
Apache ShardingSphere document

Apache ShardingSphere

Aug 11, 2023

Contents

1 What is ShardingSphere 1
1.1 Introduction . 1

1.1.1 ShardingSphere‐JDBC . 1
1.1.2 ShardingSphere‐Proxy . 1

1.2 Product Features . 2
1.3 Advantages . 2

2 Design Philosophy 4
2.1 Connect: Create database upper level standard . 5
2.2 Enhance: Database computing enhancement engine 5
2.3 Pluggable: Building database function ecology . 5

2.3.1 L1 Kernel Layer . 6
2.3.2 L2 Feature Layer . 6
2.3.3 L3 Ecosystem Layer . 6

3 Deployment 7
3.1 Using ShardingSphere‐JDBC . 7
3.2 Using ShardingSphere‐Proxy . 8
3.3 Hybrid Architecture . 9

4 RunningModes 11
4.1 Standalone Mode . 11
4.2 Cluster Mode . 11

5 Roadmap 12

6 Get Involved 13

7 Quick Start 14
7.1 ShardingSphere‐JDBC . 14

7.1.1 Scenarios . 14
7.1.2 Limitations . 14
7.1.3 Requirements . 14

i

7.1.4 Procedure . 14
7.2 ShardingSphere‐Proxy . 16

7.2.1 Scenarios . 16
7.2.2 Limitations . 16
7.2.3 Requirements . 17
7.2.4 Procedure . 17

8 Features 19
8.1 Sharding . 19

8.1.1 Background . 19
Vertical Sharding . 20
Horizontal Sharding . 21

8.1.2 Challenges . 22
8.1.3 Goal . 22
8.1.4 Application Scenarios . 22

Mass data high concurrency in OLTP scenarios 22
Mass data real‐time analysis in OLAP scenarios 23

8.1.5 Related References . 23
8.1.6 Core Concept . 23

Table . 23
Data Nodes . 25
Sharding . 26

8.1.7 Limitations . 28
Stable Support . 28
Experimental Support . 30
Do not Support . 31

8.1.8 Appendix with SQL operator . 32
8.2 Distributed Transaction . 32

8.2.1 Background . 32
8.2.2 Challenge . 33
8.2.3 Goal . 33
8.2.4 How it works . 33

LOCAL Transaction . 33
XA Transaction . 34
BASE Transaction . 35

8.2.5 Application Scenarios . 35
Application Scenarios for ShardingSphere XA Transactions 36
Application Scenarios for ShardingSphere BASE Transaction 36
Application Scenarios for ShardingSphere LOCAL Transaction 36

8.2.6 Related references . 36
8.2.7 Core Concept . 36

XA Protocol . 36
8.2.8 Limitations . 36

LOCAL Transaction . 37
XA Transaction . 37

ii

BASE Transaction . 37
8.2.9 Appendix with SQL operator . 37

8.3 Readwrite‐splitting . 37
8.3.1 Background . 37
8.3.2 Challenges . 38
8.3.3 Goal . 39
8.3.4 Application Scenarios . 39

Complex primary‐secondary database architecture 39
8.3.5 Related References . 40
8.3.6 Core Concept . 40

Primary database . 40
Secondary database . 40
Primary‐Secondary synchronization . 40
Load balancer policy . 40

8.3.7 Limitations . 40
8.4 DB Gateway . 41

8.4.1 Background . 41
8.4.2 Challenges . 41
8.4.3 Goal . 41
8.4.4 Application Scenarios . 41
8.4.5 Core Concept . 41

SQL Dialect . 41
8.4.6 Limitations . 42

8.5 Traffic Governance . 42
8.5.1 Background . 42
8.5.2 Challenges . 42
8.5.3 Goal . 42
8.5.4 Application Scenarios . 42

Overloaded compute node protection . 42
Storage node traffic limit . 43

8.5.5 Core Concept . 43
Circuit Breaker . 43
Request Limit . 43

8.6 Data Migration . 43
8.6.1 Background . 43
8.6.2 Challenges . 43
8.6.3 Goal . 44
8.6.4 Application Scenarios . 44
8.6.5 Related References . 44
8.6.6 Core Concept . 44

Nodes . 44
Cluster . 44
Source . 44
Target . 44
Data Migration Process . 45

iii

Stock Data . 45
Incremental Data . 45

8.6.7 Limitations . 45
Procedures Supported . 45
Procedures not supported . 45

8.7 Encryption . 45
8.7.1 Background . 45
8.7.2 Challenges . 46
8.7.3 Goal . 46
8.7.4 Application Scenarios . 46
8.7.5 Related References . 46
8.7.6 Core Concept . 46

Logic column . 46
Cipher column . 47
Assisted query column . 47
Like query column . 47

8.7.7 Limitations . 47
8.7.8 Appendix with SQL operator . 47

8.8 Data Masking . 48
8.8.1 Background . 48
8.8.2 Challenges . 48
8.8.3 Goal . 48
8.8.4 Application Scenarios . 48
8.8.5 Related References . 48
8.8.6 Core Concept . 49

Logic column . 49
8.8.7 Limitations . 49

8.9 Shadow . 49
8.9.1 Background . 49
8.9.2 Challenges . 49
8.9.3 Goal . 50
8.9.4 Application Scenario . 50
8.9.5 Related References . 50
8.9.6 Core Concept . 50

Production Database . 50
Shadow Database . 50
Shadow Algorithm . 50

8.9.7 Limitations . 51
Hint based shadow algorithm . 51
Column based shadow algorithm . 51

8.10 Observability . 51
8.10.1 Background . 51
8.10.2 Challenges . 53
8.10.3 Goal . 53
8.10.4 Application Scenarios . 54

iv

Monitoring panel . 54
Monitoring application performance . 54
Tracing application links . 54

8.10.5 Related References . 54
8.10.6 Core Concept . 55

Agent . 55
APM . 55
Tracing . 55
Metrics . 55
Logging . 55

9 User Manual 56
9.1 ShardingSphere‐JDBC . 56

9.1.1 YAML Configuration . 57
Overview . 57
Usage . 57
YAML Syntax Explanation . 58
Mode . 58
Data Source . 60
Rules . 62
Algorithm . 82
JDBC Driver . 84

9.1.2 Java API . 88
Overview . 88
Usage . 89
Mode . 90
Data Source . 93
Rules . 94
Algorithm . 116

9.1.3 Special API . 117
Sharding . 117
Readwrite‐splitting . 120
Transaction . 122

9.1.4 Optional Plugins . 128
9.1.5 Unsupported Items . 130

DataSource Interface . 130
Connection Interface . 130
Statement and PreparedStatement Interface . 130
ResultSet Interface . 130
JDBC 4.1 . 130

9.1.6 Observability . 131
Agent . 131
Usage in ShardingSphere‐JDBC . 133
Metrics . 134

9.2 ShardingSphere‐Proxy . 134

v

9.2.1 Startup . 135
Use Binary Tar . 135
Use Docker . 137
Build GraalVM Native Image(Alpha) . 139
Observability . 142
Use Helm . 143
Add dependencies . 149

9.2.2 Yaml Configuration . 150
Authentication & Authorization . 150
Properties . 153
Rules . 155

9.2.3 DistSQL . 156
Definition . 156
Related Concepts . 156
Impact on the System . 157
Limitations . 158
How it works . 158
Related References . 159
Syntax . 159
Usage . 345

9.2.4 Data Migration . 352
Introduction . 352
Build . 352
Manual . 356

9.2.5 Observability . 370
Agent . 370
Usage in ShardingSphere‐Proxy . 372
Metrics . 373

9.2.6 Optional Plugins . 374
9.2.7 Session Management . 375

Usage . 375
9.2.8 Logging Configuration . 376

Background . 376
Procedure . 376

9.3 Common Configuration . 378
9.3.1 Properties Configuration . 378

Background . 378
Parameters . 379
Procedure . 380
Sample . 380

9.3.2 Builtin Algorithm . 380
Introduction . 380
Usage . 380
Metadata Repository . 380
Sharding Algorithm . 383

vi

Key Generate Algorithm . 391
Load Balance Algorithm . 393
Encryption Algorithm . 395
Shadow Algorithm . 397
SQL Translator . 398
Sharding Audit Algorithm . 399
Data Masking Algorithm . 400

9.3.3 SQL Hint . 405
Background . 405
Use specification . 405
Parameters . 405
SQL Hint . 406

9.4 Error Code . 408
9.4.1 SQL Error Code . 408

Kernel Exception . 408
Feature Exception . 413
Other Exception . 418

9.4.2 Server Error Code . 418

10 DevManual 419
10.1 Mode . 419

10.1.1 StandalonePersistRepository . 419
Fully‐qualified class name . 419
Definition . 419
Implementation classes . 420

10.1.2 ClusterPersistRepository . 420
Fully‐qualified class name . 420
Definition . 420
Implementation classes . 421

10.2 SQL Parser . 422
10.2.1 DatabaseTypedSQLParserFacade . 422

Fully‐qualified class name . 422
Definition . 422
Implementation classes . 423

10.2.2 SQLStatementVisitorFacade . 424
Fully‐qualified class name . 424
Definition . 424
Implementation classes . 425

10.3 Data Sharding . 426
10.3.1 ShardingAlgorithm . 426

Fully‐qualified class name . 426
Definition . 426
Implementation classes . 427

10.3.2 KeyGenerateAlgorithm . 428
Fully‐qualified class name . 428

vii

Definition . 428
Implementation classes . 428

10.3.3 ShardingAuditAlgorithm . 429
Fully‐qualified class name . 429
Definition . 429
Implementation classes . 429

10.3.4 DatetimeService . 429
Fully‐qualified class name . 429
Definition . 430
Implementation classes . 430

10.4 Readwrite‐splitting . 430
10.4.1 ReadQueryLoadBalanceAlgorithm . 430

Fully‐qualified class name . 430
Definition . 430
Implementation classes . 431

10.5 SQL Audit . 431
10.5.1 SQLAuditor . 431

Fully‐qualified class name . 431
Definition . 432
Implementation classes . 432

10.6 Encryption . 432
10.6.1 EncryptAlgorithm . 432

Fully‐qualified class name . 432
Definition . 432
Implementation classes . 433

10.7 Data Masking . 434
10.7.1 MaskAlgorithm . 434

Fully‐qualified class name . 434
Definition . 434
Implementation classes . 435

10.8 Shadow DB . 436
10.8.1 ShadowAlgorithm . 436

Fully‐qualified class name . 436
Definition . 436
Implementation classes . 437

10.9 Observability . 437
10.9.1 PluginLifecycleService . 437

Fully‐qualified class name . 437
Definition . 438
Implementation classes . 438

11 Test Manual 439
11.1 Integration Test . 439
11.2 Module Test . 439
11.3 Performance Test . 439

viii

11.4 Sysbench Test . 440
11.5 Integration Test . 440

11.5.1 Design . 440
Test case . 440
Test environment . 440
Test engine . 441

11.5.2 User Guide . 441
Test case configuration . 441
Environment configuration . 442
Run the test engine . 443

11.6 Performance Test . 445
11.6.1 SysBench ShardingSphere‐Proxy Empty Rule Performance Test 445

Objectives . 445
Set up the test environment . 445
Test phase . 447

11.6.2 BenchmarkSQL ShardingSphere‐Proxy Sharding Performance Test 449
Objective . 449
Method . 449
Fine tuning to test tools . 449
Stress testing environment or parameter recommendations 450
Appendix . 451
BenchmarkSQL 5.0 PostgreSQL statement list . 454

11.7 Module Test . 463
11.7.1 SQL Parser Test . 463

Prepare Data . 463
11.7.2 SQL Rewrite Test . 464

Target . 464
11.8 Pipeline E2E Test . 466

11.8.1 Objectives . 466
11.8.2 Test environment type . 466
11.8.3 User guide . 466

Environment setup . 466
Test case . 466
Running the test case . 467

12 Reference 469
12.1 Database Compatibility . 469
12.2 Database Gateway . 470
12.3 Management . 470

12.3.1 Data Structure in Registry Center . 470
/rules . 473
/props . 473
/metadata/${databaseName}/data_sources/units/ds_0/versions/0 473
/metadata/${databaseName}/data_sources/nodes/ds_0/versions/0 473
/metadata/${databaseName}/rules/sharding/tables/t_order/versions/0 474

ix

/metadata/databaseName/schemas/{schemaName}/tables/t_order/versions/0 . . 474
/nodes/compute_nodes . 475
/nodes/storage_nodes . 475

12.4 Sharding . 475
12.4.1 SQL Parser . 476
12.4.2 SQL Route . 477
12.4.3 SQL Rewrite . 477
12.4.4 SQL Execution . 477
12.4.5 Result Merger . 477
12.4.6 Query Optimization . 477
12.4.7 Parse Engine . 477

Abstract Syntax Tree . 477
SQL Parser Engine . 478

12.4.8 Route Engine . 482
Sharding Route . 482
Broadcast Route . 484

12.4.9 Rewrite Engine . 486
Rewriting for Correctness . 486
Identifier Rewriting . 486
Column Derivation . 488
Pagination Correction . 490
Batch Split . 491
Rewriting for Optimization . 492

12.4.10 Execute Engine . 493
Connection Mode . 493
Automatic Execution Engine . 495

12.4.11 Merger Engine . 499
Traversal Merger . 499
Order‐by Merger . 499
Group‐by Merger . 501
Aggregation Merger . 504
Pagination Merger . 504

12.5 Transaction . 505
12.5.1 Navigation . 505
12.5.2 XA Transaction . 505

Transaction Begin . 506
Execute actual sharding SQL . 506
Commit or Rollback . 507

12.5.3 Seata BASE transaction . 507
Init Seata Engine . 508
Transaction Begin . 508
Execute actual sharding SQL . 508
Commit or Rollback . 509

12.6 Data Migration . 509
12.6.1 Explanation . 509

x

12.6.2 Execution Stage Explained . 510
Preparation . 510
Stock data migration . 510
The Synchronization of incremental data . 510
Traffic Switching . 510

12.6.3 References . 511
12.7 Encryption . 511

12.7.1 Overall Architecture . 511
12.7.2 Encryption Rules . 512
12.7.3 Encryption Process . 513

Detailed Solution . 514
The advantages of Middleware encryption service 516
Solution . 516

12.7.4 EncryptAlgorithm . 516
12.8 Mask . 517

12.8.1 Overall Architecture . 517
12.8.2 Mask Rules . 517
12.8.3 Mask Process . 519

12.9 Shadow . 519
12.9.1 How it works . 519

DML sentence . 520
DDL sentence . 521

12.9.2 References . 521
12.10 Oberservability . 521

12.10.1 How it works . 521
12.11 Architecture . 522

13 FAQ 524
13.1 MODE . 524

13.1.1 MODE What is the difference between cluster mode Cluster and Compati-
ble_Cluster? . 524

13.2 JDBC . 524
13.2.1 JDBC Found a JtaTransactionManager in spring boot project when integrating

with XAtransaction. 524
13.2.2 JDBCThe tableNameand columnName configured in yaml or properties leading

incorrect result when loading Oracle metadata？ 524
13.2.3 JDBC SQLException: Unable to unwrap to interface com.mysql.

jdbc.Connection exception thrown when using MySQL XA transaction . . . 525
13.3 Proxy . 526

13.3.1 Proxy In Windows environment, could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how to solve it? 526

13.3.2 Proxy How to add a new logic database dynamically when use ShardingSphere‐
Proxy? . 526

13.3.3 Proxy How to use suitable database tools connecting ShardingSphere‐Proxy? . . 526

xi

13.3.4 Proxy When using a client to connect to ShardingSphere‐Proxy, if
ShardingSphere‐Proxy does not create a database or does not register a
storage unit, the client connection will fail? . 527

13.4 Sharding . 527
13.4.1 Sharding How to solve Cloud not resolve placeholder ⋯in string

value ⋯ error? . 527
13.4.2 Sharding Why does float number appear in the return result of inline expression?527
13.4.3 Sharding If shardingdatabase is partial, should tableswithout shardingdatabase

& table configured in sharding rules? . 528
13.4.4 Sharding When generic Long type SingleKeyTableShardingAlgorithm is

used, why does the ClassCastException: Integer can not cast to
Long exception appear? . 528

13.4.5 [Sharding:raw‐latex:PROXY] When implementing the StandardShardingAl-
gorithm custom algorithm, the specific type of Comparable is specified as
Long, and the field type in the database table is bigint, a ClassCastExcep-
tion: Integer can not cast to Long exception occurs. 528

13.4.6 Sharding Why is the default distributed auto‐augment key strategy provided by
ShardingSphere not continuous and most of them end with even numbers? . . 528

13.4.7 Sharding How to allow range query with using inline sharding strategy (BE‐
TWEEN AND, >, <, >=, <=)? . 529

13.4.8 ShardingWhy doesmy custom distributed primary key do not work after imple‐
menting KeyGenerateAlgorithm interface and configuring type property? . 529

13.4.9 Sharding In addition to internal distributed primary key, does ShardingSphere
support other native auto‐increment keys? . 529

13.5 DistSQL . 529
13.5.1 DistSQLHow to set customJDBCconnectionproperties or connectionpool prop‐

erties when adding a data source using DistSQL? 529
13.5.2 DistSQL How to solve Storage unit [xxx] is still used by [Sin-

gleRule]. exception when dropping a data source using DistSQL? 530
13.5.3 DistSQL How to solve Failed to get driver instance for jd-

bcURL=xxx. exception when adding a data source using DistSQL? 530
13.6 Other . 530

13.6.1 Other How to debug when SQL can not be executed rightly in ShardingSphere? 530
13.6.2 Other Why do some compiling errors appear? Why did not the IDEA index the

generated codes? . 531
13.6.3 Other In SQLSever and PostgreSQL, why does the aggregation column without

alias throw exception? . 531
13.6.4 OtherWhy does Oracle database throw“Order by valuemust implements Com‐

parable”exception when using Timestamp Order By? 531
13.6.5 Other In Windows environment,when cloning ShardingSphere source code

through Git, why prompt filename too long and how to solve it? 532
13.6.6 Other How to solve Type is required error? 533
13.6.7 Other How to speed up the metadata loading when service starts up? 533
13.6.8 Other The ANTLR plugin generates codes in the same level directory as src,

which is easy to commit by mistake. How to avoid it? 533

xii

13.6.9 Other Why is the database sharding result not correct when using Proxool? . . 534

14 Downloads 535
14.1 Latest Releases . 535

14.1.1 Apache ShardingSphere ‐ Version: 5.4.0 (Release Date: June 30th, 2023) 535
14.2 All Releases . 535
14.3 Verify the Releases . 535

xiii

1
What is ShardingSphere

1.1 Introduction

Apache ShardingSphere is an ecosystem to transform any database into a distributed database system,
and enhance it with sharding, elastic scaling, encryption features & more.

The project is committed to providing a multi‐source heterogeneous, enhanced database platform and
further building an ecosystem around the upper layer of the platform. Database Plus, the design phi‐
losophy of Apache ShardingSphere, aims at building the standard and ecosystem on the upper layer of
the heterogeneous database. It focuses on how to make full and reasonable use of the computing and
storage capabilities of existing databases rather than creating a brand new database. It attaches greater
importance to the collaboration between multiple databases instead of the database itself.

1.1.1 ShardingSphere-JDBC

ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC
layer.

1.1.2 ShardingSphere-Proxy

ShardingSphere‐Proxy is a transparent database proxy, providing a database server that encapsulates
database binary protocol to support heterogeneous languages.

1

Apache ShardingSphere document

1.2 Product Features

F ea tu
re

Definition

Da ta
Sh ar di
ng

Data sharding is an effective way to deal withmassive data storage and computing. Shard‐
ingSphere provides a distributed database solution based on the underlying database,
which can scale computing and storage horizontally.

D is tr
ib ut ed
T ra ns
ac ti on

Transactional capability is key to ensuring database integrity and security and is also one
of the databases’core technologies. With a hybrid engine based on XA and BASE transac‐
tions, ShardingSphere provides distributed transaction capabilities on top of standalone
databases, enabling data security across underlying data sources.

Re ad
/w ri te
S pl it ti
ng

Read/write splitting can be used to cope with business access with high stress. Sharding‐
Sphere provides flexible read/write splitting capabilities and can achieve read access load
balancing based on the understanding of SQL semantics and the ability to perceive the
underlying database topology.

Da ta M
ig ra ti
on

Data migration is the key to connecting data ecosystems. ShardingSphere provides mi‐
gration capabilities to help users migrate the data from other data sources, while simul‐
taneously performing data sharding.

Q ue ry
Fe de ra
ti on

Federated queries are effective in utilizing data in a complex data environment. Sharding‐
Sphere provides complex data query and analysis capabilities across data sources, simpli‐
fying the data aggregation from different data locations.

Da ta
En cr
yp ti on

Data Encryption is a basic way to ensure data security. ShardingSphere provides a com‐
plete, transparent, secure, and low‐cost data encryption solution.

Sh ad
ow Da
ta ba se

In full‐link online load testing scenarios, ShardingSphere supports data isolation in com‐
plex load testing scenarios through the shadow database function. Execute your load
testing scenarios in a production environment without worrying about test data pollut‐
ing your production data.

1.3 Advantages

• Ultimate Performance

Having been polished for years, the driver is close to a native JDBC in terms of efficiency, with ultimate
performance.

• Ecosystem Compatibility

The proxy can be accessed by any application using MySQL/PostgreSQL protocol, and the driver can
connect to any database that implements JDBC specifications.

• Zero Business Intrusion

In response to database switchover scenarios, ShardingSphere can achieve smooth business migration
without business intrusion.

1.2. Product Features 2

Apache ShardingSphere document

• Low Ops & Maintenance Cost

ShardingSphere offers a flat learning curve to DBAs and is interaction‐friendly while allowing the orig‐
inal technology stack to remain unchanged.

• Security & Stability

It can provide enhancement capability based onmature databaseswhile ensuring security and stability.

• Elastic Extention

It supports computing, storage, and smooth online expansion, which canmeet diverse business needs.

• Open Ecosystem

It can provide users with flexibility thanks to custom systems based onmulti‐level (kernel, feature, and
ecosystem) plugin capabilities.

1.3. Advantages 3

2
Design Philosophy

ShardingSphere adopts the database plus design philosophy, which is committed to building the stan‐
dards and ecology of the upper layer of the database and supplementing the missing capabilities of the
database in the ecology.

4

Apache ShardingSphere document

2.1 Connect: Create database upper level standard

Through flexible adaptation of database protocols, SQL dialects, and database storage, it can quickly
build standards on top of multi‐modal heterogeneous databases, while providing standardized connec‐
tion mode for applications through built‐in DistSQL.

2.2 Enhance: Database computing enhancement engine

It can further provide distributed capabilities and traffic enhancement functions based on native
database capabilities. The former can break through the bottleneck of the underlying database in com‐
puting and storage, while the latter provides more diversified data application enhancement capabili‐
ties through traffic deformation, redirection, governance, authentication, and analysis.

2.3 Pluggable: Building database function ecology

The pluggable architecture of Apache ShardingSphere is composed of three layers ‐ L1 Kernel Layer, L2
Feature Layer and L3 Ecosystem Layer.

2.1. Connect: Create database upper level standard 5

Apache ShardingSphere document

2.3.1 L1 Kernel Layer

An abstraction of databases’basic capabilities. All the components are required and the specific im‐
plementation method can be replaced thanks to plugins. It includes a query optimizer, distributed
transaction engine, distributed execution engine, permission engine and scheduling engine.

2.3.2 L2 Feature Layer

Used to provide enhancement capabilities. All components are optional, allowing you to choose
whether to include zero or multiple components. Components are isolated from each other, and mul‐
tiple components can be used together by overlaying. It includes data sharding, read/write splitting,
data encryption and shadow database and so on. The user‐defined feature can be fully customized and
extended for the top‐level interface defined by Apache ShardingSphere without changing kernel codes.

2.3.3 L3 Ecosystem Layer

It is used to integrate and merge the current database ecosystems. The ecosystem layer includes
database protocol, SQL parser and storage adapter, corresponding to the way in which Apache Shard‐
ingSphere provides services by database protocol, the way in which SQL dialect operates data, and the
database type that interacts with storage nodes.

2.3. Pluggable: Building database function ecology 6

3
Deployment

Apache ShardingSphere includes two independent clients: ShardingSphere‐JDBC & ShardingSphere‐
Proxy. They all provide functions of data scale‐out, distributed transaction and distributed governance,
applicable in a variety of scenarios such as Java isomorphism, heterogeneous languages, and a cloud‐
native environment.

3.1 Using ShardingSphere-JDBC

ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC
layer. With the client connecting directly to the database, it provides services in the form of jar and
requires no extra deployment and dependence. It can be considered as an enhanced version of the
JDBC driver, which is fully compatible with JDBC and all kinds of ORM frameworks.

• Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC
Template, or direct use of JDBC;

• Support any third‐party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP;

• Support any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any
JDBC adapted databases.

7

Apache ShardingSphere document

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost More Less
Heterogeneous language Java Only Any
Performance Low loss Relatively High loss
Decentralization Yes No
Static entry No Yes

3.2 Using ShardingSphere-Proxy

ShardingSphere‐Proxy is a transparent database proxy, providing a database server that encapsulates
database binary protocol to support heterogeneous languages. Currently, MySQL and PostgreSQL pro‐
tocols are provided. It can use any kind of terminal that is compatible with MySQL or PostgreSQL pro‐
tocol to operate data, which is more friendly to DBAs.

• Transparent to applications, it can be used directly as MySQL/PostgreSQL;

• Compatible with MySQL‐based databases, such as MariaDB, and PostgreSQL‐based databases,
such as openGauss;

• Applicable to any kind of client that is compatible with MySQL/PostgreSQL protocol, such as
MySQL Command Client, MySQLWorkbench, etc.

3.2. Using ShardingSphere-Proxy 8

Apache ShardingSphere document

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost More Less
Heterogeneous language Java Only Any
Performance Low loss Relatively High loss
Decentralization Yes No
Static entry No Yes

3.3 Hybrid Architecture

ShardingSphere‐JDBC adopts a decentralized architecture, applicable to high‐performance light‐weight
OLTP applications developed with Java. ShardingSphere‐Proxy provides static entry and supports all
languages, applicable to OLAP applications and the sharding databases management and operation
situation.

Apache ShardingSphere is an ecosystem composed of multiple access ports. By combining
ShardingSphere‐JDBC and ShardingSphere‐Proxy, and using the same registry to configure sharding
strategies, it can flexibly build application systems for various scenarios, allowing architects to freely
adjust the system architecture according to the current businesses.

3.3. Hybrid Architecture 9

Apache ShardingSphere document

3.3. Hybrid Architecture 10

4
Running Modes

Apache ShardingSphere provides two running modes: standalone mode and cluster mode.

4.1 Standalone Mode

It can achieve data persistence in terms of metadata information such as data sources and rules, but it
is not able to synchronize metadata to multiple Apache ShardingSphere instances or be aware of each
other in a cluster environment. Updating metadata through one instance causes inconsistencies in
other instances because they cannot get the latest metadata.

It is ideal for engineers to build a ShardingSphere environment locally.

4.2 Cluster Mode

It provides metadata sharing between multiple Apache ShardingSphere instances and the capability to
coordinate states in distributed scenarios.

It provides the capabilities necessary for distributed systems, such as horizontal scaling of computing
capability and high availability. Clustered environments need to store metadata and coordinate nodes’
status through a separately deployed registry center.

We suggest using cluster mode in production environment.

11

5
Roadmap

12

6
Get Involved

ShardingSphere became an Apache Top‐Level Project on April 16, 2020. You are welcome to check out
the mailing list and discuss via mail.

13

https://apache.org/index.html#projects-list
mailto:dev@shardingsphere.apache.org

7
Quick Start

In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere.

Example Codes: https://github.com/apache/shardingsphere/tree/master/examples

7.1 ShardingSphere-JDBC

7.1.1 Scenarios

There are twoways you can configure Apache ShardingSphere: Java and YAML. Developers can choose
the preferred method according to their requirements.

7.1.2 Limitations

Currently only Java language is supported.

7.1.3 Requirements

The development environment requires Java JRE 8 or later.

7.1.4 Procedure

1. Rules configuration.

Please refer to User Manual for more details.

2. Import Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

14

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/

Apache ShardingSphere document

Notice: Please change ${latest.release.version} to the actual version.

3. Create YAML configuration file

JDBC database name. In cluster mode, use this parameter to connect
ShardingSphere-JDBC and ShardingSphere-Proxy.
Default：logic_db
databaseName (?):

mode:

dataSources:

rules:
- !FOO_XXX

...
- !BAR_XXX

...

props:
key_1: value_1
key_2: value_2

4. Take spring boot as an example, edit application.properties.

Configuring DataSource Drivers
spring.datasource.driver-class-name=org.apache.shardingsphere.driver.
ShardingSphereDriver
Specify a YAML configuration file
spring.datasource.url=jdbc:shardingsphere:classpath:xxx.yaml

For details, see Spring Boot.

7.1. ShardingSphere-JDBC 15

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/jdbc-driver/spring-boot/

Apache ShardingSphere document

7.2 ShardingSphere-Proxy

7.2.1 Scenarios

ShardingSphere‐Proxy is positioned as a transparent database proxy. It theoretically supports any client
operation data using MySQL, PostgreSQL and openGauss protocols, and is friendly to heterogeneous
languages and operation and maintenance scenarios.

7.2.2 Limitations

Proxy provides limited support for systemdatabases / tables (such as information_schema, pg_catalog).
When connecting to Proxy through some graph database clients, the client or proxy may have an er‐
ror prompt. You can use command‐line clients (mysql, psql, gsql, etc.) to connect to the Proxy’s
authentication function.

7.2. ShardingSphere-Proxy 16

Apache ShardingSphere document

7.2.3 Requirements

Starting ShardingSphere‐ProxywithDocker requiresnoadditional dependency. To start theProxyusing
binary distribution, the environment must have Java JRE 8 or higher.

7.2.4 Procedure

1. Get ShardingSphere‐Proxy.

ShardingSphere‐Proxy is available at: ‐ Binary Distribution ‐ Docker ‐ Helm

2. Rule configuration.

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml.

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/config-xxx.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the proxy extract path. for example: /opt/
shardingsphere-proxy-bin/

Please refer to Configuration Manual for more details.

3. Import dependencies.

If the backend database is PostgreSQL or openGauss, no additional dependencies are required.

If the backend database is MySQL, please download mysql‐connector‐java‐5.1.49.jar or mysql‐
connector‐java‐8.0.11.jar and put it into the %SHARDINGSPHERE_PROXY_HOME%/ext-lib directory.

4. Start server.

• Use the default configuration to start

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

The default port is 3307, while the default profile directory is %SHARDINGSPHERE_PROXY_HOME%/
conf/.

• Customize port and profile directory

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${proxy_port} ${proxy_conf_directory}

• Force start

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh -f

Use the -f parameter to force start the Proxy. This parameter will ignore the abnormal data source
during startup and start the Proxy forcibly. After the Proxy is started, you can remove the abnormal
data source by DistSQL.

5. Use ShardingSphere‐Proxy.

Use MySQL or PostgreSQL or openGauss client to connect ShardingSphere‐Proxy.

Use the MySQL client to connect to the ShardingSphere‐Proxy:

7.2. ShardingSphere-Proxy 17

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/docker/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/helm/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.49/mysql-connector-java-5.1.49.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}

Use the PostgreSQL client to connect to the ShardingSphere‐Proxy:

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

Use the openGauss client to connect to the ShardingSphere‐Proxy:

gsql -r -h ${proxy_host} -p ${proxy_port} -U ${proxy_username} -W ${proxy_password}

7.2. ShardingSphere-Proxy 18

8
Features

Apache ShardingSphere provides a variety of features, from database kernel and database distributed
solution to applications closed features.

There is no boundary for these features, warmly welcomemore open source engineers to join the com‐
munity and provide exciting ideas and features.

8.1 Sharding

8.1.1 Background

The traditional solution that stores all the data in one concentrated node has hardly satisfied the re‐
quirement of massive data scenario in three aspects, performance, availability and operation cost.

In performance, the relational database mostly uses B+ tree index. When the data amount exceeds the
threshold, deeper indexwill increase the disk IO access number, and thereby, weaken the performance
of query. In the same time, high concurrency requests also make the centralized database to be the
greatest limitation of the system.

In availability, capacity can be expanded at a relatively low cost and any extent with stateless service,
which canmake all the pressure, at last, fall on the database. But the single data nodeor simple primary‐
replica structure has been harder and harder to take these pressures. Therefore, database availability
has become the key to the whole system.

From the aspect of operation costs, when the data in a database instance has reached above the thresh‐
old, DBA’s operation pressure will also increase. The time cost of data backup and data recovery will
be more uncontrollable with increasing amount of data. Generally, it is a relatively reasonable range
for the data in single database case to be within 1TB.

Under the circumstance that traditional relational databases cannot satisfy the requirement of the In‐
ternet, there are more and more attempts to store the data in native distributed NoSQL. But its incom‐
patibility with SQL and imperfection in ecosystem block it from defeating the relational database in the
competition, so the relational database still holds an unshakable position.

Sharding refers to splitting the data in one database and storing them in multiple tables and databases

19

Apache ShardingSphere document

according to some certain standard, so that the performance and availability can be improved. Both
methods can effectively avoid the query limitation caused by data exceeding affordable threshold.
What’s more, database sharding can also effectively disperse TPS. Table sharding, though cannot ease
the database pressure, can provide possibilities to transfer distributed transactions to local transac‐
tions, since cross‐database upgrades are once involved, distributed transactions can turn pretty tricky
sometimes. The use of multiple primary‐replica sharding method can effectively avoid the data con‐
centrating on one node and increase the architecture availability.

Splitting data through database sharding and table sharding is an effective method to deal with high
TPS and mass amount data system, because it can keep the data amount lower than the threshold and
evacuate the traffic. Sharding method can be divided into vertical sharding and horizontal sharding.

Vertical Sharding

According to business shardingmethod, it is called vertical sharding, or longitudinal sharding, the core
concept of which is to specialize databases for different uses. Before sharding, a database consists of
many tables corresponding to different businesses. But after sharding, tables are categorized into dif‐
ferent databases according to business, and the pressure is also separated into different databases. The
diagram below has presented the solution to assign user tables and order tables to different databases
by vertical sharding according to business need.

Vertical sharding requires to adjust the architecture and design from time to time. Generally speaking,
it is not soon enough to deal with fast changing needs from Internet business and not able to really
solve the single‐node problem. it can ease problems brought by the high data amount and concurrency

8.1. Sharding 20

Apache ShardingSphere document

amount, but cannot solve them completely. After vertical sharding, if the data amount in the table still
exceeds the single node threshold, it should be further processed by horizontal sharding.

Horizontal Sharding

Horizontal sharding is also called transverse sharding. Compared with the categorization method
according to business logic of vertical sharding, horizontal sharding categorizes data to multiple
databases or tables according to some certain rules through certain fields, with each sharding con‐
taining only part of the data. For example, according to primary key sharding, even primary keys are
put into the 0 database (or table) and odd primary keys are put into the 1 database (or table), which is
illustrated as the following diagram.

Theoretically, horizontal sharding has overcome the limitation of data processing volume in singlema‐
chine and canbe extended relatively freely, so it canbe taken as a standard solution to database sharding
and table sharding.

8.1. Sharding 21

Apache ShardingSphere document

8.1.2 Challenges

Although data sharding solves problems regarding performance, availability, and backup recovery of
single points, the distributed architecture has introduced new problems while gaining benefits.

One of the major challenges is that application development engineers and database administrators
become extremely overwhelmed with all these operations after such a scattered way of data sharding.
They need to know from which specific sub‐table can they fetch the data needed.

Another challenge is that SQL that works correctly in one single‐node database does not necessarily
work correctly in a sharded database. For example, table splitting results in table name changes, or
incorrect handling of operations such as paging, sorting, and aggregate grouping.

Cross‐library transactions are also tricky for a distributed database cluster. Reasonable use of table
splitting canminimize the use of local transactions while reducing the amount of data in a single table,
and appropriate use of different tables in the same database can effectively avoid the trouble caused
by distributed transactions. In scenarios where cross‐library transactions cannot be avoided, some
businesses might still be in the need to maintain transaction consistency. The XA‐based distributed
transactions are not used by Internet giants on a large scale because their performance cannot meet
the needs in scenarios with high concurrency, andmost of them use flexible transactions with ultimate
consistency instead of strong consistent transactions.

8.1.3 Goal

The main design goal of the data sharding modular of Apache ShardingSphere is to try to reduce the
influence of sharding, in order to let users use horizontal sharding database group like one database.

8.1.4 Application Scenarios

Mass data high concurrency in OLTP scenarios

Most relational databases use B+ tree indexes, but when the amount of data exceeds the threshold, the
increase in index depth will also increase the number of I/O in accessing the disk, which will lower the
query performance. Data sharding through ShardingSphere enables data stored in a single database
to be dispersed into multiple databases or tables according to a business dimension, which improves
performance. The ShardingSphere‐JDBC access port can meet the performance requirements of high
concurrency in OLTP scenarios.

8.1. Sharding 22

Apache ShardingSphere document

Mass data real-time analysis in OLAP scenarios

In traditional database architecture, if users want to analyze data, they need to use ETL tools first, syn‐
chronize the data to the data platform, and then perform data analysis. However, ETL tools will greatly
reduce the effectiveness of data analysis. ShardingSphere‐Proxy provides support for static entry and
heterogeneous languages, independent of application deployment, which is suitable for real‐time anal‐
ysis in OLAP scenarios.

8.1.5 Related References

• User Guide: sharding

• Developer Guide: sharding

8.1.6 Core Concept

Table

Tables are a key concept for transparent data sharding. Apache ShardingSphere adapts to the data
sharding requirements under different scenarios by providing diverse table types.

Logic Table

The logical name of the horizontally sharded database (table) of the same structure is the logical identi‐
fier of the table in SQL. Example: Order data is split into 10 tables according to the primary key endings,
are t_order_0 to t_order_9, and their logical table names are t_order.

Actual Table

Physical tables that exist in the horizontally sharded databases. Those are, t_order_0 to t_order_9
in the previous example.

Binding Table

Refers to a set of sharded tables with consistent sharding rules. When using binding tables for multi‐
table associated query, a sharding key must be used for the association, otherwise, Cartesian product
association or cross‐library association will occur, affecting query efficiency.

For example, if the t_order table and t_order_item table are both sharded according to order_id
and are correlated using order_id, the two tables are binding tables. The multi‐table associated
queries between binding tables will not have a Cartesian product association, so the associated queries
will be much more effective. Here is an example,

If SQL is:

8.1. Sharding 23

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

In the case where no binding table relationships are being set, assume that the sharding key order_id
routes the value 10 to slice 0 and the value 11 to slice 1, then the routed SQL should be 4 items, which
are presented as a Cartesian product:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

After the relationships between binding tables are configured and associated with order_id, the routed
SQL should then be 2 items:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

The t_order table will be used by ShardingSphere as the master table for the entire binding table since
it specifies the sharding condition. All routing calculations will use only the policy of the primary table,
then the sharding calculations for the t_order_item table will use the t_order condition.

Note: multiple sharding rules in the binding table need to be configured according to the combination
of logical table prefix and sharding suffix, for example:

rules:
- !SHARDING

tables:
t_order:

actualDataNodes: ds_${0..1}.t_order_${0..1}
t_order_item:

actualDataNodes: ds_${0..1}.t_order_item_${0..1}

8.1. Sharding 24

Apache ShardingSphere document

Broadcast data frame

Refers to tables that exist in all data sources. The table structure and its data are identical in each
database. Suitable for scenarios where the data volume is small and queries are required to be associ‐
ated with tables of massive data, e.g., dictionary tables.

Single Table

Refers to the only table that exists in all sharded data sources. Suitable for tables with a small amount
of data and do not need to be sharded.

Note: Single tables that meet the following conditions will be automatically loaded: ‐ A single table
showing the configuration in rules such as encrypt andmask ‐ A single table created by users executing
DDL statements through ShardingSphere

For other single tables that do not meet the above conditions, ShardingSphere will not automatically
load them, and users can configure single table rules as needed for management.

Data Nodes

The smallest unit of the data shard, consists of the data source name and the real table. Example:
ds_0.t_order_0.

The mapping relationship between the logical table and the real table can be classified into two forms:
uniform distribution and custom distribution.

Uniform Distribution

refers to situations where the data table exhibits a uniform distribution within each data source. For
example:

db0
├── t_order0
└── t_order1

db1
├── t_order0
└── t_order1

The configuration of data nodes:

db0.t_order0, db0.t_order1, db1.t_order0, db1.t_order1

8.1. Sharding 25

Apache ShardingSphere document

Customized Distribution

Data table exhibiting a patterned distribution. For example:

db0
├── t_order0
└── t_order1

db1
├── t_order2
├── t_order3
└── t_order4

configuration of data nodes:

db0.t_order0, db0.t_order1, db1.t_order2, db1.t_order3, db1.t_order4

Sharding

Sharding key

A database field is used to split a database (table) horizontally. Example: If the order primary key in
the order table is sharded by modulo, the order primary key is a sharded field. If there is no sharded
field in SQL, full routing will be executed, of which performance is poor. In addition to the support for
single‐sharding fields, Apache ShardingSphere also supports sharding based on multiple fields.

Sharding Algorithm

Algorithm for sharding data, supporting =, >=, <=, >, <, BETWEEN and IN. The sharding algorithm can
be implemented by the developers themselves or can use the Apache ShardingSphere built‐in sharding
algorithm, syntax sugar, which is very flexible.

Automatic Sharding Algorithm

Sharding algorithm—syntactic sugar is for conveniently hosting all data nodes without users having
to concern themselves with the physical distribution of actual tables. Includes implementations of
common sharding algorithms such as modulo, hash, range, and time.

