306/ds_1
username: root
password:
ds_2:
dataSourceClassName: com.mchange.v2.c3p0.ComboPooledDataSource
url: jdbc:mysql://localhost:3306/ds_2
username: root

password:

9.2. ShardingSphere-Proxy 232

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-federation/
https://github.com/apache/shardingsphere-plugin

Apache ShardingSphere document

ds_3:
dataSourceClassName: org.apache.commons.dbcp2.BasicDataSource
url: jdbc:mysql://localhost:3306/ds_3
username: root
password:

Configure other data sources

9.2.3 DistSQL

This chapter will introduce the detailed syntax of DistSQL.

Definition

DistSQL (Distributed SQL) is Apache ShardingSphere’ s specific SQL, providing additional operation
capabilities compared to standard SQL.

Flexible rule configuration and resource management & control capabilities are one of the character-
istics of Apache ShardingSphere.

When using 4.x and earlier versions, developers can operate data just like using a database, but they
need to configure resources and rules through YAML file (or registry center). However, the YAML file
format and the changes brought by using the registry center made it unfriendly to DBAs.

Starting from version 5.x, DistSQL enables users to operate Apache ShardingSphere just like a database,

transforming it from a framework and middleware for developers to a database product for DBAs.

Related Concepts

DistSQL is divided into RDL, RQL, RAL and RUL.

RDL

Resource & Rule Definition Language, is responsible for the definition of resources and rules.

RQL

Resource & Rule Query Language, is responsible for the query of resources and rules.

9.2. ShardingSphere-Proxy 233

Apache ShardingSphere document

RAL

Resource & Rule Administration Language, is responsible for hint, circuit breaker, configuration import

and export, scaling control and other management functions.

RUL

Resource & Rule Utility Language, is responsible for SQL parsing, SQL formatting, preview execution

plan, etc.

Impact on the System

Before

Before having DistSQL, users used SQL to operate data while using YAML configuration files to manage
ShardingSphere, as shown below:

Application

RegisterCenter

=

ShardingSphere-Proxy

Business Code

server.yaml

I
— | config-sharding.yaml
MySQLa"PﬂS‘tgraSQL Client / =
: —
| —

config-encrypt.yamil

 SSH Client J/

Atthat time, users faced the following problems: - Different types of clients are required to operate data
and manage ShardingSphere configuration. - Multiple logical databases require multiple YAML files. -
Editing a YAML file requires writing permissions. - Need to restart ShardingSphere after editing YAML.

After

With the advent of DistSQL, the operation of ShardingSphere has also changed:

9.2. ShardingSphere-Proxy 234

Apache ShardingSphere document

Application
RegisterCenter

T

ShardingSphere-Proxy

@ server.yaml

Business Code

SQL + DiStsaL |

i | /
‘ MySQL/PostgreSQL Client ‘

Now, the user experience has been greatly improved: - Uses the same client to operate data and Shard-

ingSphere configuration. - No need for additional YAML files, and the logical databases are managed

through DistSQL. - Editing permissions for files are no longer required, and configuration is managed

through DistSQL. - Configuration changes take effect in real-time without restarting ShardingSphere.

Limitations

DistSQL can be used only with ShardingSphere-Proxy, not with ShardingSphere-JDBC for now.

How it works

Like standard SQL, DistSQL is recognized by the parsing engine of ShardingSphere. It converts the

input statement into an abstract syntax tree and then generates the Statement corresponding to each

grammar, which is processed by the appropriate Handler.

9.2. ShardingSphere-Proxy

235

Apache ShardingSphere document

MySQL/Postgres Cli
iy j PARSER B
|MySQL/Postgres UL & Workbench

[

) AST l
BackendHandler STATEMENT |

=

| PARSE
CommandExecutor |_> o : ~ EXECUTECR

v
L EXECUTE
. - | RDLHandler '|

Dist3QL

 ShardingSphere-Pro
— =

RQLHandler

RALHandler

RULHandler

Related References

User Manual: DistSQL

Syntax

This chapter describes the syntax of DistSQL in detail, and introduces use of DistSQL with practical
examples.

Syntax Rule

In DistSQL statement, except for keywords, the input format of other elements shall conform to the
following rules.

Identifier

1. The identifier represents an object in the SQL statement, including:
+ database name
+ table name
« column name
+ index name

* resource name

9.2. ShardingSphere-Proxy 236

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/

Apache ShardingSphere document

+ rule name
+ algorithm name

2. The allowed characters in the identifier are: [a-z, A-Z, 0-9, _] (letters, numbers, under-

scores) and should start with a letter.

3. When keywords or special characters appear in the identifier, use the backticks ().

Literal

Types of literals include:
« string: enclosed in single quotes (’) or double quotes ()
- int: it is generally a positive integer, such as 0-9;

Note: some DistSQL syntax allows negative values. In this case, a negative sign (-) can be added before

the number, such as -1.

+ boolean, containing only true & false. Case insensitive.

Special Instructions

+ The "" must be used to mark the algorithm type name when specifying a user-defined algorithm
type name, for example, NAME="AlgorithmTypeName"

« The "" is not necessary when specifying a ShardingSphere Built-in algorithm type name, for ex-
ample, NAME=HASH_MOD

RDL Syntax

RDL (Resource & Rule Definition Language) responsible for definition of resources/rules.

Storage Unit Definition

This chapter describes the syntax of storage unit.

REGISTER STORAGE UNIT
Description

The REGISTER STORAGE UNIT syntax is used to register storage unit for the currently selected logical
database.

9.2. ShardingSphere-Proxy 237

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/

Apache ShardingSphere document

Syntax

RegisterStorageUnit ::=
"REGISTER' 'STORAGE' 'UNIT' -ifNotExists? storageUnitsDefinition (','

checkPrivileges)?

storageUnitsDefinition ::=
storageUnitDefinition (',' storageUnitDefinition)x*

storageUnitDefinition ::=
storageUnitName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName |
'"URL' '='" wurl) ',' '"USER' '=' user (',' 'PASSWORD' '=' password)? (','

propertiesDefinition)?')'

ifNotExists ::=
'"IF' '"NOT' 'EXISTS'

storageUnitName ::=
identifier

hostname ::=
string

port ::=
int

dbName ::=

string

url ::=

string

user =

string

password ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)x ')'

key ::=

string

value ::=
literal

checkPrivileges ::=

9.2. ShardingSphere-Proxy 238

Apache ShardingSphere document

"CHECK_PRIVILEGES' '=' privilegeType (',' privilegeType)x

privilegeType ::=

identifier

Supplement

Before register storage units, please confirm that a database has been created in Proxy, and exe-

cute the use command to successfully select a database;

Confirm that the registered storage unit can be connected normally, otherwise it will not be added

successfully;

storageUnitName is case-sensitive;

storageUnitName needs to be unique within the current database;

storageUnitName name only allows letters, numbers and _, and must start with a letter;

PROPERTIES is optional, used to customize connection pool properties, key must be the same as

the connection pool property name;

CHECK_PRIVILEGES can be specified to check privileges of the storage unit user. The supported
types of privilegeType are SELECT, XA, PIPELINE, and NONE. The default value is SELECT.
When NONE is included in the type list, the privilege check is skipped.

Example

Register storage unit using HOST & PORT method

REGISTER STORAGE UNIT ds_0 (

)3

HOST="127.0.0.1",
PORT=3306,
DB="db_0",
USER="root",
PASSWORD="root"

Register storage unit and set connection pool properties using HOST & PORT method

REGISTER STORAGE UNIT ds_1 (

I

HOST="127.0.0.1",

PORT=3306,

DB="db_1",

USER="root",

PASSWORD="root",

PROPERTIES ("maximumPoolSize"=10)

9.2. ShardingSphere-Proxy 239

Apache ShardingSphere document

« Register storage unit and set connection pool properties using URL method

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false&
allowPublicKeyRetrieval=true",
USER="root",
PASSWORD="root",
PROPERTIES ("maximumPoolSize"=10,"idleTimeout"=30000)

)5
+ Register storage unit with i fNotExists clause

REGISTER STORAGE UNIT IF NOT EXISTS ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="db_0",
USER="root",
PASSWORD="root"

)
+ Check SELECT, XA and PIPELINE privileges when registering

REGISTER STORAGE UNIT ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/db_3?serverTimezone=UTC&useSSL=false&
allowPublicKeyRetrieval=true",
USER="root",
PASSWORD="root",
PROPERTIES ("maximumPoolSize"=10,"idleTimeout"=30000)
), CHECK_PRIVILEGES=SELECT,XA,PIPELINE;

Reserved word

REGISTER, STORAGE, UNIT, HOST, PORT, DB, USER, PASSWORD, PROPERTIES, URL,
CHECK_PRIVILEGES
9.2. ShardingSphere-Proxy 240

Apache ShardingSphere document

Related links

« Reserved word

ALTER STORAGE UNIT

Description

The ALTER STORAGE UNIT syntax is used to alter storage units for the currently selected logical
database.

Syntax

AlterStorageUnit ::=
"ALTER' '"STORAGE' 'UNIT' storageUnitsDefinition (',' checkPrivileges)?

storageUnitsDefinition ::=
storageUnitDefinition (',' storageUnitDefinition)x*

storageUnitDefinition ::=

storageUnitName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName |
'"URL' '='" wurl) ',' '"USER' '=' user (',' 'PASSWORD' '=' password)? (','
propertiesDefinition)?')"

storageUnitName ::=

identifier

hostname ::=

string

port ::=

int

dbName ::=

string

url ::=

string

user =

string

password ::=

string

propertiesDefinition ::=

9.2. ShardingSphere-Proxy 241

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

key ::

"PROPERTIES' '(' key '=' value (',' key '=' value)x ')'

string

value ::=
literal

checkPrivileges ::=
'CHECK_PRIVILEGES' '=' privilegeType (',' privilegeType)x*

privilegeType ::=

identifier

Supplement

Before altering the storage units, please confirm that a database exists in Proxy, and execute the

use command to select a database;

ALTER STORAGE UNIT is not allowed to change the real data source associated with this storage-
Unit (determined by host, port and db);

ALTER STORAGE UNIT will switch the connection pool. This operation may affect the ongoing

business, please use it with caution;

Please confirm that the storage unit to be altered can be connected successfully, otherwise the
altering will fail;

PROPERTIES is optional, used to customize connection pool properties, key must be the same as

the connection pool property name;

CHECK_PRIVILEGES can be specified to check privileges of the storage unit user. The supported
types of privilegeType are SELECT, XA, PIPELINE, and NONE. The default value is SELECT.
When NONE is included in the type list, the privilege check is skipped.

Example

Alter storage unit using HOST & PORT method

ALTER STORAGE UNIT ds_0 (

)

HOST="127.0.0.1",
PORT=3306,
DB="db_0",
USER="root",
PASSWORD="root"

« Alter storage unit and set connection pool properties using HOST & PORT method

9.2. ShardingSphere-Proxy 242

Apache ShardingSphere document

ALTER STORAGE UNIT ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="db_1",
USER="root",
PASSWORD="root",
PROPERTIES ("maximumPoolSize"=10)

)5
« Alter storage unit and set connection pool properties using URL method

ALTER STORAGE UNIT ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false&
allowPublicKeyRetrieval=true",
USER="root",
PASSWORD="root",
PROPERTIES ("maximumPoolSize"=10,"idleTimeout"=30000)

)5
« Check SELECT, XA and PIPELINE privileges when altering

ALTER STORAGE UNIT ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false&
allowPublicKeyRetrieval=true",
USER="root",
PASSWORD="root",
PROPERTIES ("maximumPoolSize"=10,"idleTimeout"=30000)
), CHECK_PRIVILEGES=SELECT,XA,PIPELINE;

Reserved word

ALTER, STORAGE, UNIT, HOST, PORT, DB, USER, PASSWORD, PROPERTIES, URL, CHECK_PRIVILEGES

Related links

» Reserved word

UNREGISTER STORAGE UNIT

Description

The UNREGISTER STORAGE UNIT syntax is used to unregister storage unit from the current database

9.2. ShardingSphere-Proxy 243

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

UnregisterStorageUnit ::=
"UNREGISTER' 'STORAGE' 'UNIT' ifExists? storageUnitName (',' storageUnitName)x

ignoreTables?

ifExists ::=
'"TF' '"EXISTS'

storageUnitName ::=
identifier

ignoreTables ::=
"IGNORE' ('SINGLE')? (',')? ('BROADCAST')? 'TABLES'

Supplement

« UNREGISTER STORAGE UNIT will only unregister storage unit in Proxy, the real data source

corresponding to the storage unit will not be unregistered;

« Unable to unregister storage unit already used by rules. Storage unit are still in used.

will be prompted when removing storage units used by rules;

+ The storage unit need to be removed only contains SINGLE RULE, BROADCAST RULE and when
the user confirms that this restriction can be ignored, the IGNORE SINGLE TABLES, IGNORE
BROADCAST TABLES, IGNORE SINGLE, BROADCAST TABLES keyword can be added to remove

the storage unit;

- i fExists clause is used for avoid Storage unit not exists error.

Example
« Unregister a storage unit
UNREGISTER STORAGE UNIT ds_0;

« Unregister multiple storage units

UNREGISTER STORAGE UNIT ds_0, ds_1;

« Unregister storage unit and ignore single tables

UNREGISTER STORAGE UNIT ds_0 IGNORE SINGLE TABLES;

« Unregister storage unit and ignore broadcast tables

UNREGISTER STORAGE UNIT ds_0 IGNORE BROADCAST TABLES;

9.2. ShardingSphere-Proxy 244

Apache ShardingSphere document

 Unregister storage unit, ignore single and broadcast tables

UNREGISTER STORAGE UNIT ds_6 IGNORE SINGLE, BROADCAST TABLES;

« Unregister storage unit with i fExists clause

UNREGISTER STORAGE UNIT IF EXISTS ds_0;

Reserved word

UNREGISTER, STORAGE, UNIT, IF, EXISTS, IGNORE, SINGLE, BROADCAST, TABLES

Related links

» Reserved word

Rule Definition

This chapter describes the syntax of rule definition.

Sharding

This chapter describes the syntax of sharding.

CREATE SHARDING TABLE RULE

Description

The CREATE SHARDING TABLE RULE syntax is used to add sharding table rule for the currently

selected database

Syntax

CreateShardingTableRule ::=
"CREATE' 'SHARDING' 'TABLE' 'RULE' +ifNotExists? (tableRuleDefinition |
autoTableRuleDefinition) (',' (tableRuleDefinition | autoTableRuleDefinition))x

ifNotExists ::=
'TF' 'NOT' 'EXISTS'

tableRuleDefinition ::=
ruleName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_STRATEGY
' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '(' strategyDefinition ')')? (

9.2. ShardingSphere-Proxy 245

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

',' 'KEY_GENERATE_STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_
STRATEGY' '(' auditStrategyDefinition ')')? ')'

autoTableRuleDefinition ::=

ruleName '(' 'STORAGE_UNITS' '(' storageUnitName (',' storageUnitName)*x ')' ' '
'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_STRATEGY
' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')’

strategyDefinition ::=
'"TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='

columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
'"KEY_GENERATE_STRATEGY' '(" 'COLUMN' '=' columnName ',' algorithmDefinition ')’

auditStrategyDefinition ::=
"AUDIT_STRATEGY' '(' algorithmDefinition (',' algorithmDefinition)* ')'

algorithmDefinition ::=
'"TYPE' '"(' 'NAME' '=' algorithmType (',' propertiesDefinition)?')’

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

ruleName ::=

identifier

dataNode ::=

string

storageUnitName ::=

identifier

columnName ::=

identifier

strategyType ::=
string

algorithmType ::=

string

9.2. ShardingSphere-Proxy 246

Apache ShardingSphere document

Supplement

tableRuleDefinitionis defined for standard sharding table rule; autoTableRuleDefini-
tion is defined for auto sharding table rule. For standard sharding rules and auto sharding rule,

refer to Data Sharding;
use standard sharding table rule:

- DATANODES can only use resources that have been added to the current database, and can

only use INLINE expressions to specify required resources;

- DATABASE_STRATEGY, TABLE_STRATEGY are the database sharding strategy and the table
sharding strategy, which are optional, and the default strategy is used when not configured;

- The attribute TYPE in strategyDefinition is used to specify the type of Sharding Algo-
rithm, currently only supports STANDARD, COMPLEX. Using COMPLEX requires specifying
multiple sharding columns with SHARDING_COLUMNS.

use auto sharding table rule:

- STORAGE_UNITS can only use storage units that have been registered to the current
database, and the required storage units can be specified by enumeration or INLINE expres-

sion;
- Only auto sharding algorithm can be used, please refer to Auto Sharding Algorithm.
algorithmType is the sharding algorithm type, please refer to Sharding Algorithm;

The auto-generated algorithm naming rule is tableName _ strategyType _ shardingAlgo-

rithmType;
The auto-generated primary key strategy naming rule is tableName _ strategyType;

KEY_GENERATE_STRATEGY is used to specify the primary key generation strategy, which is op-
tional. For the primary key generation strategy, please refer to Distributed Primary Key;

AUDIT_STRATEGY is used to specify the sharding audit strategy, which is optional. For the shard-

ing audit generation strategy, please refer to Sharding Audit;

ifNotExists clause is used for avoid Duplicate sharding rule error.

Example

1.Standard sharding table rule

CREATE SHARDING TABLE RULE t_order_item (

DATANODES ("ds_${0..1}.t_order_item_s{0..1}"),

DATABASE_STRATEGY (TYPE="standard" ,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE (NAME="1inl1ine",PROPERTIES("algorithm-expression"="ds_s${user_id % 2}
")),

TABLE_STRATEGY (TYPE="standard" ,SHARDING_COLUMN=order_id,SHARDING_

ALGORITHM(TYPE (NAME="1inl1ine",PROPERTIES("algorithm-expression"="t_order_item_$

9.2. ShardingSphere-Proxy 247

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document

{order_id % 23}")))),
KEY_GENERATE_STRATEGY (COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS") ,ALLOW_HINT_DISABLE=true)

)3

2.Auto sharding table rule

CREATE SHARDING TABLE RULE t_order (

STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY (COLUMN=another_id,TYPE(NAME="snowflake")),

AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS") ,ALLOW_HINT_DISABLE=true)

)

3.Create sharding rule with 1 fNotExists clause

« Standard sharding table rule

CREATE SHARDING TABLE RULE IF NOT EXISTS t_order_qitem (

DATANODES ("ds_${0..1}.t_order_item_${0..1}"),

DATABASE_STRATEGY (TYPE="standard" ,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE (NAME="1inl1ine",PROPERTIES ("algorithm-expression"="ds_s${user_id % 2}
")),

TABLE_STRATEGY (TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_

ALGORITHM(TYPE (NAME="1inl1ine",PROPERTIES ("algorithm-expression"="t_order_item_$
{order_id % 23}")))),

KEY_GENERATE_STRATEGY (COLUMN=another_id,TYPE (NAME="snowflake")),

AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS") ,ALLOW_HINT_DISABLE=true)

)
« Auto sharding table rule

CREATE SHARDING TABLE RULE IF NOT EXISTS t_order (

STORAGE_UNITS(ds_0,ds_1),

SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod" ,PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY (COLUMN=another_id,TYPE(NAME="snowflake")),

AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS") ,ALLOW_HINT_DISABLE=true)

)

9.2. ShardingSphere-Proxy 248

Apache ShardingSphere document

Reserved word
CREATE, SHARDING, TABLE, RULE, DATANODES, DATABASE_STRATEGY, TABLE_STRATEGY,
KEY_GENERATE_STRATEGY, STORAGE_UNITS, SHARDING_COLUMN, TYPE, SHARDING_COLUMN,

KEY_GENERATOR, SHARDING_ALGORITHM, COLUMN, NAME, PROPERTIES, AUDIT_STRATEGY, AUDI-
TORS, ALLOW_HINT_DISABLE

Related links

« Reserved word

» CREATE DEFAULT_SHARDING STRATEGY

ALTER SHARDING TABLE RULE

Description

The ALTER SHARDING TABLE RULE syntax is used to alter sharding table rule for the currently

selected database

Syntax

AlterShardingTableRule ::=
"ALTER' 'SHARDING' 'TABLE' 'RULE' (tableRuleDefinition | autoTableRuleDefinition)

('," (tableRuleDefinition | autoTableRuleDefinition))x*
tableRuleDefinition ::=

ruleName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_STRATEGY
' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '(' strategyDefinition ')')? (
','" 'KEY_GENERATE_STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_

STRATEGY' '(' auditStrategyDefinition ')')? ')'

autoTableRuleDefinition ::=

ruleName '(' 'STORAGE_UNITS' '(' storageUnitName (',' storageUnitName)* ')' ' '
'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_STRATEGY
' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('

auditStrategyDefinition ')')? ')'

strategyDefinition ::=
'"TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='
columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
"KEY_GENERATE_STRATEGY' '(' 'COLUMN' '=' columnName ',' algorithmDefinition ')'

auditStrategyDefinition ::=

9.2. ShardingSphere-Proxy 249

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/create-default-sharding-strategy/

Apache ShardingSphere document

"AUDIT_STRATEGY' '(' algorithmDefinition (',' algorithmDefinition)* ')'

algorithmDefinition ::=
'"TYPE' '"(' 'NAME' '=' algorithmType (',' propertiesDefinition)?')'

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

ruleName ::=
identifier

dataNode ::=
string

storageUnitName ::=

identifier

columnName ::=

identifier

strategyType ::=
string

algorithmType ::=
string

Supplement

+ tableRuleDefinitionis defined for standard sharding table rule; autoTableRuleDefini-
tion is defined for auto sharding table rule. For standard sharding rules and auto sharding rule,

refer to Data Sharding;
« use standard sharding table rule:

- DATANODES can only use resources that have been added to the current database, and can

only use INLINE expressions to specify required resources;

- DATABASE_STRATEGY, TABLE_STRATEGY are the database sharding strategy and the table

sharding strategy, which are optional, and the default strategy is used when not configured;

- The attribute TYPE in strategyDefinition is used to specify the type of Sharding Algo-
rithm, currently only supports STANDARD, COMPLEX. Using COMPLEX requires specifying

9.2. ShardingSphere-Proxy 250

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm

Apache ShardingSphere document

multiple sharding columns with SHARDING_COLUMNS.

« use auto sharding table rule:

- STORAGE_UNITS can only use storage units that have been registered to the current

database, and the required storage units can be specified by enumeration or INLINE expres-

sion;
- Only auto sharding algorithm can be used, please refer to Auto Sharding Algorithm.

« algorithmType is the sharding algorithm type, please refer to Sharding Algorithm;

« The auto-generated algorithm naming rule is tableName _ strategyType _ shardingAlgo-

rithmType;

 The auto-generated primary key strategy naming rule is tableName _ strategyType;

« KEY_GENERATE_STRATEGY is used to specify the primary key generation strategy, which is op-

tional. For the primary key generation strategy, please refer to Distributed Primary Key.

« AUDIT_STRATEGY is used to specify the sharding audit strategy, which is optional. For the shard-

ing audit generation strategy, please refer to Sharding Audit.

Example

1.Standard sharding table rule

ALTER SHARDING TABLE RULE t_order_item (

DATANODES ("ds_${0..3}.t_order_item${0..3}"),

DATABASE_STRATEGY (TYPE="standard" ,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE (NAME="19nl1ine",PROPERTIES ("algorithm-expression"="ds_${user_id % 4}
")),

TABLE_STRATEGY (TYPE="standard" ,SHARDING_COLUMN=order_id,SHARDING_

ALGORITHM(TYPE (NAME="19nl1ine",PROPERTIES ("algorithm-expression"="t_order_item_$
{order_id % 43}")))),

KEY_GENERATE_STRATEGY (COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY (TYPE (NAME="dml_sharding_conditions") ,ALLOW_HINT_DISABLE=true)

)3

2.Auto sharding table rule

ALTER SHARDING TABLE RULE t_order (

STORAGE_UNITS(ds_0,ds_1,ds_2,ds_3),

SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod" ,PROPERTIES("sharding-count"="16")),
KEY_GENERATE_STRATEGY (COLUMN=another_id,TYPE(NAME="snowflake")),

AUDIT_STRATEGY (TYPE (NAME="dml_sharding_conditions") ,ALLOW_HINT_DISABLE=true)

) §

9.2. ShardingSphere-Proxy

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document

Reserved word

ALTER, SHARDING, TABLE, RULE, DATANODES, DATABASE_STRATEGY, TABLE_STRATEGY,
KEY_GENERATE_STRATEGY, STORAGE_UNITS, SHARDING_COLUMN, TYPE, SHARDING_COLUMN,
KEY_GENERATOR, SHARDING_ALGORITHM, COLUMN, NAME, PROPERTIES, AUDIT_STRATEGY, AUDI-
TORS, ALLOW_HINT_DISABLE

Related links

» Reserved word

+ ALTER DEFAULT_SHARDING STRATEGY

DROP SHARDING TABLE RULE

Description

The DROP SHARDING TABLE RULE syntax is used to drop sharding table rule for specified database.

Syntax

DropShardingTableRule ::=
'DROP' 'SHARDING' 'TABLE' 'RULE' ifExists? ruleName (',' ruleName)* ('FROM'

databaseName)?

ifExists ::=
'"TF' '"EXISTS'

ruleName ::=
identifier

databaseName ::=

identifier

Supplement

+ When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted;

« §fExists clause is used to avoid Sharding rule not exists error.

9.2. ShardingSphere-Proxy 252

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/alter-default-sharding-strategy/

Apache ShardingSphere document

Example

« Drop mutiple sharding table rules for specified database

DROP SHARDING TABLE RULE t_order, t_order_item FROM sharding_db;

« Drop a sharding table rule for current database

DROP SHARDING TABLE RULE t_order;

« Drop sharding table rule with i fExists clause

DROP SHARDING TABLE RULE IF EXISTS t_order;

Reserved word

DROP, SHARDING, TABLE, RULE, FROM

Related links

» Reserved word

CREATE DEFAULT SHARDING STRATEGY

Description

The CREATE DEFAULT SHARDING STRATEGY syntax is used to create a default sharding strategy

Syntax

CreateDefaultShardingStrategy ::=
'"CREATE' 'DEFAULT' 'SHARDING' ('DATABASE' | 'TABLE') 'STRATEGY' ifNotExists? '('
shardingStrategy ')'

ifNotExists ::=
'TF' '"NOT' '"EXISTS'

shardingStrategy ::=

'"TYPE' '=' strategyType ',' ('SHARDING_COLUMN' '=' columnName | 'SHARDING_COLUMNS'
'='" columnNames) ',' 'SHARDING_ALGORITHM' '=' algorithmDefinition
strategyType ::=

string

algorithmDefinition ::=

9.2. ShardingSphere-Proxy 253

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

'"TYPE' '"(' 'NAME' '=' algorithmType ',' propertiesDefinition ")’

columnNames ::=

columnName (',' columnName)+

columnName ::=

identifier

algorithmType ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

Supplement

« When using the complex sharding algorithm, multiple sharding columns need to be specified
using SHARDING_COLUMNS;

« algorithmType is the sharding algorithm type. For detailed sharding algorithm type informa-
tion, please refer to Sharding Algorithm;

« ifNotExists clause is used for avoid Duplicate default sharding strategy error.

Example

« create a default sharding table strategy

-- create a default sharding table strategy
CREATE DEFAULT SHARDING TABLE STRATEGY (
TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE(NAME="4inl1ine",
PROPERTIES ("algorithm-expression"="t_order_${user_id % 23}")))
)3

« create a default sharding table strategy with i fNotExists clause

CREATE DEFAULT SHARDING TABLE STRATEGY IF NOT EXISTS (

TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE (NAME="1inl1ine",
PROPERTIES ("algorithm-expression"="t_order_${user_id % 23}")))
)5

9.2. ShardingSphere-Proxy 254

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/

Apache ShardingSphere document

Reserved word

CREATE, DEFAULT, SHARDING, DATABASE, TABLE, STRATEGY, TYPE, SHARDING_COLUMN, SHARD-
ING_COLUMNS, SHARDING_ALGORITHM, NAME, PROPERTIES

Related links

» Reserved word

ALTER DEFAULT SHARDING STRATEGY

Description

The ALTER DEFAULT SHARDING STRATEGY syntax is used to alter a default sharding strategy

Syntax

AlterDefaultShardingStrategy ::=
"ALTER' 'DEFAULT' 'SHARDING' ('DATABASE' | 'TABLE') 'STRATEGY' '('
shardingStrategy ')'

shardingStrategy ::=

'"TYPE' '=' strategyType ',' ('SHARDING_COLUMN' '=' columnName | 'SHARDING_COLUMNS'
'=' columnNames) ',' 'SHARDING_ALGORITHM' '=' algorithmDefinition
strategyType ::=

string

algorithmDefinition ::=

'"TYPE' '"(' 'NAME' '=' algorithmType ',' propertiesDefinition ')'
columnNames ::=

columnName (',' columnName)+
columnName ::=

identifier

algorithmType ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)x*x ')'

key ::=

string

9.2. ShardingSphere-Proxy 255

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

value ::=
literal

Supplement

« When using the complex sharding algorithm, multiple sharding columns need to be specified
using SHARDING_COLUMNS;

« algorithmType is the sharding algorithm type. For detailed sharding algorithm type informa-
tion, please refer to Sharding Algorithm.

Example

+ Alter a default sharding table strategy

ALTER DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE(NAME="4inl1ine",
PROPERTIES ("algorithm-expression"="t_order_${user_id % 23}")))
)

Reserved word

ALTER, DEFAULT, SHARDING, DATABASE, TABLE, STRATEGY, TYPE, SHARDING_COLUMN, SHARD-
ING_COLUMNS, SHARDING_ALGORITHM, NAME, PROPERTIES

Related links

» Reserved word

DROP DEFAULT SHARDING STRATEGY

Description

The DROP DEFAULT SHARDING STRATEGY syntax is used to drop default sharding strategy for spec-
ified database.

9.2. ShardingSphere-Proxy 256

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

DropDefaultShardingStrategy ::=
'"DROP' 'DEFAULT' 'SHARDING' ('TABLE' | 'DATABASE') 'STRATEGY' ifExists? ('FROM'

databaseName)?

ifExists ::=
'"TF' '"EXISTS'

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted;

« i fExists clause is used for avoid Default sharding strategy not exists error.

Example
+ Drop default sharding table strategy for specified database
DROP DEFAULT SHARDING TABLE STRATEGY FROM sharding_db;

« Drop default sharding database strategy for current database

DROP DEFAULT SHARDING DATABASE STRATEGY;

« Drop default sharding table strategy with i fExists clause

DROP DEFAULT SHARDING TABLE STRATEGY IF EXISTS;

+ Drop default sharding database strategy with i fExists clause

DROP DEFAULT SHARDING DATABASE STRATEGY IF EXISTS;

Reserved word

DROP, DEFAULT , SHARDING, TABLE, DATABASE ,STRATEGY, FROM

9.2. ShardingSphere-Proxy 257

Apache ShardingSphere document

Related links

« Reserved word

DROP SHARDING KEY GENERATOR

Description

The DROP SHARDING KEY GENERATOR syntax is used to drop sharding key generator for specified

database.

Syntax

DropShardingKeyGenerator ::

'DROP' 'SHARDING' 'KEY'
('FROM' databaseName)?

ifExists ::=
'"TF' '"EXISTS'

keyGeneratorName ::=
identifier

databaseName ::=
identifier

Supplement

'"GENERATOR' +ifExists? keyGeneratorName (keyGeneratorName)x

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted;

+ ifExists clause is used for avoid Sharding key generator not existserror.

Example

« Drop sharding key generator for specified database

DROP SHARDING KEY GENERATOR t_order_snowflake FROM sharding_db;

« Drop sharding key generator for current database

DROP SHARDING KEY GENERATOR t_order_snowflake;

« Drop sharding key generator with i fExists clause

9.2. ShardingSphere-Proxy

258

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

DROP SHARDING KEY GENERATOR IF EXISTS t_order_snowflake;

Reserved word

DROP, SHARDING, KEY, GENERATOR, FROM

Related links

» Reserved word

DROP SHARDING ALGORITHM

Description

The DROP SHARDING ALGORITHM syntax is used to drop sharding algorithm for specified database.

Syntax

DropShardingAlgorithm ::=
'DROP' 'SHARDING' 'ALGORITHM' algorithmName ifExists? ('FROM' databaseName)?

ifExists ::=
'"TF' '"EXISTS'

algorithmName ::=
identifier

databaseName ::=

identifier

Supplement

+ When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnot used, No database selected will be prompted;

 ifExists clause used for avoid Sharding algorithm not existserror.

9.2. ShardingSphere-Proxy 259

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

« Drop sharding algorithm for specified database

DROP SHARDING ALGORITHM t_order_hash_mod FROM sharding_db;

« Drop sharding algorithm for current database

DROP SHARDING ALGORITHM t_order_hash_mod;

« Drop sharding algorithm with i fExists clause

DROP SHARDING ALGORITHM IF EXISTS t_order_hash_mod;

Reserved word

DROP, SHARDING, ALGORITHM, FROM

Related links

« Reserved word

CREATE SHARDING TABLE REFERENCE RULE

Description

The CREATE SHARDING TABLE REFERENCE RULE syntaxisused to create reference rule for sharding
tables

Syntax

CreateShardingTableReferenceRule ::=
'"CREATE' 'SHARDING' 'TABLE' 'REFERENCE' 'RULE' +ifNotExists?

referenceRelationshipDefinition (',' referenceRelationshipDefinition)x*

ifNotExists ::=
'"IF' 'NOT' '"EXISTS'

referenceRelationshipDefinition ::=

ruleName '(' tableName (',' tableName)x ')'

ruleName ::=
identifier

9.2. ShardingSphere-Proxy 260

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

tableName ::=
identifier

Supplement

« Sharding table reference rule can only be created for sharding tables;
« A sharding table can only be associated with one sharding table reference rule;

+ The referenced sharding tables should be sharded in the same storage units and have the same
number of sharding nodes. For example ds_${0..1}.t_order_${0..1} andds_${0..1}.
t_order_item_s${0..1};

« The referenced sharding tables should use consistent sharding algorithms. For example
t_order_{order_id % 2} and t_order_item_{order_item_id % 2};

» ifNotExists clause used for avoid Duplicate sharding table reference ruleerror.

Example

1.Create a sharding table reference rule

-- Before creating a sharding table reference rule, you need to create sharding
table rules t_order, t_order_item
CREATE SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item);

2.Create multiple sharding table reference rules

-- Before creating sharding table reference rules, you need to create sharding table
rules t_order, t_order_item, t_product, t_product_item

CREATE SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item), ref_1 (t_product,
t_product_item);

3.Create a sharding table reference rule with i fNotEx1ists clause

CREATE SHARDING TABLE REFERENCE RULE IF NOT EXISTS ref_0 (t_order,t_order_item);

9.2. ShardingSphere-Proxy 261

Apache ShardingSphere document

Reserved word

CREATE, SHARDING, TABLE, REFERENCE, RULE

Related links

« Reserved word

+ CREATE SHARDING TABLE RULE

ALTER SHARDING TABLE REFERENCE RULE

Description

The ALTER SHARDING TABLE REFERENCE RULE syntax is usedto alter sharding table reference rule.

Syntax

AlterShardingTableReferenceRule ::=
"ALTER' 'SHARDING' 'TABLE' 'REFERENCE' 'RULE' referenceRelationshipDefinition (
','" referenceRelationshipDefinition)x*

referenceRelationshipDefinition ::=

ruleName '(' tableName (',' tableName)x* ')'

ruleName ::=
identifier

tableName ::=
identifier

Supplement

+ A sharding table can only be associated with one sharding table reference rule;

+ The referenced sharding tables should be sharded in the same storage units and have the same
number of sharding nodes. For example ds_${0..1}.t_order_${0..1} andds_${0..1}.
t_order_item_s${0..1};

« The referenced sharding tables should use consistent sharding algorithms. For example
t_order_{order_id % 2} and t_order_item_{order_item_id % 23};

9.2. ShardingSphere-Proxy 262

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/create-sharding-table-rule/

Apache ShardingSphere document

Example

1. Alter a sharding table reference rule

ALTER SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item);

2. Alter multiple sharding table reference rules

ALTER SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item), ref_1 (t_product,
t_product_item);

Reserved word

ALTER, SHARDING, TABLE, REFERENCE, RULE

Related links

« Reserved word

+ CREATE SHARDING TABLE RULE

DROP SHARDING TABLE REFERENCE RULE

Description

The DROP SHARDING TABLE REFERENCE RULE syntax is used to drop specified sharding table

reference rule.

Syntax

DropShardingTableReferenceRule ::=

'DROP' 'SHARDING' 'TABLE' 'REFERENCE' 'RULE' +ifExists? ruleName (',' ruleName)x*
ifExists ::=

'TF' '"EXISTS'
ruleName ::=

identifier

9.2. ShardingSphere-Proxy 263

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/create-sharding-table-rule/

Apache ShardingSphere document

Supplement

« ifExists clause is used for avoid Sharding reference rule not exists error. ###
Example

« Drop a specified sharding table reference rule

DROP SHARDING TABLE REFERENCE RULE ref_0;

+ Drop multiple sharding table reference rules

DROP SHARDING TABLE REFERENCE RULE ref_0, ref_1;

« Drop sharding table reference rule with i fExists clause

DROP SHARDING TABLE REFERENCE RULE IF EXISTS ref_0;

Reserved word

DROP, SHARDING, TABLE, REFERENCE, RULE

Related links

* Reserved word

Broadcast Table

This chapter describes the syntax of broadcast table.

CREATE BROADCAST TABLE RULE

Description

The CREATE BROADCAST TABLE RULE syntax is used to create broadcast table rules for tables that
need to be broadcast (broadcast tables)

Syntax

CreateBroadcastTableRule ::=
"CREATE' 'BROADCAST' 'TABLE' 'RULE' ifNotExists? tableName (',' tableName)*

ifNotExists ::=
'"IF' 'NOT' 'EXISTS'

9.2. ShardingSphere-Proxy 264

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

tableName ::=
identifier

Supplement

- tableName can use an existing table or a table that will be created;

« ifNotExists clause is used for avoid Duplicate Broadcast rule error.

Example

Create broadcast table rule

-— Add t_province, t_city to broadcast table rules
CREATE BROADCAST TABLE RULE t_province, t_city;

Create broadcast table rule with 1 fNotExists clause

CREATE BROADCAST TABLE RULE IF NOT EXISTS t_province, t_city;

Reserved word

CREATE, BROADCAST, TABLE, RULE

Related links

» Reserved word

DROP BROADCAST TABLE RULE

Description

The DROP BROADCAST TABLE RULE syntax is used to drop broadcast table rule for specified broadcast
tables

9.2. ShardingSphere-Proxy 265

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

DropBroadcastTableRule ::=
'"DROP' '"BROADCAST' 'TABLE' 'RULE' 1ifExists? tableName (',' tableName)x

ifExists ::=
'"TF' '"EXISTS'

tableName ::=

identifier

Supplement

- tableName can use the table of existing broadcast rules;

+ ifExists clause is used for avoid Broadcast rule not exists error.

Example

« Drop broadcast table rule for specified broadcast table

DROP BROADCAST TABLE RULE t_province, t_city;

« Drop broadcast table rule with i fExists clause

DROP BROADCAST TABLE RULE IF EXISTS t_province, t_city;

Reserved word

DROP, BROADCAST, TABLE, RULE

Related links

» Reserved word

Single Table

This chapter describes the syntax of single table.

9.2. ShardingSphere-Proxy 266

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

LOAD SINGLE TABLE

Description

The LOAD SINGLE TABLE syntax is used to load single table from storage unit.

Syntax

loadSingleTable ::
"LOAD' 'SINGLE' 'TABLE' tableDefinition

tableDefinition ::
tableIdentifier (',' tableldentifier)x

tableIdentifier ::=

"ks.x" | "x.x.x' | storageUnitName '.*' | storageUnitName '.*x.*x' | storageUnitName
'.' schemaName '.*' | storageUnitName '.' tableName | storageUnitName '.' schemaName
'.' tableName

storageUnitName ::=
identifier

schemaName ::=
identifier

tableName ::=

identifier

Supplement

« support specifying schemaName in PostgreSQL and OpenGauss protocols

Example

« Load specified single table

LOAD SINGLE TABLE ds_0.t_single;

« Load all single tables in the specified storage unit

LOAD SINGLE TABLE ds_0.*;

« Load all single tables

9.2. ShardingSphere-Proxy 267

Apache ShardingSphere document

LOAD SINGLE TABLE x.x;

Reserved word

LOAD, SINGLE, TABLE

Related links

» Reserved word

UNLOAD SINGLE TABLE

Description

The UNLOAD SINGLE TABLE syntax is used to unload single table.

Syntax

unloadSingleTable ::=
"UNLOAD' 'SINGLE' 'TABLE' tableNames

tableNames ::=
tableName (',' tableName)x

tableName ::=

identifier

Supplement

+ Unlike loading, only the table name needs to be specified when unloading a single table

Example

+ Unload specified single table

UNLOAD SINGLE TABLE t_single;

 Load all single tables

UNLOAD SINGLE TABLE *;
== @I
UNLOAD ALL SINGLE TABLES;

9.2. ShardingSphere-Proxy 268

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Reserved word

UNLOAD, SINGLE, TABLE, ALL, TABLES

Related links

« Reserved word

SET DEFAULT SINGLE TABLE STORAGE UNIT

Description

The SET DEFAULT SINGLE TABLE STORAGE UNIT syntax is used to set default single table storage

unit.

Syntax

SetDefaultSingleTableStorageUnit ::=
"SET' 'DEFAULT' 'SINGLE' 'TABLE' 'STORAGE' 'UNIT' singleTableDefinition

singleTableDefinition ::=
'=' (storageUnitName | 'RANDOM')

storageUnitName ::=

identifier

Supplement

« STORAGE UNIT needs to use storage unit managed by RDL. The RANDOM keyword stands for

random storage.

Example

« Set a default single table storage unit

SET DEFAULT SINGLE TABLE STORAGE UNIT = ds_0;

« Set the default single table storage unit to random storage

SET DEFAULT SINGLE TABLE STORAGE UNIT = RANDOM;

9.2. ShardingSphere-Proxy 269

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Reserved word

SET, DEFAULT, SINGLE, TABLE, STORAGE, UNIT, RANDOM

Related links

» Reserved word

Readwrite-Splitting

This chapter describes the syntax of readwrite-splitting.

CREATE READWRITE_SPLITTING RULE

Description

The CREATE READWRITE_SPLITTING RULE syntax is used to create a read/write splitting rule.

Syntax

CreateReadwriteSplittingRule ::=
"CREATE' 'READWRITE_SPLITTING' 'RULE' ifNotExists? readwriteSplittingDefinition (

','" readwriteSplittingDefinition)x

ifNotExists ::=
'"IF' 'NOT' 'EXISTS'

readwriteSplittingDefinition ::=
ruleName '(' dataSourceDefinition (',' transactionalReadQueryStrategyDefinition)?

(',"' loadBalancerDefinition)? ')'
dataSourceDefinition ::=
'"WRITE_STORAGE_UNIT' '=' writeStorageUnitName ',' 'READ_STORAGE_UNITS' '('

storageUnitName (',' storageUnitName)x*x ')'

transactionalReadQueryStrategyDefinition ::=
'"TRANSACTIONAL_READ_QUERY_STRATEGY' '=' transactionalReadQueryStrategyType

loadBalancerDefinition ::=
'"TYPE' '(' 'NAME' '=' algorithmType (',' propertiesDefinition)? ')'

ruleName ::=
identifier

writeStorageUnitName ::=

9.2. ShardingSphere-Proxy 270

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

identifier

storageUnitName ::=
identifier

transactionalReadQueryStrategyType ::=
string

algorithmType ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

Note

« transactionalReadQueryStrategyType specifies the routing strategy for read query within
a transaction, please refer to YAML configuration;

algorithmType specifies the load balancing algorithm type, please refer to Load Balance Algo-

rithm;
+ Duplicate ruleName will not be created;

+ §fNotExists clause used to avoid the Duplicate readwrite_splitting rule error.

Example

Create a read/write splitting rule

CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0O,read_ds_1),
TYPE (NAME="random")

)3

9.2. ShardingSphere-Proxy 271

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

Create read/write splitting rule with the i fNotEx1ists clause

« read/write splitting rule

CREATE READWRITE_SPLITTING RULE IF NOT EXISTS ms_group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0,read_ds_1),

TYPE (NAME="random")

)

Reserved words

CREATE, READWRITE_SPLITTING, RULE, WRITE_STORAGE_UNIT, READ_STORAGE_UNITS , TYPE,
NAME, PROPERTIES, TRUE, FALSE

Related links

« Reserved words

+ Load Balance Algorithm

ALTER READWRITE_SPLITTING RULE

Description

The ALTER READWRITE_SPLITTING RULE syntax is used to alter a readwrite-splitting rule.

Syntax

AlterReadwriteSplittingRule ::=
"ALTER' 'READWRITE_SPLITTING' 'RULE' readwriteSplittingDefinition (','
readwriteSplittingDefinition)*

readwriteSplittingDefinition ::=
ruleName '(' dataSourceDefinition (',' transactionalReadQueryStrategyDefinition)?
(',"' loadBalancerDefinition)? ')'

dataSourceDefinition ::=
'"WRITE_STORAGE_UNIT' '=' writeStorageUnitName ',' 'READ_STORAGE_UNITS' '('

storageUnitName (',' storageUnitName)*x ')'

transactionalReadQueryStrategyDefinition ::=
'"TRANSACTIONAL_READ_QUERY_STRATEGY' '=' transactionalReadQueryStrategyType

loadBalancerDefinition ::=

9.2. ShardingSphere-Proxy 272

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

"TYPE' '"(' 'NAME' '=' algorithmType (',' propertiesDefinition)? ')'

ruleName ::=
identifier

writeStorageUnitName ::=
identifier

storageUnitName ::=
identifier

transactionalReadQueryStrategyType ::=

string

algorithmType ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)x* ')'

key ::=
string

value ::=
literal

Supplement

« transactionalReadQueryStrategyType specifies the routing strategy for read query within
a transaction, please refer to YAML configuration;

- algorithmType specifies the load balancing algorithm type, please refer to Load Balance Algo-

rithm.

Example

Alter a readwrite-splitting rule

ALTER READWRITE_SPLITTING RULE ms_group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0O,read_ds_1),
TYPE (NAME="random")

)3

9.2. ShardingSphere-Proxy 273

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

Reserved word

ALTER, READWRITE_SPLITTING, RULE, WRITE_STORAGE_UNIT, READ_STORAGE_UNITS , TYPE,
NAME, PROPERTIES, TRUE, FALSE

Related links

» Reserved word

« Load Balance Algorithm

DROP READWRITE_SPLITTING RULE

Description

The DROP READWRITE_SPLITTING RULE syntax is used to drop readwrite-splitting rule for specified
database

Syntax

DropReadwriteSplittingRule ::=
"DROP' '"READWRITE_SPLITTING' 'RULE' 1ifExists? ruleName (',' ruleName)x ('FROM'

databaseName)?

ifExists ::=
'"TF' '"EXISTS'

ruleName ::=

identifier
databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnot used, No database selected will be prompted;

« i fExists clause is used for avoid Readwrite-splitting rule not exists error.

9.2. ShardingSphere-Proxy 274

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

Example

« Drop readwrite-splitting rule for specified database

DROP READWRITE_SPLITTING RULE ms_group_1 FROM readwrite_splitting_db;

« Drop readwrite-splitting rule for current database

DROP READWRITE_SPLITTING RULE ms_group_1;

+ Drop readwrite-splitting rule with i fExists clause

DROP READWRITE_SPLITTING RULE IF EXISTS ms_group_1;

Reserved word

DROP, READWRITE_SPLITTING, RULE

Related links

« Reserved word

Encrypt

This chapter describes the syntax of encrypt.

CREATE ENCRYPT RULE

Description

The CREATE ENCRYPT RULE syntax is used to create encrypt rules.

Syntax

CreateEncryptRule ::=
"CREATE' 'ENCRYPT' 'RULE' +ifNotExists? encryptDefinition (',' encryptDefinition)x*

ifNotExists ::=
'TF' '"NOT' '"EXISTS'

encryptDefinition ::=
ruleName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)x ')' ')’

columnDefinition ::=

9.2. ShardingSphere-Proxy 275

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

"(" '"NAME' '=' columnName

'=' assistedQueryColumnName)? (','

'=' cipherColumnName (',' 'ASSISTED_QUERY'

"LIKE_QUERY' '=' T1likeQueryColumnName)? ','

encryptAlgorithmDefinition (',' assistedQueryAlgorithmDefinition)? (','

likeQueryAlgorithmbDefinition)?

encryptAlgorithmDefinition
"ENCRYPT_ALGORITHM' ' ('

propertiesDefinition)?

assistedQueryAlgorithmDefinition
'ASSISTED_QUERY_ALGORITHM'

propertiesDefinition)?

likeQueryAlgorithmbDefinition
'LIKE_QUERY_ALGORITHM'

propertiesDefinition)?

propertiesDefinition

"PROPERTIES' '(' key '=' value (','

ruleName ::=

identifier

columnName ::=

identifier

cipherColumnName ::=

identifier

assistedQueryColumnName
identifier

likeQueryColumnName ::=
identifier

algorithmType ::=

string

key ::=

string

value ::=
literal

'=' algorithmType (',

'=' algorithmType (',

'=' algorithmType (',

key '=' value)x ")'

9.2. ShardingSphere-Proxy

276

Apache ShardingSphere document

Supplement

+ CIPHER specifies the cipher column, ASSISTED_QUERY specifies the assisted query column,
LIKE_QUERY specifies the like query column;

« algorithmType specifies the encryption algorithm type, please refer to Encryption Algorithm;
« Duplicate ruleName will not be created;

« ifNotExists clause used for avoid Duplicate encrypt rule error.

Example

Create an encrypt rule

CREATE ENCRYPT RULE t_encrypt (

COLUMNS (

(NAME=user_id,CIPHER=user_cipher ,ASSISTED_QUERY=assisted_query_user,LIKE_
QUERY=11ike_query_user ,ENCRYPT_ALGORITHM(TYPE (NAME='AES',PROPERTIES('aes-key-value'=
'123456abc', 'digest-algorithm-name'='SHA-1'))),ASSISTED_QUERY_ALGORITHM (TYPE (NAME=
'"MD5')), LIKE_QUERY_ALGORITHM (TYPE (NAME="'CHAR_DIGEST_LIKE'))),

(NAME=order_id,CIPHER =order_cipher,ASSISTED_QUERY=assisted_query_order,LIKE_
QUERY=11ike_query_order ,ENCRYPT_ALGORITHM(TYPE (NAME="AES',PROPERTIES('aes-key-value
'='123456abc', 'digest-algorithm-name'='SHA-1"'))),ASSISTED_QUERY_

ALGORITHM(TYPE (NAME='MD5')),LIKE_QUERY_ALGORITHM(TYPE (NAME="'CHAR_DIGEST_LIKE')))
)

t_encrypt_2 (

COLUMNS (

(NAME=user_id,CIPHER=user_cipher ,ASSISTED_QUERY=assisted_query_user,LIKE_
QUERY=11ike_query_user,ENCRYPT_ALGORITHM(TYPE (NAME='AES',PROPERTIES('aes-key-value'=
'123456abc', 'digest-algorithm-name'='SHA-1'))),ASSISTED_QUERY_ALGORITHM (TYPE (NAME=
'"MD5')), LIKE_QUERY_ALGORITHM (TYPE (NAME="'CHAR_DIGEST_LIKE'))),

(NAME=order_id, CIPHER=order_cipher,ASSISTED_QUERY=assisted_query_order,LIKE_
QUERY=11ike_query_order ,ENCRYPT_ALGORITHM(TYPE (NAME="AES',PROPERTIES('aes-key-value
'='123456abc', 'digest-algorithm-name'='SHA-1'))),ASSISTED_QUERY_

ALGORITHM(TYPE (NAME="'MD5')),LIKE_QUERY_ALGORITHM(TYPE (NAME="'CHAR_DIGEST_LIKE')))

D)5

Create an encrypt rule with i fNotExists clause

CREATE ENCRYPT RULE IF NOT EXISTS t_encrypt (

COLUMNS (

(NAME=user_id,CIPHER=user_cipher ,ASSISTED_QUERY=assisted_query_user,LIKE_
QUERY=11ike_query_user ,ENCRYPT_ALGORITHM(TYPE (NAME="AES',PROPERTIES('aes-key-value'=
'123456abc', 'digest-algorithm-name'='SHA-1"'))),ASSISTED_QUERY_ALGORITHM(TYPE (NAME=
'MD5')) ,LIKE_QUERY_ALGORITHM(TYPE (NAME="'CHAR_DIGEST_LIKE'))),

(NAME=order_id,CIPHER =order_cipher,ASSISTED_QUERY=assisted_query_order,LIKE_

9.2. ShardingSphere-Proxy 277

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document

QUERY=11ike_query_order ,ENCRYPT_ALGORITHM(TYPE (NAME="AES',PROPERTIES('aes-key-value
'='123456abc', 'digest-algorithm-name'='SHA-1"'))),ASSISTED_QUERY_
ALGORITHM(TYPE (NAME="'MD5')),LIKE_QUERY_ALGORITHM(TYPE (NAME='CHAR_DIGEST_LIKE')))

)) s

t_encrypt_2 (

COLUMNS (

(NAME=user_id,CIPHER=user_cipher ,ASSISTED_QUERY=assisted_query_user,LIKE_
QUERY=11ike_query_user ,ENCRYPT_ALGORITHM(TYPE (NAME='AES',PROPERTIES('aes-key-value'=
'123456abc', 'digest-algorithm-name'='SHA-1"))),ASSISTED_QUERY_ALGORITHM(TYPE (NAME=
'"MD5')),LIKE_QUERY_ALGORITHM (TYPE (NAME="'CHAR_DIGEST_LIKE'))),
(NAME=order_id,CIPHER=0order_cipher ,ASSISTED_QUERY=assisted_query_order, LIKE_
QUERY=11ike_query_order ,ENCRYPT_ALGORITHM(TYPE (NAME="AES',PROPERTIES('aes-key-value
'='123456abc', 'digest-algorithm-name'='SHA-1"'))),ASSISTED_QUERY_

ALGORITHM (TYPE (NAME="'MD5")), LIKE_QUERY_ALGORITHM (TYPE (NAME="'CHAR_DIGEST_LIKE')))

))s

Reserved words
CREATE, ENCRYPT, RULE, COLUMNS, NAME, CIPHER, ASSISTED_QUERY, LIKE_QUERY, EN-

CRYPT_ALGORITHM, ASSISTED_QUERY_ALGORITHM, LIKE_QUERY_ALGORITHM, TYPE, TRUE,
FALSE

Related links

» Reserved word

+ Encryption Algorithm

ALTER ENCRYPT RULE

Description

The ALTER ENCRYPT RULE syntax is used to alter encryption rules.

Syntax

AlterEncryptRule ::=
"ALTER' 'ENCRYPT' 'RULE' encryptDefinition (',' encryptDefinition)x*

encryptDefinition ::=
ruleName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)x ')' ')'

columnDefinition ::=
"(" 'NAME' '=' columnName ',' 'CIPHER' '=' cipherColumnName (',' "'ASSISTED_QUERY'

9.2. ShardingSphere-Proxy 278

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document

'=' assistedQueryColumnName)? (','

encryptAlgorithmDefinition
"ENCRYPT_ALGORITHM' ' ('

propertiesDefinition)?

assistedQueryAlgorithmDefinition
'"ASSISTED_QUERY_ALGORITHM'

propertiesDefinition)?

likeQueryAlgorithmDefinition
'LIKE_QUERY_ALGORITHM'

propertiesDefinition)?

propertiesDefinition

"PROPERTIES' '(' key '

ruleName ::=
identifier

columnName ::=
identifier

cipherColumnName ::=
identifier

assistedQueryColumnName
identifier

likeQueryColumnName ::=

identifier

algorithmType ::=
string

key ::=
string

value ::=
literal

'LIKE_QUERY'
encryptAlgorithmDefinition (',' assistedQueryAlgorithmDefinition)? (','
likeQueryAlgorithmDefinition)? ')'

'="' T1ikeQueryColumnName)?

'='" algorithmType (','

'=' algorithmType (','

'=' algorithmType (',

value (','

9.2. ShardingSphere-Proxy

279

Apache ShardingSphere document

Supplement

+ CIPHER specifies the cipher column, ASSISTED_QUERY specifies the assisted query column,
LIKE_QUERY specifies the like query column

« algorithmType specifies the encryption algorithm type, please refer to Encryption Algorithm

Example

« Alter an encrypt rule

ALTER ENCRYPT RULE t_encrypt (

COLUMNS (

(NAME=user_id,CIPHER=user_cipher ,ASSISTED_QUERY=assisted_query_user,LIKE_
QUERY=11ike_query_user,ENCRYPT_ALGORITHM(TYPE (NAME="'AES',PROPERTIES('aes-key-value'=
'123456abc', 'digest-algorithm-name'='SHA-1'))),ASSISTED_QUERY_ALGORITHM(TYPE (NAME=
"MD5')),LIKE_QUERY_ALGORITHM (TYPE (NAME='CHAR_DIGEST_LIKE'))),
(NAME=order_id,CIPHER=order_cipher ,ASSISTED_QUERY=assisted_query_order, LIKE_
QUERY=11ike_query_order ,ENCRYPT_ALGORITHM(TYPE (NAME="'AES' ,PROPERTIES('aes-key-value
'='123456abc', 'digest-algorithm-name'='SHA-1'))),ASSISTED_QUERY_

ALGORITHM (TYPE (NAME="'MD5"')), LIKE_QUERY_ALGORITHM(TYPE (NAME="'CHAR_DIGEST_LIKE')))

))s

Reserved words
ALTER, ENCRYPT, RULE, COLUMNS, NAME, CIPHER, ASSISTED_QUERY, LIKE_QUERY, EN-

CRYPT_ALGORITHM, ASSISTED_QUERY_ALGORITHM, LIKE_QUERY_ALGORITHM, TYPE, TRUE,
FALSE

Related links

» Reserved word

+ Encryption Algorithm

DROP ENCRYPT RULE

Description

The DROP ENCRYPT RULE syntax is used to drop an existing encryption rule.

9.2. ShardingSphere-Proxy 280

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document

Syntax
DropEncryptRule ::=
'"DROP' '"ENCRYPT' 'RULE' +ifExists? ruleName (',' ruleName)x
ifExists ::=
'"IF' '"EXISTS'
ruleName ::=

identifier

Supplement

« i fExists clause is used for avoid Encrypt rule not exists error.

Example

« Drop an encrypt rule

DROP ENCRYPT RULE t_encrypt, t_encrypt_2;

« Drop encrypt with i fExists clause

DROP ENCRYPT RULE IF EXISTS t_encrypt, t_encrypt_2;

Reserved words

DROP, ENCRYPT, RULE

Related links

« Reserved word

Mask

This chapter describes the syntax of mask.

9.2. ShardingSphere-Proxy 281

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

CREATE MASK RULE

Description

The CREATE MASK RULE syntax is used to create a mask rule.

Syntax

CreateMaskRule ::=

"CREATE' 'MASK' 'RULE' 1ifNotExists? maskRuleDefinition (',' maskRuleDefinition)x*

ifNotExists ::=
'"IF' 'NOT' '"EXISTS'

maskRuleDefinition ::=

ruleName '(' '"COLUMNS'

columnDefinition ::=

"(" '"NAME' '=' columnName ',' maskAlgorithmDefinition ')'

maskAlgorithmDefinition ::
'"TYPE' '"(' 'NAME' '=' algorithmType (',' propertiesDefinition)?

propertiesDefinition ::

"PROPERTIES' '(' key '=' value (',

ruleName ::=
identifier

columnName ::=

identifier

algorithmType ::=
literal

key ::=
string

value ::=
literal

columnDefinition (',' columnDefinition)x

key '=' value)x ")'

9.2. ShardingSphere-Proxy

282

Apache ShardingSphere document

Note

+ algorithmType specifies the data masking algorithm type. For more details, please refer to Data
Masking Algorithm;

+ Duplicate ruleName will not be created;

« ifNotExists clause is used for avoid Duplicate mask rule error.

Example

Create a mask rule

CREATE MASK RULE t_mask (

COLUMNS (

(NAME=phone_number , TYPE (NAME="MASK_FROM_X_TO_Y', PROPERTIES("from-x"=1, "to-y"=2,
"replace-char"="%x"))),

(NAME=address, TYPE (NAME="'MD5"))

)5

Create mask rule with 1 fNotExists clause

CREATE MASK RULE IF NOT EXISTS t_mask (

COLUMNS (

(NAME=phone_number, TYPE (NAME="MASK_FROM_X_TO_Y', PROPERTIES("from-x"=1, "to-y"=2,
"replace-char"="%x"))),

(NAME=address,TYPE(NAME="'MD5"'))

))5

Reserved words

CREATE, MASK, RULE, COLUMNS, NAME, TYPE

Related links

» Reserved word

+ Data Masking Algorithm

9.2. ShardingSphere-Proxy 283

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/

Apache ShardingSphere document

ALTER MASK RULE

Description

The ALTER MASK RULE syntax is used to create a mask rule.

Syntax

AlterMaskRule ::=

"ALTER' 'MASK' 'RULE' maskRuleDefinition (',' maskRuleDefinition)x

maskRuleDefinition ::=

ruleName '(' '"COLUMNS'

columnDefinition ::=

"(" '"NAME' '=' columnName ',' maskAlgorithmDefinition ')'

maskAlgorithmDefinition ::
'"TYPE' '"(' 'NAME' '=' algorithmType (',' propertiesDefinition)?

propertiesDefinition ::

'"PROPERTIES' '(' key '=' value (','

ruleName ::=
identifier

columnName ::=
identifier

algorithmType ::=
literal

key ::=
string

value ::=
literal

columnDefinition (',' columnDefinition)x*

key '=' value)x ")'

9.2. ShardingSphere-Proxy

284

Apache ShardingSphere document

Supplement

« algorithmType specifies the data masking algorithm type, please refer to Data Masking Algo-

rithm.

Example

Alter a mask rule

ALTER MASK RULE t_mask (

COLUMNS (

(NAME=phone_number , TYPE (NAME="'MASK_FROM_X_TO_Y', PROPERTIES("from-x"=1, "to-y"=2,
"replace-char"="%x"))),

(NAME=address, TYPE (NAME="'MD5"))

))s

Reserved words

ALTER, MASK, RULE, COLUMNS, NAME, TYPE

Related links

» Reserved word

+ Data Masking Algorithm

DROP MASK RULE

Description

The DROP MASK RULE syntax is used to drop existing mask rule.

Syntax

DropMaskRule ::=
'"DROP' '"MASK' 'RULE' ifExists? ruleName (',' ruleName)

ifExists ::=
'"TF' '"EXISTS'

ruleName ::=
identifier

9.2. ShardingSphere-Proxy 285

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/

Apache ShardingSphere document

Supplement

+ ifExists clause used for avoid Mask rule not exists error.

Example

+ Drop mask rule

DROP MASK RULE t_mask, t_mask_1;

« Drop mask rule with i fExists clause

DROP MASK RULE IF EXISTS t_mask, t_mask_1;

Reserved words

DROP, MASK, RULE

Related links

» Reserved word

Shadow

This chapter describes the syntax of shadow.

CREATE SHADOW RULE

Description

The CREATE SHADOW RULE syntax is used to create a shadow rule.

Syntax

CreateShadowRule ::=
'"CREATE' 'SHADOW' 'RULE' ifNotExists? shadowRuleDefinition (','
shadowRuleDefinition)*

ifNotExists ::=
'TF' '"NOT' '"EXISTS'

shadowRuleDefinition ::=
ruleName '(' storageUnitMapping shadowTableRule (',' shadowTableRule)x* ')'

9.2. ShardingSphere-Proxy 286

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

storageUnitMapping ::=

'SOURCE'"' '=' storageUnitName ',' 'SHADOW'

shadowTableRule ::=
tableName '(' shadowAlgorithm ')'

'=' storageUnitName

shadowAlgorithm ::=
'"TYPE' '"(' 'NAME' '=' algorithmType ',' propertiesDefinition ')’
ruleName ::=

identifier

storageUnitName ::=

identifier

tableName ::=
identifier

algorithmName ::
identifier

algorithmType ::=
string

propertiesDefinition ::=
'"PROPERTIES' '(' key '=' value (',

key ::=
string

value ::=
literal

Supplement

« Duplicate ruleName cannot be created;

key '=' value)x '")'

« storageUnitMapping specifies the mapping relationship between the source database and

the shadow library. You need to use the storage unit managed by RDL, please refer to STORAGE

UNIT;

tableName and algorithmType;

shadowAlgorithmcan act on multiple shadowTableRule at the same time;

If algorithmName is not specified, it will be automatically generated according to ruleName,

« algorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT;

9.2. ShardingSphere-Proxy

287

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

« ifNotExists caluse is used for avoid Duplicate shadow rule error.

Example

« Create a shadow rule

CREATE SHADOW RULE shadow_rule(

SOURCE=demo_ds,

SHADOW=demo_ds_shadow,

t_order (TYPE (NAME="SQL_HINT")),

t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="1insert","column'"=
"user_id", "value"='1"')))

I
» Create a shadow rule with i fNotEx1ists clause

CREATE SHADOW RULE IF NOT EXISTS shadow_rule(

SOURCE=demo_ds,

SHADOW=demo_ds_shadow,

t_order (TYPE (NAME="SQL_HINT")),

t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="1dinsert","column'=
"user_id", "value"='1"')))
)5

Reserved word

CREATE, SHADOW, RULE, SOURCE, SHADOW, TYPE, NAME, PROPERTIES

Related links

» Reserved word

» STORAGE UNIT

ALTER SHADOW RULE

Description

The ALTER SHADOW RULE syntax is used to alter shadow rule.