8.1. Sharding 26

Apache ShardingSphere document

Customized Sharding Algorithm

Provides a portal for application developers to implement their sharding algorithms that are closely
related to their business operations, while allowing users to manage the physical distribution of actual
tables themselves. Customized sharding algorithms are further divided into: ‐ Standard Sharding Algo‐
rithm Used to deal with scenarios where sharding is performed using a single key as the sharding key
=, IN, BETWEEN AND, >, <, >=, <=. ‐ Composite Sharding AlgorithmUsed to cope with scenarios where
multiple keys are used as sharding keys. The logic containing multiple sharding keys is very compli‐
cated and requires the application developers to handle it on their own. ‐ Hint Sharding Algorithm For
scenarios involving Hint sharding.

Sharding Strategy

Consisting of a sharding key and sharding algorithm, which is abstracted independently due to the
independence of the sharding algorithm. What is viable for sharding operations is the sharding key +
sharding algorithm, known as sharding strategy.

Mandatory Sharding routing

For the scenario where the sharded field is not determined by SQL but by other external conditions,
you can use SQLHint to inject the shard value. Example: Conduct database sharding by employee login
primary key, but there is no such field in the database. SQL Hint can be used both via Java API and SQL
annotation. See Mandatory Sharding Routing for details.

Row Value Expressions

Row expressions are designed to address the two main issues of configuration simplification and inte‐
gration. In the cumbersome configuration rules of data sharding, the large number of repetitive con‐
figurations makes the configuration itself difficult to maintain as the number of data nodes increases.
The data node configuration workload can be effectively simplified by row expressions.

For the common sharding algorithm, using Java code implementation does not help to manage the
configuration uniformly. But by writing the sharding algorithm through line expressions, the rule con‐
figuration can be effectively stored together, which is easier to browse and store.

Row expressions are very intuitive, just use ${ expression } or $->{ expression } in the config‐
uration to identify the row expressions. Data nodes and sharding algorithms are currently supported.
The content of row expressions uses Groovy syntax, and all operations supported by Groovy are sup‐
ported by row expressions. For example:

${begin..end} denotes the range interval

${[unit1, unit2, unit_x]} denotes the enumeration value

If there are multiple ${ expression } or $->{ expression } expressions in a row expression,
the final result of the whole expression will be a Cartesian combination based on the result of each
sub‐expression.

8.1. Sharding 27

Apache ShardingSphere document

e.g. The following row expression:

${['online', 'offline']}_table${1..3}

Finally, it can be parsed as this:

online_table1, online_table2, online_table3, offline_table1, offline_table2,
offline_table3

Distributed Primary Key

In traditional database software development, automatic primary key generation is a basic require‐
ment. Various databases provide support for this requirement, such as self‐incrementing keys of
MySQL, self‐incrementing sequences of Oracle, etc. After data sharding, it is very tricky to generate
global unique primary keys for different data nodes. Self‐incrementing keys between different ac‐
tual tables within the same logical table generate repetitive primary keys because they are not mu‐
tually aware. Although collisions can be avoided by constraining the initial value and step size of self‐
incrementing primary keys, additional operational and maintenance rules are necessary to be intro‐
duced, rendering the solution lacking in completeness and scalability.

Many third‐party solutions can perfectly solve this problem, such as UUID, which relies on specific al‐
gorithms to self‐generate non‐repeating keys, or by introducing primary key generation services. To
facilitate users and meet their demands for different scenarios, Apache ShardingSphere not only pro‐
vides built‐in distributed primary key generators, such as UUID and SNOWFLAKE but also abstracts
the interface of distributed primary key generators to enable users to implement their own customized
self‐extending primary key generators.

8.1.7 Limitations

Compatible with all commonly used SQL that routes to single data nodes; SQL routing to multiple data
nodes is divided, because of complexity issues, into three conditions: stable support, experimental
support, and no support.

Stable Support

Full support for DML, DDL, DCL, TCL, and common DALs. Support for complex queries such as pag‐
ing, de‐duplication, sorting, grouping, aggregation, table association, etc. Support SCHEMA DDL and
DML statements of PostgreSQL and openGauss database. When no schema is specified in SQL, default
access to‘public’schema. Other schemas need to declare before the table name, and do not support
‘SEARCH_PATH’to modify the schema search path.

8.1. Sharding 28

Apache ShardingSphere document

Normal Queries

• main statement SELECT

SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE predicates]
[GROUP BY {col_name | position} [ASC | DESC], ...]
[ORDER BY {col_name | position} [ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

• select_expr

* |
[DISTINCT] COLUMN_NAME [AS] [alias] |
(MAX | MIN | SUM | AVG)(COLUMN_NAME | alias) [AS] [alias] |
COUNT(* | COLUMN_NAME | alias) [AS] [alias]

• table_reference

tbl_name [AS] alias] [index_hint_list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON
conditional_expr | USING (column_list)]

Sub-query

Stable support is provided by the kernel when both the subquery and the outer query specify a shard
key and the values of the slice key remain consistent. e.g:

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 1;

Sub‐query for pagination can be stably supported by the kernel. e.g.:

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT * FROM t_order) row_
WHERE rownum <= ?) WHERE rownum > ?;

Pagination Query

MySQL, PostgreSQL, and openGauss are fully supported, Oracle and SQLServer are only partially sup‐
ported due to more intricate paging queries.

Pagination for Oracle and SQLServer needs to be handled by subqueries, and ShardingSphere supports
paging‐related subqueries.

• Oracle Support pagination by rownum

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id
FROM t_order o JOIN t_order_item i ON o.order_id = i.order_id) row_ WHERE rownum <=
?) WHERE rownum > ?

8.1. Sharding 29

https://shardingsphere.apache.org/document/current/en/features/sharding/limitation/#pagination-query

Apache ShardingSphere document

• SQL Server Support pagination that coordinates TOP + ROW_NUMBER() OVER

SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS
rownum, * FROM t_order o) AS temp WHERE temp.rownum > ? ORDER BY temp.order_id

Support pagination by OFFSET FETCH after SQLServer 2012

SELECT * FROM t_order o ORDER BY id OFFSET ? ROW FETCH NEXT ? ROWS ONLY

• MySQL, PostgreSQL and openGauss all support LIMIT paginationwithout the need for sub‐query：

SELECT * FROM t_order o ORDER BY id LIMIT ? OFFSET ?

Shard keys included in operation expressions

When the sharding key is contained in an expression, the value used for sharding cannot be extracted
through the SQL letters and will result in full routing.

For example, assume create_time is a sharding key.

SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01';

LOAD DATA / LOAD XML

Support MySQL LOAD DATA and LOAD XML statements to load data to single table and broadcast table.

Experimental Support

Experimental support refers specifically to support provided by implementing Federation execution
engine, an experimental product that is still under development. Although largely available to users, it
still requires significant optimization.

Sub-query

The Federation execution engine provides support for subqueries and outer queries that do not both
specify a sharding key or have inconsistent values for the sharding key.

e.g:

SELECT * FROM (SELECT * FROM t_order) o;

SELECT * FROM (SELECT * FROM t_order) o WHERE o.order_id = 1;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 2;

8.1. Sharding 30

Apache ShardingSphere document

Cross-database Associated query

When multiple tables in an associated query are distributed across different database instances, the
Federation execution engine can provide support. Assuming that t_order and t_order_item are sharded
tables withmultiple data nodes while no binding table rules are configured, and t_user and t_user_role
are single tables distributed across different database instances, then the Federation execution engine
can support the following common associated queries.

SELECT * FROM t_order o INNER JOIN t_order_item i ON o.order_id = i.order_id WHERE
o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user u ON o.user_id = u.user_id WHERE o.user_
id = 1;

SELECT * FROM t_order o LEFT JOIN t_user_role r ON o.user_id = r.user_id WHERE o.
user_id = 1;

SELECT * FROM t_order_item i LEFT JOIN t_user u ON i.user_id = u.user_id WHERE i.
user_id = 1;

SELECT * FROM t_order_item i RIGHT JOIN t_user_role r ON i.user_id = r.user_id
WHERE i.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role r ON u.user_id = r.user_id WHERE u.
user_id = 1;

Do not Support

CASEWHEN

The following CASE WHEN statements are not supported: ‐ CASE WHEN contains sub‐query ‐ Logic
names are used in CASE WHEN(Please use an alias)

Pagination Query

Due to the complexity of paging queries, there are currently somepaging queries that are not supported
forOracle and SQLServer, such as: ‐ Oracle The pagingmethod of rownum+BETWEEN is not supported
at present

• SQLServer Currently, pagination with WITH xxx AS (SELECT ⋯) is not supported. Since the
SQLServer paging statement automatically generated by Hibernate uses the WITH statement,
Hibernate‐based SQLServer paging is not supported at this moment. Pagination using two TOP +
subquery also cannot be supported at this time.

8.1. Sharding 31

Apache ShardingSphere document

LOAD DATA / LOAD XML

Not support MySQL LOAD DATA and LOAD XML statements to load data to sharding table.

8.1.8 Appendix with SQL operator

Limited supported SQL:

• When using getGeneratedKeys interface of JDBC specification to return auto‐increment key, it
is necessary to use a distributed key generator that supports auto‐increment, anddoes not support
other types of distributed key generators

Unsupported SQL:

• CASE WHEN contains sub‐query

• Logical table names are used in CASE WHEN(Please use an alias)

• INSERT INTO tbl_name (col1, col2,⋯) SELECT * FROM tbl_nameWHERE col3 = ?（The SELECT
clause does not support * and the built‐in distributed primary key generator）

• REPLACE INTO tbl_name (col1, col2,⋯) SELECT * FROM tbl_nameWHERE col3 = ?（The SELECT
clause does not support * and the built‐in distributed primary key generator）

• SELECT MAX(tbl_name.col1) FROM tbl_name (If the query column is a function expression, use
the table alias instead of the table name）

Other：
• You should keep actual tables, sharding columns and key generate columns in sharding rule same
capitalization with tables and columns in database.

8.2 Distributed Transaction

8.2.1 Background

Database transactions should satisfy the features of ACID (atomicity, consistency, isolation and dura‐
bility).

• Atomicity: transactions are executed as a whole, and either all or none is executed.

• Consistency: transactions should ensure that the state of data remains consistent after the tran‐
sition.

• Isolation: when multiple transactions execute concurrently, the execution of one transaction
should not affect the execution of others.

• Durability: when a transaction committedmodifies data, the operation will be saved persistently.

In single data node, transactions are only restricted to the access and control of single database re‐
sources, called local transactions. Almost all themature relational databases have provided native sup‐
port for local transactions. But in distributed application situations based onmicro‐services, more and

8.2. Distributed Transaction 32

Apache ShardingSphere document

moreof themrequire to includemultiple accesses to services and the correspondingdatabase resources
in the same transaction. As a result, distributed transactions appear.

Though the relational database has provided perfect native ACID support, it can become an obstacle to
the system performance under distributed situations. How tomake databases satisfy ACID features un‐
der distributed situations or find a corresponding substitute solution, is the priority work of distributed
transactions.

8.2.2 Challenge

For different application situations, developers need to reasonably weight the performance and the
function between all kinds of distributed transactions.

Highly consistent transactions do not have totally the same API and functions as soft transactions, and
they cannot switch between each other freely and invisibly. The choice betweenhighly consistent trans‐
actions and soft transactions as early as development decision‐making phase has sharply increased the
design and development cost.

Highly consistent transactions based on XA is relatively easy to use, but is not good at dealing with long
transaction and high concurrency situation of the Internet. With a high access cost, soft transactions
require developers to transform the application and realize resources lock and backward compensa‐
tion.

8.2.3 Goal

The main design goal of the distributed transaction modular of Apache ShardingSphere is to integrate
existingmature transaction cases to provide an unified distributed transaction interface for local trans‐
actions, 2PC transactions and soft transactions; compensate for the deficiencies of current solutions to
provide a one‐stop distributed transaction solution.

8.2.4 How it works

ShardingSphere provides begin/ commit/rollback traditional transaction interfaces externally, and pro‐
vides distributed transaction capabilities through LOCAL, XA and BASE modes.

LOCAL Transaction

LOCAL mode is implemented based on ShardingSphere’s proxy database interfaces, that is be‐
gin/commit/rolllback. For a logical SQL, ShardingSphere starts transactions on each proxied database
with the begin directive, executes the actual SQL, and performs commit/rollback. Since each data node
manages its own transactions, there is no coordination and communication between them, and they
do not knowwhether other data node transactions succeed or not. There is no loss in performance, but
strong consistency and final consistency cannot be guaranteed.

8.2. Distributed Transaction 33

Apache ShardingSphere document

XA Transaction

XA transaction adopts the concepts including AP(application program), TM(transaction manager) and
RM(resourcemanager) to ensure the strong consistency of distributed transactions. Those concepts are
abstracted from DTP mode which is defined by X/OPEN group. Among them, TM and RM use XA pro‐
tocol to carry out both‐way communication, which is realized through two‐phase commit. Compared
to traditional local transactions, XA transaction adds a preparation stage where the database can also
inform the caller whether the transaction can be committed, in addition to passively accepting commit
instructions. TM can collect the results of all branch transactions and make atomic commit at the end
to ensure the strong consistency of transactions.

XA transaction is implemented based on the interface of ShardingSphere’s proxy database xa
start/end/prepare/commit/rollback/recover.

For a logical SQL, ShardingSphere starts transactions in each proxied database with the xa begin direc‐
tive, integrates TM internally for coordinating branch transactions, and performs xa commit /rollback.
Distributed transactions based on XA protocol are more suitable for short transactions with fixed exe‐
cution time because the required resources need to be locked during execution. For long transactions,
data exclusivity during the entire transaction will have an impact on performance in concurrent sce‐
narios.

8.2. Distributed Transaction 34

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Apache ShardingSphere document

BASE Transaction

If a transaction that implements ACID is called a rigid transaction, then a transaction based on a BASE
transaction element is called a flexible transaction. BASE stands for basic availability, soft state, and
eventual consistency.

• Basically Available: ensure that distributed transaction parties are not necessarily online at the
same time.

• Soft state: system status updates are allowed to have a certain delay, and the delay may not be
recognized by customers.

• Eventually consistent: guarantee the eventual consistency of the system by means of messaging.

ACID transaction puts a high demand for isolation, where all resources must be locked during the exe‐
cution of transactions. Flexible transaction is to move mutex operations from the resource level to the
business level through business logic. Reduce the requirement for strong consistency in exchange for
higher system throughput.

ACID‐based strong consistency transactions and BASE‐based final consistency transactions are not a
jack of all trades and can fully leverage their advantages in the most appropriate scenarios. Apache
ShardingSphere integrates the operational scheme taking SEATA as the flexible transaction. The fol‐
lowing table can be used for comparison to help developers choose the suitable technology.

LOCAL XA BASE

Business transf
ormation

None None Seata server needed

Con sistency Not supported Not supported Final consistency
I solation Not supported Supported Business side guaran‐

teed
Co ncurrent per
formance

no loss severe loss slight loss

Applied s cenar‐
ios

Inconsistent processing by
the business side

short transaction & low‐
level concurrency

long transaction &
high concurrency

8.2.5 Application Scenarios

Thedatabase’s transactions canmeetACIDbusiness requirements in a standalone application scenario.
However, in distributed scenarios, traditional database solutions cannot manage and control global
transactions, and users may find data inconsistency on multiple database nodes.

ShardingSphere distributed transactionmakes it easier to process distributed transactions andprovides
flexible and diverse solutions. Users can select the distributed transaction solutions that best fit their
business scenarios among LOCAL, XA, and BASE modes.

8.2. Distributed Transaction 35

Apache ShardingSphere document

Application Scenarios for ShardingSphere XA Transactions

Strong data consistency is guaranteed in a distributed environment in terms of XA transactions. How‐
ever, its performancemay be degraded due to the synchronous blocking problem. It applies to business
scenarios that require strong data consistency and low concurrency performance.

Application Scenarios for ShardingSphere BASE Transaction

In termsofBASE transactions, final data consistency is guaranteed in adistributed environment. Unlike
XA transactions, resources are not locked during the whole transaction process, so its performance is
relatively higher.

Application Scenarios for ShardingSphere LOCAL Transaction

In terms of LOCAL transactions, the data consistency and isolation among database nodes are not guar‐
anteed in a distributed environment. Therefore, the business sides need to handle the inconsistencies
by themselves. This applies to business scenarios where users would like to handle data inconsistency
in a distributed environment by themselves.

8.2.6 Related references

• YAML distributed transaction configuration

8.2.7 Core Concept

XA Protocol

The original distributed transactionmodel of XA protocol is the“X/Open Distributed Transaction Pro‐
cessing (DTP)”model, XA protocol for short, which was proposed by the X/Open international consor‐
tium.

8.2.8 Limitations

Although Apache ShardingSphere aims at being compatible with all distributed scenario and provid‐
ing the best performance, under the CAP theorem guidance, there is no sliver bullet with distributed
transaction solution.

The Apache ShardingSphere community chose instead to give the users the ability to choose their pre‐
ferred distributed transaction type and use the most suitable solution according to their scenarios.

8.2. Distributed Transaction 36

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/

Apache ShardingSphere document

LOCAL Transaction

Unsupported

• Does not support the cross‐database transactions caused by network or hardware crash. For ex‐
ample, when updating two databases in transaction, if one database crashes before commit, then
only the data of the other database can commit.

XA Transaction

Unsupported

• Recover committing and rolling back in other machines after the service is down.

• MySQL, in the transaction block, the SQL execution is abnormal, and run Commit, and data re‐
mains consistent.

• AfterXA transactions are configured, themaximumlengthof the storageunit namecannot exceed
45 characters.

BASE Transaction

Unsupported

• Does not support isolation level.

8.2.9 Appendix with SQL operator

Unsupported SQL：
• RAL and RDL operations of DistSQL that are used in transactions.

• DDL statements that are used in XA transactions.

Privileges required for XA transactions:

In MySQL8, you need to grant the user XA_RECOVER_ADMIN privileges, otherwise, the XA transaction
manager will report an error when executing the XA RECOVER statement.

8.3 Readwrite-splitting

8.3.1 Background

Database throughput has faced the bottleneck with increasing TPS. For the application with massive
concurrence read but less write in the same time, we can divide the database into a primary database

8.3. Readwrite-splitting 37

Apache ShardingSphere document

and a replica database. The primary database is responsible for the insert, delete and update of trans‐
actions, while the replica database is responsible for queries. It can significantly improve the query
performance of the whole system by effectively avoiding row locks.

One primary database with multiple replica databases can further enhance processing capacity by dis‐
tributing queries evenly into multiple data replicas. Multiple primary databases with multiple replica
databases can enhance not only throughput but also availability. Therefore, the system can still run
normally, even though any database is down or physical disk destroyed.

Different from the sharding that separates data to all nodes according to sharding keys, readwrite‐
splitting routes read and write separately to primary database and replica databases according SQL
analysis.

Data in readwrite‐splitting nodes are consistent, whereas that in shards is not. The combined use of
sharding and readwrite‐splitting will effectively enhance the system performance.

8.3.2 Challenges

Though readwrite‐splitting can enhance system throughput and availability, it also brings inconsis‐
tent data, including that among multiple primary databases and among primary databases and replica
databases. What’smore, it also brings the same problem as data sharding, complicating developer and
operator’smaintenance andoperation. The following diagramhas shown the complex topological rela‐
tions between applications and database groups when sharding used together with readwrite‐splitting.

8.3. Readwrite-splitting 38

Apache ShardingSphere document

8.3.3 Goal

The main design goal of readwrite‐splitting of Apache ShardingSphere is to try to reduce the influence
of readwrite‐splitting, in order to let users use primary‐replica database group like one database.

8.3.4 Application Scenarios

Complex primary-secondary database architecture

Many systems rely on the configuration of primary‐secondary database architecture to improve the
throughput of the whole system. Nevertheless, this configuration can make it more complex to use
services.

After accessing ShardingSphere, the read/write splitting feature can be used to manage primary‐
secondary databases and achieve transparent read/write splitting, enabling users to use databases with
primary/secondary architecture just like using one single database.

8.3. Readwrite-splitting 39

Apache ShardingSphere document

8.3.5 Related References

Java API YAML Configuration

8.3.6 Core Concept

Primary database

The primary database is used to add, update, and delete data operations. Currently, only single primary
database is supported.

Secondary database

The secondary database is used to query data operations andmulti‐secondary databases are supported.

Primary-Secondary synchronization

It refers to the operation of asynchronously synchronizing data from a primary database to a secondary
database. Due to the asynchronism of primary‐secondary synchronization, data from the primary and
secondary databases may be inconsistent for a short time.

Load balancer policy

Channel query requests to different secondary databases through load balancer policy.

8.3.7 Limitations

• Data synchronization of primary and secondary databases is not supported.

• Data inconsistency resulting from data synchronization delays between primary and secondary
databases is not supported.

• Multi‐write of primary database is not supported.

• Transactional consistency between primary and secondary databases is not supported. In the
primary‐secondary model, both data reads and writes in transactions use the primary database.

8.3. Readwrite-splitting 40

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting

Apache ShardingSphere document

8.4 DB Gateway

8.4.1 Background

With the trend of database fragmentation, using multiple types of databases together has become the
norm. The scenario of using one SQL dialect to access all heterogeneous databases is increasing.

8.4.2 Challenges

The existence of diversified databases makes it difficult to standardize the SQL dialect accessing the
database. Engineers need to use different dialects for different kinds of databases, and there is no uni‐
fied query platform.

Automatically translate different types of database dialects into the dialects used by the database, so
that engineers can use any database dialect to access all heterogeneous databases, which can reduce
development and maintenance cost greatly.

8.4.3 Goal

The goal of database gateway for Apache ShardingSphere is translating SQL automatically among vari‐
ous databases.

8.4.4 Application Scenarios

As business scenarios and database products of enterprises become increasingly diversified, the con‐
nection between business applications and various database products becomes extremely complex.
ShardingSphere database gateway can shield the connection between business applications and the
underlying diversified databases. At the same time, it provides a unified access protocol and syntax
system for different business scenarios, which can help enterprises quickly build a unified data access
platform.

8.4.5 Core Concept

SQL Dialect

SQL dialect means database dialect, and it indicates that some database projects have their own unique
syntax in addition to SQL, which are also called dialects. Different database projects may have different
SQL dialects.

8.4. DB Gateway 41

Apache ShardingSphere document

8.4.6 Limitations

The SQL dialect translation of Apache ShardingSphere is experimental.

Currently, only MySQL/PostgreSQL dialects can be automatically translated. Engineers can use MySQL
dialects and protocols to access PostgreSQL databases and vice versa.

8.5 Traffic Governance

8.5.1 Background

As the scale of data continues to expand, a distributed database has become a trend gradually. The
unified management ability of cluster perspective, and control ability of individual components are
necessary ability in modern database system.

8.5.2 Challenges

The challenge is ability which are unified management of centralized management, and operation in
case of single node in failure.

Centralized management is to uniformly manage the state of database storage nodes and middleware
computing nodes, and can detect the latest updates in the distributed environment in real time, further
provide information with control and scheduling.

In the overload traffic scenario, circuit breaker and request limiting for a node to ensurewhole database
cluster can run continuously is a challenge to control ability of a single node.

8.5.3 Goal

The goal of Apache ShardingSpheremanagementmodule is to realize the integratedmanagement abil‐
ity from database to computing node, and provide control ability for components in case of failure.

8.5.4 Application Scenarios

Overloaded compute node protection

When a compute node in a ShardingSphere cluster exceeds its load, the circuit breaker function is used
to block the traffic to the compute node, to ensure that the whole cluster continues to provide stable
services.

8.5. Traffic Governance 42

Apache ShardingSphere document

Storage node traffic limit

In the read‐write splitting scenario where a storage node responsible for the read traffic in a Shard‐
ingSphere cluster receives overloaded requests, the traffic limit function is used to block traffic from
compute nodes to the storage node, to ensure normal response of the storage node cluster.

8.5.5 Core Concept

Circuit Breaker

Fuse connection between Apache ShardingSphere and the database. When an Apache ShardingSphere
node exceeds the max load, stop the node’s access to the database, so that the database can ensure
sufficient resources to provide services for other Apache ShardingSphere nodes.

Request Limit

In the faceof overload requests, open request limiting toprotect some requests can still respondquickly.

8.6 Data Migration

8.6.1 Background

In a scenario where the business continues to develop and the amount of data and concurrency reaches
a certain extent, the traditional single databasemay face problems in terms of performance, scalability
and availability.

Although NoSQL solutions can solve the above problems through data sharding and horizontal scale‐
out, NoSQL databases generally do not support transactions and SQL.

ShardingSphere can also solve the above problems and supports data sharding andhorizontal scale‐out,
while at the same time, also supporting distributed transactions and SQL.

The data migration scheme provided by ShardingSphere can help the traditional single database
smoothly switch to ShardingSphere.

8.6.2 Challenges

The data migration process should not affect the running services. So the first challenge is to minimize
the time window during which data is not available.

Next, data migration should not affect existing data. So the second challenge is to ensure the data cor‐
rectness.

8.6. Data Migration 43

Apache ShardingSphere document

8.6.3 Goal

Themajor goal of Apache ShardingSphere in performing data migration is to reduce the impact of data
migration on services and provide a one‐stop universal data migration solution.

8.6.4 Application Scenarios

Application scenario one: when an application system is using a traditional single database, and the
amount of data in a single table reaches 100 million and is still growing rapidly, a single database that
continues to run with a high load will become the bottleneck of the system.

Once the database becomes the bottleneck, it is useless to scale out the application server. Instead, it
is the database that needs to be scaled out.

8.6.5 Related References

• Configurations of data migration

• Reference of data migration

8.6.6 Core Concept

Nodes

Instances for running compute or storage tier component processes. These can either be physical ma‐
chines, virtual machines, or containers, etc.

Cluster

Multiple nodes that are assembled together to provide a specified service.

Source

The storage cluster where the original data resides.

Target

The target storage cluster to which the original data is to be migrated.

8.6. Data Migration 44

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/migration/
https://shardingsphere.apache.org/document/current/en/reference/migration/

Apache ShardingSphere document

Data Migration Process

The entire process of replicating data from one storage cluster to another.

Stock Data

The data that was already in the data node before the data migration operation started.

Incremental Data

New data generated by operational systems during the execution of data migration operations.

8.6.7 Limitations

Procedures Supported

• Migration of peripheral data to databases managed by Apache ShardingSphere.

• Target proxy without rule or configure any rule.

• Migration of single column primary key or unique key table, the first column type could be: inte‐
ger data type, string data type and part of binary data type (e.g. MySQL VARBINARY).

• Migration of multiple column primary keys or unique keys table.

Procedures not supported

• Migration on top of the current storage node is not supported, so a brand new database cluster
needs to be prepared as the migration target cluster.

• Target proxy table rule contains HINT strategy.

• Use different target table schema from source table schema.

• Source table DDL changes during migration.

8.7 Encryption

8.7.1 Background

Security control has always been a crucial link of data governance, data encryption falls into this cat‐
egory. For both Internet enterprises and traditional sectors, data security has always been a highly
valued and sensitive topic. Data encryption refers to transforming some sensitive information through
encrypt rules to safely protect the private data. Data involves client’s security or business sensibil‐
ity, such as ID number, phone number, card number, client number and other personal information,
requires data encryption according to relevant regulations.

8.7. Encryption 45

Apache ShardingSphere document

For data encryption requirements, there are the following situations in realistic business scenarios:

• When the new business start to launch, and the security department stipulates that the sensitive
information related to users, such as banks andmobile phone numbers, should be encrypted and
stored in the database, and then decrypted when used.

8.7.2 Challenges

In the real business scenario, the relevant business development team often needs to implement and
maintain a set of encryption and decryption system according to the needs of the company’s secu‐
rity department. When the encryption scenario changes, the encryption system often faces the risk of
reconstruction or modification. In addition, for the online business system, it is relatively complex to
realize seamless encryption transformationwith transparency, security and low riskwithoutmodifying
the business logic and SQL.

8.7.3 Goal

Provides a security and transparent data encryption solution, which is the main design goal of Apache
ShardingSphere data encryption module.

8.7.4 Application Scenarios

For scenarios requiring the quick launch of new services while respecting encryption regulations. The
ShardingSphere encryption feature can be used to quickly achieve compliant data encryption, without
requiring users to develop complex encryption systems.

At the same time, its flexibility can also help users avoid complex rebuilding and modification risks
caused by encryption scenario changes.

8.7.5 Related References

• Configuration: Data Encryption

• Developer Guide: Data Encryption

8.7.6 Core Concept

Logic column

It is used to calculate the encryption anddecryption columns and it is the logical identifier of the column
in SQL. Logical columns contain ciphertext columns (mandatory), query‐helper columns (optional),
like‐query columns (optional), and plaintext columns (optional).

8.7. Encryption 46

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document

Cipher column

Encrypted data columns.

Assisted query column

It is a helper column used for queries. For some non‐idempotent encryption algorithms with higher
security levels, irreversible idempotent columns are provided for queries.

Like query column

It is a helper column used for like queries.

8.7.7 Limitations

• You need to process the original data on stocks in the database by yourself.

• The like query supports %, _, but currently does not support escape.

• Case insensitive queries are not supported for the encrypted fields.

• Comparison operations are not supported for encrypted fields, such as GREATER THAN, LESS
THAN, ORDER BY, BETWEEN.

• Calculation operations are not supported for encrypted fields, such as AVG, SUM, and computation
expressions.

• When projection subquery contains encrypt column, you must use alias.

8.7.8 Appendix with SQL operator

Unsupported SQL：
• The case‐insensitive queries are not supported by encrypted fields.

• Comparison operations are not supported for encrypted fields, such as GREATER THAN, LESS
THAN, ORDER BY, BETWEEN.

• Calculationoperations arenot supported for encryptedfields, suchasAVG, SUM,andcomputation
expressions.

• SQL that contains encrypt column in subquery and uses asterisks for outer projection is not sup‐
ported.

Other:

• You should keep encrypt columns, assisted columns and like columns in encrypt rule same capi‐
talization with columns in database.

8.7. Encryption 47

Apache ShardingSphere document

8.8 Data Masking

8.8.1 Background

With the introduction of laws on user data protection, the protection of personal privacy data has risen
to the legal level. Traditional application systems generally lack protection measures for personal pri‐
vacy data. Datamasking can achieve special encryption,masking and replacement of the data returned
by the production database according to user‐definedmasking rules without any changes to the data in
the production database to ensure the sensitivity of the production environment data can be protected.

8.8.2 Challenges

In real business scenarios, relevant DevOps teams often need to implement andmaintain a set ofmask‐
ing functions by themselves according to data masking requirements, and the masking functions are
often coupled in various business logics. Additionally different business systems are difficult to reuse.
When the masking scenario changes, the masking function maintained by itself often faces the risk of
refactoring or modification.

8.8.3 Goal

According to industry needs for data masking and the pain points of business transformation, it pro‐
vides a complete, safe, transparent, and low transformation cost data masking integration solution,
which is the main design goal of the Apache ShardingSphere data masking module.

8.8.4 Application Scenarios

Whether it is a new business that is launched quickly or a mature business that has already been
launched, you can access the data masking function of ShardingSphere to quickly complete the con‐
figuration of mask rules. Customers can use data masking function transparently without developing
a masking function coupled to the business system, and without changing any business logic and SQL.

8.8.5 Related References

• Configuration: Data Mask

• Developer Guide: Data Mask

8.8. Data Masking 48

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/

Apache ShardingSphere document

8.8.6 Core Concept

Logic column

The logical name used to calculate masked column, which is logical identifier of column in SQL.

8.8.7 Limitations

• Masked columns only support string types, not other non‐string types.

8.9 Shadow

8.9.1 Background

Under the distributed application architecture based onmicroservices, business requires multiple ser‐
vices to be completed through a series of services andmiddleware calls. The pressure testing of a single
service can no longer reflect the real scenario.

In the test environment, the cost of rebuild complete set of pressure test environment similar to the
production environment is too high. It is usually impossible to simulate the complexity and data of the
production environment.

So, it is the better way to use the production environment for pressure test. The test results obtained
real capacity and performance of the system accurately.

8.9.2 Challenges

pressure testing on production environment is a complex and huge task. Coordination and adjustments
between microservices and middlewares required to cope with the transparent transmission of differ‐
ent flow rates and pressure test tags. Usually we will build a complete set of pressure testing platform
for different test plans.

Data isolation have to be done at the database‐level, in order to ensure the reliability and integrity of
the production data, data generated by pressure testing routed to test database. Prevent test data from
polluting the real data in the production database.

This requires business applications to perform data classification based on the transparently transmit‐
ted pressure test identification before executing SQL, and route the corresponding SQL to the corre‐
sponding data source.

8.9. Shadow 49

Apache ShardingSphere document

8.9.3 Goal

Apache ShardingSphere focuses on data solutions in pressure testing on production environment.

Themain goal of the Apache ShardingSphere shadow Databasemodule is routing pressure testing data
to user defined database automatically.

8.9.4 Application Scenario

In order to improve the accuracy of stress testing and reduce the testing cost under the distributed appli‐
cation architecture based on microservices, stress testing is usually carried out in production environ‐
ments, which will notably increase testing risks. However, the ShardingSphere shadow DB function,
combinedwith the flexible configuration of the shadow algorithm, can address data pollution, improve
database performance, andmeet the requirements of online stress testing in complex business scenar‐
ios.

8.9.5 Related References

• Java API: shadow DB

• YAML configuration: shadow DB

8.9.6 Core Concept

Production Database

Database for production data

Shadow Database

The Database for stress test data isolation. Configurations should be the same as the Production
Database.

Shadow Algorithm

Shadow Algorithm, which is closely related to business operations, currently has 2 types.

• Column based shadow algorithmRouting to shadow database by recognizing data from SQL. Suit‐
able for stress test scenario that has an emphasis on data list.

• Hint based shadow algorithm Routing to shadow database by recognizing comments from SQL.
Suitable for stress test driven by the identification of upstream system passage.

8.9. Shadow 50

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/

Apache ShardingSphere document

8.9.7 Limitations

Hint based shadow algorithm

No

Column based shadow algorithm

Does not support DDL.

Does not support scope, group, subqueries such as BETWEEN, GROUP BY⋯HAVING, etc.

SQL support list

• INSERT

SQL support or not

INSERT INTO table (column,⋯) VALUES (value,⋯) support
INSERT INTO table (column,⋯) VALUES (value,⋯),(value,⋯),⋯ support
INSERT INTO table (column,⋯) SELECT column1 from table1 where column1 =
value1

do not sup‐
port

• SELECT/UPDATE/DELETE

condition c ate-
gories

SQL s upport or
not

= SELECT/UPDATE/DELETE⋯WHERE column = value s upport
LIKE/NOT LIKE SELECT/UPDATE/DELETE⋯WHERE column LIKE/NOT LIKE value s upport
IN/NOT IN SELECT/UPDATE/DELETE ⋯WHERE column IN/NOT IN

(value1,value2,⋯)
s upport

BETWEEN SELECT/UPDATE/DELETE ⋯WHERE column BETWEEN value1
AND value2

do not s
upport

GROUP BY ⋯
HAVING⋯

SELECT/UPDATE/DELETE⋯WHERE⋯GROUP BY column HAVING
column > value

do not s
upport

Sub Query SELECT/UPDATE/DELETE ⋯WHERE column = (SELECT column
FROM table WHERE column = value)

do not s
upport

8.10 Observability

8.10.1 Background

In order to grasp the distributed system status, observe running state of the cluster is a new challenge.
The point‐to‐point operationmode of logging in to a specific server cannot suite to large number of dis‐
tributed servers. Telemetry through observable data is the recommended operation and maintenance

8.10. Observability 51

Apache ShardingSphere document

mode for them. Tracking, metrics and logging are important ways to obtain observable data of system
status.

APM (application performance monitoring) is to monitor and diagnose the performance of the system
by collecting, storing and analyzing the observable data of the system. Its main functions include per‐
formance index monitoring, call stack analysis, service topology, etc.

Apache ShardingSphere is not responsible for gathering, storing and demonstrating APMdata, but pro‐
vides the necessary information for the APM. In other words, Apache ShardingSphere is only respon‐
sible for generating valuable data and submitting it to relevant systems through standard protocols or
plug‐ins. Tracing is to obtain the tracking information of SQL parsing and SQL execution. Apache
ShardingSphere provides support for OpenTelemetry, SkyWalking by default. It also supports users to
develop customized components through plug‐in.

• Use OpenTelemetry OpenTelemetrywasmerged byOpenTracing andOpenCencus in 2019. In this
way, you only need to fill in the appropriate configuration in the agent configuration file according
to OpenTelemetry SDK Autoconfigure Guide. Data can be exported to Jaeger, Zipkin.

• Use SkyWalking Enable the SkyWalking plug‐in in configuration file and need to configure the
SkyWalking apm‐toolkit.

• Use SkyWalking’s automatic monitor probe Cooperating with Apache SkyWalking team, Apache
ShardingSphere team has realized ShardingSphere automatic monitor probe to automatically
send performance data to SkyWalking. Note that automatic probe in this way cannot be used
together with Apache ShardingSphere plug‐in probe.

Metrics used to collect and display statistical indicator of cluster. Apache ShardingSphere supports
Prometheus by default.

8.10. Observability 52

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://skywalking.apache.org/

Apache ShardingSphere document

8.10.2 Challenges

Tracing andmetrics need to collect system information through event tracking. Lots of events tracking
make kernel code mess, difficult to maintain, and difficult to customize extend.

8.10.3 Goal

The goal of Apache ShardingSphere observability module is providing as many performance and sta‐
tistical indicators as possible and isolating kernel code and embedded code.

8.10. Observability 53

Apache ShardingSphere document

8.10.4 Application Scenarios

ShardingSphere provides observability for applications through the Agent module, and this feature ap‐
plies to the following scenarios:

Monitoring panel

The system’s static information (such as application version) and dynamic information (such as the
number of threads and SQL processing information) are exposed to a third‐party application (such as
Prometheus) using a standard interface. Administrators can visually monitor the real‐time system sta‐
tus.

Monitoring application performance

In ShardingSphere, a SQL statement needs to go through the processes of parsing, routing, rewriting,
execution, and result merging before it is finally executed and the response can be output. If a SQL
statement is complex and the overall execution takes a long time, how do we know which procedure
has room for optimization?

Through Agent plus Tracing, administrators can learn about the time consumption of each step of SQL
execution. Thus, they can easily locate performance risks and formulate targeted SQL optimization
schemes.

Tracing application links

In a distributed application plus data sharding scenario, it is tricky to figure out which node the SQL
statement is issued from and which data source the statement is finally executed on. If an exception
occurs during SQL execution, how do we locate the node where the exception occurred?

Agent + Tracing can help users solve the above problems.

Through tracing the full link of the SQL execution process, users can get complete information such as
“where the SQL comes from and where it is sent to”.

They can also visually observe the SQL routing situation through the generated topological graph,make
timely responses, and quickly locate the root cause of problems.

8.10.5 Related References

• Usage of observability

• Dev guide: observability

• Implementation

8.10. Observability 54

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/observability/
https://shardingsphere.apache.org/document/current/en/dev-manual/agent/
https://shardingsphere.apache.org/document/current/en/reference/observability/

Apache ShardingSphere document

8.10.6 Core Concept

Agent

Based on bytecode enhancement and plugin design to provide tracing, metrics and logging features.

Only after the plugin of the Agent is enabled, the monitoring indicator data can be output to the third‐
party APM for display.

APM

APM is an acronym for Application Performance Monitoring.

Focusing on the performance diagnosis of distributed systems, its main functions include call chain
display, application topology analysis, etc.

Tracing

Tracing data between distributed services or internal processes will be collected by agent. It will then
be sent to third‐party APM systems.

Metrics

System statistical indicators are collected through probes for display by third‐party applications.

Logging

The log can be easily expanded through the agent to providemore information for analyzing the system
running status.

8.10. Observability 55

9
User Manual

This chapter describes how to use projects of Apache ShardingSphere.

9.1 ShardingSphere-JDBC

Configuration is the only module in ShardingSphere‐JDBC that interacts with application devel‐
opers, through which developers can quickly and clearly understand the functions provided by
ShardingSphere‐JDBC.

This chapter is a configuration manual for ShardingSphere‐JDBC, which can also be referred to as a
dictionary if necessary.

ShardingSphere‐JDBC has provided 2 kinds of configuration methods for different situations. By con‐
figuration, application developers can flexibly use data sharding, readwrite‐splitting, data encryption,
shadow database or the combination of them.

Mixed rule configurations are very similar to single rule configuration, except for the differences from
single rule to multiple rules.

It should be noted that the superposition between rules are data source and table name related. If
the previous rule is data source oriented aggregation, the next rule needs to use the aggregated logical
data source name configured by the previous rule when configuring the data source; Similarly, if the
previous rule is table oriented aggregation, the next rule needs to use the aggregated logical table name
configured by the previous rule when configuring the table.

Please refer to Example for more details.

56

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-example-generator

Apache ShardingSphere document

9.1.1 YAML Configuration

Overview

YAML configuration provides interactionwith ShardingSphere JDBC through configuration files. When
usedwith the governancemodule together, the configuration of persistence in the configuration center
is YAML format.

Note: The YAML configuration file supports more than 3MB of configuration content.

YAML configuration is the most common configuration mode, which can omit the complexity of pro‐
gramming and simplify user configuration.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

YAML Format

ShardingSphere‐JDBC YAML file consists of database name, mode configuration, data sourcemap, rule
configurations and properties.

Note: The example connection pool is HikariCP, which can be replaced with other connection pools
according to business scenarios.

JDBC logic database name. Through this parameter to connect ShardingSphere-JDBC
and ShardingSphere-Proxy.
Default value: logic_db
databaseName (?):

mode:

dataSources:

rules:
- !FOO_XXX

...
- !BAR_XXX

...

props:

9.1. ShardingSphere-JDBC 57

Apache ShardingSphere document

key_1: value_1
key_2: value_2

Please refer to Mode Confiugration for more mode details.

Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

Create Data Source

The ShardingSphereDataSource created by YamlShardingSphereDataSourceFactory implements the
standard JDBC DataSource interface.

File yamlFile = // Indicate YAML file
DataSource dataSource = YamlShardingSphereDataSourceFactory.
createDataSource(yamlFile);

Use Data Source

Same with Java API.

YAML Syntax Explanation

!!means instantiation of that class

!means self‐defined alias

-means one or multiple can be included

[]means array, can substitutable with - each other

Mode

Parameters

mode (?): # Default value is Standalone
type: # Type of mode configuration. Values could be: Standalone, Cluster
repository (?): # Persist repository configuration

9.1. ShardingSphere-JDBC 58

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules

Apache ShardingSphere document

Standalone Mode

mode:
type: Standalone
repository:
type: # Type of persist repository
props: # Properties of persist repository

foo_key: foo_value
bar_key: bar_value

Cluster Mode (recommended)

mode:
type: Cluster
repository:
type: # Type of persist repository
props: # Properties of persist repository

namespace: # Namespace of registry center
server-lists: # Server lists of registry center
foo_key: foo_value
bar_key: bar_value

Notes

1. Cluster mode deployment is recommended for production environment.

2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information
there.

Sample

Standalone Mode

mode:
type: Standalone
repository:
type: JDBC

9.1. ShardingSphere-JDBC 59

Apache ShardingSphere document

Cluster Mode (recommended)

mode:
type: Cluster
repository:
type: ZooKeeper
props:

namespace: governance
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60

Using the persistent repository requires additional introduction of the corresponding Maven depen‐
dencies. It is recommended to use:

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-cluster-mode-repository-zookeeper</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Related References

• Installation and Usage of ZooKeeper Registry Center

• Please refer to Builtin Persist Repository List for more details about the type of repository.

• Please refer to ShardingSphere‐JDBCOptional Plugins formore implementations of the persistent
repository.

Data Source

Background

ShardingSphere‐JDBC Supports all JDBC drivers and database connection pools.

In this example, the database driver is MySQL, and the connection pool is HikariCP, which
can be replaced with other database drivers and connection pools. When using ShardingSphere
JDBC, the property name of the JDBC pool depends on the definition of the respective JDBC
pool and is not defined by ShardingSphere. For related processing, please refer to the class
org.apache.shardingsphere.infra.datasource.pool.creator.DataSourcePoolCreator. For example, with
Alibaba Druid 1.2.9, using url instead of jdbcUrl in the example below is the expected behavior.

9.1. ShardingSphere-JDBC 60

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/optional-plugins/

Apache ShardingSphere document

Parameters

dataSources: # Data sources configuration, multiple <data-source-name> available
<data_source_name>: # Data source name
dataSourceClassName: # Data source class name
driverClassName: # The database driver class name is subject to the

configuration of the database connection pool itself
jdbcUrl: # The database URL connection is subject to the configuration of the

database connection pool itself
username: # Database user name, subject to the configuration of the database

connection pool itself
password: # The database password is subject to the configuration of the

database connection pool itself
... Other properties of data source pool

Sample

dataSources:
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:

ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root
password:

Configure other data sources

9.1. ShardingSphere-JDBC 61

Apache ShardingSphere document

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a YAML rule configurationmanual
for ShardingSphere‐JDBC.

Sharding

Background

Data sharding YAML configuration is highly readable. The dependencies between sharding rules can
be quickly understood through the YAML format. ShardingSphere automatically creates the Sharding‐
SphereDataSource object according to YAML configuration, which can reduce unnecessary coding for
users.

Parameters

rules:
- !SHARDING

tables: # Sharding table configuration
<logic_table_name> (+): # Logic table name

actualDataNodes (?): # Describe data source names and actual tables (refer to
Inline syntax rules)

databaseStrategy (?): # Databases sharding strategy, use default databases
sharding strategy if absent. sharding strategy below can choose only one.

standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name

complex: # For multiple sharding columns scenario
shardingColumns: # Sharding column names, multiple columns separated with

comma
shardingAlgorithmName: # Sharding algorithm name

hint: # Sharding by hint
shardingAlgorithmName: # Sharding algorithm name

none: # Do not sharding
tableStrategy: # Tables sharding strategy, same as database sharding strategy
keyGenerateStrategy: # Key generator strategy

column: # Column name of key generator
keyGeneratorName: # Key generator name

auditStrategy: # Sharding audit strategy
auditorNames: # Sharding auditor name
- <auditor_name>
- <auditor_name>

allowHintDisable: true # Enable or disable sharding audit hint
autoTables: # Auto Sharding table configuration
t_order_auto: # Logic table name

actualDataSources (?): # Data source names

9.1. ShardingSphere-JDBC 62

Apache ShardingSphere document

shardingStrategy: # Sharding strategy
standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Auto sharding algorithm name

bindingTables (+): # Binding tables
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>

defaultDatabaseStrategy: # Default strategy for database sharding
defaultTableStrategy: # Default strategy for table sharding
defaultKeyGenerateStrategy: # Default Key generator strategy
defaultShardingColumn: # Default sharding column name

Sharding algorithm configuration
shardingAlgorithms:
<sharding_algorithm_name> (+): # Sharding algorithm name

type: # Sharding algorithm type
props: # Sharding algorithm properties
...

Key generate algorithm configuration
keyGenerators:
<key_generate_algorithm_name> (+): # Key generate algorithm name

type: # Key generate algorithm type
props: # Key generate algorithm properties
...

Sharding audit algorithm configuration
auditors:
<sharding_audit_algorithm_name> (+): # Sharding audit algorithm name

type: # Sharding audit algorithm type
props: # Sharding audit algorithm properties
...

- !BROADCAST
tables: # Broadcast tables
- <table_name>
- <table_name>

Procedure

1. Configure data sharding rules in YAML files, including data source, sharding rules, and global
attributes and other configuration items.

2. Call createDataSource method of the object YamlShardingSphereDataSourceFactory. Create
ShardingSphereDataSource according to the configuration information in YAML files.

9.1. ShardingSphere-JDBC 63

Apache ShardingSphere document

Sample

The YAML configuration sample of data sharding is as follows:

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !SHARDING

tables:
t_order:

actualDataNodes: ds_${0..1}.t_order_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

auditStrategy:
auditorNames:
- sharding_key_required_auditor

allowHintDisable: true
t_order_item:

actualDataNodes: ds_${0..1}.t_order_item_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_item_inline

keyGenerateStrategy:
column: order_item_id
keyGeneratorName: snowflake

t_account:
actualDataNodes: ds_${0..1}.t_account_${0..1}
tableStrategy:

standard:

9.1. ShardingSphere-JDBC 64

Apache ShardingSphere document

shardingAlgorithmName: t_account_inline
keyGenerateStrategy:

column: account_id
keyGeneratorName: snowflake

defaultShardingColumn: account_id
bindingTables:
- t_order,t_order_item

defaultDatabaseStrategy:
standard:

shardingColumn: user_id
shardingAlgorithmName: database_inline

defaultTableStrategy:
none:

shardingAlgorithms:
database_inline:

type: INLINE
props:

algorithm-expression: ds_${user_id % 2}
t_order_inline:

type: INLINE
props:

algorithm-expression: t_order_${order_id % 2}
t_order_item_inline:

type: INLINE
props:

algorithm-expression: t_order_item_${order_id % 2}
t_account_inline:

type: INLINE
props:

algorithm-expression: t_account_${account_id % 2}
keyGenerators:
snowflake:

type: SNOWFLAKE
auditors:
sharding_key_required_auditor:

type: DML_SHARDING_CONDITIONS

- !BROADCAST
tables: # Broadcast tables
- t_address

props:
sql-show: false

Read theYAMLconfiguration to create a data source according to the createDataSourcemethodofYaml‐
ShardingSphereDataSourceFactory.

9.1. ShardingSphere-JDBC 65

Apache ShardingSphere document

YamlShardingSphereDataSourceFactory.createDataSource(getFile("/META-INF/sharding-
databases-tables.yaml"));

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Broadcast Table

Background

Broadcast table YAML configuration is highly readable. The broadcast rules can be quickly understood
thanks to the YAML format. ShardingSphere automatically creates theShardingSphereDataSource
object according to the YAML configuration, which reduces unnecessary coding for users.

Parameters

rules:
- !BROADCAST

tables: # Broadcast tables
- <table_name>
- <table_name>

Procedure

1. Configure broadcast table list in the YAML file.

2. Call the createDataSource method of the object YamlShardingSphereDataSourceFac-
tory. Create ShardingSphereDataSource according to the configuration information in YAML
files.

Sample

The YAML configuration sample of the broadcast table is as follows:

dataSources:
ds_0:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root

9.1. ShardingSphere-JDBC 66

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

password:
ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !BROADCAST

tables:
- t_address

Read the YAML configuration to create a data source according to the createDataSourcemethod of
YamlShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile("/META-INF/broadcast-
databases-tables.yaml"));

Readwrite-splitting

Background

Read/write splitting YAML configuration is highly readable. The YAML format enables you to quickly
understand the dependencies between read/write sharding rules. ShardingSphere automatically cre‐
ates the ShardingSphereDataSource object according to the YAML configuration, which reduces unnec‐
essary coding for users.

Parameters

Readwrite-splitting

rules:
- !READWRITE_SPLITTING

dataSources:
<data_source_name> (+): # Logic data source name of readwrite-splitting

write_data_source_name: # Write data source name
read_data_source_names: # Read data source names, multiple data source names

separated with comma
transactionalReadQueryStrategy (?): # Routing strategy for read query within

a transaction, values include: PRIMARY (to primary), FIXED (to fixed data source),
DYNAMIC (to any data source), default value: DYNAMIC

loadBalancerName: # Load balance algorithm name

9.1. ShardingSphere-JDBC 67

Apache ShardingSphere document

Load balance algorithm configuration
loadBalancers:
<load_balancer_name> (+): # Load balance algorithm name

type: # Load balance algorithm type
props: # Load balance algorithm properties

...

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm.

Procedure

1. Add read/write splitting data source.

2. Set the load balancer algorithm.

3. Use read/write data source.

Sample

rules:
- !READWRITE_SPLITTING

dataSources:
readwrite_ds:

writeDataSourceName: write_ds
readDataSourceNames:

- read_ds_0
- read_ds_1

transactionalReadQueryStrategy: PRIMARY
loadBalancerName: random

loadBalancers:
random:

type: RANDOM

Related References

• Read‐write splitting‐Core features

• Java API: read‐write splitting

9.1. ShardingSphere-JDBC 68

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/

Apache ShardingSphere document

Distributed Transaction

Background

ShardingSphere provides three modes for distributed transactions LOCAL, XA, BASE.

Parameters

transaction:
defaultType: # Transaction mode, optional value LOCAL/XA/BASE
providerType: # Specific implementation of the mode

Procedure

Use LOCAL Mode

The content of the server.yaml configuration file is as follows:

transaction:
defaultType: LOCAL

Use XA Mode

The content of the server.yaml configuration file is as follows:

transaction:
defaultType: XA
providerType: Narayana/Atomikos

To manually add Narayana‐related dependencies:

jta-5.12.4.Final.jar
arjuna-5.12.4.Final.jar
common-5.12.4.Final.jar
jboss-connector-api_1.7_spec-1.0.0.Final.jar
jboss-logging-3.2.1.Final.jar
jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
jboss-transaction-spi-7.6.0.Final.jar
narayana-jts-integration-5.12.4.Final.jar
shardingsphere-transaction-xa-narayana-x.x.x-SNAPSHOT.jar

9.1. ShardingSphere-JDBC 69

Apache ShardingSphere document

Use BASE Mode

The content of the server.yaml configuration file is as follows:

transaction:
defaultType: BASE
providerType: Seata

Build a Seata Server, add relevant configuration files and Seata dependencies, see ShardingSphere In‐
tegrates Seata Flexible Transactions

Encryption

Background

TheYAMLconfigurationapproach todata encryption is highly readable,with theYAML format enabling
a quick understanding of dependencies between encryption rules. Based on the YAML configuration,
ShardingSphere automatically completes the creation of ShardingSphereDataSource objects, reducing
unnecessary coding efforts for users.

Parameters

rules:
- !ENCRYPT

tables:
<table_name> (+): # Encrypt table name

columns:
<column_name> (+): # Encrypt logic column name
cipher:
name: # Cipher column name
encryptorName: # Cipher encrypt algorithm name

assistedQuery (?):
name: # Assisted query column name
encryptorName: # Assisted query encrypt algorithm name

likeQuery (?):
name: # Like query column name
encryptorName: # Like query encrypt algorithm name

Encrypt algorithm configuration
encryptors:
<encrypt_algorithm_name> (+): # Encrypt algorithm name

type: # Encrypt algorithm type
props: # Encrypt algorithm properties

...

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

9.1. ShardingSphere-JDBC 70

https://community.sphere-ex.com/t/topic/404
https://community.sphere-ex.com/t/topic/404
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document

Procedure

1. Configure data encryption rules in the YAML file, including data sources, encryption rules, global
attributes, and other configuration items.

2. Using the createDataSource of calling theYamlShardingSphereDataSourceFactory object to create
ShardingSphereDataSource based on the configuration information in the YAML file.

Sample

The data encryption YAML configurations are as follows:

dataSources:
unique_ds:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !ENCRYPT

tables:
t_user:

columns:
username:
cipher:
name: username
encryptorName: aes_encryptor

assistedQuery:
name: assisted_query_username
encryptorName: assisted_encryptor

likeQuery:
name: like_query_username
encryptorName: like_encryptor

pwd:
cipher:
name: pwd
encryptorName: aes_encryptor

assistedQuery:
name: assisted_query_pwd
encryptorName: assisted_encryptor

encryptors:
aes_encryptor:

type: AES
props:

aes-key-value: 123456abc

9.1. ShardingSphere-JDBC 71

Apache ShardingSphere document

assisted_encryptor:
type: MD5

like_encryptor:
type: CHAR_DIGEST_LIKE

Read theYAMLconfiguration to create a data source according to the createDataSourcemethodofYaml‐
ShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile());

In order to keep compatibility with earlier YAML configuration, ShardingSphere provides following
compatible configuration through‘COMPATIBLE_ENCRYPT’, whichwill be removed in future versions,
and it is recommended to upgrade latest YAML configuration.

dataSources:
unique_ds:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !COMPATIBLE_ENCRYPT

tables:
t_user:

columns:
username:
cipherColumn: username
encryptorName: aes_encryptor
assistedQueryColumn: assisted_query_username
assistedQueryEncryptorName: assisted_encryptor
likeQueryColumn: like_query_username
likeQueryEncryptorName: like_encryptor

pwd:
cipherColumn: pwd
encryptorName: aes_encryptor
assistedQueryColumn: assisted_query_pwd
assistedQueryEncryptorName: assisted_encryptor

encryptors:
aes_encryptor:

type: AES
props:

aes-key-value: 123456abc
assisted_encryptor:

type: MD5
like_encryptor:

9.1. ShardingSphere-JDBC 72

Apache ShardingSphere document

type: CHAR_DIGEST_LIKE

Related References

• Core Feature: Data Encryption

• Developer Guide: Data Encryption

Data Masking

Background

The YAML configuration approach to data masking is highly readable, with the YAML format enabling
a quick understanding of dependencies betweenmask rules. Based on the YAML configuration, Shard‐
ingSphere automatically completes the creation of ShardingSphereDataSource objects, reducing
unnecessary coding efforts for users.

Parameters

rules:
- !MASK

tables:
<table_name> (+): # Mask table name

columns:
<column_name> (+): # Mask logic column name
maskAlgorithm: # Mask algorithm name

Mask algorithm configuration
maskAlgorithms:
<mask_algorithm_name> (+): # Mask algorithm name

type: # Mask algorithm type
props: # Mask algorithm properties
...

Please refer to Built‐in Mask Algorithm List for more details about type of algorithm.

9.1. ShardingSphere-JDBC 73

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask

Apache ShardingSphere document

Procedure

1. Configure data masking rules in the YAML file, including data sources, mask rules, global at‐
tributes, and other configuration items.

2. Using the createDataSource of calling the YamlShardingSphereDataSourceFactory ob‐
ject to create ShardingSphereDataSource based on the configuration information in the
YAML file.

Sample

The data masking YAML configurations are as follows:

dataSources:
unique_ds:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !MASK

tables:
t_user:

columns:
password:
maskAlgorithm: md5_mask

email:
maskAlgorithm: mask_before_special_chars_mask

telephone:
maskAlgorithm: keep_first_n_last_m_mask

maskAlgorithms:
md5_mask:

type: MD5
mask_before_special_chars_mask:

type: MASK_BEFORE_SPECIAL_CHARS
props:

special-chars: '@'
replace-char: '*'

keep_first_n_last_m_mask:
type: KEEP_FIRST_N_LAST_M
props:

first-n: 3
last-m: 4
replace-char: '*'

9.1. ShardingSphere-JDBC 74

Apache ShardingSphere document

Read the YAML configuration to create a data source according to the createDataSourcemethod of
YamlShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile());

Related References

• Core Feature: Data Masking

• Developer Guide: Data Masking

Shadow DB

Background

Please refer to the following configuration in order to use the ShardingSphere shadow DB feature in
ShardingSphere‐Proxy.

Parameters

rules:
- !SHADOW

dataSources:
shadowDataSource:

productionDataSourceName: # production data source name
shadowDataSourceName: # shadow data source name

tables:
<table_name>:

dataSourceNames: # shadow table associates shadow data source name list
- <shadow_data_source>

shadowAlgorithmNames: # shadow table associates shadow algorithm name list
- <shadow_algorithm_name>

defaultShadowAlgorithmName: # default shadow algorithm name (option)
shadowAlgorithms:
<shadow_algorithm_name> (+): # shadow algorithm name

type: # shadow algorithm type
props: # shadow algorithm attribute configuration

Please refer to Built‐in shadow algorithm list for more details.

9.1. ShardingSphere-JDBC 75

https://shardingsphere.apache.org/document/current/en/features/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document

Procedure

1. Configure shadow DB rules in the YAML file, including data sources, shadow library rules, global
properties and other configuration items;

2. Call the createDataSource() method of the YamlShardingSphereDataSourceFactory
object to create a ShardingSphereDataSource based on the configuration information in theYAML
file.

Sample

The YAML configuration sample of shadow DB is as follows:

dataSources:
ds:

url: jdbc:mysql://127.0.0.1:3306/ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

shadow_ds:
url: jdbc:mysql://127.0.0.1:3306/shadow_ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

rules:
- !SHADOW

dataSources:
shadowDataSource:

productionDataSourceName: ds
shadowDataSourceName: shadow_ds

tables:
t_order:

dataSourceNames:
- shadowDataSource

shadowAlgorithmNames:
- user_id_insert_match_algorithm
- sql_hint_algorithm

shadowAlgorithms:
user_id_insert_match_algorithm:

9.1. ShardingSphere-JDBC 76

Apache ShardingSphere document

type: REGEX_MATCH
props:

operation: insert
column: user_id
regex: "[1]"

sql_hint_algorithm:
type: SQL_HINT

Related References

• Core Features of Shadow DB

• JAVA API: Shadow DB Configuration

SQL-parser

Background

The SQL parser YAML configuration is readable and easy to use. The YAML files allow you to separate
the code from the configuration, and easily modify the configuration file as needed.

Parameters

sqlParser:
sqlCommentParseEnabled: # Whether to parse SQL comments
sqlStatementCache: # SQL statement local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache

parseTreeCache: # Parse tree local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache

Procedure

1. Set local cache configuration.

2. Set parser configuration.

3. Use a parsing engine to parse SQL.

9.1. ShardingSphere-JDBC 77

https://shardingsphere.apache.org/document/current/en/features/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/

Apache ShardingSphere document

Sample

sqlParser:
sqlCommentParseEnabled: true
sqlStatementCache:
initialCapacity: 2000
maximumSize: 65535

parseTreeCache:
initialCapacity: 128
maximumSize: 1024

Related References

• JAVA API: SQL Parsing

SQL Translator

Configuration Item Explanation

sqlTranslator:
type: # SQL translator type
useOriginalSQLWhenTranslatingFailed: # Whether use original SQL when translating

failed

Mixed Rules

Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, and data
encryption. These features can be used independently or in combination. Below, you will find the
parameters’explanation and configuration samples based on YAML.

Parameters

rules:
- !SHARDING

tables:
<logic_table_name>: # Logical table name:

actualDataNodes: # consists of logical data source name plus table name
(refer to Inline syntax rules)

tableStrategy: # Table shards strategy. The same as database shards strategy
standard:
shardingColumn: # Sharding column name

9.1. ShardingSphere-JDBC 78

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/

Apache ShardingSphere document

shardingAlgorithmName: # Sharding algorithm name
keyGenerateStrategy:

column: # Auto-increment column name. By default, the auto-increment
primary key generator is not used.

keyGeneratorName: # Distributed sequence algorithm name
defaultDatabaseStrategy:
standard:

shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name

shardingAlgorithms:
<sharding_algorithm_name>: # Sharding algorithm name

type: INLINE
props:

algorithm-expression: # INLINE expression
t_order_inline:

type: INLINE
props:

algorithm-expression: # INLINE expression
keyGenerators:
<key_generate_algorithm_name> (+): # Distributed sequence algorithm name

type: # Distributed sequence algorithm type
props: # Property configuration of distributed sequence algorithm

- !ENCRYPT
encryptors:
<encrypt_algorithm_name> (+): # Encryption and decryption algorithm name

type: # Encryption and decryption algorithm type
props: # Encryption and decryption algorithm property configuration

<encrypt_algorithm_name> (+): # Encryption and decryption algorithm name
type: # Encryption and decryption algorithm type

tables:
<table_name>: # Encryption table name

columns:
<column_name> (+): # Encrypt logic column name
cipher:
name: # Cipher column name
encryptorName: # Cipher encrypt algorithm name

assistedQuery (?):
name: # Assisted query column name
encryptorName: # Assisted query encrypt algorithm name

likeQuery (?):
name: # Like query column name
encryptorName: # Like query encrypt algorithm name

9.1. ShardingSphere-JDBC 79

Apache ShardingSphere document

Samples

rules:
- !SHARDING

tables:
t_order:

actualDataNodes: replica_ds_${0..1}.t_order_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:

shardingColumn: user_id
shardingAlgorithmName: database_inline

shardingAlgorithms:
database_inline:

type: INLINE
props:

algorithm-expression: replica_ds_${user_id % 2}
t_order_inline:

type: INLINE
props:

algorithm-expression: t_order_${order_id % 2}
t_order_item_inline:

type: INLINE
props:

algorithm-expression: t_order_item_${order_id % 2}
keyGenerators:
snowflake:

type: SNOWFLAKE
- !ENCRYPT

encryptors:
aes_encryptor:

type: AES
props:

aes-key-value: 123456abc
assisted_encryptor:

type: MD5
like_encryptor:

type: CHAR_DIGEST_LIKE
tables:
t_encrypt:

columns:
user_id:

9.1. ShardingSphere-JDBC 80

Apache ShardingSphere document

cipher:
name: user_cipher
encryptorName: aes_encryptor

assistedQuery:
name: assisted_query_user
encryptorName: assisted_encryptor

likeQuery:
name: like_query_user
encryptorName: like_encryptor

order_id:
cipher:
name: order_cipher
encryptorName: aes_encryptor

Cache for Sharding Route

Background

This feature is experimental and needs to be used with the data sharding rule. The cache for sharding
routewill put the logical SQL, the parameter value of the shard key, and the routing result into the cache,
exchange space for time, and reduce CPU usage of the routing logic.

We recommend enabling it only if the following conditions are met: ‐ Pure OLTP scenarios. ‐ The CPU
of the machine which deployed the ShardingSphere process has reached the bottleneck. ‐ Most of the
CPUs are used by ShardingSphere routing logic. ‐ All SQLs are optimized and each SQL execution could
be routed to a single data node.

If the above conditions are not met, the execution delay of SQLmay not be significantly improved, and
the memory pressure will be increased.

Parameters

rules:
- !SHARDING

tables:
shardingAlgorithms:
...
shardingCache:
allowedMaxSqlLength: 512 # Allow cached SQL length limit
routeCache:

initialCapacity: 65536 # Initial capacity
maximumSize: 262144 # Maximum capacity
softValues: true # Whether to use soft references

9.1. ShardingSphere-JDBC 81

Apache ShardingSphere document

Related References

• Core Feature: Data Sharding

Single Table

Background

Single rule is used to specify which single tables need to be managed by ShardingSphere, or to set the
default single table data source.

Parameters

rules:
- !SINGLE

tables:
MySQL style
- ds_0.t_single # Load specified single table
- ds_1.* # Load all single tables in the specified data source
- "*.*" # Load all single tables
PostgreSQL style
- ds_0.public.t_config
- ds_1.public.*
- ds_2.*.*
- "*.*.*"

defaultDataSource: ds_0 # The default data source is used when executing CREATE
TABLE statement to create a single table. The default value is null, indicating
random unicast routing.

Related References

• Single Table

Algorithm

Sharding

shardingAlgorithms:
algorithmName is specified by users, and its property has to be consistent with

that of shardingAlgorithmName in the sharding strategy.
<algorithmName>:
type and props, please refer to the built-in sharding algorithm: https://

shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/sharding/

9.1. ShardingSphere-JDBC 82

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/#single-table

Apache ShardingSphere document

type: xxx
props:

xxx: xxx

Encryption

encryptors:
encryptorName is specified by users, and its property should be consistent with

that of encryptorName in encryption rules.
<encryptorName>:
type and props, please refer to the built-in encryption algorithm: https://

shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/

type: xxx
props:

xxx: xxx

Read/Write Splitting Load Balancer

loadBalancers:
loadBalancerName is specified by users, and its property has to be consistent

with that of loadBalancerName in read/write splitting rules.
type and props, please refer to the built-in read/write splitting algorithm

load balancer: https://shardingsphere.apache.org/document/current/en/user-manual/
common-config/builtin-algorithm/load-balance/

type: xxx
props:

xxx: xxx

Shadow DB

shadowAlgorithms:
shadowAlgorithmName is specified by users, and its property has to be

consistent with that of shadowAlgorithmNames in shadow DB rules.
<shadowAlgorithmName>:
type and props, please refer to the built-in shadow DB algorithm: https://

shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/

type: xxx
props:

xxx: xxx

9.1. ShardingSphere-JDBC 83

Apache ShardingSphere document

High Availability

discoveryTypes:
discoveryTypeName is specified by users, and its property has to be consistent

with that of discoveryTypeName in the database discovery rules.
type: xxx
props:

xxx: xxx

Data Masking

maskAlgorithms:
maskAlgorithmName is specified by users, and its property should be consistent

with that of maskAlgorithm in mask rules.
<maskAlgorithmName>:
type and props, please refer to the built-in mask algorithm: https://

shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/mask/

type: xxx
props:

xxx: xxx

JDBC Driver

Background

ShardingSphere‐JDBC provides a JDBC Driver, which can be used only through configuration changes
without rewriting the code.

Parameters

Driver Class Name

org.apache.shardingsphere.driver.ShardingSphereDriver

URL Configuration

• Use jdbc:shardingsphere: as prefix

• Configuration file: xxx.yaml, keep consist format with YAML Configuration

• Configuration file loading rule:

– absolutepath: prefix means to load the configuration file from the absolute path

– classpath: prefix indicates that the configuration file is loaded from the classpath

9.1. ShardingSphere-JDBC 84

jdbc:shardingsphere
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/

Apache ShardingSphere document

– apollo: prefix means to load the configuration file from apollo

Procedure

1. Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

If you use the apollo configuration method, you also need to introduce the apollo-client depen‐
dency:

<dependency>
<groupId>com.ctrip.framework.apollo</groupId>
<artifactId>apollo-client</artifactId>
<version>${apollo-client.version}</version>

</dependency>

2. Use drive

• Use native drivers:

Class.forName("org.apache.shardingsphere.driver.ShardingSphereDriver");
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = DriverManager.getConnection(jdbcUrl);
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

• Use database connection pool:

String driverClassName = "org.apache.shardingsphere.driver.ShardingSphereDriver";
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

// Take HikariCP as an example
HikariDataSource dataSource = new HikariDataSource();

9.1. ShardingSphere-JDBC 85

Apache ShardingSphere document

dataSource.setDriverClassName(driverClassName);
dataSource.setJdbcUrl(jdbcUrl);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

Sample

Load JDBC URL of config.yaml profile in classpath:

jdbc:shardingsphere:classpath:config.yaml

Load JDBC URL of config.yaml profile in absolute path

jdbc:shardingsphere:absolutepath:/path/to/config.yaml

Load JDBC URL of the yaml configuration file in the specified namespace of apollo:

jdbc:shardingsphere:apollo:TEST.test_namespace

Spring Boot

Overview

ShardingSphere provides a JDBC driver, and developers can configure ShardingSphereDriver in
Spring Boot to use ShardingSphere.

9.1. ShardingSphere-JDBC 86

Apache ShardingSphere document

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Spring Boot Properties

Configuring DataSource Drivers
spring.datasource.driver-class-name=org.apache.shardingsphere.driver.
ShardingSphereDriver
Specify a YAML configuration file
spring.datasource.url=jdbc:shardingsphere:classpath:xxx.yaml

Use Data Source

Use this data source directly; or configure ShardingSphereDataSource to be used in conjunction with
ORM frameworks such as JPA, Hibernate, and MyBatis.

Spring Namespace

Overview

ShardingSphere provides a JDBC driver. To use ShardingSphere, developers can configure Sharding-
SphereDriver in Spring.

Operation

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

9.1. ShardingSphere-JDBC 87

Apache ShardingSphere document

Configure Spring Bean

Configuration Item Explanation

Name Type Description

driverClass Attribute Database Driver, need to use ShardingSphereDriver
url Attribute YAML configuration file path

Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd">

<bean id="shardingDataSource" class="org.springframework.jdbc.datasource.
SimpleDriverDataSource">

<property name="driverClass" value="org.apache.shardingsphere.driver.
ShardingSphereDriver" />

<property name="url" value="jdbc:shardingsphere:classpath:xxx.yaml" />
</bean>

</beans>

Use Data Source

Same with Spring Boot.

9.1.2 Java API

Overview

Java API is the basic configuration methods in ShardingSphere‐JDBC, and other configurations will
eventually be transformed into Java API configuration methods.

The Java API is themost complex and flexible configurationmethod, which is suitable for the scenarios
requiring dynamic configuration through programming.

9.1. ShardingSphere-JDBC 88

Apache ShardingSphere document

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Create Data Source

ShardingSphere‐JDBC Java API consists of database name, mode configuration, data source map, rule
configurations and properties.

The ShardingSphereDataSource created by ShardingSphereDataSourceFactory implements the stan‐
dard JDBC DataSource interface.

String databaseName = "foo_schema"; // Indicate logic database name
ModeConfiguration modeConfig = ... // Build mode configuration
Map<String, DataSource> dataSourceMap = ... // Build actual data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build concentrate rule
configurations
Properties props = ... // Build properties
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

Please refer to Mode Confiugration for more mode details.

Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

Use Data Source

Developer can choose tousenative JDBCorORMframeworks suchas JPA,Hibernate orMyBatis through
the DataSource.

Take native JDBC usage as an example:

// Create ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();

9.1. ShardingSphere-JDBC 89

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules

Apache ShardingSphere document

PreparedStatement ps = conn.prepareStatement(sql)) {
ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

Mode

Background

Build the running mode through Java API.

Parameters

Class name: org.apache.shardingsphere.infra.config.mode.ModeConfiguration

Attributes:

•
N am e *

Da taType Description D ef au lt Va lu e

t y p e String Type of mode configu‐
rationValues could be:
Standalone or Cluster

St an da lo ne

r e p o s i t o r y Pe rsistRe positor
yConfig uration

Persist repository
configurationStan‐
dalone type uses
StandalonePer‐
sistRepositoryCon‐
figurationCluster
type uses ClusterPer‐
sistRepositoryConfig‐
uration

9.1. ShardingSphere-JDBC 90

Apache ShardingSphere document

Standalone Persist Configuration

Classname: org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepositoryConfiguration

Attributes:

Name DataType Description

type String Type of persist repository
props Properties Properties of persist repository

Cluster Persist Configuration

Classname: org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration

Attributes:

Name Data Type Description

type String Type of persist repository
namespace String Namespace of registry center
server‐lists String Server lists of registry center
props Properties Properties of persist repository

Notes

1. Cluster mode deployment is recommended for production environment.

2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information
there.

Procedure

Introduce Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.

9.1. ShardingSphere-JDBC 91

Apache ShardingSphere document

Sample

Standalone Mode

ModeConfiguration modeConfig = createModeConfiguration();
Map<String, DataSource> dataSourceMap = ... // Building real data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build property configuration
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private ModeConfiguration createModeConfiguration() {
return new ModeConfiguration("Standalone", new

StandalonePersistRepositoryConfiguration("JDBC", new Properties()));
}

Cluster Mode (Recommended)

ModeConfiguration modeConfig = createModeConfiguration();
Map<String, DataSource> dataSourceMap = ... // Building real data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build property configuration
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private ModeConfiguration createModeConfiguration() {
return new ModeConfiguration("Cluster", new

ClusterPersistRepositoryConfiguration("ZooKeeper", "governance-sharding-db",
"localhost:2181", new Properties()));
}

Related References

• Installation and Usage of ZooKeeper Registry Center

• Please refer to Builtin Persist Repository List for more details about type of repository.

9.1. ShardingSphere-JDBC 92

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document

Data Source

Background

ShardingSphere‐JDBC supports all database JDBC drivers and connection pools.

This section describes how to configure data sources through the JAVA API.

Procedure

1. Import Maven dependency.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.

Sample

ModeConfiguration modeConfig = // Build running mode
Map<String, DataSource> dataSourceMap = createDataSources();
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build attribute configuration
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private Map<String, DataSource> createDataSources() {
Map<String, DataSource> dataSourceMap = new HashMap<>();
// Configure the 1st data source
HikariDataSource dataSource1 = new HikariDataSource();
dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
dataSource1.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSource1.setUsername("root");
dataSource1.setPassword("");
dataSourceMap.put("ds_1", dataSource1);

// Configure the 2nd data source
HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");
dataSourceMap.put("ds_2", dataSource2);

}

9.1. ShardingSphere-JDBC 93

Apache ShardingSphere document

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a java rule configuration manual
for ShardingSphere‐JDBC.

Sharding

Background

The Java API rule configuration for data sharding, which allows users to create ShardingSphereData‐
Source objects directly by writing Java code, is flexible enough to integrate various types of business
systems without relying on additional jar packages.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

Attributes:

9.1. ShardingSphere-JDBC 94

Apache ShardingSphere document

Name DataType Description Default Value

tables (+) Coll ec‐
tion<ShardingTabl
eRuleConfiguration>

Sharding table rules •

autoTables (+) Collecti
on<ShardingAutoTabl
eRuleConfiguration>

Sharding auto table
rules

•

bindi ngTableGroups
(*)

Collection<String> Binding table rules Empty

defau ltDatabaseSha
rdingStrategy (?)

ShardingSt rategyCon‐
figuration

Default database
sharding strategy

Not sharding

de faultTableSha rd‐
ingStrategy (?)

ShardingSt rategyCon‐
figuration

Default table sharding
strategy

Not sharding

defaultKeyGen erateS‐
trategy (?)

KeyGen eratorConfig‐
uration

Default key generator S nowflake

default AuditStrategy
(?)

ShardingAuditSt rate‐
gyConfiguration

Default key auditor DML_SHA RDING_CO
NDITIONS

defaultS hardingCol‐
umn (?)

String Default sharding col‐
umn name

None

shard ingAlgorithms
(+)

Map<String, Algo
rithmConfiguration>

Sharding algorithm
name and configura‐
tions

None

keyGenerators (?) Map<String, Algo
rithmConfiguration>

Key generate algo‐
rithm name and
configurations

None

auditors (?) Map<String, Algo
rithmConfiguration>

Sharding audit al‐
gorithm name and
configurations

None

Sharding Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

Attributes:

9.1. ShardingSphere-JDBC 95

Apache ShardingSphere document

•
Name*

Da taType Description Default Value

logic Table String Name of sharding
logic table

•

actua lData Nodes (?) String Describe data source
names and actual
tables, delimiter as
point. Multiple data
nodes split by comma,
support inline expres‐
sion

Broadcast table or
databases sharding
only

data baseS hardi ngStr
ategy (?)

S harding Strateg
yConfig uration

Databases sharding
strategy

Use default databases
sharding strategy

t ableS hardi ngStr at‐
egy (?)

S harding Strateg
yConfig uration

Tables sharding strat‐
egy

Use default tables
sharding strategy

keyG enera teStr ategy
(?)

KeyG enerato rConfig
uration

Key generator configu‐
ration

Use default key gener‐
ator

aud itStr ategy (?) Shardi ngAudit Strateg
yConfig uration

Sharding audit strat‐
egy configuration

Use default auditor

Sharding Auto Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

Attributes:

Name DataType Description Default Value

l ogicTable String Name of sharding
logic table

•

actualDa taSources (?) String Data source names.
Multiple data nodes
split by comma

Use all configured data
sources

shardin gStrategy (?) Shardin gStrategyCo
nfiguration

Sharding strategy Use default sharding
strategy

k eyGenerat eStrategy
(?)

Key GeneratorCo nfig‐
uration

Key generator configu‐
ration

Use default key gener‐
ator

9.1. ShardingSphere-JDBC 96

Apache ShardingSphere document

Sharding Strategy Configuration

Standard Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumn String Sharding column name
shardingAlgorithmName String Sharding algorithm name

Complex Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumns String Sharding column name, separated by commas
shardingAlgorithmName String Sharding algorithm name

Hint Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingAlgorithmName String Sharding algorithm name

None Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration

Attributes: None

Please refer to Built‐in Sharding Algorithm List for more details about type of algorithm.

9.1. ShardingSphere-JDBC 97

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding

Apache ShardingSphere document

Distributed Key Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration

Attributes:

Name DataType Description

column String Column name of key generate
keyGeneratorName String key generate algorithm name

Please refer to Built‐in Key Generate Algorithm List for more details about type of algorithm.

Sharding audit Strategy Configuration

Classname：org.apache.shardingsphere.sharding.api.config.strategy.audit.ShardingAuditStrategyConfiguration
Attributes：

Name DataType Description

auditorNames Collection<String> Sharding audit algorithm name
allowHintDisable Boolean Enable or disable sharding audit hint

Please refer to Built‐in Sharding Audit Algorithm List for more details about type of algorithm.

Procedure

1. Create an authentic data source mapping relationship, with key as the logical name of the data
source and value as the DataSource object.

2. Create the sharding rule object ShardingRuleConfiguration, and initialize the sharding table ob‐
jects—ShardingTableRuleConfiguration, the set of bound tables, the set of broadcast tables, and
parameters like library sharding strategy and the database sharding strategy, on which the data
sharding depends.

3. Using the ShardingSphereDataSource method of calling the ShardingSphereDataSourceFactory
subject to create the ShardingSphereDataSource.

Sample

public final class ShardingDatabasesAndTablesConfigurationPrecise {

@Override
public DataSource getDataSource() throws SQLException {

return ShardingSphereDataSourceFactory.
createDataSource(createDataSourceMap(), Arrays.
asList(createShardingRuleConfiguration(), createBroadcastRuleConfiguration())), new

9.1. ShardingSphere-JDBC 98

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit

Apache ShardingSphere document

Properties());
}

private ShardingRuleConfiguration createShardingRuleConfiguration() {
ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables().add(getOrderTableRuleConfiguration());
result.getTables().add(getOrderItemTableRuleConfiguration());
result.getBindingTableGroups().add(new

ShardingTableReferenceRuleConfiguration("foo", "t_order, t_order_item"));
result.setDefaultDatabaseShardingStrategy(new

StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy(new

StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", "demo_ds_${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration(

"INLINE", props));
result.getShardingAlgorithms().put("standard_test_tbl", new

AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration(

"SNOWFLAKE", new Properties()));
result.getAuditors().put("sharding_key_required_auditor", new

AlgorithmConfiguration("DML_SHARDING_CONDITIONS", new Properties()));
return result;

}

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(

"t_order", "demo_ds_${0..1}.t_order_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_

id", "snowflake"));
result.setAuditStrategy(new ShardingAuditStrategyConfiguration(Collections.

singleton("sharding_key_required_auditor"), true));
return result;

}

private ShardingTableRuleConfiguration getOrderItemTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(

"t_order_item", "demo_ds_${0..1}.t_order_item_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_

item_id", "snowflake"));
return result;

}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>();
result.put("demo_ds_0", DataSourceUtil.createDataSource("demo_ds_0"));
result.put("demo_ds_1", DataSourceUtil.createDataSource("demo_ds_1"));

9.1. ShardingSphere-JDBC 99

Apache ShardingSphere document

return result;
}

private BroadcastRuleConfiguration createBroadcastRuleConfiguration() {
return new BroadcastRuleConfiguration(Collections.singletonList("t_address

"));;
}

}

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Readwrite-splitting

Background

The read/write splitting configured in Java API form can be easily applied to various scenarios without
relying on additional jar packages. Users only need to construct the read/write splitting data source
through java code to be able to use the read/write splitting function.