9.2. ShardingSphere-Proxy 288

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

Syntax

AlterShadowRule ::=
"ALTER' 'SHADOW' 'RULE' shadowRuleDefinition (',' shadowRuleDefinition)x*

shadowRuleDefinition ::=
ruleName '(' storageUnitMapping shadowTableRule (',' shadowTableRule)x*x ')'

storageUnitMapping ::=
"'SOURCE' '=' storageUnitName ',' 'SHADOW' '=' storageUnitName

shadowTableRule ::=
tableName '(' shadowAlgorithm ")’

shadowAlgorithm ::=
'"TYPE' '"(' 'NAME' '=' shadowAlgorithmType ',' propertiesDefinition ')'
ruleName ::=

identifier

storageUnitName ::
identifier

tableName ::=

identifier

algorithmName ::=

identifier

shadowAlgorithmType ::=

string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)*x ')'

key ::=

string

value ::=
literal

9.2. ShardingSphere-Proxy 289

Apache ShardingSphere document

Supplement

- storageUnitMapping specifies the mapping relationship between the source database and
the shadow library. You need to use the storage unit managed by RDL, please refer to STORAGE
UNIT;

shadowAlgorithm can act on multiple shadowTableRule at the same time;

« If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType;

shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT.

Example

« Create a shadow rule

ALTER SHADOW RULE shadow_rule(

SOURCE=demo_ds,

SHADOW=demo_ds_shadow,

t_order (TYPE(NAME="SQL_HINT")),

t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column'"=
"user_id", "value"='1"')))
)3

Reserved word

ALTER, SHADOW, RULE, SOURCE, SHADOW, TYPE, NAME, PROPERTIES

Related links

» Reserved word

» STORAGE UNIT

DROP SHADOW RULE

Description

The DROP SHADOW RULE syntax is used to drop shadow rule for specified database

9.2. ShardingSphere-Proxy 290

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

Syntax

DropShadowRule ::=
'DROP' 'SHADOW' 'RULE' ifExists? ruleName ('FROM' databaseName)?

ifExists ::=
'"TF' '"EXISTS'

ruleName ::=
identifier

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

+ ifExists clause is used for avoid Shadow rule not exists error.

Example

+ Drop shadow rule for specified database

DROP SHADOW RULE shadow_rule FROM shadow_db;

+ Drop shadow rule for current database

DROP SHADOW RULE shadow_rule;

« Drop shadow rule with i fExists clause

DROP SHADOW RULE IF EXISTS shadow_rule;

Reserved word

DROP, SHODOW, RULE, FROM

9.2. ShardingSphere-Proxy 291

Apache ShardingSphere document

Related links

« Reserved word

CREATE DEFAULT SHADOW ALGORITHM

Description

The CREATE DEFAULT SHADOW ALGORITHM syntax is used to create a default shadow algorithm.

Syntax

CreateDefaultShadowAlgorithm ::=
'"CREATE' 'DEFAULT' 'SHADOW' 'ALGORITHM' ifNotExists? shadowAlgorithm

ifNotExists ::=
'"IF' '"NOT' '"EXISTS'

shadowAlgorithm ::=
'"TYPE' '"(' 'NAME' '=' algorithmType ',' propertiesDefiinition ")’

algorithmType ::=

string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=

literal

Supplement

« algorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT;

+ ifNotExists clause is used for avoid Duplicate default shadow algorithmerror.

9.2. ShardingSphere-Proxy 292

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example
« Create default shadow algorithm
CREATE DEFAULT SHADOW ALGORITHM TYPE(NAME="SQL_HINT");

« Create default shadow algorithm with i fNotExist clause

CREATE DEFAULT SHADOW ALGORITHM IF NOT EXISTS TYPE(NAME="SQL_HINT");

Reserved word

CREATE, DEFAULT, SHADOW, ALGORITHM, TYPE, NAME, PROPERTIES

Related links

» Reserved word

ALTER DEFAULT SHADOW ALGORITHM

Description

The ALTER DEFAULT SHADOW ALGORITHM syntax is used to alter a default shadow algorithm.

Syntax

AlterDefaultShadowAlgorithm ::=
'ALTER' 'DEFAULT' 'SHADOW' 'ALGORITHM' shadowAlgorithm

shadowAlgorithm ::=
'"TYPE' '"(' 'NAME' '=' algorithmType ',' propertiesDefiinition ')'

algorithmType ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)x*x ')'

key ::=

string

value ::=
literal

9.2. ShardingSphere-Proxy 293

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« algorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT.

Example

« Alter default shadow algorithm

ALTER DEFAULT SHADOW ALGORITHM TYPE(NAME="SQL_HINT");

Reserved word

ALTER, DEFAULT, SHADOW, ALGORITHM, TYPE, NAME, PROPERTIES

Related links

» Reserved word

DROP DEFAULT SHADOW ALGORITHM

Description

The DROP DEFAULT SHADOW ALGORITHM syntaxis used to drop default shadow algorithm for specified
database

Syntax

DropDefaultShadowAlgorithm ::=
'"DROP' 'DEFAULT' 'SHADOW' 'ALGORITHM' ifExists? ('FROM' databaseName)?

ifExists ::=
'"TF' '"EXISTS'

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 294

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

+ ifExists clause used for avoid Default shadow algorithm not exists error.

Example

« Drop default shadow algorithm for specified database

DROP DEFAULT SHADOW ALGORITHM FROM shadow_db;

+ Drop default shadow algorithm for current database

DROP DEFAULT SHADOW ALGORITHM;

+ Drop default shadow algorithm with i fExists clause

DROP DEFAULT SHADOW ALGORITHM IF EXISTS;

Reserved word

DROP, DEFAULT, SHODOW, ALGORITHM, FROM

Related links

» Reserved word

DROP SHADOW ALGORITHM

Description

The DROP SHADOW ALGORITHM syntax is used to drop shadow algorithm for specified database

Syntax

DropShadowAlgorithm ::=
'DROP' 'SHADOW' 'ALGORITHM' +ifExists? algorithmName (',' algorithmName)* ('FROM'
databaseName)?

ifExists ::=
'TF' 'EXISTS'

9.2. ShardingSphere-Proxy 295

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

algorithmName ::=
identifier

databaseName ::=
identifier
Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

is not used, No database selected will be prompted;

« i fExists clause is used for avoid shadow algorithm not exists error.

Example

+ Drop mutiple shadow algorithm for specified database

DROP SHADOW ALGORITHM shadow_rule_t_order_sql_hint_0, shadow_rule_t_order_item_sql_
hint_0 FROM shadow_db;

+ Drop single shadow algorithm for current database

DROP SHADOW ALGORITHM shadow_rule_t_order_sql_hint_0;

 Drop shadow algorithm with i fExists clause

DROP SHADOW ALGORITHM IF EXISTS shadow_rule_t_order_sql_hint_0;

Reserved word

DROP, SHODOW, ALGORITHM, FROM

Related links

» Reserved word

RQL Syntax

RQL (Resource & Rule Query Language) responsible for resources/rules query.

9.2. ShardingSphere-Proxy 296

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Storage Unit Query

This chapter describes the syntax of storage unit query.

SHOW STORAGE UNITS

Description

The SHOW STORAGE UNITS syntax is used to query the storage units that have been added to the
specified database.

Syntax

ShowStorageUnit ::=
"SHOW' 'STORAGE' 'UNITS' ('FROM' databaseName)? showLike?

databaseName ::=
identifier

showlLike ::=
'"LIKE' 1likePattern

likePattern ::=

string

Supplement

« When databaseName is not specified, the default is the currently used DATABASE; if DATABASE
is not used, it will prompt No database selected.

9.2. ShardingSphere-Proxy 297

Apache ShardingSphere document

Return Value Description

Column Description

name Storage unit name
type Storage unit type
host Storage unit host
port Storage unit port
db Database name

connection_timeout_milliseconds
idle_timeout_milliseconds
max_lifetime_milliseconds
max_pool_size

min_pool_size

read_only

other_attributes

connection timeout (milliseconds)
idle timeout (milliseconds)

max lifetime (milliseconds)

max pool size

min pool size

read-only flag

other attributes

Example

* Query storage units from current database

mysql> SHOW STORAGE UNITS;

| name | type | host | port | db

timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |

| connection_timeout_milliseconds | idle_

read_only | other_attributes

| ds_1 | MySQL | 127.0.0.1 | 3306 | dbl | 30000

| 2100000 | 560 | 1 | false
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"keepaliveTime":0,"leakDetectionThreshold":0,"registerMbeans": false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |

| ds_0 | MySQL | 127.0.0.1 | 3366 | dbe | 36000 | 60000
| 2100000 | 50 | 1 | false | {
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"keepaliveTime":0,"leakDetectionThreshold":0,"registerMbeans": false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |

t———— - Fom o o o o

9.2. ShardingSphere-Proxy 298

Apache ShardingSphere document

2 rows in set (0.01 sec)

* Query storage units from specified database

mysql> SHOW STORAGE UNITS FROM sharding_db;

| name | type | host | port | db | connection_timeout_milliseconds | +idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

| ds_1 | MySQL | 127.0.0.1 | 3306 | dbl | 36000 | 60000
| 2100000 | 50 | 1 | false | {
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"keepaliveTime":0,"leakDetectionThreshold":0,"registerMbeans": false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |

| ds_0 | MySQL | 127.0.0.1 | 3366 | dbe | 36000 | 60000
| 2100000 | 50 | 1 | false | {
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"keepaliveTime":0,"leakDetectionThreshold":0,"registerMbeans": false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |

2 rows in set (0.01 sec)

* Query storage units with like clause

mysql> SHOW STORAGE UNITS LIKE '%_0';

| name | type | host | port | db | connection_timeout_milliseconds | idle_

9.2. ShardingSphere-Proxy 299

Apache ShardingSphere document

timeout_milliseconds | max_lifetime_milliseconds | max_pool_size min_pool_size

read_only | other_attributes

| ds_0 | MySQL | 127.0.0.1 | 3306 | db® | 30000 | 60000
| 2100000 | 50 | 1 | false | {
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"keepaliveTime":0,"leakDetectionThreshold":0,"registerMbeans": false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |

1 rows in set (0.01 sec)

Reserved word

SHOW, STORAGE, UNITS, FROM, LIKE

Related links

» Reserved word

Rule Query

This chapter describes the syntax of rule query.

Sharding

This chapter describes the syntax of sharding.

9.2. ShardingSphere-Proxy 300

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOW SHARDING TABLE RULE

Description

The SHOW SHARDING TABLE RULE syntax is used to query the sharding table rule in the specified

database.

Syntax

ShowShardingTableRule ::=
'SHOW' 'SHARDING' 'TABLE'

tableName ::=
identifier

databaseName ::=
identifier

Supplement

('RULE' tableName |

'"RULES'") ('FROM' databaseName)?

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnotused, No database selected will be prompted.

Return value description

Column

Description

table

actual_data_nodes
actual_data_sources
database_strategy_type

d atabase_sharding_column
database_ sharding_algorithm_type
database_s harding_algorithm_props
table_strategy_type
table_sharding_column

table_ sharding_algorithm_type
table_s harding_algorithm_props
key_generate_column
key_generator_type
key_generator_props

Logical table name

Actual data node

Actual data source (Displayed when creating rules by RDL)
Database sharding strategy type
Database sharding column

Database sharding algorithm type
Database sharding algorithm properties
Table sharding strategy type

Table sharding column

Table sharding algorithm type

Table sharding algorithm properties
Sharding key generator column
Sharding key generator type

Sharding key generator properties

Example

* Query the sharding table rules of the specified logical database

9.2. ShardingSphere-Proxy

301

Apache ShardingSphere document

SHOW SHARDING TABLE RULES FROM sharding_db;

| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_

generator_type | key_generator_props |

o o fom o
e e Fom
——————————————— B Tt et
—————————— B it T ittt et
e +
| t_order | ds_0,ds_1 |
| | | mod
| order_did | mod | sharding-count=4
| | | |
| t_order_item | | ds_0,ds_1 |
| | | mod
| order_id | mod | sharding-count=4
I I I
o —— o o o
e e o
——————————————— o
—————————— B st T e
e +
2 rows in set (0.12 sec)

* Query the sharding table rules of the current logic database
SHOW SHARDING TABLE RULES;
B o Fom o
o o Fm e
——————————————— B e et e ittt e LT LR
—————————— B et At it Tt
e +
| table | actual_data_nodes | actual_data_sources | database_strategy_type |

database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_

generator_type | key_generator_props |

9.2. ShardingSphere-Proxy 302

Apache ShardingSphere document

——————————————— Bt ittt
—————————— Bt et Sttt e
et +
| t_order | ds_6,ds_1 |
[| | mod
| order_id | mod | sharding-count=4
I I I I
| t_order_item | | ds_0,ds_1 |
| | | mod
| order_did | mod | sharding-count=4
| | |
Fomm o o o
o o o
——————————————— o
—————————— B e A et e
e +
2 rows in set (0.12 sec)

* Query the specified sharding table rule
SHOW SHARDING TABLE RULE t_order;
o e o o
o o Fom
——————————————— B T i Tt
—————————— B et it et e it E
et ittt LT L e e +
| table | actual_data_nodes | actual_data_sources | database_strategy_type |

database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_

generator_type | key_generator_props |

o —— o Fom Fm
o e o
——————————————— Bt et st
—————————— Bttt T et e e
e +

| t_order | ds_6,ds_1 |

| | | mod

| order_id | mod | sharding-count=4

I I I

o —— o o o

e e o
——————————————— e
—————————— B e Tt Tt e
et ittt L +

1 row in set (0.12 sec)

9.2. ShardingSphere-Proxy 303

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, TABLE, RULE, FROM

Related links

« Reserved word

SHOW SHARDING ALGORITHMS
Description

The SHOW SHARDING ALGORITHMS syntax is used to query the sharding algorithms in the specified

database.

Syntax

ShowShardingAlgorithms: :=
'"SHOW' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnotused, No database selected will be prompted.

Return value description

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

9.2. ShardingSphere-Proxy 304

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

+ Query the sharding table algorithms of the specified logical database

SHOW SHARDING ALGORITHMS FROM sharding_db;

mysql> SHOW SHARDING ALGORITHMS FROM sharding_db;

o Fo———— o
—————— +

name | type | props
o Fo———— o
—————— +
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}
I
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_s${order_id %
2} |
o o —— o
—————— +

2 rows in set (0.01 sec)

 Query the sharding table algorithms of the current logical database

SHOW SHARDING ALGORITHMS;

mysql> SHOW SHARDING ALGORITHMS;

o o o
—————— +

name | type | props
o to————— o
—————— +
| t_order_inline | INLINE | algorithm-expression=t_order_s${order_id % 2}
|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_s${order_id %
2} |
B e o T T
—————— +

2 rows in set (0.01 sec)

9.2. ShardingSphere-Proxy 305

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, ALGORITHMS, FROM

Related links

« Reserved word

SHOW UNUSED SHARDING ALGORITHMS

Description

The SHOW UNUSED SHARDING ALGORITHMS syntax is used to query the unused sharding algorithms
in the specified database.

Syntax

ShowShardingAlgorithms: :=
"SHOW' 'UNUSED' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnotused, No database selected will be prompted.

Return value description

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

9.2. ShardingSphere-Proxy 306

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query the unused sharding table algorithms of the specified logical database

SHOW UNUSED SHARDING ALGORITHMS;

mysql> SHOW UNUSED SHARDING ALGORITHMS;

o to———— e +
| name | type | props |
o do———— B et et T e +
| ti_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
o o B e T T +

1 row in set (0.01 sec)

Reserved word

SHOW, UNUSED, SHARDING, ALGORITHMS, FROM

Related links

» Reserved word

SHOW DEFAULT SHARDING STRATEGY

Description

The SHOW DEFAULT SHARDING STRATEGY syntax is used to query default sharding strategy in spec-
ified database.

Syntax

ShowDefaultShardingStrategy::=
'SHOW' 'DEFAULT' 'SHARDING' 'STRATEGY' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 307

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnot used, No database selected will be prompted.

Return value description

Column Description

name Sharding strategy scope
type Sharding strategy type
sharding_column Sharding column

sharding_algorithm_name Sharding algorithm name
sharding_algorithm_type Sharding algorithm type
sharding_algorithm_props Sharding algorithm properties

Example

* Query default sharding strategy in specified database.

SHOW DEFAULT SHARDING STRATEGY FROM sharding_db;

mysql> SHOW DEFAULT SHARDING STRATEGY FROM sharding_db;

| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |

o ——— o ——— o o o
————————— et ittt

| TABLE | STANDARD | order_-id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |

| DATABASE | STANDARD | order_id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |

Fom - domm o e ittt e T e Fom e
————————— o

2 rows in set (0.00 sec)

* Query default sharding strategy in current database.

SHOW DEFAULT SHARDING STRATEGY;

mysql> SHOW DEFAULT SHARDING STRATEGY;

9.2. ShardingSphere-Proxy 308

Apache ShardingSphere document

algorithm_type | sharding_algorithm_props

o — o ——— o o o
————————— T

| TABLE | STANDARD | order_id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |

| DATABASE | STANDARD | order_id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |

o ——— o o o o
————————— B et et 4

2 rows in set (0.00 sec)

Reserved word

SHOW, DEFAULT, SHARDING, STRATEGY, FROM

Related links

» Reserved word

SHOW SHARDING KEY GENERATORS

Description

SHOW SHARDING KEY GENERATORS syntax is used to query sharding key generators in specified
database.

Syntax

ShowShardingKeyGenerators: :=
'"SHOW' 'SHARDING' 'KEY' 'GENERATORS' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

9.2. ShardingSphere-Proxy 309

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

Example

* Query the sharding key generators of the specified logical database

SHOW SHARDING KEY GENERATORS FROM sharding_db;

mysql> SHOW SHARDING KEY GENERATORS FROM sharding_db;

1 row in set (0.00 sec)

* Query the sharding key generators of the current logical database

SHOW SHARDING KEY GENERATORS;

mysql> SHOW SHARDING KEY GENERATORS;

1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy

310

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, KEY, GENERATORS, FROM

Related links

« Reserved word

SHOW UNUSED SHARDING KEY GENERATORS

Description

SHOW UNUSED SHARDING KEY GENERATORS syntax is used to query sharding key generators that are

not used in specified database.

Syntax

ShowUnusedShardingKeyGenerators: :=
"SHOW' 'UNUSED' 'SHARDING' 'KEY' 'GENERATOR' ('FROM' databaseName)?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

9.2. ShardingSphere-Proxy 311

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query sharding key generators that are not used in the specified logical database

SHOW UNUSED SHARDING KEY GENERATORS FROM sharding_db;

mysql> SHOW UNUSED SHARDING KEY GENERATORS FROM sharding_db;

1 row in set (0.00 sec)

+ Query sharding key generators that are not used in the current logical database

SHOW UNUSED SHARDING KEY GENERATORS;

mysql> SHOW UNUSED SHARDING KEY GENERATORS;

1 row in set (0.00 sec)

Reserved word

SHOW, UNUSED, SHARDING, KEY, GENERATORS, FROM

Related links

» Reserved word

SHOW SHARDING AUDITORS
Description

SHOW SHARDING AUDITORS syntax is used to query sharding auditors in specified database.

9.2. ShardingSphere-Proxy 312

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShardingAuditors::=
'SHOW' 'SHARDING' 'AUDITORS' ('FROM' databaseName)?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

is not used, No database selected will be prompted.

Return value description

column Description

name Sharding auditor name
type Sharding auditor algorithm type
props Sharding auditor algorithm properties

Example

* Query sharding auditors for the specified logical database

SHOW SHARDING AUDITORS FROM sharding_db;

mysql> SHOW SHARDING AUDITORS FROM sharding_db;

| sharding_key_required_auditor | dml_sharding_conditions | |

o Fom o +
1 row in set (0.01 sec)
* Query sharding auditors for the current logical database

SHOW SHARDING AUDITORS;

mysql> SHOW SHARDING AUDITORS;

o et it T Fo————— +
| name | type | props |
B mntt e ettt o +

| sharding_key_required_auditor | dml_sharding_conditions | |

9.2. ShardingSphere-Proxy 313

Apache ShardingSphere document

o o o +

1 row in set (0.00 sec)

Reserved word

SHOW, SHARDING, AUDITORS, FROM

Related links

» Reserved word

SHOW UNUSED SHARDING AUDITORS

Description

SHOW SHARDING AUDITORS syntax is used to query sharding auditors that are not used in specified

database.

Syntax

ShowUnusedShardingAuditors: :=

"SHOW' 'UNUSED' 'SHARDING' 'AUDITOR' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

is not used, No database selected will be prompted.

Return value description

column

Description

name
type
props

Sharding auditor name
Sharding auditor algorithm type
Sharding auditor algorithm properties

9.2. ShardingSphere-Proxy

314

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query sharding auditors that are not used in the specified logical database

SHOW UNUSED SHARDING AUDITORS FROM sharding_db;

mysql> SHOW UNUSED SHARDING AUDITORS FROM sharding_db;

1 row in set (0.01 sec)

+ Query sharding auditors are not used in the current logical database

SHOW UNUSED SHARDING AUDITORS;

mysql> SHOW UNUSED SHARDING AUDITORS;

o o o +

1 row in set (0.00 sec)

Reserved word

SHOW, UNUSED, SHARDING, AUDITORS, FROM

Related links

» Reserved word

SHOW SHARDING TABLE NODES
Description

SHOW SHARDING TABLE NODES syntax is used to query sharding table nodes in specified database.

9.2. ShardingSphere-Proxy 315

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShardingTableNode: : =
'SHOW' 'SHARDING' 'TABLE' 'NODES' tableName? ('FROM' databaseName)?

tableName ::=
identifier

databaseName ::=
identifier
Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

name Sharding rule name
nodes Sharding nodes

Example

* Query sharding table nodes for specified table in the specified logical database

SHOW SHARDING TABLE NODES t_order_item FROM sharding_db;

mysql> SHOW SHARDING TABLE NODES t_order_item FROM sharding_db;

| t_order_item | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1.t_
order_item_0, resource_l.t_order_item_1 |

1 row in set (0.00 sec)

* Query sharding table nodes for specified table in the current logical database

9.2. ShardingSphere-Proxy 316

Apache ShardingSphere document

SHOW SHARDING TABLE NODES t_order_-item;

mysql> SHOW SHARDING TABLE NODES t_order_-item;

| t_order_item | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1l.t_
order_item_0, resource_l.t_order_item_1 |

1 row in set (0.00 sec

* Query sharding table nodes for all tables in the specified logical database

SHOW SHARDING TABLE NODES FROM sharding_db;

mysql> SHOW SHARDING TABLE NODES FROM sharding_db;

| t_order_item | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1l.t_
order_item_0, resource_l.t_order_item_1 |

1 row in set (0.00 sec)

+ Query sharding table nodes for all tables in the current logical database

SHOW SHARDING TABLE NODES;

mysql> SHOW SHARDING TABLE NODES;

| t_order_titem | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1.t_
order_item_0, resource_l.t_order_item_1 |

1 row in set (0.00 sec

9.2. ShardingSphere-Proxy 317

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, TABLE, NODES, FROM

Related links

« Reserved word

SHOW SHARDING TABLE RULES USED ALGORITHM

Description

SHOW SHARDING TABLE RULES USED ALGORITHM syntax is used to query sharding rules used
specified sharding algorithm in specified logical database

Syntax

ShowShardingTableRulesUsedAlgorithm: :=
'SHOW' 'SHARDING' 'TABLE' 'RULES' 'USED' 'ALGORITHM' algorithmName ('FROM'

databaseName)?

algorithmName ::=
identifier

databaseName ::=
identifier
Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

type Sharding rule type

name Sharding rule name

9.2. ShardingSphere-Proxy 318

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query sharding table rules for the specified sharding algorithm in spicified logical database

SHOW SHARDING TABLE RULES USED ALGORITHM table_inline FROM sharding_db;

mysql> SHOW SHARDING TABLE RULES USED ALGORITHM table_inline FROM sharding_db;

| table | t_order_item |

o Fmm +

1 row in set (0.00 sec)

* Query sharding table rules for specified sharding algorithm in the current logical database

SHOW SHARDING TABLE RULES USED ALGORITHM table_inline;

mysql> SHOW SHARDING TABLE RULES USED ALGORITHM table_inline;

| table | t_order_item |

e Fmmm +

1 row in set (0.01 sec)

Reserved word

SHOW, SHARDING, TABLE, RULES, USED, ALGORITHM, FROM

Related links

» Reserved word

SHOW SHARDING TABLE RULES USED KEY GENERATOR

Description

SHOW SHARDING TABLE RULES USED KEY GENERATOR syntax is used to query sharding rules used

specified sharding key generator in specified logical database

9.2. ShardingSphere-Proxy

319

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShardingTableRulesUsedKeyGenerator: :=
"'SHOW' 'SHARDING' 'TABLE' 'RULES' 'USED' 'KEY' 'GENERATOR' keyGeneratorName ('FROM
' databaseName)?

keyGeneratorName ::=
identifier

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

type Sharding rule type
name Sharding rule name

Example

+ Query sharding table rules for the specified sharding key generator in spicified logical database
SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator FROM sharding_

db;

mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator FROM
sharding_db;

| table | t_order_item |

- e +

1 row in set (0.00 sec)

* Query sharding table rules for specified sharding key generator in the current logical database

SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator;

9.2. ShardingSphere-Proxy 320

Apache ShardingSphere document

mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator;

o Fomm +

| table | t_order_item |

o fom +

1 row in set (0.01 sec)

Reserved word

SHOW, SHARDING, TABLE, USED, KEY, GENERATOR, FROM

Related links

» Reserved word

SHOW SHARDING TABLE RULES USED AUDITOR

Description

SHOW SHARDING TABLE RULES USED AUDITOR syntaxisused to query sharding rules used specified
sharding auditor in specified logical database

Syntax

ShowShardingTableRulesUsedAuditor: :=
"SHOW' 'SHARDING' 'TABLE' 'RULES' 'USED' 'AUDITOR' AuditortorName ('FROM'
databaseName)?

AuditortorName ::=
identifier

databaseName ::=

identifier

9.2. ShardingSphere-Proxy 321

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

type Sharding rule type

name Sharding rule name

Example

+ Query sharding table rules for the specified sharding auditor in spicified logical database

SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor FROM sharding_
db;

mysql> SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor FROM
sharding_db;

to—————— e +
| type | name |
R o ——— +
| table | t_order |
o do—————— +

1 row in set (0.00 sec)
* Query sharding table rules for specified sharding auditor in the current logical database

SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor;

mysql> SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor;

| table | t_order |

o fomm +

1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy 322

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, TABLE, RULES, USED, AUDITOR, FROM

Related links

« Reserved word

SHOW SHARDING TABLE REFERENCE RULE

Description

SHOW SHARDING TABLE REFERENCE RULE syntax isused to query specified sharding table reference
rule in the specified logical database.

Syntax

ShowShardingBindingTableRules: :=
"SHOW' 'SHARDING' 'TABLE' 'REFERENCE' ('RULE' ruleName | 'RULES') ('FROM'

databaseName)?

ruleName ::=
identifier

databaseName ::=
identifier
Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

is not used, No database selected will be prompted.

Return value description

Columns Descriptions

name Sharding table reference rule name
sharding_table_reference sharding table reference

9.2. ShardingSphere-Proxy 323

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query sharding table reference rules for the specified logical database

SHOW SHARDING TABLE REFERENCE RULES FROM sharding_db;

mysql> SHOW SHARDING TABLE REFERENCE RULES FROM sharding_db;

to— Fm +

| name sharding_table_reference |

2 rows in set (0.00 sec)

* Query sharding table reference rules for the current logical database

SHOW SHARDING TABLE REFERENCE RULES;

mysql> SHOW SHARDING TABLE REFERENCE RULES;

| ref_6 | t_a,t_b |
| ref_1 | t_c,t_d |
B e +

2 rows in set (0.00 sec)

+ Query specified sharding table reference rule for the specified logical database

SHOW SHARDING TABLE REFERENCE RULE ref_0 FROM sharding_db;

mysql> SHOW SHARDING TABLE REFERENCE RULE FROM sharding_db;

+—————— e +
| name | sharding_table_reference |
o o +
| ref_0 | t_a,t_b |
o Fom +

1 row in set (0.00 sec)

+ Query specified sharding table reference rule for the current logical database

SHOW SHARDING TABLE REFERENCE RULE ref_0;

mysql> SHOW SHARDING TABLE REFERENCE RULE ref_0;

o Fm +

| name | sharding_table_reference |

e Fm +

9.2. ShardingSphere-Proxy 324

Apache ShardingSphere document

| ref_o | t_a,t_b

o Fmm

1 row in set (0.00 sec)

Reserved word

—

SHOW, SHARDING, TABLE, REFERENCE, RULE, RULES, FROM

Related links

« Reserved word

COUNT SHARDING RULE

Description

The COUNT SHARDING RULE syntax is used to query the number of sharding rules for specified

database.

Syntax

CountShardingRule: :=

"COUNT'" 'SHARDING' 'RULE' ('FROM' databaseName)?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnot used, No database selected will be prompted.

Return value description

Column Description

rule_name rule type

database the database to which the rule belongs
count the number of the rule

9.2. ShardingSphere-Proxy

325

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

+ Query the number of sharding rules for specified database.

COUNT SHARDING RULE FROM sharding_db;

mysql> COUNT SHARDING RULE FROM sharding_db;

o Fom o +
| rule_name | database | count |
o o e it +
| sharding_table | sharding_db | 2 |
| sharding_table_reference | sharding_db | 2 |

o R Fo—————— +

2 rows in set (0.00 sec)

 Query the number of sharding rules for current database.

COUNT SHARDING RULE;

mysql> COUNT SHARDING RULE;

B e o t—————— +
| rule_name | database | count |
e o t—————— +
| sharding_table | sharding_db | 2 |
| sharding_table_reference | sharding_db | 2 |
e o t——— +

2 rows in set (0.00 sec)

Reserved word

COUNT, SHARDING, RULE, FROM

Related links

» Reserved word

Broadcast Table

This chapter describes the syntax of broadcast table.

9.2. ShardingSphere-Proxy 326

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOW BROADCAST TABLE RULE

Description

The SHOW BROADCAST TABLE RULE syntax is used to broadcast tables for specified database.

Syntax

ShowBroadcastTableRule ::=
'SHOW' 'BROADCAST' 'TABLE' 'RULES' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Return value description

Column Description

broadcast_table Broadcasttable name

Example

+ Query broadcast tables for specified database.

SHOW BROADCAST TABLE RULES FROM sharding_db;

mysql> SHOW BROADCAST TABLE RULES FROM sharding_db;

o +
| broadcast_table |
o +
| t_a I
| tb |
| t_c |
e it +

3 rows 1in set (0.00 sec)

* Query broadcast table for current database.

9.2. ShardingSphere-Proxy 327

Apache ShardingSphere document

SHOW BROADCAST TABLE RULES;

mysql> SHOW BROADCAST TABLE RULES;

e it +
| broadcast_table |
o +
| t_a I
| tb I
| t_c I
Fom e +

3 rows in set (0.00 sec)

Reserved word

SHOW, BROADCAST, TABLE, RULES

Related links

» Reserved word

COUNT BROADCAST RULE

Description

The COUNT BROADCAST RULE syntax is used to query the number of broadcast table rules for specified

database.

Syntax

CountBroadcastRule: :=
"COUNT'" 'BROADCAST' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 328

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnot used, No database selected will be prompted.

Return value description

Column Description

rule_name rule type

database the database to which the rule belongs
count the number of the rule

Example

+ Query the number of broadcast table rules for specified database.

COUNT BROADCAST RULE FROM sharding_db;

mysql> COUNT BROADCAST RULE FROM sharding_db;

o Fom e

| rule_name | database

o Fmm

| broadcast_table | sharding_db

Fo fom e

1 rows in set (0.00 sec)

——t————— +
| count |
o +
| © I

B +

+ Query the number of broadcast table rules for current database.

COUNT BROADCAST RULE;

mysql> COUNT BROADCAST RULE;

e Fomm

| rule_name | database

o Fmm

| broadcast_table | sharding_db

Fo Fom e

1 rows in set (0.00 sec)

——t——— +
| count |
R +
| © |
o +

9.2. ShardingSphere-Proxy

329

Apache ShardingSphere document

Reserved word

COUNT, BROADCAST, RULE, FROM

Related links

« Reserved word

Single Table

This chapter describes the syntax of single table.

SHOW SINGLE TABLE

Description

The SHOW SINGLE TABLE syntax is used to query single tables for specified database.

Syntax

ShowSingleTable: :=
'SHOW' 'SINGLE' ('TABLES' ('LIKES' 1'ikeL'iter'a1)?|‘TABLE' tableName) ('FROM'

databaseName)?

tableName ::=
identifier

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

9.2. ShardingSphere-Proxy 330

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column Description

table_name Single table name
storage_unit_name The storage unit name where the single table is located

Example

* Query specified single table for specified database.

SHOW SINGLE TABLE t_user FROM sharding_db;

mysql> SHOW SINGLE TABLE t_user FROM sharding_db;

Fom Fmm +

| table_name storage_unit_name |

1 row in set (0.00 sec)

* Query specified single table for current database.

SHOW SINGLE TABLE t_user;

mysql> SHOW SINGLE TABLE t_user;

Fom Fmm +

| table_name storage_unit_name |

I
o Fom e +
1 row in set (0.00 sec)
+ Query single tables for specified database.

SHOW SINGLE TABLES FROM sharding_db;

mysql> SHOW SINGLE TABLES FROM sharding_db;

Fom Fmm +

| table_name storage_unit_name |

1 row in set (0.00 sec)

* Query single tables for current database.

9.2. ShardingSphere-Proxy 331

Apache ShardingSphere document

SHOW SINGLE TABLES;

mysql> SHOW SINGLE TABLES;

Fomm Fmm e +

| table_name storage_unit_name |

1 row in set (0.00 sec)

* Query the single tables whose table name end with order _5 for the specified logic database.

SHOW SINGLE TABLES LIKE '%order_5' FROM sharding_db;

mysql> SHOW SINGLE TABLES LIKE '%order_5' FROM sharding_db;

Fomm Fmm e +

| table_name storage_unit_name |

I
o ——— o +
| t_order_5 | ds_1 |
o ——— Fom e +

1 row in set (0.11 sec)

* Query the single tables whose table name end with order_5 for the current logic database

SHOW SINGLE TABLES LIKE '%order_5';

mysql> SHOW SINGLE TABLES LIKE '%order_5';

Fomm Fmm e +

| table_name storage_unit_name |

1 row in set (0.11 sec)

9.2. ShardingSphere-Proxy 332

Apache ShardingSphere document

Reserved word

SHOW, SINGLE, TABLE, TABLES, LIKE, FROM

Related links

« Reserved word

SHOW DEFAULT SINGLE TABLE STORAGE UNIT

Description

The SHOW DEFAULT SINGLE TABLE STORAGE UNIT syntaxisused to query storage units for specified
database.

Syntax

ShowDefaultSingleTableStorageUnit::=
'SHOW' 'DEFAULT' 'SINGLE' 'TABLE' 'STORAGE' 'UNIT' ('FROM' databaseName)?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Return Value Description

Column Description

storage_unit_name Storage unit name

9.2. ShardingSphere-Proxy 333

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query storage units for specified database.

SHOW DEFAULT SINGLE TABLE STORAGE UNIT

sql> SHOW DEFAULT SINGLE TABLE STORAGE UNIT;

1 row in set (0.01 sec)

Reserved word

SHOW, DEFAULT, SINGLE, TABLE, STORAGE, UNIT

Related links

» Reserved word

COUNT SINGLE_TABLE RULE

Description

The COUNT SINGLE TABLE syntax is used to query number of single table for specified database.

Syntax

CountSingleTable: :=
"COUNT'" 'SINGLE' 'TABLE' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 334

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnot used, No database selected will be prompted.

Return Value Description

Column Description

database The database name where the single table is located
count The count of single table

Example

* Query the number of single rules for specified database.

COUNT SINGLE TABLE

mysql> COUNT SINGLE TABLE;

pom - Fomm————— +

| database | count |

1 row in set (0.02 sec)

Reserved word

COUNT, SINGLE, TABLE, FROM

Related links

» Reserved word

SHOW UNLOADED SINGLE TABLES

Description

The SHOW UNLOADED SINGLE TABLES syntax is used to query unloaded single tables.

9.2. ShardingSphere-Proxy 335

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

showUnloadedSingleTables: :=
'SHOW' 'UNLOADED' 'SINGLE' 'TABLES'

Return value description

Column Description

table_name Single table name
storage_unit_name The storage unit name where the single table is located

Example

* Query unloaded single tables.

SHOW UNLOADED SINGLE TABLES;

mysql> SHOW UNLOADED SINGLE TABLES;

o ——— o +

| table_name | storage_unit_name |
o ——— Fom +
| t_single | ds_1 |
Fom - Fom +

1 row in set (0.01 sec)

Reserved word

SHOW, UNLOADED, SINGLE, TABLES

Related links

» Reserved word

9.2. ShardingSphere-Proxy 336

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Readwrite-Splitting

This chapter describes the syntax of readwrite-splitting.

SHOW READWRITE_SPLITTING RULE

Description

The SHOW READWRITE_SPLITTING RULE syntax is used to query specified readwrite-splitting rules
for specified database.

Syntax

ShowReadWriteSplittingRule::=
"SHOW' 'READWRITE_SPLITTING' ('RULE' ruleName | 'RULES') ('FROM' databaseName)?

ruleName ::=

identifier
databaseName ::=

identifier
Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnot used, No database selected will be prompted.

Return value description

Column Description

name Readwrite-splitting rule name
write_data_source_name Write data source name
read_data_source_names Read data source name list

transact ional_read_query_strategy Routing strategy for read query within a transaction
load_balancer_type Load balance algorithm type
load_balancer_props Load balance algorithm parameter

9.2. ShardingSphere-Proxy 337

Apache ShardingSphere document

Example

* Query readwrite-splitting rules for specified database.

SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;

mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;

| name | write_storage_unit_name | read_storage_unit_names | transactional_
read_query_strategy | load_balancer_type | load_balancer_props |

o —————— e B o
—————————————————— ettt 3

| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC

| random | |

Fom - o o o
—————————————————— o

1 row in set (0.01 sec)

* Query readwrite-splitting rules for current database.

SHOW READWRITE_SPLITTING RULES;

mysql> SHOW READWRITE_SPLITTING RULES;

| name | write_storage_unit_name | read_storage_unit_names | transactional_

read_query_strategy | load_balancer_type | load_balancer_props |

o ——— o e o
—————————————————— R e e

| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC

| random | |

o ——— e e o
—————————————————— o

1 row in set (0.01 sec)

* Query specified readwrite-splitting rule for specified database.

SHOW READWRITE_SPLITTING RULE ms_group_0 FROM readwrite_splitting_db;

mysql> SHOW READWRITE_SPLITTING RULE ms_group_0 FROM readwrite_splitting_db;

| name | write_storage_unit_name | read_storage_unit_names | transactional_

read_query_strategy | load_balancer_type | load_balancer_props |

| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC

9.2. ShardingSphere-Proxy 338

Apache ShardingSphere document

| random

1 row in set (0.01 sec)

* Query specified readwrite-splitting rule for current database.

SHOW READWRITE_SPLITTING RULE ms_group_0;

mysql> SHOW READWRITE_SPLITTING RULE ms_group_0;

| name | write_storage_unit_name | read_storage_unit_names | transactional_
read_query_strategy | load_balancer_type | load_balancer_props |

o R et e o ———
—————————————————— ettt e e et

| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC

| random | |

B it T o B e it o
—————————————————— e s e

1 row in set (0.01 sec)

Reserved word

SHOW, READWRITE_SPLITTING, RULE, RULES, FROM

Related links

» Reserved word

COUNT READWRITE_SPLITTING RULE

Description

The COUNT READWRITE_SPLITTING RULE syntax is used to query the number of readwrite-splitting
rules for specified database.

9.2. ShardingSphere-Proxy 339

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

CountReadwriteSplittingRule::=
"COUNT' 'READWRITE_SPLITTING' 'RULE' ('FROM' databaseName)?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs

count the number of the rule

Example

* Query the number of readwrite-splitting rules for specified database.

COUNT READWRITE_SPLITTING RULE FROM readwrite_splitting_db;

mysql> COUNT READWRITE_SPLITTING RULE FROM readwrite_splitting_db;

o e Fom———— +
| rule_name | database | count |
o B B +
| readwrite_splitting | readwrite_splitting_db | 1 |
o o to————— +

1 row in set (0.02 sec)

* Query the number of readwrite-splitting rules for current database.

COUNT READWRITE_SPLITTING RULE;

mysql> COUNT READWRITE_SPLITTING RULE;

o o dom————— +
| rule_name | database | count |
B ekt L e e o +

| readwrite_splitting | readwrite_splitting_db | 1 |

9.2. ShardingSphere-Proxy 340

Apache ShardingSphere document

Fom o o +

1 row in set (0.00 sec)

Reserved word

COUNT, READWRITE_SPLITTING, RULE, FROM

Related links

» Reserved word

Encrypt

This chapter describes the syntax of encrypt.

SHOW ENCRYPT RULES

Description

The SHOW ENCRYPT RULES syntax is used to query encryption rules for a specified database.

Syntax
ShowEncryptRule: : =

"SHOW' '"ENCRYPT' ('RULES' | 'TABLE' 'RULE' ruleName) ('FROM' databaseName)?
ruleName ::=

identifier
databaseName ::=

identifier

Note

« When databaseName is not specified, then DATABASEis currently used as the default name. If
DATABASE is not used, you will receive a No database selected prompt.

9.2. ShardingSphere-Proxy 341

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column

Description

table

logic_column
cipher_column
assisted_query_column
like_query_column
encryptor_type
encryptor_props
assisted_query_type
assisted_query_props
like_query_type
like_query_props

Logical table name

Logical column name
Ciphertext column name
Assisted query column name
Like query column name
Encryption algorithm type
Encryption algorithm parameter
Assisted query algorithm type
Assisted query algorithm parameter
Like query algorithm type

Like query algorithm parameter

Example

 Query encrypt rules for specified database.

SHOW ENCRYPT RULES FROM encrypt_db;

mysql> SHOW ENCRYPT RULES FROM encrypt_db;

| table

column | encryptor_type | encryptor_props

| logic_column | cipher_column | assisted_query_column | like_query_

| assisted_query_type | assisted_

query_props | like_query_type | like_query_props |

o ————— o —— Fom o o
e o o Fom e
————————— o

| t_user | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc, digest-algorithm-name=SHA-1 |

| |
| t_encrypt | pwd
| AES

2 rows in set (0.00 sec)

| pwd_cipher | |
| aes-key-value=123456abc, digest-algorithm-name=SHA-1 |

* Query encrypt rules for current database.

9.2. ShardingSphere-Proxy

342

Apache ShardingSphere document

SHOW ENCRYPT RULES;

mysql> SHOW ENCRYPT RULES;

Fom B e e o Fom e
e o Fom Fom e ———
————————— B et et it L S

| table | logic_column | cipher_column | assisted_query_column | like_query_
column | encryptor_type | encryptor_props | assisted_query_type | assisted_

query_props | like_query_type | like_query_props |

Fom B o e ittt e Fom e
e o o fom e ———
————————— e

| t_user | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc, digest-algorithm-name=SHA-1 |

| | | |

| t_encrypt | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc, digest-algorithm-name=SHA-1 |

| | | |

o —— Fom o o Fom
——— e e o o
————————— e e

2 rows in set (0.00 sec)

* Query specified encrypt rule in specified database.

SHOW ENCRYPT TABLE RULE t_encrypt FROM encrypt_db;

mysql> SHOW ENCRYPT TABLE RULE t_encrypt FROM encrypt_db;

o ———— o o o o
e e R et e o Fom
————————— o

| table | logic_column | cipher_column | assisted_query_column | like_query_
column | encryptor_type | encryptor_props | assisted_query_type | assisted_

query_props | like_query_type | like_query_props |

o ——— o o o Fom e —
et e o Fom Fom e —
————————— e et &

| t_encrypt | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc, digest-algorithm-name=SHA-1 |

| | | |

Fom B e e o Fom e
e o Fom Fom e ———
————————— o

1 row in set (0.01 sec)

* Query specified encrypt rule in current database.

9.2. ShardingSphere-Proxy 343

Apache ShardingSphere document

SHOW ENCRYPT TABLE RULE t_encrypt;

mysql> SHOW ENCRYPT TABLE RULE t_encrypt;

Fom B e e o Fom e
e o Fom Fom e ———
————————— B et et it L S

| table | logic_column | cipher_column | assisted_query_column | like_query_
column | encryptor_type | encryptor_props | assisted_query_type | assisted_

query_props | like_query_type | like_query_props |

o o tom o o ———
Bt ittt e o o Fom -
————————— e

| t_encrypt | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc, digest-algorithm-name=SHA-1 |

I I I I

Fom e e it e e it T T o Fom e
—— e e o o
————————— R ettt L

1 row in set (0.01 sec)

Reserved word

SHOW, ENCRYPT, TABLE, RULE, RULES, FROM

Related links

» Reserved word

COUNT ENCRYPT RULE

Description

The COUNT ENCRYPT RULE syntax is used to query the number of encrypt rules for specified database.

Syntax

CountEncryptRule: :=
"COUNT'" 'ENCRYPT' 'RULE' ('FROM' databaseName)?

databaseName ::=

identifier

9.2. ShardingSphere-Proxy 344

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnot used, No database selected will be prompted.

Return value description

Column Description

rule_name rule type

database the database to which the rule belongs
count the number of the rule

Example

* Query the number of encrypt rules for specified database.

COUNT ENCRYPT RULE FROM encrypt_db;

mysql> COUNT ENCRYPT RULE FROM encrypt_db;

Fom Fom e t—————— +
| rule_name | database | count |
o o ——— o +
| encrypt | encrypt_db | 2 |
o —— o fo———— +

1 row in set (0.01 sec)

* Query the number of encrypt rules for current database.

COUNT ENCRYPT RULE;

mysql> COUNT ENCRYPT RULE;

S

4

| rule_name database

| |
o ——— o +——
| encrypt | encrypt_db | 2

pom Fom e +--

1 row in set (0.01 sec)

9.2. ShardingSphere-Proxy

345

Apache ShardingSphere document

Reserved word

COUNT, ENCRYPT, RULE, FROM

Related links

» Reserved word

Mask

This chapter describes the syntax of mask.

SHOW MASK RULES

Description

The SHOW MASK RULES syntax is used to query mask rules for specified database.

Syntax
ShowMaskRule: : =

"SHOW' 'MASK' ('RULES' | 'RULE' ruleName) ('FROM' databaseName)?
ruleName ::=

identifier

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnotused, No database selected will be prompted.

Return value description

Column Description
table Table name
column Column name

algorithm_type
algorithm_props

Mask algorithm type
Mask algorithm properties

9.2. ShardingSphere-Proxy

346

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query mask rules for specified database

SHOW MASK RULES FROM mask_db;

mysql> SHOW MASK RULES FROM mask_db;

o Fo—m Fom e o +
| table | column | algorithm_type | algorithm_props |
domm—————— Fomm Fom e e e P +
t_mask	phoneNum	MASK_FROM_X_TO_Y	to-y=2,replace-char=x,from-x=1
t_mask	address	MD5	
t_order	order_id	MD5	
t_user	user_id	MASK_FROM_X_TO_Y	to-y=2,replace-char=x,from-x=1
o o o e +
4 rows in set (0.01 sec)

* Query mask rules for current database
SHOW MASK RULES;
mysql> SHOW MASK RULES;
o o ———— Fom e o +
| table | column | algorithm_type | algorithm_props |
domm Fomm - Fom e o +
| t_mask | phoneNum | MASK_FROM_X_TO_Y | to-y=2,replace-char=x,from-x=1 |
| t_mask | address | MD5 |
| t_order | order_id | MD5 |
| t_user | user_id | MASK_FROM_X_TO_Y | to-y=2,replace-char=x,from-x=1 |
o o o e +

4 rows in set (0.01 sec)

* Query specified mask rule for specified database

SHOW MASK RULE t_mask FROM mask_db;

mysql> SHOW MASK RULE t_mask FROM mask_db;

o Fom e —— o o +
| table | logic_column | mask_algorithm | props |
domm————— e o o +
| t_mask | phoneNum | MASK_FROM_X_TO_Y | to-y=2,replace-char=*,from-x=1 |
| t_mask | address | MD5 |

domm————— Fom e o R e ettt e e T +

2 rows in set (0.00 sec)

* Query specified mask rule for current database

9.2. ShardingSphere-Proxy 347

Apache ShardingSphere document

SHOW MASK RULE t_mask;

mysql> SHOW MASK RULE t_mask;

dom—————— Fom e o B et it e T +
| table | logic_column | mask_algorithm | props |
o o —— o e +
| t_mask | phoneNum | MASK_FROM_X_TO_Y | to-y=2,replace-char=*,from-x=1 |
| t_mask | address | MD5 | |
o o —— o —— B ittt +

2 rows in set (0.00 sec)

Reserved word

SHOW, MASK, RULE, RULES, FROM

Related links

» Reserved word

COUNT MASK RULE

Description

The COUNT MASK RULE syntax is used to query the number of mask rules for specified database.

Syntax

CountMaskRule: :=
"COUNT'" 'MASK' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

9.2. ShardingSphere-Proxy 348

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs
count the number of the rule

Example

* Query the number of mask rules for specified database.

COUNT MASK RULE FROM mask_db;

mysql> COUNT MASK RULE FROM mask_db;

o —— Fom o +
| rule_name | database | count |
Fom Fom - t—————— +
| mask | mask_db | 3 |
o o ——— fom——— +

1 row in set (0.50 sec)

* Query the number of mask rules for current database.

COUNT MASK RULE;

mysql> COUNT MASK RULE;

o —— Fom o +
| rule_name | database | count |
Fom Fom - t—————— +
| mask | mask_db | 3 |
o o ——— fom——— +

1 row in set (0.50 sec)

9.2. ShardingSphere-Proxy 349

Apache ShardingSphere document

Reserved word

COUNT, MASK, RULE, FROM

Related links

» Reserved word

Shadow

This chapter describes the syntax of shadow.

SHOW SHADOW RULE

Description

The SHOW SHADOW RULE syntax is used to query shadow rules for specified database.

Syntax

ShowShadowRule: : =
"SHOW' 'SHADOW' ('RULES' | 'RULE' shadowRuleName) ('FROM' databaseName)?

shadowRuleName ::=
identifier

databaseName ::=
identifier
Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnotused, No database selected will be prompted.

Return value description

Column Description

rule_name Shadow rule name
source_name Data source name
shadow_name Shadow data source name
shadow_table = Shadow table

9.2. ShardingSphere-Proxy 350

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query specified shadow rule in specified database.

SHOW SHADOW RULE shadow_rule FROM shadow_db;

mysql> SHOW SHADOW RULE shadow_rule FROM shadow_db;

Fom Fom - Fom e ——— Fom +
| rule_name | source_name | shadow_name | shadow_table |
e Fom e Fom e o +
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
o —— o ——— fom e +

1 row in set (0.00 sec)

* Query specified shadow rule in current database.

SHOW SHADOW RULE shadow_rule;

mysql> SHOW SHADOW RULE shadow_rule;

Fom Fom e — Fom e — o +
| rule_name | source_name | shadow_name | shadow_table |
o —— o o e +
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
o —— Fom fom Fom +
1 row in set (0.01 sec)

+ Query shadow rules for specified database.
SHOW SHADOW RULES FROM shadow_db;
mysql> SHOW SHADOW RULES FROM shadow_db;
Fom e Fom e Fomm e — o +
| rule_name | source_name | shadow_name | shadow_table |
o —— o o o +
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
o —— Fom fom Fom +
1 row in set (0.00 sec)

* Query shadow rules for current database.
SHOW SHADOW RULES;
mysql> SHOW SHADOW RULES;
Fom e e Fom e — o +
| rule_name | source_name | shadow_name | shadow_table |
o —— o o o +
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
o —— Fom e ——— fom Fom e +

9.2. ShardingSphere-Proxy 351

Apache ShardingSphere document

1 row in set (0.00 sec)

Reserved word

SHOW, SHADOW, RULE, RULES, FROM

Related links

» Reserved word

SHOW SHADOW TABLE RULES

Description

The SHOW SHADOW TABLE RULES syntax is used to query shadow table rules for specified database.

Syntax

ShowShadowTableRule: :=
'SHOW' 'SHADOW' 'TABLE' 'RULES' ('FROM'

databaseName ::=
identifier

Supplement

databaseName)?

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Return value description

Column

Description

shadow_table
shadow_algorithm_name

Shadow table

Shadow algorithm name

9.2. ShardingSphere-Proxy

352

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

+ Query shadow table rules for specified database.

SHOW SHADOW TABLE RULES FROM shadow_db;

mysql> SHOW SHADOW TABLE RULES FROM shadow_db;

Fom - B it et E e +

| shadow_table | shadow_algorithm_name |

e o +
| t_order_item | shadow_rule_t_order_item_value_match |
| t_order | sql_hint_algorithm,shadow_rule_t_order_regex_match |

Fom e o +
2 rows in set (0.00 sec)
 Query shadow table rules for current database.

SHOW SHADOW TABLE RULES;

mysql> SHOW SHADOW TABLE RULES;

Fom e +

| shadow_table | shadow_algorithm_name |
Fmm o +
| t_order_item | shadow_rule_t_order_item_value_match |
| t_order | sql_hint_algorithm,shadow_rule_t_order_regex_match |

Fmm e +

2 rows in set (0.01 sec)

Reserved word

SHOW, SHADOW, TABLE, RULES, FROM

Related links

» Reserved word

SHOW SHADOW ALGORITHMS

Description

The SHOW SHADOW ALGORITHMS syntax is used to query shadow algorithms for specified database.

9.2. ShardingSphere-Proxy 353

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShadowAlgorithm: :=
'SHOW' 'SHADOW' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnotused, No database selected will be prompted.

Return value description

Column Description

shadow_algorithm_name Shadow algorithm name

type Shadow algorithm type
props Shadow algorithm properties
is_default Default

Example

* Query shadow algorithms for specified database.

SHOW SHADOW ALGORITHMS FROM shadow_db;

mysql> SHOW SHADOW ALGORITHMS FROM shadow_db;

Fom fomm e o
Fmm +

| shadow_algorithm_name | type | props

is_default |

e fmm o
o +

false |

1 row in set (0.00 sec)

* Query shadow algorithms for current database.

9.2. ShardingSphere-Proxy 354

Apache ShardingSphere document

SHOW SHADOW ALGORITHMS;

mysql> SHOW SHADOW ALGORITHMS;

Fom fomm e o
Fmm +

| shadow_algorithm_name | type | props

is_default |

e fmm o
o +

false |

1 row in set (0.00 sec)

Reserved word

SHOW, SHADOW, ALGORITHMS, FROM

Related links

» Reserved word

SHOW DEFAULT SHADOW ALGORITHM

Description

The SHOW DEFAULT SHADOW ALGORITHM syntax is used to query default shadow algorithm for spec-
ified database.

Syntax

ShowDefaultShadowAlgorithm: :=
'"SHOW' 'DEFAULT' 'SHADOW' 'ALGORITHM' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 355

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnot used, No database selected will be prompted.

Return value description

Column Description

shadow_algorithm_name Shadow algorithm name
type Shadow algorithm type
props Shadow algorithm properties

Example

+ Query default shadow algorithm for specified database.

SHOW DEFAULT SHADOW ALGORITHM FROM shadow_db;

mysql> SHOW DEFAULT SHADOW ALGORITHM FROM shadow_db;

o Fom e — o +
| shadow_algorithm_name | type | props

o o o +
| user_id_match_algorithm | VALUE_MATCH | column=user_id,operation=insert,value=1 |
o Fom e ——— o +

1 row in set (0.00 sec)

* Query default shadow algorithm for current database.

SHOW DEFAULT SHADOW ALGORITHM;

mysql> SHOW DEFAULT SHADOW ALGORITHM;

o Fom o +
| shadow_algorithm_name | type | props

o Fom o +
| user_id_match_algorithm | VALUE_MATCH | column=user_id,operation=insert,value=1 |
o Fom o +

1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy 356

Apache ShardingSphere document

Reserved word

SHOW, DEFAULT,SHADOW, ALGORITHM, FROM

Related links

« Reserved word

COUNT SHADOW RULE

Description

The COUNT SHADOW RULE syntax is used to query the number of shadow rules for specified database.

Syntax

CountShadowRule: : =

"COUNT' 'SHADOW' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnotused, No database selected will be prompted.

Return value description

Column Description

rule_name rule type

database the database to which the rule belongs
count the number of the rule

9.2. ShardingSphere-Proxy

357

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query the number of shadow rules for specified database.

COUNT SHADOW RULE FROM shadow_db;

mysql> COUNT SHADOW RULE FROM shadow_db;

Fom e e et T t——————— +
| rule_name | database | count |
+——— o +————— +
| shadow | shadow_db | 1 |
o —— Fom e to————— +

1 row in set (0.00 sec)

* Query the number of shadow rules for current database.

COUNT SHADOW RULE;

mysql> COUNT SHADOW RULE;

o o o +
| rule_name | database | count |
o o —— o +
| shadow | shadow_db | 1 |
o o to————— +

1 row in set (0.01 sec)

Reserved word

COUNT, SHADOW, RULE, FROM

Related links

» Reserved word

RAL Syntax

RAL (Resource & Rule Administration Language) responsible for the added-on feature of transaction

type switch, scaling and so on.

9.2. ShardingSphere-Proxy 358

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

GLOBAL RULE

This chapter describes the syntax of Global Rule.

SHOW AUTHORITY RULE
Description

The SHOW AUTHORITY RULE syntax is used to query authority rule configuration.

Syntax

ShowAuthorityRule ::=
'SHOW' 'AUTHORITY' 'RULE'

Return Value Description

Column Description

users users
provider privilege provider type
props privilege properties

Example

* Query authority rule configuration

SHOW AUTHORITY RULE;

mysql> SHOW AUTHORITY RULE;

B Fmm e t—————— +
| users | provider | props |
o Fmm t—————— +
| root@%; sharding@% | ALL_PERMITTED | |
Fom Fomm e e it +

1 row in set (0.07 sec)

9.2. ShardingSphere-Proxy 359

Apache ShardingSphere document

Reserved word

SHOW, AUTHORITY, RULE

Related links

« Reserved word

SHOW TRANSACTION RULE

Description

The SHOW TRANSACTION RULE syntax is used to query transaction rule configuration.

Syntax

ShowTransactionRule ::=
'SHOW' 'TRANSACTION' 'RULE'

Return Value Description

Column Description

users users

provider privilege provider type
props privilege properties

Example

 Query transaction rule configuration

SHOW TRANSACTION RULE;

mysql> SHOW TRANSACTION RULE;

fmm o R
| default_type | provider_type |
Fom fom e o
| LOCAL | |
o o +———

1 row in set (0.05 sec)

9.2. ShardingSphere-Proxy

360

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Reserved word

SHOW, TRANSACTION, RULE

Related links

« Reserved word

ALTER TRANSACTION RULE

Description

The ALTER TRANSACTION RULE syntax is used to alter transaction rule configuration.

Syntax

AlterTransactionRule ::=
"ALTER' 'TRANSACTION' 'RULE' '(' 'DEFAULT' '=' defaultTransactionType ',' 'TYPE'

"(" '"NAME' '=' transactionManager ',' propertiesDefinition ')' ')'

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

defaultTransactionType ::=
string

transactionManager ::=
string

key ::=
string

value ::=

literal

Supplement

« defaultTransactionType support LOCAL, XA, BASE

« transactionManager support Atomikos and Narayana

9.2. ShardingSphere-Proxy 361

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

« Alter transaction rule

ALTER TRANSACTION RULE(
DEFAULT="XA", TYPE(NAME="Narayana')

) §

Reserved word

ALTER, TRANSACTION, RULE, DEFAULT, TYPE, NAME, PROPERTIES

Related links

« Reserved word

SHOW SQL_PARSER RULE

Description

The SHOW SQL_PARSER RULE syntax is used to query sql parser rule configuration.

Syntax

ShowSqglParserRule ::=
'SHOW' 'SQL_PARSER' 'RULE'

Return Value Description

Column Description

parse_tree_cache parse tree cache configuration

sql_statement_cache SQL statement cache configuration

9.2. ShardingSphere-Proxy 362

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query sql parser rule configuration

SHOW SQL_PARSER RULE;

mysql> SHOW SQL_PARSER RULE;

o e
———

| parse_tree_cache | sql_statement_cache
e o

———+

| initialCapacity: 128, maximumSize: 1024 | initialCapacity: 2000, maximumSize:
65535 |

Bt o
-———+

1 row in set (0.05 sec)

Reserved word

SHOW, SQL_PARSER, RULE

Related links

» Reserved word

Alter SQL_PARSER Rule

Description

The ALTER SQL_PARSER RULE syntax is used to alter the SQL parser rule configuration.

Syntax

AlterSqglParserRule ::=
"ALTER' 'SQL_PARSER' 'RULE' '(' sqlParserRuleDefinition ')'

sqlParserRuleDefinition ::=

parseTreeCacheDefinition? (',' sqlStatementCacheDefinition)?

parseTreeCacheDefinition ::=
'PARSE_TREE_CACHE' '(' cacheOption ')'

sqlStatementCacheDefinition ::=

9.2. ShardingSphere-Proxy 363

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

"SQL_STATEMENT_CACHE' '(' cacheOption ')’

cacheOption ::=
('"INITIAL_CAPACITY' '=' dnitialCapacity)? (','? 'MAXIMUM_SIZE' '=' maximumSize)?

initialCapacity ::=
int

maximumSize ::=
int
Note

« PARSE_TREE_CACHE: local cache configuration of the syntax tree.

¢ SQL_STATEMENT_CACHE: the local cache of SQL statement.

Example

« Alter SQL parser rule

ALTER SQL_PARSER RULE (
PARSE_TREE_CACHE (INITIAL_CAPACITY=128, MAXIMUM_SIZE=1024),
SQL_STATEMENT_CACHE (INITIAL_CAPACITY=2000, MAXIMUM_SIZE=65535)
)3

Reserved word

ALTER, SQL_PARSER, RULE, PARSE_TREE_CACHE, INITIAL_CAPACITY, MAXIMUM_SIZE,
SQL_STATEMENT_CACHE

Related links

» Reserved word

SHOW TRAFFIC RULE

Description

The SHOW TRAFFIC RULE syntax is used to query specified dual routing rule.

9.2. ShardingSphere-Proxy 364

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax
ShowTrafficRule ::=

"SHOW' 'TRAFFIC' ('RULES' | 'RULE' ruleName)?
ruleName ::=

identifier

Supplement

« When ruleName not specified, the default is show all traffic rules

Return Value Description

Column Description

name traffic rule name

labels compute node labels
algorithm_type traffic algorithm type
algorithm_props traffic algorithn properties

load_balancer_type load balancer type

load_balancer_props load balancer properties

Example

* Query specified traffic rule

SHOW TRAFFIC RULE sql_match_traffiic;

mysql> SHOW TRAFFIC RULE sql_match_traffic;

o o —— o ——— o
__ e
————

| name | labels | algorithm_type | algorithm_props

| load_balancer_type | load_balancer_props |

Fom e tom——— Fom e B e it
__ e
————t

| sgl_match_traffic | OLTP | SQL_MATCH | sql=SELECT * FROM t_order WHERE order_
id = 1; UPDATE t_order SET order_id = 5; | RANDOM | |
o tom—————— Fom e o
__ e

1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy

365

Apache ShardingSphere document

* Query all traffic rules

SHOW TRAFFIC RULES;

mysql> SHOW TRAFFIC RULES;

o o Fom e
__ e
————+

| name | labels | algorithm_type | algorithm_props

| load_balancer_type | load_balancer_props |

o tom——— Fom e o
__ e
————+

| sql_match_traffic | OLTP | SQL_MATCH | sql=SELECT * FROM t_order WHERE order_
id = 1; UPDATE t_order SET order_id = 5; | RANDOM | |
o fom—— o e
__ e S
————

1 row in set (0.04 sec)

Reserved word

SHOW, TRAFFIC, RULE, RULES

Related links

» Reserved word

ALTER TRAFFIC RULE

Description

The ALTER TRAFFIC RULE syntax is used to alter dual routing rule.

Syntax

AlterTrafficRule ::=
"ALTER" 'TRAFFIC' 'RULE' '(' 'LABELS' '(' lableName ')' ','
trafficAlgorithmDefinition ',' loadBalancerDefinition ')’

lableName ::=
identifier

trafficAlgorithmDefinition ::=

9.2. ShardingSphere-Proxy 366

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

'"TRAFFIC_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' trafficAlgorithmTypeName (',

propertiesDefinition)? "')' ')'

loadBalancerDefinition ::=
"LOAD_BALANCER" '(" 'TYPE' '(' 'NAME' '=' loadBalancerName (','

propertiesDefinition)? "')' ")’

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)x*x ')'

trafficAlgorithmTypeName ::=

string

loadBalancerTypeName ::=

string

key ::=

string

value ::=
literal

Supplement

« TRAFFIC_ALGORITHM support SQL_MATCH and SQL_HINT two types;

« LOAD_BALANCER support RANDOM and ROUND_ROBIN two types.