Parameters Explained

Entry

Class name: org.apache.shardingsphere.readwritesplitting.api.ReadwriteSplittingRuleConfiguration

Configurable Properties:

Name DataType Description

dataS
ources (+)

Collect ion<ReadwriteSplittingDat
aSourceRuleConfiguration>

Data sources of write and reads

l oadBal
ancers (*)

Map<String, AlgorithmConfigura‐
tion>

Load balance algorithm name and configu‐
rations of replica data sources

9.1. ShardingSphere-JDBC 100

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

Primary-secondary Data Source Configuration

Classname: org.apache.shardingsphere.readwritesplitting.api.rule.ReadwriteSplittingDataSourceRuleConfiguration

Configurable Properties:

Name Dat aType Description •
Default Value*

name String Readwrite‐splitting
data source name

•

write DataSou rce‐
Name

String Write data source
name

•

readD ataSour ce‐
Names

List<S tring> Read data sources list •

tr ansacti onalRea
dQueryS trategy (?)

Transa ctiona lReadQ
uerySt rategy

Routing strategy for
read query within a
transaction, values
include: PRIMARY
(to primary), FIXED
(to fixed data source),
DYNAMIC (to any data
source)

DYNAMIC

lo adBalan cerName (?) String Load balance algo‐
rithm name of replica
sources

Round robin load bal‐
ance al gorithm

Please refer to Built‐in Load Balance Algorithm List for details on algorithm types.

Operating Procedures

1. Add read‐write splitting data source

2. Set load balancing algorithms

3. Use read‐write splitting data source

Configuration Examples

public DataSource getDataSource() throws SQLException {
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfig = new

ReadwriteSplittingDataSourceRuleConfiguration(
"demo_read_query_ds", "demo_write_ds", Arrays.asList("demo_read_ds_

0", "demo_read_ds_1"), "demo_weight_lb");
Properties algorithmProps = new Properties();

9.1. ShardingSphere-JDBC 101

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance

Apache ShardingSphere document

algorithmProps.setProperty("demo_read_ds_0", "2");
algorithmProps.setProperty("demo_read_ds_1", "1");
Map<String, AlgorithmConfiguration> algorithmConfigMap = new HashMap<>(1);
algorithmConfigMap.put("demo_weight_lb", new AlgorithmConfiguration("WEIGHT

", algorithmProps));
ReadwriteSplittingRuleConfiguration ruleConfig = new

ReadwriteSplittingRuleConfiguration(Collections.singleton(dataSourceConfig),
algorithmConfigMap);

Properties props = new Properties();
props.setProperty("sql-show", Boolean.TRUE.toString());
return ShardingSphereDataSourceFactory.

createDataSource(createDataSourceMap(), Collections.singleton(ruleConfig), props);
}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>(3, 1);
result.put("demo_write_ds", DataSourceUtil.createDataSource("demo_write_ds

"));
result.put("demo_read_ds_0", DataSourceUtil.createDataSource("demo_read_ds_

0"));
result.put("demo_read_ds_1", DataSourceUtil.createDataSource("demo_read_ds_

1"));
return result;

}

References

• Read‐write splitting‐Core features

• YAML Configuration: read‐write splitting

Distributed Transaction

Root Configuration

org.apache.shardingsphere.transaction.config.TransactionRuleConfiguration

Attributes:

name DataType Description

defaultType String Default transaction type
providerType (?) String Transaction provider type
props (?) Properties Transaction properties

9.1. ShardingSphere-JDBC 102

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/

Apache ShardingSphere document

Encryption

Background

The data encryption Java API rule configuration allows users to directly create ShardingSphereData‐
Source objects by writing java code. The Java API configuration method is very flexible and can inte‐
grate various types of business systems without relying on additional jar packages.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

Attributes:

Name DataType Description Default Val
ue

tables (+) Collection<En cryptTableRule Con‐
figuration>

Encrypt table rule configurations

enc ryptors
(+)

Map<String, Algorithm Configura‐
tion>

Encrypt algorithm name and con‐
figurations

Encrypt Table Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

Attributes:

Name DataType Description

name String Table name
columns
(+)

Co llection<EncryptColu mnRuleConfigura‐
tion>

Encrypt column rule configura‐
tions

Encrypt Column Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

Attributes:

9.1. ShardingSphere-JDBC 103

Apache ShardingSphere document

Name DataType Description

name String Logic column name
cipher Encry ptColumnItemRuleConfiguration Cipher column config
ass istedQuery (?) Encry ptColumnItemRuleConfiguration Assisted query column config
likeQuery (?) Encry ptColumnItemRuleConfiguration Like query column config

Encrypt Column Item Rule Configuration

Classname: org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnItemRuleConfiguration

Attributes:

Name DataType Description

name String encrypt column item name
encryptorName String encryptor name

Encrypt Algorithm Configuration

Class name: org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

Attributes:

Name DataType Description

name String Encrypt algorithm name
type String Encrypt algorithm type
properties Properties Encrypt algorithm properties

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Procedure

1. Create a real data source mapping relationship, where key is the logical name of the data source
and value is the datasource object.

2. Create the encryption rule object EncryptRuleConfiguration, and initialize the encryption table
object EncryptTableRuleConfiguration, encryption algorithm and other parameters in the object.

3. Call createDataSource of ShardingSphereDataSourceFactory to create ShardingSphereData‐
Source.

9.1. ShardingSphere-JDBC 104

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document

Sample

public final class EncryptDatabasesConfiguration {

public DataSource getDataSource() throws SQLException {
Properties props = new Properties();
props.setProperty("aes-key-value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new

EncryptColumnRuleConfiguration("username", new EncryptColumnItemRuleConfiguration(
"username", "name_encryptor"));

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", new EncryptColumnItemRuleConfiguration("pwd",
"pwd_encryptor"));

columnConfigTest.setAssistedQuery(new EncryptColumnItemRuleConfiguration(
"assisted_query_pwd", "pwd_encryptor"));

columnConfigTest.setLikeQuery(new EncryptColumnItemRuleConfiguration("like_
pwd", "like_encryptor"));

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest));

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new HashMap<>
();

encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration(
"AES", props));

encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(
"assistedTest", props));

encryptAlgorithmConfigs.put("like_encryptor", new AlgorithmConfiguration(
"CHAR_DIGEST_LIKE", new Properties()));

EncryptRuleConfiguration encryptRuleConfig = new
EncryptRuleConfiguration(Collections.singleton(encryptTableRuleConfig),
encryptAlgorithmConfigs);

return ShardingSphereDataSourceFactory.createDataSource(DataSourceUtil.
createDataSource("demo_ds"), Collections.singleton(encryptRuleConfig), props);

}
}

Related References

• The feature description of Data Encryption

• Dev Guide of Data Encryption

9.1. ShardingSphere-JDBC 105

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document

Data Masking

Background

The datamasking Java API rule configuration allows users to directly create ShardingSphereDataSource
objects by writing java code. The Java API configuration method is very flexible and can integrate vari‐
ous types of business systems without relying on additional jar packages.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.mask.api.config.MaskRuleConfiguration

Attributes:

Name DataType Description •
Default Value*

tables (+) Collection<MaskT
ableRuleConfigura‐
tion>

Mask table rule config‐
urations

maskA lgorithms (+) Map<String, A lgo‐
rithmConfiguration>

Mask algorithm name
and configurations

Mask Table Rule Configuration

Class name: org.apache.shardingsphere.mask.api.config.rule.MaskTableRuleConfiguration

Attributes:

Name DataType Description

name String Table name
columns (+) Collecti on<MaskColumnRuleConfiguration> Mask column rule configurations

Mask Column Rule Configuration

Class name: org.apache.shardingsphere.mask.api.config.rule.MaskColumnRuleConfiguration

Attributes:

Name DataType Description

logicColumn String Logic column name
maskAlgorithm String Mask algorithm name

9.1. ShardingSphere-JDBC 106

Apache ShardingSphere document

Mask Algorithm Configuration

Class name: org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

Attributes:

Name DataType Description

name String Mask algorithm name
type String Mask algorithm type
properties Properties Mask algorithm properties

Please refer to Built‐in Data Masking Algorithm List for more details about type of algorithm.

Procedure

1. Create a real data source mapping relationship, where key is the logical name of the data source
and value is the datasource object.

2. Create the data masking rule object MaskRuleConfiguration, and initialize the mask table object
MaskTableRuleConfiguration, mask algorithm and other parameters in the object.

3. Call createDataSource of ShardingSphereDataSourceFactory to create ShardingSphereData‐
Source.

Sample

import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Properties;

public final class MaskDatabasesConfiguration {

@Override
public DataSource getDataSource() throws SQLException {

MaskColumnRuleConfiguration passwordColumn = new
MaskColumnRuleConfiguration("password", "md5_mask");

MaskColumnRuleConfiguration emailColumn = new MaskColumnRuleConfiguration(
"email", "mask_before_special_chars_mask");

MaskColumnRuleConfiguration telephoneColumn = new
MaskColumnRuleConfiguration("telephone", "keep_first_n_last_m_mask");

MaskTableRuleConfiguration maskTableRuleConfig = new
MaskTableRuleConfiguration("t_user", Arrays.asList(passwordColumn, emailColumn,
telephoneColumn));

Map<String, AlgorithmConfiguration> maskAlgorithmConfigs = new
LinkedHashMap<>(3, 1);

maskAlgorithmConfigs.put("md5_mask", new AlgorithmConfiguration("MD5", new
Properties()));

9.1. ShardingSphere-JDBC 107

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask

Apache ShardingSphere document

Properties beforeSpecialCharsProps = new Properties();
beforeSpecialCharsProps.put("special-chars", "@");
beforeSpecialCharsProps.put("replace-char", "*");
maskAlgorithmConfigs.put("mask_before_special_chars_mask", new

AlgorithmConfiguration("MASK_BEFORE_SPECIAL_CHARS", beforeSpecialCharsProps));
Properties keepFirstNLastMProps = new Properties();
keepFirstNLastMProps.put("first-n", "3");
keepFirstNLastMProps.put("last-m", "4");
keepFirstNLastMProps.put("replace-char", "*");
maskAlgorithmConfigs.put("keep_first_n_last_m_mask", new

AlgorithmConfiguration("KEEP_FIRST_N_LAST_M", keepFirstNLastMProps));
MaskRuleConfiguration maskRuleConfig = new

MaskRuleConfiguration(Collections.singleton(maskTableRuleConfig),
maskAlgorithmConfigs);

return ShardingSphereDataSourceFactory.createDataSource(DataSourceUtil.
createDataSource("demo_ds"), Collections.singleton(maskRuleConfig), new
Properties());

}
}

Related References

• The feature description of Data Masking

• Dev Guide of Data Masking

Shadow DB

Background

In thedistributed application architecturebasedonmicroservices, businesses requiremultiple services
to be completed through a series of services and middleware, so the stress test of a single service can
no longer meet the needs of real scenarios. If we reconstruct a stress test environment similar to the
production environment, it is too expensive and often fails to simulate the complexity and traffic of the
online environment. For this reason, the industry often chooses the full link stress test, which is per‐
formed in the production environment, so that the test results can accurately reflect the true capacity
and performance of the system.

9.1. ShardingSphere-JDBC 108

https://shardingsphere.apache.org/document/current/en/features/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/

Apache ShardingSphere document

Parameters

Root Configuration

Class name: org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

Attributes:

Name Data Type Description

dataSources Map<String, ShadowD ataSource‐
Configuration>

shadow data source mapping name
and configuration

tables Map<String, Sh adowTableCon‐
figuration>

shadow table name and configuration

sha dowAlgorithms Map<String, AlgorithmConfigu‐
ration>

shadow algorithm name and configu‐
ration

defaultShadow Algo‐
rithmName

String default shadow algorithm name

Shadow Data Source Configuration

Classname: org.apache.shardingsphere.shadow.api.config.datasource.ShadowDataSourceConfiguration

Attributes:

Name DataType Description

productionDataSourceName String Production data source name
shadowDataSourceName String Shadow data source name

Shadow Table Configuration

Class name: org.apache.shardingsphere.shadow.api.config.table.ShadowTableConfiguration

Attributes:

Name Data Type Description

data SourceNames Collect
ion<String>

shadow table associates shadow data source mapping
name list

shadowAlg orithm‐
Names

Collect
ion<String>

shadow table associates shadow algorithm name list

9.1. ShardingSphere-JDBC 109

Apache ShardingSphere document

Shadow Algorithm Configuration

Class name：org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

Attributes:

Name Data Type Description

type String shadow algorithm type
props Properties shadow algorithm configuration

Please refer to Built‐in Shadow Algorithm List.

Procedure

1. Create production and shadow data source.

2. Configure shadow rule.

• Configure shadow data source

• Configure shadow table

• Configure shadow algorithm

Sample

public final class ShadowConfiguration {

@Override
public DataSource getDataSource() throws SQLException {

Map<String, DataSource> dataSourceMap = createDataSourceMap();
return ShardingSphereDataSourceFactory.createDataSource(dataSourceMap,

createRuleConfigurations(), createShardingSphereProps());
}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new LinkedHashMap<>();
result.put("ds", DataSourceUtil.createDataSource("demo_ds"));
result.put("ds_shadow", DataSourceUtil.createDataSource("shadow_demo_ds"));
return result;

}

private Collection<RuleConfiguration> createRuleConfigurations() {
Collection<RuleConfiguration> result = new LinkedList<>();
ShadowRuleConfiguration shadowRule = new ShadowRuleConfiguration();
shadowRule.setDataSources(createShadowDataSources());
shadowRule.setTables(createShadowTables());
shadowRule.setShadowAlgorithms(createShadowAlgorithmConfigurations());

9.1. ShardingSphere-JDBC 110

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document

result.add(shadowRule);
return result;

}

private Map<String, ShadowDataSourceConfiguration> createShadowDataSources() {
Map<String, ShadowDataSourceConfiguration> result = new LinkedHashMap<>();
result.put("shadow-data-source", new ShadowDataSourceConfiguration("ds",

"ds_shadow"));
return result;

}

private Map<String, ShadowTableConfiguration> createShadowTables() {
Map<String, ShadowTableConfiguration> result = new LinkedHashMap<>();
result.put("t_user", new ShadowTableConfiguration(Collections.

singletonList("shadow-data-source"), createShadowAlgorithmNames()));
return result;

}

private Collection<String> createShadowAlgorithmNames() {
Collection<String> result = new LinkedList<>();
result.add("user-id-insert-match-algorithm");
result.add("simple-hint-algorithm");
return result;

}

private Map<String, AlgorithmConfiguration>
createShadowAlgorithmConfigurations() {

Map<String, AlgorithmConfiguration> result = new LinkedHashMap<>();
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_type");
userIdInsertProps.setProperty("value", "1");
result.put("user-id-insert-match-algorithm", new AlgorithmConfiguration(

"VALUE_MATCH", userIdInsertProps));
return result;

}
}

9.1. ShardingSphere-JDBC 111

Apache ShardingSphere document

Related References

Features Description of Shadow DB

SQL Parser

Background

SQL is the standard language for users to communicate with databases. The SQL parsing engine is
responsible for parsing the SQL string into an abstract syntax tree for Apache ShardingSphere to un‐
derstand and implement its incremental function. Currently, MySQL, PostgreSQL, SQLServer, Oracle,
openGauss and SQL dialects conforming to SQL92 specifications are supported. Due to the complexity
of SQL syntax, there are still a few unsupported SQLs. By using SQL parsing in the form of Java API, you
can easily integrate into various systems and flexibly customize user requirements.

Parameters

Class: org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration

Attributes:

name DataType Description

sqlCommentParseEnabled (?) boolean Whether to parse SQL comments
parseTreeCache (?) CacheOption Parse syntax tree local cache configuration
sqlStatementCache (?) CacheOption sql statement local cache configuration

Cache option Configuration

Class：org.apache.shardingsphere.sql.parser.api.CacheOption

Attributes:

9.1. ShardingSphere-JDBC 112

https://shardingsphere.apache.org/document/current/en/features/shadow/

Apache ShardingSphere document

name •
D a t a T y p e *

Des cription Default Value

ini tia lCa pac ity i n t Initial capacity of local
cache

parser syntax tree lo‐
cal cache default value
128, SQL statement
cache default value
2000

ma xim umS ize (?) l o n g Maximum capacity of
local cache

The default value of
local cache for pars‐
ing syntax tree is 1024,
and the default value
of sql statement cache
is 65535

Procedure

1. Set local cache configuration.

2. Set resolution configuration.

3. Use the parsing engine to parse SQL.

Sample

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine("MySQL", cacheOption);
ParseASTNode parseASTNode = parserEngine.parse("SELECT t.id, t.name, t.age FROM
table1 AS t ORDER BY t.id DESC;", false);
SQLStatementVisitorEngine visitorEngine = new SQLStatementVisitorEngine("MySQL",
false);
MySQLStatement sqlStatement = visitorEngine.visit(parseASTNode);
System.out.println(sqlStatement.toString());

Related References

• YAML Configuration: SQL Parser

9.1. ShardingSphere-JDBC 113

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/

Apache ShardingSphere document

SQL Translator

Root Configuration

Class: org.apache.shardingsphere.sqltranslator.api.config.SQLTranslatorRuleConfiguration

Attributes:

name Data
Type

Description

type S tring SQL translator type
useOrigina lSQLWhenTranslating‐
Failed (?)

bo olean Whether use original SQL when translating
failed

Mixed Rules

Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, high avail‐
ability, and data encryption. These features can be used independently or in combination. Below, you
will find the configuration samples based on JAVA API.

Samples

// Sharding configuration
private ShardingRuleConfiguration createShardingRuleConfiguration() {

ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables().add(getOrderTableRuleConfiguration());
result.setDefaultDatabaseShardingStrategy(new

StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy(new

StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", "demo_ds_${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration("INLINE

", props));
result.getShardingAlgorithms().put("standard_test_tbl", new

AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration(

"SNOWFLAKE", new Properties()));
return result;

}

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration("t_

9.1. ShardingSphere-JDBC 114

Apache ShardingSphere document

order", "demo_ds_${0..1}.t_order_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_id",

"snowflake"));
return result;

}

// Read/write splitting configuration
private static ReadwriteSplittingRuleConfiguration
createReadwriteSplittingConfiguration() {

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_0", Arrays.asList(
"readwrite_ds_0"), true), "");

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_1", Arrays.asList(
"readwrite_ds_1"), true), "");

Collection<ReadwriteSplittingDataSourceRuleConfiguration> dataSources = new
LinkedList<>();

dataSources.add(dataSourceRuleConfiguration1);
dataSources.add(dataSourceRuleConfiguration2);
return new ReadwriteSplittingRuleConfiguration(dataSources, Collections.

emptyMap());
}

// Data encryption configuration
private static EncryptRuleConfiguration createEncryptRuleConfiguration() {

Properties props = new Properties();
props.setProperty("aes-key-value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new

EncryptColumnRuleConfiguration("username", new EncryptColumnItemRuleConfiguration(
"username", "name_encryptor"));

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", new EncryptColumnItemRuleConfiguration("pwd",
"pwd_encryptor"));

columnConfigTest.setAssistedQuery(new EncryptColumnItemRuleConfiguration(
"assisted_query_pwd", "pwd_encryptor"));

columnConfigTest.setLikeQuery(new EncryptColumnItemRuleConfiguration("like_pwd
", "like_encryptor"));

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest));

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new HashMap<>();
encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration("AES",

props));
encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(

"assistedTest", props));
encryptAlgorithmConfigs.put("like_encryptor", new AlgorithmConfiguration("CHAR_

DIGEST_LIKE", new Properties()));
return new EncryptRuleConfiguration(Collections.

9.1. ShardingSphere-JDBC 115

Apache ShardingSphere document

singleton(encryptTableRuleConfig), encryptAlgorithmConfigs);
}

Algorithm

Sharding

ShardingRuleConfiguration ruleConfiguration = new ShardingRuleConfiguration();
// algorithmName is specified by users and should be consistent with the sharding
algorithm in the sharding strategy.
// type and props, please refer to the built-in sharding algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/sharding/
ruleConfiguration.getShardingAlgorithms().put("algorithmName", new
AlgorithmConfiguration("xxx", new Properties()));

Encryption

// encryptorName is specified by users, and its property should be consistent with
that of encryptorName in encryption rules.
// type and props, please refer to the built-in encryption algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("encryptorName", new AlgorithmConfiguration("xxx", new
Properties()));

Read/Write Splitting Load Balancer

// loadBalancerName is specified by users, and its property has to be consistent
with that of loadBalancerName in read/write splitting rules.
// type and props, please refer to the built-in read/write splitting algorithm load
balancer: https://shardingsphere.apache.org/document/current/en/user-manual/common-
config/builtin-algorithm/load-balance/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("loadBalancerName", new AlgorithmConfiguration("xxx", new
Properties()));

9.1. ShardingSphere-JDBC 116

Apache ShardingSphere document

Shadow DB

// shadowAlgorithmName is specified by users, and its property has to be consistent
with that of shadowAlgorithmNames in shadow DB rules.
// type and props, please refer to the built-in shadow DB algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("shadowAlgorithmName", new AlgorithmConfiguration("xxx", new
Properties()));

High Availability

// discoveryTypeName is specified by users, and its property has to be consistent
with that of discoveryTypeName in database discovery rules.
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("discoveryTypeName", new AlgorithmConfiguration("xxx", new
Properties()));

Data Masking

// maskAlgorithmName is specified by users, and its property should be consistent
with that of maskAlgorithm in mask rules.
// type and props, please refer to the built-in mask algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/mask/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>();
algorithmConfigs.put("maskAlgorithmName", new AlgorithmConfiguration("xxx", new
Properties()));

9.1.3 Special API

This chapter will introduce the special API of ShardingSphere‐JDBC.

Sharding

This chapter will introduce the Sharding API of ShardingSphere‐JDBC.

9.1. ShardingSphere-JDBC 117

Apache ShardingSphere document

Hint

Background

Apache ShardingSphere uses ThreadLocal to manage sharding key values for mandatory routing. A
sharding value can be added by programming to the HintManager that takes effect only within the
current thread.

Main application scenarios for Hint: ‐ The sharding fields do not exist in the SQL and database table
structure but in the external business logic. ‐ Certain data operations are forced to be performed in
given databases.

Procedure

1. Call HintManager.getInstance() to obtain an instance of HintManager.

2. Use HintManager.addDatabaseShardingValue, HintManager.addTableShardingValue to set the
sharding key value.

3. Execute SQL statements to complete routing and execution.

4. Call HintManager.close to clean up the contents of ThreadLocal.

Sample

Hint Configuration

Hint algorithms require users to implement the interface of org.apache.shardingsphere.api.
sharding.hint.HintShardingAlgorithm. Apache ShardingSphere will acquire sharding values
from HintManager to route.

Take the following configurations for reference:

rules:
- !SHARDING

tables:
t_order:

actualDataNodes: demo_ds_${0..1}.t_order_${0..1}
databaseStrategy:

hint:
algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm

tableStrategy:
hint:
algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm

defaultTableStrategy:
none:

defaultKeyGenerateStrategy:
type: SNOWFLAKE

9.1. ShardingSphere-JDBC 118

Apache ShardingSphere document

column: order_id

props:
sql-show: true

Get HintManager

HintManager hintManager = HintManager.getInstance();

Add Sharding Value

• Use hintManager.addDatabaseShardingValue to add sharding key value of data source.

• Use hintManager.addTableShardingValue to add sharding key value of table.

Users can use hintManager.setDatabaseShardingValue to set sharding value in hint
route to some certain sharding database without sharding tables.

Clean Hint Values

Sharding values are saved in ThreadLocal, so it is necessary to use hintManager.close() to clean
ThreadLocal.

ˋˋHintManagerˋˋ has implemented ˋˋAutoCloseableˋˋ. We recommend to close it automaticallywith
ˋˋtry with resourceˋˋ.

Codes:

// Sharding database and table with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

// Sharding database and one database route with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

9.1. ShardingSphere-JDBC 119

Apache ShardingSphere document

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Readwrite-splitting

This chapter will introduce the Readwrite‐splitting API of ShardingSphere‐JDBC.

Hint

Background

Apache ShardingSphere uses ThreadLocal tomanage primary database routingmarks formandatory
routing. A primary database routing mark can be added to HintManager through programming, and
this value is valid only in the current thread.

Hint ismainly used to performmandatory data operations in the primary database for read/write split‐
ting scenarios.

Procedure

1. Call HintManager.getInstance() to obtain HintManager instance.

2. CallHintManager.setWriteRouteOnly()method to set the primary database routingmarks.

3. Execute SQL statements to complete routing and execution.

4. Call HintManager.close() to clear the content of ThreadLocal.

9.1. ShardingSphere-JDBC 120

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

Sample

Primary Route with Hint

Get HintManager

The same as sharding based on hint.

Configure Primary Database Route

• Use hintManager.setWriteRouteOnly to configure primary database route.

Clean Hint Value

The same as data sharding based on hint.

Code:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setWriteRouteOnly();
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

Route to the specified database with Hint

Get HintManager

The same as sharding based on hint.

9.1. ShardingSphere-JDBC 121

Apache ShardingSphere document

Configure Database Route

• Use hintManager.setDataSourceName to configure database route.

Code:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDataSourceName("ds_0");
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

Related References

• Core Feature: Read/write Splitting

• Developer Guide: Read/write Splitting

Transaction

Using distributed transaction through Apache ShardingSphere is no different from local transaction. In
addition to transparent use of distributed transaction, Apache ShardingSphere can switch distributed
transaction types every time the database accesses.

Supported transaction types include local, XA and BASE. It can be set before creating a database con‐
nection, and default value can be set when Apache ShardingSphere startup.

Use Java API

Background

With ShardingSphere‐JDBC, XA and BASE mode transactions can be used through the API.

9.1. ShardingSphere-JDBC 122

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/dev-manual/readwrite-splitting/

Apache ShardingSphere document

Prerequisites

Introducing Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using the Narayana mode with XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${project.version}</version>

</dependency>

<!-- This module is required when using BASE transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Procedure

Perform the business logic using transactions

Sample

// Use ShardingSphereDataSource to get a connection and perform transaction
operations.
try (Connection connection = dataSource.getConnection()) {

connection.setAutoCommit(false);
PreparedStatement preparedStatement = connection.prepareStatement("INSERT INTO

t_order (user_id, status) VALUES (?, ?)");
preparedStatement.setObject(1, 1000);
preparedStatement.setObject(2, "init");
preparedStatement.executeUpdate();

9.1. ShardingSphere-JDBC 123

Apache ShardingSphere document

connection.commit();
}

Atomikos Transaction

Background

Apache ShardingSphere provides XA transactions, and the default XA transactionmanager is Atomikos.

Procedure

1. Configure the transaction type

2. Configure Atomikos

Sample

Configure the transaction type

Yaml:

transaction:
defaultType: XA
providerType: Atomikos

Configure Atomikos

Atomikos configuration items can be customized by adding jta.properties to the project’s class‐
path.

See Atomikos’s official documentation for more details.

Data Recovery

xa_tx.log is generated in the logs directory of the project. This is the log required for recovering
XA crash. Do not delete it.

9.1. ShardingSphere-JDBC 124

https://www.atomikos.com/Documentation/JtaProperties

Apache ShardingSphere document

Narayana Transaction

Background

Apache ShardingSphere provides XA transactions that integrate with the Narayana implementation.

Prerequisites

Introducing Maven dependency

<properties>
<narayana.version>5.12.4.Final</narayana.version>
<jboss-transaction-spi.version>7.6.0.Final</jboss-transaction-spi.version>
<jboss-logging.version>3.2.1.Final</jboss-logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${shardingsphere.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jta</groupId>
<artifactId>jta</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana-jts-integration</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss</groupId>
<artifactId>jboss-transaction-spi</artifactId>
<version>${jboss-transaction-spi.version}</version>

9.1. ShardingSphere-JDBC 125

Apache ShardingSphere document

</dependency>
<dependency>

<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>${jboss-logging.version}</version>

</dependency>

Procedure

1. Configure Narayana

2. Set the XA transaction type

Sample

Configure Narayana

Narayana configuration items can be customized by adding jbossts-properties.xml to the
project’s classpath.

See Narayana’s Official Documentation for more details.

Set the XA transaction type

Yaml:

transaction:
defaultType: XA
providerType: Narayana

Seata Transaction

Background

Apache ShardingSphere provides BASE transactions that integrate the Seata implementation.

9.1. ShardingSphere-JDBC 126

https://narayana.io/documentation/index.html

Apache ShardingSphere document

Procedure

1. Start Seata Server

2. Create the log table

3. Add the Seata configuration

Sample

Start Seata Server

Refer to seata‐work‐shop to download and start the Seata server.

Create undo_log table

Create the undo_log table in each shard database instance (take MySQL as an example).

CREATE TABLE IF NOT EXISTS `undo_log`
(

`id` BIGINT(20) NOT NULL AUTO_INCREMENT COMMENT 'increment id',
`branch_id` BIGINT(20) NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(100) NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as

serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME NOT NULL COMMENT 'modify datetime',
PRIMARY KEY (`id`),
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)

) ENGINE = InnoDB
AUTO_INCREMENT = 1
DEFAULT CHARSET = utf8 COMMENT ='AT transaction mode undo table';

Modify configuration

Add the seata.conf file to the classpath.

client {
application.id = example ## Apply the only primary key
transaction.service.group = my_test_tx_group ## The transaction group it

belongs to.
}

Modify the file.conf and registry.conf files of Seata as required.

9.1. ShardingSphere-JDBC 127

https://github.com/seata/seata-workshop

Apache ShardingSphere document

9.1.4 Optional Plugins

ShardingSphere only includes the implementation of the core SPI by default, and there is a part of
the SPI that contains third‐party dependencies in Git Source Implemented plugins are not included.
Retrievable at https://central.sonatype.com/.

SPI and existing implementation classes of SPI corresponding to all plugins can be retrieved at https:
//shardingsphere.apache.org/document/current/cn/dev‐manual/.

All the built‐in plugins for ShardingSphere‐JDBC are listed below in the form of‘groupId:artifactId’.

• org.apache.shardingsphere:shardingsphere-authority-core, the user authority to
load the logical core

• org.apache.shardingsphere:shardingsphere-cluster-mode-core, the persistent
definition core of cluster mode configuration information

• org.apache.shardingsphere:shardingsphere-db-discovery-core, high availability
core

• org.apache.shardingsphere:shardingsphere-encrypt-core, data encryption core

• org.apache.shardingsphere:shardingsphere-encrypt-sm, the SM encrypt algorithm.

• org.apache.shardingsphere:shardingsphere-infra-context, the kernel operation
and metadata refresh mechanism of Context

• org.apache.shardingsphere:shardingsphere-logging-core, logging core

• org.apache.shardingsphere:shardingsphere-mask-core, data masking core

• org.apache.shardingsphere:shardingsphere-mysql-dialect-exception, MySQL
implementation of database gateway

• org.apache.shardingsphere:shardingsphere-parser-core, SQL parsing core

• org.apache.shardingsphere:shardingsphere-postgresql-dialect-exception,
PostgreSQL implementation of database

• org.apache.shardingsphere:shardingsphere-readwrite-splitting-core, read‐
write splitting core

• org.apache.shardingsphere:shardingsphere-shadow-core, shadow library core

• org.apache.shardingsphere:shardingsphere-sharding-core, data sharding core

• org.apache.shardingsphere:shardingsphere-single-core, single‐table (only the
only table that exists in all sharded data sources) core

• org.apache.shardingsphere:shardingsphere-sql-federation-core, federation
query executor core

• org.apache.shardingsphere:shardingsphere-sql-parser-mysql, MySQL dialect im‐
plementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-opengauss, OpenGauss
dialect implementation of SQL parsing

9.1. ShardingSphere-JDBC 128

https://central.sonatype.com/
https://shardingsphere.apache.org/document/current/cn/dev-manual/
https://shardingsphere.apache.org/document/current/cn/dev-manual/

Apache ShardingSphere document

• org.apache.shardingsphere:shardingsphere-sql-parser-oracle, Oracle dialect
implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-postgresql, PostgreSQL
dialect implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-sql92,the SQL 92 dialect
implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-sqlserver, SQL Server
dialect implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-standalone-mode-core, the persis‐
tence definition core of single‐machine mode configuration information

• org.apache.shardingsphere:shardingsphere-standalone-mode-repository-jdbc-h2,
H2 implementation of persistent definition of configuration information in stand‐alone mode

• org.apache.shardingsphere:shardingsphere-traffic-core, traffic governance core

• org.apache.shardingsphere:shardingsphere-transaction-core, XA Distributed
Transaction Manager Core

If ShardingSphere‐JDBC needs to use optional plugins, you need to download the JAR containing its SPI
implementation and its dependent JARs fromMaven Central.

All optional plugins are listed below in the form of groupId:artifactId.

• Standalone mode configuration information persistence definition

– org.apache.shardingsphere:shardingsphere-standalone-mode-repository-jdbc-mysql,
MySQL based persistence

• Cluster mode configuration information persistence definition

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-zookeeper,
Zookeeper based persistence

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-etcd,
Etcd based persistence

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-nacos,
Nacos based persistence

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-consul,
Consul based persistence

• XA transaction manager provider definition

– org.apache.shardingsphere:shardingsphere-transaction-xa-narayana, XA
distributed transaction manager based on Narayana

• SQL translator

– org.apache.shardingsphere:shardingsphere-sql-translator-jooq-provider,
JooQ SQL translator

9.1. ShardingSphere-JDBC 129

Apache ShardingSphere document

9.1.5 Unsupported Items

DataSource Interface

• Do not support timeout related operations

Connection Interface

• Do not support operations of stored procedure, function and cursor

• Do not support native SQL

• Do not support savepoint related operations

• Do not support Schema/Catalog operation

• Do not support self‐defined type mapping

Statement and PreparedStatement Interface

• Do not support statements that return multiple result sets (stored procedures, multiple pieces of
non‐SELECT data)

• Do not support the operation of international characters

ResultSet Interface

• Do not support getting result set pointer position

• Do not support changing result pointer position through none‐next method

• Do not support revising the content of result set

• Do not support acquiring international characters

• Do not support getting Array

JDBC 4.1

• Do not support new functions of JDBC 4.1 interface

For all the unsupported methods, please read org.apache.shardingsphere.driver.jdbc.
unsupported package.

9.1. ShardingSphere-JDBC 130

Apache ShardingSphere document

9.1.6 Observability

Agent

Compile source code

Download Apache ShardingSphere from GitHub,Then compile.

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Dspotbugs.
skip=true -Drat.skip=true -Djacoco.skip=true -DskipITs -DskipTests -Prelease

Artifact is distribution/agent/target/apache‐shardingsphere‐${latest.release.version}‐shardingsphere‐
agent‐bin.tar.gz

Directory structure

Create agent directory, and unzip agent distribution package to the directory.

mkdir agent
tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin.
tar.gz -C agent
cd agent
tree
├── LICENSE
├── NOTICE
├── conf
│ └── agent.yaml
├── plugins
│ ├── lib
│ │ ├── shardingsphere-agent-metrics-core-${latest.release.version}.jar
│ │ └── shardingsphere-agent-plugin-core-${latest.release.version}.jar
│ ├── logging
│ │ └── shardingsphere-agent-logging-file-${latest.release.version}.jar
│ ├── metrics
│ │ └── shardingsphere-agent-metrics-prometheus-${latest.release.version}.jar
│ └── tracing
│ ├── shardingsphere-agent-tracing-opentelemetry-${latest.release.version}.jar
└── shardingsphere-agent-${latest.release.version}.jar

Agent log output location is agent/logs/stdout.log.

9.1. ShardingSphere-JDBC 131

Apache ShardingSphere document

Configuration

conf/agent.yaml is used to manage agent configuration. Built‐in plugins include File, Prometheus,
OpenTelemetry.

plugins:
logging:
File:
props:
level: "INFO"
metrics:
Prometheus:
host: "localhost"
port: 9090
props:
jvm-information-collector-enabled: "true"
tracing:
OpenTelemetry:
props:
otel.service.name: "shardingsphere"
otel.traces.exporter: "jaeger"
otel.exporter.otlp.traces.endpoint: "http://localhost:14250"
otel.traces.sampler: "always_on"

Plugin description

File

Currently, the File plugin only outputs the time‐consuming log output of buildingmetadata, and has no
other log output for the time being.

Prometheus

Used for exposure monitoring metrics.

• Parameter description

Name Description

host host IP
port port
jvm‐i nformation‐collector‐enabled whether to collect JVM indicator information

9.1. ShardingSphere-JDBC 132

Apache ShardingSphere document

OpenTelemetry

OpenTelemetry can export tracing data to Jaeger, Zipkin.

• Parameter description

Name Description

otel.service.name service name
otel.traces.exporter traces exporter
otel.exporter.otlp.traces.endpoint traces endpoint
otel.traces.sampler traces sampler

Parameter reference OpenTelemetry SDK Autoconfigure

Usage in ShardingSphere-JDBC

• 1 The SpringBoot project ready to integrate ShardingSphere-JDBC, test‐project.jar

• 2 Startup project

java -javaagent:/agent/shardingsphere-agent-${latest.release.version}.jar -jar
test-project.jar

• 3 Access to started service

• 4 Check whether the corresponding plug‐in is effective

9.1. ShardingSphere-JDBC 133

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure

Apache ShardingSphere document

Metrics

Name Ty pe Description

build_info G AU GE Build information
p arsed_sql_total C OU NT

ER
Total count of parsed by type (INSERT, UPDATE, DELETE, SE‐
LECT, DDL, DCL, DAL, TCL, RQL, RDL, RAL, RUL)

r outed_sql_total C OU NT
ER

Total count of routed by type (INSERT, UPDATE, DELETE, SE‐
LECT)

rout ed_result_total C OU NT
ER

Total count of routed result (data source routed, table routed)

jdbc_state G AU GE Status information of ShardingSphere‐JDBC. 0 is OK; 1 is CIR‐
CUIT BREAK; 2 is LOCK

jdbc _meta_data_info G AU GE Meta data information of ShardingSphere‐JDBC
jdbc_statemen
t_execute_total

G AU GE Total number of statements executed

jdbc_ state‐
ment_execu
te_errors_total

G AU GE Total number of statement execution errors

jdbc_st ate‐
ment_execute _la‐
tency_millis

H IS TO
GR AM

Statement execution latency

jdbc_tra nsac‐
tions_total

G AU GE Total number of transactions, classify by commit and rollback

9.2 ShardingSphere-Proxy

Configuration is the only module in ShardingSphere‐Proxy that interacts with application devel‐
opers, through which developer can quickly and clearly understand the functions provided by
ShardingSphere‐Proxy.

This chapter is a configuration manual for ShardingSphere‐Proxy, which can also be referred to as a
dictionary if necessary.

ShardingSphere‐Proxy provided YAML configuration, and used DistSQL to communicate. By config‐
uration, application developers can flexibly use data sharding, readwrite‐splitting, data encryption,
shadow database or the combination of them.

Rule configuration keeps consist with YAMLconfiguration of ShardingSphere‐JDBC.DistSQL andYAML
can be replaced each other.

Please refer to Example for more details.

9.2. ShardingSphere-Proxy 134

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example

Apache ShardingSphere document

9.2.1 Startup

This chapter will introduce the deployment and startup of ShardingSphere‐Proxy.

Use Binary Tar

Background

This section describes how to start ShardingSphere‐Proxy by binary release packages

Premise

Start the Proxy with a binary package requires an environment with Java JRE 8 or later.

Steps

1. Obtain the binary release package of ShardingSphere‐Proxy

Obtain the binary release package of ShardingSphere‐Proxy on the download page.

2. Configure conf/server.yaml

ShardingSphere‐Proxy’s operationalmode is configured onserver.yaml, and its configurationmode
is the same with that of ShardingSphere‐JDBC. Refer to mode of configuration.

Please refer to the following links for other configuration items: * Permission configuration * Property
configuration

3. Configure conf/config-*.yaml

Modify files namedwith the prefixconfig- in theconf directory, such asconf/config-sharding.
yaml file and configure sharding rules and read/write splitting rules. See Confuguration Mannual for
configuration methods. The * part of the config-*.yaml file can be named whatever you want.

ShardingSphere‐Proxy supports multiple logical data sources. Each YAML configuration file named
with the prefix config- is a logical data source.

4. Introduce database driver (Optional)

If the backend is connected to a PostgreSQL or openGauss database, no additional dependencies need
to be introduced.

If the backend is connected to a MySQL database, please download mysql‐connector‐java‐5.1.49.jar or
mysql‐connector‐java‐8.0.11.jar, and put it into the ext-lib directory.

5. Introduce dependencies required by the cluster mode (Optional)

ShardingSphere‐Proxy integrates the ZooKeeper Curator client by default. ZooKeeper is used in cluster
mode without introducing other dependencies.

If the cluster mode uses Etcd, the client drivers of Etcd jetcd‐core 0.7.3 need to be copied into the
ext-lib directory.

9.2. ShardingSphere-Proxy 135

https://shardingsphere.apache.org/document/current/en/downloads/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/authority/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.49/mysql-connector-java-5.1.49.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/io/etcd/jetcd-core/0.7.3/jetcd-core-0.7.3.jar

Apache ShardingSphere document

6. Introduce dependencies required by distributed transactions (Optional)

It is the same with ShardingSphere‐JDBC. Please refer to Distributed Transaction for more details.

7. Introduce custom algorithm (Optional)

If you need to use a user‐defined algorithm class, you can configure custom algorithm in the following
ways:

1. Implement the algorithm implementation class defined by `ShardingAlgorithm`.
2. Create a `META-INF/services` directory under the project `resources` directory.
3. Create file `org.apache.shardingsphere.sharding.spi.ShardingAlgorithm` under the
directory `META-INF/services`.
4. Writes the fully qualified class name of the implementation class to a file
`org.apache.shardingsphere.sharding.spi.ShardingAlgorithm`
5. Package the above Java files into jar packages.
6. Copy the above jar package to the `ext-lib` directory.
7. Configure the Java file reference of the above custom algorithm implementation
class in a YAML file, see [Configuration rule](https://shardingsphere.apache.org/
document/current/en/user-manual/shardingsphere-proxy/yaml-config/) for more
details.