Example

« Alter dual routing rule

TRAFFIC RULE sqgl_match_traffic (
LABELS (OLTP),
TRAFFIC_ALGORITHM(TYPE (NAME="SQL_MATCH" ,PROPERTIES("sql" = "SELECT * FROM t_order
WHERE order_id = 1; UPDATE t_order SET order_id = 5;"))),
LOAD_BALANCER (TYPE (NAME="RANDOM"))) ;

9.2. ShardingSphere-Proxy 367

Apache ShardingSphere document

Reserved word

ALTER, TRAFFIC, RULE, LABELS, TYPE, NAME, PROPERTIES, TRAFFIC_ALGORITHM,
LOAD_BALANCER

Related links

» Reserved word

SHOW SQL_FEDERATION RULE
Description

The SHOW SQL_FEDERATION RULE syntax is used to query the federated query configuration.

Syntax

ShowSQLFederationRule ::=
'SHOW' 'SQL_FEDERATION' 'RULE'

Return Value Description

Column Description

sql_federation_enabled SQL federation enabled configuration
all_query_use_sql_federation all query use SQL federation configuration

execution_plan_cache execution plan cache configuration

Example

* Query sql federation rule configuration

SHOW SQL_FEDERATION RULE;

mysql> show sql_federation rule;

true false initialCapacity: 2000
p y s

9.2. ShardingSphere-Proxy 368

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

maximumSize: 65535 |

1 row in set (0.31 sec)

Reserved word

SHOW, SQL_FEDERATION., RULE

Related links

» Related links

ALTER SQL_FEDERATION RULE

Description

The ALTER SQL_FEDERATION RULE syntax is used to modify the federated query configuration.

Syntax

AlterSQLFederationRule ::=
"ALTER' 'SQL_FEDERATION' 'RULE' sqlFederationRuleDefinition

sglFederationRuleDefinition ::=
'(' sqlFederationEnabled? (','? allQueryUseSQLFederation)? (','?

executionPlanCache)? ')'

sqlFederationEnabled ::=
'SQL_FEDERATION_ENABLED' '=' boolean_

allQueryUseSQLFederation ::=
"ALL_QUERY_USE_SQL_FEDERATION' '=' boolean_

executionPlanCache ::=
"EXECUTION_PLAN_CACHE' '(' cacheOption ')'

cacheOption ::=
("INITIAL_CAPACITY' '=' qnitialCapacity)? (',' 'MAXIMUM_SIZE' '=' maximumSize)?

initialCapacity ::=
int

maximumSize ::=

9.2. ShardingSphere-Proxy 369

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

int

boolean_ ::=
TRUE | FALSE

Example

« Alter SQL Federation rule

ALTER SQL_FEDERATION RULE (
SQL_FEDERATION_ENABLED=TRUE,
ALL_QUERY_USE_SQL_FEDERATION=TRUE,
EXECUTION_PLAN_CACHE (INITIAL_CAPACITY=1024, MAXIMUM_SIZE=65535)

) g

Reserved word

ALTER.SQL_FEDERATION.RULE.SQL_FEDERATION_ENABLED.ALL_QUERY_USE_SQL_FEDERATION,
EXECUTION_PLAN_CACHE, INITIAL_CAPACITY. MAXIMUM_SIZE

Related links

 Related links

CIRCUIT BREAKER

This chapter describes the syntax of Circuit Breaker.

ALTER READWRITE_SPLITTING RULE ENABLE/DISABLE

Description

The ALTER READWRITE_SPLITTING RULE ENABLE/DISABLE syntax is used enable/disable a spec-
ified read source for specified readwrite-splitting rule.

9.2. ShardingSphere-Proxy 370

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

AlterReadwriteSplittingRule ::=
"ALTER' 'READWRITE_SPLITTING' 'RULE' groupName ('ENABLE' | 'DISABLE')

storageUnitName 'FROM' databaseName

groupName ::=
identifier

storageUnitName ::=
identifier

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Example
- Disable a specified read source for specified readwrite-splitting rule in specified database
ALTER READWRITE_SPLITTING RULE ms_group_0 DISABLE read_ds_0 FROM sharding_db;

- Enable a specified read source for specified readwrite-splitting rule in specified database

ALTER READWRITE_SPLITTING RULE ms_group_0 ENABLE read_ds_0 FROM sharding_db;

- Disable a specified read source for specified readwrite-splitting rule in current database

ALTER READWRITE_SPLITTING RULE ms_group_0 DISABLE read_ds_0;

« Enable a specified read source for specified readwrite-splitting rule in current database

ALTER READWRITE_SPLITTING RULE ms_group_1 ENABLE read_ds_0;

9.2. ShardingSphere-Proxy 371

Apache ShardingSphere document

Reserved word

ALTER, READWRITE_SPLITTING, RULE, ENABLE, DISABLE

Related links

« Reserved word

SHOW STATUS FROM READWRITE_SPLITTING RULE

Description

The SHOW STATUS FROM READWRITE_SPLITTING RULE syntax is used to query readwrite-splitting
storage unit status for specified readwrite-splitting rule in specified database.

Syntax

ShowStatusFromReadwriteSplittingRule ::=
"SHOW' 'STATUS' 'FROM' 'READWRITE_SPLITTING' ('RULES' | 'RULE' groupName) ('FROM'

databaseName)?

groupName ::=
identifier

databaseName ::=
identifier
Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Return Value Description

Columns Description

storage_unit storage unit name
status storage unit status

9.2. ShardingSphere-Proxy 372

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

* Query readwrite-splitting storage unit status for specified readwrite-splitting rule in specified
database.

SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0 FROM sharding_db;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0 FROM sharding_db;

Fom Fomm +

| storage_unit | status |

|
Fom e Fommm—————— +

| ds_0 | disabled |

o — o ————— +

1 rows in set (0.01 sec)

* Query all readwrite-splitting storage unit from specified database

SHOW STATUS FROM READWRITE_SPLITTING RULES FROM sharding_db;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULES FROM sharding_db;

B o ————— +

| storage_unit | status |
1 rows in set (0.01 sec)

+ Query readwrite-splitting storage unit status for specified readwrite-splitting rule in current
database

SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0;

Fom fom +
| storage_unit | status |
o ——— o +
| ds_0 | disabled |
o —— po————————— +

1 rows in set (0.01 sec)

* Query all readwrite-splitting storage unit from current database

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULES;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULES;

Fom - fomm +

| storage_unit | status |

Fom e Fommm—————— +

9.2. ShardingSphere-Proxy 373

Apache ShardingSphere document

| ds_o | disabled |

Fom e Fomm +

1 rows in set (0.01 sec)

Reserved word

SHOW, STATUS, FROM, READWRITE_SPLITTING, RULE, RULES

Related links

« Reserved word

SHOW COMPUTE NODES

Description

The SHOW COMPUTE NODES syntax is used to query compute nodes information. ### Syntax

ShowComputeNodes ::=
'SHOW' 'COMPUTE' 'NODES'

Return Value Description

Columns

Description

instance_id
instance_type
host

port

status
mode_type
worker_id
labels
version

database_name

instance id

instance type

host

port

status

mode type

worker id

labels

version

database name (Only valid for JDBC)

9.2. ShardingSphere-Proxy

374

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

mysql> SHOW COMPUTE NODES;

e et e Fomm - o= Fo—m————
e ———— Fom Fo———— fo— o —— +

| instance_id | instance_type | host | port | status |
mode_type | worker_id | labels | version | database_name |

e o Fom o B
e it Fom Fom fomm e ———— o +

| 3e84d33e-cb97-42f2-b6ce-f78feadded89 | PROXY | 127.0.0.1 | 3307 | OK
Cluster | -1 | | 5.4.2 | logic_db |
Bt ettt e o Fom e fo———— o
B e Fom Fo— fom Fom +

1 row in set (0.01 sec)

Dedicated Terminology

SHOW, COMPUTE, NODES

Related links

» Reserved word

ENABLE/DISABLE COMPUTE NODE

Description

The ENABLE/DISABLE COMPUTE NODE syntax is used enable/disable a specified proxy instance

Syntax

EnableDisableComputeNode ::=
("ENABLE' | 'DISABLE') 'COMPUTE' 'NODE' -tinstanceld

instanceld ::=

string

9.2. ShardingSphere-Proxy 375

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

+ instanceld needs to be obtained through SHOW COMPUTE NODES syntax query

+ The currently in-use proxy instance cannot be disabled

Example

- Disable a specified proxy instance

DISABLE COMPUTE NODE '734bb086-bl5d-4af0-be87-2372d8b6adcd’;

« Enable a specified proxy instance

ENABLE COMPUTE NODE '734bb086-bl5d-4af0-be87-2372d8b6abcd';

Reserved word

ENABLE, DISABLE, COMPUTE, NODE

Related links

» Reserved word

+ SHOW COMPUTE NODES

LABEL|RELABEL COMPUTE NODES

Description

The LABEL |RELABEL COMPUTE NODES syntax is used to label PROXY instance.

Syntax

LableRelabelComputeNodes ::=
('LABEL' | "RELABEL') 'COMPUTE' 'NODE' 1dinstance_id 'WITH' labelName

instance_id ::=

string

labelName ::=
identifier

9.2. ShardingSphere-Proxy 376

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/

Apache ShardingSphere document

Supplement

« needs to be obtained through SHOW COMPUTE NODES syntax query

+ RELABEL is used to relabel PROXY instance

Example

« Label PROXY instance

LABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_1;

» Relabel PROXY instance

RELABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_2;

Reserved word

LABEL, RELABEL, COMPUTE, NODES, WITH

Related links

» Reserved word

+ SHOW COMPUTE NODES

UNLABEL COMPUTE NODES

Description

The UNLABEL COMPUTE NODES syntax is used to remove specified label from PROXY instance.

Syntax

UnlabelComputeNode ::=
'"UNLABEL' 'COMPUTE' 'NODE' 1dinstance_id 'WITH' labelName

instance_id ::=

string

labelName ::=
identifier

9.2. ShardingSphere-Proxy 377

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/

Apache ShardingSphere document

Supplement

« needs to be obtained through SHOW COMPUTE NODES syntax query

Example

» Remove specified label from PROXY instance

UNLABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_1;

Reserved word

UNLABEL, COMPUTE, NODES, WITH

Related links

» Reserved word

+ SHOW COMPUTE NODES

MIGRATUION

This chapter describes the syntax of migration.

SHOW MIGRATION RULE

Description

The SHOW MIGRATION RULE syntax is used to query migration rule.

Syntax

ShowMigrationRule ::=
'SHOW' 'MIGRATION' 'RULE'

9.2. ShardingSphere-Proxy

378

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/

Apache ShardingSphere document

Return Value Description

Column Description
read Data reading configuration
write Data writing configuration

stream_channel Data channel

Example

+ Query migration rule

SHOW MIGRATION RULE;

mysql> SHOW MIGRATION RULE;

| read | write

| {"workerThread":20,"batchSize":1000,"shardingSize":10000000} | {"workerThread":20,
"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} |

1 row in set (0.01 sec)

Reserved word

SHOW, MIGRATION, RULE

Related links

« Reserved word

ALTER MIGRATION RULE

Description

The ALTER MIGRATION RULE syntax is used to alter migration rule.

9.2. ShardingSphere-Proxy 379

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

AlterMigrationRule ::=
"ALTER'" '"MIGRATION' 'RULE' ('(' (readConfiguration ',')? (writeConfiguration ',
'Y? (dataChannel)? ')')?

readConfiguration ::=
'"READ' '(' ('WORKER_THREAD' '=' workerThreadPoolSize ',')? ('BATCH_SIZE' '='

batchSize ',')? ('SHARDING_SIZE' '=' shardingSize ',')? (rateLimiter)? ')'

writeConfiguration ::=

'"WRITE' '(' ('WORKER_THREAD' '=' workerThreadPoolSize ',')? ('BATCH_SIZE' '='
batchSize ',')? ('SHARDING_SIZE' '=' shardingSize ',')? (rateLimiter)? ')'
dataChannel ::=

"STREAM_CHANNEL" '(" 'TYPE' '(' 'NAME' '=' algorithmName ',' propertiesDefinition
l)l l)l

workerThreadPoolSize ::=

int

batchSize ::=

int

shardingSize ::=
int

rateLimiter ::=
"RATE_LIMITER' '(' 'TYPE' '(' 'NAME' '=' algorithmName ',' propertiesDefinition ')
1 l)l

algorithmName ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' key '=' value (',' key '=' value)*x ')'

key ::=
string

value ::=
literal

9.2. ShardingSphere-Proxy 380

Apache ShardingSphere document

Example

ALTER MIGRATION RULE (

READ(WORKER_THREAD=20, BATCH_SIZE=1000, SHARDING_SIZE=10000000, RATE_LIMITER
(TYPE (NAME='QPS',PROPERTIES('qps'='500")))),

WRITE(WORKER_THREAD=20, BATCH_SIZE=1000, RATE_LIMITER (TYPE(NAME='TPS',
PROPERTIES('tps'='2000")))),

STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='2000"')))

)3

Reserved word

ALTER, MIGRATION, RULE, READ, WRITE, WORKER_THREAD, BATCH_SIZE, SHARDING_SIZE,
STREAM_CHANNEL, TYPE, NAME, PROPERTIES

Related links

« Reserved word

REGISTER MIGRATION SOURCE STORAGE UNIT

Description

The REGISTER MIGRATION SOURCE STORAGE UNIT syntax is used to register migration source

storage unit for the currently connection.

Syntax

RegisterStorageUnit ::=
"REGISTER' 'MIGRATION' 'SOURCE' 'STORAGE' 'UNIT' storageUnitDefinition (',

storageUnitDefinition)x

storageUnitDefinition ::=
StorageUnitName '(' 'URL' '='" url ',' 'USER' '=' user (',' 'PASSWORD' '='

password)? (',' propertiesDefinition)?')’

storageUnitName ::=
identifier

url ::=

string

user :[:=

string

9.2. ShardingSphere-Proxy 381

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

password ::=
string

propertiesDefinition ::=
"PROPERTIES' '(' (key '=' value) (',' key '=' value)*x ')'

key ::=

string

value ::=
literal

Supplement

« Confirm that the registered migration source storage unit can be connected normally, otherwise
it will not be added successfully;

« storageUn-itName is case-sensitive;
« storageUnitName needs to be unique within the current connection;
« storageUnitName name only allows letters, numbers and _, and must start with a letter;

« poolProperty is used to customize connection pool parameters, key must be the same as the

connection pool parameter name, value supports int and String types;

« When password contains special characters, it is recommended to use the string form; For ex-
ample, the string form of password@123is "password@123".

« The data migration source storage unit currently only supports registration using URL, and tem-
porarily does not support using HOST and PORT.

Example

+ Register migration source storage unit

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

USER="root",
PASSWORD="root"

)5
« Register migration source storage unit and set connection pool parameters

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

9.2. ShardingSphere-Proxy 382

Apache ShardingSphere document

USER="root",

PASSWORD="root",

PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")
)3

Reserved word

REGISTER, MIGRATION, SOURCE, STORAGE, UNIT, USER, PASSWORD, PROPERTIES, URL

Related links

» Reserved word

UNREGISTER MIGRATION SOURCE STORAGE UNIT

Description

The UNREGISTER MIGRATION SOURCE STORAGE UNIT syntaxisused to unregister migration source
storage unit from the current connection

Syntax

UnregisterMigrationSourceStorageUnit ::=
"UNREGISTER' 'MIGRATION' 'SOURCE' 'STORAGE' 'UNIT' storageUnitName (','
storageUnitName) *

storageUnitName ::=

identifier

Supplement

+ UNREGISTER MIGRATION SOURCE STORAGE UNIT will only unregister storage unit in Proxy,
the real data source corresponding to the storage unit will not be dropped;

9.2. ShardingSphere-Proxy 383

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

« Drop a migration source storage unit

UNREGISTER MIGRATION SOURCE STORAGE UNIT ds_0;

+ Drop multiple migration source storage units

UNREGISTER MIGRATION SOURCE STORAGE UNIT ds_1, ds_2;

Reserved word

UNREGISTER, MIGRATION, SOURCE, STORAGE, UNIT

Related links

» Reserved word

SHOW MIGRATION SOURCE STORAGE UNITS

Description

The SHOW MIGRATION SOURCE STORAGE UNITS syntax is used to query the registered migration

source storage units

Syntax

ShowStorageUnit ::=
'SHOW' 'MIGRATION' 'SOURCE' 'STORAGE' 'UNITS'

Return Value Description

Column Description

name Storage unit name
type Storage unit type
host Storage unit host
port Storage unit port
db Database name

attribute Storage unit attribute

Example

9.2. ShardingSphere-Proxy

384

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

* Query registered migration source storage units

SHOW MIGRATION SOURCE STORAGE UNITS;

mysql> SHOW MIGRATION SOURCE STORAGE UNITS;

| name | type | host | port | db | connection_timeout_milliseconds
| idle_timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_

size | read_only | other_attributes |

1 row in set (0.01 sec)

Reserved word

SHOW, MIGRATION, SOURCE, STORAGE, UNITS

Related links

» Reserved word

MIGRATE TABLE INTO

Description

MIGRATE TABLE INTO syntax is used to migration table from source to target

Syntax
MigrateTableInto ::=

'"MIGRATE' 'TABLE' migrationSource '.' tableName 'INTO' (databaseName '.')?
tableName

migrationSource ::

identifier

9.2. ShardingSphere-Proxy 385

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

databaseName ::=
identifier

tableName ::=
identifier

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Example

+ Migrate table from source to current database

MIGRATE TABLE ds_0.t_order INTO t_order;

+ Migrate table from source to specified database

UNREGISTER MIGRATION SOURCE STORAGE UNIT ds_1, ds_2;

Reserved word

MIGRATE, TABLE, INTO

Related links

» Reserved word

SHOW MIGRATION LIST

Description

The SHOW MIGRATION LIST syntax isused to query migration job list.

9.2. ShardingSphere-Proxy 386

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowMigrationList ::=
'SHOW' 'MIGRATION' 'LIST'

Return Values Description

Columns Description

id migration job id

tables migration tables
job_item_count migration job sharding number
active migration job states
create_time migration job create time
stop_time migration job stop time

job_sharding_nodes migration job sharding nodes

Example

 Query migration job list

SHOW MIGRATION LIST;

mysql> SHOW MIGRATION LIST;

o o Fo————— to———
——————————————— e

| id | tables | active | create_
time | stop_time | job_item_count | job_sharding_nodes |

o Fom o t———
——————————————— T s e

| j0102p00001de29afcalfd960d567fed6cddc9b4a2 | source_ds.t_order | true | 2022-
10-31 18:18:24 | | 1 | 10.7.5.76@-@27808 |
e o Fo— do———
——————————————— e bt s skt

4 rows in set (0.06 sec)

9.2. ShardingSphere-Proxy 387

Apache ShardingSphere document

Reserved word

SHOW, MIGRATION, LIST

Related links

« Reserved word

SHOW MIGRATION STATUS

Description

The SHOW MIGRATION STATUS syntax is used to query migration job status for specified migration

job.

Syntax

ShowMigrationStatus ::=

"SHOW' 'MIGRATION' 'STATUS' migrationJobId

migrationJobId ::
string

Supplement

« migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

Return Value Description

column

Description

item

data source

status
processed_records_count
inventory_finished_percentage
incremental_idle_seconds

error_message

migration job sharding serial number
migration source

migration job status

number of processed rows

finished percentage of migration job
incremental idle time

error message

9.2. ShardingSphere-Proxy

388

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

+ Query migration job status

SHOW MIGRATION STATUS 'j010180026753ef0e25d3932d94d1673ba551"';

mysql> SHOW MIGRATION STATUS 'j010180026753ef0e25d3932d94d1673ba551";

| item | data_source | status | active | processed_records_count |
inventory_finished_percentage | incremental_idle_seconds | error_message |

o o —— o o —— o
o Fo Fom e +

| © | ds_1 | EXECUTE_INCREMENTAL_TASK | true | 6

100 | 25 |

to————— Fom e o Fomm————— o
o o Fom +

1 row in set (0.01 sec)

Reserved word

SHOW, MIGRATION, STATUS

Related links

« Reserved word

SHOW MIGRATION CHECK ALGORITHM

Description

The SHOW MIGRATION RULE syntax is used to query migration check algorithm.

Syntax

ShowMigrationCheckAlgorithm ::=
'SHOW' 'MIGRATION' 'CHECK' 'ALGORITHMS'

9.2. ShardingSphere-Proxy 389

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return Value Description

Column

Description

type
supported_database_types
description

migration check algorithm type
supported database type
Description of migration check algorithm

Example

+ Query migration check algorithm

SHOW MIGRATION CHECK ALGORITHMS;

mysql> SHOW MIGRATION CHECK ALGORITHMS;

| type | supported_database_types

description |

| CRC32_MATCH | MySQL
CRC32 of records. |

| DATA_MATCH | SQL92,MySQL,MariaDB,PostgreSQL,openGauss,Oracle,SQLServer,H2

raw data of records. |

2 rows in set (0.03 sec)

Reserved word

SHOW, MIGRATION, CHECK, ALGORITHMS

Related links

» Reserved word

9.2. ShardingSphere-Proxy

390

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

CHECK MIGRATION

Description

The CHECK MIGRATION LIST syntax is used to check data consistancy in migration job.

Syntax

ShowMigrationList ::=
"CHECK' 'MIGRATION' migrationJobId 'BY' 'TYPE' '(' 'NAME' '='
migrationCheckAlgorithmType ')'

migrationJobId ::=
string

migrationCheckAlgorithmType ::=
string

Supplement

* migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

« migrationCheckAlgorithmType needs to be obtained through SHOW MIGRATION CHECK
ALGORITHMS syntax query

Example

« check data consistancy in migration job

CHECK MIGRATION 'j01016e501b498edlbdb2c373a2e85e2529a6' BY TYPE (NAME='CRC32_MATCH
1 .
)5

Reserved word

CHECK, MIGRATION, BY, TYPE

9.2. ShardingSphere-Proxy 391

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-check-algorithm/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-check-algorithm/

Apache ShardingSphere document

Related links

« Reserved word
« SHOW MIGRATION LIST

+ SHOW MIGRATION CHECK ALGORITHMS

SHOW MIGRATION CHECK STATUS

Description

The SHOW MIGRATION CHECK STATUS syntax is used to query migration check status for specified
migration job.

Syntax

ShowMigrationCheckStatus ::=
'SHOW' 'MIGRATION' 'CHECK' 'STATUS' migrationJobId

migrationJobId ::

string

Supplement

« migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

Return Value Description

Columns Description
tables migration check table
result check result

finished_percentage check finished finished_percentage

remaining_seconds check remaining time

check_begin_time check begin time
check_end_time check end time
error_message error message

9.2. ShardingSphere-Proxy 392

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-check-algorithm/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Example

+ Query migration check status

SHOW MIGRATION CHECK STATUS 'j010180026753ef0e25d3932d94d1673ba551";

mysql> SHOW MIGRATION CHECK STATUS 'j010180026753ef0e25d3932d94d1673ba551";

o o o o Fom
e o Fom +
| tables | result | finished_percentage | remaining_seconds | check_begin_time
| check_end_time | duration_seconds | error_message |
o —— o ——— Bt i o o
et e et Fom e Fom e +
| t_order | true | 100 | o | 2022-11-01 17:57:39.940
| 2022-11-01 17:57:40.587 | 0 | |
domm Fom o o Fom
B T Fom e Fom +
1 row in set (0.01 sec)
Reserved word
SHOW, MIGRATION, CHECK, STATUS
Related links
* Reserved word
+ SHOW MIGRATION LIST
START MIGRATION CHECK
Description
The START MIGRATION CHECK syntax is used to stop migration check process.
Syntax
StartMigrationCheck ::=
'START' 'MIGRATION' 'CHECK' migrationJobId
migrationJobId =
string
9.2. ShardingSphere-Proxy 393

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Supplement

« migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

Example

« Stop migration check process

START MIGRATION CHECK 'j010180026753ef0e25d3932d94d1673ba551";

Reserved word

START, MIGRATION, CHECK

Related links

» Reserved word

+ SHOW MIGRATION LIST

STOP MIGRATION CHECK

Description

The STOP MIGRATION CHECK syntax is used to stop migration check process.

Syntax

StopMigrationCheck ::=
'STOP' '"MIGRATION' 'CHECK' migrationJobId

migrationJobId ::

string

Supplement

* migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

9.2. ShardingSphere-Proxy 394

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Example

« Stop migration check process

STOP MIGRATION CHECK 'j010180026753ef0e25d3932d94d1673ba551";

Reserved word

STOP, MIGRATION, CHECK

Related links

» Reserved word

+ SHOW MIGRATION LIST

START MIGRATION

Description

The START MIGRATION syntax is used to start migration process.

Syntax

StartMigration ::=
'"START' 'MIGRATION' migrationJobId

migrationJobId ::

string

Supplement

« migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

Example

+ Start migration process

START MIGRATION 'j010180026753ef0e25d3932d94d1673ba551"';

9.2. ShardingSphere-Proxy 395

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Reserved word

START, MIGRATION

Related links

« Reserved word

+ SHOW MIGRATION LIST

STOP MIGRATION

Description

The STOP MIGRATION syntax is used to stop migration process.

Syntax

StopMigration ::=
'STOP' '"MIGRATION' migrationJobId

migrationJobId ::=
string

Supplement

* migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

Example

« Stop migration process

STOP MIGRATION 'j010180026753ef0e25d3932d94d1673ba551";

Reserved word

STOP, MIGRATION

9.2. ShardingSphere-Proxy 396

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Related links

« Reserved word

+ SHOW MIGRATION LIST

COMMIT MIGRATION

Description

The COMMIT MIGRATION syntax is used to commit migration process.

Syntax

CommitMigration ::=
"COMMIT' 'MIGRATION' migrationJobId

migrationJobId ::=
string

Supplement

« migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

Example

« Commit migration process

COMMIT MIGRATION 'j010180026753ef0e25d3932d94d1673ba551";

Reserved word

COMMIT, MIGRATION

Related links

» Reserved word

+ SHOW MIGRATION LIST

9.2. ShardingSphere-Proxy 397

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

ROLLBACK MIGRATION

Description

The ROLLBACK MIGRATION syntax is used to rollback migration process.

Syntax

RollbackMigration ::=
"ROLLBACK' '"MIGRATION' migrationJobId

migrationJobId ::=

string

Supplement

« migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

« After the statement is executed, the target will be cleaned up

Example

« Rollback migration process

ROLLBACK MIGRATION 'j010180026753ef0e25d3932d94d1673ba551"';

Reserved word

ROLLBACK, MIGRATION

Related links

» Reserved word

+ SHOW MIGRATION LIST

9.2. ShardingSphere-Proxy 398

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

PLUGIN

This chapter describes the syntax of plugin.

SHOW PLUGINS OF SPI
Description

The SHOW PLUGINS OF 1interfaceClass syntax is used to query all the implementations of an
interface.

Syntax

showPluginImplementations ::=
"SHOW' 'PLUGINS' 'OF' -dinterfaceClass

interfaceClass ::=
string

Return Value Description

Columns Description

type type
type_aliases type aliases
description description

Example

* Query all the implementations for org.apache.shardingsphere.sharding.spi.
ShardingAlgorithminterface

SHOW PLUGINS OF 'org.apache.shardingsphere.sharding.spi.ShardingAlgorithm'

SHOW PLUGINS OF 'org.apache.shardingsphere.sharding.spi.ShardingAlgorithm';

o o fmm +
| type | type_aliases | description |
Fom o Fmm +
MOD
HASH_MOD

BOUNDARY _RANGE

I I I I
I I I I
| VOLUME_RANGE | | |
I I I I
| AUTO_INTERVAL | | |

9.2. ShardingSphere-Proxy 399

Apache ShardingSphere document

| INTERVAL |
| CLASS_BASED |
| INLINE |
| COMPLEX_INLINE |
| HINT_INLINE |

N

B e = = — —

10 rows 1in set (0.52 sec)

Supplement

For some commonly used interface implementations, ShardingSphere provides syntax sugar functions

to simplify operations.

The currently provided syntax sugar are as follows:

Show implementations of org.apache.shardingsphere.sharding.spi.
ShardingAlgorithm: SHOW SHARDING ALGORITHM PLUGINS

Show implementations of org.apache.shardingsphere.infra.algorithm.
loadbalancer.core.LoadBalanceAlgorithm: SHOW LOAD BALANCE ALGORITHM
PLUGINS

Show implementations of org.apache.shardingsphere.encrypt.spi.
EncryptAlgorithm: SHOW ENCRYPT ALGORITHM PLUGINS

Show implementations of org.apache.shardingsphere.mask.spi.MaskAlgorithm:
SHOW MASK ALGORITHM PLUGINS

Show implementations of org.apache.shardingsphere.shadow.spi.
ShadowAlgorithm: SHOW SHADOW ALGORITHM PLUGINS

Show implementations of org.apache.shardingsphere.keygen.core.algorithm.
KeyGenerateAlgorithm: SHOW KEY GENERATE ALGORITHM PLUGINS

Reserved word

SHOW, PLUGINS, OF

Related links

Reserved word

9.2. ShardingSphere-Proxy 400

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/plugin/show-sharding-algorithm-plugins/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/plugin/show-load-balance-algorithm-plugins/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/plugin/show-load-balance-algorithm-plugins/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/plugin/show-encrypt-algorithm-plugins/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/plugin/show-mask-algorithm-plugins/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/plugin/show-shadow-algorithm-plugins/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/plugin/show-key-generate-algorithm-plugins/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOW SHARDING ALGORITHM PLUGINS

Description

The SHOW SHARDING ALGORITHM PLUGINS syntax is used to query all the plugins of the interface
org.apache.shardingsphere.sharding.spi.ShardingAlgorithm.

Syntax

showShardingAlgorithmPlugins ::=
'SHOW' 'SHARDING' 'ALGORITHM' 'PLUGINS'

Return Value Description

Columns Description

type type
type_aliases type aliases
description description

Example

* Query all the plugins for org.apache.shardingsphere.sharding.spi.
ShardingAlgorithminterface

SHOW SHARDING ALGORITHM PLUGINS

SHOW SHARDING ALGORITHM PLUGINS;

e ettt Fom e Fom +
| type | type_aliases | description |
o ———— o ——— o +
MOD
HASH_MOD

VOLUME_RANGE
BOUNDARY _RANGE
AUTO_INTERVAL
INTERVAL
CLASS_BASED
INLINE
COMPLEX_INLINE
HINT_INLINE

e e e e e e = = = ——

10 rows in set (0.27 sec)

9.2. ShardingSphere-Proxy 401

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, ALGORITHM, PLUGINS

Related links

» Reserved word

SHOW LOAD BALANCE ALGORITHM PLUGINS

Description

The SHOW LOAD BALANCE ALGORITHM PLUGINS syntax is used to query all the implementa-
tions of the interface org.apache.shardingsphere.infra.algorithm.loadbalancer.core.
LoadBalanceAlgoriithm.

Syntax

showLoadBalanceAlgorithmPlugins ::=
'SHOW' 'LOAD' 'BALANCE' 'ALGORITHM' 'PLUGINS'

Return Value Description

Columns Description

type type
type_aliases type aliases
description description

Example

* Query all the implementations for org.apache.shardingsphere.infra.algorithm.
loadbalancer.core.LoadBalanceAlgorithminterface

SHOW LOAD BALANCE ALGORITHM PLUGINS

SHOW LOAD BALANCE ALGORITHM PLUGINS;

o fmm e +
| type | type_aliases | description |
o fmm Fmm +
| ROUND_ROBIN | | |
| RANDOM | | |

9.2. ShardingSphere-Proxy 402

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

| WEIGHT |

Fom Fomm fom e +

3 rows in set (0.03 sec)

Reserved word

SHOW, LOAD, BALANCE, ALGORITHM, PLUGINS

Related links

« Reserved word

SHOW ENCRYPT ALGORITHM PLUGINS
Description

The SHOW ENCRYPT ALGORITHM PLUGINS syntax is used to query all the implementations of the
interface org.apache.shardingsphere.encrypt.spi.EncryptAlgorithm.

Syntax

showEncryptAlgorithmPlugins ::=
'SHOW' '"ENCRYPT' 'ALGORITHM' 'PLUGINS'

Return Value Description

Columns Description

type type
type_aliases type aliases

description description

Example

« Query all the implementations for org.apache.shardingsphere.encrypt.spi.

EncryptAlgorithminterface

SHOW ENCRYPT ALGORITHM PLUGINS

9.2. ShardingSphere-Proxy 403

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOW ENCRYPT ALGORITHM PLUGINS;

o= Fom e fom +

| type | type_aliases | description |

2 rows in set (0.06 sec)

Reserved word

SHOW, ENCRYPT, ALGORITHM, PLUGINS

Related links

» Reserved word

SHOW MASK ALGORITHM PLUGINS
Description

The SHOW MASK ALGORITHM PLUGINS syntaxisused to query all the implementations of the interface
org.apache.shardingsphere.mask.spi.MaskAlgorithm.

Syntax

showMaskAlgorithmPlugins ::=
'SHOW' 'MASK' 'ALGORITHM' 'PLUGINS'

Return Value Description

Columns Description

type type
type_aliases type aliases
description description

9.2. ShardingSphere-Proxy 404

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

« Query all the implementations for org.apache.shardingsphere.mask.spi.
MaskAlgorithm interface

SHOW MASK ALGORITHM PLUGINS

SHOW MASK ALGORITHM PLUGINS;

o Fomm Fomm +

description |

d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 =
4 =
|
|
|
|
|
|
|
|
|
|
|
|
|
o

| MD5

| KEEP_FIRST_N_LAST_M

| KEEP_FROM_X_TO_Y

| MASK_AFTER_SPECIAL_CHARS

| MASK_BEFORE_SPECIAL_CHARS

| MASK_FIRST_N_LAST_M

| MASK_FROM_X_TO_Y

| GENERIC_TABLE_RANDOM_REPLACE

N
S SN S

8 rows 1in set (0.13 sec)

Reserved word

SHOW, MASK, ALGORITHM, PLUGINS

Related links

» Reserved word

SHOW SHADOW ALGORITHM PLUGINS

Description

The SHOW SHADOW ALGORITHM PLUGINS syntax is used to query all the implementations of the
interface org.apache.shardingsphere.shadow. spi.ShadowAlgorithm.

9.2. ShardingSphere-Proxy 405

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

showShadowAlgorithmPlugins ::=
'SHOW' 'SHADOW' 'ALGORITHM' 'PLUGINS'

Return Value Description

Columns

Description

type
type_aliases
description

type
type aliases
description

Example

* Query all the implementations for
ShadowAlgorithminterface

SHOW SHADOW ALGORITHM PLUGINS

SHOW SHADOW ALGORITHM PLUGINS;

Fom Fomm fom

| |
Fomm Fomm e o

| SQL_HINT |
| REGEX_MATCH |
| VALUE_MATCH |

Fom Fomm

3 rows in set (0.37 sec)
Reserved word
SHOW, SHADOW, ALGORITHM, PLUGINS

Related links

« Reserved word

org.apache.shardingsphere.shadow.spi.

-+

description |
-+

9.2. ShardingSphere-Proxy

406

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOW KEY GENERATE ALGORITHM PLUGINS
Description

The "SHOW KEY GENERATE ALGORITHM PLUGINS" syntax is used to query all the
implementations of the interface org.apache.shardingsphere.keygen.core.algorithm.
KeyGenerateAlgorithm.

Syntax

showKeyGenerateAlgorithmPlugins ::=
'SHOW' 'KEY' 'GENERATE' 'ALGORITHM' 'PLUGINS'

Return Value Description

Columns Description

type type
type_aliases type aliases

description description

Example

« Query all the implementations for org.apache.shardingsphere.keygen.core.
algorithm.KeyGenerateAlgorithminterface

SHOW KEY GENERATE ALGORITHM PLUGINS

SHOW KEY GENERATE ALGORITHM PLUGINS;

o ——— e —— o —— +
| type | type_aliases | description |
o ————— o —— o +
| UUID | | |
| SNOWFLAKE | | |
o ———— o o +

2 rows in set (0.05 sec)

9.2. ShardingSphere-Proxy 407

Apache ShardingSphere document

Reserved word

SHOW, KEY, GENERATE, ALGORITHM, PLUGINS

Related links

» Reserved word

SHOW COMPUTE NODE INFO

Description

The SHOW COMPUTE NODE INFO syntax is used to query current proxy instance information. ###

Syntax

ShowComputeNodeInfo ::=
'SHOW' 'COMPUTE' 'NODE' 'INFO'

Return Value Description

Columns

Description

instance_id
host

port

status
mode_type
worker_id
labels

version

proxy instance id
host address

port number

proxy instance status
proxy instance mode
worker id

labels

version

Example

 Query current proxy instance information

SHOW COMPUTE NODE INFO;

mysql> SHOW COMPUTE NODES;

| instance_did

| instance_type | host

mode_type | worker_id | labels | version |

| port | status |

o R Fomm +o————— o

9.2. ShardingSphere-Proxy

408

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

e fomm fomm— fomm - +
| 3e84d33e-ch97-42f2-b6ce-f78feadded8d | PROXY | 127.0.0.1 | 3307 | OK
Cluster | -1 | | 5.4.2 |

o fom e fomm e T fom
R fmm e ——— f————— Fomm—————— +

1 row in set (0.01 sec)

Reserved word

SHOW, COMPUTE, NODE, INFO

Related links

» Reserved word

SHOW COMPUTE NODE MODE

Description

The SHOW COMPUTE NODE MODE syntax is used to query current proxy instance mode configuration
information. ### Syntax

ShowComputeNodeMode ::=
'SHOW' 'COMPUTE' 'NODE' 'MODE'

Return Value Description

Columns Description

type type of proxy mode configuration
repository type of persist repository
props properties of persist repository

Example

+ Query current proxy instance mode configuration information

SHOW COMPUTE NODE MODE;

mysql> SHOW COMPUTE NODE MODE;

9.2. ShardingSphere-Proxy 409

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

__________________________ +

| type | repository | props

|

Fom Fom o
__________________________ +

| Cluster | ZooKeeper | {"operationTimeoutMilliseconds":500,"timeToLiveSeconds":60,

"maxRetries":3,"namespace" :"governance_ds","server-lists":"localhost:2181",
"retryIntervalMilliseconds":500} |

1 row in set (0.00 sec)

Reserved word

SHOW, COMPUTE, NODE, MODE

Related links

» Reserved word

SET DIST VARIABLE

Description

The SET DIST VARIABLE syntax is used to set system variables. ### Syntax

SetDistVariable ::=

"SET' 'DIST' 'VARIABLE' (proxyPropertyName '=' proxyPropertyValue | 'agent_
plugins_enabled' '=' agentPluginsEnabled)
proxyPropertyName ::=

identifier

proxyPropertyValue ::=
literal

agentPluginsEnabled ::=

boolean

9.2. ShardingSphere-Proxy 410

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« proxy_property_name is one of properties configuration of PROXY, name is split by under-

score

- agent_plugins_enabled is use to set the agent plugins enable status, the default value is
FALSE

Example

« Set property configuration of Proxy

SET DIST VARIABLE sql_show = true;

+ Set agent plugin enable status

SET DIST VARIABLE agent_plugins_enabled = TRUE;

Reserved word

SET, DIST, VARIABLE

Related links

» Reserved word

SHOW DIST VARIABLE

Description

The SHOW DIST VARIABLE syntax is used to query PROXY system variables configuration.

Syntax

ShowDistVariable ::=
'SHOW' 'DIST' ('VARIABLES' ('LIKE' 1'ikePattern)?| 'VARIABLE' '"WHERE' 'NAME' '='

variableName)

likePattern ::=

string

variableName ::=
identifier

9.2. ShardingSphere-Proxy 411

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return Value Description

Columns Description

variable_name system variable name
variable_value system variable value

Supplement

« When variableName is not specified, the default is query all PROXY variables configuration.

Example

¢ Query all system variables configuration of PROXY

SHOW DIST VARIABLES;

mysql> SHOW DIST VARIABLES;

Je
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

db —
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

4

agent_plugins_enabled	true
cached_connections	o
cdc_server_port	33071
check_table_metadata_enabled	false
kernel_executor_size	©
load_table_metadata_batch_size	1000
max_connections_size_per_query	1
proxy_backend_query_fetch_size	-1
proxy_default_port	3307
proxy_frontend_database_protocol_type	
proxy_frontend_executor_size	©
proxy_frontend_flush_threshold	128
proxy_frontend_max_connections	o
proxy_frontend_ssl_cipher	

proxy_frontend_ssl_enabled	false
proxy_frontend_ssl_version	TLSv1.2,TLSv1.3
proxy_meta_data_collector_enabled	false
proxy_netty_backlog	1024
sql_show	false
sql_simple	false
system_schema_metadata_assembly_enabled	true
o e +

21 rows 1in set (0.01 sec)

* Query specified system variable configuration of PROXY

9.2. ShardingSphere-Proxy 412

Apache ShardingSphere document

SHOW DIST VARIABLE WHERE NAME = sql_show;

mysql> SHOW DIST VARIABLE WHERE NAME = sql_show;

Fom Fom +

| variable_name | variable_value |

1 row in set (0.00 sec)

Reserved word

SHOW, DIST, VARIABLE, VARIABLES, NAME

Related links

« Reserved word

REFRESH TABLE METADATA

Description

The REFRESH TABLE METADATA syntax is used to refresh table metadata.

Syntax

RefreshTableMetadata ::=
'"REFRESH' 'TABLE' 'METADATA' (tableName | tableName 'FROM' 'STORAGE' 'UNIT'
storageUnitName ('SCHEMA' schemaName)?)?

tableName ::=
identifier

storageUnitName ::=
identifier

schemaName ::=
identifier

9.2. ShardingSphere-Proxy 413

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When tableName and storageUnitName is not specified, the default is to refresh all table meta-
data.

- refresh table metadata need to use DATABASE. If DATABASE is not used, No database se-
lected will be prompted.

- If there are no tables in the schema, the schema will be deleted.

Example
» Refresh specified table’ s metadata in specified schema of a specified storage unit
REFRESH TABLE METADATA t_order FROM STORAGE UNIT ds_1 SCHEMA db_schema;

« Refresh all tables’ metadata in specified schema of a specified storage unit

REFRESH TABLE METADATA FROM STORAGE UNIT ds_1 SCHEMA db_schema;

« Refresh metadata for specified table in specified storage unit

REFRESH TABLE METADATA t_order FROM STORAGE UNIT ds_1;

+ Refresh metadata for specified table

REFRESH TABLE METADATA t_order;

 Refresh all table metadata

REFRESH TABLE METADATA;

Reserved word

REFRESH, TABLE, METADATA, FROM, STORAGE, UNIT

Related links

» Reserved word

9.2. ShardingSphere-Proxy 414

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

REFRESH DATABASE METADATA FROM GOVERNANCE CENTER

Description

The REFRESH DATABASE METADATA syntax is used to refresh the metadata of the local logic database.

Syntax

RefreshDatabaseMetadata ::=
'"FORCE'? 'REFRESH' 'DATABASE' 'METADATA' databaseName?

databaseName ::=

identifier

Supplement

« When databaseName is not specified, the default is to refresh all database metadata.

« When using FORCE to refresh metadata, the latest metadata will be obtained locally and written
to the governance center. If without FORCE, it will be pulled from the governance center.

Example

+ Refresh metadata for specified database

REFRESH DATABASE METADATA sharding_db;

+ Refresh all database metadata

REFRESH DATABASE METADATA;

 Force refresh all database metadata

FORCE REFRESH DATABASE METADATA;

Reserved word

FORCE, REFRESH, DATABASE, METADATA

9.2. ShardingSphere-Proxy 415

Apache ShardingSphere document

Related links

« Reserved word

SHOW TABLE METADATA

Description

The SHOW TABLE METADATA syntax is used to query tabe metadata.

Syntax

ShowTableMetadata ::=
"SHOW' 'TABLE' 'METADATA' tableName (',' tableName)* ('FROM' databaseName)?

tableName ::=
identifier

databaseName ::=
identifier

Return Value Description

Columns Description

schema_name database name

table_name table name
type metadata type
name metadata name

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE

isnot used, No database selected will be prompted.

9.2. ShardingSphere-Proxy 416

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

 Query matadata of multiple tables from specified database

SHOW TABLE METADATA t_order, t_order_1 FROM sharding_db;

mysql> SHOW TABLE METADATA t_order, t_order_1 FROM sharding_db;

o Fom Fo— fom +
| schema_name | table_name | type | name |
o Fomm do———— domm +
sharding_db	t_order_1	COLUMN	order_id
sharding_db	t_order_1	COLUMN	user_id
sharding_db	t_order_1	COLUMN	status
sharding_db	t_order_1	INDEX	PRIMARY
sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status
sharding_db	t_order	INDEX	PRIMARY
Fom e Fomm tomm pomm - +

8 rows 1in set (0.01 sec)

+ Query metadata of one table from specified database

SHOW TABLE METADATA t_order FROM sharding_db;

mysql> SHOW TABLE METADATA t_order FROM sharding_db;

o o o o +
| schema_name | table_name | type | name |
o Fom Fo——————— fo————————— +
sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status
sharding_db	t_order	INDEX	PRIMARY
o Fom Fo— fom +

4 rows in set (0.00 sec)

+ Query metadata of multiple tables from current database

SHOW TABLE METADATA t_order, t_order_1;

mysql> SHOW TABLE METADATA t_order, t_order_1;

o o o o +
| schema_name | table_name | type | name |
o Fom Fo———— fo—————— +
sharding_db	t_order_1	COLUMN	order_id
sharding_db	t_order_1	COLUMN	user_id
sharding_db	t_order_1	COLUMN	status
sharding_db	t_order_1	INDEX	PRIMARY

9.2. ShardingSphere-Proxy 417

Apache ShardingSphere document

sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status
sharding_db	t_order	INDEX	PRIMARY
o Fom Fo———— fo— +

8 rows in set (0.00 sec)

* Query metadata of one table from current database

SHOW TABLE METADATA t_order;

mysql> SHOW TABLE METADATA t_order;

e Fom tomm————— domm +
| schema_name | table_name | type | name |
o o o ——— +

sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status
sharding_db	t_order	INDEX	PRIMARY
o o ————— to———— fo—————— +

4 rows in set (0.01 sec)

Reserved word

SHOW, TABLE, METADATA, FROM

Related links

« Reserved word

SHOW RULES USED STORAGE UNIT
Description

The SHOW RULES USED STORAGE UNIT syntax is used to query the rules for using the specified

storage unit in specified database.

9.2. ShardingSphere-Proxy 418

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowRulesUsedStorageUnit ::=
"SHOW' 'RULES' 'USED' 'STORAGE' 'UNIT' storageUnitName ('FROM' databaseName)?

storageUnitName ::=
identifier

databaseName ::=
identifier

Return Value Description

Columns Description

type rule type
name rule name

Supplement

« When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
isnotused, No database selected will be prompted.

Example

* Query the rules for using the specified storage unit in specified database

SHOW RULES USED STORAGE UNIT ds_1 FROM sharding_db;

mysql> SHOW RULES USED STORAGE UNIT ds_1 FROM sharding_db;

| readwrite_splitting | ms_group_0 |
| readwrite_splitting | ms_group_0 |

Fom o +

2 rows in set (0.01 sec)
* Query the rules for using the specified storage unit in current database

SHOW RULES USED STORAGE UNIT ds_1;

mysql> SHOW RULES USED STORAGE UNIT ds_1;

Fom Fomm +

9.2. ShardingSphere-Proxy 419

Apache ShardingSphere document

| readwrite_splitting | ms_group_0 |
| readwrite_splitting | ms_group_0 |

Fom fom +

2 rows in set (0.01 sec)

Reserved word

SHOW, RULES, USED, STORAGE, UNIT, FROM

Related links

* Reserved word

EXPORT DATABASE CONFIGURATION

Description

The EXPORT DATABASE CONFIGURATION syntax is used to export storage units and rule configura-
tions to YAML format.

Syntax

ExportDatabaseConfiguration ::=
"EXPORT' 'DATABASE' 'CONFIGURATION' ('FROM' databaseName)? ('TO' 'FILE' filePath)?

databaseName ::=
identifier

filePath ::=

string

Supplement

« When databaseName is not specified, the currently used logical database will be exported; if no
database is used, No database selected will be prompted;

« When filePath is not specified, the exported information will be output through the result set;

« When filePath is specified, the file will be automatically created. If the file already exists, it
will be overwritten.

9.2. ShardingSphere-Proxy 420

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

« Export currently used logical database

mysql> EXPORT DATABASE CONFIGURATION;

| databaseName: sharding_db
dataSources:
ds_1:
password: 123456
url: jdbc:mysql://127.0.0.1:3306/db0
username: root
minPoolSize: 1
connectionTimeoutMilliseconds: 30000
maxLifetimeMilliseconds: 2100000
readOnly: false
idleTimeoutMilliseconds: 60000
maxPoolSize: 50
ds_2:

password: 123456
url: jdbc:mysql://127.0.0.1:3306/dbl
username: root
minPoolSize: 1
connectionTimeoutMilliseconds: 30000
maxLifetimeMilliseconds: 2100000
readOnly: false
idleTimeoutMilliseconds: 60000
maxPoolSize: 50

rules:

9.2. ShardingSphere-Proxy

421

Apache ShardingSphere document

1 row in set (0.01 sec)

« Export the specified logical database and output it to file

mysql> EXPORT DATABASE CONFIGURATION FROM sharding_db TO FILE '/xxx/config_sharding_

db.yaml';
R et et e T +
| result
o - +

| Successfully exported to: '/xxx/config_sharding_db.yaml' |

1 row in set (0.02 sec)

Reserved word

EXPORT, DATABASE, CONFIGURATION, FROM, TO, FILE

Related links

» Reserved word

IMPORT DATABASE CONFIGURATION

Description

The IMPORT DATABASE CONFIGURATION syntax is used to import a database from the configuration
in YAML.

Syntax

ImportDatabaseConfiguration ::=
'"IMPORT' 'DATABASE' 'CONFIGURATION' 'FROM' 'FILE' filePath

filePath ::=
string

9.2. ShardingSphere-Proxy 422

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When a database with the same name already exists in the metadata, it cannot be imported;
+ When databaseName in YAML is empty, it cannot be imported;

« When dataSources in YAML is empty, only empty database will be imported.

Example

IMPORT DATABASE CONFIGURATION FROM FILE "/xxx/config_sharding_db.yaml";

Reserved word

IMPORT, DATABASE, CONFIGURATION, FROM, FILE

Related links

« Reserved word

CONVERT YAML CONFIGURATION

Description

The CONVERT YAML CONFIGURATION syntax is used to convert YAML configuration to DistSQL RDL

statements.

Syntax

convertYamlConfiguration ::=
"CONVERT' 'YAML' 'CONFIGURATION' 'FROM' 'FILE' filePath

filePath ::=
string

9.2. ShardingSphere-Proxy 423

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« The CONVERT YAML CONFIGURATION syntax only reads the YAML file and converts the config-

uration into DistSQL statements without affecting the current metadata;

« When dataSources in YAML is empty, rules conversion will not be performed.

Example

mysql> CONVERT YAML CONFIGURATION FROM FILE '/xxx/config_sharding_db.yaml';

| CREATE DATABASE sharding_db;
USE sharding_db;

REGISTER STORAGE UNIT ds_0 (
URL='jdbc:mysql://127.0.0.1:3306/demo_ds_0?serverTimezone=UTC&useSSL=false&
allowPublicKeyRetrieval=true',

USER="root"',

PASSWORD="'123456",

PROPERTIES('maxPoolSize'='10")

), ds_1 (
URL='"jdbc:mysql://127.0.0.1:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&
allowPublicKeyRetrieval=true',

USER="root",

PASSWORD="'123456",

PROPERTIES('maxPoolSize'='10")

)

CREATE SHARDING TABLE RULE t_order (
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,

9.2. ShardingSphere-Proxy

424

Apache ShardingSphere document

TYPE (NAME="mod', PROPERTIES('sharding-count'='4"')),
KEY_GENERATE_STRATEGY (COLUMN=order_id, TYPE(NAME='snowflake'))

)

1 row in set (0.02 sec)

Reserved word

CONVERT, YAML, CONFIGURATION, FROM, FILE

Related links

« Reserved word

LOCK CLUSTER WITH
Description

The LOCK CLUSTER WITH syntax is utilized to apply a lock with a specific algorithm to the CLUSTER.

Syntax

LockClusterWith ::=
"LOCK' 'CLUSTER' 'WITH' lockStrategy ('TIMEOUT' timeoutMillis)?

timeoutmillis ::=
long

{{% /tab %}} {{% tab name= “Railroad diagram” %}}

{{% /tab %}{< /tabs >}

9.2. ShardingSphere-Proxy 425

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

« When the CLUSTER is already locked, it is impossible to re-lock it, otherwise an exception will be
thrown.

« Currently, the lockStrategy supports two lock strategies, namely the exclusive lock WRITE and
the read-write lock READ_WRITE .

« The timeoutMillis is used to indicate the timeout period for attempting to acquire the lock,
with the unit being milliseconds. When not specified, the default value is 3,000 milliseconds.

Example

+ Lock the CLUSTER with an exclusive lock without setting the timeout.

LOCK CLUSTER WITH WRITE;

» Lock the CLUSTER with a read-write lock and set the timeout to 2000 milliseconds.

LOCK CLUSTER WITH READ_WRITE TIMEOUT 2000;

Reserved words

LOCK,CLUSTER,WITH

Related links

» Reserved word

UNLOCK CLUSTER

Description

The UNLOCK CLUSTER syntax is used to release the lock applied to the CLUSTER by the LOCK CLUSTER
WITH statement.

9.2. ShardingSphere-Proxy 426

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

UnlockCluster ::=
'"UNLOCK' 'CLUSTER' ('TIMEOUT' timeoutMillis)?

timeoutmillis ::=
long

{{% /tab %}} {{% tab name= “Railroad diagram” %}}

{{% /tab %}}H{< /tabs >}}

Supplement

« When the CLUSTER is not in a locked state, it is impossible to release the lock; otherwise, an

exception will be thrown.

« timeoutMillis is used to indicate the timeout duration for attempting to unlock, with the unit
being milliseconds. When not specified, the default value is 3,000 milliseconds.

Example

+ Unlock the CLUSTER without setting a timeout.

UNLOCK CLUSTER;

» Unlock the CLUSTER and set the timeout to 2000 milliseconds.

UNLOCK CLUSTER TIMEOUT 2000;

Reserved words

UNLOCK,CLUSTER

Related links

« Reserved word

9.2. ShardingSphere-Proxy 427

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

RUL Syntax

RUL (Resource Utility Language) responsible for SQL parsing, SQL formatting, preview execution plan

and more utility functions.

PARSE SQL

Description

The PARSE SQL syntax is used to parse SQL and output abstract syntax tree.

Syntax

ParseSql ::=
'"PARSE' sqglStatement

Return Value Description

Column Description

parsed_statement parsed SQL statement type
parsed_statement_detail detail of the parsed statement

Example

- Parse SQL and output abstract syntax tree

PARSE SELECT * FROM t_order;

mysql> PARSE SELECT * FROM t_order;

| SelectStatement | {"projections":{"startIndex":7,"stopIndex":7,"projections
":[{"startIndex":7,"stopIndex":7}],"distinctRow":false},"from":{"tableName": {
"startIndex":14,"stopIndex":20,"identifier":{"value":"t_order","quoteCharacter":

9.2. ShardingSphere-Proxy 428

Apache ShardingSphere document

"NONE"}1}},"parameterCount":0,"parameterMarkerSegments":[],"commentSegments":[]} |

1 row in set (0.01 sec)

Reserved word

PARSE

Related links

» Reserved word

FORMAT SQL

Description

The FORMAT SQL syntax is used to parse SQL and output formatted SQL statement.

Syntax

FormatSql ::=
'"FORMAT' sqglStatement

Return Value Description

Column Description

formatted_result formatted SQL statement

Example

« Parse SQL and output formatted SQL statement

FORMAT SELECT * FROM t_order;

mysql> FORMAT SELECT x FROM t_order;

| formatted_result |

9.2. ShardingSphere-Proxy 429

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Fom +
| SELECT x

FROM t_order; |

Fom +

1 row in set (0.00 sec)

Reserved word

FORMAT

Related links

» Reserved word

PREVIEW SQL

Description

The PREVIEW SQL syntax is used to preview SQL execution plan.

Syntax

PreviewSql ::=
'"PREVIEW' sqlStatement

Return Value Description

Column

Description

data_source_name

actual_sql

storage unit name

actual excute SQL statement

Example

 Preview SQL execution plan

PREVIEW SELECT * FROM t_order;

mysql> PREVIEW SELECT * FROM t_order;

Fmm Fmm

| data_source_name | actual_sql

————— +

9.2. ShardingSphere-Proxy

430

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

1 row in set (0.18 sec)

Reserved word

PREVIEW

Related links

» Reserved word

Reserved word

RDL

Basic Reserved Words

CREATE, ALTER, DROP, TABLE, RULE, TYPE, NAME, PROPERTIES, TRUE, FALSE, IF, NOT, EXISTS

Storage Unit Definition

ADD, RESOURCE, IF, EXISTS, HOST, PORT, DB, USER, PASSWORD, URL , IGNORE, SINGLE, TABLES

Rule Definition

Sharding

DEFAULT, SHARDING, BROADCAST, REFERENCE, DATABASE, STRATEGY, RULES, ALGORITHM, DATAN-
ODES, DATABASE_STRATEGY, TABLE_STRATEGY, KEY_GENERATE_STRATEGY, RESOURCES, SHARD-
ING_COLUMN, KEY , GENERATOR, SHARDING_COLUMNS, KEY_GENERATOR, SHARDING_ALGORITHM,
COLUMN, AUDIT_STRATEGY , AUDITORS, ALLOW_HINT_DISABLE

9.2. ShardingSphere-Proxy 431

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Broadcast table

BROADCAST

Single Table

SET, DEFAULT, SINGLE, STORAGE, UNIT, RANDOM

Readwrite-Splitting

READWRITE_SPLITTING, WRITE_STORAGE_UNIT, READ_STORAGE_UNITS ,
AUTO_AWARE_RESOURCE

Encrypt

ENCRYPT, COLUMNS, CIPHER, ENCRYPT_ALGORITHM

Database Discovery

DB_DISCOVERY, STORAGE_UNITS, HEARTBEAT

Shadow

SHADOW, DEFAULT, SOURCE, SHADOW

MASK

MASK, COLUMNS

RQL

Basic Reserved Words

SHOW, COUNT, DEFAULT, RULE, RULES, TABLE, DATABASE, FROM, UNUSED, USED

9.2. ShardingSphere-Proxy 432

Apache ShardingSphere document

Resource Definition

RESOURCES, UNUSED, USED

Rule Query

SHARDING

DEFAULT, SHARDING, BROADCAST, REFERENCE, STRATEGY, ALGORITHM, ALGORITHMS, AUDITORS,
KEY, GENERATOR, GENERATORS, AUDITOR, AUDITORS, NODES

Single Table

SINGLE, STORAGE, UNIT

Readwrite-Splitting

READWRITE_SPLITTING

Encrypt

ENCRYPT

Database Discovery

DB_DISCOVERY, TYPES, HEARTBEATS

Shadow

SHADOW, ALGORITHMS

MASK

MASK

9.2. ShardingSphere-Proxy 433

Apache ShardingSphere document

RAL

ALTER, READWRITE_SPLITTING, RULE, RULES, FROM, ENABLE, DISABLE, SHOW, COMPUTE, NODES,
NODE , STATUS, LABEL, RELABEL, WITH, UNLABEL, AUTHORITY, TRANSACTION, SQL_PARSER,
DEFAULT, TYPE , NAME, PROPERTIES, PARSE_TREE_CACHE, INITIAL_CAPACITY, MAXI-
MUM_SIZE , CONCURRENCY_LEVEL, SQL_STATEMENT_CACHE, TRAFFIC, TRAFFIC_ALGORITHM,
LOAD_BALANCER, CREATE , DATABASE_VALUE, TABLE_VALUE, CLEAR, MIGRATION, READ, WRITE,
WORKER_THREAD, BATCH_SIZE , SHARDING_SIZE, STREAM_CHANNEL, REGISTER, URL, UNREGIS-
TER, UNITS, INTO, LIST, CHECK, BY , STOP, START, ROLLBACK, COMMIT, INFO, MODE, DIST, VARI-
ABLE, VARIABLES, WHERE, DROPSET , SET, HINT, SOURCE, ADD, SHARDING, STORAGE, UNIT, USER,
PASSWORD, REFRESH, METADATA, TABLE , DATABASE, GOVERNANCE, CENTER, EXPORT, CONFIGU-
RATION, TO, FILE, IMPORT, USED, IMPLEMENTATIONS, OF , KEY, GENERATE, ALGORITHM, QUERY,
LOAD, BALANCE, FEDERATION, SQL_FEDERATION_ENABLED, ALL_QUERY_USE_SQL_FEDERATION,
EXECUTION_PLAN_CACHE

RUL

PARSE, FORMAT, PREVIEW

Supplement

« The above reserved words are not case-sensitive

Usage

This chapter will introduce how to use DistSQL to manage resources and rules in a distributed database.

Pre-work

Use MySQL as example, can replace to other databases.
1. Start the MySQL service;
2. Create to be registered MySQL databases;
3. Create role and user in MySQL with creation permission for ShardingSphere-Proxy;
4. Start Zookeeper service;
5. Add mode and authentication configurations to global.yaml;
6. Start ShardingSphere-Proxy;

7. Use SDK or terminal connect to ShardingSphere-Proxy.

9.2. ShardingSphere-Proxy 434

Apache ShardingSphere document

Create Logic Database

1. Create logic database

CREATE DATABASE foo_db;

2. Use newly created logic database

USE foo_db;

Resource Operation

More details please see concentrate rule examples.

Rule Operation

More details please see concentrate rule examples.

Notice

1. Currently, DROP DATABASE will only remove the logical distributed database, notthe

user’ s actual database;
2. DROP TABLE will delete all logical fragmented tables and actual tables in the database;

3. CREATE DATABASE will only create a logical distributed database, so users need to

create actual databases in advance.

Sharding
Storage unit Operation

« Configure data source information

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",

9.2. ShardingSphere-Proxy 435

Apache ShardingSphere document

PASSWORD="root"
)5

Rule Operation

« Create sharding rule

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_06,ds_1),
SHARDING_COLUMN=order_1id,

TYPE (NAME="hash_mod" ,PROPERTIES ("sharding-count"="4")),

KEY_GENERATE_STRATEGY (COLUMN=order_id,TYPE(NAME="snowflake"))

)5
+ Create sharding table

CREATE TABLE “t_order™ (
‘order_id® dint NOT NULL,
‘user_id® dint NOT NULL,
“status’ varchar(45) DEFAULT NULL,
PRIMARY KEY (" order_id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

+ Drop sharding table

DROP TABLE t_order;

« Drop sharding rule

DROP SHARDING TABLE RULE t_order;

+ Unregister storage unit

UNREGISTER STORAGE UNIT ds_0, ds_1;

« Drop distributed database

DROP DATABASE foo_db;

9.2. ShardingSphere-Proxy

436

Apache ShardingSphere document

Readwrite_splitting

Storage unit Operation

REGISTER STORAGE UNIT write_ds (
HOST="127.0.0.1",
PORT=3306,
DB=""ds_0",
USER="root",
PASSWORD="root"

),read_ds (
HOST="127.0.0.1",
PORT=3307,
DB="ds_0",
USER="root",
PASSWORD="root"

)8

Rule Operation

« Create readwrite_splitting rule

CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds),

TYPE (NAME="random")

)5
« Alter readwrite_splitting rule

ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds),

TYPE (NAME="random'" ,PROPERTIES ("read_weight"="2:0"))

)5
« Drop readwrite_splitting rule

DROP READWRITE_SPLITTING RULE group_0;

« Unregister storage unit

UNREGISTER STORAGE UNIT write_ds,read_ds;

« Drop distributed database

9.2. ShardingSphere-Proxy 437

Apache ShardingSphere document

DROP DATABASE readwrite_splitting_db;

Encrypt

Storage unit Operation

REGISTER STORAGE UNIT ds_0 (

HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

)3

Rule Operation

+ Create encrypt rule

CREATE ENCRYPT RULE t_encrypt (
COLUMNS (
(NAME=user_id,CIPHER=user_cipher ,ENCRYPT_ALGORITHM(TYPE (NAME="'AES',
PROPERTIES ('aes—key-value'='123456abc', 'digest-algorithm-name'='SHA-1')))),
(NAME=order_id,CIPHER =order_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',
PROPERTIES ('aes—key-value'='123456abc', 'digest-algorithm-name'='SHA-1'))))
))s

« Create encrypt table

CREATE TABLE “t_encrypt® (
“id' dint(11) NOT NULL,
‘user_id® varchar(45) DEFAULT NULL,
‘order_id® varchar(45) DEFAULT NULL,
PRIMARY KEY (did")

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

« Alter encrypt rule

ALTER ENCRYPT RULE t_encrypt (
COLUMNS (
(NAME=user_id,CIPHER=user_cipher ,ENCRYPT_ALGORITHM(TYPE (NAME="'AES',
PROPERTIES('aes—key-value'='123456abc', 'digest-algorithm-name'='SHA-1'))))
))s

« Drop encrypt rule

9.2. ShardingSphere-Proxy 438

Apache ShardingSphere document

DROP ENCRYPT RULE t_encrypt;

« Unregister storage unit

UNREGISTER STORAGE UNIT ds_0;

« Drop distributed database

DROP DATABASE encrypt_db;

MASK

Storage unit Operation

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,

DB="ds_0",
USER="root",
PASSWORD="root"

)

Rule Operation

» Create mask rule

CREATE MASK RULE t_mask (
COLUMNS (
(NAME=phone_number , TYPE (NAME="'MASK_FROM_X_TO_Y'
y"=2, "replace-char"="x"))),
(NAME=address, TYPE (NAME="'MD5"))
))s

« Create mask table

CREATE TABLE “t_mask™ (
‘4id° dnt(11) NOT NULL,
‘user_id® varchar(45) DEFAULT NULL,
‘phone_number® varchar(45) DEFAULT NULL,
‘address’ varchar(45) DEFAULT NULL,
PRIMARY KEY (‘4d)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

+ Alter mask rule

, PROPERTIES("from-x"=1, "to-

9.2. ShardingSphere-Proxy

439

Apache ShardingSphere document

ALTER MASK RULE t_mask (

COLUMNS (

(NAME=user_id,TYPE (NAME="'MD5"))

))s

« Drop mask rule

DROP MASK RULE t_mask;

+ Unregister storage unit

UNREGISTER STORAGE UNIT ds_0;

« Drop distributed database

DROP DATABASE mask_db;

Shadow

Storage unit Operation

REGISTER STORAGE UNIT ds_0 (

HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"
),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"
),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"
)3

9.2. ShardingSphere-Proxy

440

Apache ShardingSphere document

Rule Operation

« Create shadow rule

CREATE SHADOW RULE group_0(

SOURCE=ds_0,

SHADOW=ds_1,

t_order (TYPE(NAME="SQL_HINT"),TYPE(NAME="REGEX_MATCH", PROPERTIES("operation'"=
"insert","column"="user_id", "regex"='[1]"))),
t_order_item(TYPE(NAME="SQL_HINT")));

 Alter shadow rule

ALTER SHADOW RULE group_0(
SOURCE=ds_0,

SHADOW=ds_2,
t_order_item(TYPE(NAME="SQL_HINT")));

« Drop shadow rule

DROP SHADOW RULE group_0;

« Unregister storage unit

UNREGISTER STORAGE UNIT ds_0,ds_1,ds_2;

« Drop distributed database

DROP DATABASE foo_db;

9.2.4 Data Migration

Introduction

ShardingSphere provides solution of migrating data since 4.1.0.

Build

Background

For systems running on a single database that urgently need to securely and simply migrate data to a
horizontally sharded database.

9.2. ShardingSphere-Proxy 441

Apache ShardingSphere document

Prerequisites

« Proxy is developed in JAVA, and JDK version 1.8 or later is recommended.

+ Data migration adopts the cluster mode, and ZooKeeper is currently supported as the registry.

Procedure

1. Get ShardingSphere-Proxy. Please refer to proxy startup guide for details.

2. Modify the configuration file conf/global.yaml. Please refer to mode configuration for de-

tails.
Currently, mode must be Cluster, and the corresponding registry must be started in advance.

Configuration sample:

mode:
type: Cluster
repository:
type: ZooKeeper
props:
namespace: governance_ds
server-Llists: localhost:2181
retryIntervalMilliseconds: 500
timeTolLiveSeconds: 60
maxRetries: 3

operationTimeoutMilliseconds: 500

3. Introduce JDBC driver.
Proxy has included JDBC driver of PostgreSQL and openGauss.

If the backend is connected to the following databases, download the corresponding JDBC driver jar

package and put it into the ${shardingsphere-proxy}/ext-11ib directory.

Database JDBC Driver

MySQL mysql-connector-j-8.3.0.jar

If you are migrating to a heterogeneous database, then you could use more types of database. Introduce

JDBC driver as above too.

4. Start ShardingSphere-Proxy:

sh bin/start.sh

5. View the proxy log logs/stdout. log. If you see the following statements:

[INFO] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy start

success

9.2. ShardingSphere-Proxy 442

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/
https://repo1.maven.org/maven2/com/mysql/mysql-connector-j/8.3.0/

Apache ShardingSphere document

The startup will have been successful.
6. Configure and migrate on demand.

6.1. Query configuration.

SHOW MIGRATION RULE;

The default configuration is as follows.

| read | write

| {"workerThread":20,"batchSize":1000,"shardingSize":10000000} | {"workerThread":20,
"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} |

6.2. Alter configuration (Optional).

Since the migration rule has default values, there is no need to create it, only the ALTER statement is
provided.

A completely configured DistSQL is as follows.

ALTER MIGRATION RULE (
READ (

WORKER_THREAD=20,

BATCH_SIZE=1000,

SHARDING_SIZE=10000000,

RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500"')))
))
WRITE (

WORKER_THREAD=20,

BATCH_SIZE=1000,

RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000")))
)’
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='2000"')))
)3

Configuration item description:

ALTER MIGRATION RULE (
READ(-- Data reading configuration. If it is not configured, part of the parameters
will take effect by default.

WORKER_THREAD=20, -- Obtain the thread pool size of all the data from the source
side. If it is not configured, the default value is used.

BATCH_SIZE=1000, -- The maximum number of records returned by a query operation.

9.2. ShardingSphere-Proxy 443

Apache ShardingSphere document

If it is not configured, the default value is used.

SHARDING_SIZE=10000000, -- Sharding size of all the data. If it is not configured,
the default value is used.

RATE_LIMITER (-- Traffic limit algorithm. If it is not configured, traffic is not
limited.

TYPE(-- Algorithm type. Option: QPS

NAME='QPS"',
PROPERTIES(-- Algorithm property
'qps'="500"
)))
) s
WRITE(-- Data writing configuration. If it is not configured, part of the

parameters will take effect by default.

WORKER_THREAD=20, -- The size of the thread pool on which data is written into the
target side. If it is not configured, the default value is used.

BATCH_SIZE=1000, -- The maximum number of records for a batch write operation. If
it is not configured, the default value 1is used.

RATE_LIMITER (-- Traffic limit algorithm. If it is not configured, traffic is not
limited.

TYPE(-- Algorithm type. Option: TPS

NAME='TPS"',
PROPERTIES(-- Algorithm property.
'tps'='2000"
)))
)
STREAM_CHANNEL (-- Data channel. It connects producers and consumers, used for

reading and writing procedures. If it is not configured, the MEMORY type is used by
default.

TYPE(-- Algorithm type. Option: MEMORY

NAME="'MEMORY ',

PROPERTIES(-- Algorithm property

'block-queue-size'='2000"' -- Property: blocking queue size.

)))

)5

Manual
MySQL user guide
Environment

Supported MySQL versions: 5.1.15 to 8.0.x.

9.2. ShardingSphere-Proxy 444

Apache ShardingSphere document

Authority required

1. Enable binlog in source

MySQL 5.7 my . cnf configuration sample:

[mysqld]

server-id=1
log-bin=mysql-bin
binlog-format=row
binlog-row-image=full

max_connections=600

Run the following command and check whether binlog is enabled.

show variables like '%log_bin%';

show variables like '%binlog%';

If the following information is displayed, binlog is enabled.

BT T T T e +
| Variable_name | value |
o o +
log_bin	ON
binlog_format	ROw
binlog_row_image	FULL
e e +

2. Grant Replication-related permissions for source MySQL account.

Run the following command to check whether the user has migration permission.

SHOW GRANTS FOR 'migration_user';

Result sample:

3. Grant DDL DML permissions for MySQL account

Source MySQL account needs SELECT permission. Example:

GRANT SELECT ON migration_ds_0.* TO ‘migration_user @ % ;

Target MySQL account needs part of DDL and all DML permissions. Example:

9.2. ShardingSphere-Proxy 445

Apache ShardingSphere document

GRANT CREATE, DROP, INDEX, SELECT, INSERT, UPDATE, DELETE ON x.* TO “migration_

user @' % ;

Please refer to MySQL GRANT

Complete procedure example

Requirements

1. Prepare the source database, table, and data in MySQL.

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0 DEFAULT CHARSET utf8;

USE migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR (45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'), (3,6,
|0k|)7(4717'Ok')’(5’3’|0k')’(6’57'Ok|);

2. Prepare the target database in MySQL.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_ll DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_12;

CREATE DATABASE migration_ds_12 DEFAULT CHARSET utf8;

Procedure

1. Create a new logical database in proxy and configure storage units and rules.
CREATE DATABASE sharding_db;
USE sharding_db

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_10?serverTimezone=UTC&useSSL=false

USER="root",
PASSWORD="root",

9.2. ShardingSphere-Proxy 446

https://dev.mysql.com/doc/refman/8.0/en/grant.html

Apache ShardingSphere document

PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")
), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_l1?serverTimezone=UTC&useSSL=false

USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_12?serverTimezone=UTC&useSSL=false

USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

)

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),

SHARDING_COLUMN=order_1id,

TYPE (NAME="hash_mod" ,PROPERTIES ("sharding-count"="6")),
KEY_GENERATE_STRATEGY (COLUMN=order_id,TYPE(NAME="snowflake"))

)3

If you are migrating to a heterogeneous database, you need to execute the table-creation statements in
Proxy.

2. Configure the source storage units in proxy.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1", "maxPoolSize"="20","idleTimeout"="60000")

)5
3. Start data migration.

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

9.2. ShardingSphere-Proxy 447

Apache ShardingSphere document

e Fom e Fom +o———
———t e to—————— +

| id | tables | job_item_count | active
| create_time | stop_time |

o o ————— o o
et it L e o +

| j0102p00002333dcb3d9dbl4lcefidbed6fbflab54 | ds_0.t_order | 1 | true
| 2023-09-20 14:41:32 | NULL |

B et et Fom e Fom e +————-
——— to—————— +

5. View the data migration details.

SHOW MIGRATION STATUS 'j0102p00002333dcb3d9dbl4lcefl4bed6fbflab54';

Result example:

| item | data_source | tables | status | active | processed_

records_count | inventory_finished_percentage | incremental_idle_seconds | error_

message |

+————— o o o - o
——————————————— e
——————— +

| o | ds_o | ds_0.t_order | EXECUTE_INCREMENTAL_TASK | true | 6

| 100 I I I
t—————— o —— Fom e o o Fom e ————
——————————————— e
——————— +

6. Verify data consistency.

CHECK MIGRATION 'j0102p00002333dcb3d9dblalcefldbed6fbflab54' BY TYPE (NAME='DATA_
MATCH');

Data consistency check algorithm list:

SHOW MIGRATION CHECK ALGORITHMS;

Result example:

o —— o o
————————— e

| type | type_aliases | supported_database_types

| description [

Fom e e o
————————— o

9.2. ShardingSphere-Proxy 448

Apache ShardingSphere document

| CRC32_MATCH | | MySQL,MariaDB,H2

| Match CRC32 of records. |

| DATA_MATCH | | SQL92,MySQL,PostgreSQL,openGauss,Oracle,SQLServer,
MariaDB,H2 | Match raw data of records. |

o —— o o
————————— e et 3

If encrypt rule is configured in target proxy, then DATA_MATCH could be used.
If you are migrating to a heterogeneous database, then DATA_MATCH could be used.

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j0102p00002333dch3d9dbl4lcefl4bed6fbflab54';

Result example:

o ———— o o o e
et T et o B et T T
e o Fom e ——— o
—t———————— +

| tables | result | check_failed_tables | active | dinventory_finished_

percentage | inventory_remaining_seconds | incremental_idle_seconds | check_begin_
time | check_end_time | duration_seconds | algorithm_type |

algorithm_props | error_message |

o m o ———— e R e
e e e T et R it o
e Fmm o Fmm
e +

| ds_0.t_order | true | | false | 100 | ©
| | 2023-09-20 14:45:31.992 | 2023-09-20 14:45:33.519 | 1

| DATA_MATCH | | |

Fom Fo———— o Fo————— o
b e o
e e ittt Fmmm o Fmmm
e +

7. Commit the job.

COMMIT MIGRATION 'j0102p00002333dch3d9dbl4lcefl4bed6fbflab54';

Please refer to RAL#Migration for more details.

9.2. ShardingSphere-Proxy 449

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration

Apache ShardingSphere document

PostgreSQL user guide
Environment

Supported PostgreSQL version: 9.4 or later.

Authority required

1. Enable test_decoding in source.
2. Modify WAL configuration in source.

postgresql.conf configuration sample:

wal_level = logical

max_wal_senders = 10

max_replication_slots = 10

wal_sender_timeout = 0

max_connections = 600

Please refer to Write Ahead Log and Replication for details.

3. Grant replication permission for source PostgreSQL account.

pg_hba.conf instance configuration:
host replication repl_acct 0.0.0.0/0 md5
Please refer to The pg_hba.conf File for details.

4. Grant DDL DML permissions for PostgreSQL account.

If you are using a non-super admin account for migration, you need to GRANT CREATE and CONNECT

privileges on the database used for migration.

GRANT CREATE, CONNECT ON DATABASE migration_ds_0 TO migration_user;

The account also needs to have access to the migrated tables and schema. Take the t_order table under

test schema as an example.

\c migration_ds_0

GRANT USAGE ON SCHEMA test TO GROUP migration_user;
GRANT SELECT ON TABLE test.t_order TO migration_user;

PostgreSQL has the concept of OWNER, and if the account is the OWNER of a database, SCHEMA, or

table, the relevant steps can be omitted.

Please refer to PostgreSQL GRANT

9.2. ShardingSphere-Proxy 450

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html
https://www.postgresql.org/docs/9.6/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/sql-grant.html

Apache ShardingSphere document

Complete procedure example

Requirements

1. Prepare the source database, table, and data in PostgreSQL.

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR (45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok"), (3,6,
'ok'),(4,1,"'0k"'),(5,3,'0k"),(6,5,"'0k");

2. Prepare the target database in PostgreSQL.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_l@;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

Procedure

1. Create a new logical database in proxy and configure storage units and rules.

CREATE DATABASE sharding_db;
\c sharding_db

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_10",
USER="postgres",

PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (

URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_11",
USER="postgres",

PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (

URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_12",

9.2. ShardingSphere-Proxy 451

Apache ShardingSphere document

USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

)3

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),

SHARDING_COLUMN=order_1id,

TYPE (NAME="hash_mod" ,PROPERTIES ("sharding-count"="6")),
KEY_GENERATE_STRATEGY (COLUMN=order_id, TYPE(NAME="snowflake"))

)

If you are migrating to a heterogeneous database, you need to execute the table-creation statements in
Proxy.

2. Configure the source storage units in proxy.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_0",
USER="postgres",

PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

)3
3. Enable data migration.

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema name.

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

o o o +————
s ittt e e dom— +

| id | tables | job_item_count | active
| create_time | stop_time |

B et et Fom e Fom e +————-
——— o — +

| j0102p00002333dcb3d9dbl4lcefldbed6fbflab54 | ds_0.t_order | 1 | true

| 2023-09-20 14:41:32 | NULL |

9.2. ShardingSphere-Proxy 452

Apache ShardingSphere document

5. View the data migration details.

SHOW MIGRATION STATUS 'j0102p00002333dchb3d9dbl4lcefl4bed6fbflab54’;

Result example:

| item | data_source | tables | status | active | processed_
records_count | inventory_finished_percentage | incremental_idle_seconds | error_

message |

R fom fomm e Fo———— Fom
——————————————— B T et
——————— +

| 0 | ds_o | ds_0.t_order | EXECUTE_INCREMENTAL_TASK | true | 6

| 100 | | |
o= et Fomm e o R pom -
——————————————— B T ittt E TR
——————— +

6. Verify data consistency.

CHECK MIGRATION 'j0102p00002333dcbh3d9dbl4licefldbed6fbflab54';
Query OK, 0 rows affected (0.09 sec)

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j0102p00002333dch3d9dbl4lcefl4bed6fbflab54';

Result example:

o ———— o B o e
et e i T T T e o o
e o tom e ——— o
—t———————— +

| tables | result | check_failed_tables | active | inventory_finished_

percentage | inventory_remaining_seconds | incremental_idle_seconds | check_begin_
time | check_end_time | duration_seconds | algorithm_type |

algorithm_props | error_message |

o m o ———— e R e
B S T o o
e Fmm o Fmm
R e +

| ds_0.t_order | true | | false | 100 0

|
| | 2023-09-20 14:45:31.992 | 2023-09-20 14:45:33.519 | 1

9.2. ShardingSphere-Proxy 453

Apache ShardingSphere document

| DATA_MATCH

7. Commit the job.

COMMIT MIGRATION 'j0102p00002333dcb3d9dbl4lcefl4bed6fbflab54"';

Please refer to RAL#Migration for more details.

openGauss user guide

Environment

Supported openGauss version: 2.0.1 to 3.0.0.

Authority required

1. Modify WAL configuration in source.

postgresql.conf configuration sample:

wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0

max_connections = 600

Please refer to Write Ahead Log and Replication for details.

2. Grant replication permission for source openGauss account.

pg_hba.conf instance configuration:

host replication repl_acct 0.0.0.0/0 md5

Please refer to Configuring Client Access Authentication and Example: Logic Replication Code for de-

tails.

3. Grant DDL DML permissions for openGauss account.

If you are using a non-super admin account for migration, you need to GRANT CREATE and CONNECT

privileges on the database used for migration.

GRANT CREATE, CONNECT ON DATABASE migration_ds_0 TO migration_user;

The account also needs to have access to the migrated tables and schema. Take the t_order table under

test schema as an example.

9.2. ShardingSphere-Proxy

454

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/settings.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/sending-server.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/configuring-client-access-authentication.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html

Apache ShardingSphere document

\c migration_ds_0

GRANT USAGE ON SCHEMA test TO GROUP migration_user;
GRANT SELECT ON TABLE test.t_order TO migration_user;

openGauss has the concept of OWNER, and if the account is the OWNER of a database, SCHEMA, or
table, the relevant steps can be omitted.

openGauss does not allow normal accounts to operate in public schema, so if the migrated table is in

public schema, you need to authorize additional.

Please refer to openGauss GRANT

GRANT ALL PRIVILEGES TO migration_user;

Complete procedure example
Requirements
1. Prepare the source database, table, and data.

1.1. Isomorphic database.

DROP DATABASE IF EXISTS migration_ds_@;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok"), (3,6,
|0k')7(4)l)'Ok')’(573?|0k'))(675)'Okl);

1.2. Heterogeneous database.
MySQL example:

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0 DEFAULT CHARSET utf8;

USE migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR (45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
|0kl)’(47l)'Ok')’(573,|0k')’(6757'Ok|);

9.2. ShardingSphere-Proxy 455

https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/grant.html

Apache ShardingSphere document

2. Prepare the target database in openGauss.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

Procedure

1. Create a new logical database and configure storage units and rules.

1.1. Create logic database.

CREATE DATABASE sharding_db;
\c sharding_db

1.2. Register storage units.

REGISTER STORAGE UNIT ds_2 (

URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_10",

USER="gaussdb",

PASSWORD="Root@123",

PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")
), ds_3 (

URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_11",

USER="gaussdb",

PASSWORD="Root@123",

PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")
), ds_4 (

URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_12",

USER="gaussdb",

PASSWORD="Root@123",

PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")
)3

1.3. Create sharding table rule.

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),

SHARDING_COLUMN=order_1id,

TYPE (NAME="hash_mod" ,PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY (COLUMN=order_id, TYPE (NAME="snowflake'"))
)3

9.2. ShardingSphere-Proxy 456

Apache ShardingSphere document

1.4. Create target table.

If you are migrating to a heterogeneous database, you need to execute the table-creation statements in
proxy.
MySQL example:

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

2. Configure the source storage units in proxy.
2.1. Isomorphic database.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_0",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

)3
2.2. Heterogeneous database.
MySQL example:

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_07?serverTimezone=UTC&useSSL=false

USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

)3
3. Enable data migration.

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema name.

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

9.2. ShardingSphere-Proxy 457

Apache ShardingSphere document

e Fom e Fom +o———
———t e to—————— +

| id | tables | job_item_count | active
| create_time | stop_time |

o o ————— o o
et it L e o +

| j0102p00002333dcb3d9dbl4lcefidbed6fbflab54 | ds_0.t_order | 1 | true
| 2023-09-20 14:41:32 | NULL |

B et et Fom e Fom e +————-
——— to—————— +

5. View the data migration details.

SHOW MIGRATION STATUS 'j0102p00002333dcb3d9dbl4lcefl4bed6fbflab54';

Result example:

| item | data_source | tables | status | active | processed_

records_count | inventory_finished_percentage | incremental_idle_seconds | error_

message |

+————— o o o - o
——————————————— e
——————— +

| o | ds_o | ds_0.t_order | EXECUTE_INCREMENTAL_TASK | true | 6

| 100 I I I
t—————— o —— Fom e o o Fom e ————
——————————————— e
——————— +

6. Verify data consistency.

CHECK MIGRATION 'j0102p00002333dcbh3d9dbl4licefldbed6fbflab54';
Query OK, 0 rows affected (0.09 sec)

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j0102p00002333dch3d9dbl4lcefl4bed6fbflab54';

Result example:

o m o ———— e R e
B S T o o
e Fmm o Fmm
R e +

| tables | result | check_failed_tables | active | inventory_finished_

percentage | inventory_remaining_seconds | incremental_idle_seconds | check_begin_

9.2. ShardingSphere-Proxy 458

Apache ShardingSphere document

time | check_end_time | duration_seconds | algorithm_type |
algorithm_props | error_message |

o o o o e et e
BT ettt o o
——— o o o
e +

| ds_0.t_order | true | | false | 100 | ©
| | 2023-09-20 14:45:31.992 | 2023-09-20 14:45:33.519 | 1
| DATA_MATCH | | |

o —— to—— o o o
——— o o
et e Fom e o Fom e
——— +

7. Commit the job.

COMMIT MIGRATION 'j0102p00002333dcb3d9dbl4lcefl4bed6fbflab54"';

Please refer to RAL#Migration for more details.

9.2.5 Observability
Agent

Compile source code

Download Apache ShardingSphere from GitHub,Then compile.

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean 1install -DskipITs -DskipTests -Prelease,default-dep

Agent artifact is distribution/agent/target/apache-shardingsphere-${latest.
release.version}-shardingsphere-agent-bin.tar.gz

Proxy artifact is distribution/proxy/target/apache-shardingsphere-${latest.
release.version}-shardingsphere-proxy-bin.tar.gz

Directory structure

Create agent directory, and unzip agent distribution package to the directory.

mkdir agent

tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin.
tar.gz -C agent

cd agent

tree

9.2. ShardingSphere-Proxy 459

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration

Apache ShardingSphere document

LICENSE

—
— NoTICE
[

conf
L agent.yaml

F—— plugins
|
|
|
|
|
|
|
|
|

— tib
| F—— shardingsphere-agent-metrics-core-${latest.release.version}.jar
| L— shardingsphere-agent-plugin-core-${latest.release.version}.jar

F—— logging

| L shardingsphere-agent-logging-file-${latest.release.version}.jar
F—— metrics
| L shardingsphere-agent-metrics-prometheus-${latest.release.version}.jar
— tracing
F—— shardingsphere-agent-tracing-opentelemetry-${latest.release.version}.jar
L— shardingsphere-agent-${latest.release.version}.jar

Configuration

conf/agent.yaml is used to manage agent configuration. Built-in plugins include File, Prometheus,

OpenTelemetry.

plugins:
Tlogging:

File:

props:

level: "INFO"

metrics:

Prometheus:

host: "localhost"

port: 9090

props:

jvm-information-collector-enabled: "true"

tracing:

OpenTelemetry:

props:

otel.service.name: "shardingsphere"

otel.traces.exporter: "jaeger"

otel.exporter.otlp.traces.endpoint: "http://localhost:14250"
#

otel.traces.sampler: "always_on"

9.2. ShardingSphere-Proxy 460

Apache ShardingSphere document

Plugin description
File

Currently, the File plugin only outputs the time-consuming log output of building metadata, and has no

other log output for the time being.

Prometheus

Used for exposure monitoring metrics.

« Parameter description

Name Description
host host IP
port port

jvm-i nformation-collector-enabled whether to collect JVM indicator information

OpenTelemetry

OpenTelemetry can export tracing data to Jaeger, Zipkin.

« Parameter description

Name Description
otel.service.name service name
otel.traces.exporter traces exporter

otel.exporter.otlp.traces.endpoint traces endpoint
otel.traces.sampler traces sampler

Parameter reference OpenTelemetry SDK Autoconfigure

Usage

Start ShardingSphere-Proxy

tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-proxy-bin.
tar.gz

cd apache-shardingsphere-${latest.release.version}-shardingsphere-proxy-bin
./bin/start.sh -g

After startup, you can find the plugin info in the log of ShardingSphere-Proxy, Metric and Tracing

data can be viewed through the configured monitoring address.

9.2. ShardingSphere-Proxy 461

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure

Apache ShardingSphere document

Metrics
Name Type Description
b uild_info G A UG Build information
E
parsed_ CO UN Total count of parsed by type (INSERT, UPDATE, DELETE, SELECT,
sql_total TER DDL, DCL, DAL, TCL, RQL, RDL, RAL, RUL)
routed_ CO UN Total count of routed by type (INSERT, UPDATE, DELETE, SELECT)
sql_total TER
r outed_res C O UN Total count of routed result (data source routed, table routed)
ult_total TER
pr oxy_state G A UG Status information of ShardingSphere-Proxy. 0 is OK; 1 is CIRCUIT
E BREAK; 2 is LOCK
pr oxy_meta_. G A UG Meta data information of ShardingSphere-Proxy. database_count is
data_info E logic number of databases; storage_unit_count is number of storage
units
proxy_c ur- G A UG Current connections of ShardingSphere-Proxy
rent_co nnec- E
tions
pr oxy_reque CO UN Total requests of ShardingSphere-Proxy
sts_total TER
proxy_ trans- CO UN Total transactions of ShardingSphere-Proxy, classify by commit, roll-
acti ons_total TER back
p roxy_exec HISTO Execute latency millis histogram of ShardingSphere-Proxy
ute_laten GRAM
cy_millis
proxy_ex COUN Total executor errors of ShardingSphere-Proxy
ecute_err TER
ors_total

9.2.6 Optional Plugins

ShardingSphere only includes the implementation of the core SPI by default, and there is a part of

the SPI that contains third-party dependencies in Git Source Implemented plugins are not included.

Retrievable at https://central.sonatype.com/.

SPI and existing implementation classes of SPI corresponding to all plugins can be retrieved at https:

//shardingsphere.apache.org/document/current/cn/dev-manual/.

All the built-in plugins for ShardingSphere-Proxy are listed below in the form of ‘groupld:artifactld’ .

« org.apache.shardingsphere:shardingsphere-cluster-mode-repository-etcd,

etcd implementation of persistent definition of cluster mode configuration information

« org.apache.shardingsphere:shardingsphere-cluster-mode-repository-zookeeper,

9.2. ShardingSphere-Proxy

462

https://central.sonatype.com/
https://shardingsphere.apache.org/document/current/cn/dev-manual/
https://shardingsphere.apache.org/document/current/cn/dev-manual/

Apache ShardingSphere document

the zookeeper implementation of the persistent definition of cluster mode configuration infor-

mation
« org.apache.shardingsphere:shardingsphere-jdbc, JDBC module

« org.apache.shardingsphere:shardingsphere-db-protocol-core, database protocol

core

« org.apache.shardingsphere:shardingsphere-mysql-protocol, the MySQL imple-
mentation of the database protocol

« org.apache.shardingsphere:shardingsphere-postgresql-protocol, the Post-
greSQL implementation of the database protocol

« org.apache.shardingsphere:shardingsphere-opengauss-protocol, the OpenGauss
implementation of the database protocol

« org.apache.shardingsphere:shardingsphere-proxy-frontend-core, used by
ShardingSphere-Proxy to parse and adapt the protocol for accessing the database

+ org.apache.shardingsphere:shardingsphere-proxy-frontend-mysql, a MySQL im-
plementation for ShardingSphere-Proxy to parse and adapt the protocol for accessing the database

« org.apache.shardingsphere:shardingsphere-proxy-frontend-postgresql, a
PostgreSQL implementation for ShardingSphere-Proxy to parse and adapt the protocol for
accessing the database

« org.apache.shardingsphere:shardingsphere-proxy-frontend-opengauss, an
openGauss implementation for ShardingSphere-Proxy to parse and adapt the protocol for

accessing the database

« org.apache.shardingsphere:shardingsphere-proxy-backend-core, the backend
core for ShardingSphere Proxy

« org.apache.shardingsphere:shardingsphere-standalone-mode-core, the persis-
tence definition core of single-machine mode configuration information

For the core org.apache.shardingsphere:shardingsphere-jdbc,lIts built-in plugins refer-
enceShardingSphere-JDBC Optional Plugins.

If ShardingSphere Proxy needs to use optional plugins, you need to download the JAR containing its SPI
implementation and its dependent JARs from Maven Central.

All optional plugins are listed below in the form of groupId:artifactId.
- Standalone mode configuration information persistence definition

- org.apache.shardingsphere:shardingsphere-standalone-mode-repository-jdbc,
JDBC based persistence

+ XA transaction manager provider definition

- org.apache.shardingsphere:shardingsphere-transaction-xa-narayana, XA
distributed transaction manager based on Narayana

« Row Value Expressions definition

9.2. ShardingSphere-Proxy 463

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/optional-plugins/

Apache ShardingSphere document

- org.apache.shardingsphere:shardingsphere-infra-expr-espresso, Row
Value Expressions that uses the Groovy syntax based on GraalVM Truffle’ s Espresso

implementation
« Database type identification

- org.apache.shardingsphere:shardingsphere-infra-database-hive, Adapta-
tion of jdbcURL for JIDBC support of Hive, and metadata loading implementation

- org.apache.shardingsphere:shardingsphere-infra-database-presto, Adap-
tation of jdbcURL for JDBC support of Presto, and metadata loading implementation

+ SQL parsing

- org.apache.shardingsphere:shardingsphere-parser-sql-clickhouse, Click-

House dialect implementation of SQL parsing

- org.apache.shardingsphere:shardingsphere-parser-sql-hive, Hive dialect

implementation of SQL parsing

In addition to the above optional plugins, ShardingSphere community developers have contributed a

number of plugin implementations. These plugins can be found in ShardingSphere Plugins repository.

Plugins in ShardingSphere Plugin repository would remain the same release plan with ShardingSphere,

you

can build plugin jar by yourself, and install into ShardingSphere.

Seata AT Mode transactions

Bac

kground Information

ShardingSphere Proxy or ShardingSphere Proxy Native in the form of GraalvVM Native Image do not

provide support for Seata’ s AT mode by default. Both support Seata’ s AT mode in optional modules.

This section is still limited by the documented content of Seata transaction on the ShardingSphere JDBC

side, but there are some differences,

1.

If the user uses ShardingSphere JDBC in a hybrid deployment architecture, this scenario does
not directly interact with ShardingSphere Proxy and is therefore not relevant to this article. This
article only discusses the scenario where the business project does not use ShardingSphere JDBC

2. Seata Client only exists in ShardingSphere Proxy, and the business project does not need to rely

on Seata Client

3. The R2DBC DataSource of the business project can be normally connected to the ShardingSphere

Proxy with Seata integration turned on

4. For ShardingSphere Proxy with Seata integration turned on, it is not possible to establisha trans-

action propagation across services operation to propagate transactions to other Shard-
ingSphere Proxy instances using Seata integration or other microservices using Seata integration.
If users have such needs, they should consider submitting a PR for ShardingSphere

5. The assumptions made by ShardingSphere JDBC on Seata’ s TCC mode are invalid on Sharding-

Sphere Proxy

9.2,

ShardingSphere-Proxy 464

https://github.com/apache/shardingsphere-plugin
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/special-api/transaction/seata

Apache ShardingSphere document

The following discussion takes ShardingSphere Proxy using Seata Client 2.3.0 as an example.

Operation steps

1. Confirm the JAR and dependency list of Seata Client

N

. Start Seata Server
3. Create the undo_Tlog table for the real database involved
4. Create ShardingSphere Proxy containing Seata Client and Seata integration module

5. Add Seata configuration to ShardingSphere Proxy

Configuration example

Confirm the JAR and dependency list of Seata Client

For Ubuntu 22.04.4 with SDKMAN ! installed, you can confirm all compi le scope dependencies of Seata
Client with the following command:

sdk 1dinstall java 23-open

sdk use java 23-open

sdk install maven 3.9.9

sdk use maven 3.9.9

mvn dependency:get -Dartifact=org.apache.seata:seata-all:2.3.0

mvn -f ~/.m2/repository/org/apache/seata/seata-all/2.3.0/seata-all-2.3.0.pom
dependency:tree | grep -v ':provided' | grep -v ':runtime'

Compared with the pom.xmlof org.apache.shardingsphere:shardingsphere-proxy-distribution,
it is not difficult to find the differences listed as follows:

org.apache.seata:seata-all:jar:2.3.0
org.springframework:spring-context:jar:5.3.39
org.springframework:spring-expression:jar:5.3.39
org.springframework:spring-core:jar:5.3.39
org.springframework:spring-jcl:jar:5.3.39
org.springframework:spring-beans:jar:5.3.39
org.springframework:spring-aop:jar:5.3.39
org.springframework:spring-webmvc:jar:5.3.39
org.springframework:spring-web:jar:5.3.39
org.springframework:spring-tx:jar:5.3.39
jo.netty:netty-all:jar:4.1.101.Final
io.netty:netty-codec-dns:jar:4.1.101.Final
io.netty:netty-codec-haproxy:jar:4.1.101.Final
io.netty:netty-codec-memcache:jar:4.1.101.Final
jo.netty:netty-codec-mqtt:jar:4.1.101.Final
io.netty:netty-codec-redis:jar:4.1.101.Final
io.netty:netty-codec-smtp:jar:4.1.101.Final

9.2. ShardingSphere-Proxy 465

Apache ShardingSphere document

jo.netty:netty-codec-stomp:jar:4.1.101.Final
io.netty:netty-codec-xml:jar:4.1.101.Final
jo.netty:netty-handler-ssl-ocsp:jar:4.1.101.Final
io.netty:netty-resolver-dns:jar:4.1.101.Final
io.netty:netty-transport-rxtx:jar:4.1.101.Final
jo.netty:netty-transport-sctp:jar:4.1.101.Final
io.netty:netty-transport-udt:jar:4.1.101.Final
io.netty:netty-transport-classes-kqueue:jar:4.1.101.Final
jo.netty:netty-resolver-dns-classes-macos:jar:4.1.101.Final
org.antlr:antlr4:jar:4.8
org.antlr:antlr-runtime:jar:3.5.2

org.antlr:ST4:jar:4.3
org.abego.treelayout:org.abego.treelayout.core:jar:1.0.3
org.glassfish:javax.json:jar:1.0.4
com.ibm.dicu:icu4j:jar:61.1
com.alibaba:fastjson:jar:1.2.83
com.alibaba:druid:jar:1.2.20
com.typesafe:config:jar:1.2.1
commons-pool:commons-pool:jar:1.6
org.apache.dubbo.extensions:dubbo-filter-seata:jar:1.0.2

aopalliance:aopalliance:jar:1.0

Obviously, users should always avoid paying attention to the outdated org.
antlr:antlr4-runtime:4.8. This list will be used to recreate the Docker Image of ShardingSphere
Proxy.

In addition, users can always add Seata Client to the locally built Docker Image of ShardingSphere Proxy
by modifying the source code of ShardingSphere.

Start Seata Server, Postgres Server and ShardingSphere Proxy

Write the Docker Compose file to start Seata Server and Postgres Server.

services:
postgres:
image: postgres:17.2-bookworm
environment:
POSTGRES_PASSWORD: example
volumes:
- ./docker-entrypoint-initdb.d:/docker-entrypoint-initdb.d
apache-seata-server:
image: apache/seata-server:2.3.0
healthcheck:
test: ["CMD", "sh", "-c", "curl -s apache-seata-server:7091/health | grep
~q ""oks'"]
shardingsphere-proxy-custom:
image: example/shardingsphere-proxy-custom:latest
pull_policy: build

9.2. ShardingSphere-Proxy 466

Apache ShardingSphere document

build:
context:
dockerfile_inline: |
FROM apache/shardingsphere-proxy:latest
RUN wget https://repol.maven.org/maven2/org/apache/shardingsphere/
shardingsphere-transaction-base-seata-at/5.5.2/shardingsphere-transaction-base-
seata-at-5.5.2.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib
RUN wget https://repol.maven.org/maven2/org/apache/seata/seata-all/2.3.
0/seata-all-2.3.0.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-
context/5.3.39/spring-context-5.3.39.jar --directory-prefix=/opt/shardingsphere-
proxy/ext-1l1ib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-
expression/5.3.39/spring-expression-5.3.39.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-core/
5.3.39/spring-core-5.3.39.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-jcl/
5.3.39/spring-jcl-5.3.39.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-beans/
5.3.39/spring-beans-5.3.39.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-aop/
5.3.39/spring-aop-5.3.39.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-
webmvc/5.3.39/spring-webmvc-5.3.39.jar --directory-prefix=/opt/shardingsphere-
proxy/ext-1l1ib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-web/
5.3.39/spring-web-5.3.39.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib
RUN wget https://repol.maven.org/maven2/org/springframework/spring-tx/5.
3.39/spring-tx-5.3.39.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib
RUN wget https://repol.maven.org/maven2/io/netty/netty-all/4.1.101.Final/
netty-all-4.1.101.Final.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib
RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-dns/4.1.
101.Final/netty-codec-dns-4.1.101.Final.jar --directory-prefix=/opt/shardingsphere-
proxy/ext-1lib
RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-haproxy/4.
1.101.Final/netty-codec-haproxy-4.1.101.Final.jar —--directory-prefix=/opt/
shardingsphere-proxy/ext-11ib
RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-memcache/4.
1.101.Final/netty-codec-memcache-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib
RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-mqtt/4.1.
101.Final/netty-codec-mqtt-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-1ib
RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-redis/4.1.
101.Final/netty-codec-redis-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-1ib
RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-smtp/4.1.

9.2. ShardingSphere-Proxy 467

Apache ShardingSphere document

101.Final/netty-codec-smtp-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-stomp/4.1.
101.Final/netty-codec-stomp-4.1.101.Final.jar —--directory-prefix=/opt/
shardingsphere-proxy/ext-11ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-codec-xml/4.1.
101.Final/netty-codec-xml-4.1.101.Final.jar --directory-prefix=/opt/shardingsphere-
proxy/ext-1ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-handler-ssl-ocsp/
4.1.101.Final/netty-handler-ssl-ocsp-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-1ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-resolver-dns/4.1.
101.Final/netty-resolver-dns-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-transport-rxtx/4.
1.101.Final/netty-transport-rxtx-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-transport-sctp/4.
1.101.Final/netty-transport-sctp-4.1.101.Final.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-transport-udt/4.
1.101.Final/netty-transport-udt-4.1.101.Final.jar —--directory-prefix=/opt/
shardingsphere-proxy/ext-11ib

RUN wget https://repol.maven.org/maven2/io/netty/netty-transport-
classes-kqueue/4.1.101.Final/netty-transport-classes-kqueue-4.1.101.Final.jar --
directory-prefix=/opt/shardingsphere-proxy/ext-1lib

RUN wget https://repol.maven.org/maven2/io/netty/netty-resolver-dns-
classes-macos/4.1.101.Final/netty-resolver-dns-classes-macos-4.1.101.Final.jar --
directory-prefix=/opt/shardingsphere-proxy/ext-1ib

RUN wget https://repol.maven.org/maven2/org/antlr/antlr4/4.8/antlr4-4.8.
jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib

RUN wget https://repol.maven.org/maven2/org/antlr/antlr-runtime/3.5.2/
antlr-runtime-3.5.2.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib

RUN wget https://repol.maven.org/maven2/org/antlr/ST4/4.3/ST4-4.3.jar —-
directory-prefix=/opt/shardingsphere-proxy/ext-1ib

RUN wget https://repol.maven.org/maven2/org/abego/treelayout/org.abego.
treelayout.core/1.0.3/org.abego.treelayout.core-1.0.3.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib

RUN wget https://repol.maven.org/maven2/org/glassfish/javax.json/1.0.4/
javax.json-1.0.4.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1lib

RUN wget https://repol.maven.org/maven2/com/ibm/icu/icu4j/61.1/icu4j-61.
l.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib

RUN wget https://repol.maven.org/maven2/com/alibaba/fastjson/1.2.83/
fastjson-1.2.83.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib

RUN wget https://repol.maven.org/maven2/com/alibaba/druid/1.2.20/druid-
1.2.20.jar —--directory-prefix=/opt/shardingsphere-proxy/ext-1lib

RUN wget https://repo.akka.io/maven/com/typesafe/config/l.2.1/config-1.
2.1.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib

9.2. ShardingSphere-Proxy 468

Apache ShardingSphere document

RUN wget https://repol.maven.org/maven2/commons-pool/commons-pool/1.6/
commons-pool-1.6.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib
RUN wget https://repol.maven.org/maven2/org/apache/dubbo/extensions/
dubbo-filter-seata/1.0.2/dubbo-filter-seata-1.0.2.jar --directory-prefix=/opt/
shardingsphere-proxy/ext-11ib
RUN wget https://repol.maven.org/maven2/aopalliance/aopalliance/1.0/
aopalliance-1.0.jar --directory-prefix=/opt/shardingsphere-proxy/ext-1ib
volumes:
- ./conf:/opt/shardingsphere-proxy/conf
ports:
- ""3308:3308"
environment:
PORT: 3308
depends_on:
apache-seata-server:
condition: service_healthy

In addition, users can always build the Docker Image of ShardingSphere Proxy in advance using Dock-
erfile instead of dynamically building the Docker Image in Docker Compose.

The . /conf folder contains the file global. yaml with the following content,

authority:
users:

- user: root@%
password: root
admin: true

privilege:

type: ALL_PERMITTED

transaction:
defaultType: BASE
providerType: Seata
props:
proxy-frontend-database-protocol-type: PostgreSQL

The . /conf folder contains the file file. conf with the following content,

service {
vgroupMapping.default_tx_group = "default"
default.grouplist = "apache-seata-server:8091"

The . /conf folder contains the file registry.conf with the following contents,

registry {
type = "file"
file {
name = "file.conf"
}

9.2. ShardingSphere-Proxy 469

Apache ShardingSphere document

3
config {
type = "file"
file {
name = "file.conf"
}

The . /conf folder contains the file seata.conf, the content of which is as follows,

client {
application.id = test

transaction.service.group = default_tx_group

The . /docker-entrypoint-initdb.d folder contains the file in1it. sh with the following content,

#!/bin/bash
set -e

psgl -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" --dbname "$POSTGRES_DB" <<-EOSQL
CREATE DATABASE demo_ds_0;
CREATE DATABASE demo_ds_1;
CREATE DATABASE demo_ds_2;

EOSQL

for i in "demo_ds_0" "demo_ds_1" "demo_ds_2"

do

psgl -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" --dbname "$i" <<-EOSQL
CREATE TABLE IF NOT EXISTS public.undo_log
(

id SERIAL NOT NULL,
branch_-id BIGINT NOT NULL,
xid VARCHAR(128) NOT NULL,
context VARCHAR(128) NOT NULL,
rollback_info BYTEA NOT NULL,
log_status INT NOT NULL,

log_created TIMESTAMP (0®) NOT NULL,

log_modified TIMESTAMP(®) NOT NULL,

CONSTRAINT pk_undo_log PRIMARY KEY (id),

CONSTRAINT ux_undo_log UNIQUE (xid, branch_id)

)5
CREATE INDEX 1ix_log_created ON undo_log(log_created);
COMMENT ON TABLE public.undo_log IS 'AT transaction mode undo table';
COMMENT ON COLUMN public.undo_log.branch_id IS 'branch transaction id';
COMMENT ON COLUMN public.undo_log.xid IS 'global transaction id';
COMMENT ON COLUMN public.undo_log.context IS 'undo_log context,such as

serialization';

COMMENT ON COLUMN public.undo_log.rollback_info IS 'rollback info';

9.2. ShardingSphere-Proxy 470

Apache ShardingSphere document

COMMENT ON COLUMN public.undo_log.log_status IS 'O:normal status,l:defense status

L
)

COMMENT ON COLUMN public.undo_log.log_created IS 'create datetime';
COMMENT ON COLUMN public.undo_log.log_modified IS 'modify datetime';
CREATE SEQUENCE IF NOT EXISTS undo_log_id_seq INCREMENT BY 1 MINVALUE 1 ;

CREATE TABLE IF NOT EXISTS t_order (
order_id BIGSERIAL NOT NULL PRIMARY KEY,
order_type INTEGER,
user_id INTEGER NOT NULL,
address_id BIGINT NOT NULL,
status VARCHAR(50)

)3

EOSQL
done

Create ShardingSphere virtual database

Use third-party tools to create ShardingSphere virtual database in ShardingSphere Proxy. Taking
DBeaver Community as an example, if you use Ubuntu 22.04.4, you can quickly install it through
Snapcraft.

sudo apt update && sudo apt upgrade -y
sudo snap 1install dbeaver-ce

snap run dbeaver-ce

In DBeaver Community, use the jdbcUr 1l of jdbc:postgresql://127.0.0.1:3308/postgresto
connect to ShardingSphere Proxy, and the username and password are both root. The required JDBC
Driver corresponds to the proxy-frontend-database-protocol-type set by ShardingSphere
Proxy. Execute the following SQL,

-— noinspection SqlNoDataSourceInspectionForFile
CREATE DATABASE sharding_db;

In DBeaver Community, use the jdbcUrl of jdbc:postgresql://127.0.0.1:3308/
sharding_db to connect to ShardingSphere Proxy, and the username and password are both
root. Execute the following SQL,

-— noinspection SqlNoDataSourceInspectionForFile

REGISTER STORAGE UNIT ds_0 (
URL="jdbc:postgresql://postgres:5432/demo_ds_0",
USER="postgres",

PASSWORD="example"

),ds_1 (
URL="jdbc:postgresql://postgres:5432/demo_ds_1",
USER="postgres",

PASSWORD="example"

9.2. ShardingSphere-Proxy 471

Apache ShardingSphere document

),ds_2 (
URL="jdbc:postgresql://postgres:5432/demo_ds_2",
USER="postgres",

PASSWORD="example"

)3

CREATE DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard",

SHARDING_COLUMN=user_1id,

SHARDING_ALGORITHM((

TYPE (
NAME=INLINE,
PROPERTIES(
"algorithm-expression"="ds_s${user_id % 2}"

)
)5

CREATE SHARDING TABLE RULE t_order (
DATANODES ("ds_$->{0..2}.t_order"),
KEY_GENERATE_STRATEGY (COLUMN=order_id, TYPE (NAME="SNOWFLAKE"))

) §

Introduce Postgres JDBC Driver in the business project

Introduce Postgres JDBC Driver in the business project. The required JDBC Driver corresponds to the

proxy-frontend-database-protocol-type set by ShardingSphere Proxy.

<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<version>42.7.5</version>

</dependency>

Enjoy the integration

Create ShardingSphere’ s data source through Postgres JDBC Driver to enjoy the integration.

import com.zaxxer.hikari.HikariConfig;

import com.zaxxer.hikari.HikariDataSource;
import java.sql.Connection;

import java.sql.SQLException;

import java.sql.Statement;

@SuppressWarnings ("SqlNoDataSourceInspection")
public class ExampleUtils {

9.2. ShardingSphere-Proxy 472

Apache ShardingSphere document

void test() throws SQLException {
HikariConfig config = new HikariConfig();
config.setJddbcUrl("jdbc:postgresql://127.0.0.1:3308/sharding_db");
config.setDriverClassName("org.postgresql.Driver");
try (HikariDataSource dataSource = new HikariDataSource(config);
Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement()) {
statement.execute ("INSERT INTO t_order (user_id, order_type, address_id,
status) VALUES (1, 1, 1, 'INSERT_TEST')");
statement.executeQuery ("SELECT * FROM t_order");
statement.execute ("DELETE FROM t_order WHERE order_id=1");

Usage restrictions

ShardingSphere Proxy Native for GraalVM Native Image

For ShardingSphere Proxy Native in GraalVM Native Image, Users always need to modify the Sharding-
Sphere source code to add the Seata Client and Seata integrated Maven modules and compile them into
GraalVM Native Image. ShardingSphere Proxy Native in GraalVM Native Image cannot recognize the
additional JAR files.

<project>
<dependencies>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.seata</groupIld>
<artifactId>seata-all</artifactId>
<version>2.2.0</version>
<exclusions>

<exclusion>
<groupId>org.antlr</groupId>
<artifactId>antlr4-runtime</artifactId>
</exclusion>

</exclusions>

</dependency>

</dependencies>
</project>

9.2. ShardingSphere-Proxy 473

Apache ShardingSphere document

9.2.7 Session Management

ShardingSphere supports session management. You can view the current session or terminate the SQL
executed in the session through the SQL of the native database. At present, this function is only avail-
able when the storage node is MySQL. MySQL SHOW PROCESSLIST and KILL QUERY commands are
supported.

Usage

View Session

Different methods of viewing sessions are supported for different associated databases. The SHOW
PROCESSLIST command can be used to view sessions for associated MySQL databases. Sharding-
Sphere will automatically generate a unique UUID ID as the ID, and store the SQL execution informa-
tion in each instance. When this command is executed, ShardingSphere will collect and synchronize
the SQL execution information of each computing node through the governance center, and then sum-

marize and return it to the user.

mysql> show processlist;

o to——— fo— Fom o ——— +———=
——t e +

| Id | User | Host | db | Command | Time |
State | Info |

o o dom— Fom e e +————
et Fom +

| ©05ede3bd584fd4a429dcaac382be2973
| Executing 0/1 | select sleep(10)
| f9e5c97431567415felObadc5fa46378

+ Output Description

Simulates the output of native MySQL, but the Id field is a special random string.

KILL THE SQL IN THE SESSION

The user determines whether the KILL QUERY statement needs to be executed according to the results
returned by SHOW PROCESSLIST. ShardingSphere cancels the SQL being executed according to the ID
inthe KILL QUERY statement.

-- Cancel the SQL statement currently executing in the specified session.
mysql> KILL QUERY 05ede3bd584fd4a429dcaac382be2973;
Query OK, 0 rows affected (0.04 sec)

9.2. ShardingSphere-Proxy 474

Apache ShardingSphere document

mysql> SHOW PROCESSLIST;
Empty set (0.02 sec)

9.2.8 Logging Configuration
Background

ShardingSphere uses Logback for log management, and the Java SPI internally to provide default log
configuration. Users can use XML files to configure customized log output. Proxy will preferentially
read the log configuration provided in logback.xml in the /conf directory.

The following steps describe how to customize the log configuration.

Procedure

1. Create file conf/logback.xml

Customize the logger level and pattern, etc. according to your needs. > It is recommended to make
modifications based on the configuration example

2. View logs

After ShardingSphere-Proxy starts, the log will be output to the logs directory, select the target log file

to view.

Sample

<?xml version="1.0"?>
==
~ Licensed to the Apache Software Foundation (ASF) under one or more
~ contributor license agreements. See the NOTICE file distributed with
~ this work for additional information regarding copyright ownership.
~ The ASF Tlicenses this file to You under the Apache License, Version 2.0
~ (the "License"); you may not use this file except in compliance with

~ the License. You may obtain a copy of the License at
~ http://www.apache.org/licenses/LICENSE-2.0

~ Unless required by applicable law or agreed to 1in writing, software

~ distributed under the License is distributed on an "AS IS" BASIS,

~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
~ See the License for the specific language governing permissions and

~ limitations under the License.

-—>

<configuration>

<appender name="console" class="ch.qos.logback.core.ConsoleAppender">

9.2. ShardingSphere-Proxy 475

Apache ShardingSphere document

<encoder>
<pattern>[%-5level] %d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %logger{36} -
%msg¥%n</pattern>
</encoder>
</appender>
<logger name="org.apache.shardingsphere" level="1info" additivity="false'">
<appender-ref ref="console" />
</logger>

<logger name='"com.zaxxer.hikari" level="error" />
<logger name='"com.atomikos" level="error" />
<logger name="io.netty" level="error" />

<root>
<level value="1info" />
<appender-ref ref="console" />
</root>

</configuration>

9.2.9 CDC

CDC (Change Data Capture) captures incremental data changes. CDC can monitor data changes in the
storage nodes of ShardingSphere-Proxy, capture data operation events, filter and extract useful infor-
mation, and finally send these changed data to a specified target.

CDC can be used for data synchronization, data backup and recovery, it currently supports openGauss,
MySQL, and PostgreSQL.

Build

Background Information

ShardingSphere CDC is divided into two parts, one is the CDC Server, and the other is the CDC Client.
The CDC Server and ShardingSphere-Proxy are currently deployed together.

Users can introduce the CDC Client into their own projects to implement data consumption logic.

9.2. ShardingSphere-Proxy 476

Apache ShardingSphere document

Constraints

« Pure JAVA development, JDK recommended 1.8 or above.

+ CDC Server requires ShardingSphere-Proxy to use cluster mode, currently supports ZooKeeper as

the registry center.

« CDC only synchronizes data, does not synchronize table structure, and currently does not support
DDL statement synchronization.

+ CDC incremental task will not split transaction data of the database shards. If you want to enable
XA transaction compatibility, both openGauss and ShardingSphere-Proxy need the GLT module.

CDC Server Deployment Steps

Here, the openGauss database is used as an example to introduce the deployment steps of the CDC

Server.

Since the CDC Server is built into ShardingSphere-Proxy, you need to get ShardingSphere-Proxy. For

details, please refer to the proxy startup manual.

Configure GLT Module (Optional)

The official website’ s released binary package does not include the GLT module by default, if you are
using the openGauss database with GLT functionality, you can additionally introduce the GLT module

to ensure the integrity of XA transactions.

There are currently two ways to introduce the GLT module, and corresponding configurations need to

be made in global.yaml.

1. Source code compilation and installation

1.1 Prepare the code environment, download in advance or use Git clone to download the Sharding-

Sphere source code from Github.

1.2 Delete the <scope>provided</scope> tag of the shardingsphere-global-clock-tso-provider-redis
dependency in kernel/global-clock/type/tso/core/pom.xml and the <scope>provided</scope> tag
of jedis in kernel/global-clock/type/tso/provider/redis/pom.xml

1.3 Compile ShardingSphere-Proxy, for specific compilation steps, please refer to the ShardingSphere

Compilation Manual.

9.2. ShardingSphere-Proxy 477

https://github.com/apache/shardingsphere.git
https://github.com/apache/shardingsphere.git
https://github.com/apache/shardingsphere/wiki#build-apache-shardingsphere
https://github.com/apache/shardingsphere/wiki#build-apache-shardingsphere

Apache ShardingSphere document

2. Directly introduce GLT dependencies

Can be introduced from the maven repository

2.1. shardingsphere-global-clock-tso-provider-redis, download the same version as ShardingSphere-
Proxy

2.2. jedis-4.3.1

CDC Server User Manual

Modify the configuration file conf/global.yaml and turn on the CDC function. Currently, mode
must be Cluster, and the corresponding registry center needs to be started in advance. If the GLT
provider uses Redis, Redis needs to be started in advance.

Configuration example:

1. Enable CDC function in global.yaml.

mode:
type: Cluster
repository:
type: ZooKeeper
props:
namespace: cdc_demo
server-Llists: localhost:2181
retryIntervalMilliseconds: 500
timeTolLiveSeconds: 60
maxRetries: 3

operationTimeoutMilliseconds: 500

authority:
users:
- user: root@%
password: root
privilege:
type: ALL_PERMITTED

When using GLT, you also need to enable distributed transactions, GLT is only
supported by the openGauss database currently.

#transaction:

defaultType: XA

providerType: Atomikos

#
#globalClock:
enabled: true

type: TSO
provider: redis
#

props:

9.2. ShardingSphere-Proxy 478

https://repo1.maven.org/maven2/org/apache/shardingsphere/shardingsphere-global-clock-tso-provider-redis
https://repo1.maven.org/maven2/redis/clients/jedis/4.3.1/jedis-4.3.1.jar

Apache ShardingSphere document

host: 127.0.0.1
port: 6379

props:
proxy-default-port: 3307 # Proxy default port.
cdc-server-port: 33071 # CDC Server port, must be configured
proxy-frontend-database-protocol-type: openGauss # Consistent with the type of
backend database

2. Introduce JDBC driver.
Proxy has included JDBC driver of PostgreSQL and openGauss.

If the backend is connected to the following databases, download the corresponding JDBC driver jar
package and put it into the ${shardingsphere-proxy}/ext-11ib directory.

Database JDBC Driver

MySQL mysql-connector-j-8.3.0.jar

4. Start ShardingSphere-Proxy:

sh bin/start.sh

5. View the proxy log logs/stdout. log. If you see the following statements:

[INFO] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy Cluster
mode started successfully

The startup will have been successful.
6. Configure CDC on demand.

6.1. Query configuration.
SHOW STREAMING RULE;

The default configuration is as follows:

| read | write

| {"workerThread":20,"batchSize":1000,"shardingSize":10000000} | {"workerThread":20,
"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} |

6.2. Alter configuration (optional).

9.2. ShardingSphere-Proxy 479

https://repo1.maven.org/maven2/com/mysql/mysql-connector-j/8.3.0/

Apache ShardingSphere document

Since the streaming rule has default values, there is no need to create it, only the ALTER statement is
provided.

A completely configured DistSQL is as follows.

ALTER STREAMING RULE (
READ (

WORKER_THREAD=20,

BATCH_SIZE=1000,

SHARDING_SIZE=10000000,

RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500")))
)
WRITE(

WORKER_THREAD=20,

BATCH_SIZE=1000,

RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))
))
STREAM_CHANNEL (TYPE (NAME='MEMORY',PROPERTIES('block-queue-size'='2000")))
)

Configuration item description:

ALTER STREAMING RULE (
READ(-- Data reading configuration. If it is not configured, part of the parameters
will take effect by default.

WORKER_THREAD=20, -- Affects full and incremental tasks, obtain the thread pool
size of all the data from the source side. If it 1is not configured, the default
value is used. It needs to ensure that this value is not lower than the number of
database shards.

BATCH_SIZE=1000, -- Affects full and incremental tasks, the maximum number of
records returned by a query operation. If it is not configured, the default value is
used. If the amount of data in a transaction is greater than this value, the
incremental situation may exceed the set value.

SHARDING_SIZE=10000000, -- Affects full tasks, sharding size of all the data. If
it is not configured, the default value is used.

RATE_LIMITER (-- Affects full and incremental tasks, traffic limit algorithm. If
it is not configured, traffic is not limited.

TYPE(-- Algorithm type. Option: QPS

NAME="'QPS"',
PROPERTIES(-- Algorithm property
'gps'='500"
)))
)
WRITE(-- Data writing configuration. If it is not configured, part of the

parameters will take effect by default.

WORKER_THREAD=20, -- Affects full and incremental tasks, the size of the thread
pool on which data is written into the target side. If it is not configured, the
default value is used.

BATCH_SIZE=1000, -- Affects full and incremental tasks, the maximum number of

9.2. ShardingSphere-Proxy 480

Apache ShardingSphere document

records for a batch write operation. If it is not configured, the default value is
used. If the amount of data in a transaction 1is greater than this value, the
incremental situation may exceed the set value.

RATE_LIMITER (-- Traffic limit algorithm. If it is not configured, traffic is not
limited.

TYPE(-- Algorithm type. Option: TPS

NAME='TPS"',
PROPERTIES(-- Algorithm property.
'tps'='2000"
)))
)
STREAM_CHANNEL (-- Data channel. It connects producers and consumers, used for

reading and writing procedures. If it is not configured, the MEMORY type is used by
default.

TYPE(-- Algorithm type. Option: MEMORY

NAME='MEMORY ',

PROPERTIES(-- Algorithm property

'block-queue-size'='2000"' -- Property: blocking queue size.

)))

)3

CDC Client Manual

The CDC Client does not need to be deployed separately, just need to introduce the dependency of the
CDC Client through maven to use it in the project. Users can interact with the server through the CDC
Client.

If necessary, users can also implement a CDC Client themselves to consume data and ACK.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-data-pipeline-cdc-client</artifactId>
<version>${version}</version>

</dependency>

9.2. ShardingSphere-Proxy 481

Apache ShardingSphere document

CDC Client Introduction

org.apache.shardingsphere.data.pipeline.cdc.client.CDCClient is the entry class of
the CDC Client. Users can interact with the CDC Server through this class. The main new methods are

as follows.

Method Name R et Description
urn
Val
ue
connect(Consumer<List> data- v oi Connect with the server, when connecting, you need
Consumer, ExceptionHandler d to specify 1. Data consumption processing function
exceptionHandler, Se rverError- 2. Exception handling logic during consumption 3.
ResultHandler errorResultHandler Server error exception handling function
1 ogin(CDCLoginParameter param- v oi CDC login, parameters username: username pass-
eter) d word: password
startStreaming(S tartStreamingPa- s t r Start CDC subscription StartStreamingParameter pa-
rameter parameter) e a rameters database: logical database name schemaTa-
m i bles: subscribed table name full: whether to subscribe
ngl tofulldata
d
r estartStreaming(String v o i Restart subscription
streamingld) d
stopStreaming(String streamingld) v oi Stop subscription
d
dropStreaming(String v oi Delete subscription
streamingld) d
await() v oi Blockthe CDC thread and wait for the channel to close
d
close() v oi Closethe channel, the process ends
d
Manual

Introduction to CDC Function

CDC only synchronizes data, it does not synchronize table structures, and currently does not support

the synchronization of DDL statements.

9.2. ShardingSphere-Proxy 482

Apache ShardingSphere document

Introduction to CDC Protocol

The CDC protocol uses Protobuf, and the corresponding Protobuf types are mapped based on the types

in Java.

Here, taking openGauss as an example, the mapping relationship between the data types of the CDC

protocol and the database types is as follows.

openGauss type Javadata CDC corre Remarks
type sponding pro-
tobuf type
tinyint, smallint, in- Integer int32
teger
bigint L ong int64
numeric B igD eci string
mal
real, float4 Fl oat float
bin ary_double, Double double
double precision
boolean Boolean bool
char, varchar, text, String string
clob
blob, bytea, raw byt e[] bytes
date, timestamp, t java.sql. Timestamp The Timestamp type of protobuf only contains
imestamptz, sm all- Tim est seconds and nanoseconds, so it is irrelevant to
datetime amp the time zone
time, timetz j ava .sq int64 Represents the number of nanoseconds of the
LT ime day, irrelevant to the time zone
interval, reltime, String string
abstime
point, lseg, box, String string
path, polygon, cir-
cle
cidr, inet, macaddr String string
tsvector String string
tsquery String String
uuid String string
json, jsonb String string
hll String string
int4range, dat- String string
erange, tsrange,
tstzrange
hash16, hash32 String string
bit, bit varying String string Returns Boolean type when bit(1)

9.2. ShardingSphere-Proxy

483

Apache ShardingSphere document

openGauss User Manual

Environmental Requirements

Supported openGauss versions: 2.x ~ 3.X.

Permission Requirements

1. Adjust the source end WAL configuration.

Example configuration for postgresql.conf:

wal_level = logical

max_wal_senders = 10

max_replication_slots = 10

wal_sender_timeout = 0

max_connections = 600

For details, please refer to Write Ahead Log and Replication.

2. Grant replication permission to the source end openGauss account.

Example configuration for pg_hba.conf:

host replication repl_acct 0.0.0.0/0 md5
0.0.0.0/0 means allowing access from any IP address, which can be adjusted to the

IP address of the CDC Server according to the actual situation
For details, please refer to Configuring Client Access Authentication and Example: Logic Replication
Code.

3. Grant DDL DML permissions to the openGauss account.

If a non-super administrator account is used, it is required that this account has CREATE and CONNECT

permissions on the database used.

Example:

GRANT CREATE, CONNECT ON DATABASE source_ds TO cdc_user;

The account also needs to have access permissions to the table and schema to be subscribed, taking the
t_order table under the test schema as an example.

\c source_ds

GRANT USAGE ON SCHEMA test TO GROUP cdc_user;
GRANT SELECT ON TABLE test.t_order TO cdc_user;

openGauss has the concept of OWNER. If it is the OWNER of the database, SCHEMA, or table, the cor-

responding authorization steps can be omitted.

9.2. ShardingSphere-Proxy 484

https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/settings.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/sending-server.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/configuring-client-access-authentication.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html

Apache ShardingSphere document

openGauss does not allow ordinary accounts to operate under the public schema. So if the table to be
migrated is under the public schema, additional authorization is needed.

GRANT ALL PRIVILEGES TO cdc_user;

For details, please refer to openGauss GRANT

Complete Process Example

Prerequisites

1. Prepare the database, table, and data of the CDC source end.

DROP DATABASE IF EXISTS ds_0;
CREATE DATABASE ds_0;

DROP DATABASE IF EXISTS ds_1;
CREATE DATABASE ds_1;

Configure CDC Server

1. Create alogical database.

CREATE DATABASE sharding_db;
\c sharding_db

2. Register storage unit.

REGISTER STORAGE UNIT ds_0 (
URL="jdbc:opengauss://127.0.0.1:5432/ds_0",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")
), ds_1 (
URL="jdbc:opengauss://127.0.0.1:5432/ds_1",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

)5
3. Create sharding rules.