8. Start ShardingSphere‐Proxy

In Linux or macOS, run bin/start.sh. In Windows, run bin/start.bat to start ShardingSphere‐
Proxy. The default listening port is3307 and the default configuration directory is theconfdirectory in
Proxy. The startup script can specify the listening port and the configuration file directory by running
the following command:

bin/start.sh [port] [/path/to/conf]

9. Connect ShardingSphere‐Proxy with client

Run the MySQL/PostgreSQL/openGauss client command to directly operate ShardingSphere‐Proxy.

Connect ShardingSphere‐Proxy with MySQL client:

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}

Connect ShardingSphere‐Proxy with PostgreSQL:

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

Connect ShardingSphere‐Proxy with openGauss client:

gsql -r -h ${proxy_host} -p ${proxy_port} -U ${proxy_username} -W ${proxy_password}

9.2. ShardingSphere-Proxy 136

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/special-api/transaction/

Apache ShardingSphere document

Sample

Please refer to samples on ShardingSphere repository for complete configuration: https://github.com
/apache/shardingsphere/tree/master/examples/shardingsphere‐proxy‐example

Use Docker

Background

This chapter is an introduction about how to start ShardingSphere‐Proxy via Docker

Notice

Using Docker to start ShardingSphere‐Proxy does not require additional package supoort.

Steps

1. Acquire Docker Image

• Method 1 (Recommended): Pull from DockerHub

docker pull apache/shardingsphere-proxy

• Method 2: Acquire latest master branch image master: https://github.com/apache/shardingsphe
re/pkgs/container/shardingsphere‐proxy

• Method 3: Build your own image

git clone https://github.com/apache/shardingsphere
mvn clean install
cd shardingsphere-distribution/shardingsphere-proxy-distribution
mvn clean package -Prelease,docker

If the following problems emerge, please make sure Docker daemon Process is running.

I/O exception (java.io.IOException) caught when processing request to {}->unix://
localhost:80: Connection refused？

2. Configure conf/server.yaml and conf/config-*.yaml

Configuration file template can be attained from the Docker container and can be copied to any direc‐
tory on the host:

docker run -d --name tmp --entrypoint=bash apache/shardingsphere-proxy
docker cp tmp:/opt/shardingsphere-proxy/conf /host/path/to/conf
docker rm tmp

9.2. ShardingSphere-Proxy 137

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy

Apache ShardingSphere document

Since the network conditions inside the container may differ from those of the host, if errors such as
“cannot connect to the database”occurs, please make sure that the IP of the database specified in the
conf/config-*.yaml configuration file can be accessed from inside the Docker container.

For details, please refer to ShardingSphere‐Proxy quick start manual ‐ binary distribution packages.

3. (Optional) Introduce third‐party dependencies or customized algorithms

If you have any of the following requirements: * ShardingSphere‐Proxy Backend use MySQL Database;
* Implement customized algorithms; * Use Etcd as Registry Center in cluster mode.

Please create ext-lib directory anywhere inside the host and refer to the steps in ShardingSphere‐
Proxy quick start manual ‐ binary distribution packages.

4. Start ShardingSphere‐Proxy container

Mount the conf and ext-lib directories from the host to the container. Start the container:

docker run -d \
-v /host/path/to/conf:/opt/shardingsphere-proxy/conf \
-v /host/path/to/ext-lib:/opt/shardingsphere-proxy/ext-lib \
-e PORT=3308 -p13308:3308 apache/shardingsphere-proxy:latest

ext-lib is not necessary during the process. Users canmount it at will. ShardingSphere‐Proxy default
portal 3307 can be designated according to environment variable -e PORT Customized JVM related
parameters can be set according to environment variable JVM_OPTS

Note:

Support setting environment variable CGROUP_ MEM_ OPTS: used to set related memory parameters
in the container environment. The default values in the script are:

-XX:InitialRAMPercentage=80.0 -XX:MaxRAMPercentage=80.0 -XX:MinRAMPercentage=80.0

5. Use Client to connect to ShardingSphere‐Proxy

Please refer to ShardingSphere‐Proxy quick start manual ‐ binary distribution packages.

9.2. ShardingSphere-Proxy 138

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/

Apache ShardingSphere document

Configuration Example

For full configuration, please refer to the examples given in ShardingSphere library: https://github.c
om/apache/shardingsphere/tree/master/examples/shardingsphere‐proxy‐example

Build GraalVM Native Image(Alpha)

Background

This section mainly introduces how to build the Native Image of ShardingSphere‐Proxy and the cor‐
responding Docker Image through the native-image component of GraalVM.

Notice

• ShardingSphere Proxy is not yet ready to integrate with GraalVMNative Image. Fixes documenta‐
tion for building GraalVMNative Image It exists nightly builds at https://github.com/apache/shar
dingsphere/pkgs/container/shardingsphere‐proxy‐native. Assuming there is a conf folder con‐
tainingserver.yaml as./custom/conf, you can test it with the followingdocker-compose.
yml file.

version: "3.8"

services:
apache-shardingsphere-proxy-native:
image: ghcr.io/apache/shardingsphere-proxy-native:latest
volumes:

- ./custom/conf:/opt/shardingsphere-proxy-native/conf
ports:

- "3307:3307"

• If you find that the build process hasmissing GraalVMReachability Metadata, A new issue should
be opened at https://github.com/oracle/graalvm‐reachability‐metadata, And submit a PR con‐
taining GraalVM Reachability Metadata missing from ShardingSphere itself or dependent third‐
party libraries.

• Themaster branch of ShardingSphere is not yet ready to handle unit tests inNative Image, Need to
wait for the integration of Junit 5 Platform, you always need to build GraalVMNative Image in the
process, Plus -DskipNativeTests or -DskipTests parameter specific to GraalVM Native
Build Tools to skip unit tests in Native Image.

• The following three algorithm classes are not available under GraalVMNative Image because they
involve the groovy.lang.Closure class that is inconvenient for GraalVM Truffle Espresso to
interact between the host JVM and the guest JVM.

– org.apache.shardingsphere.sharding.algorithm.sharding.inline.
InlineShardingAlgorithm

9.2. ShardingSphere-Proxy 139

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy-native
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy-native
https://github.com/oracle/graalvm-reachability-metadata

Apache ShardingSphere document

– org.apache.shardingsphere.sharding.algorithm.sharding.inline.
ComplexInlineShardingAlgorithm

– org.apache.shardingsphere.sharding.algorithm.sharding.hint.
HintInlineShardingAlgorithm

• At the current stage, ShardingSphere Proxy in GraalVMNative Image is in the stage ofmixedAOT (
GraalVMNative Image) and JIT (GraalVM Truffle Espresso) operation. Since https://github.com
/oracle/graal/issues/4555 has not been closed, the .so file required for GraalVM Truffle Espresso
to run does not enter the GraalVM Native Image. So if you need to run ShardingSphere Proxy
Native binary files outside the Docker Image, you need to ensure that the system environment
variable JAVA_HOME points to the bin directory of GraalVM, and this GraalVM instance already
has the espresso component installed via the GraalVM Updater.

• This section assumes a Linux (amd64, aarch64), MacOS (amd64) or Windows (amd64) environ‐
ment. If you are on MacOS (aarch64/M1) environment, you need to follow https://github.com/o
racle/graal/issues/2666 which is not closed yet.

Premise

1. Install and configure GraalVM CE or GraalVM EE for JDK 17 according to https://www.graalv
m.org/downloads/. GraalVM CE for JDK 17 can also be installed via SDKMAN!.

2. Install the native-image and espresso component via the GraalVM Updater tool.

3. Install the local toolchain as required by https://www.graalvm.org/22.3/reference‐manual/nati
ve‐image/#prerequisites.

4. If you need to build a Docker Image, make sure docker-ce is installed.

5. First, you need to execute the following command in the root directory of the project to collect
the GraalVM Reachability Metadata of the Standard form for all submodules.

./mvnw -PgenerateStandardMetadata -DskipNativeTests -B -T1C clean test

Steps

1. Get Apache ShardingSphere Git Source

• Get it at the download page or https://github.com/apache/shardingsphere/tree/master.

2. Build the product on the command line, in two cases.

• Scenario 1: No need to use JARs with SPI implementations or 3rd party dependencies

• Execute the following command in the same directory of Git Source to directly complete the con‐
struction of Native Image.

./mvnw -am -pl distribution/proxy-native -B -T1C -Prelease.native -DskipTests clean
package

9.2. ShardingSphere-Proxy 140

https://github.com/oracle/graal/issues/4555
https://github.com/oracle/graal/issues/4555
https://github.com/oracle/graal/issues/2666
https://github.com/oracle/graal/issues/2666
https://www.graalvm.org/downloads/
https://www.graalvm.org/downloads/
https://www.graalvm.org/22.3/reference-manual/native-image/#prerequisites
https://www.graalvm.org/22.3/reference-manual/native-image/#prerequisites
https://shardingsphere.apache.org/document/current/en/downloads/
https://github.com/apache/shardingsphere/tree/master

Apache ShardingSphere document

• Scenario 2: It is necessary to use a JAR that has an SPI implementation or a third‐party dependent
JAR of a LICENSE such as GPL V2.

• Add SPI implementation JARs or third‐party dependent JARs to dependencies in distribu-
tion/proxy-native/pom.xml. Examples are as follows

<dependencies>
<dependency>

<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<version>8.0.32</version>

</dependency>
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-translator-jooq-provider</artifactId>
<version>5.3.1</version>

</dependency>
</dependencies>

• Build GraalVM Native Image via command line.

./mvnw -am -pl distribution/proxy-native -B -T1C -Prelease.native -DskipTests clean
package

3. To start Native Image through the command line, you need to bring 4 parameters. The first pa‐
rameter is the port used by ShardingSphere Proxy, the second parameter is the /conf folder con‐
taining server.yaml written by you, the third parameter is the Address of the bound port, and
the fourth parameter is Force Start, if it is true, it will ensure that ShardingSphere ProxyNative can
start normally no matter whether it is connected or not. Assuming the folder ./custom/conf
already exists, the example is

./apache-shardingsphere-proxy-native 3307 ./custom/conf "0.0.0.0" false

4. If you need to build a Docker Image, execute the following command on the command line after
adding dependencies that exist for SPI implementation or third‐party dependencies.

./mvnw -am -pl distribution/proxy-native -B -T1C -Prelease.native,docker.native -
DskipTests clean package

• Assuming that there is a conf folder containing server.yaml as ./custom/conf, you
can start the Docker Image corresponding to GraalVM Native Image through the following
docker-compose.yml file.

version: "3.8"

services:
apache-shardingsphere-proxy-native:
image: apache/shardingsphere-proxy-native:latest
volumes:

9.2. ShardingSphere-Proxy 141

Apache ShardingSphere document

- ./custom/conf:/opt/shardingsphere-proxy-native/conf
ports:

- "3307:3307"

• If you don’t make any changes to the Git Source, the commands mentioned above will use or-
aclelinux:9-slim as the Base Docker Image. But if you want to use a smaller Docker Image
like busybox:glic, gcr.io/distroless/base or scratch as the Base Docker Image, you
need according to https://www.graalvm.org/22.3/reference‐manual/native‐image/guides/buil
d‐static‐executables/, Add operations such as -H:+StaticExecutableWithDynamicLibC to
jvmArgs as the native profile of pom.xml. Also note that some 3rd party dependencies will
require more system libraries such as libdl to be installed in the Dockerfile. So make sure to
tune distribution/proxy-native according to your usage pom.xml and Dockerfile be‐
low.

Observability

• ShardingSphere for GraalVM Native Image form Proxy, which provides observability capabilities
with https://shardingsphere.apache.org/document/current/cn/user‐manual/shardingsphere‐p
roxy/observability/ Not consistent.

• You can observe GraalVMNative Image using a series of command line tools or visualization tools
available at https://www.graalvm.org/22.3/tools/, and use VSCode to debug it according to its
requirements. If you are using IntelliJ IDEA and want to debug the generated GraalVM Native
Image, You can follow https://blog.jetbrains.com/idea/2022/06/intellij‐idea‐2022‐2‐eap‐5/#Expe
rimental_GraalVM_Native_Debugger_for_Java and its successors. If you are not using Linux,
you cannot debug GraalVM Native Image, please pay attention to https://github.com/oracle/graa
l/issues/5648 which has not been closed yet.

• In the case of using APM Java Agent such as ShardingSphere Agent, GraalVM’s na-
tive-image component is not yet fully supported when building Native Images javaagent, you
need to follow https://github.com/oracle/graal/issues/1065 which has not been closed.

• The following sections use the Apache SkyWalking Java Agent as an example, which can
be used to track corresponding issues from the GraalVM community.

1. Download https://archive.apache.org/dist/skywalking/java‐agent/8.12.0/apache‐skywalkin
g‐java‐agent‐8.12.0.tgz and untar it to distribution/proxy-native in ShardingSphere Git
Source.

2. Modify the native profile of distribution/proxy-native/pom.xml, Add the following
jvmArgs to the configuration of org.graalvm.buildtools:native-maven-plugin.

<jvmArgs>
<arg>-Dskywalking.agent.service_name="your service name"</arg>
<arg>-Dskywalking.collector.backend_service="your skywalking oap ip and port"</

arg>
<arg>-javaagent:./skywalking-agent/skywalking-agent.jar</arg>

</jvmArgs>

9.2. ShardingSphere-Proxy 142

https://www.graalvm.org/22.3/reference-manual/native-image/guides/build-static-executables/
https://www.graalvm.org/22.3/reference-manual/native-image/guides/build-static-executables/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/observability/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/observability/
https://www.graalvm.org/22.3/tools/
https://blog.jetbrains.com/idea/2022/06/intellij-idea-2022-2-eap-5/#Experimental_GraalVM_Native_Debugger_for_Java
https://blog.jetbrains.com/idea/2022/06/intellij-idea-2022-2-eap-5/#Experimental_GraalVM_Native_Debugger_for_Java
https://github.com/oracle/graal/issues/5648
https://github.com/oracle/graal/issues/5648
https://github.com/oracle/graal/issues/1065
https://archive.apache.org/dist/skywalking/java-agent/8.12.0/apache-skywalking-java-agent-8.12.0.tgz
https://archive.apache.org/dist/skywalking/java-agent/8.12.0/apache-skywalking-java-agent-8.12.0.tgz

Apache ShardingSphere document

3. Build the GraalVM Native Image from the command line.

./mvnw -am -pl distribution/proxy-native -B -T1C -Prelease.native -DskipTests clean
package

Use Helm

Background

Use Helm to provide guidance for the installation of ShardingSphere‐Proxy instance in a Kubernetes
cluster. For more details, please checkout ShardingSphere‐on‐Cloud.

Requirements

• Kubernetes 1.18+

• kubectl

• Helm 3.2.0+

• StorageClass of PV (Persistent Volumes) can be dynamically applied for persistent data (Optional)
.

Procedure

Online installation

1. Add ShardingSphere‐Proxy to the local helm repo:

helm repo add shardingsphere https://shardingsphere.apache.org/charts

2. Install ShardingSphere‐Proxy charts:

helm install shardingsphere-proxy shardingsphere/shardingsphere-proxy

Source installation

1. Charts will be installed with default configuration if the following commands are executed:

git clone https://github.com/apache/shardingsphere-on-cloud.git
cd charts/shardingsphere-proxy/charts/governance
helm dependency build
cd ../..
helm dependency build
cd ..
helm install shardingsphere-proxy shardingsphere-proxy

9.2. ShardingSphere-Proxy 143

https://helm.sh/
https://github.com/apache/shardingsphere-on-cloud

Apache ShardingSphere document

Note:

1. Please refer to the configuration items description below for more details:

2. Execute helm list to acquire all installed releases.

Uninstall

1. Delete all release records by default, add --keep-history to keep them.

helm uninstall shardingsphere-proxy

Parameters

Governance-Node parameters

Name Description Va lue

gover nance.enabled Switch to enable or disable the governance helm chart ˋˋ tru eˋˋ

Governance-Node ZooKeeper parameters

Name Description Value

gover nance.zookeeper.enabled Switch to enable or disable the
ZooKeeper helm chart

true

governance .zookeeper.
replicaCount

Number of ZooKeeper nodes 1

governance.zookee per.
persistence.enabled

Enable persistence on ZooKeeper
using PVC(s)

false

governance.zookeeper.p ersis-
tence.storageClass

Persistent Volume storage class ""

governance.zookeeper. persis-
tence.accessModes

Persistent Volume access modes ["ReadWrit
eOnce"]

governance.zoo keeper.
persistence.size

Persistent Volume size 8Gi

governance.zoo keeper.
resources.limits

The resources limits for the
ZooKeeper containers

{}

governance.zookeeper.re
sources.requests.memory

The requested memory for the
ZooKeeper containers

256Mi

governance.zookeeper .
resources.requests.cpu

The requested cpu for the
ZooKeeper containers

250m

9.2. ShardingSphere-Proxy 144

Apache ShardingSphere document

Compute-Node ShardingSphere-Proxy parameters

Name Description Value

compute.i mage.
repository

Image name of ShardingSphere‐Proxy. a pache/sharding
sphere-proxy

compute.i mage.
pullPolicy

The policy for pulling ShardingSphere‐
Proxy image

ˋˋ IfNotPresentˋˋ

co mpute.image.tag ShardingSphere‐Proxy image tag 5.1.2
compute.i magePullSe-
crets

Specify docker‐registry secret names as
an array

[]

compute.r esources.
limits

The resources limits for the
ShardingSphere‐Proxy containers

{}

c ompute.resources.
requests.memory

The requested memory for the
ShardingSphere‐Proxy containers

2Gi

compute.resourc es.
requests.cpu

The requested cpu for the
ShardingSphere‐Proxy containers

200m

c ompute.replicas Number of cluster replicas 3
compu te.service.type ShardingSphere‐Proxy network mode ClusterIP
compu te.service.port ShardingSphere‐Proxy expose port 3307
compute.mysqlCo nnec-
tor.version

MySQL connector version 5.1.49

co mpute.startPort ShardingSphere‐Proxy start port 3307
compu te.serverConfig Server Configuration file for

ShardingSphere‐Proxy
""

Sample

values.yaml

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

9.2. ShardingSphere-Proxy 145

Apache ShardingSphere document

#

@section Governance-Node parameters
@param governance.enabled Switch to enable or disable the governance helm chart
##
governance:

enabled: true
@section Governance-Node ZooKeeper parameters
zookeeper:
@param governance.zookeeper.enabled Switch to enable or disable the

ZooKeeper helm chart
##
enabled: true
@param governance.zookeeper.replicaCount Number of ZooKeeper nodes
##
replicaCount: 1
ZooKeeper Persistence parameters
ref: https://kubernetes.io/docs/user-guide/persistent-volumes/
@param governance.zookeeper.persistence.enabled Enable persistence on

ZooKeeper using PVC(s)
@param governance.zookeeper.persistence.storageClass Persistent Volume

storage class
@param governance.zookeeper.persistence.accessModes Persistent Volume access

modes
@param governance.zookeeper.persistence.size Persistent Volume size
##
persistence:

enabled: false
storageClass: ""
accessModes:

- ReadWriteOnce
size: 8Gi

ZooKeeper's resource requests and limits
ref: https://kubernetes.io/docs/user-guide/compute-resources/
@param governance.zookeeper.resources.limits The resources limits for the

ZooKeeper containers
@param governance.zookeeper.resources.requests.memory The requested memory

for the ZooKeeper containers
@param governance.zookeeper.resources.requests.cpu The requested cpu for the

ZooKeeper containers
##
resources:

limits: {}
requests:

memory: 256Mi
cpu: 250m

@section Compute-Node parameters

9.2. ShardingSphere-Proxy 146

Apache ShardingSphere document

##
compute:

@section Compute-Node ShardingSphere-Proxy parameters
ref: https://kubernetes.io/docs/concepts/containers/images/
@param compute.image.repository Image name of ShardingSphere-Proxy.
@param compute.image.pullPolicy The policy for pulling ShardingSphere-Proxy

image
@param compute.image.tag ShardingSphere-Proxy image tag
##
image:
repository: "apache/shardingsphere-proxy"
pullPolicy: IfNotPresent
Overrides the image tag whose default is the chart appVersion.
##
tag: "5.1.2"

@param compute.imagePullSecrets Specify docker-registry secret names as an
array

e.g：
imagePullSecrets:
- name: myRegistryKeySecretName
##
imagePullSecrets: []
ShardingSphere-Proxy resource requests and limits
ref: https://kubernetes.io/docs/concepts/configuration/manage-resources-

containers/
@param compute.resources.limits The resources limits for the ShardingSphere-

Proxy containers
@param compute.resources.requests.memory The requested memory for the

ShardingSphere-Proxy containers
@param compute.resources.requests.cpu The requested cpu for the

ShardingSphere-Proxy containers
##
resources:
limits: {}
requests:

memory: 2Gi
cpu: 200m

ShardingSphere-Proxy Deployment Configuration
ref: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
ref: https://kubernetes.io/docs/concepts/services-networking/service/
@param compute.replicas Number of cluster replicas
##
replicas: 3
@param compute.service.type ShardingSphere-Proxy network mode
@param compute.service.port ShardingSphere-Proxy expose port
##
service:
type: ClusterIP

9.2. ShardingSphere-Proxy 147

Apache ShardingSphere document

port: 3307
MySQL connector Configuration
ref: https://shardingsphere.apache.org/document/current/en/quick-start/

shardingsphere-proxy-quick-start/
@param compute.mysqlConnector.version MySQL connector version
##
mysqlConnector:
version: "5.1.49"

@param compute.startPort ShardingSphere-Proxy start port
ShardingSphere-Proxy start port
ref: https://shardingsphere.apache.org/document/current/en/user-manual/

shardingsphere-proxy/startup/docker/
##
startPort: 3307
@section Compute-Node ShardingSphere-Proxy ServerConfiguration parameters
NOTE: If you use the sub-charts to deploy Zookeeper, the server-lists field

must be "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.Namespace }}",
otherwise please fill in the correct zookeeper address
The server.yaml is auto-generated based on this parameter.
If it is empty, the server.yaml is also empty.
ref: https://shardingsphere.apache.org/document/current/en/user-manual/

shardingsphere-jdbc/yaml-config/mode/
ref: https://shardingsphere.apache.org/document/current/en/user-manual/common-

config/builtin-algorithm/metadata-repository/
##
serverConfig:
@section Compute-Node ShardingSphere-Proxy ServerConfiguration authority

parameters
NOTE: It is used to set up initial user to login compute node, and authority

data of storage node.
ref: https://shardingsphere.apache.org/document/current/en/user-manual/

shardingsphere-proxy/yaml-config/authentication/
@param compute.serverConfig.authority.privilege.type authority provider for

storage node, the default value is ALL_PERMITTED
@param compute.serverConfig.authority.users[0].password Password for compute

node.
@param compute.serverConfig.authority.users[0].user Username,authorized host

for compute node. Format: <username>@<hostname> hostname is % or empty string means
do not care about authorized host

##
authority:

privilege:
type: ALL_PRIVILEGES_PERMITTED

users:
- password: root

user: root@%
@section Compute-Node ShardingSphere-Proxy ServerConfiguration mode

Configuration parameters

9.2. ShardingSphere-Proxy 148

Apache ShardingSphere document

@param compute.serverConfig.mode.type Type of mode configuration. Now only
support Cluster mode

@param compute.serverConfig.mode.repository.props.namespace Namespace of
registry center

@param compute.serverConfig.mode.repository.props.server-lists Server lists
of registry center

@param compute.serverConfig.mode.repository.props.maxRetries Max retries of
client connection

@param compute.serverConfig.mode.repository.props.
operationTimeoutMilliseconds Milliseconds of operation timeout

@param compute.serverConfig.mode.repository.props.retryIntervalMilliseconds
Milliseconds of retry interval

@param compute.serverConfig.mode.repository.props.timeToLiveSeconds Seconds
of ephemeral data live

@param compute.serverConfig.mode.repository.type Type of persist repository.
Now only support ZooKeeper

@param compute.serverConfig.mode.overwrite Whether overwrite persistent
configuration with local configuration

##
mode:

type: Cluster
repository:

type: ZooKeeper
props:
maxRetries: 3
namespace: governance_ds
operationTimeoutMilliseconds: 5000
retryIntervalMilliseconds: 500
server-lists: "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.

Namespace }}"
timeToLiveSeconds: 60

overwrite: true

Add dependencies

This chapter mainly introduces how to download optional dependencies of ShardingSphere.

Add Narayana dependencies

Add Narayana dependencies

Adding Narayana dependencies requires downloading the following jar files and adding them under
ext-lib path.

9.2. ShardingSphere-Proxy 149

Apache ShardingSphere document

jar file downloads

• arjuna‐5.12.4.Final.jar

• common‐5.12.4.Final.jar

• javax.activation‐api‐1.2.0.jar

• jaxb‐api‐2.3.0.jar

• jaxb‐core‐2.3.0.jar

• jaxb‐impl‐2.3.0.jar

• jboss‐connector‐api_1.7_spec‐1.0.0.Final.jar

• jboss‐logging‐3.2.1.Final.jar

• jboss‐transaction‐api_1.2_spec‐1.0.0.Alpha3.jar

• jboss‐transaction‐spi‐7.6.0.Final.jar

• jta‐5.12.4.Final.jar

• narayana‐jts‐integration‐5.12.4.Final.jar

• shardingsphere‐transaction‐xa‐narayana.jar

Please download the corresponding shardingsphere-transaction-xa-narayana.jar file ac‐
cording to the proxy version.

9.2.2 Yaml Configuration

The YAML configuration of ShardingSphere‐JDBC is the subset of ShardingSphere‐Proxy. In server.
yaml file, ShardingSphere‐Proxy can configure authority feature and more properties for Proxy only.

Note: The YAML configuration file supports more than 3MB of configuration content.

This chapter will introduce the extra YAML configuration of ShardingSphere‐Proxy.

Authentication & Authorization

Background

In ShardingSphere‐Proxy, user authentication andauthorization information is configured throughau-
thority.

Thanks to ShardingSphere’s pluggable architecture, Proxy provides two levels of privilege providers,
namely:

• ALL_PERMITTED: each user has all privileges without special authorization.

• DATABASE_PERMITTED: grants the user privileges on the specified logical databases, defined by
user-database-mappings.

The administrator can choosewhich privilege provider to use as neededwhen configuringauthority.

9.2. ShardingSphere-Proxy 150

https://repo1.maven.org/maven2/org/jboss/narayana/arjunacore/arjuna/5.12.4.Final/arjuna-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/common/5.12.4.Final/common-5.12.4.Final.jar
https://repo1.maven.org/maven2/javax/activation/javax.activation-api/1.2.0/javax.activation-api-1.2.0.jar
https://repo1.maven.org/maven2/javax/xml/bind/jaxb-api/2.3.0/jaxb-api-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-core/2.3.0/jaxb-core-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-impl/2.3.0/jaxb-impl-2.3.0.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/resource/jboss-connector-api_1.7_spec/1.0.0.Final/jboss-connector-api_1.7_spec-1.0.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/logging/jboss-logging/3.2.1.Final/jboss-logging-3.2.1.Final.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/transaction/jboss-transaction-api_1.2_spec/1.0.0.Alpha3/jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
https://repo1.maven.org/maven2/org/jboss/jboss-transaction-spi/7.6.0.Final/jboss-transaction-spi-7.6.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jta/jta/5.12.4.Final/jta-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jts/narayana-jts-integration/5.12.4.Final/narayana-jts-integration-5.12.4.Final.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-narayana

Apache ShardingSphere document

Parameters

authority:
users:
- user: # Specify the username, and authorized host for logging in to the

compute node. Format: <username>@<hostname>. When the hostname is % or an empty
string, it indicates that the authorized host is not limited.

password: # Password
authenticationMethodName: # Optional, used to specify the password

authentication method for the user
authenticators: # Optional, not required by default, Proxy will automatically

choose the authentication method according to the frontend protocol type
authenticatorName:

type: # Authentication method type
defaultAuthenticator: # Optional, specify an authenticator as the default

password authentication method
privilege:
type: # Privilege provider type. The default value is ALL_PERMITTED.

Sample

Minimalist configuration

authority:
users:

- user: root@%
password: root

- user: sharding
password: sharding

Explanation: ‐ Two users are defined: root@% and sharding; ‐ authenticationMethodName is not
specified for root@127.0.0.1, Proxy will automatically choose the authenticationmethod according
to the frontend protocol; ‐ Privilege provider is not specified, the default ALL_PERMITTEDwill be used;

Authentication configuration

The custom authentication configuration allows users to greater leeway to set their own custom config‐
urations according to their scenarios. Taking openGauss as the frontend protocol type as an example,
its default authenticationmethod isscram-sha-256. If the usershardingneeds to use anold version
of the psql client (which does not support scram-sha-256) to connect to the Proxy, the administra‐
tor may allow sharding to use the md5 method for password authentication. The configuration is as
follows:

authority:
users:

9.2. ShardingSphere-Proxy 151

Apache ShardingSphere document

- user: root@127.0.0.1
password: root

- user: sharding
password: sharding
authenticationMethodName: md5

authenticators:
md5:
type: MD5

privilege:
type: ALL_PERMITTED

Explanation: ‐ Two users are defined: root@127.0.0.1 and sharding; ‐ Use MD5 method for pass‐
word authentication for sharding; ‐ Authentication method is not specified for root@127.0.0.
1, Proxy will automatically choose one according to the frontend protocol; ‐ The privilege provider
ALL_PERMITTED is specified.

Authorization configuration

ALL_PERMITTED

authority:
users:
- user: root@127.0.0.1

password: root
- user: sharding

password: sharding
privilege:
type: ALL_PERMITTED

Explanation: ‐ Two users are defined: root@127.0.0.1 and sharding; ‐ authenticators and
authenticationMethodName are not defined, Proxy will automatically choose the authentication
method according to the frontend protocol; ‐ The privilege provider ALL_PERMITTED is specified.

DATABASE_PERMITTED

authority:
users:
- user: root@127.0.0.1

password: root
- user: sharding

password: sharding
privilege:
type: DATABASE_PERMITTED
props:

9.2. ShardingSphere-Proxy 152

Apache ShardingSphere document

user-database-mappings: root@127.0.0.1=*, sharding@%=test_db, sharding@
%=sharding_db

Explanation: ‐ Two users are defined: root@127.0.0.1 and sharding; ‐ authenticators and
authenticationMethodName are not defined, Proxy will automatically choose the authentication
method according to the frontend protocol; ‐ The privilege provider DATABASE_PERMITTED is speci‐
fied, authorize root@127.0.0.1 to access all logical databases (*), and user sharding can only ac‐
cess test_db and sharding_db.

Related References

Please refer to Authority Provider for the specific implementation of authority provider.

Properties

Background

Apache ShardingSphere provides a wealth of system configuration properties, which users can config‐
ure through server.yaml.

9.2. ShardingSphere-Proxy 153

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/authority/

Apache ShardingSphere document

Parameters

•
Name*

•
D a t a T y p e *

Description •
D e f a u l t *

•
D y n am i c U p d a
t e *

s ystem ‐log‐ level
(?)

S t r i n g System log output
level, supports
DEBUG, INFO,
WARN and ER‐
ROR, the default
level is INFO.

f a l s e T r u e

sql ‐show (?) b o o l e a n Whether to print
SQL in logs.
Printing SQL
can help devel‐
opers quickly
locate system
problems. Logs
contain the
following con‐
tents: logical
SQL, authentic
SQL and SQL
parsing result.
If configuration
is enabled, logs
will use Topic
Sharding-
Sphere-SQL,
and log level is
INFO.

f a l s e T r u e

sql‐s imple (?) b o o l e a n Whether to print
simple SQL in
logs.

f a l s e T r u e

kerne l‐exe cutor
‐size (?)

i n t Set the size of
the thread pool
for task pro‐
cessing. Each
ShardingSphere‐
DataSource uses
an independent
thread pool, and
different data
sources on the
same JVM do
not share thread
pools.

i n f i n i t e F a l s e

max‐c onnec
tions ‐size ‐per‐
query (?)

i n t The maximum
number of con‐
nections that a
query request
can use in each
database in‐
stance.

1 T r u e

che ck‐ta ble‐m
etada ta‐en abled
(?)

b o o l e a n Whether shard
metadata is
checked for
structural con‐
sistency when
the program is
started and up‐
dated.

f a l s e T r u e

proxy ‐fron tend‐
flush ‐thre shold
(?)

i n t Set the I/O re‐
fresh threshold
for the number
of transmitted
data items in
ShardingSphere‐
Proxy.

1 2 8 T r u e

proxy ‐back end‐
q uery‐ fetch ‐size
(?)

i n t The number
of rows of data
obtained when
the backend
Proxy interacts
with databases
(using a cursor).
A larger number
may increase
the occupied
memory of
ShardingSphere‐
Proxy. The
default value of
‐1 indicates the
minimum value
for JDBC driver.

•
1

T r u e

pro xy‐fr onten d‐
exe cutor ‐size (?)

i n t The number of
threads in the
Netty thread
pool of front‐end
Proxy.

0 F a l s e

proxy ‐fron tend‐
max‐c onnec
tions (?)

i n t The maximum
number of clients
that can be con‐
nected to Proxy.
The default value
of 0 indicates that
there’s no limit.

0 T r u e

pro xy‐de fault ‐
port (?)

S t r i n g Proxy specifies
the default win‐
dow through
configuration
files.

3 3 0 7 F a l s e

prox y‐net ty‐ba
cklog (?)

i n t Proxy specifies
the default netty
back_log pa‐
rameter through
configuration
files.

1 0 2 4 F a l s e

pr oxy‐f ronte nd‐
da tabas e‐pro to‐
col ‐type (?)

S t r i n g Proxy front‐end
protocol type,
supports MySQL,
PostgreSQL,
openGauss

F a l s e

p roxy‐ front end‐
s sl‐en abled (?)

b o o l e a n Enable
SSL/TLS for
ShardingSphere‐
Proxy frontend.

f a l s e F a l s e

p roxy‐ front end‐
s sl‐ve rsion (?)

S t r i n g The SSL/TLS pro‐
tocols to enable.
Blank to use de‐
fault.

T L S v 1 . 2 , T L S
v 1 . 3

F a l s e

proxy ‐fron tend‐
ssl‐c ipher (?)

S t r i n g The cipher suites
to enable, in the
order of prefer‐
ence. Multi ci‐
pher suites sepa‐
rated by comma.
Blank to use de‐
fault.

F a l s e

9.2. ShardingSphere-Proxy 154

Apache ShardingSphere document

Properties can be modified online through DistSQL#RAL. Properties that support dynamic change can
take effect immediately. For the ones that do not support dynamic change, the effect will be imple‐
mented after a restart.

Sample

For a complete sample, please refer to server.yaml in ShardingSphere’s repository：https://github
.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere‐pro
xy/shardingsphere‐proxy‐bootstrap/src/main/resources/conf/server.yaml#L71‐L93

Rules

Background

This section explains how to configure the ShardingSphere‐Proxy rules.

Parameters Explained

Rules configuration for ShardingSphere‐Proxy is the same as ShardingSphere‐JDBC. For details, please
refer to ShardingSphere‐JDBC Rules Configuration.

Notice

Unlike ShardingSphere‐JDBC, the following rules need to be configured in ShardingSphere‐Proxy’s
server.yaml:

• SQL Parsing

sqlParser:
sqlCommentParseEnabled: true
sqlStatementCache:
initialCapacity: 2000
maximumSize: 65535

parseTreeCache:
initialCapacity: 128
maximumSize: 1024

• Distributed Transaction

transaction:
defaultType: XA
providerType: Atomikos

• SQL Translator

9.2. ShardingSphere-Proxy 155

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/

Apache ShardingSphere document

sqlTranslator:
type:
useOriginalSQLWhenTranslatingFailed:

9.2.3 DistSQL

This chapter will introduce the detailed syntax of DistSQL.

Definition

DistSQL (Distributed SQL) is Apache ShardingSphere’s specific SQL, providing additional operation
capabilities compared to standard SQL.

Flexible rule configuration and resource management & control capabilities are one of the character‐
istics of Apache ShardingSphere.

When using 4.x and earlier versions, developers can operate data just like using a database, but they
need to configure resources and rules through YAML file (or registry center). However, the YAML file
format and the changes brought by using the registry center made it unfriendly to DBAs.

Starting from version 5.x, DistSQL enables users to operate Apache ShardingSphere just like a database,
transforming it from a framework and middleware for developers to a database product for DBAs.

Related Concepts

DistSQL is divided into RDL, RQL, RAL and RUL.

RDL

Resource & Rule Definition Language, is responsible for the definition of resources and rules.

RQL

Resource & Rule Query Language, is responsible for the query of resources and rules.

RAL

Resource&RuleAdministrationLanguage, is responsible for hint, circuit breaker, configuration import
and export, scaling control and other management functions.

9.2. ShardingSphere-Proxy 156

Apache ShardingSphere document

RUL

Resource & Rule Utility Language, is responsible for SQL parsing, SQL formatting, preview execution
plan, etc.

Impact on the System

Before

Before having DistSQL, users used SQL to operate data while using YAML configuration files to manage
ShardingSphere, as shown below:

At that time, users faced the following problems: ‐ Different types of clients are required to operate data
and manage ShardingSphere configuration. ‐ Multiple logical databases require multiple YAML files. ‐
Editing a YAML file requires writing permissions. ‐ Need to restart ShardingSphere after editing YAML.

9.2. ShardingSphere-Proxy 157

Apache ShardingSphere document

After

With the advent of DistSQL, the operation of ShardingSphere has also changed:

Now, the user experience has been greatly improved: ‐ Uses the same client to operate data and Shard‐
ingSphere configuration. ‐ No need for additional YAML files, and the logical databases are managed
through DistSQL. ‐ Editing permissions for files are no longer required, and configuration is managed
through DistSQL. ‐ Configuration changes take effect in real‐time without restarting ShardingSphere.

Limitations

DistSQL can be used only with ShardingSphere‐Proxy, not with ShardingSphere‐JDBC for now.

How it works

Like standard SQL, DistSQL is recognized by the parsing engine of ShardingSphere. It converts the
input statement into an abstract syntax tree and then generates the Statement corresponding to each
grammar, which is processed by the appropriate Handler.

9.2. ShardingSphere-Proxy 158

Apache ShardingSphere document

Related References

User Manual: DistSQL

Syntax

This chapter describes the syntax of DistSQL in detail, and introduces use of DistSQL with practical
examples.

Syntax Rule

In DistSQL statement, except for keywords, the input format of other elements shall conform to the
following rules.

Identifier

1. The identifier represents an object in the SQL statement, including:

• database name

• table name

• column name

• index name

• resource name

9.2. ShardingSphere-Proxy 159

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/

Apache ShardingSphere document

• rule name

• algorithm name

2. The allowed characters in the identifier are: [a-z, A-Z, 0-9, _] (letters, numbers, under‐
scores) and should start with a letter.

3. When keywords or special characters appear in the identifier, use the backticks (ˋ).

Literal

Types of literals include:

• string: enclosed in single quotes (’) or double quotes (“)

• int: it is generally a positive integer, such as 0‐9;

Note: some DistSQL syntax allows negative values. In this case, a negative sign (‐) can be added before
the number, such as ‐1.

• boolean, containing only true & false. Case insensitive.

Special Instructions

• The ""must be used to mark the algorithm type name when specifying a user‐defined algorithm
type name, for example, NAME="AlgorithmTypeName"

• The "" is not necessary when specifying a ShardingSphere Built‐in algorithm type name, for ex‐
ample, NAME=HASH_MOD

RDL Syntax

RDL (Resource & Rule Definition Language) responsible for definition of resources/rules.

Storage Unit Definition

This chapter describes the syntax of storage unit.

REGISTER STORAGE UNIT

Description

The REGISTER STORAGE UNIT syntax is used to register storage unit for the currently selected logical
database.

9.2. ShardingSphere-Proxy 160

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/

Apache ShardingSphere document

Syntax

RegisterStorageUnit ::=
'REGISTER' 'STORAGE' 'UNIT' ifNotExists? storageUnitDefinition (','

storageUnitDefinition)*

storageUnitDefinition ::=
storageUnitName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName

| 'URL' '=' url) ',' 'USER' '=' user (',' 'PASSWORD' '=' password)? (','
propertiesDefinition)?')'

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

storageUnitName ::=
identifier

hostname ::=
string

port ::=
int

dbName ::=
string

url ::=
string

user ::=
string

password ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

9.2. ShardingSphere-Proxy 161

Apache ShardingSphere document

Supplement

• Before register storage units, please confirm that a database has been created in Proxy, and exe‐
cute the use command to successfully select a database;

• Confirm that the registered storage unit can be connected normally, otherwise it will not be added
successfully;

• storageUnitName is case‐sensitive;

• storageUnitName needs to be unique within the current database;

• storageUnitName name only allows letters, numbers and _, and must start with a letter;

• poolProperty is used to customize connection pool parameters, keymust be the same as the
connection pool parameter name;

• ifNotExists clause is used for avoid Duplicate storage unit error.

Example

• Register storage unit using standard mode

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="db_1",
USER="root",
PASSWORD="root"

);

• Register storage unit and set connection pool parameters using standard mode

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="db_1",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"=10)

);

• Register storage unit and set connection pool parameters using URL patterns

REGISTER STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

9.2. ShardingSphere-Proxy 162

Apache ShardingSphere document

• Register storage unit with ifNotExists clause

REGISTER STORAGE UNIT IF NOT EXISTS ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="db_0",
USER="root",
PASSWORD="root"

);

Reserved word

REGISTER, STORAGE, UNIT, HOST, PORT, DB, USER, PASSWORD, PROPERTIES, URL

Related links

• Reserved word

ALTER STORAGE UNIT

Description

The ALTER STORAGE UNIT syntax is used to alter storage units for the currently selected logical
database.