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_0,ds_1),

SHARDING_COLUMN=order_1id,

TYPE (NAME="hash_mod" ,PROPERTIES("sharding-count"="2")),

9.2. ShardingSphere-Proxy 485

https://docs.opengauss.org/zh/docs/2.0.1/docs/Developerguide/GRANT.html

Apache ShardingSphere document

KEY_GENERATE_STRATEGY (COLUMN=order_id,TYPE (NAME="snowflake"))
)3

4. Create tables

Execute the creation table statement in the proxy.

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

Start CDC Client

Currently, the CDC Client only provides a Java API, and users need to implement the data consumption

themselves.

Below is a simple example of starting the CDC Client.

import lombok.SneakyThrows;

import lombok.extern.slf4j.S1f4j;

import org.apache.shardingsphere.data.pipeline.cdc.client.CDCClient;
import org.apache.shardingsphere.data.pipeline.cdc.client.config.
CDCClientConfiguration;

import org.apache.shardingsphere.data.pipeline.cdc.client.handler.
RetryStreamingExceptionHandler;

import org.apache.shardingsphere.data.pipeline.cdc.client.parameter.
CDCLoginParameter;

import org.apache.shardingsphere.data.pipeline.cdc.client.parameter.
StartStreamingParameter;

import org.apache.shardingsphere.data.pipeline.cdc.protocol.request.
StreamDataRequestBody.SchemaTable;

import java.util.Collections;

@S1f4j
public final class Bootstrap {

@SneakyThrows (InterruptedException.class)
public static void main(final String[] args) {

String address = "127.0.0.1";

// Construct CDCClient, pass in CDCClientConfiguration,
CDCClientConfiguration contains the address and port of the CDC Server, as well as
the timeout time

try (CDCClient cdcClient = new CDCClient(new CDCClientConfiguration(address,
33071, 10000))) {

// First call connect to the CDC Server, you need to pass in 1. Data
consumption processing logic 2. Exception handling logic during consumption 3.
Server error exception handling logic

cdcClient.connect(records -> log.info("records: {}", records), new

9.2. ShardingSphere-Proxy 486

Apache ShardingSphere document

RetryStreamingExceptionHandler (cdcClient, 5, 5000),
(ctx, result) -> log.error("Server error: {}", result.
getErrorMessage()));

cdcClient.login(new CDCLoginParameter("root", "root"));

// Start CDC data synchronization, the returned streamingId is the unique
identifier of this CDC task, the basis for the CDC Server to generate a unique
identifier is the name of the subscribed database + the subscribed table + whether
it is full synchronization

String streamingId = cdcClient.startStreaming(new
StartStreamingParameter ("sharding_db", Collections.singleton(SchemaTable.
newBuilder () .setTable("t_order").build()), true));

log.info("Streaming id={}", streamingld);

// Prevent the main thread from exiting

cdcClient.await();

There are mainly 4 steps 1. Construct CDCClient, pass in CDCClientConfiguration 2. Call CDC-
Client.connect(), this step is to establish a connection with the CDC Server 3. Call CDCClient.login(), log
in with the username and password configured in global.yaml 4. Call CDCClient.startStreamingy(), start
subscribing, you need to ensure that the subscribed database and table exist in ShardingSphere-Proxy,

otherwise an error will be reported

CDCClient.await is to block the main thread, it is not a necessary step, other methods can
also be used, as long as the CDC thread is always working.

If you need more complex data consumption implementation, such as writing to the database, you can
refer to DataSourceRecordConsumer

Write Data

When write data through a proxy, the CDC Client is notified of the data change.

INSERT INTO t_order (order_id, user_id, status) VALUES (1,1,'okl'),(2,2,'o0k2'),(3,3,
'ok3');

UPDATE t_order SET status='updated' WHERE order_id = 1;

DELETE FROM t_order WHERE order_id = 2;

Bootstrap will output a similar log.

records: [before {
name: "order_id"
value {
type_url: "type.googleapis.com/google.protobuf.Empty"

9.2. ShardingSphere-Proxy 487

https://github.com/apache/shardingsphere/blob/master/test/e2e/operation/pipeline/src/test/java/org/apache/shardingsphere/test/e2e/data/pipeline/cases/cdc/DataSourceRecordConsumer.java

Apache ShardingSphere document

View the Running Status of the CDC Task

The start and stop of the CDC task can only be controlled by the CDC Client. You can view the status of
the CDC task by executing DistSQL in the proxy

1. View the CDC task list
SHOW STREAMING LIST;

Running result

sharding_db=> SHOW STREAMING LIST;
id | database | tables | job_item_count |

active | create_time | stop_time

j0302p00007022a83116fcee83f70419ca5e2993791 | sharding_db | t_order | 1
| true | 2023-10-27 22:01:27 |
(1 row)

2. View the details of the CDC task

SHOW STREAMING STATUS j0302p0000702a83116fcee83f70419ca5e2993791;

Running result

sharding_db=> SHOW STREAMING STATUS j0302p0000702a83116fcee83f70419ca5e2993791;
item | data_source | status | active | processed_records_count |
inventory_finished_percentage | incremental_idle_seconds | confirmed_position |

current_position | error_message

—————— o
o o —— o +-—
________________ e

(0} | ds_o | EXECUTE_INCREMENTAL_TASK | false | 2 | 100
| 115 | 5/597E43D0 | 5/597E4810 |

1 | ds_1 | EXECUTE_INCREMENTAL_TASK | false | 3 | 100
| 115 | 5/597E4450 | 5/597E4810 |

(2 rows)

3. Drop CDC task
DROP STREAMING j0302p0000702a83116fcee83f70419ca5e2993791;

The CDC task can only be deleted when there are no subscriptions. At this time, the replication slots on

the openGauss physical database will also be deleted.

sharding_db=> DROP STREAMING j0302p0000702a83116fcee83f70419ca5e2993791;
SUCCESS

9.2. ShardingSphere-Proxy 488

Apache ShardingSphere document

Precautions

Explanation of incremental data push

1. The CDC incremental push is currently transactional, and the transactions of the physical
database will not be split. Therefore, if there are data changes in multiple tables in a transaction,
these data changes will be pushed together. If you want to support XA transactions (currently
only supports openGauss), both openGauss and Proxy need the GLT module.

2. The conditions for push are met when a certain amount of data is met or a certain time interval
is reached (currently 300ms). When processing XA transactions, if the received multiple physical
database incremental events exceed 300ms, it may cause the XA transaction to be split and pushed.

Handling of large transactions

Currently, large transactions are fully parsed, which may cause the CDC Server process to OOM. In the

future, forced truncation may be considered.

Recommended configuration

There is no fixed value for the performance of CDC, you can focus on the batchSize of read/write in the
configuration, and the size of the memory queue, and tune it according to the actual situation.

9.3 Common Configuration

This chapter mainly introduces general configuration, including property configuration and built-in
algorithm configuration.

9.3.1 Properties Configuration

Background

Apache ShardingSphere provides the way of property configuration to configure system level configu-
ration.

9.3. Common Configuration 489

Apache ShardingSphere document

Parameters

Name* DataType™

Description

DefaultValue*

sql -show (?) boolean

sql-s imple (?) boolean

kerne l-exe cutor -size int

®)

max-c onnec tions - int

size -per- query (?)

che ck-ta ble-m etada boolean
ta-en abled (?)

load- table -meta data- int
batch -size (?)

Whether show SQL
or not in log. Print
SQL details can help
developers debug
easier. The log details
logic SQL,
actual SQL and SQL
parse result. Enable

include:

this property will log
into log topic Shard-
ingSphere-SQL, log
level is INFO

Whether show SQL de-
tails in simple style
The max thread size
of worker group to
execute SQL. One
ShardingSphereData-
Source will use a
thread

pool, it does not share

independent

thread pool even dif-
ferent data source in
same JVM

Max opened connec-
tion size for each query
Whether validate table
meta data consistency
when application
startup or updated
The number of table
metadata loaded at a
time when application
startup or refreshes ta-
ble metadata

false

false

infinite

false

1000

9.3. Common Configuration

490

Apache ShardingSphere document

Procedure

1. Properties configuration is directly configured in the profile used by ShardingSphere-JDBC. The
format is as follows:

props:
sql-show: true

Notes

The default value of the max-connections-size-per-query configuration is 1, meaning each
query request can only use one connection per database instance. If you adjust this parameter to en-
able memory-restricted mode (see Memory-Strictly Mode for details), ensure that your database’ s JDBC
implementation supports streaming queries or can enable them. For example, in MySQL, you need to
set statement.setFetchSize(Integer.MIN_VALUE) to achieve streaming queries.

Sample

The example of ShardingSphere warehouse contains property configurations of various scenarios.
Please refer to: https://github.com/apache/shardingsphere/tree/master/examples

9.3.2 Builtin Algorithm

Introduction

Apache ShardingSphere allows developers to implement algorithms via SPI; At the same time, Apache
ShardingSphere also provides a couple of builtin algorithms for simplify developers.

Usage

The builtin algorithms are configured by type and props. Type is defined by the algorithm in SPI, and
props is used to deliver the customized parameters of the algorithm.

No matter which configuration type is used, the configured algorithm is named and passed to the cor-
responding rule configuration. This chapter distinguishes and lists all the builtin algorithms of Apache
ShardingSphere according to its functions for developers’ reference.

9.3. Common Configuration 491

https://shardingsphere.apache.org/document/current/en/reference/sharding/execute/#memory_strictly-mode
https://github.com/apache/shardingsphere/tree/master/examples

Apache ShardingSphere document

Metadata Repository

Background

Apache ShardingSphere provides different metadata persistence methods for different running modes.
Users can freely choose the most appropriate way to store metadata while configuring the running

mode.

Parameters

Database Repository

The optional values of provider are H2, MySQL, EmbeddedDerby, DerbyNetworkServer and HSQLDB.
Since third-party Vulnerability Reports often misreport H2 Database, avoiding the use of H2 Database
in ShardingSphere Standalone Mode may be an option. Discuss the case where provider is not the
default value H2.

1. If provider is setto MySQL, a ready MySQL Server is required. The classpath should contain the
Maven dependency of com.mysql:mysql-connector-j:9.0.0.

2. If provider is set to EmbeddedDerby, the Derby database engine will run in the same
JVM as the application. The classpath should contain Maven dependencies of org.apache.
derby:derby:10.17.1.0 and org.apache.derby:derbytools:10.17.1.0, and the JDK
version required to compile or run the downstream project is greater than or equal to JDK19. Pos-
sible configurations are as follows.

mode:
type: Standalone
repository:
type: JIDBC
props:
provider: EmbeddedDerby
jdbc_url: jdbc:derby:memory:config;create=true
username:

3. If provider is set to DerbyNetworkServer, a ready Derby Network Server is required. There
is no available Docker Image for Derby Network Server, and users may need to start Derby Net-
work Server manually. The classpath should contain Maven dependencies of org.apache.
derby:derbyclient:10.17.1.0 and org.apache.derby:derbytools:10.17.1.0, and
the JDK version required to compile or run the downstream project is greater than or equal to
JDK19.

4. If provider is set to HSQLDB, a ready HyperSQL using Server Modes is required, or a database is
created as an in-process database. The classpath should contain the Maven dependency of org.
hsqldb:hsqldb:2.7.3 with classifier as jdk8. There is no available Docker Image for
HyperSQL using Server Modes, and users may need to manually start HyperSQL using Server
Modes. If HyperSQL using mem: protocol is used, the possible configuration is as follows,

9.3. Common Configuration 492

Apache ShardingSphere document

mode:
type: Standalone
repository:
type: JDBC
props:
provider: HSQLDB
jdbc_url: jdbc:hsqldb:mem:config

username: SA

Type: JDBC

Mode: Standalone

Attributes:
Na me . Description Default Value
Type*
pr ovi der String Type for metadata per- H2
sist
jdbe_url String JDBC URL jdbc:h2:mem:config
;DB_CLOSE_DE LAY=-
1;DATABASE_TO_UPPER=false;MODE=M
us ern ame String username sa
pa ssw ord String password
ZooKeeper Repository
Type: ZooKeeper
Mode: Cluster
Attributes:
Name Type Description Default Value
retrylnte rvalMilliseconds int Milliseconds of retry interval 500
maxRetries int Max retries of client connection 3
t imeToLiveSeconds int Seconds of ephemeral data live 60
operationTim eoutMilliseconds int Milliseconds of operation timeout 500
digest String Password of login

9.3. Common Configuration 493

jdbc:h2:mem:config;DB_CLOSE_DE
jdbc:h2:mem:config;DB_CLOSE_DE

Apache ShardingSphere document

Etcd Repository

Type: Etcd

Mode: Cluster

Attributes:
Name Type Description Default Value
timeToLiveSeconds long Seconds of ephemeral data live 30
connectionTimeout long Seconds of connection timeout 30
Procedure

1. Configure running mode in global.yaml.

2. Configure metadata persistence warehouse type.

Sample

- Standalone mode configuration method.

mode:
type: Standalone
repository:
type: JDBC
props:
provider: H2
jdbc_url: jdbc:h2:mem:config;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;
MODE=MYSQL
username: test
password: Test@123

+ Cluster mode.

mode:
type: Cluster
repository:
type: zookeeper
props:
namespace: governance_ds
server-Llists: localhost:2181
retryIntervalMilliseconds: 500
timeTolLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

9.3. Common Configuration 494

Apache ShardingSphere document

Sharding Algorithm

Background

ShardingSphere built-in algorithms provide a variety of sharding algorithms, which can be divided into
automatic sharding algorithms, standard sharding algorithms, composite sharding algorithms, and hint
sharding algorithms, and can meet the needs of most business scenarios of users.

Additionally, considering the complexity of business scenarios, the built-in algorithm also provides a
way to customize the sharding algorithm. Users can complete complex sharding logic by writing java

code.

It should be noted that the sharding logic of the automatic sharding algorithm is automatically managed
by ShardingSphere and needs to be used by configuring the autoTables sharding rules.

Parameters

Auto Sharding Algorithm

Modulo Sharding Algorithm

Type: MOD

Attributes:

Name DataType Description

sharding-count int Sharding count

Hash Modulo Sharding Algorithm

Type: HASH_MOD

Attributes:

Name DataType Description

sharding-count int Sharding count

9.3. Common Configuration 495

Apache ShardingSphere document

Volume Based Range Sharding Algorithm

Type: VOLUME_RANGE

Attributes:
Name DataType Description
range-lower long Range lower bound, throw exception if lower than bound
range-upper long Range upper bound, throw exception if upper than bound
sharding-volume long Sharding volume

Boundary Based Range Sharding Algorithm

Type: BOUNDARY_RANGE

Attributes:
Name DataType Description
shardi ng- String Range of sharding border, multiple boundaries separated by commas
ranges

Auto Interval Sharding Algorithm

Type: AUTO_INTERVAL

Attributes:
Na me . Description
DataType™

da tet ime -lo wer String Shard datetime begin bound-
ary, pattern: yyyy-MM-dd
HH:mm:ss

da tet ime -up per String Shard datetime end bound-
ary, pattern: yyyy-MM-dd
HH:mm:ss

s har din g-s eco nds long Max seconds for the data in

one shard, allows sharding key
timestamp format seconds with
time precision, but time preci-
sion after seconds is automati-
cally erased

9.3. Common Configuration 496

Apache ShardingSphere document

Standard Sharding Algorithm

Apache ShardingSphere built-in standard sharding algorithm are:

Inline Sharding Algorithm

With Groovy expressions that uses the default implementation of the InlineExpressionParser SPI,
InlineShardingStrategy provides single-key support for the sharding operation of = and IN in
SQL. Simple sharding algorithms can be used through a simple configuration to avoid laborious Java
code developments. For example, t_user_$->{u_id % 8} means table t_user is divided into 8 tables
according to u_id, with table names from t_user_0 to t_user_7. Please refer to Inline Expression

for more details.

Type: INLINE
Attributes:

Name . Description D efa ult Val ue

DataType”
algori thm-expression String Inline expression .
sharding algorithm

allow-rang e-query- boolean Whether range query false

with-i nline-sharding is allowed. Note:

® range query will ig-

nore sharding strategy
and conduct full rout-

ing

Interval Sharding Algorithm

This algorithm actively ignores the time zone information of datetime-pattern. This means that
when datetime-lower, datetime-upper and the incoming shard key contain time zone informa-

tion, time zone conversion will not occur due to time zone inconsistencies.

When the shard key passed in is java.time.Instant or java.util.Date, there is a special
case. It will carry the system’ s time zone information and convert it into a string format of date-

time-pattern before the next sharding.
Type: INTERVAL

Attributes:

9.3. Common Configuration 497

https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/#implementation-classes

Apache ShardingSphere document

Name

DataType

*

Description

DefaultValue*

date time -pat tern

da teti me-1 ower

da teti me-u pper (?)

sha rdin g-su ffix -pat

tern

date time -int erval-am

ount (?)

da teti me-i nter val-
unit (?)

String

String

String

String

int

String

Timestamp pattern

of sharding value,
must can be trans-
formed to Java Lo-
calDateTime. For
example: yyyy-MM-dd
yyyy-
MM-dd or HH:mm:ss
etc. But GGGGy-MM

etc. related to java.

HH:mm:ss,

time.chrono.
JapaneseDate are
not supported
Datetime sharding
lower boundary,
defined

datetime-pattern

pattern is

Datetime

upper
pattern is

sharding
boundary,
defined
datetime-pattern
Suffix
sharding data sources

pattern of
or tables, must can
be transformed to
Java LocalDateTime,
must be consis-
with date-

time-interval-unit

tent

For example: yyyyMM
Interval of sharding
value, which
the next shard will be

after

entered

Unit of sharding value
interval, must can be
transformed to Java
ChronoUnit’ s Enum
value. For example:
MONTHS

Now

DAYS

9.3. Common Configuration

498

Apache ShardingSphere document

Complex Sharding Algorithm

Complex Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

Name . Description D efa ult Val ue
DataType™
sh arding-columns (?) String sharding column .
names
algori thm-expression String Inline expression .

sharding algorithm

allow-rang e-query- boolean Whether range query false
with-i nline-sharding is allowed. Note:
®) range query will ig-

nore sharding strategy

and conduct full rout-

ing
Hint Sharding Algorithm
Hint Inline Sharding Algorithm
Please refer to Inline Expression for more details.
Type: COMPLEX_INLINE
Name DataType Description Default Value
algor ithm-expression String Inline expression sharding algorithm ${value}

Class Based Sharding Algorithm

Realize custom extension by configuring the sharding strategy type and algorithm class name.
CLASS_BASED allows additional custom properties to be passed into the algorithm class. The passed
properties can be retrieved through the java.util.Properties class instance with the property
name props. Refer to Git' s org.apache.shardingsphere.example.extension.sharding.
algortihm.classbased. fixture.ClassBasedStandardShardingAlgorithmFixture.

Type: CLASS_BASED

Attributes:

9.3. Common Configuration 499

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/#row-value-expressions
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/#row-value-expressions

Apache ShardingSphere document

Name D ataT Description
ype
strategy String Sharding strategy type, support STANDARD, COMPLEX or HINT

(case insensitive)
algorith mClass- String Fully qualified name of sharding algorithm
Name

Procedure

1. When using data sharding, configure the corresponding data sharding algorithm under the
shardingAlgorithms attribute.

Sample
rules:
— ISHARDING
tables:
t_order:
actualDataNodes: ds_s${0..1}.t_order_${0..1}
tableStrategy:
standard:
shardingColumn: order_1id
shardingAlgorithmName: t_order_inline
keyGenerateStrategy:

column: order_id
keyGeneratorName: snowflake
t_order_item:
actualDataNodes: ds_s${0..1}.t_order_item_${0..1}
tableStrategy:
standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_item_inline
keyGenerateStrategy:
column: order_-item_-id
keyGeneratorName: snowflake
t_account:
actualDataNodes: ds_${0..1}.t_account_${0..1}
tableStrategy:
standard:
shardingAlgorithmName: t_account_inline
keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake
defaultShardingColumn: account_-id

9.3. Common Configuration 500

Apache ShardingSphere document

bindingTables:
- t_order,t_order_item
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: database_inline
defaultTableStrategy:
none:

shardingAlgorithms:
database_1inline:
type: INLINE
props:
algorithm-expression: ds_s${user_id % 2}
t_order_inline:
type: INLINE
props:
algorithm-expression: t_order_S${order_id % 2}
t_order_item_inline:
type: INLINE
props:
algorithm-expression: t_order_item_${order_id % 2}
t_account_inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

- !BROADCAST

tables:
- t_address

Related References

+ Core Feature: Data Sharding

+ Developer Guide: Data Sharding

9.3. Common Configuration 501

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

Key Generate Algorithm

Background

In traditional database software development, automatic primary key generation is a basic requirement
and various databases provide support for this requirement, such as MySQL’ s self-incrementing keys,

Oracle’ s self-incrementing sequences, etc.

After data sharding, it is a very tricky problem to generate global unique primary keys from different
data nodes. Self-incrementing keys between different actual tables within the same logical table gen-

erate duplicate primary keys because they are not mutually perceived.

Although collisions can be avoided by constraining the initial value and step size of self-incrementing
primary keys, additional O&M rules must to be introduced, making the solution lack completeness and
scalability.

There are many third-party solutions that can perfectly solve this problem, such as UUID, which re-
lies on specific algorithms to generate non-duplicate keys, or by introducing primary key generation

services.

In order to cater to the requirements of different users in different scenarios, Apache ShardingSphere
not only provides built-in distributed primary key generators, such as UUID, SNOWFLAKE, but also
abstracts the interface of distributed primary key generators to facilitate users to implement their own

customized primary key generators.

Parameters
Snowflake

Type: SNOWFLAKE

Attributes:

9.3. Common Configuration 502

Apache ShardingSphere document

Na me . Description .
DataType* DefaultValue*
wor ker -id (?) long The unique ID for 0
working machine
ma x-tolerate-time- long The max tolerate time 10
di ffe ren ce- mil lis eco for different server’ s
nds (?) time difference in mil-
liseconds
max-vibration-offset int The max upper 1
) limit value of vi-

brate number, range
[0, 4096). Notice:
To use the generated
value of this algorithm
as sharding value, it is
recommended to con-
figure this property.
The algorithm gener-
ates keymod 2”n (2”n
is usually the sharding
amount of tables or
databases) in different
milliseconds and the
result is always 0 or 1.
To prevent the above
sharding problem, it is
recommended to con-
figure this property,
its valueis (2°n)-1

Note: worker-id is optional 1. In standalone mode, support user-defined configuration, if the user does

not configure the default value of 0. 2. In cluster mode, it will be automatically generated by the system,

and duplicate values will not be generated in the same namespace.

9.3. Common Configuration

503

Apache ShardingSphere document

uuiD

Type: UUID

Attributes: None

Procedure

1. Policy of distributed primary key configurations is for columns when configuring data sharding

rules.

Sample

+ Snowflake Algorithms

keyGenerators:
snowflake:
type: SNOWFLAKE

« UUID

keyGenerators:
uuid:
type: UUID

Load Balance Algorithm

Background
ShardingSphere built-in provides a variety of load balancer algorithms, including polling algorithm,

random access algorithm and weight access algorithm, which can meet users’ needs in most business

scenarios.

Moreover, considering the complexity of the business scenario, the built-in algorithm also provides an
extension mode. Users can implement the load balancer algorithm they need based on SPI interface.

Parameters
Round-robin Load Balance Algorithm

Type: ROUND_ROBIN

9.3. Common Configuration 504

Apache ShardingSphere document

Random Load Balance Algorithm

Type: RANDOM

Weight Load Balance Algorithm

Type: WEIGHT

Attributes:
Name . Description
DataType™
${replica-nam e} double Attribute name uses the name
of the replica, and the param-
eter fills in the weight value
corresponding to the replica.
Weight parameter range min >
0, total <= Double.MAX_VALUE.
Procedure

1. Configure a load balancer algorithm for the loadBalancers attribute to use read/write splitting.

Sample

rules:
- !READWRITE_SPLITTING
dataSourceGroups:
readwrite_ds:
writeDataSourceName: write_ds
readDataSourceNames:
- read_ds_0
- read_ds_1
transactionalReadQueryStrategy: PRIMARY
loadBalancerName: random
loadBalancers:
random:
type: RANDOM

9.3. Common Configuration 505

Apache ShardingSphere document

Related References

+ Core Feature: Read/Write Splitting

 Developer Guide: Read/Write Splitting

Encryption Algorithm

Background

Encryption algorithms are by the encryption features of Apache ShardingSphere. A variety of algo-
rithms are built-in to make it easy for users to fully leverage the feature.

Parameters
Standard Encrypt Algorithm
AES Encrypt Algorithm

Type: AES

Attributes:

Name DataType Description

aes-key-value String AES KEY
digest-algorithm-name String AES KEY DIGEST ALGORITHM

Assisted Encrypt Algorithm

MD5 Assisted Encrypt Algorithm

Type: MD5

Attributes:

Name DataType Description

salt String Salt value(optional)

9.3. Common Configuration 506

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/dev-manual/infra-algorithm/

Apache ShardingSphere document

Operating Procedure

1. Configure encryptors in an encryption rule.

2. Use relevant algorithm types in encryptors.

Configuration Examples

rules:
- !'ENCRYPT
tables:
t_user:
columns:
username:
cipher:
name: username
encryptorName: name_encryptor
assistedQuery:
name: assisted_username
encryptorName: assisted_encryptor
encryptors:

name_encryptor:
type: AES
props:
aes-key-value: 123456abc
digest-algorithm-name: SHA-1
assisted_encryptor:
type: MD5
props:
salt: 123456

Related References

+ Core Feature: Data Encrypt
+ Developer Guide: Data Encrypt
Shadow Algorithm

Background

The shadow DB feature carries out shadow measurement to SQL statements executed. Shadow mea-
surement supports two types of algorithms, and users can choose one or a combination of them based

on actual business needs.

9.3. Common Configuration 507

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document

Parameters

Column-based shadow algorithm

Column value matching shadow algorithm

Type: VALUE_MATCH

Attribute Name Data Type Description

column String shadow column
operation String SQL operation type (INSERT, UPDATE, DELETE, SELECT)
value String value matched by shadow column

Column-based Regex matching algorithm

Type: REGEX_MATCH

Attribute Name Data Type Description

column String match a column
operation String SQL operation type (INSERT, UPDATE, DELETE, SELECT)
regex String shadow column matching Regex

Hint-based shadow algorithm

SQL HINT shadow algorithm

Type: SQL_HINT

/* SHARDINGSPHERE_HINT: SHADOW=true x/

Configuration sample

» Java API

public final class ShadowConfiguration {

/!

private AlgorithmConfiguration createShadowAlgorithmConfiguration() {
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_id");

userIdInsertProps.setProperty("value", "1");

9.3. Common Configuration 508

Apache ShardingSphere document

return new AlgorithmConfiguration("VALUE_MATCH", userIdInsertProps);

}

/] ...
}

« YAML:
shadowAlgorithms:

user-id-insert-algorithm:
type: VALUE_MATCH
props:
column: user_id
operation: finsert
value: 1

SQL Translator

Native SQL translator

Type: NATIVE
Attributes:
None

Default SQL translator, does not implement yet.

Sharding Audit Algorithm

Background

The sharding audit is to audit the SQL statements in the sharding database. Sharding audit not only
intercept illegal SQL statements, but also gather the SQL statistics.

Parameters

DML_SHARDING_CONDITIONS algorithm

Type: DML_SHARDING_CONDITIONS

9.3. Common Configuration 509

Apache ShardingSphere document

Procedure

1. when configuring data sharding rules, create sharding audit configurations.

Sample

« DML_SHARDING_CONDITIONS
auditors:
sharding_key_required_auditor:
type: DML_SHARDING_CONDITIONS

Data Masking Algorithm

Background

Data masking algorithms are by the mask features of Apache ShardingSphere. A variety of algorithms

are built-in to make it easy for users to fully leverage the feature.

Parameters

Hash Data Masking Algorithm

MD5 Data Masking Algorithm

Type: MD5

Attributes:

Name DataType

Description

salt String

Salt value (optional)

Mask Data Masking Algorithm

Keep First N Last M Data Masking Algorithm

Type: KEEP_FIRST_N_LAST_M

Attributes:

9.3. Common Configuration

510

Apache ShardingSphere document

Name DataType Description
first-n int first n substring
last-m int last m substring
replace-char String replace char

Keep From X To Y Data Masking Algorithm

Type: KEEP_FROM_X_TO_Y

Attributes:

Name DataType Description

from-x int start position (from 0)
to-y int end position (from 0)
replace-char String replace char

Mask First N Last M Data Masking Algorithm

Type: MASK_FIRST_N_LAST_M

Attributes:

Name DataType Description
first-n int first n substring
last-m int last m substring
replace-char String replace char

Mask From X To Y Data Masking Algorithm

Type: MASK_FROM_X_TO_Y

Attributes:

Name DataType Description

from-x int start position (from 0)
to-y int end position (from 0)
replace-char String replace char

9.3. Common Configuration 511

Apache ShardingSphere document

Mask Before Special Chars Data Masking Algorithm

Type: MASK_BEFORE_SPECIAL_CHARS

Attributes:

Name DataType Description
special-chars String Special chars (first appearance)
replace-char String replace char

Mask After Special Chars Data Masking Algorithm

Type: MASK_AFTER_SPECIAL_CHARS

Attributes:

Name DataType Description
special-chars String Special chars (first appearance)
replace-char String replace char

Replace Data Masking Algorithm

Generic table random replace algorithm.

Type: GENERIC_TABLE_RANDOM_REPLACE

Attributes:

Name D at aT Description
ype

upperc ase-lett String Uppercase letter codes (separate with comma, default value: A

er-codes ,B,C,D,E,F,G,H,L],K,L, M,N,0,P,Q,R,S,T,UV,W,X,Y,Z)

lowerc ase-lett String Lowercase-letter codes (separate with comma, default value: a

er-codes ,b,c,d,e,f,g,h,i j,k,1,m,n,o0,p,q,5s,t,u,v,w,X,y,z)

digi tal-rand String Numbers (separate with comma, default value: 0,1,2,3,4,5,6,7,8,9)

om-codes

special-codes String Special codes (separate with comma, default value:
~L@,#,$,%,~,&.%:,<,>,1)

9.3. Common Configuration 512

Apache ShardingSphere document

Operating Procedure

1. Configure maskAlgorithms in a mask rule.

2. Use relevant algorithm types in maskAlgorithms.

Configuration Examples

rules:
- IMASK
tables:
t_user:
columns:
password:
maskAlgorithm: md5_mask
email:
maskAlgorithm: mask_before_special_chars_mask
telephone:

maskAlgorithm: keep_first_n_last_m_mask

maskAlgorithms:
md5_mask:
type: MD5
mask_before_special_chars_mask:
type: MASK_BEFORE_SPECIAL_CHARS
props:
special-chars: '@'
replace-char: 'x'
keep_first_n_last_m_mask:
type: KEEP_FIRST_N_LAST_M
props:
first-n: 3
last-m: 4
replace-char: 'x!'

9.3. Common Configuration 513

Apache ShardingSphere document

Related References

+ Core Feature: Data Masking

+ Developer Guide: Data Masking

Row Value Expressions

Row Value Expressions that uses the Groovy syntax

Type: GROOVY

Just use ${ expression } or $->{ expression } in the configuration to identify the row ex-
pressions. The content of row expressions uses Groovy syntax, and all operations supported by Groovy
are supported by row expressions. ${begin. .end} denotes the range interval, ${[unitl, unit2,
unit_x]} denotesthe enumeration value. If there are multiple ${ expression }or $->{ expres-
sion } expressions in a row expression, the final result of the whole expression will be a Cartesian
combination based on the result of each sub-expression.

Example:
» <GROOVY>t_order_${1..3} will be converted to t_order_1, t_order_2, t_order_3

+ <GROOVY>S${['online', 'offline']}_tables{1..3} will be converted to on-
line_tablel, online_table2, online_table3, offline_tablel, of-
fline_table2, offline_table3

Row Value Expressions that uses a standard list

The LITERAL implementation will not convert any symbols to the expression part, and will directly
obtain the output of the standard list from the input of the standard list. This helps address the issue
that Groovy expressions are inconvenient to use under GraalVM Native Image.

Type: LITERAL
Example:

« <LITERAL>t_order_1, t_order_2, t_order_3 will be converted to t_order_1,

t_order_2, t_order_3

* <LITERAL>t_order_${1..3} will be convertedto t_order_s${1..3}

9.3. Common Configuration 514

https://shardingsphere.apache.org/document/current/en/features/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/

Apache ShardingSphere document

Row Value Expressions based on fixed interval that uses the Key-Value syntax

The INTERVAL implementation introduces a Key-Value style property syntax to define a set of time
ranges of strings via a single line string. This is often used to simplify the definition of actualDataN-
odes for Sharding feature. The string generated by INTERVAL is only applicable to multiple tables
in a single real database. If you need to process multiple tables in multiple real databases, consider
creating your own SPI implementation class of org.apache.shardingsphere.infra.expr.spi.

InlineExpressionParser.

INTERVAL implements the method of defining multiple attributes as Keyl=Valuel;Key2=Value2,
using ; to separate key-value pairs, and = to separate Key values and Value values.

This implementation actively ignores the time zone information of SP, which means that when DL and

DU contain time zone information, no time zone conversion will occur due to inconsistent time zones.

This implementation is not sensitive to the order of key-value pairs, and the line expression does not

carry the ; sign at the end.
The INTERVAL implementation introduces the following Key values:

1. P stands for the abbreviation of prefix, which means the prefix of the result list unit, usually rep-

resenting the prefix format of the real table.

2. SP stands for the abbreviation of suffix pattern, which means the timestamp format of the suffix
of the result list unit. It usually represents the suffix format of the real table and must follow the
format of Java DateTimeFormatter. For example: yyyyMMdd, yyyyMM or yyyy etc.

3. DIA stands for the abbreviation of datetime interval amount, which means the time interval of
the result list unit.

4. DIU stands for the abbreviation of datetime interval unit, which means the shard key
time interval unit. It must follow the enumeration value of Java java.time.temporal.
ChronoUnit#toString(). For example: Months.

5. DL stands for the abbreviation of datetime lower, which means the lower bound of time. The

format is consistent with the timestamp format defined by SP.

6. DU stands for the abbreviation of datetime upper, which means the upper bound value of time.
The format is consistent with the timestamp format defined by SP.

7. C stands for the abbreviation of chronology, which means calendar system and must follow the
format of Java java.time.chrono.Chronology#getId(). For example: Japanese, Min-
guo, ThaiBuddhist. There is a default value of ISO.

Whether the Value corresponding to the Key of C is available depends on the system environment in
which the JVM is located. This means that if the user needs to set C=Japanese, they may need to
calljava.util.Locale.setDefault(java.util.Locale.JAPAN) ; inthe application’ s startup

class to modify the system environment. Discuss two JVM environments.
1. Hotspot JVM determines the return value of java.util.Locale.getDefault() at RunTime.

2. GraalVM Native Image determines the return value of java.util.Locale.locale.
getDefault() at BuildTime, which is inconsistent with the performance of Hotspot JVM.

9.3. Common Configuration 515

Apache ShardingSphere document

Refer to https://github.com/oracle/graal/issues/8022 .
Type: INTERVAL
Example:

« <INTERVAL>P=t_order_;SP=yyyy_MMdd;DIA=1;DIU=Days;DL=2023_1202;
DU=2023_1204 will be converted to t_order_2023_1202, t_order_2023_1203,
t_order_2023_1204

<INTERVAL>P=t_order_;SP=yyyy_MM;DIA=1;DIU=Months;DL=2023_10;DU=2023_12
will be converted to t_order_2023_10, t_order_2023_11, t_order_2023_12

« <INTERVAL>P=t_order_;SP=yyyy;DIA=1;DIU=Years;DL=2021;DU=2023 will be con-
vertedto t_order_2021, t_order_2022, t_order_2023

<INTERVAL>P=t_order_;SP=HH_mm_ss_SSS;DIA=1;DIU=Millis;DL=22_48_52_131;
DU=22_48_52_133 will be converted to t_order_22_48_52_131,
t_order_22_48_52_132, t_order_22_48_52_133

<INTERVAL>P=t_order_;SP=yyyy_MM_dd_HH_mm_ss_SSS;DIA=1;DIU=Days;
DL=2023_12_04_22_48_52_131;DU=2023_12_06_22_48_52_131 will be converted
to t_order_2023_12_04_22_48_52_131, t_order_2023_12_05_22_48_52_131,
t_order_2023_12_06_22_48_52_131

<INTERVAL>P=t_order_;SP=MM;DIA=1;DIU=Months;DL=10;DU=12 will be converted to
t_order_10, t_order_11, t_order_12

« <INTERVAL>P=t_order_;SP=GGGGyyyy_MM_dd;DIA=1;DIU=Days;DL= T ORR
0001_12_05;DU= R} 0001_12_06;C=Japanese will be converted to t_order_
B 0001_12_05, t_order_ A 0001_12_06

« <INTERVAL>P=t_order_;SP=GGGGyyy_MM_dd;DIA=1;DIU=Days;DL= TR 001_12_05;
DU= FAY 001_12_06;C=Japanese will be converted to t_order_ A 001_12_05,
t_order_ FB{ 001_12_06

« <INTERVAL>P=t_order_;SP=GGGGy_MM_dd;DIA=1;DIU=Days;DL= F 1_12_05;DU=
SERY 1_12_06;C=Japanese will be converted to t_order_ B 1_12_05, t_order_ F
F% 1_12_06

Row Value Expressions that uses the Groovy syntax based on GraalVM Truffle’ s Espresso implementation

This is an optional implementation. You need to actively declare the following dependencies in the
pom.xml of your own project. And please make sure your own projects are compiled with OpenJDK
21+ or its downstream distribution.

Due to the limitation of https://www.graalvm.org/jdk21/reference-manual/java-on-truffle/faq/#does-j
ava-running-on-truffle-run-on-hotspot-too, when this module is used in a non-GraalVM Native Image

environment, it is only ready on Linux with System Property os.arch set to amd64.

Truffle’ s backward compatibility matrix with the JDK is located at https://medium.com/graalvm/400
27a59¢c401 .

9.3. Common Configuration 516

https://github.com/oracle/graal/issues/8022
https://www.graalvm.org/jdk21/reference-manual/java-on-truffle/faq/#does-java-running-on-truffle-run-on-hotspot-too
https://www.graalvm.org/jdk21/reference-manual/java-on-truffle/faq/#does-java-running-on-truffle-run-on-hotspot-too
https://medium.com/graalvm/40027a59c401
https://medium.com/graalvm/40027a59c401

Apache ShardingSphere document

<dependencies>
<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-infra-expr-espresso</artifactId>
<version>${shardingsphere.version}</version>
</dependency>
<dependency>
<groupId>org.graalvm.polyglot</groupId>
<artifactId>polyglot</artifactId>
<version>24.1.0</version>
</dependency>
<dependency>
<groupId>org.graalvm.polyglot</groupId>
<artifactId>java</artifactId>
<version>24.1.0</version>
<type>pom</type>
</dependency>
</dependencies>

ESPRESSO is still an experimental module that allows the use of Row Value Expressions with Groovy
syntax under GraalVM Native Image through the Espresso implementation of GraalVM Truffle.

The syntax part is the same as the GROOVY implementation rules.
Type: ESPRESSO
Example:
« <ESPRESSO>t_order_${1..3} will be convertedto t_order_1, t_order_2, t_order_3

« <ESPRESSO>${['online', 'offline']}_tables{1..3} will be converted to on-
line_tablel, online_table2, online_table3, offline_tablel, of-
fline_table2, offline_table3

Custom Implementation

Users can always create their own implementation class of org.apache.shardingsphere.infra.
expr.spi.InlineExpressionParser, to cover more complex scenarios, including connecting to

aremote ElasticSearch cluster to execute ES | QL to obtain java.util.List<String>.

Consider a simple SPI implementation class,

import org.apache.shardingsphere.infra.expr.spi.InlineExpressionParser;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
public final class CustomInlineExpressionParserFixture implements
InlineExpressionParser {

private String inlineExpression;

@Override

9.3. Common Configuration 517

Apache ShardingSphere document

public void init(final Properties props) {
inlineExpression = props.getProperty (INLINE_EXPRESSION_KEY) ;
}
@Override
public List<String> splitAndEvaluate() {
if ("spring".equals(inlineExpression)) {
return Arrays.aslList("t_order_2024_01", "t_order_2024_02");

}

return Arrays.asList("t_order_2024_03", "t_order_2024_04");
}
@Override

public Object getType() {
return "CUSTOM.FIXTURE";

And add the file META-INF/services/org.apache.shardingsphere.infra.expr.spi.
InlineExpressionParser to the project classpath,

org.example.CustomInlineExpressionParserFixture

At this time, for actualDataNodes in the ShardingSphere configuration file, 1. If configured
as <CUSTOM.FIXTURE>spring, it will be converted to t_order_2024_01, t_order_2024_02.
2. If configured as <CUSTOM.FIXTURE>summer, it will be converted to t_order_2024_03,
t_order_2024_04.

Procedure

When using attributes that require the use of Row Value Expressions,suchasinthedata shard-
ing feature, it is sufficient to indicate the Type Name of the specific SPI implementation under the
actualDataNodes attribute.

If the Row Value Expressions does notindicate the Type Name of the SPI, the SPI implementation
of GROOVY will be used by default.

Sample

rules:
— !SHARDING
tables:
t_order:

actualDataNodes: <LITERAL>ds_0.t_order_0, ds_0.t_order_1, ds_1l.t_order_0, ds_
1.t_order_1

tableStrategy:

standard:

shardingColumn: order_id

9.3. Common Configuration 518

Apache ShardingSphere document

shardingAlgorithmName: t_order_inline
keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake
defaultDatabaseStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: database_inline
shardingAlgorithms:
database_inline:
type: INLINE
props:
algorithm-expression: <GROOVY>ds_S${user_id % 2}
t_order_inline:
type: INLINE
props:
algorithm-expression: t_order_s${order_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

Related References

+ Core Concept

« Data Sharding

9.3.3 SQL Hint
Background

At present, most relational databases basically provide SQL Hint as a supplement to SQL syntax. SQL
Hint allows users to intervene in the execution process of SQL through the built-in Hint syntax of the
database, to complete some special functions or realize optimization of SQL execution. ShardingSphere
also provides SQL Hint syntax, allowing users to perform force route for sharding and read-write split-
ting, and data source pass through.

9.3. Common Configuration 519

https://shardingsphere.apache.org/document/current/en/features/sharding/concept
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding

Apache ShardingSphere document

Use specification

The SQL Hint syntax of ShardingSphere needs to be written in SQL in the form of comments. The
SQL Hint syntax format only supports /* */ temporarily, and the Hint content needs to start with
SHARDINGSPHERE_HINT:, and then define the attribute key/value pairs corresponding to different
features, separated by commas when there are multiple attributes. The SQL Hint syntax format of

ShardingSphere is as follows:

/* SHARDINGSPHERE_HINT: {key} = {value}, {key} = {value} */ SELECT x* FROM t_order;

If you use the MySQL client to connect, you need to add the —c option to retain comments, and the client

defaults to --skip-comments to filter comments.

Parameters

The following attributes can be defined in ShardingSphere SQL Hint. In order to be compatible with
the lower version SQL Hint syntax, the attributes defined in the alias can also be used:

9.3. Common Configuration 520

Apache ShardingSphere document

Name Alias D ata Ty pe Description Def ault Va lue
S HARDING_DAT shardin gDataba C omp arable Database shard- .
ABASE_VALUE (?) seValue ing value, used
when config Hint
sharding strategy
SHARDING TA- shar dingTab leV- Comp ara ble Table shard- .
BLE_VALUE (?) alue ing value, used
when config Hint
sharding strategy
WRITE writeRo uteOnly b ool ean Route to the write false
_ROUTE_ONLY datasource when
®) use readwrite-
splitting
DATA_ dataSou rceName String Data source pass .
SOURCE_NAME through, route
® SQL directly to
the specified data
source
SKIP_ skipSQL Rewrite b ool ean Skip the SQL false
SQL_REWRITE rewrite phase
@)
SKIP_METADA skipMe tadataV b ool ean Skip the SQL false
TA_VALIDATE (?) alidate metadata validate
DISABLE_. AU- dis ableAud it- String Disable the speci- .
DIT_NAMES (?) Names fied SQL audit al-
gorithm
SHADOW (?) shadow b ool ean Route to the false
shadow data-
source when use
shadow
SQL Hint
Sharding

The optional attributes of sharding SQL Hint include:

« {table}.SHARDING_DATABASE_VALUE: used to add data source sharding value corresponding
to the {table} table, multiple attributes are separated by commas;

« {table}.SHARDING_TABLE_VALUE: used to add table sharding value corresponding to the
{table} table, multiple attributes are separated by commas.

In the case of only database sharding, when forcing routing to a certain datasource, you can
use the SHARDING_DATABASE_VALUE method to set the sharding value without specifying

9.3. Common Configuration

521

Apache ShardingSphere document

{table}.

An example of using the SQL Hint of sharding:

/* SHARDINGSPHERE_HINT: t_order.SHARDING_DATABASE_VALUE=1, t_order.SHARDING_TABLE_
VALUE=1 %/ SELECT * FROM t_order;

ReadwriteSplitting

The optional attribute of read-write splitting SQL Hint is WRITE_ROUTE_ONLY, and true means that
the current SQL is forced to be routed to write datasource for execution.

An example of using the SQL Hint for read-write splitting:

/* SHARDINGSPHERE_HINT: WRITE_ROUTE_ONLY=true %/ SELECT * FROM t_order;

DataSource Pass Through

The optional attribute of datasource pass through SQL Hint is DATA_SOURCE_NAME, which needs to
specify the name of the data source registered in the ShardingSphere logic database.

An example of using the SQL Hint of data source pass through:

/* SHARDINGSPHERE_HINT: DATA_SOURCE_NAME=ds_0 */ SELECT * FROM t_order;

SKIP SQL REWRITE

The optional attribute of skip SQL rewriting SQL Hint is SKIP_SQL_REWRITE, and true means skip-
ping the current SQL rewriting stage.

An example of skipping SQL rewrite SQL Hint:

/* SHARDINGSPHERE_HINT: SKIP_SQL_REWRITE=true %/ SELECT * FROM t_order;

SKIP METADATA VALIDATE

The optional attribute of skip SQL metadata validate SQL Hint is SKIP_METADATA_VALIDATE, and
true means skipping the current SQL metadata validate.

An example of skipping SQL metadata validate SQL Hint:

/* SHARDINGSPHERE_HINT: SKIP_METADATA_VALIDATE=true */ SELECT x* FROM t_order;

9.3. Common Configuration 522

Apache ShardingSphere document

DISABLE SQL AUDIT

The optional attribute of disable SQL audit is DISABLE_AUDIT_NAMES, you need to specify names of
SQL audit algorithm that needs to be disabled, and multiple SQL audit algorithms need to be separated

by commas.

An example of disable sql audit SQL Hint:

/* SHARDINGSPHERE_HINT: DISABLE_AUDIT_NAMES=sharding_key_required_auditor x/ SELECT
* FROM t_order;

SHADOW

The optional attribute of the shadow database pressure test SQL Hint is SHADOW, and true means that
the current SQL will be routed to the shadow database data source for execution.

An example of using shadow SQL Hint:

/* SHARDINGSPHERE_HINT: SHADOW=true %/ SELECT * FROM t_order;

9.4 Error Code

This chapter lists error codes of Apache ShardingSphere. They include SQL error codes and server error

codes.

All contents of this chapter are draft, the error codes maybe need to adjust.

9.4.1 SQL Error Code

SQL error codes provide by standard SQL State, Vendor Code and Reason, which return to client

when SQL execute error.

the error codes are draft, still need to be adjusted.

Kernel Exception

Meta data

Vendor Code SQLState Reason

10000 42502 Database is required.

10001 42502 Schema ‘%s’ does not exist.

10002 42502 Table or view ‘%s’ does not exist.
10003 42802 Unknown column ‘%s’ in ‘%s’ .

continues on next pag

9.4. Error Code 523

Apache ShardingSphere document

Table 1 - continued from previous page

VendorCode SQLState Reason

10004 42502 Index ‘%s’ does not exist.

10005 42501 Index ‘%s’ already exists.

10010 H Y000 Rule and storage meta data mismatched, reason is: %s.
10100 H Y000 Can not %s storage units ‘%s’ .

10012 H Y000 Load table meta data failed for database ‘%s’ and tables ‘%s’ .
10101 42502 There is no storage unit in database ‘%s’ .

10102 4 4000 Storage units ‘%s’ do not exist in database ‘%s’ .
10103 4 4000 Storage unit ‘%s’ still used by ‘%s’ .

10104 42501 Duplicate storage unit names ‘%s’ .

10110 08000 Storage units can not connect, error messages are: %s.
10111 0 A000 Can not alter connection info in storage units: ‘%s’ .
10120 4 4000 Invalid storage unit status, error message is: %s.

10200 4 4000 Invalid ‘%s’ rule ‘%s’ ,error message is: %s

10201 42502 There is no rule in database ‘%s’ .

10202 42502 %s rules ‘%s’ do not exist in database ‘%s’ .

10203 4 4000 %s rules ‘%s’ in database ‘%s’ are still in used.
10204 42501 Duplicate %s rule names ‘%s’ in database ‘%s’ .
10210 42502 %s strategies ‘%s’ do not exist.

10300 H Y000 Invalid format for actual data node ‘%s’ .

10301 0 A000 Can not support 3-tier structure for actual datanode ‘%s’ with JDBC ‘%s’ .
10400 4 4000 Algorithm ‘%s’ initialization failed, reason is: %s.
10401 42502 ‘%s’ algorithm on %s is required.

10402 42502 ‘%s’ algorithm ‘%s’ on %s is unregistered.

10403 4 4000 %s algorithms ‘%s’ in database ‘%s’ are still in used.
10404 4 4000 Invalid %s algorithm configuration ‘%s’ .

10410 0 A000 Unsupported %s.%s with database type ‘%s’ .

10440 H Y000 Algorithm ‘%s’ execute failed, reason is: %s.

10500 4 4000 Invalid single rule configuration, reason is: %s.

10501 42502 Single table ‘%s’ does not exist.

10502 H Y000 Can not load table with database name ‘%s’ and data source name ‘%s’ , reason is: %
10503 0 A000 Can not drop schema ‘%s’ because of contains tables.

9.4. Error Code 524

Apache ShardingSphere document

Data
Vendor Code SQL State Reason
11000 HY004 Unsupported conversion data type ‘%s’ for value ‘%s’ .
11001 HYO004 Unsupported conversion stream charset ‘%s’ .
Syntax
Ven dor SQLS Reason
Code tate
12 000 42000 SQL String can not be NULL or empty.
12010 44000 Can notsupport variable ‘%s’ .
12011 H YO0 Invalid variable value ‘%s’ .
04
12020 H VO Columnindex ‘%d’ is out of range.
08
12021 42S02 Can not find column label ‘%s’ .
12 022 H YO Column ‘%s’ in %s is ambiguous.
00
12100 42000 You have an error in your SQL syntax: %s
12101 42000 Can notaccept SQL type ‘%s’ .
12 200 42000 Hintdatasource ‘%s does not exist.
12 300 0 A0 DROP TABLE ‘--CASCADE is not supported.
00
12500 42000 Notunique table/alias: ‘%s’ .
12 600 H Y0 Indefinition of view, derived table or common table expression, SELECT list and
00 column names list have different column counts.

9.4. Error Code

525

Apache ShardingSphere document

Connection
Vend SQL Reason
orCo Sta
de te
1300 080 Can not get %d connections one time, partition succeed connection(%d) have re-
0 00 leased. Please consider increasing the ‘maxPoolSize’ of the data sources or de-
creasing the ‘max-connections-size-per-query’ in properties.
1300 080 SQL execution has been interrupted.
1 00
1301 010 Circuit break open, the request has been ignored.
0 00
1310 O0AO0 Unsupported storage type of URL ‘%s’ .
0 00
1310 080 TheURL ‘%s’ isnotrecognized, please refer to the pattern ‘%s’ .
1 00
1320 080 Can notregister driver.
0 00
1320 080 Connection has been closed.
1 00
1320 080 Resultsethas been closed.
2 00
1340 H Y Load datetime from database failed, reason: %s
0 000

Transaction

V. endor SQL St Reason

Code ate

14000 25000 Switch transaction type failed, please terminate the current transaction.

14001 42502 Can not find transaction manager of ‘%s’ .

14002 44000 Max length of unique resource name ‘%s’ exceeded, should be less than
45.

14003 25000 Transaction timeout should more than 0.

14004 25000 Close transaction manager failed.

14200 25000 Failed to create ‘%s’ XA data source.

14201 25000 Can not start new XA transaction in a active transaction.

14202 25000 Check XA transaction privileges failed on data source, please grant ‘%s’ to
current user.

14400 44000 No application id within ‘seata.conf’ file.

14401 25000 Seata-AT transaction has been disabled.

9.4. Error Code

526

Apache ShardingSphere document

Lock
Vendor Code SQL State Reason
15030 HY000 Cluster is already locked.
15031 HYO000 Cluster is not locked.
Cluster
Vendor Code SQL State Reason
17000 44000 Mode must be ‘cluster’ .
17001 HY000 Worker ID assigned failed, which should be in [0, %s).
17010 HY000 Cluster persist repository error, reason is: %s
17011 HY000 Failed to reload meta data context.
17020 HY000 The cluster status is %s, can not support SQL statement ‘%s’ .
17100 42502 Cluster persist repository configuration is required.

9.4. Error Code

527

Apache ShardingSphere document

Data Pipeline

Vendor Code SQL State Reason

18000 22023 There is invalid parameter value ‘%s’ .

18100 42502 Target database ‘%s’ does not exist.

18101 42502 Can not find pipeline job ‘%s’ .

18102 44000 Sharding count of job ‘%s’ is 0.

18103 42502 Can not get meta data for table ‘%s’ when split by range.
18104 HY000 Can not split by unique key ‘%s’ for table ‘%s’ .
18105 HY000 Target table ‘%s’ is not empty.

18106 01007 Source data source lacks ‘%s’ privilege(s).

18107 HY000 Source data source required ‘%s=%s ,nowis ‘%s .
18108 42502 User ‘%s’ does exist.

18109 08000 Check privileges failed on source data source.

18110 HY000 Importer job write data failed.

18111 08000 Get binlog position failed by job ‘%s’ .

18112 HY000 Can not find consistency check job of ‘%s’ .

18113 HY000 Uncompleted consistency check job ‘%s’ exists, progress ‘%s’ .
18114 HY000 Failed to get DDL for table ‘%s’ .

18200 HY000 Before data recordis ‘%s’ , after datarecordis ‘%s’ .
18201 08000 Data check table ‘%s’ failed.

18202 0A000 Unsupported pipeline database type ‘%s’ .

18400 42502 Can not find stream data source table.

18401 42502 Database ‘%s’ does not exist.

18410 42502 CDC Login request body is empty.

18411 08004 Illegal username or password.

Feature Exception

Data Sharding

VendorCode SQLState Reason

200 00 42S 02 %s configuration does not exist in database ‘%s’ .

20001 42502 Can not find table rule with logic tables ‘%s’

200 02 42502 Can not find data source in sharding rule, invalid actual data node ‘%s’ .

20003 42S 02 Data nodes is required for sharding table ‘%s’ .

200 04 42502 Actual table ‘%s.%s’ is not in table rule configuration.

20005 42802 Can not find binding actual table, data sourceis ‘%s’ |, logic tableis ‘%s’ , other act
20006 44000 Actual tables ‘%s’ are in use.

20009 42501 View name has to bind to %s tables.

9.4. Error Code 528

Apache ShardingSphere document

Table 2 - continued from previous page

VendorCode SQLState Reason
20010 4 40 00 Invalid binding table configuration.
20011 440 00 Only allowed 0 or 1 sharding strategy configuration.
20012 42S01 Same actual data node cannot be configured in multiple logic tables in same database, 1
20020 440 00 Sharding value can not be null in SQL statement.
20021 H Y0 04 Found different types for sharding value ‘%s’ .
200 22 H Y0 04 Invalid %s, datetime pattern should be ‘%s’ , valueis ‘%s’
20023 4 40 00 Sharding value %s subtract stop offset %d can not be less than start offset %d.
20024 440 00 %s value ‘%s’ must implements Comparable.
20030 0 A0 00 Can not support operation ‘%s’ with sharding table ‘%s’ .
20031 44000 Can not update sharding value for table ‘%s’
200 32 0A000 The CREATE VIEW statement contains unsupported query statement.
20033 440 00 PREPARE statement can not support sharding tables route to same data sources.
200 34 440 00 The table inserted and the table selected must be the same or bind tables.
20035 0 A0 00 Can not support DML operation with multiple tables ‘%s’
200 36 420 00 %s ---LIMIT can not support route to multiple data nodes.
20037 4 40 00 Can not find actual data source intersection for logic tables ‘%s’ .
20038 42000 INSERT INTO ---SELECT can not support applying key generator with absent generate k
200 39 0 A0 00 Alter view rename .. to .. statement should have same config for ‘%s’ and ‘%s’ .
200 40 H Y0 00 ‘%s %s’ can not route correctly for %s ‘%s’ .
20041 42502 Can not get route result, please check your sharding rule configuration.
20042 34000 Can not get cursor name from fetch statement.
20050 H Y0 00 Sharding algorithm class ‘%s’ should be implement ‘%s’
20051 H Y0 00 Routed target ‘%s’ does not exist, available targets are ‘%s’
200 52 44000 Inline sharding algorithms expression ‘%s’ and sharding column ‘%s’ do not matc
20053 4 40 00 Complex inline algorithm need %d sharding columns, but only found %d.
20054 440 00 No sharding database route info.
200 55 4 40 00 Some routed data sources do not belong to configured data sources. routed data sources
20056 44000 Please check your sharding conditions ‘%s’ to avoid same record in table ‘%s’ rout
20057 44000 Can not find routing table factor, data source ‘%s’ , actual table ‘%s’ .
20060 H YO0 00 Invalid %s strategy ‘%s’ , strategy does not match data nodes.
20090 420 00 Not allow DML operation without sharding conditions.
SQL Federation
Vendor Code SQL State Reason
20100 42000 Unsupported SQL node conversion for SQL statement ‘%s’ .
20101 42000 SQL federation does not support SQL ‘%s’ .
20102 42502 SQL federation schema ‘%s’ not found in SQL ‘%s’ .

9.4. Error Code

529

Apache ShardingSphere document

Readwrite-splitting

Vendor SQL S Reason

Code tate

20200 42502 Readwrite-splitting data source rule name is required in database ‘%s’ .

20201 42502 Can not find readwrite-splitting data source rule ‘%s’ in database ‘%s’ .

20202 42502 Readwrite-splitting [READ/WRITE] data source is required in %s.

20203 42502 Can not find readwrite-splitting [READ/WRITE] data source ‘%s’ in %s.

20204 42501 Readwrite-splitting [READ/WRITE] data source ‘%s’ is duplicated in %s.

20205 4 4000 Readwrite-splitting [READ/WRITE] data source inline expression error in
%s.

SQL Dialect Translator

Vendor Code SQL State Reason

20400 0A000 Can not support database ‘%s’ in SQL translation.

Traffic Management

Vendor Code SQL State Reason

20500 42502 Can not get traffic execution unit.

Data Encrypt

Ve ndor SQL St Reason
Code ate

21000 42502 %s column is required in %s.
21001 42502 Cannot find encrypt table ‘%s’ .
21002 42502 Can not find logic encrypt column by ‘%s’ .

21003 42802 Cannot find encrypt column ‘%s’ from table ‘%s’ .

21004 HY 000 ‘%s’ column’ sencryptalgorithm ‘%s’ should support %s in database ‘%s’
21005 HY 000 Column ‘%s’ oftable ‘%s’ isnot configured with %s query algorithm.
21010 44000 Altered column ‘%s’ mustuse same encrypt algorithm with previous column

‘%s’ intable ‘%s’ .
21020 0A 000 The SQL clause ‘%s’ isunsupported in encrypt feature.
21030 22000 Failed to decrypt the ciphertext ‘%s’ inthe column ‘%s’ oftable ‘%s’ .

9.4. Error Code 530

Apache ShardingSphere document

Shadow Database

Vendor SQL Reason

Code State

22000 42802 Production data source configuration does not exist in database ‘%s’ .

22001 42502 Shadow data source configuration does not exist in database ‘%s’ .

22002 42502 No available shadow data sources mappings in shadow table ‘%s’ .

22003 44000 Default shadow algorithm class should be implement HintShadowAlgo-
rithm.

22010 HY004 Shadow column ‘%s’ oftable ‘%s’ does notsupport ‘%s’ type.

22020 42000 Insert value of index ‘%d’ can not support for shadow.

Other Exception

Vendor Code SQL State Reason

30000 HYO000 Unknown exception: %s

30001 0A000 Unsupported SQL operation: %s

30002 HY000 Database protocol exception: %s

30003 0A000 Unsupported command: %s

30004 HYO000 Server exception: %s

30005 HY000 Underlying SQL state: %s, underlying error code: %s.
30010 HY000 Can not find plugin class ‘%s’ .

30020 HYO000 File access failed, file is: %s

30030 HYO000 Unexpected tableless route engine.

9.4.2 Server Error Code

Unique codes provided when server exception occur, which printed by Proxy backend or JDBC startup

logs.
Error Code Reason
SPI-00001 No implementation class load from SPI ‘%s’ with type ‘%s’ .
DATA-SOURCE-00001 Data source ‘%s’ is unavailable.
PROPS-00001 Properties convert failed, details are: %s.
PROXY-00001 Load database server info failed.

9.4. Error Code 531

10

Dev Manual

Apache ShardingSphere provides dozens of SPI based extensions. it is very convenient to customize the
functions for developers.

This chapter lists all SPI extensions of Apache ShardingSphere. If there is no special requirement, users
can use the built-in implementation provided by Apache ShardingSphere; advanced users can refer to

the interfaces for customized implementation.

Apache ShardingSphere community welcomes developers to feed back their implementations to the

open-source community, so that more users can benefit from it.

10.1 Mode

10.1.1 StandalonePersistRepository

Fully-qualified class name

‘org.apache.shardingsphere.mode.repository.standalone.
StandalonePersistRepository <https://github.com/apache/shardingsphere/blob/master
/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/s

tandalone/StandalonePersistRepository.java>"__

Definition

Standalone mode configuration information persistence definition

532

https://github.com/apache/shardingsphere/pulls
https://github.com/apache/shardingsphere/blob/master/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/standalone/StandalonePersistRepository.java
https://github.com/apache/shardingsphere/blob/master/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/standalone/StandalonePersistRepository.java
https://github.com/apache/shardingsphere/blob/master/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/standalone/StandalonePersistRepository.java

Apache ShardingSphere document

Implementation classes

ConfigurationType Fully-qualified class name

Description*

JD BC JDBC-basedpersistence ‘org.apache.

shardingsphere.mode.

reposit ory.standalone.
jdbc.JDBCRepository
<https://github.com/a
pache/shardingsphere/blob/master/mode/type/st
sitory/provider/jdbc/src/main/java/org/apache/sh
re/mode/repository/standalone/jdbc/JDBCReposi

10.1.2 ClusterPersistRepository

Fully-qualified class name

‘org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepository
<https://github.com/apache/shardingsphere/blob/master/mode/type/cluster/repository/api/src/main
/java/org/apache/shardingsphere/mode/repository/cluster/ClusterPersistRepository.java>"__

Definition

Cluster mode configuration information persistence definition

10.1. Mode 533

https://github.com/a
https://github.com/apache/shardingsphere/blob/master/mode/type/cluster/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/cluster/ClusterPersistRepository.java
https://github.com/apache/shardingsphere/blob/master/mode/type/cluster/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/cluster/ClusterPersistRepository.java

Apache ShardingSphere document

Implementation classes

Fully-qualified class name

*

ConfigurationType Des cri pti on*

ZooKeeper Zoo Kee per based persistence org.apache.
shardingsphere.
mode.repository.
cluster.zook eeper.
ZookeeperRepository
<https://github.com
/apache/sha rding-
sphere/blob/master/mode/type/cluster/repositors
der/zookeeper/src/main/java/org/apache/shardin
/reposi-
tory/cluster/zookeeper/ZookeeperRepository.java
etcd E tcd ba sed pe rsi ste nce ‘org.apache.
shardingsphere.mod
e.repository.cluster.
etcd.EtcdRepository
<https://github
.com/apache/shardingsphere/blob/master/mode/
eposi-
tory/provider/etcd/src/main/java/org/apache/sha:
phere/mode/repository/cluster/etcd/EtcdRepositc

10.2 SQL Parser

10.2.1 DatabaseTypedSQLParserFacade

Fully-qualified class name

‘org.apache.shardingsphere.sqgl.parser.spi.DialectSQLParserFacade <https://github
.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/
sql/parser/spi/DialectSQLParserFacade.java>"__

10.2. SQL Parser 534

https://github.com/apache/sha
https://github.com/apache/sha
https://github
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/DialectSQLParserFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/DialectSQLParserFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/DialectSQLParserFacade.java

Apache ShardingSphere document

Definition

Database typed SQL parser facade service definition

10.2. SQL Parser 535

Apache ShardingSphere document

Implementation classes

*

ConfigurationType

De scrip tion

Fully-qualified class name

MySQL

PostgreSQL

openGauss

Oracle

SQLServer

SQL p arser entry based on
MySQL

SQL p arser entry based on
Postg reSQL

SQL p arser entry based on

open Gauss

SQL p arser entry based on O

racle

SQL p arser entry based on
SQLS erver

‘org.apache.sharding
sphere.sql.parser.

mysql.parser.

MySQLParserFacade <htt
ps://github.com/apache/shardingsphere/blob/ma
r/sql/dialect/mysql/src/main/java/org/apache/sha
here/sql/parser/mysql/parser/MySQLParserFacad
‘org.apache.

shardingsphere.

sql.parser.postgre

sql.parser.

PostgreSQLParserFacade
<https://github.com
/apache/shardingsphere/blob/master/parser/sql/c
ost-
gresql/src/main/java/org/apache/shardingsphere,
ar-
ser/postgresql/parser/PostgreSQLParserFacade.ja
‘org.apache.

shardingsphere.

sql.parser.op en-
gauss.parser.

OpenGaussParserFacade
<https://gith ub.
com/apache/shardingsphere/blob/master/parser/
t/opengauss/src/main/java/org/apache/shardings
/parser/opengauss/parser/OpenGaussParserFacac
‘org.apache.
shardingspher e.sql.
parser.oracle.parser.
OracleParserFacade

<https:
//github.com/apache/shardingsphere/blob/maste
gl/dialect/oracle/src/main/java/org/apache/shard
re/sql/parser/oracle/parser/OracleParserFacade.j:
‘org.apache.

shardingsphere.

sql.parser.sq

lserver.parser.
SQLServerParserFacade

10.2. SQL Parser

hftpc',/,/gifhnh_
com/apache/shardingsphere/ﬁgb/master/parser/
t/sqlserver/src/main/java/org/apache/shardingspl

/parser/sqlserver/parser/SQLServerParserFacade.

https://github.com
https://github
https://github
https://github.com
https://github.com/apache/shardingsphere/blob/master/pa
https://github.com/apache/shardingsphere/blob/master/pa

Apache ShardingSphere document

10.2.2 SQLStatementVisitorFacade

Fully-qualified class name
‘org.apache.shardingsphere.sql.parser.spi.SQLStatementVisitorFacade <https://gi

thub.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsph
ere/sql/parser/spi/SQLStatementVisitorFacade.java>"__

Definition

SQL visitor facade class definition

10.2. SQL Parser 537

https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLStatementVisitorFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLStatementVisitorFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLStatementVisitorFacade.java

Apache ShardingSphere document

Implementation classes

Fully-qualified class name

ConfigurationType™ Desc ription*

MySQL M ySQL sy ntax tree vis itor e “org.apache.

ntry shardingsphere.
sql.parser.mysql.
visitor.st atement.
MySQLStatementVisitorFacade
<https://github.com
/apache/shardingsphere/blob/master/parser/sql/c
ql/src/main/java/org/apache/shardingsphere/sql/
ql/visitor/statement/MySQLStatementVisitorFaca

PostgreSQL Po stgr eSQL sy ntax tree visitor “org.apache.shardingsp

e ntry here.sql.parser.
postgresql.visitor.
statement.PostgreSQLSt
atementVisitorFa-
cade <https://github
.com/apache/shardin
gsphere/blob/master/parser/sql/dialect/postgresq
n/java/org/apache/shardingsphere/sql/parser/pos
sitor/statement/PostgreSQLStatementVisitorFaca

SQLServer S QLSe rver sy ntax tree visitor “org.apache.shard in-

e ntry gsphere.sql.parser.
sqlserver.visitor.
statement.SQLServe
rStatementVisitor-

Facade <https://github

.com/apache/shar ding-

sphere/blob/master/parser/sql/dialect/sqlserver/s

ain/java/org/apache/shardingsphere/sql/parser/sc

isi-

tor/statement/SQLServerStatementVisitorFacade.
Oracle Or acle sy ntax tree vis itor e "o rg.apache.

ntry shardingsphere.
sql.parser.oracle.
visitor.statem ent.
OracleStatementVisitorFacade
<https://github.com/ap
ache/shardingsphere/blob/master/parser/sql/dial
/src/main/java/org/apache/shardingsphere/sql/pe
e/visitor/statement/OracleStatementVisitorFacad

SQL92 S QL92 sy ntax tree vis itor e “org.apache.

ntry shardingsphere
&/ St o

10.2. SQL Parser 538

sql.parser.sql92.
visitor.st atement.
SQL92StatementVisitorFacade

https://github.com
https://github.com/apache/shardin
https://github.com/apache/shardin
https://github.com/apache/shar
https://github.com/apache/shar
https://github.com/ap
https://github.com
https://github.com/apache/shar
https://github.com/apache/shar

Apache ShardingSphere document

10.3 Data Sharding

10.3.1 ShardingAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.sharding.spi.ShardingAlgorithm <https://github.com/apa
che/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/s
harding/spi/ShardingAlgorithm.java>"__

Definition

Sharding Algorithm definition

10.3. Data Sharding 539

https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAlgorithm.java

Apache ShardingSphere document

Implementation classes

ConfigurationTyp

*

e

Desc ription

AutoCreateTable

*

S

Fully-qualified class

name

MOD

HASH_MOD

BOUNDARY_RA
NGE

VOLUME_RANG
E

Y Modulo sharding a lgo-

rithm

Y Hash modulo sharding
algorithm

Y Boundary based range
sharding a lgorithm

Y Volume based range
sharding a lgorithm

‘org.apache.
sha rding-
sphere.sharding.
algorithm.
sharding.mod.
ModSh
gorithm <https:
//github.com/a
pache/shar ding-

ardingAl-

sphere/blob/master/features/sharding/cc
/main/java/org/apache/shardingsphere/s
orithm/sharding/mod/ModShardingAlgo
‘org.apache.

shardingsph

ere.sharding.

algorithm.

sharding.mod.

HashModShard1i

ngAlgorithm

<https://github.c
om/apache/sharding
sphere/blob/master/features/sharding/cc
n/java/org/apache/shardingsphere/shard
hm/sharding/mod/HashModShardingAl;

org.apache.shardingsphere.sharding.algorit
rd-
ing.range.BoundaryBasedRangeShardingA

<https://gi

thub.com

/apache/sh

ardingsphe

re/blob/m
aster/features/sharding/core/src/main/ja
ache/shardingsphere/sharding/algorithn
ange/BoundaryBasedRangeShardingAlgc
““org.apache.shardingsphere.sharding.algo
.shard-
ing.range.VolumeBasedRangeShardingAlgo

* <https://oithub.com
PoviTs

10.3. Data Sharding

/apache/shar(ﬂ0
ngsphere/blob /mas-
ter/features/sharding/core/src/main/java

https://github.com/apache/shar
https://github.com/apache/shar
https://github.com/apache/shar
https://github.com/apache/sharding
https://github.com/apache/sharding
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob
https://github.com/apache/shardingsphere/blob
https://github.com/apache/shardingsphere/blob
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere
https://github.com/apache/shardingsphere
https://github.com/apache/shardingsphere
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsp
https://github.com/apache/shardingsp
https://github.com/apache/shardingsphere/bl
https://github.com/apache/shardingsphere/bl
https://github.com/apache/shardingsphere/bl
https://github.com/apache/shardingsphe
https://github.com/apache/shardingsphe
https://github.com/apache/shardingsphe

Apache ShardingSphere document

10.3.2 ShardingAuditAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.sharding.spi.ShardingAuditAlgorithm <https://github.c
om/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsp
here/sharding/spi/ShardingAuditAlgorithm.java>"__

Definition

Sharding audit algorithm definition

Implementation classes

ConfigurationType*

Desc ription

Fully-qualified class name

DML_SHARDING_CON
DITIONS

Prohibit DML auditing a Igo-
rithm without sharding co ndi-

tions

‘org.apache.
shardingsphere.shard
ing.algorithm.audit.

DMLShardingConditionsShardingAud
itAlgorithm <https://gith
ub.com/apache/shardingsph
ere/blob/master/features/sharding/core/src/main
Jorg/apache/shardingsphere/sharding/algorithm,
DMLShardingCondi-

tionsShardingAuditAlgo-

rithm.java>"__

10.3.3 DatetimeService

Fully-qualified class name

‘org.apache.shardingsphere.timeservice.spi.TimestampService <https://github.com
/apache/shardingsphere/blob/master/kernel/time-service/api/src/main/java/org/apache/shardingsp

here/timeservice/spi/TimestampService.java>"__

10.3. Data Sharding 541

https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAuditAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAuditAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAuditAlgorithm.java
https://github.com/apache/shardingsph
https://github.com/apache/shardingsph
https://github.com/apache/shardingsphere/blob/master/kernel/time-service/api/src/main/java/org/apache/shardingsphere/timeservice/spi/TimestampService.java
https://github.com/apache/shardingsphere/blob/master/kernel/time-service/api/src/main/java/org/apache/shardingsphere/timeservice/spi/TimestampService.java
https://github.com/apache/shardingsphere/blob/master/kernel/time-service/api/src/main/java/org/apache/shardingsphere/timeservice/spi/TimestampService.java

Apache ShardingSphere document

Definition

Obtain the current date for routing definition

Implementation classes

C on fi Description Fully-qualified class name
gu ra ti
on T yp
e
Da ta Get the cur- “org.apache. shardingsphere.timeservice. type.
baseTi rent time database.DatabaseTi mestampService <https://github.com
me st from the /apache/shardin gsphere/blob/master/kernel/time-service/type/databa
am pS database for se/src/main/java/org/apache/shardingsphere/timeserv
ervice routing ice/type/database/DatabaseTimestampService.java>" __
Sy st Get the cur- ‘o rg.apache.shardingsphere.timeservice.type.
em Ti rent time system.Sy stemTimestampService <https://github.com
me st from the /apache/s hardingsphere/blob/master/kernel/time-service/type/
am pS ap plication system/src/main/java/org/apache/shardingsphere/time ser-
ervice system for vice/type/system/SystemTimestampService.java>"__
routing
10.3.4 InlineExpressionParser
Fully-qualified class name
org.apache.shardingsphere.infra.expr.core.InlineExpressionParser
Definition
Row Value Expressions definition
10.3. Data Sharding 542

https://github.com/apache/shardin
https://github.com/apache/shardin
https://github.com/apache/s
https://github.com/apache/s

Apache ShardingSphere document

Implementation classes

C onfi Description Fully-qualified class name

gura

tion

ype

GR Row Value Expressions that usesthe Groovy ° org.apache.shardingspher

010)7A' syntax e.infra.expr.groovy.Groov yInlineExpres-
sionParser"

LIT Row Value Expressions thatusesastandard o rg.apache.shardingsphere. -in-

ERAL list fra.expr.literal.Litera 1Inline-
ExpressionParser

INTE Row Value Expressions based on fixed in- org .apache.shardingsphere.in

RVAL terval that uses the Key-Value syntax fra.expr.interval.Interva 1In-
lineExpressionParser

ESPR Row Value Expressions that uses the Groovy org .apache.shardingsphere.in

ESSO syntax based on GraalVM Truffle’s Espresso fra.expr.espresso.Espress olIn-

implementation

lineExpressionParser

10.4 Infra algorithm

10.4.1 LoadBalanceAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.infra.algorithm.loadbalancer.core.
LoadBalanceAlgorithm <https://github.com/apache/shardingsphere/blob/master/infra/alg
orithm/type/load-balancer/core/src/main/java/org/apache/shardingsphere/infra/algorithm/loadbal

ancer/core/LoadBalanceAlgorithm.java>"__

10.4. Infra algorithm

543

https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/load-balancer/core/src/main/java/org/apache/shardingsphere/infra/algorithm/loadbalancer/core/LoadBalanceAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/load-balancer/core/src/main/java/org/apache/shardingsphere/infra/algorithm/loadbalancer/core/LoadBalanceAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/load-balancer/core/src/main/java/org/apache/shardingsphere/infra/algorithm/loadbalancer/core/LoadBalanceAlgorithm.java

Apache ShardingSphere document

Definition

Load balance algorithms, they can be used in readwrite-splitting and traffic features.

10.4. Infra algorithm 544

Apache ShardingSphere document

Implementation classes

*

ConfigurationType

Descri ption*

Fully-qualified class name

ROUND_ROBIN

RANDOM

WEIGHT

load ba lancer alg orithm based

on p olling

load ba lancer alg orithm based

on random

load ba lancer alg orithm based

on weight

‘org.apache.

shardingsphere.infra.

algorithm. loadbalan

cer.round.robin.
RoundRobinLoadBalanceAlgorithm

<https
://github.com/apache/shardingsphere/blob/maste
lgorithm/type/load-

balancer/type/round-

robin/src/main/j
ava/org/apache/shardingsphere/infra/algorithm/!
cer/round/robin/RoundRobinLoadBalanceAlgori
‘org.apache.

shardingsphere.

in fra.algorithm.
loadbalancer.random.
RandomLoadBalanceAlgo

rithm <https://github.com/a
pache/shardingsphere/blob/
master/infra/algorithm/type/load-
balancer/type/random/s
rc/main/java/org/apache/shardingsphere/infra/al
loadbal-
ancer/random/RandomLoadBalanceAlgorithm.ja
‘org.apache.

shardingsphere.

in fra.algorithm.
loadbalancer.weight.
WeightLoadBalanceAlgo

rithm <https://github.com/a
pache/shardingsphere/blob/
master/infra/algorithm/type/load-
balancer/type/weight/s
rc/main/java/org/apache/shardingsphere/infra/al
loadbal-
ancer/weight/WeightlL.oadBalanceAlgorithm.java

10.4. Infra algorithm

545

https://github.com/apache/shardingsphere/blob/
https://github.com/apache/shardingsphere/blob/
https://github.com/apache/shardingsphere/blob/
https://github.com/apache/shardingsphere/blob/

Apache ShardingSphere document

10.4.2 KeyGenerateAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.keygen.core.algorithm.KeyGenerateAlgorithm <https:

//github.com/apache/shardingsphere/blob/master/infra/algorithm/type/key-generator/core/src/main

/java/org/apache/shardingsphere/infra/algorithm/keygen/core/KeyGenerateAlgorithm.java>"__

Definition

Distributed key generated algorithms, they can be used in sharding feature.

Implementation classes

ConfigurationType* Des cri ption*

Fully-qualified class name

SNOWFLAKE Sno wfl ake key ge ner ate alg ori
thm

UUID U UID key ge ner ate alg ori thm

‘org.apache.shar

dingsphere.keygen.
snowflake.algorithm.
SnowflakeKeyGenerat

eAlgorithm <https://github.c
om/apache/shardingsphere/bl
ob/master/infra/algorithm/type/key-
generator/type/snowfla
ke/src/main/java/org/apache/shardingsphere/inf
m/keygen/snowflake/SnowflakeKeyGenerateAlgo
‘org.apache.

shardingsphere.keygen.
uuid.algorithm -
UUIDKeyGenerateAlgorith
<https://github.com/apache/sh
ardingsphere/blob/master/infra/algorithm/type/}
generat
or/type/uuid/src/main/java/org/apache/shardings
a/algorithm/keygen/uuid/UUIDKeyGenerateAlgo:

10.4. Infra algorithm

546

https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/key-generator/core/src/main/java/org/apache/shardingsphere/infra/algorithm/keygen/core/KeyGenerateAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/key-generator/core/src/main/java/org/apache/shardingsphere/infra/algorithm/keygen/core/KeyGenerateAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/key-generator/core/src/main/java/org/apache/shardingsphere/infra/algorithm/keygen/core/KeyGenerateAlgorithm.java
https://github.com/apache/shardingsphere/bl
https://github.com/apache/shardingsphere/bl
https://github.com/apache/sh

Apache ShardingSphere document

10.4.3 MessageDigestAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.infra.algorithm.messagedigest.core.
MessageDigestAlgorithm <https://github.com/apache/shardingsphere/blob/master/infra
/algorithm/type/message-digest/core/src/main/java/org/apache/shardingsphere/infra/algorithm/mes

sagedigest/core/MessageDigestAlgorithm.java>"__

Definition

Message digest algorithms, they can be used in encrypt and mask feature.

Implementation classes

Fully-qualified class name

ConfigurationType* Des cri pti on*
MDS5 MD5 m ess age dig est alg ori “org.a pache.
thm shardingsphere.

infra.algorithm.

messagedigest.md5.

MD5 MessageDi-
gestAlgorithm <https:
//github.com/apache/shardi
ngsphere/blob/master/infra/algorithm/type/mess
digest/t
ype/md5/src/main/java/org/apache/shardingsphe
rithm/messagedigest/md5/MD5MessageDigestAl

10.5 SQL Audit

10.5.1 SQLAuditor

Fully-qualified class name

‘org.apache.shardingsphere.infra.executor.audit.SQLAuditor <https://github.com/a
pache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/

executor/audit/SQLAuditor.java>"__

10.5. SQL Audit 547

https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/message-digest/core/src/main/java/org/apache/shardingsphere/infra/algorithm/messagedigest/core/MessageDigestAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/message-digest/core/src/main/java/org/apache/shardingsphere/infra/algorithm/messagedigest/core/MessageDigestAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/infra/algorithm/type/message-digest/core/src/main/java/org/apache/shardingsphere/infra/algorithm/messagedigest/core/MessageDigestAlgorithm.java
https://github.com/apache/shardi
https://github.com/apache/shardi
https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java
https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java
https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java

Apache ShardingSphere document

Definition

SQL auditor class definition

Implementation classes

ConfigurationType

Description*

Fully-qualified class name

Sh ar di ng Shardingauditor

‘org.apache.

shardingsphere.

sharding.auditor.

Sharding SQLAuditor
<https://github.com/apa
che/shardingsphere/blo
b/master/features/sharding/core/src/main/java/o:
harding-
sphere/sharding/auditor/ShardingSQLAuditor.jav

10.6 Encryption

10.6.1 EncryptAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.encrypt.spi.EncryptAlgorithm <https://github.com/apach

e/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encr

ypt/spi/EncryptAlgorithm.java>"__

Definition

Data encrypt algorithm definition

10.6. Encryption

548

https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encrypt/spi/EncryptAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encrypt/spi/EncryptAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encrypt/spi/EncryptAlgorithm.java

Apache ShardingSphere document

Implementation classes

*

ConfigurationType

Descri ption*

Fully-qualified class name

AES

MDS5

AES data e ncrypt alg orithm

MD5 as sisted query e ncrypt
alg orithm

‘org.apache.

shardingsphere.enc
rypt.algorithm.encrypt.
AESEncryptAlgorithm

<h t t p s : |/
github.com/apache/shardingsphere/blob/master;
en-
crypt/core/src/main/java/org/apache/shardingspl
ncrypt/algorithm/standard/AESEncryptAlgorithn
‘org.apache.

shardingsphere.encrypt.

alg orithm.encrypt.
MD5EncryptAlgorithm
<https://github.c
om/apache/shardingsphere/blob/master/features
core/src/main/java/org/apache/shardingsphere/e
Igo-
rithm/assisted/MD5AssistedEncryptAlgorithm.ja

10.7 Data Masking

10.7.1 MaskAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.mask.spi.MaskAlgorithm <https://github.com/apache/shardi

ngsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/Mask

Algorithm.java>'__

Definition

Data masking algorithm definition

10.7. Data Masking

549

https://
https://github.c
https://github.com/apache/shardingsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/MaskAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/MaskAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/MaskAlgorithm.java

Apache ShardingSphere document

10.7. Data Masking 550

Apache ShardingSphere document

Implementation classes

Configura Description Fully-qualified class name
tion T ype
MD5 Data mask- ‘org.apache.shardingsphere.m ask.
ing a algorithm.hash.MD5MaskAlgorithm <h t t p s /
lgorithm gi thub.com/apache/shardingsphere/blob/master/featur
based on es/mask/core/src/main/java/org/apache/shardingsph
MD5 ere/mask/algorlthm/hash/MD5MaskAlgor1thm Jjava>'_
KEE P_FI Keepfirstn ‘org. apache.shardingsphere.mask.algorithm.cover.
RST_ last m data KeepFi rstNLastMMaskAlgorithm <https://github.c
N_LA masking a o m / a p a ¢ he/shardingsphere/blob/master/features/mask/core/
ST_M lgorithm src/main/java/org/apache/shardingsphere/mask/algo
r1thm/cover/KeepFlrstNLastMMaskAlgor1thm Jjava>'_
KEEP Keep from org.apache.shardingsphere.mask.algorithm.
_FRO X to y data cover. KeepFromXToYMaskAlgorithm <https://github
M_X_ masking a c o m /a pache/shardingsphere/blob/master/features/mask/co
TO_Y lgorithm re/src/main/java/org/apache/shardingsphere/mask/a lgo-
rithm/cover/KeepFromXToYMaskAlgorithm.java>"_
MAS Mask firstn “org. apache.shardingsphere.mask.algorithm.cover.
K_FI last m data MaskFi rstNLastMMaskAlgorithm <https://github.c
RST_ masking a o m / a p a ¢ he/shardingsphere/blob/master/features/mask/core/
N_LA lgorithm src/main/java/org/apache/shardingsphere/mask/algo
ST_M rithm/cover/MaskFirstNLastMMaskAlgorithm.java>"__
MASK Mask from org.apache.shardingsphere.mask.algorithm.
_FRO X to y data cover. MaskFromXToYMaskAlgorithm <https://github
M_X_ masking a c o m /a pache/shardingsphere/blob/master/features/mask/co
TO_Y lgorithm re/src/main/java/org/apache/shardingsphere/mask/a lgo-
rithm/cover/MaskFromXToYMaskAlgorithm.java>"__
M ASK_ Mask be- ‘org.apache .shardingsphere.mask.algorithm.cover.
BEFO fore special MaskBeforeSp ecialCharsAlgorithm <https://github.c
RE_S chars data om/apache/ shardingsphere/blob/master/features/mask/core/src
PECI masking a /main/java/org/apache/shardingsphere/mask/algorit
AL_C lgorithm hm/cover/MaskBeforeSpecialCharsAlgorithm.java>"__
HARS
MASK Mask after ‘org.apac he.shardingsphere.mask.algorithm.cover.
_AFT special MaskAftersS pecialCharsAlgorithm <https://github.c
ER_S chars data om /apache /shardingsphere/blob/master/features/mask/core/sr
PECI masking a c/main/java/org/apache/shardingsphere/mask/algori
AL_C lgorithm thm/cover/MaskAfterSpecialCharsAlgorithm.java>" __
HARS
GENE Generic ta- ‘org.apache.shardings phere.mask.algorithm.replace.
RIC_ ble random GenericTableRandomRe placeAlgorithm <https://github.com
TABL replace a /apache/shard ingsphere/blob/master/features/mask/core/src/main
E_RA lgorithm /java/org/apache/shardingsphere/mask/algorithm/re
10{DOData Masking place/GenericTableRandomReplaceAlgorithm.java>"__ 551
REP

LACE

https://gi
https://gi
https://github.com/apac
https://github.com/apac
https://github.com/a
https://github.com/a
https://github.com/apac
https://github.com/apac
https://github.com/a
https://github.com/a
https://github.com/apache/
https://github.com/apache/
https://github.com/apache
https://github.com/apache
https://github.com/apache/shard
https://github.com/apache/shard

Apache ShardingSphere document

10.8 Shadow DB

10.8.1 ShadowAlgorithm

Fully-qualified class name

‘org.apache.shardingsphere.shadow.spi.ShadowAlgorithm <https://github.com/apache/
shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shado
w/spi/ShadowAlgorithm.java>"__

Definition

Shadow algorithm’ s definition

10.8. Shadow DB 552

https://github.com/apache/shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shadow/spi/ShadowAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shadow/spi/ShadowAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shadow/spi/ShadowAlgorithm.java

Apache ShardingSphere document

Implementation classes

Desc ription

ConfigurationType™

Fully-qualified class name

Match
based on field values

VALUE_MATCH shadow al gorithms

REGEX_MATCH Regular matching shadow a

lgorithm based on field value

SQL_HINT Shadow a Igorithm on sql hint

‘org.apache.shard

ingsphere.shadow.

algorithm.shadow.
column.ColumnValueM
atchedShadowAlgo-

rithm <https://github
.com/apache/sh arding-
sphere/blob/master/features/shadow/core/src/mze
n/java/org/apache/shardingsphere/shadow/algori
dow/column/ColumnValueMatchedShadowAlgori
‘org.apache.shard

ingsphere.shadow.

algorithm.shadow.
column.ColumnRegexM
atchedShadowAlgo-

rithm <https://github
.com/apache/sh arding-
sphere/blob/master/features/shadow/core/src/mze
n/java/org/apache/shardingsphere/shadow/algori
dow/column/ColumnRegexMatchedShadowAlgot
‘org.apache.

shardingsphere.shadow.

algorithm. shadow.hint.
SQLHintShadowAlgorithm
<https://gith ub.

com/apache/shardingsphere/blob/master/feature
/core/src/main/java/org/apache/shardingsphere/:
algo-

rithm/shadow/hint/SQLHintShadowAlgorithm.ja

10.9 Observability

10.9.1 PluginLifecycleService

Fully-qualified class name

‘org.apache.shardingsphere.agent.spi.PluginLifecycleService <https://github.com

/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi

10.9. Observability

553

https://github.com/apache/sh
https://github.com/apache/sh
https://github.com/apache/sh
https://github.com/apache/sh
https://github
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java

Apache ShardingSphere document

/PluginLifecycleService.java>" __

Definition

Plug lifecycle management interface

Implementation classes

ConfigurationType™ Descri ption™

Fully-qualified class name

File L ogging plug lif ecycle mana

gement class

Prometheus Prom etheus plug lif ecycle

mana gement class

OpenTelemetry Op enTele metryT racing plug

lif ecycle mana gement class

‘org.apa che.
shardingsphere.agent.
plugin.logging.file.

FileLoggin gPluginLife-

cycleService <https://gi
thub.com/apache/sh arding-
sphere/blob/master/agent/plugins/logging/type/f
e/src/main/java/org/apache/shardingsphere/agen
log-
ging/file/FileLoggingPluginLifecycleService.java:
‘org.apache.
shardingsphe re.
agent.plugin.

metrics.prometheus.
PrometheusPluginLife

cycleService <https://gith
ub.com/apache/shardingspher
e/blob/master/agent/plugins/metrics/type/prome
/main/java/org/apache/shardingsphere/agent/plu
cs/prometheus/PrometheusPluginLifecycleServi
‘org.apache.

shardingsphere.

agent.plugin.tracing.

opent elemetry.
OpenTelemetryTracingPluginLifecycleS
< https://github.com
/apache/shardingsp
here/blob/master/ag
ent/plugins/tracing/type/opentelemetry/src/main
g/apache/shardingsphere/agent/plugin/tracing/o
try/OpenTelemetryTracingPluginLifecycleService

10.9. Observability

554

https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/sh
https://github.com/apache/sh
https://github.com/apache/shardingspher
https://github.com/apache/shardingspher
https://github.com/apache/shardingsphere/blob/master/ag
https://github.com/apache/shardingsphere/blob/master/ag
https://github.com/apache/shardingsphere/blob/master/ag

11

Test Manual

Apache ShardingSphere provides test engines for integration, module and performance.

11.1 Integration Test

Provide point to point test which connect real ShardingSphere and database instances.

They define SQLs in XML files, engine run for each database independently. All test engines designed
to modify the configuration files to execute all assertions without any Java code modification. It does
not depend on any third-party environment, ShardingSphere-Proxy and database used for testing are
provided by docker image.

11.2 Module Test

Provide module test engine for complex modules.

They define SQLs in XML files, engine run for each database independently too It includes SQL parser
and SQL rewriter modules.

11.3 Performance Test

Provide multiple performance test methods, includes Sysbench, JMH or TPCC and so on.

555

Apache ShardingSphere document

11.4 Sysbench Test

11.5 Integration Test

11.5.1 Design

The integration testing consists of three modules: test case, test environment and test engine.

Test case

It is used to define the SQL to be tested and the assertion data of the test results.

Each case defines one SQL, which can define multiple database execution types.

Test environment

It is used to set up the database and ShardingSphere-Proxy environment for running test cases. The
environment is classified into environment preparation mode, database type, and scenario.

Environment preparation mode is divided into Native and Docker, and Embed type will be supported
in the future. - Native environment is used for test cases to run directly in the test environment pro-
vided by the developer, suitable for debugging scenarios; - Docker environment is directly built when
Maven runs the Docker-Compose plug-in. It is suitable for cloud compilation environment and testing
ShardingSphere-Proxy, such as GitHub Action; - Embed environment is built when the test framework
automatically builds embedded MySQL. It is suitable for the local environment test of ShardingSphere-
JDBC.

Currently, the Native environment is adopted by default, and ShardingSphere-JDBC + H2 database is
used to run test cases. Maven’ s —pit. Env.docker parameter specifies how the Docker environment

is run.

Database types currently support MySQL, PostgreSQL, SQLServer, and Oracle, and test cases can be
executed using ShardingSphere-JDBC or ShardingSphere-Proxy.

Scenarios are used to test the supporting rules of ShardingSphere. Currently, data sharding, data en-
crypt, data mask and read/write splitting and other related scenarios are supported, and the combina-

tion of scenarios will be improved continuously in the future.

11.4. Sysbench Test 556

Apache ShardingSphere document

Test engine

It is used to read test cases in batches and execute and assert test results line by line.

The test engine arranges test cases and environments to test as many scenarios as possible with the
fewest test cases.

Each SQL generates a test report in the combination of database type * access port type *
SQL execution mode * JDBC execution mode * Scenario. Currently, each dimension is
supported as follows:

« Database types: H2, MySQL, PostgreSQL, SQLServer, and Oracle;
« Access port types: ShardingSphere-JDBC and ShardingSphere-Proxy;

+ SQL execution modes: Statement and PreparedStatement;

JDBC execution modes: execute and executeQuery/executeUpdate;
« Scenarios: database shards, table shards, read/write splitting and sharding + read/write splitting

Therefore, one SQL will drive Database type (5) * Access port type (2) * SQL execution
mode (2) * JDBC execution mode (2) * Scenario (4) = 160 testcases tobe runto achieve
the pursuit of high quality.

11.5.2 User Guide

Module path: test/e2e/sql

Test case configuration

SQLtestcaseisin resources/cases/${SQL-TYPE}/e2e-${SQL-TYPE}-${cases-description}.
xml.

The case file format is as follows:

<e2e-test-cases>
<test-case sql="${SQL}">

<!-- select case -->

<assertion parameters="S${value_1}:${type_13}, ${value_2}:${type_2}" expected-
data-source-name="{datasource-name}" />

<!-- not select case -->

<assertion parameters="S${value_1}:${type_13}, ${value_2}:${type_2}" expected-
data-file="${dataset_file_1}.xml" />

<!I-- ... more assertions -->

</test-case>

<test-case sql="s${SQL}">
<assertion parameters="${value_1}:${type_1}, S${value_2}:${type_2}" expected-
data-file="${dataset_file_1}.xml" />

<!-- ... more assertions -->

11.5. Integration Test 557

Apache ShardingSphere document

<assertion parameters="${value_3}:${type_3}, S${value_4}:${type_4}" expected-
data-file="${dataset_file_2}.xml" />
</test-case>

<I-— ... more test cases ——>

</e2e-test-cases>

The lookup rule of expected-data-fileis as follows: 1. Find the file dataset\
${SCENARIO_NAME}\${DATABASE_TYPE}\${dataset_file}.xml in the same level directory; 2.
Find the file dataset\${SCENARIO_NAME}\S${dataset_file}.xml in the same level directory;
3. Find the file dataset\${dataset_file}.xml in the same level directory; 4. Report an error if
none of them are found.

The assertion file format is as follows:

<dataset>
<metadata>
<column name="column_1" />
<!-- ... more columns —-->
<column name="column_n" />
</metadata>
<row values="value_01, value_02" />
<!-- ... more rows —-->
<row values="value_nl, value_n2" />
</dataset>

Environment configuration

${SCENARIO-TYPE} Refers to the scenario name used to identify a unique scenario during the test
engine run. ${DATABASE-TYPE} refers to the database types.

Native environment configuration

Modify it.cluster.env.type in src/test/resources/env/it-env.properties file of
e2e-sql module to NATIVE mode, and then modify the following properties to the local database
address and account.

it.native.storage.host=127.0.0.1
it.native.storage.port=3306
it.native.storage.username=root
it.native.storage.password=123456

After the modification is completed, you can adjust other properties in it-env.properties to test
ShardingSphere’ s Proxy, JDBC access terminal, or test the stand-alone and cluster modes.

11.5. Integration Test 558

Apache ShardingSphere document

Docker environment configuration

Modify it.cluster.env.type in the src/test/resources/env/it-env.properties file of
the e2e-sql module to DOCKER mode. If you perform a Proxy access end test, you need to execute the
following command to package the Proxy image.

./mvnw -B clean install -am -pl test/e2e/sql -Pit.env.docker -DskipTests -Dspotless.
apply.skip=true -Drat.skip=true

Ifitis a Mac platform M series chip, before packaging the Proxy image, you need to execute the following
command first, and then package the Proxy image.

Install socat
brew install socat
socat TCP-LISTEN:2375,reuseaddr,fork UNIX-CLIENT:/var/run/docker.sock

Execute 1in the terminal where the image is created
export DOCKER_HOST=tcp://127.0.0.1:2375

After the modification is completed, you can adjust other properties in it-env.properties to test
ShardingSphere’ s Proxy, JDBC access terminal, or test the stand-alone and cluster modes.

Run the test engine

Configure the running environment of the test engine

Control the test engine by configuring src/test/resources/env/it-env.properties.

All attribute values can be dynamically injected via Maven command line -D.

Scenario type. Multiple values can be separated by commas. Optional values: db,
tbl, dbtbl_with_replica_query, replica_query
it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

Whether to run additional test cases
it.run.additional.cases=false

Whether to run smoke test

it.run.smoke=false

Configure the environment type. Only one value 1is supported. Optional value:
DOCKER, NATIVE

it.cluster.env.type=${it.env}

Access port types to be tested. Multiple values can be separated by commas.
Optional value: jdbc, proxy. The default value: jdbc

it.cluster.adapters=jdbc

Scenario type. Multiple values can be separated by commas. Optional value: H2,

11.5. Integration Test 559

Apache ShardingSphere document

MySQL, PostgreSQL, openGauss
it.cluster.databases=H2,MySQL,PostgreSQL,openGauss

The mirror version of the database
it.cluster.database.mysql.image=mysql:8.2.0

Database connection information and account in NATIVE mode
it.native.storage.host=127.0.0.1

it.native.storage.port=3306

it.native.storage.username=root

it.native.storage.password=123456

Run debugging mode

- Standard test engine Run org.apache.shardingsphere.test.e2e.it.sql.
${SQL-TYPE}.General${SQL-TYPE}E2EIT to start the test engines of different SQL

types.

« Batch test engine Run org.apache.shardingsphere.test.e2e.it.sql.dml.
BatchDMLE2EIT to start the batch test engine for the test addBatch() provided for DML

statements.

- Additional test engine Run org.apache.shardingsphere.test.e2e.qit.sql.
${SQL-TYPE}.Additional${SQL-TYPE}E2EIT to start the test engine with more JDBC
method calls. Additional test engines need to be enabled by setting it.run.additional.
cases=true.

Run Docker mode

./mvhw -B clean install -f test/e2e/pom.xml -Pit.env.docker -Dit.cluster.
adapters=proxy,jdbc -Dit.scenarios=${scenario_name_1l,scenario_name_2,scenario_name_
n} -Dit.cluster.databases=MySQL

Run the above command to build a Docker mirror apache/shardingsphere-proxy-test:latest
used for integration testing. If you only modify the test code, you can reuse the existing test mirror
without rebuilding it. Skip the mirror building and run the integration testing directly with the following
command:

./mvnw -B clean install -f test/e2e/sql/pom.xml -Pit.env.docker -Dit.cluster.
adapters=proxy,jdbc -Dit.scenarios=${scenario_name_1,scenario_name_2,scenario_name_
n} -Dit.cluster.databases=MySQL

11.5. Integration Test 560

Apache ShardingSphere document

Remote debug Proxy code in Docker container

First of all, you need to modify the configuration file it-env.properties, set function.it.env.type to
docker, and then set the corresponding database image version like transaction.it.docker.
mysql.version=mysql:5.7. Then generate the test image through the command, for example:

for operation, replace ${operation} with transaction. pipeline or showprocesslist
./mvhw -B clean install -am -pl test/e2e/operation/${operation} -Pit.env.docker -

DskipTests

for e2e sql
./mvnw -B clean 1install -am -pl test/e2e/sql -Pit.env.docker -DskipTests -Dspotless.
apply.skip=true

Remote debug Proxy started by docker image

E2E Test Proxy image opens the 3308 port by default for remote debugging of the instance in the con-
tainer. Use the following method to connect and debug the Proxy code in the container with IDE tools
such as IDEA:

IDEA -> Run -> Edit Configurations -> Add New Configuration -> Remote JVM Debug

Edit the corresponding information: - Name: A descriptive name, such as e2e-debug. - Host: A IP that
can access docker, such as 127.0.0.1 - Port: debugging port(will set in next step). - use module classpath:
The root directory of the project shardingsphere.

After editing the above information, run Run -> Run -> e2e-debug in IDEA to start the remote debug of
IDEA.

Remote debug Proxy started by Testcontainer

Note: If the Proxy container is started by Testcontainer, because the 3308 port is not exposed
before Testcontainer starts, it cannot be debugged by the Remote debug Proxy started
by docker -image method. Debug Testcontainer started Proxy container by the following
method: - Set a breakpoint in the relevant startup class of Testcontainer, for example, af-
ter the line containerComposer.start() ; in E2EContainerComposer in the suite test,
at this time, the relevant containers must have been started. - Access breakpoint debug-
ging mode through shortcut key Alt + F8, and get mapped port by docker ps for the 3308
mapping of the Proxy object under the containerComposer (the external mapping port of
Testcontainer is random). - See the Remote debug Proxy started by docker image
method, set the Name, Host, Port, and use the port got in previous step, e.g. 51837.

After editing the above information, run Run -> Run -> e2e-debug -> debug in IDEA to start the remote
debug of IDEA.

11.5. Integration Test 561

Apache ShardingSphere document

Notice

1. To test Oracle, add an Oracle driver dependency to pom.xml.

2. In order to ensure the integrity and legibility of the test data, 10 database shards and 10 table
shards are used in the sharding of the integration testing, which takes a long time to run the test
cases completely.

11.6 Performance Test

Provides result for each performance test tools.

11.6.1 SysBench ShardingSphere-Proxy Empty Rule Performance Test

Objectives

Compare the performance of ShardingSphere-Proxy and MySQL 1. Sysbench directly carries out stress
testing on the performance of MySQL. 1. Sysbench directly carries out stress testing on ShardingSphere-
Proxy (directly connect MySQL).

Based on the above two groups of experiments, we can figure out the loss of MySQL when using
ShardingSphere-Proxy.

Set up the test environment

Server information

1. Db-related configuration: it is recommended that the memory is larger than the amount of data
to be tested, so that the data is stored in the memory hot block, and the rest can be adjusted.

2. ShardingSphere-Proxy-related configuration: it is recommended to use a high-performance,
multi-core CPU, and other configurations can be customized.

3. Disable swap partitions on all servers involved in the stress testing.

Database

[mysqld]
innodb_buffer_pool_size=${MORE_THAN_DATA_SIZE}
innodb-log-file-size=3000000000
innodb-log-files-in-group=5
innodb-flush-log-at-trx—commit=0
innodb-change-buffer-max-size=40

back_log=900

innodb_max_dirty_pages_pct=75

11.6. Performance Test 562

Apache ShardingSphere document

innodb_open_files=20480
innodb_buffer_pool_dinstances=8
innodb_page_cleaners=8
innodb_purge_threads=2
innodb_read_io_threads=8
innodb_write_io_threads=8
table_open_cache=102400
log_timestamps=system
thread_cache_size=16384
transaction_isolation=READ-COMMITTED

Appropriate tuning can be considered to magnify the underlying DB performance, so
that the experiment doesn't subject to DB performance bottleneck.

Stress testing tool

Refer to sysbench’ s GitHub

ShardingSphere-Proxy

bin/start.sh

-Xmx1l6g -Xmsl6ég -Xmn8g # Adjust JVM parameters

config.yaml

databaseName: sharding_db

dataSources:
ds_0:

url: jdbc:imysql://*x** %% *x**x, x*k*x:*x*xxx/test?serverTimezone=UTC&useSSL=false #
Parameters can be adjusted appropriately

username: test

password:

connectionTimeoutMilliseconds: 30000

idleTimeoutMilliseconds: 60000

maxLifetimeMilliseconds: 1800000

maxPoolSize: 200 # The maximum ConnPool is set to ${the number of concurrencies
in stress testing}, which is consistent with the number of concurrencies in stress
testing to shield the impact of additional connections in the process of stress
testing.

minPoolSize: 200 # The minimum ConnPool 1is set to ${the number of concurrencies
in stress testing}, which is consistent with the number of concurrencies in stress

testing to shield the impact of connections initialization in the process of stress

11.6. Performance Test 563

https://github.com/akopytov/sysbench

Apache ShardingSphere document

testing.

rules: []

Test phase

Environment setup

sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-user=
S{USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-size=1000000
--report-interval=10 --time=100 --threads=200 cleanup
sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-user=
S{USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-size=1000000
--report-interval=10 --time=100 --threads=200 prepare

Stress testing command

sysbench oltp_read_write --mysql-host=${DB/PROXY_IP} --mysql-port=${DB/PROXY_PORT} -
-mysql-user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-
s1ze=1000000 --report-interval=10 --time=100 --threads=200 run

Stress testing report analysis

sysbench 1.0.20 (using bundled LualIT 2.1.0-beta2)

Running the test with following options:

Number of threads: 200

Report intermediate results every 10 second(s)

Initializing random number generator from current time

Initializing worker threads...

Threads started!

Report test results every 10 seconds, and the number of tps, reads per second,
writes per second, and the total response time of more than 95th percentile.

[16s] thds: 200 tps: 11161.70 gps: 223453.06 (r/w/o: 156451.76/44658.51/22342.80)
lat (ms,95%): 27.17 err/s: 0.00 reconn/s: 0.00

[120s] thds: 200 tps: 11731.00 qps: 234638.36 (r/w/o: 164251.67/46924.69/23462.00)
lat (ms,95%): 24.38 err/s: 0.00 reconn/s: 0.00
SQL statistics:

queries performed:

read: 19560590 # number of reads
write: 5588740 # number of writes
other: 27943700 # number of

other operations (COMMIT etc.)

11.6. Performance Test 564

Apache ShardingSphere document

total: 27943700 # the total number

transactions: 1397185 (11638.59 per sec.) # number of
transactions (per second)

queries: 27943700 (232771.76 per sec.) # number of

statements executed (per second)

ignored errors: 0 (0.00 per sec.) # number of
ignored errors (per second)

reconnects: 0] (0.00 per sec.) # number of
reconnections (per second)

General statistics:
total time: 120.0463s # total time
total number of events: 1397185 # toal number
of transactions

Latency (ms):

min: 5.37 # minimum latency
avg: 17.13 # average latency
max: 109.75 # maximum latency
95th percentile: 24.83 # average

response time of over 95th percentile.
sum: 23999546.19

Threads fairness:

events (avg/stddev): 6985.9250/34.74 # On average,
6985.9250 events were completed per thread, and the standard deviation is 34.74
execution time (avg/stddev): 119.9977/0.01 # The average

time of each thread is 119.9977 seconds, and the standard deviation 1is 0.01

Noticeable features

1. CPU utilization ratio of the server where ShardingSphere-Proxy resides. It is better to make full
use of CPU.

2. I/O of the server disk where the DB resides. The lower the physical read value is, the better.

3. Network IO of the server involved in the stress testing.

11.6.2 BenchmarkSQL ShardingSphere-Proxy Sharding Performance Test
Objective

BenchmarkSQL tool is used to test the sharding performance of ShardingSphere-Proxy.

11.6. Performance Test 565

Apache ShardingSphere document

Method

ShardingSphere-Proxy supports the TPC-C test through BenchmarkSQL 5.0. In addition to the con-
tent described in this document, BenchmarkSQL is operated according to the original document
HOW-TO-RUN. txt.

Fine tuning to test tools

Unlike stand-alone database stress testing, distributed database solutions inevitably face trade-offs in
functions. It is recommended to make the following adjustments when using BenchmarkSQL to carry

out stress testing on ShardingSphere-Proxy.

Remove the foreign key and extraHistID

Modify run/runDatabaseBuild. sh in the BenchmarkSQL directory at line 17.

Before modification:

AFTER_LOAD="indexCreates foreignKeys extraHistID buildFinish"

After modification:

AFTER_LOAD="4indexCreates buildFinish"

Stress testing environment or parameter recommendations

Note: None of the parameters mentioned in this section are absolute values and need to be adjusted
based on actual test results.

It is recommended to run ShardingSphere using Java 17

ShardingSphere can be compiled using Java 8.

When using Java 17, maximize the ShardingSphere performance by default.

ShardingSphere data sharding recommendations

The data sharding of BenchmarkSQL can use the warehouse id in each table as the sharding key.

One of the tables bmsql_1item has no warehouse id and has a fixed data volume of 100,000 rows: -
You can take i_17d as a sharding key. However, the same Proxy connection may hold connections to
multiple different data sources at the same time. - Or you can give up sharding and store it in a single
data source. But a data source may be under great pressure. - Or you may choose range-based sharding
for i_1d, such as 1-50000 for data source 0 and 50001-100000 for data source 1.

BenchmarkSQL has the following SQL involving multiple tables:

11.6. Performance Test 566

https://sourceforge.net/projects/benchmarksql/

Apache ShardingSphere document

SELECT c_discount, c_last, c_credit, w_tax
FROM bmsql_customer

JOIN bmsql_warehouse ON (w_id = c_w_id)
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

SELECT o_id, o_entry_d, o_carrier_id

FROM bmsql_oorder

WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

AND o_id = (

SELECT max(o_1id)
FROM bmsql_oorder
WHERE o_w_1id = ? AND o_d_id = ? AND o_c_id = ?
)

If the warehouse id is used as the sharding key, the tables involved in the above SQL can be configured
as bindingTable:

rules:
- ISHARDING
bindingTables:
- bmsql_warehouse, bmsql_customer

- bmsqgl_stock, bmsql_district, bmsql_order_1line

For the data sharding configuration with warehouse id as the sharding key, refer to the appendix of this

document.

PostgreSQL JDBC URL parameter recommendations

Adjust the JDBC URL in the configuration file used by BenchmarkSQL, that is, the value of the parameter
name conn: - Adding the parameter defaultRowFetchSize=50 may reduce the number of fetch for
multi-row result sets. You need to increase or decrease the number according to actual test results. -
Adding the parameter reWriteBatchedInserts=true may reduce the time spent on bulk inserts,
such as preparing data or bulk inserts for the New Order business. Whether to enable the operation

depends on actual test results.

props.pg file excerpt. It is suggested to change the parameter value of conn in line 3.

db=postgres

driver=org.postgresql.Driver
conn=jdbc:postgresql://localhost:5432/postgres?defaultRowFetchSize=50&
reWriteBatchedInserts=true

user=benchmarksql

password=PWbmsql

11.6. Performance Test 567

Apache ShardingSphere document

ShardingSphere-Proxy global.yaml parameter recommendations

The default value of proxy-backend-query-fetch-size is -1. Changing it to about 50 can mini-
mize the number of fetch for multi-row result sets.

The default value of proxy-frontend-executor-size is CPU * 2 and can be reduced to about CPU
* 0.5 based on actual test results. If NUMA is involved, set this parameter to the number of physical
cores per CPU based on actual test results.

global.yaml file excerpt:

props:
proxy-backend-query-fetch-size: 50
proxy-frontend-executor-size: 32 # 4x32C aarch64
proxy-frontend-executor-size: 12 # 2x12C24T x86

Appendix

BenchmarkSQL data sharding reference configuration

Adjust pool size according to the actual stress testing process.

databaseName: bmsql_sharding
dataSources:

ds_0:
url: jdbc:postgresql://db0.1ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_1:
url: jdbc:postgresql://dbl.1ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_2:
url: jdbc:postgresql://db2.1ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000

11.6. Performance Test 568

Apache ShardingSphere document

maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_3:
url: jdbc:postgresql://db3.1ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

rules:
— ISHARDING
bindingTables:
- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_1line
defaultDatabaseStrategy:

none:
defaultTableStrategy:
none:
keyGenerators:
snowflake:
type: SNOWFLAKE
tables:

bmsql_config:
actualDataNodes: ds_0.bmsql_config

bmsql_warehouse:
actualDataNodes: ds_s${0..3}.bmsql_warehouse
databaseStrategy:
standard:
shardingColumn: w_1id
shardingAlgorithmName: mod_4

bmsgl_district:
actualDataNodes: ds_s${0..3}.bmsql_district
databaseStrategy:
standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_4

bmsql_customer:
actualDataNodes: ds_s${0..3}.bmsql_customer
databaseStrategy:
standard:
shardingColumn: c_w_id

11.6. Performance Test 569

Apache ShardingSphere document

shardingAlgorithmName: mod_4

bmsqgl_item:
actualDataNodes: ds_s${0..3}.bmsql_item
databaseStrategy:
standard:
shardingColumn: {i_1id
shardingAlgorithmName: mod_4

bmsql_history:
actualDataNodes: ds_s${0..3}.bmsql_history
databaseStrategy:
standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_4

bmsql_oorder:
actualDataNodes: ds_s${0..3}.bmsql_oorder
databaseStrategy:
standard:
shardingColumn: o_w_id

shardingAlgorithmName: mod_4

bmsql_stock:
actualDataNodes: ds_s${0..3}.bmsql_stock
databaseStrategy:
standard:
shardingColumn: s_w_id
shardingAlgorithmName: mod_4

bmsgl_new_order:
actualDataNodes: ds_${0..3}.bmsql_new_order
databaseStrategy:
standard:
shardingColumn: no_w_-id

shardingAlgorithmName: mod_4

bmsql_order_line:
actualDataNodes: ds_s${0..3}.bmsql_order_1line
databaseStrategy:
standard:
shardingColumn: ol_w_-id
shardingAlgorithmName: mod_4

shardingAlgorithms:
mod_4:
type: MOD
props:

11.6. Performance Test 570

Apache ShardingSphere document

shar

ding-count: 4

BenchmarkSQL 5.0 PostgreSQL statement list

Create tables

create table b
cfg_name

cfg_value

)

create table b
w_-id
w_ytd
w_tax
w_name
w_street_1
w_street_2
w_city
w_state
w_zip

) g

create table b
d_w_id
d_id
d_ytd
d_tax
d_next_o_-id
d_name
d_street_1
d_street_2
d_city
d_state
d_zip

)3

create table b
c_w_id
c_d_id
c_id
c_discount
c_credit
c_last
c_first
c_credit_lim

c_balance

msql_config (
varchar(30) primar
varchar (50)

msql_warehouse (
integer not null
decimal(12,2),
decimal(4,4),
varchar(10),
varchar(20),
varchar (20),
varchar(20),
char(2),

char (9)

msql_district (
integer not
integer not
decimal(12,2),
decimal(4,4),
integer,

varchar (10),
varchar (20),
varchar (20),
varchar (20),
char(2),

char (9)

msql_customer (
integer
integer
integer
decimal(4,4),
char(2),
varchar(16),
varchar (16),
decimal(12,2),
decimal(12,2),

y key,

)

null,
null,

not null,
not null,

not null,

11.6. Performance Test

571

Apache ShardingSphere document

)3

c_ytd_payment
c_payment_cnt
c_delivery_cnt
c_street_1
c_street_2
c_city
c_state

c_zip

c_phone
c_since
c_middle

c_data

decimal(12,2),
integer,
integer,
varchar(20),
varchar (20),
varchar(20),
char(2),
char(9),
char(16),
timestamp,
char(2),
varchar (500)

create sequence bmsql_hist_id_seq;

create table bmsqgl_history (

)3

hist_id dinteger,

h_c_did

integer,

h_c_d_id integer,

h_c_w_id integer,

h_d_id integer,
h_w_did integer,
h_date timestamp,

h_amount decimal(6,2),

h_data

varchar (24)

create table bmsql_new_order (

)

no_w_id ‘integer
no_d_id integer

no_o_id integer

not null,
not null,
not null

create table bmsql_oorder (

)3

o_w_-id integer not
o_d_1id integer not
o_1id integer not
o_c_id integer,

o_carrier_id integer,

o_ol_cnt

integer,

o_all_local -nteger,

o_entry_d

timestamp

create table bmsql_order_1line (

ol_w_id
ol_d_id

integer not

integer not

null,
null,
null,

null,
null,

11.6. Performance Test

572

Apache ShardingSphere document

ol_o_id integer not null,
ol_number integer not null,
ol_1i_1d integer not null,

ol_delivery_d timestamp,
ol_amount decimal(6,2),
ol_supply_w_id -integer,
ol_quantity integer,
ol_dist_info char(24)

)3

create table bmsqgl_item (
i_1d integer not null,
i_name varchar(24),
i_price decimal(5,2),
i_data varchar(50),
i_im_id dinteger

)

create table bmsql_stock (
s_w_id integer not null,
s_i_did integer not null,
s_quantity integer,
s_ytd integer,
s_order_cnt dinteger,
s_remote_cnt integer,
s_data varchar (50),
s_dist_01 char(24),
s_dist_02 char(24),
s_dist_03 char(24),
s_dist_04 char(24),
s_dist_05 char(24),
s_dist_06 char(24),
s_dist_o7 char(24),
s_dist_08 char(24),
s_dist_09 char(24),
s_dist_10 char (24)
)5

Create indexes

alter table bmsql_warehouse add constraint bmsql_warehouse_pkey

primary key (w_id);

alter table bmsql_district add constraint bmsql_district_pkey
primary key (d_w_id, d_id);

alter table bmsql_customer add constraint bmsql_customer_pkey

11.6. Performance Test 573

Apache ShardingSphere document

primary key (c_w_id, c_d_id, c_id);

create index bmsql_customer_idxl
on bmsql_customer (c_w_id, c_d_id, c_last, c_first);

alter table bmsql_oorder add constraint bmsql_oorder_pkey

primary key (o_w_id, o_d_id, o_id);

create unique index bmsql_oorder_idxl
on bmsql_oorder (o_w_id, o_d_id, o_carrier_id, o_id);

alter table bmsqgl_new_order add constraint bmsql_new_order_pkey

primary key (no_w_id, no_d_id, no_o_id);

alter table bmsql_order_line add constraint bmsql_order_line_pkey

primary key (ol_w_id, ol_d_id, ol_o_id, ol_number);

alter table bmsql_stock add constraint bmsql_stock_pkey
primary key (s_w_id, s_i_id);

alter table bmsql_item add constraint bmsql_item_pkey
primary key (i_id);

New Order business

stmtNewOrderSelectWhseCust

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_1id = ? AND d_id = ?

stmtNewOrderSelectDist

SELECT d_tax, d_next_o_-id
FROM bmsql_district
WHERE d_w_1id = ? AND d_id = ?
FOR UPDATE

stmtNewOrderUpdateDist

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_1id = ? AND d_id = ?

stmtNewOrderInsertOrder

11.6. Performance Test 574

Apache ShardingSphere document

INSERT INTO bmsql_oorder (
o_id, o_d_id, o_w_id, o_c_id, o_entry_d,
o_ol_cnt, o_all_local)

VALUES (2, 2, 2, 2, 2?2, 2, 2)

stmtNewOrderInsertNewOrder

INSERT INTO bmsql_new_order (
no_o_id, no_d_1id, no_w_id)
VALUES (?, ?, ?)

stmtNewOrderSelectStock

SELECT s_quantity, s_data,
s_dist_01, s_dist_02, s_dist_03, s_dist_04,
s_dist_05, s_dist_06, s_dist_07, s_dist_08,
s_dist_09, s_dist_10
FROM bmsql_stock
WHERE s_w_id = ? AND s_i_id = ?
FOR UPDATE

stmtNewOrderSelectltem

SELECT 1i_price, i_name, i_data
FROM bmsql_ditem
WHERE +_id = ?

stmtNewOrderUpdateStock

UPDATE bmsql_stock
SET s_quantity = ?, s_ytd = s_ytd + ?,
s_order_cnt = s_order_cnt + 1,
s_remote_cnt = s_remote_cnt + ?
WHERE s_w_id = ? AND s_i_id = ?

stmtNewOrderInsertOrderLine

INSERT INTO bmsql_order_line (
ol_o_id, ol_d_id, ol_w_id, ol_number,
ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_dist_info)

VALUES (2, 2?2, 2, 2, 2, 2, 2, 2, ?)

11.6. Performance Test 575

Apache ShardingSphere document

Payment business

stmtPaymentSelectWarehouse

SELECT w_name, w_street_1, w_street_2, w_city,
w_state, w_zip
FROM bmsql_warehouse
WHERE w_id = ?

stmtPaymentSelectDistrict

SELECT d_name, d_street_1, d_street_2, d_city,
d_state, d_zip
FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?

stmtPaymentSelectCustomerListByLast

SELECT c_1id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtPaymentSelectCustomer

SELECT c_first, c_middle, c_last, c_street_1, c_street_2,
c_city, c_state, c_zip, c_phone, c_since, c_credit,
c_credit_1lim, c_discount, c_balance

FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?
FOR UPDATE

stmtPaymentSelectCustomerData

SELECT c_data
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateWarehouse

UPDATE bmsqgl_warehouse
SET w_ytd = w_ytd + ?
WHERE w_-1id = ?

stmtPaymentUpdateDistrict

UPDATE bmsql_district
SET d_ytd = d_ytd + ?
WHERE d_w_1id = ? AND d_id = ?

11.6. Performance Test 576

Apache ShardingSphere document

stmtPaymentUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance - ?,
c_ytd_payment = c_ytd_payment + ?7,
c_payment_cnt = c_payment_cnt + 1
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateCustomerWithData

UPDATE bmsqgl_customer
SET c_balance = c_balance - ?,
c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1,
c_data = ?
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentInsertHistory

INSERT INTO bmsql_history (
h_c_id, h_c_d_id, h_c_w_id, h_d_id, h_w_id,
h_date, h_amount, h_data)

VALUES (2, 2, 2, 2, 2, 2, 2, ?)

Order Status business

stmtOrderStatusSelectCustomerListByLast

SELECT c_1id
FROM bmsql_customer
WHERE c_w_1id = 2 AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtOrderStatusSelectCustomer

SELECT c_first, c_middle, c_last, c_balance
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtOrderStatusSelectLastOrder

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (
SELECT max(o_-id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

11.6. Performance Test 577

Apache ShardingSphere document

stmtOrderStatusSelectOrderLine

SELECT ol_1i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_delivery_d
FROM bmsql_order_1line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?
ORDER BY ol_w_id, ol_d_id, ol_o_id, ol_number

Stock level business

stmtStockLevelSelectLow

SELECT count(x) AS low_stock FROM (
SELECT s_w_1id, s_i_id, s_quantity
FROM bmsql_stock
WHERE s_w_id = ? AND s_quantity < ? AND s_i_id IN (
SELECT ol_i_1id
FROM bmsql_district
JOIN bmsql_order_line ON ol_w_id = d_w_qid
AND ol_d_id = d_id
AND ol_o_id >= d_next_o_id - 20
AND ol_o_1id < d_next_o_id
WHERE d_w_1id = ? AND d_id = ?

) AS L

Delivery BG business

stmtDeliveryBGSelectOldestNewOrder

SELECT no_o_i1id
FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_qid
ORDER BY no_o_id ASC

]
-~

stmtDeliveryBGDeleteOldestNewOrder

DELETE FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ? AND no_o_id = ?

stmtDeliveryBGSelectOrder

SELECT o_c_id
FROM bmsql_oorder
WHERE o_w_1id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGUpdateOrder

11.6. Performance Test 578

Apache ShardingSphere document

UPDATE bmsqgl_oorder
SET o_carrier_id = ?
WHERE o_w_1id = ? AND o_d_id = ? AND o_1id = ?

stmtDeliveryBGSelectSumOLAmount

SELECT sum(ol_amount) AS sum_ol_amount
FROM bmsql_order_1line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateOrderLine

UPDATE bmsqgl_order_1line
SET ol_delivery_d = ?
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateCustomer

UPDATE bmsqgl_customer
SET c_balance = c_balance + ?,
c_delivery_cnt = c_delivery_cnt + 1
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

11.7 Module Test

Provides test engine with each complex modules.

11.7.1 SQL Parser Test

Prepare Data

Not like Integration test, SQL parse test does not need a specific database environment, just define the
sql to parse, and the assert data:

SQL Data

As mentioned sql-case-idin Integration test, test-case-id could be shared in different module to test,
and the file is in shardingsphere-test-it-parser module, at test/it/parser/src/main/
resources/sql/supported/${SQL-TYPE}/*.xml

11.7. Module Test 579

Apache ShardingSphere document

Assert Data

The assertdataisat test/it/parser/src/main/resources/case/${SQL-TYPE}/*.xmlin that
xml file, it could assert against the table name, token or sql condition and so on. For example:

<parser-result-sets>
<parser-result sql-case-id="1insert_with_multiple_values">
<tables>
<table name="t_order" />
</tables>
<tokens>
<table-token start-index="12" table-name="t_order" length="7" />
</tokens>
<sharding-conditions>
<and-condition>

<condition column-name="order_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="1int" />
</condition>
<condition column-name="user_id" table-name="t_order" operator=
"EQUAL">
<value literal="1" type="int" />
</condition>
</and-condition>
<and-condition>
<condition column-name="order_id" table-name="t_order" operator=
"EQUAL">
<value literal="2" type="1int" />
</condition>
<condition column-name="user_id" table-name="t_order" operator=
"EQUAL">

<value literal="2" type="1int" />
</condition>
</and-condition>
</sharding-conditions>
</parser-result>
</parser-result-sets>

When these configs are ready, launch the test engine in test/it/parser to test SQL parse.

11.7. Module Test 580

Apache ShardingSphere document

11.7.2 SQL Rewrite Test
Target

Facing logic databases and tables cannot be executed directly in actual databases. SQL rewrite is used
to rewrite logic SQL into rightly executable ones in actual databases, including two parts, correctness

rewrite and optimization rewrite. rewrite tests are for these targets.

Test

The rewrite tests are in the test folder under test/it/rewriter . Followings are the main part for

rewrite tests:
* test engine
- environment configuration
+ assert data

Test engine is the entrance of rewrite tests, just like other test engines, through Junit Parameterized,
read every and each data in the xml file under the target test type in test\resources, and then assert
by the engine one by one

Environment configuration is the yaml file under test type under test\resources\yaml. The con-
figuration file contains dataSources, shardingRule, encryptRule and other info. for example:

dataSources:
db: !!com.zaxxer.hikari.HikariDataSource
driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:db;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa

password:

sharding Rules

rules:
— ISHARDING
tables:
t_account:
actualDataNodes: db.t_account_s${0..1}
tableStrategy:
standard:
shardingColumn: account_-id
shardingAlgorithmName: account_table_inline
keyGenerateStrategy:

column: account_id
keyGeneratorName: snowflake
t_account_detail:
actualDataNodes: db.t_account_detail_s${0..1}
tableStrategy:
standard:

11.7. Module Test 581

https://github.com/junit-team/junit4/wiki/Parameterized-tests

Apache ShardingSphere document

shardingColumn: order_id
shardingAlgorithmName: account_detail_table_inline
bindingTables:
- t_account, t_account_detail
shardingAlgorithms:
account_table_inline:
type: INLINE
props:
algorithm-expression: t_account_s${account_id % 2}
account_detail_table_inline:
type: INLINE
props:
algorithm-expression: t_account_detail_${account_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

Assert data are in the xml under test type in test\resources. In the xml file, yaml-rule means the
environment configuration file path, input contains the target SQL and parameters, output contains
the expected SQL and parameters. The db-type described the type for SQL parse, default is SQL92.
For example:

<rewrite-assertions yaml-rule="yaml/sharding/sharding-rule.yaml">
<!-- to change SQL parse type, change db-type -->
<rewrite-assertion 1id="create_index_for_mysql" db-type="MySQL">
<input sql="CREATE INDEX index_name ON t_account ('status')" />
<output sql="CREATE INDEX index_name ON t_account_0 ('status')" />
<output sql="CREATE INDEX index_name ON t_account_1 ('status')" />
</rewrite-assertion>

</rewrite-assertions>

After set up the assert data and environment configuration, rewrite test engine will assert the corre-

sponding SQL without any Java code modification.

11.8 Pipeline E2E Test

11.8.1 Objectives

Verify the functional correctness of pipeline scenarios.

11.8. Pipeline E2E Test 582

Apache ShardingSphere document

11.8.2 Test environment type

Currently, NATIVE and DOCKER are available. 1. NATIVE : Run on developer local machine. Need
to start ShardingSphere-Proxy instance and database instance by developer. It could be used for local
debugging. 2. DOCKER : Run on docker started by Maven plugin. It could be used for GitHub Actions,
and it could be used for local debugging too.

Supported databases: MySQL, PostgreSQL and openGauss.

11.8.3 User guide

Module path: test/e2e/operation/pipeline.

Environment setup

${DOCKER-IMAGE} refers to the name of a docker mirror, such asmysql:5.7. S{DATABASE-TYPE}
refers to database types.

Directory: src/test/resources/env/ - it-env.properties: Environment setup configu-
ration file. - ${DATABASE-TYPE}/global.yaml: ShardingSphere-Proxy configuration fie.

${DATABASE-TYPE}/initdb.sql: Database initialization SQL file. - ${DATABASE-TYPE}/*.cnf,
x,conf: Database configuration files. - common/*.xml: DistSQL files. - scenario/: SQL files for

different scenarios.

Test case

Test case example: MySQLMigrationGeneral E2EIT. Functions included: - Database-level migration (all
tables). - Table-level migration (any number). - Verify migration data consistency. - Support restart
during data migration. - Support integer primary keys during data migration. - Support string primary
keys during data migration. - A non-administrator account can be used to migrate data.