Syntax

AlterStorageUnit ::=
'ALTER' 'STORAGE' 'UNIT' storageUnitDefinition (',' storageUnitDefinition)*

storageUnitDefinition ::=
storageUnitName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName

| 'URL' '=' url) ',' 'USER' '=' user (',' 'PASSWORD' '=' password)? (','
propertiesDefinition)?')'

storageUnitName ::=
identifier

hostname ::=
string

port ::=
int

dbName ::=

9.2. ShardingSphere-Proxy 163

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

string

url ::=
string

user ::=
string

password ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

Supplement

• Before altering the storage units, please confirm that a database exists in Proxy, and execute the
use command to successfully select a database;

• ALTER STORAGE UNIT is not allowed to change the real data source associated with this storage‐
Unit;

• ALTER STORAGE UNIT will switch the connection pool. This operation may affect the ongoing
business, please use it with caution;

• storageUnitName is case‐sensitive;

• storageUnitName needs to be unique within the current database;

• storageUnitName name only allows letters, numbers and _, and must start with a letter;

• poolProperty is used to customize connection pool parameters, keymust be the same as the
connection pool parameter name.

Example

• Alter storage unit using standard mode

ALTER STORAGE UNIT ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db_0,
USER=root,

9.2. ShardingSphere-Proxy 164

Apache ShardingSphere document

PASSWORD=root
);

• Alter storage unit and set connection pool parameters using standard mode

ALTER STORAGE UNIT ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db_1,
USER=root,
PASSWORD=root
PROPERTIES("maximumPoolSize"=10)

);

• Alter storage unit and set connection pool parameters using URL patterns

ALTER STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

Reserved word

ALTER, STORAGE, UNIT, HOST, PORT, DB, USER, PASSWORD, PROPERTIES, URL

Related links

• Reserved word

UNREGISTER STORAGE UNIT

Description

The UNREGISTER STORAGE UNIT syntax is used to unregister storage unit from the current database

9.2. ShardingSphere-Proxy 165

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

UnregisterStorageUnit ::=
'UNREGISTER' 'STORAGE' 'UNIT' ifExists? storageUnitName (',' storageUnitName)* (

'IGNORE' 'SINGLE' 'TABLES')?

ifExists ::=
'IF' 'EXISTS'

storageUnitName ::=
identifier

Supplement

• UNREGISTER STORAGE UNIT will only unregister storage unit in Proxy, the real data source
corresponding to the storage unit will not be unregistered;

• Unable to unregister storage unit already used by rules. Storage unit are still in used.
will be prompted when removing storage units used by rules;

• The storage unit need to be removed only contains SINGLE RULE, and when the user confirms
that this restriction can be ignored, the IGNORE SINGLE TABLES keyword can be added to
remove the storage unit;

• ifExists clause is used for avoid Storage unit not exists error.

Example

• Drop a storage unit

UNREGISTER STORAGE UNIT ds_0;

• Drop multiple storage units

UNREGISTER STORAGE UNIT ds_0, ds_1;

• Ignore single rule remove storage unit

UNREGISTER STORAGE UNIT ds_0 IGNORE SINGLE TABLES;

• Drop the storage unit with ifExists clause

UNREGISTER STORAGE UNIT IF EXISTS ds_0;

9.2. ShardingSphere-Proxy 166

Apache ShardingSphere document

Reserved word

DROP, STORAGE, UNIT, IF, EXISTS, IGNORE, SINGLE, TABLES

Related links

• Reserved word

Rule Definition

This chapter describes the syntax of rule definition.

Sharding

This chapter describes the syntax of sharding.

CREATE SHARDING TABLE RULE

Description

The CREATE SHARDING TABLE RULE syntax is used to add sharding table rule for the currently
selected database

Syntax

CreateShardingTableRule ::=
'CREATE' 'SHARDING' 'TABLE' 'RULE' ifNotExists? (tableDefinition |

autoTableDefinition) (',' (tableDefinition | autoTableDefinition))*

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

tableDefinition ::=
tableName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_

STRATEGY' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '('
strategyDefinition ')')? (',' 'KEY_GENERATE_STRATEGY' '('
keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

autoTableDefinition ::=
tableName '(' 'STORAGE_UNITS' '(' storageUnitName (',' storageUnitName)* ')' ','

'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_
STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

9.2. ShardingSphere-Proxy 167

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

strategyDefinition ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='

columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
'KEY_GENERATE_STRATEGY' '(' 'COLUMN' '=' columnName ',' algorithmDefinition ')'

auditStrategyDefinition ::=
'AUDIT_STRATEGY' '(' algorithmDefinition (',' algorithmDefinition)* ')'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' propertiesDefinition)?')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

tableName ::=
identifier

dataNode ::=
string

storageUnitName ::=
identifier

columnName ::=
identifier

algorithmType ::=
identifier

strategyType ::=
string

9.2. ShardingSphere-Proxy 168

Apache ShardingSphere document

Supplement

• tableDefinition is defined for standard sharding table rule; autoTableDefinition is de‐
fined for auto sharding table rule. For standard sharding rules and auto sharding rule, refer to
Data Sharding;

• use standard sharding table rule:

– DATANODES can only use resources that have been added to the current database, and can
only use INLINE expressions to specify required resources;

– DATABASE_STRATEGY, TABLE_STRATEGY are the database sharding strategy and the table
sharding strategy, which are optional, and the default strategy is used when not configured;

– The attribute TYPE in strategyDefinition is used to specify the type of Sharding Algo‐
rithm, currently only supports STANDARD, COMPLEX. Using COMPLEX requires specifying
multiple sharding columns with SHARDING_COLUMNS.

• use auto sharding table rule:

– STORAGE_UNITS can only use storage units that have been registered to the current
database, and the required storage units can be specified by enumeration or INLINE expres‐
sion;

– Only auto sharding algorithm can be used, please refer to Auto Sharding Algorithm.

• algorithmType is the sharding algorithm type, please refer to Sharding Algorithm;

• The auto‐generated algorithm naming rule is tableName _ strategyType _ shardingAlgo-
rithmType;

• The auto‐generated primary key strategy naming rule is tableName _ strategyType;

• KEY_GENERATE_STRATEGY is used to specify the primary key generation strategy, which is op‐
tional. For the primary key generation strategy, please refer to Distributed Primary Key;

• AUDIT_STRATEGY is used to specify the sharding audit strategy, which is optional. For the shard‐
ing audit generation strategy, please refer to Sharding Audit;

• ifNotExists clause is used for avoid Duplicate sharding rule error.

Example

1.Standard sharding table rule

CREATE SHARDING TABLE RULE t_order_item (
DATANODES("ds_${0..1}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="ds_${user_id % 2}
")))),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="t_order_item_$

9.2. ShardingSphere-Proxy 169

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document

{order_id % 2}")))),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS"),ALLOW_HINT_DISABLE=true)
);

2.Auto sharding table rule

CREATE SHARDING TABLE RULE t_order (
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS"),ALLOW_HINT_DISABLE=true)
);

3.Create sharding rule with ifNotExists clause

• Standard sharding table rule

CREATE SHARDING TABLE RULE IF NOT EXISTS t_order_item (
DATANODES("ds_${0..1}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="ds_${user_id % 2}
")))),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="t_order_item_$
{order_id % 2}")))),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS"),ALLOW_HINT_DISABLE=true)
);

• Auto sharding table rule

CREATE SHARDING TABLE RULE IF NOT EXISTS t_order (
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY (TYPE(NAME="DML_SHARDING_CONDITIONS"),ALLOW_HINT_DISABLE=true)
);

9.2. ShardingSphere-Proxy 170

Apache ShardingSphere document

Reserved word

CREATE, SHARDING, TABLE, RULE, DATANODES, DATABASE_STRATEGY, TABLE_STRATEGY,
KEY_GENERATE_STRATEGY, STORAGE_UNITS, SHARDING_COLUMN, TYPE, SHARDING_COLUMN,
KEY_GENERATOR, SHARDING_ALGORITHM, COLUMN, NAME, PROPERTIES, AUDIT_STRATEGY, AUDI-
TORS, ALLOW_HINT_DISABLE

Related links

• Reserved word

• CREATE DEFAULT_SHARDING STRATEGY

ALTER SHARDING TABLE RULE

Description

The ALTER SHARDING TABLE RULE syntax is used to alter sharding table rule for the currently
selected database

Syntax

AlterShardingTableRule ::=
'ALTER' 'SHARDING' 'TABLE' 'RULE' (tableDefinition | autoTableDefinition) (','

(tableDefinition | autoTableDefinition))*

tableDefinition ::=
tableName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_

STRATEGY' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '('
strategyDefinition ')')? (',' 'KEY_GENERATE_STRATEGY' '('
keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

autoTableDefinition ::=
tableName '(' 'STORAGE_UNITS' '(' storageUnitName (',' storageUnitName)* ')' ','

'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_
STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

strategyDefinition ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='

columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
'KEY_GENERATE_STRATEGY' '(' 'COLUMN' '=' columnName ',' algorithmDefinition ')'

9.2. ShardingSphere-Proxy 171

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/create-default-sharding-strategy/

Apache ShardingSphere document

auditStrategyDefinition ::=
'AUDIT_STRATEGY' '(' algorithmDefinition (',' algorithmDefinition)* ')'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' propertiesDefinition)?')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

tableName ::=
identifier

dataNode ::=
string

storageUnitName ::=
identifier

columnName ::=
identifier

algorithmType ::=
identifier

strategyType ::=
string

Supplement

• tableDefinition is defined for standard sharding table rule; autoTableDefinition is de‐
fined for auto sharding table rule. For standard sharding rules and auto sharding rule, refer to
Data Sharding;

• use standard sharding table rule:

– DATANODES can only use resources that have been added to the current database, and can
only use INLINE expressions to specify required resources;

– DATABASE_STRATEGY, TABLE_STRATEGY are the database sharding strategy and the table
sharding strategy, which are optional, and the default strategy is used when not configured;

– The attribute TYPE in strategyDefinition is used to specify the type of Sharding Algo‐
rithm, currently only supports STANDARD, COMPLEX. Using COMPLEX requires specifying

9.2. ShardingSphere-Proxy 172

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#class-based-sharding-algorithm

Apache ShardingSphere document

multiple sharding columns with SHARDING_COLUMNS.

• use auto sharding table rule:

– STORAGE_UNITS can only use storage units that have been registered to the current
database, and the required storage units can be specified by enumeration or INLINE expres‐
sion;

– Only auto sharding algorithm can be used, please refer to Auto Sharding Algorithm.

• algorithmType is the sharding algorithm type, please refer to Sharding Algorithm;

• The auto‐generated algorithm naming rule is tableName _ strategyType _ shardingAlgo-
rithmType;

• The auto‐generated primary key strategy naming rule is tableName _ strategyType;

• KEY_GENERATE_STRATEGY is used to specify the primary key generation strategy, which is op‐
tional. For the primary key generation strategy, please refer to Distributed Primary Key.

• AUDIT_STRATEGY is used to specify the sharding audit strategy, which is optional. For the shard‐
ing audit generation strategy, please refer to Sharding Audit.

Example

1.Standard sharding table rule

ALTER SHARDING TABLE RULE t_order_item (
DATANODES("ds_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="ds_${user_id % 4}
")))),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="t_order_item_$
{order_id % 4}")))),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(TYPE(NAME="dml_sharding_conditions"),ALLOW_HINT_DISABLE=true)
);

2.Auto sharding table rule

ALTER SHARDING TABLE RULE t_order (
STORAGE_UNITS(ds_0,ds_1,ds_2,ds_3),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="16")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(TYPE(NAME="dml_sharding_conditions"),ALLOW_HINT_DISABLE=true)
);

9.2. ShardingSphere-Proxy 173

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document

Reserved word

ALTER, SHARDING, TABLE, RULE, DATANODES, DATABASE_STRATEGY, TABLE_STRATEGY,
KEY_GENERATE_STRATEGY, STORAGE_UNITS, SHARDING_COLUMN, TYPE, SHARDING_COLUMN,
KEY_GENERATOR, SHARDING_ALGORITHM, COLUMN, NAME, PROPERTIES, AUDIT_STRATEGY, AUDI-
TORS, ALLOW_HINT_DISABLE

Related links

• Reserved word

• ALTER DEFAULT_SHARDING STRATEGY

DROP SHARDING TABLE RULE

Description

The DROP SHARDING TABLE RULE syntax is used to drop sharding table rule for specified database.

Syntax

DropShardingTableRule ::=
'DROP' 'SHARDING' 'TABLE' 'RULE' ifExists? shardingRuleName (','

shardingRuleName)* ('FROM' databaseName)?

ifExists ::=
'IF' 'EXISTS'

shardingRuleName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause is used to avoid Sharding rule not exists error.

9.2. ShardingSphere-Proxy 174

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/alter-default-sharding-strategy/

Apache ShardingSphere document

Example

• Drop mutiple sharding table rules for specified database

DROP SHARDING TABLE RULE t_order, t_order_item FROM sharding_db;

• Drop a sharding table rule for current database

DROP SHARDING TABLE RULE t_order;

• Drop sharding table rule with ifExists clause

DROP SHARDING TABLE RULE IF EXISTS t_order;

Reserved word

DROP, SHARDING, TABLE, RULE, FROM

Related links

• Reserved word

CREATE DEFAULT SHARDING STRATEGY

Description

The CREATE DEFAULT SHARDING STRATEGY syntax is used to create a default sharding strategy

Syntax

CreateDefaultShardingStrategy ::=
'CREATE' 'DEFAULT' 'SHARDING' ('DATABASE' | 'TABLE') 'STRATEGY' ifNotExists? '('

shardingStrategy ')'

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

shardingStrategy ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' '=' columnName | 'SHARDING_COLUMNS

' '=' columnNames) ',' 'SHARDING_ALGORITHM' '=' algorithmDefinition

strategyType ::=
string

algorithmDefinition ::=

9.2. ShardingSphere-Proxy 175

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

'TYPE' '(' 'NAME' '=' algorithmType ',' propertiesDefinition ')'

columnNames ::=
columnName (',' columnName)+

columnName ::=
identifier

algorithmType ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

Supplement

• When using the complex sharding algorithm, multiple sharding columns need to be specified
using SHARDING_COLUMNS;

• algorithmType is the sharding algorithm type. For detailed sharding algorithm type informa‐
tion, please refer to Sharding Algorithm;

• ifNotExists clause is used for avoid Duplicate default sharding strategy error.

Example

• create a default sharding table strategy

-- create a default sharding table strategy
CREATE DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE(NAME="inline
", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}")))
);

• create a default sharding table strategy with ifNotExists clause

CREATE DEFAULT SHARDING TABLE STRATEGY IF NOT EXISTS (
TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE(NAME="inline

", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}")))
);

9.2. ShardingSphere-Proxy 176

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/

Apache ShardingSphere document

Reserved word

CREATE, DEFAULT, SHARDING, DATABASE, TABLE, STRATEGY, TYPE, SHARDING_COLUMN, SHARD-
ING_COLUMNS, SHARDING_ALGORITHM, NAME, PROPERTIES

Related links

• Reserved word

ALTER DEFAULT SHARDING STRATEGY

Description

The ALTER DEFAULT SHARDING STRATEGY syntax is used to alter a default sharding strategy

Syntax

AlterDefaultShardingStrategy ::=
'ALTER' 'DEFAULT' 'SHARDING' ('DATABASE' | 'TABLE') 'STRATEGY' '('

shardingStrategy ')'

shardingStrategy ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' '=' columnName | 'SHARDING_COLUMNS

' '=' columnNames) ',' 'SHARDING_ALGORITHM' '=' algorithmDefinition

strategyType ::=
string

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType ',' propertiesDefinition ')'

columnNames ::=
columnName (',' columnName)+

columnName ::=
identifier

algorithmType ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

9.2. ShardingSphere-Proxy 177

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

value ::=
literal

Supplement

• When using the complex sharding algorithm, multiple sharding columns need to be specified
using SHARDING_COLUMNS;

• algorithmType is the sharding algorithm type. For detailed sharding algorithm type informa‐
tion, please refer to Sharding Algorithm.

Example

• Alter a default sharding table strategy

ALTER DEFAULT SHARDING TABLE STRATEGY (
TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE(NAME="inline

", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}")))
);

Reserved word

ALTER, DEFAULT, SHARDING, DATABASE, TABLE, STRATEGY, TYPE, SHARDING_COLUMN, SHARD-
ING_COLUMNS, SHARDING_ALGORITHM, NAME, PROPERTIES

Related links

• Reserved word

DROP DEFAULT SHARDING STRATEGY

Description

The DROP DEFAULT SHARDING STRATEGY syntax is used to drop default sharding strategy for spec‐
ified database.

9.2. ShardingSphere-Proxy 178

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

DropDefaultShardingStrategy ::=
'DROP' 'DEFAULT' 'SHARDING' ('TABLE' | 'DATABASE') 'STRATEGY' ifExists? ('FROM'

databaseName)?

ifExists ::=
'IF' 'EXISTS'

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause is used for avoid Default sharding strategy not exists error.

Example

• Drop default sharding table strategy for specified database

DROP DEFAULT SHARDING TABLE STRATEGY FROM sharding_db;

• Drop default sharding database strategy for current database

DROP DEFAULT SHARDING DATABASE STRATEGY;

• Drop default sharding table strategy with ifExists clause

DROP DEFAULT SHARDING TABLE STRATEGY IF EXISTS;

• Drop default sharding database strategy with ifExists clause

DROP DEFAULT SHARDING DATABASE STRATEGY IF EXISTS;

Reserved word

DROP, DEFAULT , SHARDING, TABLE, DATABASE ,STRATEGY, FROM

9.2. ShardingSphere-Proxy 179

Apache ShardingSphere document

Related links

• Reserved word

DROP SHARDING KEY GENERATOR

Description

The DROP SHARDING KEY GENERATOR syntax is used to drop sharding key generator for specified
database.

Syntax

DropShardingKeyGenerator ::=
'DROP' 'SHARDING' 'KEY' 'GENERATOR' ifExists? keyGeneratorName

(keyGeneratorName)* ('FROM' databaseName)?

ifExists ::=
'IF' 'EXISTS'

keyGeneratorName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause is used for avoid Sharding key generator not exists error.

Example

• Drop sharding key generator for specified database

DROP SHARDING KEY GENERATOR t_order_snowflake FROM sharding_db;

• Drop sharding key generator for current database

DROP SHARDING KEY GENERATOR t_order_snowflake;

• Drop sharding key generator with ifExists clause

9.2. ShardingSphere-Proxy 180

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

DROP SHARDING KEY GENERATOR IF EXISTS t_order_snowflake;

Reserved word

DROP, SHARDING, KEY, GENERATOR, FROM

Related links

• Reserved word

DROP SHARDING ALGORITHM

Description

The DROP SHARDING ALGORITHM syntax is used to drop sharding algorithm for specified database.

Syntax

DropShardingAlgorithm ::=
'DROP' 'SHARDING' 'ALGORITHM' shardingAlgorithmName ifExists? ('FROM'

databaseName)?

ifExists ::=
'IF' 'EXISTS'

shardingAlgorithmName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause used for avoid Sharding algorithm not exists error.

9.2. ShardingSphere-Proxy 181

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Drop sharding algorithm for specified database

DROP SHARDING ALGORITHM t_order_hash_mod FROM sharding_db;

• Drop sharding algorithm for current database

DROP SHARDING ALGORITHM t_order_hash_mod;

• Drop sharding algorithm with ifExists clause

DROP SHARDING ALGORITHM IF EXISTS t_order_hash_mod;

Reserved word

DROP, SHARDING, ALGORITHM, FROM

Related links

• Reserved word

CREATE SHARDING TABLE REFERENCE RULE

Description

The CREATE SHARDING TABLE REFERENCE RULE syntax is used to create reference rule for sharding
tables

Syntax

CreateShardingTableReferenceRule ::=
'CREATE' 'SHARDING' 'TABLE' 'REFERENCE' 'RULE' ifNotExists?

referenceRelationshipDefinition (',' referenceRelationshipDefinition)*

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

referenceRelationshipDefinition ::=
ruleName '(' tableName (',' tableName)* ')'

tableName ::=
identifier

9.2. ShardingSphere-Proxy 182

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• Sharding table reference rule can only be created for sharding tables;

• A sharding table can only be associated with one sharding table reference rule;

• The referenced sharding tables should be sharded in the same storage units and have the same
number of sharding nodes. For example ds_${0..1}.t_order_${0..1} and ds_${0..1}.
t_order_item_${0..1};

• The referenced sharding tables should use consistent sharding algorithms. For example
t_order_{order_id % 2} and t_order_item_{order_item_id % 2};

• ifNotExists clause used for avoid Duplicate sharding table reference rule error.

Example

1.Create a sharding table reference rule

-- Before creating a sharding table reference rule, you need to create sharding
table rules t_order, t_order_item
CREATE SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item);

2.Createmultiple sharding table reference rules

-- Before creating sharding table reference rules, you need to create sharding
table rules t_order, t_order_item, t_product, t_product_item
CREATE SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item), ref_1 (t_
product,t_product_item);

3.Create a sharding table reference rule with ifNotExists clause

CREATE SHARDING TABLE REFERENCE RULE IF NOT EXISTS ref_0 (t_order,t_order_item);

Reserved word

CREATE, SHARDING, TABLE, REFERENCE, RULE

9.2. ShardingSphere-Proxy 183

Apache ShardingSphere document

Related links

• Reserved word

• CREATE SHARDING TABLE RULE

ALTER SHARDING TABLE REFERENCE RULE

Description

The ALTER SHARDING TABLE REFERENCE RULE syntax is used to alter sharding table reference rule.

Syntax

AlterShardingTableReferenceRule ::=
'ALTER' 'SHARDING' 'TABLE' 'REFERENCE' 'RULE' referenceRelationshipDefinition (

',' referenceRelationshipDefinition)*

referenceRelationshipDefinition ::=
ruleName '(' tableName (',' tableName)* ')'

tableName ::=
identifier

Supplement

• A sharding table can only be associated with one sharding table reference rule;

• The referenced sharding tables should be sharded in the same storage units and have the same
number of sharding nodes. For example ds_${0..1}.t_order_${0..1} and ds_${0..1}.
t_order_item_${0..1};

• The referenced sharding tables should use consistent sharding algorithms. For example
t_order_{order_id % 2} and t_order_item_{order_item_id % 2};

Example

1. Alter a sharding table reference rule

ALTER SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item);

9.2. ShardingSphere-Proxy 184

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/create-sharding-table-rule/

Apache ShardingSphere document

2. Alter multiple sharding table reference rules

ALTER SHARDING TABLE REFERENCE RULE ref_0 (t_order,t_order_item), ref_1 (t_product,
t_product_item);

Reserved word

ALTER, SHARDING, TABLE, REFERENCE, RULE

Related links

• Reserved word

• CREATE SHARDING TABLE RULE

DROP SHARDING TABLE REFERENCE RULE

Description

The DROP SHARDING TABLE REFERENCE RULE syntax is used to drop specified sharding table
reference rule.

Syntax

DropShardingTableReferenceRule ::=
'DROP' 'SHARDING' 'TABLE' 'REFERENCE' 'RULE' ifExists? shardingReferenceRuleName

(',' shardingReferenceRuleName)*

ifExists ::=
'IF' 'EXISTS'

shardingReferenceRuleName ::=
identifier

Supplement

• ifExists clause is used for avoid Sharding reference rule not exists error. ###
Example

• Drop a specified sharding table reference rule

DROP SHARDING TABLE REFERENCE RULE ref_0;

• Drop multiple sharding table reference rules

9.2. ShardingSphere-Proxy 185

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/create-sharding-table-rule/

Apache ShardingSphere document

DROP SHARDING TABLE REFERENCE RULE ref_0, ref_1;

• Drop sharding table reference rule with ifExists clause

DROP SHARDING TABLE REFERENCE RULE IF EXISTS ref_0;

Reserved word

DROP, SHARDING, TABLE, REFERENCE, RULE

Related links

• Reserved word

Broadcast Table

This chapter describes the syntax of broadcast table.

CREATE BROADCAST TABLE RULE

Description

The CREATE BROADCAST TABLE RULE syntax is used to create broadcast table rules for tables that
need to be broadcast (broadcast tables)

Syntax

CreateBroadcastTableRule ::=
'CREATE' 'BROADCAST' 'TABLE' 'RULE' ifNotExists? tableName (',' tableName)*

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

tableName ::=
identifier

9.2. ShardingSphere-Proxy 186

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• tableName can use an existing table or a table that will be created;

• ifNotExists clause is used for avoid Duplicate Broadcast rule error.

Example

Create broadcast table rule

-- Add t_province, t_city to broadcast table rules
CREATE BROADCAST TABLE RULE t_province, t_city;

Create broadcast table rule with ifNotExists clause

CREATE BROADCAST TABLE RULE IF NOT EXISTS t_province, t_city;

Reserved word

CREATE, BROADCAST, TABLE, RULE

Related links

• Reserved word

DROP BROADCAST TABLE RULE

Description

The DROP BROADCAST TABLE RULE syntax is used to drop broadcast table rule for specified broadcast
tables

Syntax

DropBroadcastTableRule ::=
'DROP' 'BROADCAST' 'TABLE' 'RULE' ifExists? tableName (',' tableName)*

ifExists ::=
'IF' 'EXISTS'

tableName ::=
identifier

9.2. ShardingSphere-Proxy 187

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• tableName can use the table of existing broadcast rules;

• ifExists clause is used for avoid Broadcast rule not exists error.

Example

• Drop broadcast table rule for specified broadcast table

DROP BROADCAST TABLE RULE t_province, t_city;

• Drop broadcast table rule with ifExists clause

DROP BROADCAST TABLE RULE IF EXISTS t_province, t_city;

Reserved word

DROP, BROADCAST, TABLE, RULE

Related links

• Reserved word

Single Table

This chapter describes the syntax of single table.

LOAD SINGLE TABLE

Description

The LOAD SINGLE TABLE syntax is used to load single table from storage unit.

Syntax

loadSingleTable ::=
'LOAD' 'SINGLE' 'TABLE' tableDefinition

tableDefinition ::=
tableIdentifier (',' tableIdentifier)*

tableIdentifier ::=
'*.*' | '*.*.*' | storageUnitName '.*' | storageUnitName '.*.*' | storageUnitName

9.2. ShardingSphere-Proxy 188

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

'.' schemaName '.*' | storageUnitName '.' tableName | storageUnitName '.'
schemaName '.' tableName

storageUnitName ::=
identifier

schemaName ::=
identifier

tableName ::=
identifier

Supplement

• support specifying schemaName in PostgreSQL and OpenGauss protocols

Example

• Load specified single table

LOAD SINGLE TABLE ds_0.t_single;

• Load all single tables in the specified storage unit

LOAD SINGLE TABLE ds_0.*;

• Load all single tables

LOAD SINGLE TABLE *.*;

Reserved word

LOAD, SINGLE, TABLE

Related links

• Reserved word

9.2. ShardingSphere-Proxy 189

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

UNLOAD SINGLE TABLE

Description

The UNLOAD SINGLE TABLE syntax is used to unload single table.

Syntax

unloadSingleTable ::=
'UNLOAD' 'SINGLE' 'TABLE' tableNames

tableNames ::=
tableName (',' tableName)*

tableName ::=
identifier

Supplement

• Unlike loading, only the table name needs to be specified when unloading a single table

Example

• Unload specified single table

UNLOAD SINGLE TABLE t_single;

• Load all single tables

UNLOAD SINGLE TABLE *;
-- or
UNLOAD ALL SINGLE TABLES;

Reserved word

UNLOAD, SINGLE, TABLE, ALL, TABLES

9.2. ShardingSphere-Proxy 190

Apache ShardingSphere document

Related links

• Reserved word

SET DEFAULT SINGLE TABLE STORAGE UNIT

Description

The SET DEFAULT SINGLE TABLE STORAGE UNIT syntax is used to set default single table storage
unit.

Syntax

SetDefaultSingleTableStorageUnit ::=
'SET' 'DEFAULT' 'SINGLE' 'TABLE' 'STORAGE' 'UNIT' singleTableDefinition

singleTableDefinition ::=
'=' (storageUnitName | 'RANDOM')

storageUnitName ::=
identifier

Supplement

• STORAGE UNIT needs to use storage unit managed by RDL. The RANDOM keyword stands for
random storage.

Example

• Set a default single table storage unit

SET DEFAULT SINGLE TABLE STORAGE UNIT = ds_0;

• Set the default single table storage unit to random storage

SET DEFAULT SINGLE TABLE STORAGE UNIT = RANDOM;

9.2. ShardingSphere-Proxy 191

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Reserved word

SET, DEFAULT, SINGLE, TABLE, STORAGE, UNIT, RANDOM

Related links

• Reserved word

Readwrite-Splitting

This chapter describes the syntax of readwrite‐splitting.

CREATE READWRITE_SPLITTING RULE

Description

The CREATE READWRITE_SPLITTING RULE syntax is used to create a read/write splitting rule.

Syntax

CreateReadwriteSplittingRule ::=
'CREATE' 'READWRITE_SPLITTING' 'RULE' ifNotExists? readwriteSplittingDefinition (

',' readwriteSplittingDefinition)*

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

readwriteSplittingDefinition ::=
ruleName '(' dataSourceDefinition (',' transactionalReadQueryStrategyDefinition)?

(',' loadBalancerDefinition)? ')'

dataSourceDefinition ::=
'WRITE_STORAGE_UNIT' '=' writeStorageUnitName ',' 'READ_STORAGE_UNITS' '('

storageUnitName (',' storageUnitName)* ')'

transactionalReadQueryStrategyDefinition ::=
'TRANSACTIONAL_READ_QUERY_STRATEGY' '=' transactionalReadQueryStrategyType

loadBalancerDefinition ::=
'TYPE' '(' 'NAME' '=' loadBalancerType (',' propertiesDefinition)? ')'

ruleName ::=
identifier

writeStorageUnitName ::=

9.2. ShardingSphere-Proxy 192

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

identifier

storageUnitName ::=
identifier

transactionalReadQueryStrategyType ::=
string

loadBalancerType ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

Note

• transactionalReadQueryStrategyType specifies the routing strategy for read querywithin
a transaction, please refer to YAML configuration;

• loadBalancerType specifies the load balancing algorithm type, please refer to Load Balance
Algorithm;

• Duplicate ruleName will not be created;

• ifNotExists clause used to avoid the Duplicate readwrite_splitting rule error.

Example

Create a read/write splitting rule

CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0,read_ds_1),
TYPE(NAME="random")

);

9.2. ShardingSphere-Proxy 193

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

Create read/write splitting rule with the ifNotExists clause

• read/write splitting rule

CREATE READWRITE_SPLITTING RULE IF NOT EXISTS ms_group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0,read_ds_1),
TYPE(NAME="random")

);

Reserved words

CREATE, READWRITE_SPLITTING, RULE, WRITE_STORAGE_UNIT, READ_STORAGE_UNITS , TYPE,
NAME, PROPERTIES, TRUE, FALSE

Related links

• Reserved words

• Load Balance Algorithm

ALTER READWRITE_SPLITTING RULE

Description

The ALTER READWRITE_SPLITTING RULE syntax is used to alter a readwrite‐splitting rule.

Syntax

AlterReadwriteSplittingRule ::=
'ALTER' 'READWRITE_SPLITTING' 'RULE' readwriteSplittingDefinition (','

readwriteSplittingDefinition)*

readwriteSplittingDefinition ::=
ruleName '(' dataSourceDefinition (',' transactionalReadQueryStrategyDefinition)?

(',' loadBalancerDefinition)? ')'

dataSourceDefinition ::=
'WRITE_STORAGE_UNIT' '=' writeStorageUnitName ',' 'READ_STORAGE_UNITS' '('

storageUnitName (',' storageUnitName)* ')'

transactionalReadQueryStrategyDefinition ::=
'TRANSACTIONAL_READ_QUERY_STRATEGY' '=' transactionalReadQueryStrategyType

loadBalancerDefinition ::=

9.2. ShardingSphere-Proxy 194

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

'TYPE' '(' 'NAME' '=' loadBalancerType (',' propertiesDefinition)? ')'

ruleName ::=
identifier

writeStorageUnitName ::=
identifier

storageUnitName ::=
identifier

transactionalReadQueryStrategyType ::=
string

loadBalancerType ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

Supplement

• transactionalReadQueryStrategyType specifies the routing strategy for read querywithin
a transaction, please refer to YAML configuration;

• loadBalancerType specifies the load balancing algorithm type, please refer to Load Balance
Algorithm.

Example

Alter a readwrite-splitting rule

ALTER READWRITE_SPLITTING RULE ms_group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds_0,read_ds_1),
TYPE(NAME="random")

);

9.2. ShardingSphere-Proxy 195

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

Reserved word

ALTER, READWRITE_SPLITTING, RULE, WRITE_STORAGE_UNIT, READ_STORAGE_UNITS , TYPE,
NAME, PROPERTIES, TRUE, FALSE

Related links

• Reserved word

• Load Balance Algorithm

DROP READWRITE_SPLITTING RULE

Description

The DROP READWRITE_SPLITTING RULE syntax is used to drop readwrite‐splitting rule for specified
database

Syntax

DropReadwriteSplittingRule ::=
'DROP' 'READWRITE_SPLITTING' 'RULE' ifExists? readwriteSplittingRuleName (','

readwriteSplittingRuleName)* ('FROM' databaseName)?

ifExists ::=
'IF' 'EXISTS'

readwriteSplittingRuleName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause is used for avoid Readwrite-splitting rule not exists error.

9.2. ShardingSphere-Proxy 196

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document

Example

• Drop readwrite‐splitting rule for specified database

DROP READWRITE_SPLITTING RULE ms_group_1 FROM readwrite_splitting_db;

• Drop readwrite‐splitting rule for current database

DROP READWRITE_SPLITTING RULE ms_group_1;

• Drop readwrite‐splitting rule with ifExists clause

DROP READWRITE_SPLITTING RULE IF EXISTS ms_group_1;

Reserved word

DROP, READWRITE_SPLITTING, RULE

Related links

• Reserved word

Encrypt

This chapter describes the syntax of encrypt.

CREATE ENCRYPT RULE

Description

The CREATE ENCRYPT RULE syntax is used to create encrypt rules.

Syntax

CreateEncryptRule ::=
'CREATE' 'ENCRYPT' 'RULE' ifNotExists? encryptDefinition (',' encryptDefinition)*

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

encryptDefinition ::=
ruleName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)* ')' ')'

columnDefinition ::=

9.2. ShardingSphere-Proxy 197

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

'(' 'NAME' '=' columnName ',' 'CIPHER' '=' cipherColumnName (',' 'ASSISTED_QUERY'
'=' assistedQueryColumnName)? (',' 'LIKE_QUERY' '=' likeQueryColumnName)? ','
encryptAlgorithmDefinition (',' assistedQueryAlgorithmDefinition)? (','
likeQueryAlgorithmDefinition)? ')'

encryptAlgorithmDefinition ::=
'ENCRYPT_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (','

propertiesDefinition)? ')'

assistedQueryAlgorithmDefinition ::=
'ASSISTED_QUERY_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (','

propertiesDefinition)? ')'

likeQueryAlgorithmDefinition ::=
'LIKE_QUERY_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (','

propertiesDefinition)? ')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

tableName ::=
identifier

columnName ::=
identifier

cipherColumnName ::=
identifier

assistedQueryColumnName ::=
identifier

likeQueryColumnName ::=
identifier

encryptAlgorithmType ::=
string

key ::=
string

value ::=
literal

9.2. ShardingSphere-Proxy 198

Apache ShardingSphere document

Supplement

• CIPHER specifies the cipher column, ASSISTED_QUERY specifies the assisted query column，
LIKE_QUERY specifies the like query column;

• encryptAlgorithmType specifies the encryption algorithm type, please refer to Encryption
Algorithm;

• Duplicate ruleName will not be created;

• ifNotExists clause used for avoid Duplicate encrypt rule error.

Example

Create an encrypt rule

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,CIPHER=user_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc')))),
(NAME=order_id, CIPHER =order_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='MD5')))
)),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,CIPHER=user_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc')))),
(NAME=order_id, CIPHER=order_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='MD5')))
));

Create an encrypt rule with ifNotExists clause

CREATE ENCRYPT RULE IF NOT EXISTS t_encrypt (
COLUMNS(
(NAME=user_id,CIPHER=user_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc')))),
(NAME=order_id, CIPHER =order_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='MD5')))
)),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,CIPHER=user_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc')))),
(NAME=order_id, CIPHER=order_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='MD5')))
));

9.2. ShardingSphere-Proxy 199

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document

Reserved words

CREATE, ENCRYPT, RULE, COLUMNS, NAME, CIPHER, ASSISTED_QUERY, LIKE_QUERY, EN-
CRYPT_ALGORITHM, ASSISTED_QUERY_ALGORITHM, LIKE_QUERY_ALGORITHM, TYPE, TRUE,
FALSE

Related links

• Reserved word

• Encryption Algorithm

ALTER ENCRYPT RULE

Description

The ALTER ENCRYPT RULE syntax is used to alter encryption rules.

Syntax

AlterEncryptRule ::=
'ALTER' 'ENCRYPT' 'RULE' encryptDefinition (',' encryptDefinition)*

encryptDefinition ::=
ruleName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)* ')' ')'

columnDefinition ::=
'(' 'NAME' '=' columnName ',' 'CIPHER' '=' cipherColumnName (',' 'ASSISTED_QUERY'

'=' assistedQueryColumnName)? (',' 'LIKE_QUERY' '=' likeQueryColumnName)? ','
encryptAlgorithmDefinition (',' assistedQueryAlgorithmDefinition)? (','
likeQueryAlgorithmDefinition)? ')'

encryptAlgorithmDefinition ::=
'ENCRYPT_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (','

propertiesDefinition)? ')'

assistedQueryAlgorithmDefinition ::=
'ASSISTED_QUERY_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (','

propertiesDefinition)? ')'

likeQueryAlgorithmDefinition ::=
'LIKE_QUERY_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (','

propertiesDefinition)? ')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

9.2. ShardingSphere-Proxy 200

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document

tableName ::=
identifier

columnName ::=
identifier

cipherColumnName ::=
identifier

assistedQueryColumnName ::=
identifier

likeQueryColumnName ::=
identifier

encryptAlgorithmType ::=
string

key ::=
string

value ::=
literal

Supplement

• CIPHER specifies the cipher column, ASSISTED_QUERY specifies the assisted query column，
LIKE_QUERY specifies the like query column

• encryptAlgorithmType specifies the encryption algorithm type, please refer to Encryption
Algorithm

Example

• Alter an encrypt rule

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,CIPHER=user_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc')))),
(NAME=order_id,CIPHER=order_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='MD5')))
));

9.2. ShardingSphere-Proxy 201

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document

Reserved words

ALTER, ENCRYPT, RULE, COLUMNS, NAME, CIPHER, ASSISTED_QUERY, LIKE_QUERY, EN-
CRYPT_ALGORITHM, ASSISTED_QUERY_ALGORITHM, LIKE_QUERY_ALGORITHM, TYPE, TRUE,
FALSE

Related links

• Reserved word

• Encryption Algorithm

DROP ENCRYPT RULE

Description

The DROP ENCRYPT RULE syntax is used to drop an existing encryption rule.

Syntax

DropEncryptRule ::=
'DROP' 'ENCRYPT' 'RULE' ifExists? encryptRuleName (',' encryptRuleName)*

ifExists ::=
'IF' 'EXISTS'

encryptRuleName ::=
identifier

Supplement

• ifExists clause is used for avoid Encrypt rule not exists error.

Example

• Drop an encrypt rule

DROP ENCRYPT RULE t_encrypt, t_encrypt_2;

• Drop encrypt with ifExists clause

DROP ENCRYPT RULE IF EXISTS t_encrypt, t_encrypt_2;

9.2. ShardingSphere-Proxy 202

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document

Reserved words

DROP, ENCRYPT, RULE

Related links

• Reserved word

Mask

This chapter describes the syntax of mask.

CREATE MASK RULE

Description

The CREATE MASK RULE syntax is used to create a mask rule.

Syntax

CreateEncryptRule ::=
'CREATE' 'MASK' 'RULE' ifNotExists? maskRuleDefinition (',' maskRuleDefinition)*

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

maskRuleDefinition ::=
ruleName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)* ')' ')'

columnDefinition ::=
'(' 'NAME' '=' columnName ',' maskAlgorithmDefinition ')'

maskAlgorithmDefinition ::=
'TYPE' '(' 'NAME' '=' maskAlgorithmType (',' propertiesDefinition)? ')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

ruleName ::=
identifier

columnName ::=
identifier

maskAlgorithmType ::=

9.2. ShardingSphere-Proxy 203

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

literal

key ::=
string

value ::=
literal

Note

• maskAlgorithmType specifies the data masking algorithm type. For more details, please refer
to Data Masking Algorithm;

• Duplicate ruleName will not be created;

• ifNotExists clause is used for avoid Duplicate mask rule error.