Running the test case

Any property of it-env.properties could be defined by Maven command line parameter -D, and
its priority is higher than configuration file.

NATIVE environment setup

1. Start ShardingSphere-Proxy (port should be 3307): refer to proxy startup guide, or run org.
apache.shardingsphere.proxy.Bootstrap in IDE after modifying proxy/bootstrap/
src/main/resources/conf/global.yaml.

Refer to following files for proxy global.yaml configuration: -

test/e2e/operation/pipeline/src/test/resources/env/mysql/server-8.yaml -

11.8. Pipeline E2E Test 583

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/

Apache ShardingSphere document

test/e2e/operation/pipeline/src/test/resources/env/postgresql/global.yaml -

test/e2e/operation/pipeline/src/test/resources/env/opengauss/global.yaml
2. Start registry center (e.g. ZooKeeper) and database.

3. Take MySQL as an example, it-env.properties could be configured as follows:

pipeline.it.env.type=NATIVE
pipeline.it.native.database=mysql
pipeline.it.native.mysql.username=root
pipeline.it.native.mysql.password=root

pipeline.it.native.mysql.port=3306

4. Find test class and start it on IDE.

DOCKER environment setup

Refer to . github/workflows/e2e-pipeline.yml for more details.

1. Build docker image.

./mvnw -B clean install -am -pl test/e2e/operation/pipeline -Pit.env.docker -
DskipTests

Running the above command will build a docker image apache/
shardingsphere-proxy-test:latest.

The docker image has port 3308 for remote debugging.

If only test code is modified, you could reuse existing docker image.

2. Configure it-env.properties.

pipeline.it.env.type=DOCKER
pipeline.it.docker.mysql.version=mysql:5.7

3. Run test cases.

Take MySQL as an example:

./mvnw -nsu -B install -f test/e2e/operation/pipeline/pom.xml -Dpipeline.it.env.
type=docker -Dpipeline.it.docker.mysql.version=mysql:5.7

11.8. Pipeline E2E Test 584

Reference

This chapter contains a section of technical implementation with Apache ShardingSphere, which pro-

vide the reference with users and developers.

12.1 Database Compatibility

Root

SELECT FIELDS FROM TABLES WHERE CONDITIONS

id name t_user AND

18

status ACTIVE

+ SQL compatibility

SQL is the standard language for users to communicate with databases. The SQL parsing engine is
responsible for parsing SQL strings into abstract syntax trees so that Apache ShardingSphere can un-
derstand and implement its incremental function. ShardingSphere currently supports MySQL, Post-
greSQL, SQLServer, Oracle, openGauss, ClickHouse, Doris, Hive, Presto and SQL dialects conforming
to the SQL92 standard. Due to the complexity of SQL syntax, a few SQL are not supported for now.

585

Apache ShardingSphere document

« Database protocol compatibility

Apache ShardingSphere currently implements MySQL and PostgreSQL protocols according to different
data protocols.

+ Supported features

Apache ShardingSphere provides distributed collaboration capabilities for databases. Atthe same time,
it abstracts some database features to the upper layer for unified management, so as to facilitate users.

Therefore, native SQL will not deliver the features provided uniformly to the database, and a message
will be displayed indicating that the operation is not supported. Users can replace it with methods
provided by ShardingSphere.

12.2 Database Gateway

Apache ShardingSphere provides the ability for SQL dialect translation to achieve automatic conversion
between database dialects. For example, users can use MySQL client to connect ShardingSphere and
send SQL based on MySQL dialect. ShardingSphere can automatically identify user protocol and storage
node type, automatically complete SQL dialect conversion, and access heterogeneous storage nodes

such as PostgreSQL.
sqQL1] sQL 1 m
“1! MySQL Dialect > MySQL Dialect > My
MySQL Client !D
ShardingSphere
1 QL 2 > sQL2 > @ PostgreSQL
0 ! MySQL Dialect PostgerSQL Dialect
MySQL Client SQL Dialect
Conversion
1 SQL 3 X sQL 3’ R J
0 ! MySQL Dialect MariaDB Dialect] Mar’iaDB

MySQL Client

12.3 Management

12.3.1 Data Structure in Registry Center

Under a defined namespace, rules, props and metadata nodes persist in YAML. Modifying nodes
can dynamically refresh configurations. nodes persist the runtime node of the database access object,
to distinguish different database access instances. statistics persist data records in system tables.

namespace
F——rules # Global rule configuration

P F——transaction
F f F——active_version
P f F——versions

12.2. Database Gateway 586

Apache ShardingSphere document

S S S
F——props

P F——active_verison
P F——versions

S S
F——metadata

F——${databaseName}
F——data_sources
F——units
F F——${data$ourceName}
f F——active_verison

F

F f F——versions
b b b
...

F——nodes

F F——${data$ourceName}

F P F——active_verison
F

F

f P——versions
b o
A S

schemas
F——${schemaName}

P——tables

F——${tableName}

F F——versﬁons
A N
...

${viewName}

Foe

_I__I__I__I__I_T_I__I__I__I__I_
<
-l
1)
=
(7]

t__

F F——versions
i

F__

F F——versions
A N
...

key_generators

e

- T T 7" """ 7" """ "7 """ 7" 7°77T°T """ """ """ " T T T T T T T T "7 T 71T "1 T "1 "~"T "T1T "1 "1 "“"T "1
- 0T T T " T

T T T T T T T T ~T T ~T “T
_I__I__I__I__I_T_I__I__I__I__I_

t__

F F——versions
i

F__

Properties configuration

Metadata configuration

Storage unit configuration

Active version

version list

Storage node configuration

Active version

version list

Schema list

Table configuration

F F——active_verison # Active version

version list

View configuration

F——active_verison # Active version

version list

rules
F——sharding
F——algorithms
F——${a1goritthame} # algorithm name
F F——active_verison # Active version

version list

${keyGeneratorName} # keyGenerator name

F——active_verison # Active version

version list

12.3. Management

587

Apache ShardingSphere document

tab

put}

@

>
o
o

Q -7
+

n
+

® ——1T—T—-—T—-T——T

0

—I__I_

_I__I__I__I__I_—|_

P——tables

F——${tableName} # logic table name
F F——active_verison # Active version

F——versions # version list

A

-Tr T T T T "1
I i B R B B

F
P
Foot
Foot
I S

compute_nodes

F——online

P F——proxy

F F —uuIp
O

F F—jdbc

F | —uuIp

L
—status

F F—uuID

S S
F——worker_id

F F—uu1D

S S
F——show_process_list_trigger
P F——process_id:UUID

F——labels
F F—uuIp

Proxy instance tidentifier

JIDBC instance identifier

qualified_data_sources

F——${databaseName.groupName.dataSourceName}
F——${databaseName.groupName.dataSourceName}

istics

databases

F——shardingsphere

f F——schemas

P F f——shardingsphere

P P P F——tables # system tables
]

P f P F——cluster_information # cluster information

12.3. Management 588

Apache ShardingSphere document

[rules

These are the global rule configurations, transaction configuration.

transaction:
defaultType: XA

providerType: Atomikos

[/props
These are the properties’ configurations. Please refer to the Configuration Manual for more details.

kernel-executor-size: 20

sql-show: true

/metadata/${databaseName}/data_sources/units/ds_0/versions/0

Database connection pools, whose properties (e.g. HikariCP) are to be configured by the user.

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: ©
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root

poolName: HikariPool-1

/metadata/${databaseName}/data_sources/nodes/ds_0/versions/0

Database connection pools, whose properties (e.g. HikariCP) are to be configured by the user.

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: ©
minimumIdle: 1
password: root
idleTimeout: 60000

12.3. Management 589

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/props/

Apache ShardingSphere document

jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource

maximumPoolSize: 50

connectionTimeout: 30000

username: root

poolName: HikariPool-1

/metadata/${databaseName}/rules/sharding/tables/t_order/versions/0

Sharding configuration,

actualDataNodes: ds_${0..1}.t_order_${0..1}
auditStrategy:
allowHintDisable: true
auditorNames:
- t_order_dml_sharding_conditions_0
databaseStrategy:
standard:
shardingAlgorithmName: t_order_database_inline
shardingColumn: user_-id
keyGenerateStrategy:
column: another_did
keyGeneratorName: t_order_snowflake
logicTable: t_order
tableStrategy:
standard:
shardingAlgorithmName: t_order_table_inline
shardingColumn: order_-id

/metadata/database N ame/schemas/{schemaName}/tables/t_order/versions/0

Use separate node storage for each table.

name: t_order # Table name
columns: # Columns
id: # Column name

caseSensitive: false
dataType: 0
generated: false
name: 1id
primaryKey: trues
order_did:
caseSensitive: false
dataType: 0
generated: false
name: order_id

12.3. Management 590

Apache ShardingSphere document

primaryKey: false
indexs: # Index
t_user_order_id_index: # Index name

name: t_user_order_id_index

[nodes/compute_nodes

It includes running instance information of database access object, with sub-nodes as the identifiers of
the currently running instance, which is automatically generated at each startup using UUID.

The identifiers are temporary nodes, which are registered when instances are online and cleared when
instances are offline. The registry center monitors the change of those nodes to govern the database

access of running instances and other things.

[nodes/qualified_data_sources

It can orchestrate a replica database on readwrite-splitting feature, disable data dynamically.

12.4 Sharding

The figure below shows how sharding works. According to whether query and optimization are needed,
it can be divided into the Simple Push Down process and SQL Federation execution engine process.
Simple Push Down process consists of SQL parser => SQL binder => SQL router => SQL
rewriter => SQL executor => result merger, mainly used to deal with SQL execution in
standard sharding scenarios. SQL Federation execution engine consists of SQL parser => SQL
binder => Tlogical optimization => physical optimization => data fetcher
=> operator calculation. This process performs logical optimization and physical optimization
internally, during which the standard kernel procedure is adopted to route, rewrite, execute and merge
the optimized logical SQL.

12.4. Sharding 591

Apache ShardingSphere document

"

SQL Rewriter

!

SQL Executor

v

Result Merger

Micro Kernel
Metadata ’ SQL Parse
SQL Binder
Simple Push Down 5QL Federation
L
SQL Router SQL Optimizer

|

Data Fetcher

4

Operation Calc

12.4.1 SQL Parser

It is divided into the lexical parser and syntactic parser. SQL is first split into indivisible words through

a lexical parser.

The syntactic parser is then used to analyze SQL and ultimately extract the parsing context, which can

include tables, options, ordering items, grouping items, aggregation functions, pagination information,

query conditions, and placeholders that may be modified.

12.4. Sharding

592

Apache ShardingSphere document

12.4.2 SQL Route

The sharding strategy configured by the user is matched according to the parsing context and the rout-

ing path is generated. Currently, sharding router and broadcast router are supported.

12.4.3 SQL Rewrite

Rewrite SQL into statements that can be executed correctly in a real database. SQL rewriting is divided

into rewriting for correctness and rewriting for optimization.

12.4.4 SQL Execution

It executes asynchronously through a multithreaded executor.

12.4.5 Result Merger

It merges multiple execution result sets to achieve output through the unified JDBC interface. The result
merger includes the stream merger, memory merger and appended merger using decorator mode.

12.4.6 Query Optimization

Supported by the experimental Federation Execution Engine, it optimizes complex queries such as as-
sociated queries and sub-queries and supports distributed queries across multiple database instances.
It internally optimizes query plans using relational algebra to query results through optimal plans.

12.4.7 Parse Engine

SQL is relatively simple compared with other programming languages, but it’s still a complete program-
ming language. Therefore, there’ s no essential difference between parsing SQL syntax and parsing
other languages (such as Java, C and Go, etc.).

Abstract Syntax Tree
The parsing process is divided into lexical parsing and syntactic parsing. The lexical parser is used to
split SQL into indivisible atomic symbols called Tokens.

Tokens are classified into keywords, expressions, literals, and operators based on the dictionaries pro-
vided by different database dialects. The syntactic parser is then used to convert the output of the

lexical parser into an abstract syntax tree.

For example:

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

12.4. Sharding 593

Apache ShardingSphere document

After the above SQL is parsed, its AST (Abstract Syntax Tree) is as follows:

:r Root T
| S— |

FROM TABLES WHERE CONDITIONS

|7 i.d 7 I E:“I AND

J,

SELECT

FIELDS

The tokens for keywords in the AST are green, while the tokens for variables are red, and gray ones

indicate that further splitting is required.

Finally, the domain model is traversed through the abstract syntax tree by visitor; the context required

for sharding is extracted through the domain model (SQLStatement); and then, mark locations that may

need rewriting.

The parsing context for sharding includes select items, table, sharding condition, auto-increment pri-

mary key, and Order By, Group By, and pagination information (Limit, Rownum, Top). The SQL parsing

process is irreversible.

Each Token is parsed in the original SQL order, providing high performance. Taking the similarities

and differences of SQL dialects of various databases into consideration, the SQL dialect dictionary of

various databases is provided in the parsing module.

SQL Parser Engine

Iteration

SQL parsing is the core of sharding solutions, and its performance and compatibility are the most im-

portant indicators. ShardingSphere’ s SQL parser has undergone three iterations and upgrades.

To achieve high performance and fast implementation, the first generation of SQL parsers used Druid

prior to V1.4.x. In practical tests, its performance far exceeds that of other parsers.

12.4. Sharding 594

Apache ShardingSphere document

The second generation of SQL parsers started from V1.5.x. ShardingSphere uses a completely self-
developed SQL parsing engine. Owing to different purposes, ShardingSphere does not need to convert
SQL into a complete abstract syntax tree, nor does it require a second traversal through the accessor
pattern. It uses a half-parsing method to extract only the context required by data sharding, thus further
improving the performance and compatibility of SQL parsing.

The third generation of SQL parsers, starting with V3.0.x, attempts to use ANTLR as a generator of SQL
parsing engines and uses Visit to obtain SQL statements from the AST. Since V5.0.x, the architecture
of the parsing engine has been restructured and adjusted. Moreover, the AST obtained from the first
parsing is stored in the cache so that the parsing results of the same SQL can be directly obtained next
time to improve parsing efficiency. Therefore, it is recommended that you use PreparedStatement, a
SQL-precompiled method, to improve performance.

Features

« Independent SQL parsing engine
« The syntax rules can be easily expanded and modified (using ANTLR)

+ Support multiple dialects

APl Usage

Database Status

MySQL perfect supported
PostgreSQL perfect supported
SQLServer supported

Oracle supported

SQL92 supported
openGauss supported
ClickHouse supported

Doris supported

Hive supported

Presto supported

« Introducing Maven dependency

<dependency>

<groupId>org.apache.shardingsphere</groupId>

<artifactId>shardingsphere-parser-sql-engine</artifactId>

<version>${project.version}</version>

</dependency>

<!-- According to the needs, introduce the parsing module of the specified dialect

(take MySQL as an example), you can add all the supported dialects, or just what you

need -->
<dependency>

12.4. Sharding

Apache ShardingSphere document

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-parser-sql-mysql</artifactId>
<version>${project.version}</version>

</dependency>

e Obtain AST

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine('"MySQL", cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);

+ Obtain SQLStatement

CacheOption cacheOption = new CacheOption(128, 1024L);

SQLParserEngine parserEngine = new SQLParserEngine('"MySQL", cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);

SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(sql, "STATEMENT", useCache,
new Properties());

SQLStatement sqlStatement = sqlVisitorEngine.visit(parseASTNode);

12.4.8 Route Engine

Sharding strategies for databases and tables are matched based on the parsing context, and routing
paths are generated. SQL with shard keys can be divided into the single-shard router (the shard key
operator is equal), multi-shard router (the shard key operator is IN), and range router (the shard key
operator is BETWEEN). SQL that does not carry shard keys adopts broadcast routing.

Sharding strategies can usually be configured either by the built-in database or by the user. The built-
in database scheme is relatively simple, and the built-in sharding strategy can be roughly divided into
mantissa modulo, hash, range, label, time, etc.

The sharding strategies configured by the user are more flexible. You can customize the compound
sharding strategy based on the user’ s requirements. If it is used with automatic data migration, users
do not need to work on the sharding strategies.

Sharding and data balancing can be automatically achieved by the middle layer of the database, and
distributed databases can achieve elastic scalability. In the planning of ShardingSphere, the elastic
scaling function will be available at V4.x.

12.4. Sharding 596

Apache ShardingSphere document

Sharding Route

The scenario that is routed based on shard keys is divided into three types: direct route, standard route,

and Cartesian route.

Direct Route

The requirement for direct route is relatively harsh. It needs to be sharded by Hint (using HintAPI to
specify routes to databases and tables), and it can avoid SQL parsing and subsequent result merge on
the premise of having database shards but not table shards.

Therefore, it is the most compatible one and can execute any SQL in complex scenarios including sub-
queries and custom functions. The direct route can also be used when shard keys are not in SQL. For
example, set the key for database sharding to 3,

hintManager.setDatabaseShardingValue(3);

If the routing algorithm is value % 2, when alogical database t_order corresponds to two physical
databasest_order_0 and t_order_1, the SQL will be executed on t_order_1 after routing. The

following is a sample code using the API.

String sql = "SELECT * FROM t_order";

try (
HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {
hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {
while (rs.next()) {
/]...

Standard Route

The standard route is the most recommended sharding method, and it is applicable to SQL that does

not contain an associated query or only contains the associated query between binding tables.

When the sharding operator is equal, the routing result will fall into a single database (table). When the
sharding operator is BETWEEN or IN, the routing result will not necessarily fall into a unique database
(table).

Therefore, logical SQL may eventually be split into multiple real SQL to be executed. For example, if
the data sharding is carried out according to the odd and even numbers of order_id, the SQL for a single

table query is as follows:

12.4. Sharding 597

Apache ShardingSphere document

SELECT * FROM t_order WHERE order_id IN (1, 2);

Then the routing result should be:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

An associated query for a binding table is as complex as a single table query and they have the same

performance. For example, if the SQL of an associated query that contains binding tables is as follows:

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_id
IN (1, 2);

Then the routing result should be:

SELECT * FROM t_order_0 o JOIN t_order_item_0® i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);

As you can see, the number of SQL splits is consistent with that of a single table.

Cartesian Route

The Cartesian route is the most complex one because it cannot locate sharding rules according to the
relationship between binding tables, so associated queries between unbound tables need to be disas-
sembled and executed as cartesian product combinations. If the SQL in the previous example was not
configured with binding table relationships, the routing result would be:

SELECT * FROM t_order_0 o JOIN t_order_item_0@ i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0® i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);

The Cartesian route query has low performance, so think carefully when you use it.

12.4. Sharding 598

Apache ShardingSphere document

Broadcast Route

For SQL that does not carry shard keys, broadcast routes are used. According to the SQL type, it can
be further divided into five types: full database and table route, full database route, full instance route,
unicast route, and block route.

Full database and table route

The full database table route is used to handle operations on all real tables related to its logical tables
in the database, including DQL and DML without shard keys, as well as DDL, etc. For example:

SELECT * FROM t_order WHERE good_prority IN (1, 10);

All tables in all databases will be traversed, matching logical tables and real table names one by one.
The table that can be matched will be executed. The routing result would be:

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT x FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

Full database route

The full database route is used to handle operations on the database, including database management
commands of type SET for database settings and transaction control statements such as TCL.

In this case, all real database matching names are traversed based on the logical database name, and
the command is executed in the real database. For example:

SET autocommit=0;

If the command is executed in t_order, t_order which has two real databases, it is actually executed
onboth t_order_0 and t_order_1.

Full instance route

Full instance route is used for DCL operations, and authorized statements are used for database in-

stances.

No matter how many schemas are contained in an instance, each database instance is executed only

once. For example:

CREATE USER customer@l27.0.0.1 identified BY '123';

This command will be executed on all real database instances to ensure that users can access each

instance.

12.4. Sharding 599

Apache ShardingSphere document

Unicast Route

The unicast route is used to obtain the information of a real table. It only needs to obtain data from any

real table in any database. For example:

DESCRIBE t_order;

t_order_0 and t_order_1, the two real tables of t_order, have the same description structure, so

this command is executed only once on any real table.

Block Route
Block route is used to block SQL operations on the database, for example:
USE order_db;

This command will not be executed in a real database because ShardingSphere uses the logical Schema
and there is no need to send the Schema shift command to the database.

The overall structure of the routing engine is as follows.

Hint

> Direct

With sharding key With Binding Tables
Sharding Route Standard

Without Binding Tables

— — > Cartesian

Route Engine
e | SET for DAL & TCL

L

Database Schemas

DQL & DML & DDL

Schemas & Tables

| bcL

Broadcast Route » Database Instances
Without shading key i
Query for DAL
Unicast
USE database
> Ignore

12.4. Sharding 600

Apache ShardingSphere document

12.4.9 Rewrite Engine

SQL written by engineers for logical databases and tables cannot be directly executed in real databases.

SQL rewriting is used to rewrite logical SQL into SQL that can be executed correctly in real databases.
It includes rewriting for correctness and rewriting for optimization.

Rewriting for Correctness

In a scenario with table shards, you need to rewrite the logical table name in the table shards configu-
ration to the real table name obtained after routing.

Only database shards do not require rewriting table names. Additionally, it also includes column deriva-
tion and pagination information correction.

Identifier Rewriting

The identifiers that need to be overwritten include table names, index names, and Schema names.

Rewriting table names is the process of finding the location of the logical table in the original SQL and

rewriting it into a real table.

Table name rewriting is a typical scenario that requires SQL parsing. For example, if logical SQL is:

SELECT order_id FROM t_order WHERE order_id=1;

Assume that the SQL is configured with the shard key order_id and order_id=1, it will be routed to
shard table 1. Then the rewritten SQL should be:

SELECT order_id FROM t_order_1 WHERE order_id=1;

In the simplest SQL scenario, it doesn’ t seem to matter whether or not the SQL is parsed into an abstract
syntax tree.

SQL can be rewritten correctly only by finding and replacing strings. However, it is impossible to
achieve the same effect in the following scenarios.

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

The correct rewritten SQL would be:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

Instead of:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

Because there may be characters similar to the table name, you cannot rewrite SQL simply by replacing

strings.

Let’ slook at a more complex scenario:

12.4. Sharding 601

Apache ShardingSphere document

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order

L
xxx';

The above SQL uses the table name as an identifier of the field, so it needs to be modified when SQL is

rewritten:

SELECT t_order_1l.order_id FROM t_order_1 WHERE t_order_1l.order_id=1 AND remarks=' t_

order xxx';

If a table alias is defined in SQL, the alias does not need to be modified, even if it is the same as the table

name. For example:

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND
remarks="' t_order xxx';

Rewriting the table name is enough for SQL rewriting.

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND

remarks=' t_order xxx';

The index name is another identifier that can be rewritten. In some databases (such as MySQL and
SQLServer), indexes are created in the dimension of tables.

Indexes in different tables can have the same name. In other databases (such as PostgreSQL and Oracle),
indexes are created in the dimension of databases, and even indexes on different tables should have

unique names.

In ShardingSphere, schemas are managed in the same way as tables. Logical Schemas are used to man-

age a set of data sources.

Therefore, ShardingSphere needs to replace the logical Schema written by the user in SQL with the real
database Schema.

Currently, ShardingSphere does not support the use of Schema in DQL and DML statements. It only
supports the use of Schema in database management statements. For example:

SHOW COLUMNS FROM t_order FROM order_ds;

Schema rewriting refers to the rewriting of a logical Schema using unicast routing to a correct and real
Schema that is randomly found.

12.4. Sharding 602

Apache ShardingSphere document

Column Derivation

There are two cases that need to complement columns in a query statement. In the first case, Shard-
ingSphere needs to get the data during the result merge, but the data is not returned by the queried
SQL.

In this case, it mainly applies to GROUP BY and ORDER BY. When merging the results, you need to
group and order the field items according to GROUP BY and ORDER BY, but if the original SQL does not
contain grouping or ordering items in the selections, you need to rewrite the original SQL. Let’ s look
at a scenario where the original SQL has the required information for result merge.

SELECT order_id, user_id FROM t_order ORDER BY user_id;

Since user_1idis used for sorting, the data of user_id needs to be retrieved in the result merge. And
the above SQL can obtain the data of user_-d, so there is no need to add columns.

If the selection does not contain the columns required to merge the results, you need to fill the columns,
as in the following SQL:

SELECT order_id FROM t_order ORDER BY user_-id;

Since the original SQL does not contain the user_id required in the result merge, you need to fill in
and rewrite the SQL. Then SQL would be:

SELECT order_id, user_id AS ORDER_BY_DERIVED_O FROM t_order ORDER BY user_id;

It should be noted that only missing columns are complemented instead of all columns. And SQL that
contains * in the SELECT statement will also selectively complement columns based on the metadata
information of the table. Here is a relatively complex column derivation scenario of SQL:

SELECT o.x FROM t_order o, t_order_item i WHERE o.order_id=1i.order_id ORDER BY user_
id, order_item_did;

We assume that only the table t_order_7tem contains the column order_item_id. According to
the metadata information of the table, when the result is merged, the user_id in the ordering items
exists on the table t_order, so there is no need to add columns. order_item_idisnotin t_order,
so column derivation is required. Then SQL would become:

SELECT o.x, order_qitem_id AS ORDER_BY_DERIVED_O@ FROM t_order o, t_order_item i WHERE
o.order_id=1i.order_id ORDER BY user_id, order_item_id;

The second case of column derivation is the use of AVG aggregate functions. In distributed scenarios,
using (avgl + avg2 + avg3)/3 to calculate the average is incorrect and should be rewritten as (sum1l +
sum?2 + sum3) /(countl + count2 + count3). In this case, rewriting the SQL containing AVG to SUM and

COUNT is required, and recalculating the average when the results are merged. For example:

SELECT AVG(price) FROM t_order WHERE user_-id=1;

The above SQL should be rewritten as:

12.4. Sharding 603

Apache ShardingSphere document

SELECT COUNT(price) AS AVG_DERIVED_COUNT_@, SUM(price) AS AVG_DERIVED_SUM_O FROM t_
order WHERE user_id=1;

Then you can calculate the average correctly by merging the results.

The last type of column derivation is the one that does not need to write the primary key field if the
database auto-increment primary key is used during executing an INSERT SQL statement. Howevet,
the auto-increment primary key of the database cannot meet the unique primary key in distributed sce-
narios. Therefore, ShardingSphere provides the generation strategy of the distributed auto-increment
primary key. Users can replace the existing auto-increment primary key transparently with the dis-
tributed auto-increment primary key without changing the existing code through column derivation.
The generation strategy for distributed auto-increment primary keys is described below, and here only
SQL rewriting is illustrated. For example, if the primary key of table t_order isorder_-d, the original
SQL would be:

INSERT INTO t_order (fieldl', "field2') VALUES (10, 1);

As you can see, the above SQL does not contain the auto-increment primary key, which requires the
database itself to fill. After ShardingSphere is configured with the auto-increment primary key, SQL

will be rewritten as:

INSERT INTO t_order (fieldl', “field2’, order_id) VALUES (10, 1, XXXXX);

The rewritten SQL will add column names of the primary key and auto-increment primary key values
generated automatically at the end of the INSERT FIELD and INSERT VALUE. The xxxxx in the above
SQL represents the auto-increment primary key value generated automatically.

If the INSERT SQL does not contain the column name of the table, ShardingSphere can also compare
the number of parameters and the number of columns in the table meta information and automatically
generate auto-increment primary keys. For example, the original SQL is:

INSERT INTO t_order VALUES (10, 1);

The rewritten SQL will simply add the auto-increment primary key in the column order in which the
primary key locates:

INSERT INTO t_order VALUES (xxxxx, 10, 1);

If you use placeholders to write SQL, you only need to rewrite the parameter list, not the SQL itself.

12.4. Sharding 604

Apache ShardingSphere document

Pagination Correction

The scenario of acquiring pagination data from multiple databases is different from that of one single
database. If every 10 pieces of data are taken as one page, the user wants to take the second page of data.
It is not correct to acquire LIMIT 10, 10 under sharding situations, or take out the first 10 pieces of

data according to sorting conditions after merging. For example, if SQL is:

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

The following picture shows the pagination execution results without SQL rewriting.

score score
T_score_O T_score_1

100 95

90 85

80 75

Query Result

score score
T _score_ 0 T _score_1

El] 85

80 75

Merged Result

score
85
80

As shown in the picture, if you want to acquire the second and the third piece of data sorted by score in
both tables, and they are supposed to be 95 and 90.

Since executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and
80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can only merge from 90,
80, 85 and 75 already acquired, so the right result cannot be acquired anyway.

The right way is to rewrite pagination conditions as LIMIT 0, 3, take out all the data from the first
two pages and calculate the right data based on sorting conditions. The following picture shows the
execution results of pagination after SQL rewrite.

12.4. Sharding 605

Apache ShardingSphere document

SELECT score FROM t score ORDER BY score DESC LIMIT O, 3

Query Result

T_score_0 geone tT_score_1 scone
100 95
90 85
80 75

Merged Result

score
95
20

The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are
many ways to avoid using LIMIT as pagination method, such as constructing a secondary index to the
number of line records and line offsets or using the end ID of the last pagination data as a condition for
the next query.

When revising pagination information, if the users use the placeholder to write SQL, they only need to

rewrite the parameter list rather than SQL itself.

Batch Split

When using bulk inserted SQL, if the inserted data crosses shards, the SQL needs to be rewritten to
prevent excess data from being written to the database.

The insertion operation differs from the query operation in that the query statement does not affect
the data even if it uses the shard key that does not exist in the current shard. In contrast, insertion
operations must remove excess shard keys. For example, see the following SQL:

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, "xxx"), (3, "xxx");

If the database is still divided into two parts according to the odd and even number of order_id, this
SQL will be executed after its table name is revised. Then, both shards will be written with the same

record.

Though only the data that satisfies sharding conditions can be retrieved from the query statement, it is

not reasonable for the schema to have excessive data. So SQL should be rewritten as:

12.4. Sharding 606

Apache ShardingSphere document

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

IN query is similar to batch insertion, but IN operation will not lead to wrong data query result. Through

rewriting IN query, the query performance can be further improved. See the following SQL:

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

The SQL is rewritten as:

SELECT * FROM t_order_0 WHERE order_id IN (2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 3);

The query performance will be further improved. For now, ShardingSphere has not realized this rewrite

strategy, so the current rewrite result is:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

Though the execution result of SQL is right, it did not achieve the highest query efficiency.

Rewriting for Optimization

Its purpose is to effectively improve performance without influencing the correctness of the query. It

can be divided into single node optimization and stream merger optimization.

Single Node Optimization

It refers to the optimization that stops the SQL rewrite from the route to the single node. After acquiring
one route result, if it is routed to a single data node, there is no need to involve result merger, as well as

rewrites such as column derivation and pagination information correction.

In particular, there is no need to read from the first piece of information, which reduces the pressure
on the database to a large extent and saves meaningless consumption of the network bandwidth.

Stream Merger Optimization

It only adds ORDER BY and ordering items and sorting orders identical with grouping items to SQL that
contains GROUP BY. And it is used to transfer memory merger to stream merger. Stream merger and

memory merger will be explained in detail in the result merger section.

The overall structure of the rewrite engine is shown in the following picture.

12.4. Sharding 607

Apache ShardingSphere document

— Table
4‘; Identifier i—'ﬂ Index
S]
I—D Schema
Correctness Rewrite = Order By Item
& Group By Item
Derived Column 1
I R Aggregation Item
[] Brfl —* Auto Increment
Rewrite Engine — Pagination
— = Batch Insert
e Batch Split i—
| S

—> IN Query

—* Single Node

————>| Optimization Rewrite |—-

— Streaming

12.4.10 Execute Engine

ShardingSphere uses an automated execution engine to safely and efficiently send the real SQL, which
has been routed and rewritten, to the underlying data source for execution.

It does not simply send SQL directly to the data source for execution via JDBC, nor are execution requests
placed directly into a thread pool for concurrent execution.

It focuses more on the creation of a balanced data source connection, the consumption generated by
the memory usage, and the maximum utilization of the concurrency. The objective of the execution
engine is to automatically balance resource control with execution efficiency.

Connection Mode

From the perspective of resource control, the connection number a business can make to the database
should be limited. It can effectively prevent certain business operations from occupying excessive re-
sources, exhausting database connection resources, and influencing the normal access of other busi-

nesses.

Especially when one database instance contains many sub-tables, a logical SQL that does not contain
any shard key will produce a large number of real SQLs that fall into different tables in one database. If
each real SQL takes an independent connection, a query will undoubtedly take up excessive resources.

From the perspective of execution efficiency, maintaining an independent database connection for each
shard query can make more effective use of multi-thread to improve execution efficiency.

12.4. Sharding 608

Apache ShardingSphere document

Creating a separate thread for each database connection allows I/O consumption to be processed in
parallel. Maintaining a separate database connection for each shard also prevents premature loading
of query result data into memory.

It is enough for independent database connections to maintain result set quotation and cursor position,
and move the cursor when acquiring corresponding data.

Merging the result set by moving down its cursor is called the stream merger. It does not need to load all
the query results into the memory, which can effectively save memory resources effectively and reduce

the frequency of garbage collection.

If each shard query cannot be guaranteed to have an independent database connection, the current
query result set needs to be loaded into memory before reusing the database connection to obtain the
query result set of the next shard table. Therefore, though the stream merger can be used, it will also

degenerate into the memory merger in this scenario.

On the one hand, we need to control and protect database connection resources; on the other hand, it
is important to save middleware memory resources by adopting a better merging mode. How to deal
with the relationship between the two is a problem that the ShardingSphere execution engine needs to
solve. Specifically, if an SQL is sharded through the ShardingSphere, it needs to operate on 200 tables
under a database instance. So, should we choose to create 200 connections in parallel, or one connec-
tion in sequence? How to choose between efficiency and resource control? For the above scenario,
ShardingSphere provides a solution. It introduces the concept of Connection Mode, which is divided
into MEMORY_STRICTLY and CONNECTION_STRICTLY.

MEMORY_STRICTLY Mode

The prerequisite to using this mode is that ShardingSphere does not restrict the connection number of
one operation. If the actual executed SQL needs to operate 200 tables in some database instance, it will
create a new database connection for each table and deal with them concurrently through multi-thread
to maximize the execution efficiency. When SQL meets the conditions, stream merger is preferred to
avoid memory overflow or frequent garbage recycling.

CONNECTION_STRICTLY Mode

The prerequisite to using this mode is that ShardingSphere strictly restricts the connection consump-
tion number of one operation. If the SQL to be executed needs to operate 200 tables in a database
instance, it will create one database connection and operate them serially. If shards exist in different
databases, it will still adopt multi-thread operations for different databases, but with only one database
connection being created for each operation in each database. It prevents the problem of consuming
too many database connections for one request. The mode chooses memory merger all the time.

The MEMORY_STRICTLY mode applies to OLAP operation and can increase the system throughput by
removing database connection restrictions. It is also applicable to OLTP operation, which usually has
shard keys and can be routed to a single shard. So it is a wise choice to control database connections
strictly to make sure that database resources in an online system can be used by more applications.

12.4. Sharding 609

Apache ShardingSphere document

Automatic Execution Engine

ShardingSphere initially leaves the decision of which mode to use up to the users and they can choose
to use MEMORY_STRICTLY mode or CONNECTION_STRICTLY mode according to their actual business

scenarios.

This solution gives users the right to choose, who must understand the pros and cons of the two modes
and make a choice based on the requirements of the business scenarios. No doubt, it is not the best

solution as it increases users’ learning and use costs.

This dichotomy solution, which leaves the switching of the two modes to static initialization, lacks flex-
ibility. In practical scenarios, the routing result varies with SQL and placeholder indexes. This means
that some operations may need to use memory merger, while others may prefer stream merger. Con-
nection modes should not be set by the user before ShardingSphere is started, but should be determined
dynamically based on the SQL and placeholder indexes scenarios.

In order to reduce the usage cost for users and achieve a dynamic connection mode, ShardingSphere
has extracted the concept of the automatic execution engine to eliminate the connection mode con-
cept internally. The user does not need to know what the MEMORY_STRICTLY mode and CONNEC-
TION_STRICTLY mode are, but the execution engine automatically selects the best execution scheme

according to the current scenario.

The automatic execution engine chooses the connection mode based on each SQL operation. For each
SQL request, the automatic execution engine will do real-time calculations and evaluations according
to its route result and execute the appropriate connection mode automatically to strike the optimal
balance between resource control and efficiency. For the automatic execution engine, users only need
to configure maxConnectionSizePerQuery, which represents the maximum connection number

allowed by each database for one query.

The execution engine is divided into two phases: preparation and execution.

Preparation Phrase

As indicated by its name, this phrase is used to prepare the data to be executed. It can be divided into

two steps: result set grouping and unit creation.

Result set grouping is the key to realizing the internal connection model concept. According to the con-
figuration items of maxConnectionSizePerQuery, the execution engine will choose an appropriate

connection mode based on the current route result.
Detailed steps are as follow:
1. Group SQL route results according to data source names.

2. Aswe can see in the following formula, users can acquire the SQL route result set to be executed
by each database instance within the maxConnectionSizePerQuery permission range and cal-
culate the optimal connection mode of this request.

12.4. Sharding 610

Apache ShardingSphere document

Route result for this data source

|

SQL count to be executed per SQL num to be executed per database

connection —
| maxConnectionSizePerQuery

1:Oor1 >11

B ' sl — User configuration
MEMORY_STRICTLY | | CONNECTION_STRICTLY |
L |

Within the scope of the maxConnectionSizePerQuery allowed, when the request number that one con-
nection needs to execute is more than 1, the current database connection cannot hold the correspond-
ing data result set, so it must use memory merger. On the contrary, when the number equals 1, the
current database connection can hold the corresponding data result set, and it can use stream merger.

Each connection mode selection is specific to each physical database. That is, if you route to more
than one database in the same query, the connection mode of each database may not be the same,
and they may be mixed. Users can use the route grouping result acquired from the last step to create
the execution unit. When the data source uses technologies, such as the database connection pool, to
control database connection numbers, there is a chance that a deadlock will occur if concurrency is
not handled properly while retrieving database connections. As multiple requests wait for each other
to release database connection resources, starvation occurs, causing the crossing deadlock.

For example, suppose that a query requires obtaining two database connections at a data source and
routing queries to two sub-tables of the same database. It is possible that query A has obtained one
database connection from this data source and is waiting to obtain another database connection.

Query B has also acquired a database connection at the data source and is also waiting for another
database connection to be acquired. If the maximum number of connections allowed in the database
connection pool is 2, then the two query requests will wait forever. The following diagram depicts a
deadlock situation.

12.4. Sharding 611

Apache ShardingSphere document

| — —
Query A —
L - 1 "s‘
Hold Connectionl .
\
Wait for Connection2
[}
1
[
1
R 1
[[
i
Connectionl | /
e S— /
] _® Deadlock
| Connection2 "
| I |
Woait for Connectionl
Hold Connection2
Query B }
— __ |

ShardingSphere synchronizes database connections to avoid deadlocks. When it creates the execution
unit, it atomically obtains all the database connections required by the SQL request at one time, elimi-
nating the possibility of obtaining partial resources in each query request.

Because the operation on the database is very frequent, locking a database connection each time when
acquiring it will reduce the concurrency of ShardingSphere. Therefore, ShardingSphere has improved

two aspects here:

1. Locking can be avoided and only one database connection needs to be obtained each time. Be-
cause under this circumstance, two requests waiting for each other will not happen, so there is no
need for locking. Most OLTP operations use shard keys to route to the unique data node, which
makes the system completely unlocked and further improves the concurrency efficiency. In ad-
dition to routing to a single shard, read/write-splitting also belongs to this category.

2. Locking resources only happens in MEMORY_STRICTLY mode. When using CONNEC-
TION_STRICTLY mode, all the query result sets will release database connection resources after
loading them to the memory, so deadlock wait will not appear.

12.4. Sharding 612

Apache ShardingSphere document

Execution Phrase

This stage is used to actually execute SQL and is divided into two steps: group execution and merger

result generation.

Group execution can distribute execution unit groups generated in the preparation phase to the un-
derlying concurrency engine and send events for each key step during the execution process, such as
starting, successful and failed execution events. The execution engine only focuses on sending events
rather than subscribers to the event. Other ShardingSphere modules, such as distributed transactions,
call linked tracing and so on, will subscribe to the events of interest and process them accordingly.

ShardingSphere generates memory merger result sets or stream merger result sets through the con-
nection mode acquired in the preparation phase. And then it passes the result set to the result merger

engine for the next step.

The overall structure of the execution engine is divided as shown below.

The number of SQL needed to
be executed in each connection

‘ Route Rasulf?
=0orl >1 : 1

—— |
|

Memery Strictly Connection Strictly Execution Enginzj
Group ResultSet —* Get Connection —® Create Execution Unit

Size I= 1 4& SDynchr‘omze.d '
— = 1

ta S |
Memory Strictly ara edree

I
[}

o
=1
>
o
=1
5
E1
]
-
=]
0
(o]

Group Generate Query Result

|
— —_
Execute Sz Een |i (Streaming||Memory)

[N
’—TNHSGC‘HOH Lisfzner‘—‘ penTracing Listener

2sDYy
uoI4naaX3

12.4. Sharding 613

Apache ShardingSphere document

12.4.11 Merger Engine

Result merger refers to merging multi-data result sets acquired from all the data nodes as one result set

and returning it to the requesting client correctly.

The result merger supported by ShardingSphere can be divided into five functional types: traversal,
order-by, group-by, pagination and aggregation, which are combined rather than mutually exclusive.
From the perspective of structure, it can be divided into stream merger, memory merger and decora-
tor merger, among which stream merger and memory merger are mutually exclusive, and decorator

merger can be further processed based on stream merger and memory merger.

Since the result set is returned from the database one by one instead of being loaded to the memory all
at a time, the method of merging the result sets returned from the database can greatly reduce memory
consumption and is the preferred method of merging.

Stream merger means that each time the data is obtained from the result set is able to return the correct
single piece of data line by line. Itis the best fit with the native method of returning the result set of the

database. Traversal, order-by, and stream group-by are all examples of the stream merger.

Memory merger needs to traverse all the data in the result set and store it in the memory first. After
unified grouping, ordering, aggregation and other calculations, the data is packaged into the data result
set accessed one by one and returned.

Decorator merger merges and reinforces all the result sets function uniformly. Currently, decorator

merger has two types: pagination merger and aggregation merger.

Traversal Merger

As the simplest merger method, traversal merger only requires the combination of multiple data result
sets into a one-way linked table. After traversing current data result sets in the linked table, it only needs
to move the elements of the linked table back one bit and continue traversing the next data result set.

Order-by Merger

Because there is an ORDER BY statement in SQL, each data result has its own order. So it only needs to
sort data value that the result set cursor currently points to, which is equal to sorting multiple ordered
arrays. Therefore, order-by merger is the most suitable sorting algorithm in this scenario.

When merging ordered queries, ShardingSphere will compare current data values in each result set
(which is realized by the Java Comparable interface) and put them into the priority queue. Each time
when acquiring the next piece of data, it only needs to move down the result set cursor at the top of the
queue, reenter the priority order according to the new cursor and relocate its own position.

Here is an instance to explain ShardingSphere’ s order-by merger. The following picture is an illus-
tration of ordering by the score. Data result sets returned by 3 tables are shown in the example and
each of them has already been ordered according to the score, but there is no order between the 3 data
result sets. Order the data value that the result set cursor currently points to in these 3 result sets. Then
put them into the priority queue. The first data value of t_score_0 is the biggest, followed by that

12.4. Sharding 614

Apache ShardingSphere document

of t_score_2 and t_score_1 in sequence. Thus, the priority queue is ordered by the sequence of
t_score_0, t_score_2and t_score_l1.

score score score
T_score_0 T_score_1 T_secore_2

100 95 99

90 85 89

80 75 70

Priority Queue

T _score 0 T score 2 T score 1
=——]> 100 il 1> %5

90 a9 85

80 70 75

The following diagram illustrates how the order-by merger works when using next call. We can see
from the diagram that when using the next call, t_score_0 at the first of the queue will be popped
out. After returning the data value currently pointed by the cursor (i.e., 100) to the requesting client,
the cursor will be moved down and t_score_0 will be put back into the queue.

While the priority queue will also be ordered according to the t_score_0 data value (90 here) pointed
by the cursor of the current data result set. According to the current value, t_score_0 is at the end of
the queue, and the data result set of t_score_2, originally in the second place of the queue, automat-
ically moves to the first place of the queue.

In the second next call, t_score_2 in the first place is popped out. Its value pointed by the cursor of
the data result set is returned to the client end, with its cursor moved down to rejoin the queue, and the

following will be the same way. If there is no data in the result set, it will not rejoin the queue.

12.4. Sharding 615

Apache ShardingSphere document

T_score 0 T _score_2 t_score_1
f— :Dl 00 :D 99 |:"> 95
90 89 85
80 70 I
next
T _score_2 T_score_1 t_secore 0
[—"395 100
89 85 =%
70 75 80
next
T _score_1 T _score 0 t score 2
95 100 99
85 =30 —p
75 80 70

It can be seen that when data in each result set is ordered, but multiple result sets are disordered, Shard-
ingSphere can still order them with no need to upload all the data to the memory. In the stream merger
method, each next operation only acquires the right piece of data each time, which saves memory

consumption to a large extent.

On the other hand, the order-by merger has maintained the orderliness on the horizontal axis and
vertical axis of the data result set. Naturally ordered, the vertical axis refers to each data result set
itself, which is acquired by SQL with ORDER BY. The horizontal axis refers to the current value pointed
by each data result set, and its order needs to be maintained by the priority queue. Each time when the
current cursor moves down, it requires putting the result set in the priority order again, which means

only the cursor of the first data result set can be moved down.

Group-by Merger

Group-by merger is the most complex one and can be divided into stream group-by merger and memory
group-by merger. Stream group-by merger requires that the SQL’ s ordering items must be consistent
with the field and ordering types (ASC or DESC) of the group-by item; otherwise, data correctness can

only be guaranteed by memory merger.

For instance, if it is sharded based on subject, the table structure contains the examinees’ name (to sim-
plify, name repetition is not taken into consideration) and score. The following SQL is used to acquire

each examinee’ s total score:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

12.4. Sharding 616

Apache ShardingSphere document

When order-by item and group-by item are totally consistent, the data obtained is continuous. The data
required by group-by is all stored in the data value that the data result set cursor currently points to.
Thus, stream group-by merger can be used, as illustrated by the diagram:

T_score_java T_score_go T_score_pythen
name score name score name score
Tom 100 Jerry 95 John 99
Jerry 90 Tom 85 Mary 89
Mary 80 John 75 Tom 70

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name:

PricrityQueue

T_score_java T_score_go T_score_python
name score name score name score
Jerry 90 Jerry 95 John 99
Mary 80 John 75 Mary 89
Tom 100 Tom 85 Tom 70

The merging logic is similar to that of order-by merger. The following picture shows how the stream
group-by merger works in the next call.

12.4. Sharding 617

Apache ShardingSphere document

T_score_java T_score_go T_score_python
name score name score name score
E:_i:> Jerry 90 !::>J'er'r'y 95 |:>J'ohn 29
Mary 80 John 75 Mary 89
Tom 100 Tom 85 Tom 70
get next
name score
Jerry 185
T_score_go T_score_python T_score_java
name score name score name score
Jerry 95 ::>.Tohn 99 Jerry 20
;::> TJohn 75 Mary 89 = —_:> Mary 30
Tom 85 Tom 70 Tom 100
name score get next
Jerry 185
Tohn 174 T_score_java T_score_python T_score_go
name score name score name score
Jerry 90 John 99 Jerry 95
== Mary 80 =—=>{Mary 89 Tohn 75
Tom 100 Tom 70 = Tem 85

We can see from the picture that, in the first next call, t_score_java in the first place will be popped
out of the queue, along with other result set data having the same grouping value of “Jerry” . After
acquiring all the students’ scores with the name of “Jerry” , the accumulation operation will proceed.
Hence, after the first next call is finished, the result set acquired is the sum of Jerry’ s scores. At the
same time, all the cursors in data result sets will be moved down to a different data value nextto “Jerry”
and reordered according to the current result set value. Thus, the data that contains the second name

“John” will be put at the beginning of the queue.

Stream group-by merger is different from order-by merger only in two aspects:
1. It will take out all the data with the same group item from multiple data result sets at once.
2. It carried out the aggregation calculation according to the aggregation function type.

For the inconsistency between the grouping item and ordering item, it requires uploading all the data to
the memory to group and aggregate, since the relevant data value needed to acquire group information
is not continuous, and stream merger is not available. For example, acquire each examinee’ s total
score through the following SQL and order them from the highest to the lowest:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

Then, stream merger is not able to use, for the data taken out from each result set is the same as the

original data of the order-by merger diagram in the upper half part structure.

When SQL only contains the group-by statement, according to different database implementations, its
sorting order may not be the same as the group order. The lack of an ordering statement indicates
the order is not important in this SQL. Therefore, through the optimization of SQL rewriting, Sharding-

12.4. Sharding 618

Apache ShardingSphere document

Sphere can automatically add the ordering item the same as the grouping item, converting it from the

memory merger that consumes memory to the stream merger.

Aggregation Merger

Whether it is stream group-by merger or memory group-by merger, they process the aggregation func-
tion in the same way. In addition to grouped SQL, ungrouped SQL can also use aggregate functions.
Therefore, aggregation merger is an additional merging ability based on what has been introduced
above, i.e., the decorator mode. The aggregation function can be categorized into three types: compar-

ison, sum and average.

The comparison aggregation function refers to MAX and MIN. They need to compare all the result set
data of each group and simply return the maximum or minimum value.

The sum aggregation function refers to SUM and COUNT. They need to sum up all the result set data of
each group.

The average aggregation function refers only to AVG. It must be calculated through SUM and COUNT
rewritten by SQL, which has been mentioned in the SQL rewriting section.

Pagination Merger

All the merger types above can be paginated. Pagination is the decorator added to other kinds of merg-
ers. ShardingSphere strengthens its ability to paginate the data result set through decorator mode. The
pagination merger is responsible for filtering unnecessary data.

ShardingSphere’ s pagination function can be misleading to users in that they may think it will take
a large amount of memory. In distributed scenarios, it can only guarantee the data correctness by
rewriting LIMIT 10000000, 10 to LIMIT 0, 10000010. Users can easily misunderstand that
ShardingSphere uploads a large amount of meaningless data to the memory and has the risk of memory
overflow. Actually, it can be known from the principle of stream merger that only memory group-by
merger will upload all the data to the memory. Generally speaking, SQL used for OLAP grouping, is
often applied to massive calculations or small result generation, and it won’ t generate vast result data.
Except for memory group-by merger, other scenarios all use stream merger to acquire data result set.
So ShardingSphere would skip unnecessary data through the next call method in the result set, rather
than storing it in the memory.

But it should be noted that pagination with LIMIT is not the best practice, because a large amount of
data still needs to be transmitted to ShardingSphere’ s memory space for ordering. LIMIT cannot
query data by index, so paginating with ID is a better solution if ID continuity can be guaranteed. For
example:

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY -id;

Or query the next page through the ID of the last query result, for example:

SELECT * FROM t_order WHERE id > 10000000 LIMIT 10;

12.4. Sharding 619

Apache ShardingSphere document

The overall structure of the merger engine is shown in the following diagram:

Streaming Group By Memery Group By

Same group by
& order by items

L Query Result
L(Sfr‘e.aming 1 Me.rnory)J

= With group by -

¥

Different group by
& order by items

’7 Merger Result

,_]
|;!\.'\er'gtzr- @me — Grder by only Order By —

With

Pagination T Withoot | Iteration
Order by & group by

Pagination

| (5treaming || Memory)
L o

With 7| Aggregation
aggregation "’

COUNT&SUMl

Accumulate

12.5 Transaction

12.5.1 Navigation

AVE l BITXOI"J' MAX&MINl

Average BitXor Comparison

This chapter mainly introduces the principles of the distributed transactions:

« 2PC transaction with XA

« BASE transaction with Seata

12.5.2 XA Transaction

XAShardingSphereTransactionManager is XA transaction manager of Apache ShardingSphere.

Its main responsibility is manage and adapt multiple data sources, and sent corresponding transactions

to concrete XA transaction manager.

12.5. Transaction

620

Apache ShardingSphere document

Access Layer

‘ ShardingSphere
‘ Transaction Manager

o 2

ShardingSphere- ShardingSphere-

config

SPT

DataSource XA DataSource

[—
‘| XA ShardingSphere
Pool Pool

T tion M,
ransaction Manager

Actual DataSource

v

XA
‘ Transaction Manager

| R - —

wrap enlist |
Cennection ——>® XA connection —* XA Resource

XA Connection Wrapper JTA Transaction Manager

MySQL Oracle L Atomikos J L EifF‘OI;IiX j

PostgreSQL SQLServer Narayana

Transaction Begin

When receiving set autoCommit=0 from client, XAShardingSphereTransactionManager will
use XA transaction managers to start overall XA transactions, which is marked by XID.

Execute actual sharding SQL

After XAShardingSphereTransactionManager register the corresponding XAResource to the cur-
rent XA transaction, transaction manager will send XAResource.start command to databases. After
databases received XAResource.end command, all SQL operator will mark as XA transaction.

For example:
XAResourcel.start ## execute in the enlist phase
statement.execute("sqll");

statement.execute("sql2");

XAResourcel.end ## execute in the commit phase

sqll and sql2 in example will be marked as XA transaction.

12.5. Transaction 621

Apache ShardingSphere document

Commit or Rollback

After XAShardingSphereTransactionManager receives the commit command in the access, it will
delegate it to the actual XA manager. It will collect all the registered XAResource in the thread, before
sending XAResource.end to mark the boundary for the XA transaction. Then it will send prepare
command one by one to collect votes from XAResource. If all the XAResource feedback is OK, it will
send commit command to finally finish it; If there is any No XAResource feedback, it will send roll-
back command to roll back. After sending the commit command, all XAResource exceptions will be
submitted again according to the recovery log to ensure the atomicity and high consistency.

For example:

XAResourcel.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResourcel.commit

XAResource2.commit

XAResourcel.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResourcel.rollback
XAResource2.rollback

12.5.3 Seata BASE transaction

When integrating Seata AT transaction, we need to integrate TM, RM and TC component into Shard-
ingSphere transaction manager. Seata have proxied DataSource interface in order to RPC with TC.
Similarly, Apache ShardingSphere faced to DataSource interface to aggregate data sources too. After
Seata DataSource encapsulation, it is easy to put Seata AT transaction into Apache ShardingSphere
sharding ecosystem.

12.5. Transaction 622

Apache ShardingSphere document

Using Seata AT transaction in ShardingSphere Apache ShardingSphere
Transaction SPI impl

(e B -1 E
| SeataATAPL | !

Handle single/multiple logic SQL

Linit 2.begin 3.sharding 4.execute 5.commit/rollback

SeataATShardingSphere TransactionManager

. H Sharding |3 |
Proxy DS ETM begin B | :
i el il I | Rms

Wrap actual ds

Init Seata Engine

When an application containing ShardingSphereTransactionBaseSeataAT startup, the user-
configured DataSource will be wrapped into seata DataSourceProxy through seata. conf, then reg-
istered into RM.

Transaction Begin

TM controls the boundaries of global transactions. TM obtains the global transaction ID by sending Be-
gin instructions to TC. All branch transactions participate in the global transaction through this global
transaction ID. The context of the global transaction ID will be stored in the thread local variable.

Execute actual sharding SQL

Actual SQL in Seata global transaction will be intercepted to generate undo snapshots by RM and sends
participate instructions to TC to join global transaction. Since actual sharding SQLs executed in multi-
threads, global transaction context should transfer from main thread to child thread, which is exactly
the same as context transfer between services.

12.5. Transaction 623

Apache ShardingSphere document

Commit or Rollback

When submitting a seata transaction, TM sends TC the commit and rollback instructions of the global
transaction. TC coordinates all branch transactions for commit and rollback according to the global
transaction ID.

12.6 Data Migration

12.6.1 Explanation

The current data migration solution uses a completely new database cluster as the migration target.
This implementation has the following advantages:
1. No impact on the original data during migration.
2. Norisk in case of migration failure.
3. Freedom from sharding strategy limitations.
The implementation has the following disadvantages:
1. Redundant servers can exist for a certain period of time.
2. All data needs to be moved.
A single data migration mainly consists of the following phases:
1. Preparation.
2. Stock data migration.
3. The synchronization of incremental data.

4. Traffic switching .

DB Cluster 1 DB Cluster 2
Before Application 7. Switch Database
& t_order_0
<4— 6. Stop Writing —— <“— 1. Emit —— 1_order_2
ds_0 ShardingSphere Proxy
After
t_order
2. Create Job ds 2
) .
Migration Job - — t_order_1
| 4 : iﬁ, Data Consistency ™.
: Check
: £ RETIEd J W‘ 1_order_3
— — — — —
—— Read —» > 3. Inventory Task §Z /> 4, Incremental Task \,‘_ Write —»
~ - Encrypt
| > 3. Change Data Capture (CDC) P \ \—‘
L -

12.6. Data Migration 624

Apache ShardingSphere document

12.6.2 Execution Stage Explained

Preparation

In the preparation stage, the data migration module verifies data source connectivity and permissions,
counts stock data statistics, records the log and finally shards the tasks according to data volume and

parallelism set by the users.

Stock data migration

Execute the stock data migration tasks that have been sharded during preparation stage. The stock
migration stage uses JDBC queries to read data directly from the source and write into the target based
on the sharding rules and other configurations.

The Synchronization of incremental data

Since the duration of stock data migration depends on factors such as data volume and parallelism,
it is necessary to synchronize the data added to the business operations during this period. Different
databases differ in technical details, but in general they are all based on replication protocols or WAL

logs to achieve the capture of changed data.
« MySQL: subscribe and parse binlog.
« PostgreSQL: uses official logical replication test_decoding.

The incremental data captured is also written into the new data nodes by the data migration modules.
When synchronization of incremental data is completed (the incremental data flow is not interrupted
since the business system is still in function), you can then move to the traffic switching stage.

Traffic Switching

During this stage, there may be a read-only period of time, where data in the source data nodes is al-
lowed to be in static mode for a short period of time to ensure that the incremental synchronization
can be fully completed. Users can set this by shifting the database to read-only status or by controlling

the traffic flow generated from the source.

The length of this read-only window depends on whether users need to perform consistency checks on
the data and the exact amount of data in this scenario. Consistency check is an independent task. It

supports separate start/stop and breakpoint resume.

Once confirmed, the data migration is complete. Users can then switch the read traffic or write traffic
to Apache ShardingSphere.

12.6. Data Migration 625

https://www.postgresql.org/docs/9.4/test-decoding.html

Apache ShardingSphere document

12.6.3 References

Configurations of data migration

12.7 Encryption

Apache ShardingSphere parses the SQL entered by users and rewrites the SQL according to the encryp-

tion rules provided by users.

When a user queries data, it only retrieves ciphertext data from the database, decrypts it, and finally
returns the decrypted source data to the user. Apache ShardingSphere achieves a transparent and au-
tomatic data encryption process. Users can use encrypted data as normal data without paying attention

to the implementation details of data encryption.

12.7.1 Overall Architecture

rrrrrrrrrr

Business APP : Business APP Eneryption Rule

[iy [
Encrypt-JDBC] : Proxy
| - -

7]

’_ Ker:nei

r 1
| JDBC Adaptor |

e

B
e .

SQL Execute

|

The encrypted module intercepts the SQL initiated by the user and parses and understands the SQL be-
havior through the SQL syntactic parser. Then it finds out the fields to be encrypted and the encryption
and decryption algorithm according to the encryption rules introduced by the user and interacts with

the underlying database.

Apache ShardingSphere will encrypt the plaintext requested by users and store it in the underlying
database. When the user queries, the ciphertext is extracted from the database, decrypted, and re-

12.7. Encryption 626

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/migration/

Apache ShardingSphere document

turned to the terminal user. By shielding the data encryption process, users do not need to operate the
SQL parsing process, data encryption, and data decryption.

12.7.2 Encryption Rules

Before explaining the whole process, we need to understand the encryption rules and configuration.
Encryption configuration is mainly divided into three parts: data source configuration, encryptor con-

figuration, encryption table configuration, as shown in the figure below:

Datasource
+ Config L
e - Build-int

] —* AES/MD5
_ Encryptor /RC4/SM3/SM4
Config
[|
— Customized
——— [Lca-gi_ca_cnlur\'m_|
[. | E— name —=~J‘ (virtual column)
| Encryption Rule . | Required |
| Config ‘
L — Cipheﬁe xt column
— cipher hame (true cclumn)
L _Required

Encryption Cipher-texf column
Table Config encryptortame Encryptor N

M 2. —
Assisted query
——>assistedQuery T name —=> column(true ‘
| column) Required |

| Assisted query -

column
Encryptor

—>encryptorName

* Like quer\[
‘> likeQuery =~ name —% column(true |
_column) Required |

[e cve T

L+ encryptorhame Like query column
Encryptor

L —— —|

Data source configuration: the configuration of the data source.

Encryptor configuration: refers to the encryption algorithm used for encryption and decryption. Cur-
rently, ShardingSphere has three built-in encryption and decryption algorithms: AES, MD5 and RC4.
Users can also implement a set of encryption and decryption algorithms by implementing the inter-
faces provided by ShardingSphere.

Encryption table configuration: it is used to tell ShardingSphere which column in the data table is used
to store ciphertext data (cipherColumn), and which column the user would like to use for SQL writing
(LlogicColumn).

What does it mean by “which column the user would like to use for SQL writing (logicCol-
umn)” ? We have to know first why the encrypted module exists. The goal of the encrypted
module is to shield the underlying data encryption process, which means we don’ t want
users to know how data is encrypted and decrypted, and how to store ciphertext data into
cipherColumn. In other words, we don’ t want users to know there is a cipherColumn
or how they are used. Therefore, we need to provide the user with a conceptual column

12.7. Encryption 627

Apache ShardingSphere document

that can be separated from the real column in the underlying database. It may or may not
be a real column in the database table so that users can change the column names of ci-
pherColumn of the underlying database at will. The only thing we have to ensure is that the
user’ s SQL is written towards the logical column, and the correct mapping relation between
logicColumn and cipherColumn can be seen in the encryption rules.

Query attribute configuration: if both plaintext and ciphertext data are stored in the underlying
database table, this attribute can be used to determine whether to query the plaintext data in the
database table and return it directly, or query the ciphertext data and return it after decryption through
Apache ShardingSphere. This attribute can be configured at the table level and the entire rule level. The
table-level has the highest priority.

12.7.3 Encryption Process

For example, if there is a table named t_user in the database, and they’ re two fields in the table:
pwd_cipher for storing ciphertext data, and logicColumn is defined as pwd, then users should write
SQL for logicColumn, thatis INSERT INTO t_user SET pwd = '123'. Apache ShardingSphere
receives the SQL and finds that the pwd is the logicColumn based on the encryption configuration

provided by the user. Therefore, it encrypts the logical column and its corresponding plaintext data.

Apache ShardingSphere transforms the column names and data encryption mapping between the log-
ical columns facing users and cipher columns facing the underlying database. As shown in the figure

below:

Model Example
Application Application
Interaction Interaction
logicColumn ' | wd
[t] | [
ShardingSphere ‘: t_user
Mapping Mapping
h 4

!— plainColumn pwd_plain
cipherColumn pwd_cipher

Real Data Table +_user

The user’ s SQL is separated from the underlying data table structure according to the encryption rules

12.7. Encryption 628

Apache ShardingSphere document

provided by the user so that the user’ s SQL writing does not depend on the real database table structure.

The connection, mapping, and transformation between the user and the underlying database are han-
dled by Apache ShardingSphere.

The picture below shows the processing flow and conversion logic when the encryption module is used
to add, delete, change and check, as shown in the figure below.

Insert-use logical column Update-use logical column
T -
</ Send SQL /> Send SQL
INSERT INTO t_user(pwd) values("123") UPDATE f_user SET pwd = 456" WHERE id =1
“. Parse SQL . Parse SQL
. Rewrite SQL <+— Encryption rule . Rewrite SQL <——— Encryption rule
~ Send SQL ~’ Send SQL
l INSERT INTO t_user(pwd plain, pwd cipher) values("123","xxx") l UUPDATE t_user SET pwd plain= "456", pwd_cipher=" xxx" WHERE id =1
Execute SQL Execute SQL
Query-use plaintext Column Query-use ciphertext Column
O (e)
Send SQL Send SQL
SELECT pwd FROM +_user WHERE pwd = "123"; SELECT pwd FROM t+_user WHERE pwd = "123";
) Parse SQL QY Parse SQL
] Rewrite SQL +~— Query.with.cipher. column=false D Rewrite SQL *+— Query.with.cipher. column=false
~tf Send SQL ~t Send SQL
l SELECT pwd_plain FROM t_user WHERE pwd_plain ="123"; J SELECT pwd_cipher FROM t_user WHERE pwd_cipher ="xxx";
Execute SQL Execute SQL
Detailed Solution

After understanding Apache ShardingSphere’ s encryption process, you can combine the encryption
configuration and encryption process according to your scenario. The entire design & development
was conceived to address the pain points encountered in business scenarios. So, how to use Apache

ShardingSphere to meet the business requirements mentioned before?

Business scenario analysis: the newly launched business is relatively simple because it starts from
scratch and there’ s no need to clean up historical data.

Solution description: after selecting the appropriate encryption algorithm, such as AES, you only need
to configure the logical column (write SQL for users) and the ciphertext column (the data table stores
the ciphertext data). The logical columns and ciphertext columns can also be different. The following
configurations are recommended (in YAML format):

- !ENCRYPT
encryptors:

aes_encryptor:

12.7. Encryption 629

Apache ShardingSphere document

type: AES
props:
aes—key-value: 123456abc
digest-algorithm-name: SHA-1
tables:
t_user:
columns:
pwd :
cipher:
name: pwd_cipher
encryptorName: aes_encryptor
assistedQuery:
name: pwd_assisted_query

encryptorName: pwd_assisted_query_cipher

With the above configuration, Apache ShardingSphere only needs to convert LogicColumn, cipher-
Column, and assistedQueryColumn.

The underlying data table does not store plaintext, and only ciphertext is stored, which is also the re-
quirement of the security audit. The overall processing flow is shown in the figure below:

New online service

N— v
h—l R ‘
Insert Plaintext Insert Ciphertext
Plaintext Data | E— Data Encryption ‘ Ciphertext Data
gl

T Return Plaintext Return Ciphertext
<

Data Decryption

12.7. Encryption 630

Apache ShardingSphere document

The advantages of Middleware encryption service

1. Automatic and transparent data encryption process. Encryption implementation details are no

longer a concern for users.

2. It provides a variety of built-in and third-party (AKS) encryption algorithms, which are available
through simple configurations.

3. It provides an encryption algorithm API interface. Users can implement the interface to use a
custom encryption algorithm for data encryption.

4. It can switch among different encryption algorithms.

Solution

Apache ShardingSphere provides an encryption algorithm for data encryption, namely EncryptAl-
gorithm.

On the one hand, Apache ShardingSphere provides users with built-in implementation classes for en-
cryption and decryption, which are available through configurations by users.

On the other hand, in order to be applicable to different scenarios, we also opened the encryption and
decryption interfaces, and users can provide specific implementation classes according to these two
types of interfaces.

After simple configuration, Apache ShardingSphere can call user-defined encryption and decryption

schemes for data encryption.

12.7.4 EncryptAlgorithm

The solution provides two methods, encrypt () and decrypt(), to encrypt or decrypt data. When
users perform INSERT, DELETE and UPDATE operations, ShardingSphere will parse, rewrite and route

SQL according to the configuration.

It will also use encrypt () to encrypt data and store them in the database. When using SELECT, they
will decrypt sensitive data from the database with decrypt() and finally return the original data to

users.

Currently, Apache ShardingSphere provides three types of implementations for this kind of encryption
solution, including MD5 (irreversible), AES (reversible) and RC4 (reversible), which can be used after
configuration.

12.7. Encryption 631

Apache ShardingSphere document

12.8 Mask

Apache ShardingSphere achieves the desensitization of the original data by parsing the SQL queried by
users and masking the SQL execution results according to the desensitization rules provided by users.

12.8.1 Overall Architecture

Business APP Business APP Mask Rule

— ——
| Mask-JTDBC | /_ Proxy
(—— I |

‘ Kernel

-
JDBC Adaptor
| I —
L
| SQL Parse

| - 1

[SQL Execute
)3 .

—

| Result decoration

|

The desensitization module intercepts the SQL initiated by the user, analyzes and executes it through
the SQL syntax parser. It then masks the query results by finding out the fields to be desensitized and
the desensitization algorithm to be used according to the rules passed specified by the user, and returns
to the client.

12.8.2 Mask Rules
Before explaining the whole process in detail, we need to first understand the desensitization rules and
configuration, which is the basis of understanding the whole process.

Desensitization configuration is mainly divided into three parts: data source configuration, desensiti-
zation algorithm configuration, desensitization table configuration:

12.8. Mask 632

Apache ShardingSphere document

Datasource
— Config

— — Build-int
Mask
r — = Arithmetic
MoskRule | Config |
Config [— Customized

[Eg.icul column |
Mask (virtual column)
L—s -
Table Config L Mandator, Column in |
_thetable |

Data source configuration: the configuration of the data source.

Mask algorithm configuration: currently, ShardingSphere has a variety of built-in desensitiza-
tion algorithms: MD5, KEEP_FIRST_N_LAST_M, KEEP_FROM_X_TO_Y , MASK_FIRST_N_LAST_M,
MASK_FROM_X_TO_Y, MASK_BEFORE_SPECIAL_CHARS, MASK_AFTER_SPECIAL_CHARS and
GENERIC_TABLE_RANDOM_REPLACE.

Users can also implement a set of desensitization algorithms by implementing the interface provided
by ShardingSphere.

Mask table configuration: used to tell ShardingSphere which column in the data table is used for data
desensitization and which algorithm is used for desensitization.

The mask rule takes effect after it is created

Query attribute configuration: if both plaintext and ciphertext data are stored in the underlying
database table, this attribute can be used to determine whether to query the plaintext data in the
database table and return it directly, or query the ciphertext data and return it after decryption through

Apache ShardingSphere.

This attribute can be configured at the table level and the entire rule level. The table-level has the
highest priority.

12.8. Mask 633

Apache ShardingSphere document

12.8.3 Mask Process

For example, if there is a table in the database called t_user and there is a field in the table called
phone_number that uses MASK_FROM_X_TO_Y, Apache ShardingSphere does not change the data

store.

It' 11 only mask the result according to the desensitization algorithm, to achieve the desensitization

effect.

As shown in the picture below:

Model

Application

Interaction

logicColumn

ShardingSphere

Mask Arithmetic

Result decoration

| Table Column
L

Real Data Table

12.9 Shadow

12.9.1 How it works

Example

Application

Interaction

t_user

MASK_FROM_X_TO_Y

Result decoration

phone_number

t_user

Apache ShardingSphere determines the incoming SQL via shadow by parsing the SQL and routing it to
the production or shadow database based on the shadow rules set by the user in the configuration file.

12.9. Shadow

634

Apache ShardingSphere document

Logic SQL
r - 1 ceeseessssmsssssssasesssssssesssseseessan
| SQL Parse [
T
SQL Reute '
L 1
R —
i S5QL Execute |
L]
ShardingSphere-Shadew : ' DB

In the example of an INSERT statement, when writing data, Apache ShardingSphere parses the SQL
and then constructs a routing chain based on the rules in the configuration file. In the current version,
the shadow feature is at the last execution unit in the routing chain, i.e. if other rules exist that require
routing, such as sharding, Apache ShardingSphere will first route to a particular database according
to the sharding rules, and then run the shadow routing determination process to determine that the
execution SQL meets the configuration set by shadow rules. Then data is routed to the corresponding
shadow database, while the production data remains unchanged.

DML sentence

Two algorithms are supported. Shadow determination first determines whether the execution SQL-
related table intersects with the configured shadow table. If the resultis positive, the shadow algorithm
within the part of intersection associated with the shadow table will be determined sequentially. If any
of the determination is successful, the SQL statement is routed to the shadow library. If there is no
intersection or the shadow algorithm determination is unsuccessful, the SQL statement is routed to the
production database.

12.9. Shadow 635

Apache ShardingSphere document

DDL sentence

Only supports shadow algorithm with comments attached. In stress testing scenarios, DDL statements
are generally not required for testing, and are used mainly when initializing or modifying shadow tables
in the shadow database. The shadow determination will first determine whether the execution SQL
contains comments or not. If the result is a yes, the HINT shadow algorithm configured in the shadow
rules determines them in order. The SQL statement is routed to the shadow database if any of the
determinations are successful. If the execution SQL does not contain comments or the HINT shadow
algorithm determination is unsuccessful, the SQL statements are routed to the production database.

12.9.2 References

JAVA API: shadow database configuration
YAMLconfiguration: shadow database

12.10 Oberservability

12.10.1 How it works
ShardingSphere-Agent module provides an observable framework for ShardingSphere, which is imple-
mented based on Java Agent.

Metrics, tracing and logging functions are integrated into the agent through plugins, as shown in the

following figure:

12.10. Oberservability 636

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/

Apache ShardingSphere document

Metrics

_r
|;Pr‘ome.1'heus
| |
[Observability ‘ |
! ‘ - —l
ShardingSphere | Tr'acmg
N _ Metrics J—
Agent ‘ OpznTmcmg
o - |
L lacing QL—* l;OEenTelemz‘rry |
Lo | skywalki '
} yWalking |
[. —
_Logglng__ = - I
| L
a A
J' |
\\ | aeger | J

Logging

+ The metrics plugin is used to collect and display statistical indicators for the entire cluster. Apache

ShardingSphere supports Prometheus by default.

« The tracing plugin is used to obtain the link trace information of SQL parsing and SQL execu-
tion. Apache ShardingSphere provides support for exporting tracing data to Jaeger and Zipkin by

default. It also supports users developing customized tracing components through plugin.

+ The default logging plugin shows how to record additional logs in ShardingSphere. In practical
applications, users need to explore according to their own needs.

12.11 Architecture

Apache ShardingSphere’ s pluggable architecture is designed to enable developers to customize their
own unique systems by adding the desired features, just like adding building blocks.

A plugin-oriented architecture has very high requirements for program architecture design. It requires
making each module independent, and using a pluggable kernel to combine various functions in an
overlapping manner. Designing an architecture system that completely isolates the feature develop-
ment not only fosters an active open source community, but also ensures the quality of the project.

Apache ShardingSphere began to focus on the pluggable architecture since version 5.X, and the func-
tional components of the project can be flexibly extended in a pluggable manner. Currently, features
such as data sharding, read/write splitting, database high availability, data encryption, shadow DB
stress testing, and support for SQL and protocols such as MySQL, PostgreSQL, SQLServer, Oracle, etc.

12.11. Architecture 637

Apache ShardingSphere document

are woven into the project through plugins. Apache ShardingSphere has provided dozens of SPIs (ser-
vice provider interfaces) as extension points of the system, with the total number still increasing.

Rule Conf Fgl.r;ug:': Database Adaptors |

i |
sqw-z Others.. | f‘ 1 5QL Router Result Merger (<3 | | Sharding Encrypt '

SQL Rewriter

‘ |
\/1 |
SQL Executor Engine ql

Festemmmrocotomaasttamcaes -
i Sharding Encrypt .

12.11. Architecture 638

13

FAQ

13.1 JDBC

13.1.1 Found a JtaTransactionManager in spring boot project when integrating with
XAtransaction.

Answer:

1. shardingsphere-transaction-xa-coreinclude atomikos, it will trigger auto-configuration
mechanism in spring-boot, add @SpringBootApplication(exclude = JtaAutoConfigu-
ration.class) will solve it.

13.1.2 The tableName and columnName configured in yaml or properties leading in-
correct result when loading Oracle metadata?

Answer:

Note that, in Oracle’ s metadata, the tableName and columnName is default UPPERCASE, while double-
quoted such as CREATE TABLE "TableName" ("Id" number) the tableName and columnName is
the actual content double-quoted, refer to the following SQL for the reality in metadata:

SELECT OWNER, TABLE_NAME, COLUMN_NAME, DATA_TYPE FROM ALL_TAB_COLUMNS WHERE TABLE_
NAME IN ('TableName')

ShardingSphere uses the OracleTableMetaDatalLoader to load the metadata, keep the tableName
and columnName in the yaml or properties consistent with the metadata. ShardingSphere assembled

the SQL using the following code:

private String getTableMetaDataSQL(final Collection<String> tables, final
DatabaseMetaData metaData) throws SQLException {
StringBuilder stringBuilder = new StringBuilder(28);
if (versionContainsIdentityColumn(metaData)) {
stringBuilder.append(", IDENTITY_COLUMN");

639

Apache ShardingSphere document

}
if (versionContainsCollation(metaData)) {
stringBuilder.append(", COLLATION");
}
String collation = stringBuilder.toString();
return tables.isEmpty() ? String.format(TABLE_META_DATA_SQL, collation)
: String.format(TABLE_META_DATA_SQL_IN_TABLES, collation, tables.
stream() .map(each -> String.format("'%s'", each)).collect(Collectors.joining(",")));

}

13.1.3 SQLException: Unable to unwrap to 1interface com.mysql.
jdbc.Connection exception thrown when using MySQL XA transaction

Answer:

Incompatibility between multiple MySQL drivers. Because the MySQL5 version of the driver class under
the class path is loaded first, when trying to call the unwrap method in the MySQL8 driver, the type

conversion exception occurs.

The solutions: Check whether there are both MySQL5 and MySQL8 drivers in the class path, and only
keep one driver package of the corresponding version.

The exception stack is as follows:

Caused by: java.sql.SQLException: Unable to unwrap to interface com.mysql.jdbc.
Connection
at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:129)
at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:97)
at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:89)
at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:63)
at com.mysql.cj.jdbc.ConnectionImpl.unwrap(ConnectionImpl.java:2650)
at com.zaxxer.hikari.pool.ProxyConnection.unwrap(ProxyConnection.java:481)
at org.apache.shardingsphere.transaction.xa.jta.connection.dialect.
MySQLXAConnectionWrapper.wrap(MySQLXAConnectionWrapper.java:46)
at org.apache.shardingsphere.transaction.xa.jta.datasource.
XATransactionDataSource.getConnection(XATransactionDataSource.java:89)
at org.apache.shardingsphere.transaction.xa.XAShardingSphereTransactionManager.

getConnection(XAShardingSphereTransactionManager.java:96

13.1. JDBC 640

Apache ShardingSphere document

13.2 Proxy

13.2.1 In Windows environment, could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how to solve it?

Answer:

Some decompression tools may truncate the file name when decompressing the ShardingSphere-Proxy
binary package, resulting in some classes not being found. The solutions: Open cmd.exe and execute

the following command:

tar zxvf apache-shardingsphere-${RELEASE.VERSION}-shardingsphere-proxy-bin.tar.gz

13.2.2 How to add a new logic database dynamically when use ShardingSphere-Proxy?

Answer:

When using ShardingSphere-Proxy, users can dynamically create or drop logic database through Dist-

SQL, the syntax is as follows:

CREATE DATABASE [IF NOT EXISTS] databaseName;
DROP DATABASE [IF EXISTS] databaseName;

Example:

CREATE DATABASE sharding_db;
DROP DATABASE sharding_db;

13.2.3 How to use suitable database tools connecting ShardingSphere-Proxy?

Answer:

1. ShardingSphere-Proxy could be considered as a MySQL server, so we recommend using MySQL

command line tool to connect to and operate it.

2. Ifusers would like to use a third-party database tool, there may be some errors cause of the certain

implementation/options.
3. The currently tested third-party database tools are as follows:
+ DataGrip: 2020.1, 2021.1 (turn on “introspect using jdbc metadata” in idea or datagrip).

+ MySQLWorkBench: 8.0.25.

13.2. Proxy 641

Apache ShardingSphere document

13.2.4 When using a client to connect to ShardingSphere-Proxy, if ShardingSphere-
Proxy does not create a database or does not register a storage unit, the client
connection will fail?

Answer:

1. Third-party database tools will send some SQL query metadata when connecting to
ShardingSphere-Proxy. When ShardingSphere-Proxy does not create a Database or does
not register a Storage Unit, ShardingSphere-Proxy cannot execute SQL.

2. Itisrecommended to create database and register storage unit first, and then use third-party

database tools to connect.

3. Please refer to Related introduction the details about storage unit.

13.3 Sharding

13.3.1 How to solve Cloud not resolve placeholder ::*in string value
*** error?

Answer:

${...}or$->{...} canbe used in inline expression identifiers using the default implementation of
the InlineExpressionParser SPI, butthe former one clashes with place holders in Spring property
files,so $->{. ..} is recommended to be used in Spring as inline expression identifiers.

13.3.2 Why does float number appear in the return result of inline expression?

Answer:

The division result of Java integers is also integer, but in Groovy syntax of inline expression, the divi-
sion result of integers is float number. To obtain integer division result, A/B needs to be modified as
A.intdiv(B).

13.3.3 If sharding database is partial, should tables without sharding database & table
configured in sharding rules?

Answer:

A table that does not use sharding is called single table in ShardingSphere, and you can use LOAD state-
ments or SINGLE rule to configure the single table that needs to be loaded.

13.3. Sharding 642

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/single-table/load-single-table/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/single-table/load-single-table/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/single/

Apache ShardingSphere document

13.3.4 When genericLongtype SingleKeyTableShardingAlgorithmisused, why
does the ClassCastException: 1Integer can not cast to Long
exception appear?

Answer:

You must make sure the field in the database table is consistent with that in the sharding algorithms.
For example, the field type in database is int(11) and the sharding type corresponds to genetic type is
Integer. If you want to configure Long type, please make sure the field type in the database is bigint.

13.3.5 [Sharding:raw-latex:PROXY] When implementing the Standard-
ShardingAlgorithm custom algorithm, the specific type of Compara-
ble is specified as Long, and the field type in the database table is bigint, a
ClassCastException: Integer can not cast to Long exception
occurs.

Answer:

When implementing the doSharding method, it is not recommended to specify the specific type
of Comparable in the method declaration, but to convert the type in the implementation of the
doSharding method. You can refer to the ModShardingAlgorithm#doSharding method.

13.3.6 Why is the default distributed auto-augment key strategy provided by Shard-
ingSphere not continuous and most of them end with even numbers?

Answer:

ShardingSphere uses snowflake algorithms as the default distributed auto-augment key strategy to
make sure unrepeated and decentralized auto-augment sequence is generated under the distributed
situations. Therefore, auto-augment keys can be incremental but not continuous. But the last four
numbers of snowflake algorithm are incremental value within one millisecond. Thus, if concurrency
degree in one millisecond is not high, the last four numbers are likely to be zero, which explains why
the rate of even end number is higher. In 3.1.0 version, the problem of ending with even numbers has
been totally solved, please refer to: https://github.com/apache/shardingsphere/issues/1617

13.3.7 How to allow range query with using inline sharding strategy (BETWEEN AND, >,
<, >=,<=)?
Answer:
1. Update to 4.1.0 above.
2. Configure(A tip here: then each range query will be broadcast to every sharding table):

 Version4.x: allow.range.query.with.inline.shardingtotrue (Defaultvalueis false).

13.3. Sharding 643

https://github.com/apache/shardingsphere/issues/1617

Apache ShardingSphere document

« Version 5.x: allow-range-query-with-inline-shardingto true in InlineShardingStrat-
egy (Default value is false).

13.3.8 Why does my custom distributed primary key do not work after implementing
KeyGenerateAlgorithminterface and configuring type property?

Answer:

Service Provider Interface (SPI) is a kind of API for the third party to implement or expand. Except
implementing interface, you also need to create a corresponding file in META-INF/services to make
the JVM load these SPI implementations. More detail for SPI usage, please search by yourself. Other
ShardingSphere functionality implementation will take effect in the same way.

13.3.9 In addition to internal distributed primary key, does ShardingSphere support
other native auto-increment keys?

Answer:

Yes. But there is restriction to the use of native auto-increment keys, which means they cannot be used
as sharding keys at the same time. Since ShardingSphere does not have the database table structure and
native auto-increment key is not included in original SQL, it cannot parse that field to the sharding field.
If the auto-increment key is not sharding key, it can be returned normally and is needless to be cared.
But if the auto-increment key is also used as sharding key, ShardingSphere cannot parse its sharding
value, which will make SQL routed to multiple tables and influence the rightness of the application. The
premise for returning native auto-increment key is that INSERT SQL is eventually routed to one table.

Therefore, auto-increment key will return zero when INSERT SQL returns multiple tables.

13.4 Single table

13.4.1 Table or view %s does not exist. How to solve the exception?

Answer:

In versions before ShardingSphere 5.4.0, single tables used automatic loading. This way has many prob-

lems in actual use:

1. After alarge number of data sources are registered in the logical database, too many automatically
loaded single tables will cause ShardingSphere-Proxy/JDBC to start slowly;

2. When users use DistSQL, they will operate in the order of: Register storage unit -> Create shard-
ing, encryption, read-write separation and other rules -> Create table. Due to the existence
of the single-table automatic loading mechanism, the database will be accessed multiple times
for loading during the operation, and when multiple rules are mixed and used, the single-table
metadata will be confused;

13.4. Single table 644

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

Apache ShardingSphere document

3. Automatically load single tables from all data sources. Users cannot exclude single tables or aban-
doned tables that they do not want to be managed by ShardingSphere.

In order to solve the above problems, starting from ShardingSphere 5.4.0 version, the loading method
of single tables has been adjusted. Users need to manually load a single table in the database through
YAML configuration or DistSQL. It should be noted that when using the DistSQL LOAD statement to
load a single table, you need to ensure that all data sources are registered. Therefore, after the rules are
created, the single table LOAD operation is performed based on the logical data source (if there is no
logical data source, use the physical data source).

* YAML loading single table example:

rules:
- ISINGLE
tables:

— Dy . x "
— !READWRITE_SPLITTING
dataSourceGroups:
readwrite_ds:
writeDataSourceName: write_ds
readDataSourceNames:
- read_ds_0
- read_ds_1
loadBalancerName: random
loadBalancers:
random:
type: RANDOM

For more YAML configuration of loading single table, please refer to Single.

« DistSQL loading single table example:

LOAD SINGLE TABLE x.x;

For more LOAD single table DistSQL, please refer to Load Single Table.

13.5 DistSQL

13.5.1 How to set custom JDBC connection properties or connection pool properties
when adding a data source using DistSQL?

Answer:

1. If you need to customize JDBC connection properties, please take the urlSource way to define

dataSource.

2. ShardingSphere presets necessary connection pool properties, such as maxPoolSize, idle-
Timeout, etc. If you need to add or overwrite the properties, please specify it with PROPERTIES

in the dataSource.

13.5. DistSQL 645

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/single/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/single-table/load-single-table/

Apache ShardingSphere document

3. Please refer to Related introduction for above rules.

13.5.2 Howtosolve Storage unit [xxx] is still used by [SingleRule].
exception when dropping a data source using DistSQL?

Answer:
1. Storage units referenced by rules cannot be deleted

2. If the storage unit is only referenced by single rule, and the user confirms that the restriction can
be ignored, the optional parameter ignore single tables can be added to perform forced deletion

UNREGISTER STORAGE UNIT storageUnitName [, storageUnitName] ... [ignore single
tables]

13.5.3 How to solve Failed to get driver -dinstance for jdbcURL=xxx.
exception when adding a data source using DistSQL?

Answer:

ShardingSphere Proxy do not have jdbc driver during deployment. Some example of this include

mysqgl-connector. To use it otherwise following syntax can be used:

REGISTER STORAGE UNIT storageUnit [..., storageUnit]

13.6 Other

13.6.1 How to debug when SQL can not be executed rightly in ShardingSphere?

Answer:

sql.show configuration is provided in ShardingSphere-Proxy and post-1.5.0 version of
ShardingSphere-JDBC, enabling the context parsing, rewritten SQL and the routed data source
printed to info log. sql.show configuration is off in default, and users can turn it on in configurations.
A Tip: Property sql.show has changed to sql-show in version 5.x.

13.6.2 Why do some compiling errors appear? Why did not the IDEA index the gener-
ated codes?

Answer:

ShardingSphere uses lombok to enable minimal coding. For more details about using and install-
ment, please refer to the official website of lombok. The codes under the package org.apache.
shardingsphere.sql.parser.autogen are generated by ANTLR. You may execute the following

command to generate codes:

13.6. Other 646

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/
https://projectlombok.org/download.html

Apache ShardingSphere document

./mvnw -DskipITs -DskipTests install -T1C

The generated codes such as org.apache.shardingsphere.sql.parser.autogen.
PostgreSQLStatementParser may be too large to be indexed by the IDEA. You may configure the
IDEA’ s property idea.max.intellisense.filesize=10000.

13.6.3 In SQLSever and PostgreSQL, why does the aggregation column without alias
throw exception?

Answer:

SQLServer and PostgreSQL will rename aggregation columns acquired without alias, such as the follow-
ing SQL:

SELECT SUM(num), SUM(num2) FROM tablexxx;

Columns acquired by SQLServer are empty string and (2); columns acquired by PostgreSQL are empty
sum and sum(2). It will cause error because ShardingSphere is unable to find the corresponding col-
umn. The right SQL should be written as:

SELECT SUM(num) AS sum_num, SUM(num2) AS sum_num2 FROM tablexxx;

13.6.4 Why does Oracle database throw “Order by value must implements Compara-
ble” exception when using Timestamp Order By?

Answer:
There are two solutions for the above problem: 1. Configure JVM parameter “-
oracle.jdbc.J2EE13Compliant=true” 2. Set System.getProperties().setProperty(“ora-

cle.jdbc.J2EE13Compliant” , “true”) codes in the initialization of the project. Reasons: org.apache.
shardingsphere.sharding.merge.dql.orderby.OrderByValue#getOrderValues():

private List<Comparable<?>> getOrderValues() throws SQLException {
List<Comparable<?>> result = new ArraylList<>(orderByItems.size());
for (OrderByItem each : orderByItems) {
Object value = queryResult.getValue(each.getIndex(), Object.class);
Preconditions.checkState(null == value || value instanceof Comparable,
"Order by value must implements Comparable");
result.add((Comparable<?>) value);

}

return result;

After using resultSet.getObject(int index), for TimeStamp oracle, the system will decide whether
to return java.sql.TimeStamp or define oracle.sql. TIMESTAMP according to the property of ora-
cle.jdbc.J2EE13Compliant. See oracle.jdbc.driver.TimestampAccessor#getObject(int varl) method in

ojdbc codes for more detail:

13.6. Other 647

Apache ShardingSphere document

Object getObject(int varl) throws SQLException {
Object var2 = null;
if(this.rowSpaceIndicator == null) {

DatabaseError.throwSqlException(21);

}
if(this.rowSpacelndicator[this.indicatorIndex + varl] != -1) {
if(this.externalType != 0) {
switch(this.externalType) {
case 93:
return this.getTimestamp(varl);
default:
DatabaseError.throwSqlException(4);
return null;
3
}
if(this.statement.connection.j2eel3Compliant) {
var2 = this.getTimestamp(varl);
} else {
var2 = this.getTIMESTAMP(varl);
}
}

return var2;

13.6.5 In Windows environment,when cloning ShardingSphere source code through
Git, why prompt filename too long and how to solve it?

Answer:

To ensure the readability of source code,the ShardingSphere Coding Specification requires that the
naming of classes,methods and variables be literal and avoid abbreviations,which may result in some
source files have long names. Since the Git version of Windows is compiled using msys,it uses the old
version of Windows Api,limiting the file name to no more than 260 characters. The solutions are as fol-
lows: Open cmd.exe (you need to add git to environment variables) and execute the following command

to allow git supporting log paths:

git config --global core.longpaths true

If we use windows 10, also need enable win32 log paths in registry editor or group strategy(need reboot):
> Create the registry key HKLM\SYSTEM\CurrentControlSet\Control\FileSystem LongPath-
sEnabled (Type: REG_DWORD) in registry editor, and be set to 1. > Or click “setting” button in system
menu, print “Group Policy” to open a new window “Edit Group Policy” , and then click ‘Computer
Configuration’ > ‘Administrative Templates’ > ‘System’ > ‘Filesystem’ , and thenturnon ‘Enable
Win32 long paths’ option. Reference material: https://docs.microsoft.com/zh-cn/windows/desktop/
FileIO/naming-a-file https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-err

or-in-git-powershell-and-github-application-for-windows

13.6. Other 648

https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows

Apache ShardingSphere document

13.6.6 How to solve Type 1is required error?

Answer:

In Apache ShardingSphere, many functionality implementation are uploaded through SPI, such as Dis-
tributed Primary Key. These functions load SPI implementation by configuring the type, so the type

must be specified in the configuration file.

13.6.7 How to speed up the metadata loading when service starts up?

Answer:
1. Update to 4.0.1 above, which helps speed up the process of loading table metadata.
2. Configure:

« max.connections.size.per.query(Default value is 1) higher referring to connection pool
you adopt(Version >= 3.0.0.M3 & Version < 5.0.0).

« max-connections-size-per-query(Default value is 1) higher referring to connection pool

you adopt(Version >= 5.0.0).

13.6.8 The ANTLR plugin generates codes in the same level directory as src, which is
easy to commit by mistake. How to avoid it?

Answer:

Goto Settings -> Languages & Frameworks -> ANTLR v4 default project settings and

configure the output directory of the generated code as target/gen as shown:

13.6. Other 649

jetbrains://idea/settings?name=Languages+%26+Frameworks--ANTLR+v4+default+project+settings

Apache ShardingSphere document

Settings o

ok Languages & Frameworks * ANTLR v4 default project settings

Keymap

v Editor

Plugins

Languages & Frameworks

Cancel

13.6.9 Why is the database sharding result not correct when using Proxool1?

Answer:

When using Proxool to configure multiple data sources, each one of them should be configured with
alias. It is because Proxool would check whether existing alias is included in the connection pool or
not when acquiring connections, so without alias, each connection will be acquired from the same data
source. The followings are core codes from ProxoolDataSource getConnection method in Proxool:

if(!ConnectionPoolManager.getInstance().isPoolExists(this.alias)) {
this.registerPool();

For more alias usages, please refer to Proxool official website.

13.6. Other 650

http://proxool.sourceforge.net/configure.html

14

Downloads

14.1 Latest Releases

Apache ShardingSphere is released as source code tarballs with corresponding binary tarballs for con-
venience. The downloads are distributed via mirror sites and should be checked for tampering using
GPG or SHA-512.

14.1.1 Apache ShardingSphere - Version: 5.5.2 (Release Date: January 16th, 2025)

» Source Codes: SRC (ASC, SHA512)
« ShardingSphere-JDBC Binary Distribution: TAR (ASC, SHA512)
+ ShardingSphere-Proxy Binary Distribution: TAR (ASC, SHA512)

« ShardingSphere-Agent Binary Distribution: TAR (ASC, SHA512)

14.2 All Releases

Find all releases in the Archive repository. Find all incubator releases in the Archive incubator reposi-

tory.

14.3 Verify the Releases

PGP signatures KEYS

It is essential that you verify the integrity of the downloaded files using the PGP or SHA signatures. The
PGP signatures can be verified using GPG or PGP. Please download the KEYS as well as the asc signature
files for relevant distribution. It is recommended to get these files from the main distribution directory

and not from the mirrors.

651

https://www.apache.org/dyn/closer.lua/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-src.zip
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-src.zip.asc
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-src.zip.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-jdbc-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-jdbc-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-jdbc-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-proxy-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-proxy-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-proxy-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-agent-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-agent-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.5.2/apache-shardingsphere-5.5.2-shardingsphere-agent-bin.tar.gz.sha512
https://archive.apache.org/dist/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://downloads.apache.org/shardingsphere/KEYS

Apache ShardingSphere document

gpg -i KEYS
or

pgpk -a KEYS

or

pgp —ka KEYS

To verify the binaries/sources you can download the relevant asc files for it from main distribution
directory and follow the below guide.

gpg --verify apache-shardingsphere-x*xxxx*xxx.asc apache-shardingsphere—x**xxx**xxx

or

pgpv apache-shardingsphere—***xx*x**xx.asc

or

pgp apache-shardingsphere—x**xx*x*%.asc

14.3. Verify the Releases 652

	What is ShardingSphere
	Introduction
	ShardingSphere-JDBC
	ShardingSphere-Proxy

	Product Features
	Advantages

	Design Philosophy
	Connect: Create database upper level standard
	Enhance: Database computing enhancement engine
	Pluggable: Building database function ecology
	L1 Kernel Layer
	L2 Feature Layer
	L3 Ecosystem Layer

	Deployment
	Using ShardingSphere-JDBC
	Using ShardingSphere-Proxy
	Hybrid Architecture

	Running Modes
	Standalone Mode
	Cluster Mode

	Roadmap
	Get Involved
	Quick Start
	ShardingSphere-JDBC
	Scenarios
	Limitations
	Requirements
	Procedure

	ShardingSphere-Proxy
	Scenarios
	Limitations
	Requirements
	Procedure

	Features
	Sharding
	Background
	Vertical Sharding
	Horizontal Sharding

	Challenges
	Goal
	Application Scenarios
	Mass data high concurrency in OLTP scenarios
	Mass data real-time analysis in OLAP scenarios

	Related References
	Core Concept
	Table
	Logic Table
	Actual Table
	Binding Table
	Broadcast data frame
	Single Table

	Data Nodes
	Uniform Distribution
	Customized Distribution

	Sharding
	Sharding key
	Sharding Algorithm
	Automatic Sharding Algorithm
	Customized Sharding Algorithm
	Sharding Strategy
	Mandatory Sharding routing
	Row Value Expressions
	Distributed Primary Key

	Limitations
	Stable Support
	Normal Queries
	Sub-query
	Pagination Query
	Aggregation
	Shard keys included in operation expressions
	LOAD DATA / LOAD XML
	View

	Experimental Support
	Sub-query
	Cross-database Associated query

	Do not Support
	CASE WHEN
	Pagination Query
	Aggregation
	LOAD DATA / LOAD XML

	Appendix with SQL operator

	Distributed Transaction
	Background
	Challenge
	Goal
	How it works
	LOCAL Transaction
	XA Transaction
	BASE Transaction

	Application Scenarios
	Application Scenarios for ShardingSphere XA Transactions
	Application Scenarios for ShardingSphere BASE Transaction
	Application Scenarios for ShardingSphere LOCAL Transaction

	Related references
	Core Concept
	XA Protocol

	Limitations
	LOCAL Transaction
	Unsupported

	XA Transaction
	Unsupported

	BASE Transaction
	Unsupported

	Appendix with SQL operator

	Readwrite-splitting
	Background
	Challenges
	Goal
	Application Scenarios
	Complex primary-secondary database architecture

	Related References
	Core Concept
	Primary database
	Secondary database
	Primary-Secondary synchronization
	Load balancer policy

	Limitations

	DB Gateway
	Background
	Challenges
	Goal
	Application Scenarios
	Core Concept
	SQL Dialect

	Limitations

	Traffic Governance
	Background
	Challenges
	Goal
	Application Scenarios
	Overloaded compute node protection
	Storage node traffic limit

	Core Concept
	Circuit Breaker
	Request Limit

	Data Migration
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	Nodes
	Cluster
	Source
	Target
	Data Migration Process
	Stock Data
	Incremental Data

	Limitations
	Procedures Supported
	Procedures not supported

	Encryption
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	Logic column
	Cipher column
	Assisted query column
	Like query column

	Limitations
	Appendix with SQL operator

	Data Masking
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	Logic column

	Limitations

	Shadow
	Background
	Challenges
	Goal
	Application Scenario
	Related References
	Core Concept
	Production Database
	Shadow Database
	Shadow Algorithm

	Limitations
	Hint based shadow algorithm
	Column based shadow algorithm

	Observability
	Background
	Challenges
	Goal
	Application Scenarios
	Monitoring panel
	Monitoring application performance
	Tracing application links

	Related References
	Core Concept
	Agent
	APM
	Tracing
	Metrics
	Logging

	SQL Federation
	Background
	Challenges
	Goal
	Application Scenario
	Related References
	Limitations

	User Manual
	ShardingSphere-JDBC
	YAML Configuration
	Overview
	Usage
	Import Maven Dependency
	YAML Format
	Create Data Source
	Use Data Source

	YAML Syntax Explanation
	Mode
	Parameters
	Standalone Mode
	Cluster Mode (recommended)

	Notes
	Sample
	Standalone Mode
	Cluster Mode (recommended)

	Related References

	Data Source
	Background
	Parameters
	Sample

	Rules
	Sharding
	Background
	Parameters
	Procedure
	Sample
	Related References

	Broadcast Table
	Background
	Parameters
	Procedure
	Sample

	Readwrite-splitting
	Background
	Parameters
	Readwrite-splitting
	Procedure
	Sample
	Related References

	Distributed Transaction
	Background
	Parameters
	Procedure
	Use LOCAL Mode
	Use XA Mode
	Use BASE Mode

	Encryption
	Background
	Parameters
	Procedure
	Sample
	Related References

	Data Masking
	Background
	Parameters
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL-parser
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL Translator
	Background
	Parameters
	Procedure
	Sample
	Related References

	Mixed Rules
	Background
	Parameters
	Samples

	Cache for Sharding Route
	Background
	Parameters
	Related References

	Single Table
	Background
	Parameters
	Related References

	SQL Federation
	Background
	Parameters
	Sample
	Related References

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability
	Data Masking

	JDBC Driver
	Background
	Parameters
	Driver Class Name
	URL Configuration and sample

	Procedure
	Known Implementation
	Background Information
	How to load configuration files
	Load configuration files from classpath
	Load configuration file from absolute path
	JDBC URL parameters
	placeholder-type
	Single dynamic placeholder
	none
	environment
	system_props
	multiple dynamic placeholders
	Other implementations

	Spring Boot
	Overview
	Usage
	Import Maven Dependency
	Configure Spring Boot Properties
	Use Data Source
	Handling for Spring Boot OSS 3
	Special handling for earlier versions of Spring Boot OSS 2

	Spring Namespace
	Overview
	Operation
	Import Maven Dependency
	Configure Spring Bean
	Configuration Item Explanation
	Example
	Use Data Source

	Java API
	Overview
	Usage
	Import Maven Dependency
	Create Data Source
	Use Data Source

	Mode
	Background
	Parameters
	Standalone Persist Configuration
	Cluster Persist Configuration

	Notes
	Procedure
	Introduce Maven Dependency

	Sample
	Standalone Mode
	Cluster Mode (Recommended)

	Related References

	Data Source
	Background
	Procedure
	1. Import Maven dependency.

	Sample

	Rules
	Sharding
	Background
	Parameters
	Root Configuration
	Sharding Table Configuration
	Sharding Auto Table Configuration
	Sharding Strategy Configuration
	Standard Sharding Strategy Configuration
	Complex Sharding Strategy Configuration
	Hint Sharding Strategy Configuration
	None Sharding Strategy Configuration
	Distributed Key Strategy Configuration
	Sharding audit Strategy Configuration
	Procedure
	Sample
	Related References

	Broadcast Table
	Background
	Parameters
	Sample
	Related References

	Readwrite-splitting
	Background
	Parameters Explained
	Entry
	Primary-secondary Data Source Configuration
	Operating Procedures
	Configuration Examples
	References

	Distributed Transaction
	Root Configuration

	Encryption
	Background
	Parameters
	Root Configuration
	Encrypt Table Rule Configuration
	Encrypt Column Rule Configuration
	Encrypt Column Item Rule Configuration
	Encrypt Algorithm Configuration
	Procedure
	Sample
	Related References

	Data Masking
	Background
	Parameters
	Root Configuration
	Mask Table Rule Configuration
	Mask Column Rule Configuration
	Mask Algorithm Configuration
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Root Configuration
	Shadow Data Source Configuration
	Shadow Table Configuration
	Shadow Algorithm Configuration
	Procedure
	Sample
	Related References

	SQL Parser
	Background
	Parameters
	Cache option Configuration
	Procedure
	Sample
	Related References

	SQL Translator
	Background
	Parameters
	Procedure
	Sample
	Related References

	Mixed Rules
	Background
	Samples

	Cache for Sharding Route
	Background
	Parameters
	Sample
	Related References

	Single Table
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL-federation
	Background
	Parameters
	Cache option Configuration
	Sample
	Related References

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability
	Data Masking

	Special API
	Sharding
	Hint
	Background
	Procedure
	Sample
	Hint Configuration
	Get HintManager
	Add Sharding Value
	Clean Hint Values
	Codes:
	Related References

	Readwrite-splitting
	Hint
	Background
	Procedure
	Sample
	Primary Route with Hint
	Get HintManager
	Configure Primary Database Route
	Clean Hint Value
	Code:
	Route to the specified database with Hint
	Get HintManager
	Configure Database Route
	Code:
	Related References

	Transaction
	Use Java API
	Background
	Prerequisites
	Procedure
	Sample

	Atomikos Transaction
	Background
	Procedure
	Sample
	Configure the transaction type
	Configure Atomikos
	Data Recovery

	Narayana Transaction
	Background
	Prerequisites
	Procedure
	Sample
	Configure Narayana
	Set the XA transaction type

	Seata Transaction
	Background
	Prerequisites
	undo_log table restrictions
	Related configuration
	Operation steps
	Configuration Example
	Start Seata Server and MySQL Server
	Create seata.conf in the classpath of the business project
	Create file.conf in the classpath of the business project
	Create registry.conf in the classpath of the business project
	Add JDBC Driver to the business project and create ShardingSphere configuration file
	Enjoy integration
	Usage restrictions
	Mixed use with Seata TCC mode features
	Transactional propagation across service calls
	Log Configuration

	Optional Plugins
	ClickHouse
	Background Information
	Prerequisites
	Configuration example
	Start ClickHouse
	Create business tables
	Create ShardingSphere data source in business project
	Enjoy integration

	Usage Limitations
	SQL Limitations
	Key Generate restrictions
	Transaction Limitations
	Embedded ClickHouse Limitations

	Firebird
	Background Information
	Prerequisites
	Configuration example
	Start Firebird
	Create business databases
	Create ShardingSphere data source in business project
	Enjoy integration

	Usage Limitations
	Transaction Limitations

	HiveServer2
	Background Information
	Prerequisites
	Optional shortcut to resolve dependency conflicts

	Configuration Example
	Start HiveServer2
	Create business tables
	Create ShardingSphere data source in business projects
	Enjoy the integration

	External Integration
	Connect to HiveServer2 with ZooKeeper Service Discovery enabled

	Usage Restrictions
	Version Restrictions
	Uber JAR Limitation of HiveServer2 JDBC Driver
	Embedded HiveServer2 Limitation
	Hadoop Limitations
	SQL Limitations
	Use initFile parameter to partially bypass SQL restrictions
	Prerequisites for using DML SQL statements on ShardingSphere data sources
	Transaction Limitations
	DBeaver Community Version Limitations

	Presto
	Background Information
	Prerequisites
	Configuration Example
	Start Presto
	Create business-related schemas and tables
	Create ShardingSphere data source in business project
	Enjoy integration

	Usage Limitations
	SQL Limitations
	Transaction Limitations
	Connector Limitations

	Unsupported Items
	Configuration
	DataSource Interface
	Connection Interface
	Statement and PreparedStatement Interface
	ResultSet Interface
	JDBC 4.1

	Observability
	Agent
	Compile source code
	Directory structure
	Configuration
	Plugin description
	File
	Prometheus
	OpenTelemetry

	Usage
	Docker
	Local Build
	Community Build
	Nightly Build
	Using Dockerfile

	Metrics

	GraalVM Native Image
	Background Information
	Maven Ecology
	Gradle Ecosystem
	For build tools such as sbt that are not supported by GraalVM Native Build Tools

	Usage restrictions
	Development and test
	Background Information
	Prerequisites
	Ubuntu
	Windows
	Windows Server

	Handling unit tests
	Execute unit tests under GraalVM JIT Compiler
	Execute unit tests under GraalVM Native Image
	Generate and modify GraalVM Reachability Metadata

	Known limitations
	resource-config.json limitations
	Unit test library limitations
	Known issues with unit testing

	ShardingSphere-Proxy
	Startup
	Use Binary Tar
	Background
	Premise
	Steps

	Use Docker
	Background
	Notice
	Steps

	Build GraalVM Native Image(Alpha)
	Background information
	Use through nightly built Docker Image
	Dynamically linked GraalVM Native Image
	Mostly statically linked GraalVM Native Image
	Fully statically linked GraalVM Native Image

	Build from source code
	Use JARs with custom SPI implementations or third-party dependent JARs
	Build Linux Docker Image
	Prerequisites
	Ubuntu
	Windows
	Build a Docker Image with a dynamically linked GraalVM Native Image
	Build a Docker Image containing most of the statically linked GraalVM Native Image
	Build a Docker Image containing a fully statically linked GraalVM Native Image
	Build only
	Prerequisites
	Native toolchain for static compilation
	Build a dynamically linked GraalVM Native Image
	Build most statically linked GraalVM Native Images
	Build a fully statically linked GraalVM Native Image
	Use GraalVM Native Image

	Usage restrictions
	GraalVM Native Image variant selection
	Observability
	linux/riscv64 OS/Arch limitation
	Windows Containers Limitations
	Wasm Module Limitations

	Use Helm
	Background
	Requirements
	Procedure
	Online installation
	Source installation
	Uninstall

	Parameters
	Governance-Node parameters
	Governance-Node ZooKeeper parameters
	Compute-Node ShardingSphere-Proxy parameters

	Sample

	Add dependencies
	Add Narayana dependencies
	Add Narayana dependencies
	jar file downloads

	Yaml Configuration
	Authentication & Authorization
	Background
	Parameters
	Sample
	Minimalist configuration
	Authentication configuration
	Authorization configuration
	ALL_PERMITTED (Will be removed in a future version)
	DATABASE_PERMITTED (Recommended)

	Properties
	Background
	Parameters
	Sample

	Rules
	Background
	Parameters Explained
	Notice

	Data Source
	Background
	Parameters
	Sample

	DistSQL
	Definition
	Related Concepts
	RDL
	RQL
	RAL
	RUL

	Impact on the System
	Before
	After

	Limitations
	How it works
	Related References
	Syntax
	Syntax Rule
	Identifier
	Literal
	Special Instructions

	RDL Syntax
	Storage Unit Definition
	REGISTER STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNREGISTER STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Rule Definition
	Sharding
	CREATE SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	1.Standard sharding table rule
	2.Auto sharding table rule
	3.Create sharding rule with ifNotExists clause
	Reserved word
	Related links
	ALTER SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	1.Standard sharding table rule
	2.Auto sharding table rule
	Reserved word
	Related links
	DROP SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CREATE DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHARDING KEY GENERATOR
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHARDING ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CREATE SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Example
	1.Create a sharding table reference rule
	2.Create multiple sharding table reference rules
	3.Create a sharding table reference rule with ifNotExists clause
	Reserved word
	Related links
	ALTER SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Example
	1. Alter a sharding table reference rule
	2. Alter multiple sharding table reference rules
	Reserved word
	Related links
	DROP SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Reserved word
	Related links
	Broadcast Table
	CREATE BROADCAST TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Create broadcast table rule
	Create broadcast table rule with ifNotExists clause
	Reserved word
	Related links
	DROP BROADCAST TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Single Table
	LOAD SINGLE TABLE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNLOAD SINGLE TABLE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SET DEFAULT SINGLE TABLE STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Readwrite-Splitting
	CREATE READWRITE_SPLITTING RULE
	Description
	Syntax
	Note
	Example
	Create a read/write splitting rule
	Create read/write splitting rule with the ifNotExists clause
	Reserved words
	Related links
	ALTER READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Example
	Alter a readwrite-splitting rule
	Reserved word
	Related links
	DROP READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Encrypt
	CREATE ENCRYPT RULE
	Description
	Syntax
	Supplement
	Example
	Create an encrypt rule
	Create an encrypt rule with ifNotExists clause
	Reserved words
	Related links
	ALTER ENCRYPT RULE
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links
	DROP ENCRYPT RULE
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links
	Mask
	CREATE MASK RULE
	Description
	Syntax
	Note
	Example
	Create a mask rule
	Create mask rule with ifNotExists clause
	Reserved words
	Related links
	ALTER MASK RULE
	Description
	Syntax
	Supplement
	Example
	Alter a mask rule
	Reserved words
	Related links
	DROP MASK RULE
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links
	Shadow
	CREATE SHADOW RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER SHADOW RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHADOW RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CREATE DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links

	RQL Syntax
	Storage Unit Query
	SHOW STORAGE UNITS
	Description
	Syntax
	Supplement
	Return Value Description
	Reserved word
	Related links
	Rule Query
	Sharding
	SHOW SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Reserved word
	Related links
	SHOW SHARDING ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW UNUSED SHARDING ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING KEY GENERATORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW UNUSED SHARDING KEY GENERATORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING AUDITORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW UNUSED SHARDING AUDITORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE NODES
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE RULES USED ALGORITHM
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE RULES USED KEY GENERATOR
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE RULES USED AUDITOR
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT SHARDING RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Broadcast Table
	SHOW BROADCAST TABLE RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT BROADCAST RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Single Table
	SHOW SINGLE TABLE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW DEFAULT SINGLE TABLE STORAGE UNIT
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	COUNT SINGLE_TABLE RULE
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW UNLOADED SINGLE TABLES
	Description
	Syntax
	Return value description
	Example
	Reserved word
	Related links
	Readwrite-Splitting
	SHOW READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Encrypt
	SHOW ENCRYPT RULES
	Description
	Syntax
	Note
	Return value description
	Example
	Reserved word
	Related links
	COUNT ENCRYPT RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Mask
	SHOW MASK RULES
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT MASK RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Shadow
	SHOW SHADOW RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHADOW TABLE RULES
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHADOW ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT SHADOW RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links

	RAL Syntax
	GLOBAL RULE
	SHOW AUTHORITY RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW TRANSACTION RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	ALTER TRANSACTION RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW SQL_PARSER RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	Alter SQL_PARSER Rule
	Description
	Syntax
	Note
	Example
	Reserved word
	Related links
	SHOW TRAFFIC RULE
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	ALTER TRAFFIC RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW SQL_FEDERATION RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	ALTER SQL_FEDERATION RULE
	Description
	Syntax
	Example
	Reserved word
	Related links
	CIRCUIT BREAKER
	ALTER READWRITE_SPLITTING RULE ENABLE/DISABLE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW STATUS FROM READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW COMPUTE NODES
	Description
	Return Value Description
	Example
	Dedicated Terminology
	Related links
	ENABLE/DISABLE COMPUTE NODE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	LABEL|RELABEL COMPUTE NODES
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNLABEL COMPUTE NODES
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	MIGRATUION
	SHOW MIGRATION RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	ALTER MIGRATION RULE
	Description
	Syntax
	Example
	Reserved word
	Related links
	REGISTER MIGRATION SOURCE STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNREGISTER MIGRATION SOURCE STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW MIGRATION SOURCE STORAGE UNITS
	Description
	Syntax
	Return Value Description
	Reserved word
	Related links
	MIGRATE TABLE INTO
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW MIGRATION LIST
	Description
	Syntax
	Return Values Description
	Example
	Reserved word
	Related links
	SHOW MIGRATION STATUS
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW MIGRATION CHECK ALGORITHM
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	CHECK MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW MIGRATION CHECK STATUS
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	START MIGRATION CHECK
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	STOP MIGRATION CHECK
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	START MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	STOP MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	COMMIT MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ROLLBACK MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	PLUGIN
	SHOW PLUGINS OF SPI
	Description
	Syntax
	Return Value Description
	Example
	Supplement
	Reserved word
	Related links
	SHOW SHARDING ALGORITHM PLUGINS
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW LOAD BALANCE ALGORITHM PLUGINS
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW ENCRYPT ALGORITHM PLUGINS
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW MASK ALGORITHM PLUGINS
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW SHADOW ALGORITHM PLUGINS
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW KEY GENERATE ALGORITHM PLUGINS
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW COMPUTE NODE INFO
	Description
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW COMPUTE NODE MODE
	Description
	Return Value Description
	Example
	Reserved word
	Related links
	SET DIST VARIABLE
	Description
	Supplement
	Example
	Reserved word
	Related links
	SHOW DIST VARIABLE
	Description
	Syntax
	Return Value Description
	Supplement
	Example
	Reserved word
	Related links
	REFRESH TABLE METADATA
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	REFRESH DATABASE METADATA FROM GOVERNANCE CENTER
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW TABLE METADATA
	Description
	Syntax
	Return Value Description
	Supplement
	Example
	Reserved word
	Related links
	SHOW RULES USED STORAGE UNIT
	Description
	Syntax
	Return Value Description
	Supplement
	Example
	Reserved word
	Related links
	EXPORT DATABASE CONFIGURATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	IMPORT DATABASE CONFIGURATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CONVERT YAML CONFIGURATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	LOCK CLUSTER WITH
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links
	UNLOCK CLUSTER
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links

	RUL Syntax
	PARSE SQL
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	FORMAT SQL
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	PREVIEW SQL
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links

	Reserved word
	RDL
	Basic Reserved Words
	Storage Unit Definition
	Rule Definition
	Sharding
	Broadcast table
	Single Table
	Readwrite-Splitting
	Encrypt
	Database Discovery
	Shadow
	MASK
	RQL
	Basic Reserved Words
	Resource Definition
	Rule Query
	SHARDING
	Single Table
	Readwrite-Splitting
	Encrypt
	Database Discovery
	Shadow
	MASK
	RAL
	RUL
	Supplement

	Usage
	Pre-work
	Create Logic Database
	Resource Operation
	Rule Operation
	Notice

	Sharding
	Storage unit Operation
	Rule Operation

	Readwrite_splitting
	Storage unit Operation
	Rule Operation

	Encrypt
	Storage unit Operation
	Rule Operation

	MASK
	Storage unit Operation
	Rule Operation

	Shadow
	Storage unit Operation
	Rule Operation

	Data Migration
	Introduction
	Build
	Background
	Prerequisites
	Procedure

	Manual
	MySQL user guide
	Environment
	Authority required
	Complete procedure example
	Requirements
	Procedure

	PostgreSQL user guide
	Environment
	Authority required
	Complete procedure example
	Requirements
	Procedure

	openGauss user guide
	Environment
	Authority required
	Complete procedure example
	Requirements
	Procedure

	Observability
	Agent
	Compile source code
	Directory structure
	Configuration
	Plugin description
	File
	Prometheus
	OpenTelemetry

	Usage
	Metrics

	Optional Plugins
	Seata AT Mode transactions
	Background Information
	Operation steps
	Configuration example
	Confirm the JAR and dependency list of Seata Client
	Start Seata Server, Postgres Server and ShardingSphere Proxy
	Create ShardingSphere virtual database
	Introduce Postgres JDBC Driver in the business project
	Enjoy the integration

	Usage restrictions
	ShardingSphere Proxy Native for GraalVM Native Image

	Session Management
	Usage
	View Session
	KILL THE SQL IN THE SESSION

	Logging Configuration
	Background
	Procedure
	Sample

	CDC
	Build
	Background Information
	Constraints
	CDC Server Deployment Steps
	Configure GLT Module (Optional)
	1. Source code compilation and installation
	2. Directly introduce GLT dependencies
	CDC Server User Manual

	CDC Client Manual
	CDC Client Introduction

	Manual
	Introduction to CDC Function
	Introduction to CDC Protocol

	openGauss User Manual
	Environmental Requirements
	Permission Requirements
	Complete Process Example
	Prerequisites
	Configure CDC Server
	Start CDC Client
	Write Data
	View the Running Status of the CDC Task

	Precautions
	Explanation of incremental data push
	Handling of large transactions
	Recommended configuration

	Common Configuration
	Properties Configuration
	Background
	Parameters
	Procedure
	Notes
	Sample

	Builtin Algorithm
	Introduction
	Usage
	Metadata Repository
	Background
	Parameters
	Database Repository
	ZooKeeper Repository
	Etcd Repository

	Procedure
	Sample

	Sharding Algorithm
	Background
	Parameters
	Auto Sharding Algorithm
	Modulo Sharding Algorithm
	Hash Modulo Sharding Algorithm
	Volume Based Range Sharding Algorithm
	Boundary Based Range Sharding Algorithm
	Auto Interval Sharding Algorithm
	Standard Sharding Algorithm
	Inline Sharding Algorithm
	Interval Sharding Algorithm
	Complex Sharding Algorithm
	Complex Inline Sharding Algorithm
	Hint Sharding Algorithm
	Hint Inline Sharding Algorithm
	Class Based Sharding Algorithm

	Procedure
	Sample
	Related References

	Key Generate Algorithm
	Background
	Parameters
	Snowflake
	UUID

	Procedure
	Sample

	Load Balance Algorithm
	Background
	Parameters
	Round-robin Load Balance Algorithm
	Random Load Balance Algorithm
	Weight Load Balance Algorithm

	Procedure
	Sample
	Related References

	Encryption Algorithm
	Background
	Parameters
	Standard Encrypt Algorithm
	AES Encrypt Algorithm
	Assisted Encrypt Algorithm
	MD5 Assisted Encrypt Algorithm

	Operating Procedure
	Configuration Examples
	Related References

	Shadow Algorithm
	Background
	Parameters
	Column-based shadow algorithm
	Column value matching shadow algorithm
	Column-based Regex matching algorithm
	Hint-based shadow algorithm
	SQL HINT shadow algorithm

	Configuration sample

	SQL Translator
	Native SQL translator

	Sharding Audit Algorithm
	Background
	Parameters
	DML_SHARDING_CONDITIONS algorithm

	Procedure
	Sample

	Data Masking Algorithm
	Background
	Parameters
	Hash Data Masking Algorithm
	MD5 Data Masking Algorithm
	Mask Data Masking Algorithm
	Keep First N Last M Data Masking Algorithm
	Keep From X To Y Data Masking Algorithm
	Mask First N Last M Data Masking Algorithm
	Mask From X To Y Data Masking Algorithm
	Mask Before Special Chars Data Masking Algorithm
	Mask After Special Chars Data Masking Algorithm
	Replace Data Masking Algorithm
	Generic table random replace algorithm.

	Operating Procedure
	Configuration Examples
	Related References

	Row Value Expressions
	Row Value Expressions that uses the Groovy syntax
	Row Value Expressions that uses a standard list
	Row Value Expressions based on fixed interval that uses the Key-Value syntax
	Row Value Expressions that uses the Groovy syntax based on GraalVM Truffle’s Espresso implementation
	Custom Implementation
	Procedure
	Sample
	Related References

	SQL Hint
	Background
	Use specification
	Parameters
	SQL Hint
	Sharding
	ReadwriteSplitting
	DataSource Pass Through
	SKIP SQL REWRITE
	SKIP METADATA VALIDATE
	DISABLE SQL AUDIT
	SHADOW

	Error Code
	SQL Error Code
	Kernel Exception
	Meta data
	Data
	Syntax
	Connection
	Transaction
	Lock
	Cluster
	Data Pipeline

	Feature Exception
	Data Sharding
	SQL Federation
	Readwrite-splitting
	SQL Dialect Translator
	Traffic Management
	Data Encrypt
	Shadow Database

	Other Exception

	Server Error Code

	Dev Manual
	Mode
	StandalonePersistRepository
	Fully-qualified class name
	Definition
	Implementation classes

	ClusterPersistRepository
	Fully-qualified class name
	Definition
	Implementation classes

	SQL Parser
	DatabaseTypedSQLParserFacade
	Fully-qualified class name
	Definition
	Implementation classes

	SQLStatementVisitorFacade
	Fully-qualified class name
	Definition
	Implementation classes

	Data Sharding
	ShardingAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	ShardingAuditAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	DatetimeService
	Fully-qualified class name
	Definition
	Implementation classes

	InlineExpressionParser
	Fully-qualified class name
	Definition
	Implementation classes

	Infra algorithm
	LoadBalanceAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	KeyGenerateAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	MessageDigestAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	SQL Audit
	SQLAuditor
	Fully-qualified class name
	Definition
	Implementation classes

	Encryption
	EncryptAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Data Masking
	MaskAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Shadow DB
	ShadowAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Observability
	PluginLifecycleService
	Fully-qualified class name
	Definition
	Implementation classes

	Test Manual
	Integration Test
	Module Test
	Performance Test
	Sysbench Test
	Integration Test
	Design
	Test case
	Test environment
	Test engine

	User Guide
	Test case configuration
	Environment configuration
	Native environment configuration
	Docker environment configuration

	Run the test engine
	Configure the running environment of the test engine
	Run debugging mode
	Run Docker mode
	Remote debug Proxy code in Docker container
	Remote debug Proxy started by docker image
	Remote debug Proxy started by Testcontainer

	Notice

	Performance Test
	SysBench ShardingSphere-Proxy Empty Rule Performance Test
	Objectives
	Set up the test environment
	Server information
	Database
	Stress testing tool
	ShardingSphere-Proxy
	bin/start.sh
	config.yaml

	Test phase
	Environment setup
	Stress testing command
	Stress testing report analysis
	Noticeable features

	BenchmarkSQL ShardingSphere-Proxy Sharding Performance Test
	Objective
	Method
	Fine tuning to test tools
	Remove the foreign key and extraHistID

	Stress testing environment or parameter recommendations
	It is recommended to run ShardingSphere using Java 17
	ShardingSphere data sharding recommendations
	PostgreSQL JDBC URL parameter recommendations
	ShardingSphere-Proxy global.yaml parameter recommendations

	Appendix
	BenchmarkSQL data sharding reference configuration

	BenchmarkSQL 5.0 PostgreSQL statement list
	Create tables
	Create indexes
	New Order business
	Payment business
	Order Status business
	Stock level business
	Delivery BG business

	Module Test
	SQL Parser Test
	Prepare Data
	SQL Data
	Assert Data

	SQL Rewrite Test
	Target
	Test

	Pipeline E2E Test
	Objectives
	Test environment type
	User guide
	Environment setup
	Test case
	Running the test case
	NATIVE environment setup
	DOCKER environment setup

	Reference
	Database Compatibility
	Database Gateway
	Management
	Data Structure in Registry Center
	/rules
	/props
	/metadata/${databaseName}/data_sources/units/ds_0/versions/0
	/metadata/${databaseName}/data_sources/nodes/ds_0/versions/0
	/metadata/${databaseName}/rules/sharding/tables/t_order/versions/0
	/metadata/databaseName/schemas/{schemaName}/tables/t_order/versions/0
	/nodes/compute_nodes
	/nodes/qualified_data_sources

	Sharding
	SQL Parser
	SQL Route
	SQL Rewrite
	SQL Execution
	Result Merger
	Query Optimization
	Parse Engine
	Abstract Syntax Tree
	SQL Parser Engine
	Iteration
	Features
	API Usage

	Route Engine
	Sharding Route
	Direct Route
	Standard Route
	Cartesian Route

	Broadcast Route
	Full database and table route
	Full database route
	Full instance route
	Unicast Route
	Block Route

	Rewrite Engine
	Rewriting for Correctness
	Identifier Rewriting
	Column Derivation
	Pagination Correction
	Batch Split
	Rewriting for Optimization
	Single Node Optimization
	Stream Merger Optimization

	Execute Engine
	Connection Mode
	MEMORY_STRICTLY Mode
	CONNECTION_STRICTLY Mode

	Automatic Execution Engine
	Preparation Phrase
	Execution Phrase

	Merger Engine
	Traversal Merger
	Order-by Merger
	Group-by Merger
	Aggregation Merger
	Pagination Merger

	Transaction
	Navigation
	XA Transaction
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Seata BASE transaction
	Init Seata Engine
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Data Migration
	Explanation
	Execution Stage Explained
	Preparation
	Stock data migration
	The Synchronization of incremental data
	Traffic Switching

	References

	Encryption
	Overall Architecture
	Encryption Rules
	Encryption Process
	Detailed Solution
	The advantages of Middleware encryption service
	Solution

	EncryptAlgorithm

	Mask
	Overall Architecture
	Mask Rules
	Mask Process

	Shadow
	How it works
	DML sentence
	DDL sentence

	References

	Oberservability
	How it works

	Architecture

	FAQ
	JDBC
	Found a JtaTransactionManager in spring boot project when integrating with XAtransaction.
	The tableName and columnName configured in yaml or properties leading incorrect result when loading Oracle metadata？
	SQLException: Unable to unwrap to interface com.mysql.jdbc.Connection exception thrown when using MySQL XA transaction

	Proxy
	In Windows environment, could not find or load main class org.apache.shardingsphere.proxy.Bootstrap, how to solve it?
	How to add a new logic database dynamically when use ShardingSphere-Proxy?
	How to use suitable database tools connecting ShardingSphere-Proxy?
	When using a client to connect to ShardingSphere-Proxy, if ShardingSphere-Proxy does not create a database or does not register a storage unit, the client connection will fail?

	Sharding
	How to solve Cloud not resolve placeholder … in string value … error?
	Why does float number appear in the return result of inline expression?
	If sharding database is partial, should tables without sharding database & table configured in sharding rules?
	When generic Long type SingleKeyTableShardingAlgorithm is used, why does the ClassCastException: Integer can not cast to Long exception appear?
	[Sharding:raw-latex:PROXY] When implementing the StandardShardingAlgorithm custom algorithm, the specific type of Comparable is specified as Long, and the field type in the database table is bigint, a ClassCastException: Integer can not cast to Long exception occurs.
	Why is the default distributed auto-augment key strategy provided by ShardingSphere not continuous and most of them end with even numbers?
	How to allow range query with using inline sharding strategy (BETWEEN AND, >, <, >=, <=)?
	Why does my custom distributed primary key do not work after implementing KeyGenerateAlgorithm interface and configuring type property?
	In addition to internal distributed primary key, does ShardingSphere support other native auto-increment keys?

	Single table
	Table or view %s does not exist. How to solve the exception?

	DistSQL
	How to set custom JDBC connection properties or connection pool properties when adding a data source using DistSQL?
	How to solve Storage unit [xxx] is still used by [SingleRule]. exception when dropping a data source using DistSQL?
	How to solve Failed to get driver instance for jdbcURL=xxx. exception when adding a data source using DistSQL?

	Other
	How to debug when SQL can not be executed rightly in ShardingSphere?
	Why do some compiling errors appear? Why did not the IDEA index the generated codes?
	In SQLSever and PostgreSQL, why does the aggregation column without alias throw exception?
	Why does Oracle database throw “Order by value must implements Comparable” exception when using Timestamp Order By?
	In Windows environment,when cloning ShardingSphere source code through Git, why prompt filename too long and how to solve it?
	How to solve Type is required error?
	How to speed up the metadata loading when service starts up?
	The ANTLR plugin generates codes in the same level directory as src, which is easy to commit by mistake. How to avoid it?
	Why is the database sharding result not correct when using Proxool?

	Downloads
	Latest Releases
	Apache ShardingSphere - Version: 5.5.2 (Release Date: January 16th, 2025)

	All Releases
	Verify the Releases