Example

Create amask rule

CREATE MASK RULE t_mask (
COLUMNS(
(NAME=phone_number,TYPE(NAME='MASK_FROM_X_TO_Y', PROPERTIES("from-x"=1, "to-y"=2,
"replace-char"="*"))),
(NAME=address,TYPE(NAME='MD5'))
));

Createmask rule with ifNotExists clause

CREATE MASK RULE IF NOT EXISTS t_mask (
COLUMNS(
(NAME=phone_number,TYPE(NAME='MASK_FROM_X_TO_Y', PROPERTIES("from-x"=1, "to-y"=2,
"replace-char"="*"))),
(NAME=address,TYPE(NAME='MD5'))
));

9.2. ShardingSphere-Proxy 204

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/

Apache ShardingSphere document

Reserved words

CREATE, MASK, RULE, COLUMNS, NAME, TYPE

Related links

• Reserved word

• Data Masking Algorithm

ALTERMASK RULE

Description

The ALTER MASK RULE syntax is used to create a mask rule.

Syntax

AlterEncryptRule ::=
'ALTER' 'MASK' 'RULE' maskRuleDefinition (',' maskRuleDefinition)*

maskRuleDefinition ::=
ruleName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)* ')' ')'

columnDefinition ::=
'(' 'NAME' '=' columnName ',' maskAlgorithmDefinition ')'

maskAlgorithmDefinition ::=
'TYPE' '(' 'NAME' '=' maskAlgorithmType (',' propertiesDefinition)? ')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

ruleName ::=
identifier

columnName ::=
identifier

maskAlgorithmType ::=
literal

key ::=
string

9.2. ShardingSphere-Proxy 205

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/

Apache ShardingSphere document

value ::=
literal

Supplement

• maskAlgorithmType specifies the data masking algorithm type, please refer to Data Masking
Algorithm.

Example

Alter amask rule

ALTER MASK RULE t_mask (
COLUMNS(
(NAME=phone_number,TYPE(NAME='MASK_FROM_X_TO_Y', PROPERTIES("from-x"=1, "to-y"=2,
"replace-char"="*"))),
(NAME=address,TYPE(NAME='MD5'))
));

Reserved words

ALTER, MASK, RULE, COLUMNS, NAME, TYPE

Related links

• Reserved word

• Data Masking Algorithm

DROPMASK RULE

Description

The DROP MASK RULE syntax is used to drop existing mask rule.

9.2. ShardingSphere-Proxy 206

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/mask/

Apache ShardingSphere document

Syntax

DropEncryptRule ::=
'DROP' 'MASK' 'RULE' ifExists? maskRuleName (',' maskRuleName)*

ifExists ::=
'IF' 'EXISTS'

maskRuleName ::=
identifier

Supplement

• ifExists clause used for avoid Mask rule not exists error.

Example

• Drop mask rule

DROP MASK RULE t_mask, t_mask_1;

• Drop mask rule with ifExists clause

DROP MASK RULE IF EXISTS t_mask, t_mask_1;

Reserved words

DROP, MASK, RULE

Related links

• Reserved word

Shadow

This chapter describes the syntax of shadow.

9.2. ShardingSphere-Proxy 207

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

CREATE SHADOWRULE

Description

The CREATE SHADOW RULE syntax is used to create a shadow rule.

Syntax

CreateShadowRule ::=
'CREATE' 'SHADOW' 'RULE' ifNotExists? shadowRuleDefinition (','

shadowRuleDefinition)*

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

shadowRuleDefinition ::=
ruleName '(' storageUnitMapping shadowTableRule (',' shadowTableRule)* ')'

storageUnitMapping ::=
'SOURCE' '=' storageUnitName ',' 'SHADOW' '=' storageUnitName

shadowTableRule ::=
tableName '(' shadowAlgorithm ')'

shadowAlgorithm ::=
'TYPE' '(' 'NAME' '=' shadowAlgorithmType ',' propertiesDefinition ')'

ruleName ::=
identifier

storageUnitName ::=
identifier

tableName ::=
identifier

algorithmName ::=
identifier

shadowAlgorithmType ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

9.2. ShardingSphere-Proxy 208

Apache ShardingSphere document

value ::=
literal

Supplement

• Duplicate ruleName cannot be created;

• storageUnitMapping specifies the mapping relationship between the source database and
the shadow library. You need to use the storage unit managed by RDL, please refer to STORAGE
UNIT;

• shadowAlgorithm can act on multiple shadowTableRule at the same time;

• If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType;

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT;

• ifNotExists caluse is used for avoid Duplicate shadow rule error.

Example

• Create a shadow rule

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order(TYPE(NAME="SQL_HINT")),
t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=

"user_id", "value"='1')))
);

• Create a shadow rule with ifNotExists clause

CREATE SHADOW RULE IF NOT EXISTS shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order(TYPE(NAME="SQL_HINT")),
t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=

"user_id", "value"='1')))
);

9.2. ShardingSphere-Proxy 209

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

Reserved word

CREATE, SHADOW, RULE, SOURCE, SHADOW, TYPE, NAME, PROPERTIES

Related links

• Reserved word

• STORAGE UNIT

ALTER SHADOWRULE

Description

The ALTER SHADOW RULE syntax is used to alter shadow rule.

Syntax

AlterShadowRule ::=
'ALTER' 'SHADOW' 'RULE' shadowRuleDefinition (',' shadowRuleDefinition)*

shadowRuleDefinition ::=
ruleName '(' storageUnitMapping shadowTableRule (',' shadowTableRule)* ')'

storageUnitMapping ::=
'SOURCE' '=' storageUnitName ',' 'SHADOW' '=' storageUnitName

shadowTableRule ::=
tableName '(' shadowAlgorithm ')'

shadowAlgorithm ::=
'TYPE' '(' 'NAME' '=' shadowAlgorithmType ',' propertiesDefinition ')'

ruleName ::=
identifier

storageUnitName ::=
identifier

tableName ::=
identifier

algorithmName ::=
identifier

shadowAlgorithmType ::=

9.2. ShardingSphere-Proxy 210

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

Supplement

• storageUnitMapping specifies the mapping relationship between the source database and
the shadow library. You need to use the storage unit managed by RDL, please refer to STORAGE
UNIT;

• shadowAlgorithm can act on multiple shadowTableRule at the same time;

• If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType;

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT.

Example

• Create a shadow rule

ALTER SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order(TYPE(NAME="SQL_HINT")),
t_order_item(TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=

"user_id", "value"='1')))
);

Reserved word

ALTER, SHADOW, RULE, SOURCE, SHADOW, TYPE, NAME, PROPERTIES

9.2. ShardingSphere-Proxy 211

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

Related links

• Reserved word

• STORAGE UNIT

DROP SHADOWRULE

Description

The DROP SHADOW RULE syntax is used to drop shadow rule for specified database

Syntax

DropShadowRule ::=
'DROP' 'SHADOW' 'RULE' ifExists? shadowRuleName ('FROM' databaseName)?

ifExists ::=
'IF' 'EXISTS'

shadowRuleName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause is used for avoid Shadow rule not exists error.

Example

• Drop shadow rule for specified database

DROP SHADOW RULE shadow_rule FROM shadow_db;

• Drop shadow rule for current database

DROP SHADOW RULE shadow_rule;

• Drop shadow rule with ifExists clause

9.2. ShardingSphere-Proxy 212

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

DROP SHADOW RULE IF EXISTS shadow_rule;

Reserved word

DROP, SHODOW, RULE, FROM

Related links

• Reserved word

CREATE DEFAULT SHADOW ALGORITHM

Description

The CREATE DEFAULT SHADOW ALGORITHM syntax is used to create a default shadow algorithm.

Syntax

CreateDefaultShadowAlgorithm ::=
'CREATE' 'DEFAULT' 'SHADOW' 'ALGORITHM' ifNotExists? shadowAlgorithm

ifNotExists ::=
'IF' 'NOT' 'EXISTS'

shadowAlgorithm ::=
'TYPE' '(' 'NAME' '=' shadowAlgorithmType ',' propertiesDefiinition ')'

shadowAlgorithmType ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

9.2. ShardingSphere-Proxy 213

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT;

• ifNotExists clause is used for avoid Duplicate default shadow algorithm error.

Example

• Create default shadow algorithm

CREATE DEFAULT SHADOW ALGORITHM TYPE(NAME="SQL_HINT");

• Create default shadow algorithm with ifNotExist clause

CREATE DEFAULT SHADOW ALGORITHM IF NOT EXISTS TYPE(NAME="SQL_HINT");

Reserved word

CREATE, DEFAULT, SHADOW, ALGORITHM, TYPE, NAME, PROPERTIES

Related links

• Reserved word

ALTER DEFAULT SHADOW ALGORITHM

Description

The ALTER DEFAULT SHADOW ALGORITHM syntax is used to alter a default shadow algorithm.

Syntax

AlterDefaultShadowAlgorithm ::=
'ALTER' 'DEFAULT' 'SHADOW' 'ALGORITHM' shadowAlgorithm

shadowAlgorithm ::=
'TYPE' '(' 'NAME' '=' shadowAlgorithmType ',' propertiesDefiinition ')'

shadowAlgorithmType ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

9.2. ShardingSphere-Proxy 214

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

key ::=
string

value ::=
literal

Supplement

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SQL_HINT.

Example

• Alter default shadow algorithm

ALTER DEFAULT SHADOW ALGORITHM TYPE(NAME="SQL_HINT");

Reserved word

ALTER, DEFAULT, SHADOW, ALGORITHM, TYPE, NAME, PROPERTIES

Related links

• Reserved word

DROP DEFAULT SHADOW ALGORITHM

Description

TheDROP DEFAULT SHADOW ALGORITHM syntax is used to dropdefault shadowalgorithm for specified
database

Syntax

DropDefaultShadowAlgorithm ::=
'DROP' 'DEFAULT' 'SHADOW' 'ALGORITHM' ifExists? ('FROM' databaseName)?

ifExists ::=
'IF' 'EXISTS'

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 215

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause used for avoid Default shadow algorithm not exists error.

Example

• Drop default shadow algorithm for specified database

DROP DEFAULT SHADOW ALGORITHM FROM shadow_db;

• Drop default shadow algorithm for current database

DROP DEFAULT SHADOW ALGORITHM;

• Drop default shadow algorithm with ifExists clause

DROP DEFAULT SHADOW ALGORITHM IF EXISTS;

Reserved word

DROP, DEFAULT, SHODOW, ALGORITHM, FROM

Related links

• Reserved word

DROP SHADOW ALGORITHM

Description

The DROP SHADOW ALGORITHM syntax is used to drop shadow algorithm for specified database

Syntax

DropShadowAlgorithm ::=
'DROP' 'SHADOW' 'ALGORITHM' ifExists? shadowAlgorithmName (','

shadowAlgorithmName)* ('FROM' databaseName)?

ifExists ::=
'IF' 'EXISTS'

9.2. ShardingSphere-Proxy 216

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

shadowAlgorithmName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted;

• ifExists clause is used for avoid shadow algorithm not exists error.

Example

• Drop mutiple shadow algorithm for specified database

DROP SHADOW ALGORITHM shadow_rule_t_order_sql_hint_0, shadow_rule_t_order_item_sql_
hint_0 FROM shadow_db;

• Drop single shadow algorithm for current database

DROP SHADOW ALGORITHM shadow_rule_t_order_sql_hint_0;

• Drop shadow algorithm with ifExists clause

DROP SHADOW ALGORITHM IF EXISTS shadow_rule_t_order_sql_hint_0;

Reserved word

DROP, SHODOW, ALGORITHM, FROM

Related links

• Reserved word

RQL Syntax

RQL (Resource & Rule Query Language) responsible for resources/rules query.

9.2. ShardingSphere-Proxy 217

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Storage Unit Query

This chapter describes the syntax of storage unit query.

SHOW STORAGE UNITS

Description

The SHOW STORAGE UNITS syntax is used to query the storage units that have been added to the
specified database.

Syntax

ShowStorageUnit ::=
'SHOW' 'STORAGE' 'UNITS' ('WHERE' 'USAGE_COUNT' '=' usageCount)? ('FROM'

databaseName)?

usageCount ::=
int

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE; if DATABASE
is not used, it will prompt No database selected.

Return Value Description

Column Description

name Storage unit name
type Storage unit type
host Storage unit host
port Storage unit port
db Database name
attribute Storage unit attribute

Example

• Query unused storage units for the specified database

9.2. ShardingSphere-Proxy 218

Apache ShardingSphere document

SHOW STORAGE UNITS WHERE USAGE_COUNT = 0 FROM sharding_db;

mysql> SHOW STORAGE UNITS WHERE USAGE_COUNT = 0 FROM sharding_db;
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| ds_1 | MySQL | 127.0.0.1 | 3306 | db1 | 30000 | 60000

| 2100000 | 50 | 1 |
false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
| ds_0 | MySQL | 127.0.0.1 | 3306 | db0 | 30000 | 60000

9.2. ShardingSphere-Proxy 219

Apache ShardingSphere document

| 2100000 | 50 | 1 |
false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
2 rows in set (0.03 sec)

• Query unused storage units for current database

SHOW STORAGE UNITS WHERE USAGE_COUNT = 0;

mysql> SHOW STORAGE UNITS WHERE USAGE_COUNT=0;
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

9.2. ShardingSphere-Proxy 220

Apache ShardingSphere document

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| ds_1 | MySQL | 127.0.0.1 | 3306 | db1 | 30000 | 60000

| 2100000 | 50 | 1 |
false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
| ds_0 | MySQL | 127.0.0.1 | 3306 | db0 | 30000 | 60000

| 2100000 | 50 | 1 |
false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
2 rows in set (0.01 sec)

9.2. ShardingSphere-Proxy 221

Apache ShardingSphere document

• Query storage units for the specified database

SHOW STORAGE UNITS FROM sharding_db;

mysql> SHOW STORAGE UNITS FROM sharding_db;
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| ds_1 | MySQL | 127.0.0.1 | 3306 | db1 | 30000 | 60000

| 2100000 | 50 | 1 |
false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |

9.2. ShardingSphere-Proxy 222

Apache ShardingSphere document

| ds_0 | MySQL | 127.0.0.1 | 3306 | db0 | 30000 | 60000
| 2100000 | 50 | 1 |

false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
2 rows in set (0.01 sec)

• Query storage units for the current database

SHOW STORAGE UNITS;

mysql> SHOW STORAGE UNITS;
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

9.2. ShardingSphere-Proxy 223

Apache ShardingSphere document

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
| ds_1 | MySQL | 127.0.0.1 | 3306 | db1 | 30000 | 60000

| 2100000 | 50 | 1 |
false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
| ds_0 | MySQL | 127.0.0.1 | 3306 | db0 | 30000 | 60000

| 2100000 | 50 | 1 |
false | {"dataSourceProperties":{"maintainTimeStats":"false",
"rewriteBatchedStatements":"true","tinyInt1isBit":"false","cacheResultSetMetadata":
"false","useServerPrepStmts":"true","netTimeoutForStreamingResults":"0","useSSL":
"false","prepStmtCacheSqlLimit":"2048","elideSetAutoCommits":"true","cachePrepStmts
":"true","serverTimezone":"UTC","zeroDateTimeBehavior":"round","prepStmtCacheSize":
"8192","useLocalSessionState":"true","cacheServerConfiguration":"true"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

------------+
2 rows in set (0.00 sec)

9.2. ShardingSphere-Proxy 224

Apache ShardingSphere document

Reserved word

SHOW, STORAGE, UNIT, WHERE, USAGE_COUNT, FROM

Related links

• Reserved word

Rule Query

This chapter describes the syntax of rule query.

Sharding

This chapter describes the syntax of sharding.

SHOW SHARDING TABLE RULE

Description

The SHOW SHARDING TABLE RULE syntax is used to query the sharding table rule in the specified
database.

Syntax

ShowShardingTableRule ::=
'SHOW' 'SHARDING' 'TABLE' ('RULE' tableName | 'RULES') ('FROM' databaseName)?

tableName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

9.2. ShardingSphere-Proxy 225

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Column Description

table Logical table name
actual_data_nodes Actual data node
actual_data_sources Actual data source (Displayed when creating rules by RDL)
database_strategy_type Database sharding strategy type
d atabase_sharding_column Database sharding column
database_ sharding_algorithm_type Database sharding algorithm type
database_s harding_algorithm_props Database sharding algorithm properties
table_strategy_type Table sharding strategy type
table_sharding_column Table sharding column
table_ sharding_algorithm_type Table sharding algorithm type
table_s harding_algorithm_props Table sharding algorithm properties
key_generate_column Sharding key generator column
key_generator_type Sharding key generator type
key_generator_props Sharding key generator properties

Example

• Query the sharding table rules of the specified logical database

SHOW SHARDING TABLE RULES FROM sharding_db;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

| sharding-count=4 | | |
|

| t_order_item | | ds_0,ds_1 | |
| |

| mod | order_id | mod
| sharding-count=4 | | |

9.2. ShardingSphere-Proxy 226

Apache ShardingSphere document

|
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
2 rows in set (0.12 sec)

• Query the sharding table rules of the current logic database

SHOW SHARDING TABLE RULES;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

| sharding-count=4 | | |
|

| t_order_item | | ds_0,ds_1 | |
| |

| mod | order_id | mod
| sharding-count=4 | | |

|
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
2 rows in set (0.12 sec)

• Query the specified sharding table rule

SHOW SHARDING TABLE RULE t_order;

9.2. ShardingSphere-Proxy 227

Apache ShardingSphere document

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

| sharding-count=4 | | |
|

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
1 row in set (0.12 sec)

Reserved word

SHOW, SHARDING, TABLE, RULE, FROM

Related links

• Reserved word

SHOW SHARDING ALGORITHMS

Description

The SHOW SHARDING ALGORITHMS syntax is used to query the sharding algorithms in the specified
database.

9.2. ShardingSphere-Proxy 228

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShardingAlgorithms::=
'SHOW' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Example

• Query the sharding table algorithms of the specified logical database

SHOW SHARDING ALGORITHMS FROM sharding_db;

mysql> SHOW SHARDING ALGORITHMS FROM sharding_db;
+-------------------------+--------+---
------+
| name | type | props

|
+-------------------------+--------+---
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
2} |
+-------------------------+--------+---
------+
2 rows in set (0.01 sec)

• Query the sharding table algorithms of the current logical database

9.2. ShardingSphere-Proxy 229

Apache ShardingSphere document

SHOW SHARDING ALGORITHMS;

mysql> SHOW SHARDING ALGORITHMS;
+-------------------------+--------+---
------+
| name | type | props

|
+-------------------------+--------+---
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
2} |
+-------------------------+--------+---
------+
2 rows in set (0.01 sec)

Reserved word

SHOW, SHARDING, ALGORITHMS, FROM

Related links

• Reserved word

SHOWUNUSED SHARDING ALGORITHMS

Description

The SHOW UNUSED SHARDING ALGORITHMS syntax is used to query the unused sharding algorithms
in the specified database.

Syntax

ShowShardingAlgorithms::=
'SHOW' 'UNUSED' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 230

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Example

• Query the unused sharding table algorithms of the specified logical database

SHOW UNUSED SHARDING ALGORITHMS;

mysql> SHOW UNUSED SHARDING ALGORITHMS;
+---------------+--------+---+
| name | type | props |
+---------------+--------+---+
| t1_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
+---------------+--------+---+
1 row in set (0.01 sec)

Reserved word

SHOW, UNUSED, SHARDING, ALGORITHMS, FROM

Related links

• Reserved word

SHOWDEFAULT SHARDING STRATEGY

Description

The SHOW DEFAULT SHARDING STRATEGY syntax is used to query default sharding strategy in spec‐
ified database.

9.2. ShardingSphere-Proxy 231

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowDefaultShardingStrategy::=
'SHOW' 'DEFAULT' 'SHARDING' 'STRATEGY' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

name Sharding strategy scope
type Sharding strategy type
sharding_column Sharding column
sharding_algorithm_name Sharding algorithm name
sharding_algorithm_type Sharding algorithm type
sharding_algorithm_props Sharding algorithm properties

Example

• Query default sharding strategy in specified database.

SHOW DEFAULT SHARDING STRATEGY FROM sharding_db;

mysql> SHOW DEFAULT SHARDING STRATEGY FROM sharding_db;
+----------+----------+-----------------+-------------------------+----------------
---------+---+
| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |
+----------+----------+-----------------+-------------------------+----------------
---------+---+
| TABLE | STANDARD | order_id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |
| DATABASE | STANDARD | order_id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |
+----------+----------+-----------------+-------------------------+----------------
---------+---+
2 rows in set (0.00 sec)

9.2. ShardingSphere-Proxy 232

Apache ShardingSphere document

• Query default sharding strategy in current database.

SHOW DEFAULT SHARDING STRATEGY;

mysql> SHOW DEFAULT SHARDING STRATEGY;
+----------+----------+-----------------+-------------------------+----------------
---------+---+
| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |
+----------+----------+-----------------+-------------------------+----------------
---------+---+
| TABLE | STANDARD | order_id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |
| DATABASE | STANDARD | order_id | table_inline | inline

| {algorithm-expression=t_order_item_${order_id % 2}} |
+----------+----------+-----------------+-------------------------+----------------
---------+---+
2 rows in set (0.00 sec)

Reserved word

SHOW, DEFAULT, SHARDING, STRATEGY, FROM

Related links

• Reserved word

SHOW SHARDING KEY GENERATORS

Description

SHOW SHARDING KEY GENERATORS syntax is used to query sharding key generators in specified
database.

Syntax

ShowShardingKeyGenerators::=
'SHOW' 'SHARDING' 'KEY' 'GENERATORS' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 233

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

Example

• Query the sharding key generators of the specified logical database

SHOW SHARDING KEY GENERATORS FROM sharding_db;

mysql> SHOW SHARDING KEY GENERATORS FROM sharding_db;
+-------------------------+-----------+-------+
| name | type | props |
+-------------------------+-----------+-------+
| snowflake_key_generator | snowflake | {} |
+-------------------------+-----------+-------+
1 row in set (0.00 sec)

• Query the sharding key generators of the current logical database

SHOW SHARDING KEY GENERATORS;

mysql> SHOW SHARDING KEY GENERATORS;
+-------------------------+-----------+-------+
| name | type | props |
+-------------------------+-----------+-------+
| snowflake_key_generator | snowflake | {} |
+-------------------------+-----------+-------+
1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy 234

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, KEY, GENERATORS, FROM

Related links

• Reserved word

SHOWUNUSED SHARDING KEY GENERATORS

Description

SHOW SHARDING KEY GENERATORS syntax is used to query sharding key generators that are not used
in specified database.

Syntax

ShowShardingKeyGenerators::=
'SHOW' 'SHARDING' 'KEY' 'GENERATOR' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

9.2. ShardingSphere-Proxy 235

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query sharding key generators that are not used in the specified logical database

SHOW UNUSED SHARDING KEY GENERATORS FROM sharding_db;

mysql> SHOW UNUSED SHARDING KEY GENERATORS FROM sharding_db;
+-------------------------+-----------+-------+
| name | type | props |
+-------------------------+-----------+-------+
| snowflake_key_generator | snowflake | |
+-------------------------+-----------+-------+
1 row in set (0.00 sec)

• Query sharding key generators that are not used in the current logical database

SHOW UNUSED SHARDING KEY GENERATORS;

mysql> SHOW UNUSED SHARDING KEY GENERATORS;
+-------------------------+-----------+-------+
| name | type | props |
+-------------------------+-----------+-------+
| snowflake_key_generator | snowflake | |
+-------------------------+-----------+-------+
1 row in set (0.00 sec)

Reserved word

SHOW, UNUSED, SHARDING, KEY, GENERATORS, FROM

Related links

• Reserved word

SHOW SHARDING AUDITORS

Description

SHOW SHARDING AUDITORS syntax is used to query sharding auditors in specified database.

9.2. ShardingSphere-Proxy 236

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShardingAuditors::=
'SHOW' 'SHARDING' 'AUDITORS' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

column Description

name Sharding auditor name
type Sharding auditor algorithm type
props Sharding auditor algorithm properties

Example

• Query sharding auditors for the specified logical database

SHOW SHARDING AUDITORS FROM sharding_db;

mysql> SHOW SHARDING AUDITORS FROM sharding_db;
+-------------------------------+-------------------------+-------+
| name | type | props |
+-------------------------------+-------------------------+-------+
| sharding_key_required_auditor | dml_sharding_conditions | {} |
+-------------------------------+-------------------------+-------+
1 row in set (0.01 sec)

• Query sharding auditors for the current logical database

SHOW SHARDING AUDITORS;

mysql> SHOW SHARDING AUDITORS;
+-------------------------------+-------------------------+-------+
| name | type | props |
+-------------------------------+-------------------------+-------+
| sharding_key_required_auditor | dml_sharding_conditions | {} |

9.2. ShardingSphere-Proxy 237

Apache ShardingSphere document

+-------------------------------+-------------------------+-------+
1 row in set (0.00 sec)

Reserved word

SHOW, SHARDING, AUDITORS, FROM

Related links

• Reserved word

SHOWUNUSED SHARDING AUDITORS

Description

SHOW SHARDING AUDITORS syntax is used to query sharding auditors that are not used in specified
database.

Syntax

ShowUnusedShardingAuditors::=
'SHOW' 'UNUSED' 'SHARDING' 'AUDITOR' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

column Description

name Sharding auditor name
type Sharding auditor algorithm type
props Sharding auditor algorithm properties

9.2. ShardingSphere-Proxy 238

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query sharding auditors that are not used in the specified logical database

SHOW UNUSED SHARDING AUDITORS FROM sharding_db;

mysql> SHOW UNUSED SHARDING AUDITORS FROM sharding_db;
+-------------------------------+-------------------------+-------+
| name | type | props |
+-------------------------------+-------------------------+-------+
| sharding_key_required_auditor | dml_sharding_conditions | {} |
+-------------------------------+-------------------------+-------+
1 row in set (0.01 sec)

• Query sharding auditors are not used in the current logical database

SHOW UNUSED SHARDING AUDITORS;

mysql> SHOW UNUSED SHARDING AUDITORS;
+-------------------------------+-------------------------+-------+
| name | type | props |
+-------------------------------+-------------------------+-------+
| sharding_key_required_auditor | dml_sharding_conditions | {} |
+-------------------------------+-------------------------+-------+
1 row in set (0.00 sec)

Reserved word

SHOW, UNUSED, SHARDING, AUDITORS, FROM

Related links

• Reserved word

SHOW SHARDING TABLE NODES

Description

SHOW SHARDING TABLE NODES syntax is used to query sharding table nodes in specified database.

9.2. ShardingSphere-Proxy 239

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShardingTableNode::=
'SHOW' 'SHARDING' 'TABLE' 'NODES' tableName? ('FROM' databaseName)?

tableName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

name Sharding rule name
nodes Sharding nodes

Example

• Query sharding table nodes for specified table in the specified logical database

SHOW SHARDING TABLE NODES t_order_item FROM sharding_db;

mysql> SHOW SHARDING TABLE NODES t_order_item FROM sharding_db;
+--------------+---
---+
| name | nodes

|
+--------------+---
---+
| t_order_item | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1.
t_order_item_0, resource_1.t_order_item_1 |
+--------------+---
---+
1 row in set (0.00 sec)

• Query sharding table nodes for specified table in the current logical database

9.2. ShardingSphere-Proxy 240

Apache ShardingSphere document

SHOW SHARDING TABLE NODES t_order_item;

mysql> SHOW SHARDING TABLE NODES t_order_item;
+--------------+---
---+
| name | nodes

|
+--------------+---
---+
| t_order_item | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1.
t_order_item_0, resource_1.t_order_item_1 |
+--------------+---
---+
1 row in set (0.00 sec

• Query sharding table nodes for all tables in the specified logical database

SHOW SHARDING TABLE NODES FROM sharding_db;

mysql> SHOW SHARDING TABLE NODES FROM sharding_db;
+--------------+---
---+
| name | nodes

|
+--------------+---
---+
| t_order_item | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1.
t_order_item_0, resource_1.t_order_item_1 |
+--------------+---
---+
1 row in set (0.00 sec)

• Query sharding table nodes for all tables in the current logical database

SHOW SHARDING TABLE NODES;

mysql> SHOW SHARDING TABLE NODES;
+--------------+---
---+
| name | nodes

|
+--------------+---
---+
| t_order_item | resource_0.t_order_item_0, resource_0.t_order_item_1, resource_1.
t_order_item_0, resource_1.t_order_item_1 |
+--------------+---
---+
1 row in set (0.00 sec

9.2. ShardingSphere-Proxy 241

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, TABLE, NODES, FROM

Related links

• Reserved word

SHOW SHARDING TABLE NODES

Description

SHOW SHARDING TABLE RULES USED ALGORITHM syntax is used to query sharding rules used
specified sharding algorithm in specified logical database

Syntax

ShowShardingTableRulesUsedAlgorithm::=
'SHOW' 'SHARDING' 'TABLE' 'RULES' 'USED' 'ALGORITHM' algorithmName ('FROM'

databaseName)?

algorithmName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

type Sharding rule type
name Sharding rule name

9.2. ShardingSphere-Proxy 242

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query sharding table rules for the specified sharding algorithm in spicified logical database

SHOW SHARDING TABLE RULES USED ALGORITHM table_inline FROM sharding_db;

mysql> SHOW SHARDING TABLE RULES USED ALGORITHM table_inline FROM sharding_db;
+-------+--------------+
| type | name |
+-------+--------------+
| table | t_order_item |
+-------+--------------+
1 row in set (0.00 sec)

• Query sharding table rules for specified sharding algorithm in the current logical database

SHOW SHARDING TABLE RULES USED ALGORITHM table_inline;

mysql> SHOW SHARDING TABLE RULES USED ALGORITHM table_inline;
+-------+--------------+
| type | name |
+-------+--------------+
| table | t_order_item |
+-------+--------------+
1 row in set (0.01 sec)

Reserved word

SHOW, SHARDING, TABLE, RULES, USED, ALGORITHM, FROM

Related links

• Reserved word

SHOW SHARDING TABLE RULES USED KEY GENERATOR

Description

SHOW SHARDING TABLE RULES USED ALGORITHM syntax is used to query sharding rules used
specified sharding key generator in specified logical database

9.2. ShardingSphere-Proxy 243

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowShardingTableRulesUsedKeyGenerator::=
'SHOW' 'SHARDING' 'TABLE' 'RULES' 'USED' 'KEY' 'GENERATOR' keyGeneratorName (

'FROM' databaseName)?

keyGeneratorName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

type Sharding rule type
name Sharding rule name

Example

• Query sharding table rules for the specified sharding key generator in spicified logical database

SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator FROM sharding_
db;

mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator FROM
sharding_db;
+-------+--------------+
| type | name |
+-------+--------------+
| table | t_order_item |
+-------+--------------+
1 row in set (0.00 sec)

• Query sharding table rules for specified sharding key generator in the current logical database

SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator;

9.2. ShardingSphere-Proxy 244

Apache ShardingSphere document

mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR snowflake_key_generator;
+-------+--------------+
| type | name |
+-------+--------------+
| table | t_order_item |
+-------+--------------+
1 row in set (0.01 sec)

Reserved word

SHOW, SHARDING, TABLE, USED, KEY, GENERATOR, FROM

Related links

• Reserved word

SHOW SHARDING TABLE RULES USED AUDITOR

Description

SHOW SHARDING TABLE RULES USED ALGORITHM syntax is used to query sharding rules used
specified sharding auditor in specified logical database

Syntax

ShowShardingTableRulesUsedAuditor::=
'SHOW' 'SHARDING' 'TABLE' 'RULES' 'USED' 'AUDITOR' AuditortorName ('FROM'

databaseName)?

AuditortorName ::=
identifier

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 245

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

type Sharding rule type
name Sharding rule name

Example

• Query sharding table rules for the specified sharding auditor in spicified logical database

SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor FROM sharding_
db;

mysql> SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor FROM
sharding_db;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |
+-------+---------+
1 row in set (0.00 sec)

• Query sharding table rules for specified sharding auditor in the current logical database

SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor;

mysql> SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required_auditor;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |
+-------+---------+
1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy 246

Apache ShardingSphere document

Reserved word

SHOW, SHARDING, TABLE, RULES, USED, AUDITOR, FROM

Related links

• Reserved word

SHOW SHARDING TABLE REFERENCE RULE

Description

SHOW SHARDING TABLE REFERENCE RULE syntax is used to query specified sharding table reference
rule in the specified logical database.

Syntax

ShowShardingBindingTableRules::=
'SHOW' 'SHARDING' 'TABLE' 'REFERENCE' ('RULE' ruleName | 'RULES') ('FROM'

databaseName)?

ruleName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Columns Descriptions

name Sharding table reference rule name
sharding_table_reference sharding table reference

9.2. ShardingSphere-Proxy 247

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query sharding table reference rules for the specified logical database

SHOW SHARDING TABLE REFERENCE RULES FROM sharding_db;

mysql> SHOW SHARDING TABLE REFERENCE RULES FROM sharding_db;
+-------+--------------------------+
| name | sharding_table_reference |
+-------+--------------------------+
| ref_0 | t_a,t_b |
| ref_1 | t_c,t_d |
+-------+--------------------------+
2 rows in set (0.00 sec)

• Query sharding table reference rules for the current logical database

SHOW SHARDING TABLE REFERENCE RULES;

mysql> SHOW SHARDING TABLE REFERENCE RULES;
+-------+--------------------------+
| name | sharding_table_reference |
+-------+--------------------------+
| ref_0 | t_a,t_b |
| ref_1 | t_c,t_d |
+-------+--------------------------+
2 rows in set (0.00 sec)

• Query specified sharding table reference rule for the specified logical database

SHOW SHARDING TABLE REFERENCE RULE ref_0 FROM sharding_db;

mysql> SHOW SHARDING TABLE REFERENCE RULE FROM sharding_db;
+-------+--------------------------+
| name | sharding_table_reference |
+-------+--------------------------+
| ref_0 | t_a,t_b |
+-------+--------------------------+
1 row in set (0.00 sec)

• Query specified sharding table reference rule for the current logical database

SHOW SHARDING TABLE REFERENCE RULE ref_0;

mysql> SHOW SHARDING TABLE REFERENCE RULE ref_0;
+-------+--------------------------+
| name | sharding_table_reference |
+-------+--------------------------+

9.2. ShardingSphere-Proxy 248

Apache ShardingSphere document

| ref_0 | t_a,t_b |
+-------+--------------------------+
1 row in set (0.00 sec)

Reserved word

SHOW, SHARDING, TABLE, REFERENCE, RULE, RULES, FROM

Related links

• Reserved word

COUNT SHARDING RULE

Description

The COUNT SHARDING RULE syntax is used to query the number of sharding rules for specified
database.

Syntax

CountShardingRule::=
'COUNT' 'SHARDING' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs
count the number of the rule

9.2. ShardingSphere-Proxy 249

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query the number of sharding rules for specified database.

COUNT SHARDING RULE FROM sharding_db;

mysql> COUNT SHARDING RULE FROM sharding_db;
+--------------------------+----------------+-------+
| rule_name | database | count |
+--------------------------+----------------+-------+
| sharding_table | sharding_db | 2 |
| sharding_table_reference | sharding_db | 2 |
+--------------------------+----------------+-------+
2 rows in set (0.00 sec)

• Query the number of sharding rules for current database.

COUNT SHARDING RULE;

mysql> COUNT SHARDING RULE;
+--------------------------+----------------+-------+
| rule_name | database | count |
+--------------------------+----------------+-------+
| sharding_table | sharding_db | 2 |
| sharding_table_reference | sharding_db | 2 |
+--------------------------+----------------+-------+
2 rows in set (0.00 sec)

Reserved word

COUNT, SHARDING, RULE, FROM

Related links

• Reserved word

Broadcast Table

This chapter describes the syntax of broadcast table.

9.2. ShardingSphere-Proxy 250

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOW BROADCAST TABLE RULE

Description

The SHOW BROADCAST TABLE RULE syntax is used to broadcast tables for specified database.

Syntax

ShowBroadcastTableRule ::=
'SHOW' 'BROADCAST' 'TABLE' 'RULES' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

broadcast_table Broadcast table name

Example

• Query broadcast tables for specified database.

SHOW BROADCAST TABLE RULES FROM sharding_db;

mysql> SHOW BROADCAST TABLE RULES FROM sharding_db;
+-----------------+
| broadcast_table |
+-----------------+
| t_a |
| t_b |
| t_c |
+-----------------+
3 rows in set (0.00 sec)

• Query broadcast table for current database.

9.2. ShardingSphere-Proxy 251

Apache ShardingSphere document

SHOW BROADCAST TABLE RULES;

mysql> SHOW BROADCAST TABLE RULES;
+-----------------+
| broadcast_table |
+-----------------+
| t_a |
| t_b |
| t_c |
+-----------------+
3 rows in set (0.00 sec)

Reserved word

SHOW, BROADCAST, TABLE, RULES

Related links

• Reserved word

COUNT BROADCAST RULE

Description

The COUNT BROADCAST RULE syntax is used to query the number of broadcast table rules for specified
database.

Syntax

CountBroadcastRule::=
'COUNT' 'BROADCAST' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 252

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs
count the number of the rule

Example

• Query the number of broadcast table rules for specified database.

COUNT BROADCAST RULE FROM sharding_db;

mysql> COUNT BROADCAST RULE FROM sharding_db;
+--------------------------+----------------+-------+
| rule_name | database | count |
+--------------------------+----------------+-------+
| broadcast_table | sharding_db | 0 |
+--------------------------+----------------+-------+
1 rows in set (0.00 sec)

• Query the number of broadcast table rules for current database.

COUNT BROADCAST RULE;

mysql> COUNT BROADCAST RULE;
+--------------------------+----------------+-------+
| rule_name | database | count |
+--------------------------+----------------+-------+
| broadcast_table | sharding_db | 0 |
+--------------------------+----------------+-------+
1 rows in set (0.00 sec)

9.2. ShardingSphere-Proxy 253

Apache ShardingSphere document

Reserved word

COUNT, BROADCAST, RULE, FROM

Related links

• Reserved word

Single Table

This chapter describes the syntax of single table.

SHOW SINGLE TABLE

Description

The SHOW SINGLE TABLE syntax is used to query single tables for specified database.

Syntax

ShowSingleTable::=
'SHOW' 'SINGLE' ('TABLES' ('LIKES' likeLiteral)?|'TABLE' tableName) ('FROM'

databaseName)?

tableName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

9.2. ShardingSphere-Proxy 254

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column Description

table_name Single table name
storage_unit_name The storage unit name where the single table is located

Example

• Query specified single table for specified database.

SHOW SINGLE TABLE t_user FROM sharding_db;

mysql> SHOW SINGLE TABLE t_user FROM sharding_db;
+------------+-------------------+
| table_name | storage_unit_name |
+------------+-------------------+
| t_user | ds_0 |
+------------+-------------------+
1 row in set (0.00 sec)

• Query specified single table for current database.

SHOW SINGLE TABLE t_user;

mysql> SHOW SINGLE TABLE t_user;
+------------+-------------------+
| table_name | storage_unit_name |
+------------+-------------------+
| t_user | ds_0 |
+------------+-------------------+
1 row in set (0.00 sec)

• Query single tables for specified database.

SHOW SINGLE TABLES FROM sharding_db;

mysql> SHOW SINGLE TABLES FROM sharding_db;
+------------+-------------------+
| table_name | storage_unit_name |
+------------+-------------------+
| t_user | ds_0 |
+------------+-------------------+
1 row in set (0.00 sec)

• Query single tables for current database.

9.2. ShardingSphere-Proxy 255

Apache ShardingSphere document

SHOW SINGLE TABLES;

mysql> SHOW SINGLE TABLES;
+------------+-------------------+
| table_name | storage_unit_name |
+------------+-------------------+
| t_user | ds_0 |
+------------+-------------------+
1 row in set (0.00 sec)

• Query the single tables whose table name end with order_5 for the specified logic database.

SHOW SINGLE TABLES LIKE '%order_5' FROM sharding_db;

mysql> SHOW SINGLE TABLES LIKE '%order_5' FROM sharding_db;
+------------+-------------------+
| table_name | storage_unit_name |
+------------+-------------------+
| t_order_5 | ds_1 |
+------------+-------------------+
1 row in set (0.11 sec)

• Query the single tables whose table name end with order_5 for the current logic database

SHOW SINGLE TABLES LIKE '%order_5';

mysql> SHOW SINGLE TABLES LIKE '%order_5';
+------------+-------------------+
| table_name | storage_unit_name |
+------------+-------------------+
| t_order_5 | ds_1 |
+------------+-------------------+
1 row in set (0.11 sec)

9.2. ShardingSphere-Proxy 256

Apache ShardingSphere document

Reserved word

SHOW, SINGLE, TABLE, TABLES, LIKE, FROM

Related links

• Reserved word

SHOWDEFAULT SINGLE TABLE STORAGE UNIT

Description

TheSHOW DEFAULT SINGLE TABLE STORAGE UNIT syntax is used to query storage units for specified
database.

Syntax

ShowDefaultSingleTableStorageUnit::=
'SHOW' 'DEFAULT' 'SINGLE' 'TABLE' 'STORAGE' 'UNIT' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return Value Description

Column Description

storage_unit_name Storage unit name

Example

• Query storage units for specified database.

SHOW DEFAULT SINGLE TABLE STORAGE UNIT

9.2. ShardingSphere-Proxy 257

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

sql> SHOW DEFAULT SINGLE TABLE STORAGE UNIT;
+-------------------+
| storage_unit_name |
+-------------------+
| ds_0 |
+-------------------+
1 row in set (0.01 sec)

Reserved word

SHOW, DEFAULT, SINGLE, TABLE, STORAGE, UNIT

Related links

• Reserved word

COUNT SINGLE_TABLE RULE

Description

The COUNT SINGLE TABLE syntax is used to query number of single table for specified database.

Syntax

CountSingleTable::=
'COUNT' 'SINGLE' 'TABLE' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

9.2. ShardingSphere-Proxy 258

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return Value Description

Column Description

database The database name where the single table is located
count The count of single table

Example

• Query the number of single rules for specified database.

COUNT SINGLE TABLE

mysql> COUNT SINGLE TABLE;
+----------+--------+
| database | count |
+----------+--------+
| ds | 2 |
+----------+--------+
1 row in set (0.02 sec)

Reserved word

COUNT, SINGLE, TABLE, FROM

Related links

• Reserved word

SHOWUNLOADED SINGLE TABLES

Description

The SHOW UNLOADED SINGLE TABLES syntax is used to query unloaded single tables.

Syntax

showUnloadedSingleTables::=
'SHOW' 'UNLOADED' 'SINGLE' 'TABLES'

9.2. ShardingSphere-Proxy 259

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column Description

table_name Single table name
storage_unit_name The storage unit name where the single table is located

Example

• Query unloaded single tables.

SHOW UNLOADED SINGLE TABLES;

mysql> SHOW UNLOADED SINGLE TABLES;
+------------+-------------------+
| table_name | storage_unit_name |
+------------+-------------------+
| t_single | ds_1 |
+------------+-------------------+
1 row in set (0.01 sec)

Reserved word

SHOW, UNLOADED, SINGLE, TABLES

Related links

• Reserved word

Readwrite-Splitting

This chapter describes the syntax of readwrite‐splitting.

SHOWREADWRITE_SPLITTING RULE

Description

The SHOW READWRITE_SPLITTING RULE syntax is used to query specified readwrite‐splitting rules
for specified database.

9.2. ShardingSphere-Proxy 260

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowReadWriteSplittingRule::=
'SHOW' 'READWRITE_SPLITTING' ('RULE' ruleName | 'RULES') ('FROM' databaseName)?

ruleName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

name Readwrite‐splitting rule name
write_data_source_name Write data source name
read_data_source_names Read data source name list
transact ional_read_query_strategy Routing strategy for read query within a transaction
load_balancer_type Load balance algorithm type
load_balancer_props Load balance algorithm parameter

Example

• Query readwrite‐splitting rules for specified database.

SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;

mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
| name | write_storage_unit_name | read_storage_unit_names | transactional_
read_query_strategy | load_balancer_type | load_balancer_props |
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC

| random | |
+------------+-------------------------+-------------------------+-----------------

9.2. ShardingSphere-Proxy 261

Apache ShardingSphere document

------------------+--------------------+---------------------+
1 row in set (0.01 sec)

• Query readwrite‐splitting rules for current database.

SHOW READWRITE_SPLITTING RULES;

mysql> SHOW READWRITE_SPLITTING RULES;
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
| name | write_storage_unit_name | read_storage_unit_names | transactional_
read_query_strategy | load_balancer_type | load_balancer_props |
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC

| random | |
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
1 row in set (0.01 sec)

• Query specified readwrite‐splitting rule for specified database.

SHOW READWRITE_SPLITTING RULE ms_group_0 FROM readwrite_splitting_db;

mysql> SHOW READWRITE_SPLITTING RULE ms_group_0 FROM readwrite_splitting_db;
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
| name | write_storage_unit_name | read_storage_unit_names | transactional_
read_query_strategy | load_balancer_type | load_balancer_props |
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC

| random | |
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
1 row in set (0.01 sec)

• Query specified readwrite‐splitting rule for current database.

SHOW READWRITE_SPLITTING RULE ms_group_0;

mysql> SHOW READWRITE_SPLITTING RULE ms_group_0;
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
| name | write_storage_unit_name | read_storage_unit_names | transactional_
read_query_strategy | load_balancer_type | load_balancer_props |
+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+

9.2. ShardingSphere-Proxy 262

Apache ShardingSphere document

| ms_group_0 | write_ds | read_ds_0,read_ds_1 | DYNAMIC
| random | |

+------------+-------------------------+-------------------------+-----------------
------------------+--------------------+---------------------+
1 row in set (0.01 sec)

Reserved word

SHOW, READWRITE_SPLITTING, RULE, RULES, FROM

Related links

• Reserved word

COUNT READWRITE_SPLITTING RULE

Description

The COUNT READWRITE_SPLITTING RULE syntax is used to query the number of readwrite‐splitting
rules for specified database.

Syntax

CountReadwriteSplittingRule::=
'COUNT' 'READWRITE_SPLITTING' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

9.2. ShardingSphere-Proxy 263

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs
count the number of the rule

Example

• Query the number of readwrite‐splitting rules for specified database.

COUNT READWRITE_SPLITTING RULE FROM readwrite_splitting_db;

mysql> COUNT READWRITE_SPLITTING RULE FROM readwrite_splitting_db;
+---------------------+---------------------------+-------+
| rule_name | database | count |
+---------------------+---------------------------+-------+
| readwrite_splitting | readwrite_splitting_db | 1 |
+---------------------+---------------------------+-------+
1 row in set (0.02 sec)

• Query the number of readwrite‐splitting rules for current database.

COUNT READWRITE_SPLITTING RULE;

mysql> COUNT READWRITE_SPLITTING RULE;
+---------------------+---------------------------+-------+
| rule_name | database | count |
+---------------------+---------------------------+-------+
| readwrite_splitting | readwrite_splitting_db | 1 |
+---------------------+---------------------------+-------+
1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy 264

Apache ShardingSphere document

Reserved word

COUNT, READWRITE_SPLITTING, RULE, FROM

Related links

• Reserved word

Encrypt

This chapter describes the syntax of encrypt.

SHOW ENCRYPT RULES

Description

The SHOW ENCRYPT RULES syntax is used to query encryption rules for a specified database.

Syntax

ShowEncryptRule::=
'SHOW' 'ENCRYPT' ('RULES' | 'TABLE' 'RULE' ruleName) ('FROM' databaseName)?

ruleName ::=
identifier

databaseName ::=
identifier

Note

• When databaseName is not specified, then DATABASEis currently used as the default name. If
DATABASE is not used, you will receive a No database selected prompt.

9.2. ShardingSphere-Proxy 265

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column Description

table Logical table name
logic_column Logical column name
cipher_column Ciphertext column name
assisted_query_column Assisted query column name
like_query_column Like query column name
encryptor_type Encryption algorithm type
encryptor_props Encryption algorithm parameter
assisted_query_type Assisted query algorithm type
assisted_query_props Assisted query algorithm parameter
like_query_type Like query algorithm type
like_query_props Like query algorithm parameter

Example

• Query encrypt rules for specified database.

SHOW ENCRYPT RULES FROM encrypt_db;

mysql> SHOW ENCRYPT RULES FROM encrypt_db;
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| table | logic_column | cipher_column | assisted_query_column | like_query_
column | encryptor_type | encryptor_props | assisted_query_type | assisted_
query_props | like_query_type | like_query_props |
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| t_user | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc | |
| | |

| t_encrypt | pwd | pwd_cipher | |
| AES | aes-key-value=123456abc | |

| | |
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
2 rows in set (0.00 sec)

• Query encrypt rules for current database.

9.2. ShardingSphere-Proxy 266

Apache ShardingSphere document

SHOW ENCRYPT RULES;

mysql> SHOW ENCRYPT RULES;
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| table | logic_column | cipher_column | assisted_query_column | like_query_
column | encryptor_type | encryptor_props | assisted_query_type | assisted_
query_props | like_query_type | like_query_props |
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| t_user | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc | |
| | |

| t_encrypt | pwd | pwd_cipher | |
| AES | aes-key-value=123456abc | |

| | |
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
2 rows in set (0.00 sec)

• Query specified encrypt rule in specified database.

SHOW ENCRYPT TABLE RULE t_encrypt FROM encrypt_db;

mysql> SHOW ENCRYPT TABLE RULE t_encrypt FROM encrypt_db;
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| table | logic_column | cipher_column | assisted_query_column | like_query_
column | encryptor_type | encryptor_props | assisted_query_type | assisted_
query_props | like_query_type | like_query_props |
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| t_encrypt | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc | |
| | |

+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
1 row in set (0.01 sec)

• Query specified encrypt rule in current database.

9.2. ShardingSphere-Proxy 267

Apache ShardingSphere document

SHOW ENCRYPT TABLE RULE t_encrypt;

mysql> SHOW ENCRYPT TABLE RULE t_encrypt;
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| table | logic_column | cipher_column | assisted_query_column | like_query_
column | encryptor_type | encryptor_props | assisted_query_type | assisted_
query_props | like_query_type | like_query_props |
+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
| t_encrypt | pwd | pwd_cipher | |

| AES | aes-key-value=123456abc | |
| | |

+-----------+--------------+---------------+-----------------------+---------------
----+----------------+-------------------------+---------------------+-------------
---------+-----------------+------------------+
1 row in set (0.01 sec)

Reserved word

SHOW, ENCRYPT, TABLE, RULE, RULES, FROM

Related links

• Reserved word

COUNT ENCRYPT RULE

Description

The COUNT ENCRYPT RULE syntax is used to query the number of encrypt rules for specified database.

Syntax

CountEncryptRule::=
'COUNT' 'ENCRYPT' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 268

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs
count the number of the rule

Example

• Query the number of encrypt rules for specified database.

COUNT ENCRYPT RULE FROM encrypt_db;

mysql> COUNT ENCRYPT RULE FROM encrypt_db;
+-----------+---------------+-------+
| rule_name | database | count |
+-----------+---------------+-------+
| encrypt | encrypt_db | 2 |
+-----------+---------------+-------+
1 row in set (0.01 sec)

• Query the number of encrypt rules for current database.

COUNT ENCRYPT RULE;

mysql> COUNT ENCRYPT RULE;
+-----------+---------------+-------+
| rule_name | database | count |
+-----------+---------------+-------+
| encrypt | encrypt_db | 2 |
+-----------+---------------+-------+
1 row in set (0.01 sec)

9.2. ShardingSphere-Proxy 269

Apache ShardingSphere document

Reserved word

COUNT, ENCRYPT, RULE, FROM

Related links

• Reserved word

Mask

This chapter describes the syntax of mask.

SHOWMASK RULES

Description

The SHOW MASK RULES syntax is used to query mask rules for specified database.

Syntax

ShowMaskRule::=
'SHOW' 'MASK' ('RULES' | 'RULE' ruleName) ('FROM' databaseName)?

ruleName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

table Table name
column Column name
algorithm_type Mask algorithm type
algorithm_props Mask algorithm properties

9.2. ShardingSphere-Proxy 270

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query mask rules for specified database

SHOW MASK RULES FROM mask_db;

mysql> SHOW MASK RULES FROM mask_db;
+---------+----------+------------------+--------------------------------+
| table | column | algorithm_type | algorithm_props |
+---------+----------+------------------+--------------------------------+
t_mask	phoneNum	MASK_FROM_X_TO_Y	to-y=2,replace-char=*,from-x=1
t_mask	address	MD5	
t_order	order_id	MD5	
t_user	user_id	MASK_FROM_X_TO_Y	to-y=2,replace-char=*,from-x=1
+---------+----------+------------------+--------------------------------+
4 rows in set (0.01 sec)

• Query mask rules for current database

SHOW MASK RULES;

mysql> SHOW MASK RULES;
+---------+----------+------------------+--------------------------------+
| table | column | algorithm_type | algorithm_props |
+---------+----------+------------------+--------------------------------+
t_mask	phoneNum	MASK_FROM_X_TO_Y	to-y=2,replace-char=*,from-x=1
t_mask	address	MD5	
t_order	order_id	MD5	
t_user	user_id	MASK_FROM_X_TO_Y	to-y=2,replace-char=*,from-x=1
+---------+----------+------------------+--------------------------------+
4 rows in set (0.01 sec)

• Query specified mask rule for specified database

SHOW MASK RULE t_mask FROM mask_db;

mysql> SHOW MASK RULE t_mask FROM mask_db;
+--------+--------------+------------------+--------------------------------+
| table | logic_column | mask_algorithm | props |
+--------+--------------+------------------+--------------------------------+
| t_mask | phoneNum | MASK_FROM_X_TO_Y | to-y=2,replace-char=*,from-x=1 |
| t_mask | address | MD5 | |
+--------+--------------+------------------+--------------------------------+
2 rows in set (0.00 sec)

• Query specified mask rule for current database

9.2. ShardingSphere-Proxy 271

Apache ShardingSphere document

SHOW MASK RULE t_mask;

mysql> SHOW MASK RULE t_mask;
+--------+--------------+------------------+--------------------------------+
| table | logic_column | mask_algorithm | props |
+--------+--------------+------------------+--------------------------------+
| t_mask | phoneNum | MASK_FROM_X_TO_Y | to-y=2,replace-char=*,from-x=1 |
| t_mask | address | MD5 | |
+--------+--------------+------------------+--------------------------------+
2 rows in set (0.00 sec)

Reserved word

SHOW, MASK, RULE, RULES, FROM

Related links

• Reserved word

COUNTMASK RULE

Description

The COUNT MASK RULE syntax is used to query the number of mask rules for specified database.

Syntax

CountMaskRule::=
'COUNT' 'MASK' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

9.2. ShardingSphere-Proxy 272

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs
count the number of the rule

Example

• Query the number of mask rules for specified database.

COUNT MASK RULE FROM mask_db;

mysql> COUNT MASK RULE FROM mask_db;
+-----------+----------+-------+
| rule_name | database | count |
+-----------+----------+-------+
| mask | mask_db | 3 |
+-----------+----------+-------+
1 row in set (0.50 sec)

• Query the number of mask rules for current database.

COUNT MASK RULE;

mysql> COUNT MASK RULE;
+-----------+----------+-------+
| rule_name | database | count |
+-----------+----------+-------+
| mask | mask_db | 3 |
+-----------+----------+-------+
1 row in set (0.50 sec)

9.2. ShardingSphere-Proxy 273

Apache ShardingSphere document

Reserved word

COUNT, MASK, RULE, FROM

Related links

• Reserved word

Shadow

This chapter describes the syntax of shadow.

SHOW SHADOWRULE

Description

The SHOW SHADOW RULE syntax is used to query shadow rules for specified database.

Syntax

ShowEncryptRule::=
'SHOW' 'SHADOW' ('RULES' | 'RULE' shadowRuleName) ('FROM' databaseName)?

shadowRuleName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

rule_name Shadow rule name
source_name Data source name
shadow_name Shadow data source name
shadow_table Shadow table

9.2. ShardingSphere-Proxy 274

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query specified shadow rule in specified database.

SHOW SHADOW RULE shadow_rule FROM shadow_db;

mysql> SHOW SHADOW RULE shadow_rule FROM shadow_db;
+-------------+-------------+-------------+----------------------+
| rule_name | source_name | shadow_name | shadow_table |
+-------------+-------------+-------------+----------------------+
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
+-------------+-------------+-------------+----------------------+
1 row in set (0.00 sec)

• Query specified shadow rule in current database.

SHOW SHADOW RULE shadow_rule;

mysql> SHOW SHADOW RULE shadow_rule;
+-------------+-------------+-------------+----------------------+
| rule_name | source_name | shadow_name | shadow_table |
+-------------+-------------+-------------+----------------------+
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
+-------------+-------------+-------------+----------------------+
1 row in set (0.01 sec)

• Query shadow rules for specified database.

SHOW SHADOW RULES FROM shadow_db;

mysql> SHOW SHADOW RULES FROM shadow_db;
+-------------+-------------+-------------+----------------------+
| rule_name | source_name | shadow_name | shadow_table |
+-------------+-------------+-------------+----------------------+
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
+-------------+-------------+-------------+----------------------+
1 row in set (0.00 sec)

• Query shadow rules for current database.

SHOW SHADOW RULES;

mysql> SHOW SHADOW RULES;
+-------------+-------------+-------------+----------------------+
| rule_name | source_name | shadow_name | shadow_table |
+-------------+-------------+-------------+----------------------+
| shadow_rule | ds_0 | ds_1 | t_order_item,t_order |
+-------------+-------------+-------------+----------------------+

9.2. ShardingSphere-Proxy 275

Apache ShardingSphere document

1 row in set (0.00 sec)

Reserved word

SHOW, SHADOW, RULE, RULES, FROM

Related links

• Reserved word

SHOW SHADOW TABLE RULES

Description

The SHOW SHADOW TABLE RULES syntax is used to query shadow table rules for specified database.

Syntax

ShowEncryptRule::=
'SHOW' 'SHADOW' 'TABLE' 'RULES' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

shadow_table Shadow table
shadow_algorithm_name Shadow algorithm name

9.2. ShardingSphere-Proxy 276

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query shadow table rules for specified database.

SHOW SHADOW TABLE RULES FROM shadow_db;

mysql> SHOW SHADOW TABLE RULES FROM shadow_db;
+--------------+---+
| shadow_table | shadow_algorithm_name |
+--------------+---+
| t_order_item | shadow_rule_t_order_item_value_match |
| t_order | sql_hint_algorithm,shadow_rule_t_order_regex_match |
+--------------+---+
2 rows in set (0.00 sec)

• Query shadow table rules for current database.

SHOW SHADOW TABLE RULES;

mysql> SHOW SHADOW TABLE RULES;
+--------------+---+
| shadow_table | shadow_algorithm_name |
+--------------+---+
| t_order_item | shadow_rule_t_order_item_value_match |
| t_order | sql_hint_algorithm,shadow_rule_t_order_regex_match |
+--------------+---+
2 rows in set (0.01 sec)

Reserved word

SHOW, SHADOW, TABLE, RULES, FROM

Related links

• Reserved word

SHOW SHADOW ALGORITHMS

Description

The SHOW SHADOW ALGORITHMS syntax is used to query shadow algorithms for specified database.

9.2. ShardingSphere-Proxy 277

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ShowEncryptAlgorithm::=
'SHOW' 'SHADOW' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

shadow_algorithm_name Shadow algorithm name
type Shadow algorithm type
props Shadow algorithm properties
is_default Default

Example

• Query shadow algorithms for specified database.

SHOW SHADOW ALGORITHMS FROM shadow_db;

mysql> SHOW SHADOW ALGORITHMS FROM shadow_db;
+-------------------------+-------------+---
+------------+
| shadow_algorithm_name | type | props |
is_default |
+-------------------------+-------------+---
+------------+
| user_id_match_algorithm | VALUE_MATCH | column=user_id,operation=insert,value=1 |
false |
+-------------------------+-------------+---
+------------+
1 row in set (0.00 sec)

• Query shadow algorithms for current database.

9.2. ShardingSphere-Proxy 278

Apache ShardingSphere document

SHOW SHADOW ALGORITHMS;

mysql> SHOW SHADOW ALGORITHMS;
+-------------------------+-------------+---
+------------+
| shadow_algorithm_name | type | props |
is_default |
+-------------------------+-------------+---
+------------+
| user_id_match_algorithm | VALUE_MATCH | column=user_id,operation=insert,value=1 |
false |
+-------------------------+-------------+---
+------------+
1 row in set (0.00 sec)

Reserved word

SHOW, SHADOW, ALGORITHMS, FROM

Related links

• Reserved word

SHOWDEFAULT SHADOW ALGORITHM

Description

The SHOW DEFAULT SHADOW ALGORITHM syntax is used to query default shadow algorithm for spec‐
ified database.

Syntax

ShowEncryptAlgorithm::=
'SHOW' 'SHADOW' 'ALGORITHM' ('FROM' databaseName)?

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 279

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

shadow_algorithm_name Shadow algorithm name
type Shadow algorithm type
props Shadow algorithm properties

Example

• Query default shadow algorithm for specified database.

SHOW DEFAULT SHADOW ALGORITHM FROM shadow_db;

mysql> SHOW DEFAULT SHADOW ALGORITHM FROM shadow_db;
+-------------------------+-------------+---+
| shadow_algorithm_name | type | props |
+-------------------------+-------------+---+
| user_id_match_algorithm | VALUE_MATCH | column=user_id,operation=insert,value=1 |
+-------------------------+-------------+---+
1 row in set (0.00 sec)

• Query default shadow algorithm for current database.

SHOW SHADOW ALGORITHM;

mysql> SHOW SHADOW ALGORITHM;
+-------------------------+-------------+---+
| shadow_algorithm_name | type | props |
+-------------------------+-------------+---+
| user_id_match_algorithm | VALUE_MATCH | column=user_id,operation=insert,value=1 |
+-------------------------+-------------+---+
1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy 280

Apache ShardingSphere document

Reserved word

SHOW, DEFAULT,SHADOW, ALGORITHM, FROM

Related links

• Reserved word

COUNT SHADOWRULE

Description

The COUNT SHADOW RULE syntax is used to query the number of shadow rules for specified database.

Syntax

CountShadowRule::=
'COUNT' 'SHADOW' 'RULE' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

rule_name rule type
database the database to which the rule belongs
count the number of the rule

9.2. ShardingSphere-Proxy 281

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query the number of shadow rules for specified database.

COUNT SHADOW RULE FROM shadow_db;

mysql> COUNT SHADOW RULE FROM shadow_db;
+-----------+--------------+-------+
| rule_name | database | count |
+-----------+--------------+-------+
| shadow | shadow_db | 1 |
+-----------+--------------+-------+
1 row in set (0.00 sec)

• Query the number of shadow rules for current database.

COUNT SHADOW RULE;

mysql> COUNT SHADOW RULE;
+-----------+--------------+-------+
| rule_name | database | count |
+-----------+--------------+-------+
| shadow | shadow_db | 1 |
+-----------+--------------+-------+
1 row in set (0.01 sec)

Reserved word

COUNT, SHADOW, RULE, FROM

Related links

• Reserved word

RAL Syntax

RAL (Resource & Rule Administration Language) responsible for the added‐on feature of transaction
type switch, scaling and so on.

9.2. ShardingSphere-Proxy 282

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

GLOBAL RULE

This chapter describes the syntax of Global Rule.

SHOW AUTHORITY RULE

Description

The SHOW AUTHORITY RULE syntax is used to query authority rule configuration.

Syntax

ShowAuthorityRule ::=
'SHOW' 'AUTHORITY' 'RULE'

Return Value Description

Column Description

users users
provider privilege provider type
props privilege properties

Example

• Query authority rule configuration

SHOW AUTHORITY RULE;

mysql> SHOW AUTHORITY RULE;
+--------------------+---------------+-------+
| users | provider | props |
+--------------------+---------------+-------+
| root@%; sharding@% | ALL_PERMITTED | |
+--------------------+---------------+-------+
1 row in set (0.07 sec)

9.2. ShardingSphere-Proxy 283

Apache ShardingSphere document

Reserved word

SHOW, AUTHORITY, RULE

Related links

• Reserved word

SHOW TRANSACTION RULE

Description

The SHOW TRANSACTION RULE syntax is used to query transaction rule configuration.

Syntax

ShowTransactionRule ::=
'SHOW' 'TRANSACTION' 'RULE'

Return Value Description

Column Description

users users
provider privilege provider type
props privilege properties

Example

• Query transaction rule configuration

SHOW TRANSACTION RULE;

mysql> SHOW TRANSACTION RULE;
+--------------+---------------+-------+
| default_type | provider_type | props |
+--------------+---------------+-------+
| LOCAL | | |
+--------------+---------------+-------+
1 row in set (0.05 sec)

9.2. ShardingSphere-Proxy 284

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Reserved word

SHOW, TRANSACTION, RULE

Related links

• Reserved word

ALTER TRANSACTION RULE

Description

The ALTER TRANSACTION RULE syntax is used to alter transaction rule configuration.

Syntax

AlterTransactionRule ::=
'ALTER' 'TRANSACTION' 'RULE' '(' 'DEFAULT' '=' defaultTransactionType ',' 'TYPE'

'(' 'NAME' '=' transactionManager ',' propertiesDefinition ')' ')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

defaultTransactionType ::=
string

transactionManager ::=
string

key ::=
string

value ::=
literal

Supplement

• defaultTransactionType support LOCAL, XA, BASE

• transactionManager support Atomikos and Narayana

9.2. ShardingSphere-Proxy 285

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Alter transaction rule

ALTER TRANSACTION RULE(
DEFAULT="XA", TYPE(NAME="Narayana", PROPERTIES("databaseName"="jbossts", "host"=

"127.0.0.1"))
);

Reserved word

ALTER, TRANSACTION, RULE, DEFAULT, TYPE, NAME, PROPERTIES

Related links

• Reserved word

SHOW SQL_PARSER RULE

Description

The SHOW SQL_PARSER RULE syntax is used to query sql parser rule configuration.

Syntax

ShowSqlParserRule ::=
'SHOW' 'SQL_PARSER' 'RULE'

Return Value Description

Column Description

sql_comment_parse_enabled SQL comment parse enabled status
parse_tree_cache parse tree cache configuration
sql_statement_cache SQL statement cache configuration

9.2. ShardingSphere-Proxy 286

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query sql parser rule configuration

SHOW SQL_PARSER RULE;

mysql> SHOW SQL_PARSER RULE;
+---------------------------+---+------------
-------------------------------+
| sql_comment_parse_enabled | parse_tree_cache | sql_
statement_cache |
+---------------------------+---+------------
-------------------------------+
| false | initialCapacity: 128, maximumSize: 1024 |
initialCapacity: 2000, maximumSize: 65535 |
+---------------------------+---+------------
-------------------------------+
1 row in set (0.05 sec)

Reserved word

SHOW, SQL_PARSER, RULE

Related links

• Reserved word

Alter SQL_PARSER Rule

Description

The ALTER SQL_PARSER RULE syntax is used to alter the SQL parser rule configuration.

Syntax

AlterSqlParserRule ::=
'ALTER' 'SQL_PARSER' 'RULE' '(' sqlParserRuleDefinition ')'

sqlParserRuleDefinition ::=
commentDefinition? (',' parseTreeCacheDefinition)? (','

sqlStatementCacheDefinition)?

commentDefinition ::=
'SQL_COMMENT_PARSE_ENABLED' '=' sqlCommentParseEnabled

9.2. ShardingSphere-Proxy 287

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

parseTreeCacheDefinition ::=
'PARSE_TREE_CACHE' '(' cacheOption ')'

sqlStatementCacheDefinition ::=
'SQL_STATEMENT_CACHE' '(' cacheOption ')'

sqlCommentParseEnabled ::=
boolean

cacheOption ::=
('INITIAL_CAPACITY' '=' initialCapacity)? (','? 'MAXIMUM_SIZE' '=' maximumSize)?

initialCapacity ::=
int

maximumSize ::=
int

Note

• SQL_COMMENT_PARSE_ENABLE: specifies whether to parse the SQL comment.

• PARSE_TREE_CACHE: local cache configuration of the syntax tree.

• SQL_STATEMENT_CACHE: the local cache of SQL statement.

Example

• Alter SQL parser rule

ALTER SQL_PARSER RULE (
SQL_COMMENT_PARSE_ENABLED=false,
PARSE_TREE_CACHE(INITIAL_CAPACITY=128, MAXIMUM_SIZE=1024),
SQL_STATEMENT_CACHE(INITIAL_CAPACITY=2000, MAXIMUM_SIZE=65535)

);

Reserved word

ALTER, SQL_PARSER, RULE, SQL_COMMENT_PARSE_ENABLED, PARSE_TREE_CACHE, INI-
TIAL_CAPACITY, MAXIMUM_SIZE, SQL_STATEMENT_CACHE

9.2. ShardingSphere-Proxy 288

Apache ShardingSphere document

Related links

• Reserved word

SHOW TRAFFIC RULE

Description

The SHOW TRAFFIC RULE syntax is used to query specified dual routing rule.

Syntax

ShowTrafficRule ::=
'SHOW' 'TRAFFIC' ('RULES' | 'RULE' ruleName)?

ruleName ::=
identifier

Supplement

• When ruleName not specified, the default is show all traffic rules

Return Value Description

Column Description

name traffic rule name
labels compute node labels
algorithm_type traffic algorithm type
algorithm_props traffic algorithn properties
load_balancer_type load balancer type
load_balancer_props load balancer properties

Example

• Query specified traffic rule

SHOW TRAFFIC RULE sql_match_traffic;

mysql> SHOW TRAFFIC RULE sql_match_traffic;
+-------------------+--------+----------------+------------------------------------
--+--------------------+-----------------
----+

9.2. ShardingSphere-Proxy 289

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

| name | labels | algorithm_type | algorithm_props
| load_balancer_type | load_balancer_

props |
+-------------------+--------+----------------+------------------------------------
--+--------------------+-----------------
----+
| sql_match_traffic | OLTP | SQL_MATCH | sql=SELECT * FROM t_order WHERE
order_id = 1; UPDATE t_order SET order_id = 5; | RANDOM |

|
+-------------------+--------+----------------+------------------------------------
--+--------------------+-----------------
----+
1 row in set (0.00 sec)

• Query all traffic rules

SHOW TRAFFIC RULES;

mysql> SHOW TRAFFIC RULES;
+-------------------+--------+----------------+------------------------------------
--+--------------------+-----------------
----+
| name | labels | algorithm_type | algorithm_props

| load_balancer_type | load_balancer_
props |
+-------------------+--------+----------------+------------------------------------
--+--------------------+-----------------
----+
| sql_match_traffic | OLTP | SQL_MATCH | sql=SELECT * FROM t_order WHERE
order_id = 1; UPDATE t_order SET order_id = 5; | RANDOM |

|
+-------------------+--------+----------------+------------------------------------
--+--------------------+-----------------
----+
1 row in set (0.04 sec)

9.2. ShardingSphere-Proxy 290

Apache ShardingSphere document

Reserved word

SHOW, TRAFFIC, RULE, RULES

Related links

• Reserved word

ALTER TRAFFIC RULE

Description

The ALTER TRAFFIC RULE syntax is used to alter dual routing rule.

Syntax

AlterTrafficRule ::=
'ALTER' 'TRAFFIC' 'RULE' '(' 'LABELS' '(' lableName ')' ','

trafficAlgorithmDefinition ',' loadBalancerDefinition ')'

lableName ::=
identifier

trafficAlgorithmDefinition ::=
'TRAFFIC_ALGORITHM' '(' 'TYPE' '(' 'NAME' '=' trafficAlgorithmTypeName (','

propertiesDefinition)? ')' ')'

loadBalancerDefinition ::=
'LOAD_BALANCER' '(' 'TYPE' '(' 'NAME' '=' loadBalancerName (','

propertiesDefinition)? ')' ')'

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

trafficAlgorithmTypeName ::=
string

loadBalancerTypeName ::=
string

key ::=
string

value ::=
literal

9.2. ShardingSphere-Proxy 291

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• TRAFFIC_ALGORITHM support SQL_MATCH and SQL_HINT two types;

• LOAD_BALANCER support RANDOM and ROUND_ROBIN two types.

Example

• Alter dual routing rule

TRAFFIC RULE sql_match_traffic (
LABELS (OLTP),
TRAFFIC_ALGORITHM(TYPE(NAME="SQL_MATCH",PROPERTIES("sql" = "SELECT * FROM t_order

WHERE order_id = 1; UPDATE t_order SET order_id = 5;"))),
LOAD_BALANCER(TYPE(NAME="RANDOM")));

Reserved word

ALTER, TRAFFIC, RULE, LABELS, TYPE, NAME, PROPERTIES, TRAFFIC_ALGORITHM,
LOAD_BALANCER

Related links

• Reserved word

CIRCUIT BREAKER

This chapter describes the syntax of Circuit Breaker.

ALTER READWRITE_SPLITTING RULE ENABLE/DISABLE

Description

The ALTER READWRITE_SPLITTING RULE ENABLE/DISABLE syntax is used enable/disable a spec‐
ified read source for specified readwrite‐splitting rule.

9.2. ShardingSphere-Proxy 292

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

AlterReadwriteSplittingRule ::=
'ALTER' 'READWRITE_SPLITTING' 'RULE' groupName ('ENABLE' | 'DISABLE')

storageUnitName 'FROM' databaseName

groupName ::=
identifier

storageUnitName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Example

• Disable a specified read source for specified readwrite‐splitting rule in specified database

ALTER READWRITE_SPLITTING RULE ms_group_0 DISABLE read_ds_0 FROM sharding_db;

• Enable a specified read source for specified readwrite‐splitting rule in specified database

ALTER READWRITE_SPLITTING RULE ms_group_0 ENABLE read_ds_0 FROM sharding_db;

• Disable a specified read source for specified readwrite‐splitting rule in current database

ALTER READWRITE_SPLITTING RULE ms_group_0 DISABLE read_ds_0;

• Enable a specified read source for specified readwrite‐splitting rule in current database

ALTER READWRITE_SPLITTING RULE ms_group_1 ENABLE read_ds_0;

9.2. ShardingSphere-Proxy 293

Apache ShardingSphere document

Reserved word

ALTER, READWRITE_SPLITTING, RULE, ENABLE, DISABLE

Related links

• Reserved word

SHOW STATUS FROM READWRITE_SPLITTING RULE

Description

The SHOW STATUS FROM READWRITE_SPLITTING RULE syntax is used to query readwrite‐splitting
storage unit status for specified readwrite‐splitting rule in specified database.

Syntax

ShowStatusFromReadwriteSplittingRule ::=
'SHOW' 'STATUS' 'FROM' 'READWRITE_SPLITTING' ('RULES' | 'RULE' groupName) ('FROM'

databaseName)?

groupName ::=
identifier

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return Value Description

Columns Description

storage_unit storage unit name
status storage unit status

9.2. ShardingSphere-Proxy 294

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query readwrite‐splitting storage unit status for specified readwrite‐splitting rule in specified
database.

SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0 FROM sharding_db;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0 FROM sharding_db;
+--------------+----------+
| storage_unit | status |
+--------------+----------+
| ds_0 | disabled |
+--------------+----------+
1 rows in set (0.01 sec)

• Query all readwrite‐splitting storage unit from specified database

SHOW STATUS FROM READWRITE_SPLITTING RULES FROM sharding_db;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULES FROM sharding_db;
+--------------+----------+
| storage_unit | status |
+--------------+----------+
| ds_0 | disabled |
+--------------+----------+
1 rows in set (0.01 sec)

• Query readwrite‐splitting storage unit status for specified readwrite‐splitting rule in current
database

SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULE ms_group_0;
+--------------+----------+
| storage_unit | status |
+--------------+----------+
| ds_0 | disabled |
+--------------+----------+
1 rows in set (0.01 sec)

• Query all readwrite‐splitting storage unit from current database

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULES;

mysql> SHOW STATUS FROM READWRITE_SPLITTING RULES;
+--------------+----------+
| storage_unit | status |
+--------------+----------+

9.2. ShardingSphere-Proxy 295

Apache ShardingSphere document

| ds_0 | disabled |
+--------------+----------+
1 rows in set (0.01 sec)

Reserved word

SHOW, STATUS, FROM, READWRITE_SPLITTING, RULE, RULES

Related links

• Reserved word

SHOW COMPUTE NODES

Description

The SHOW COMPUTE NODES syntax is used to query proxy instance information. ### Syntax

ShowComputeNodes ::=
'SHOW' 'COMPUTE' 'NODES'

Return Value Description

Columns Description

instance_id proxy instance id
host host address
port port number
status proxy instance status
mode_type proxy instance mode
worker_id worker id
labels labels
version version

Example

• Query proxy instance information

SHOW COMPUTE NODES;

9.2. ShardingSphere-Proxy 296

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

mysql> SHOW COMPUTE NODES;
+--------------------------------------+---------------+------+--------+-----------
+-----------+--------+---------+
| instance_id | host | port | status | mode_type
| worker_id | labels | version |
+--------------------------------------+---------------+------+--------+-----------
+-----------+--------+---------+
| 734bb036-b15d-4af0-be87-2372d8b6a0cd | 192.168.5.163 | 3307 | OK | Cluster
| -1 | | 5.3.0 |
+--------------------------------------+---------------+------+--------+-----------
+-----------+--------+---------+
1 row in set (0.01 sec)

Dedicated Terminology

SHOW, COMPUTE, NODES

Related links

• Reserved word

ENABLE/DISABLE COMPUTE NODE

Description

The ENABLE/DISABLE COMPUTE NODE syntax is used enable/disable a specified proxy instance

Syntax

EnableDisableComputeNode ::=
('ENABLE' | 'DISABLE') 'COMPUTE' 'NODE' instanceId

instanceId ::=
string

9.2. ShardingSphere-Proxy 297

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• instanceId needs to be obtained through SHOW COMPUTE NODES syntax query

• The currently in‐use proxy instance cannot be disabled

Example

• Disable a specified proxy instance

DISABLE COMPUTE NODE '734bb086-b15d-4af0-be87-2372d8b6a0cd';

• Enable a specified proxy instance

ENABLE COMPUTE NODE '734bb086-b15d-4af0-be87-2372d8b6a0cd';

Reserved word

ENABLE, DISABLE, COMPUTE, NODE

Related links

• Reserved word

• SHOW COMPUTE NODES

LABEL|RELABEL COMPUTE NODES

Description

The LABEL|RELABEL COMPUTE NODES syntax is used to label PROXY instance.

Syntax

LableRelabelComputeNodes ::=
('LABEL' | 'RELABEL') 'COMPUTE' 'NODE' instance_id 'WITH' labelName

instance_id ::=
string

labelName ::=
identifier

9.2. ShardingSphere-Proxy 298

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/

Apache ShardingSphere document

Supplement

• needs to be obtained through SHOW COMPUTE NODES syntax query

• RELABEL is used to relabel PROXY instance

Example

• Label PROXY instance

LABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_1;

• Relabel PROXY instance

RELABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_2;

Reserved word

LABEL, RELABEL, COMPUTE, NODES, WITH

Related links

• Reserved word

• SHOW COMPUTE NODES

UNLABEL COMPUTE NODES

Description

The UNLABEL COMPUTE NODES syntax is used to remove specified label from PROXY instance.

Syntax

UnlabelComputeNode ::=
'UNLABEL' 'COMPUTE' 'NODE' instance_id 'WITH' labelName

instance_id ::=
string

labelName ::=
identifier

9.2. ShardingSphere-Proxy 299

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/

Apache ShardingSphere document

Supplement

• needs to be obtained through SHOW COMPUTE NODES syntax query

Example

• Remove specified label from PROXY instance

UNLABEL COMPUTE NODE "0699e636-ade9-4681-b37a-65240c584bb3" WITH label_1;

Reserved word

UNLABEL, COMPUTE, NODES, WITH

Related links

• Reserved word

• SHOW COMPUTE NODES

MIGRATUION

This chapter describes the syntax of migration.

SHOWMIGRATION RULE

Description

The SHOW MIGRATION RULE syntax is used to query migration rule.

Syntax

ShowMigrationRule ::=
'SHOW' 'MIGRATION' 'RULE'

9.2. ShardingSphere-Proxy 300

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/circuit-breaker/show-compute-nodes/

Apache ShardingSphere document

Return Value Description

Column Description

read Data reading configuration
write Data writing configuration
stream_channel Data channel

Example

• Query migration rule

SHOW MIGRATION RULE;

mysql> SHOW MIGRATION RULE;
+--+-------------------
-------------------+---+
| read | write

| stream_channel |
+--+-------------------
-------------------+---+
| {"workerThread":20,"batchSize":1000,"shardingSize":10000000} | {"workerThread
":20,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} |
+--+-------------------
-------------------+---+
1 row in set (0.01 sec)

Reserved word

SHOW, MIGRATION, RULE

Related links

• Reserved word

ALTERMIGRATION RULE

Description

The ALTER MIGRATION RULE syntax is used to alter migration rule.

9.2. ShardingSphere-Proxy 301

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

AlterMigrationRule ::=
'ALTER' 'MIGRATION' 'RULE' ('(' (readConfiguration ',')? (writeConfiguration ',

')? (dataChannel)? ')')?

readConfiguration ::=
'READ' '(' ('WORKER_THREAD' '=' workerThreadPoolSize ',')? ('BATCH_SIZE' '='

batchSize ',')? ('SHARDING_SIZE' '=' shardingSize ',')? (rateLimiter)? ')'

writeConfiguration ::=
'WRITE' '(' ('WORKER_THREAD' '=' workerThreadPoolSize ',')? ('BATCH_SIZE' '='

batchSize ',')? ('SHARDING_SIZE' '=' shardingSize ',')? (rateLimiter)? ')'

dataChannel ::=
'STREAM_CHANNEL' '(' 'TYPE' '(' 'NAME' '=' algorithmName ',' propertiesDefinition

')' ')'

workerThreadPoolSize ::=
int

batchSize ::=
int

shardingSize ::=
int

rateLimiter ::=
'RATE_LIMITER' '(' 'TYPE' '(' 'NAME' '=' algorithmName ',' propertiesDefinition

')' ')'

algorithmName ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' key '=' value (',' key '=' value)* ')'

key ::=
string

value ::=
literal

9.2. ShardingSphere-Proxy 302

Apache ShardingSphere document

Supplement

• ALTER MIGRATION RULE able to modify only one configuration in the data migration rule with‐
out affecting other configurations.

Example

• Alter migration rule

ALTER MIGRATION RULE (
READ(WORKER_THREAD=20, BATCH_SIZE=1000, SHARDING_SIZE=10000000, RATE_LIMITER

(TYPE(NAME='QPS',PROPERTIES('qps'='500')))),
WRITE(WORKER_THREAD=20, BATCH_SIZE=1000, RATE_LIMITER (TYPE(NAME='TPS',

PROPERTIES('tps'='2000')))),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='2000')))
);

• Alter read configuration only in migration rule

ALTER MIGRATION RULE (
READ(WORKER_THREAD=20, BATCH_SIZE=1000, SHARDING_SIZE=10000000, RATE_LIMITER

(TYPE(NAME='QPS',PROPERTIES('qps'='500'))))
);

• Alter write configuration only in migration rule

ALTER MIGRATION RULE (
WRITE(WORKER_THREAD=20, BATCH_SIZE=1000, SHARDING_SIZE=10000000, RATE_LIMITER

(TYPE(NAME='QPS',PROPERTIES('qps'='500'))))
);

• Alter stream channel configuration in migration rule

ALTER MIGRATION RULE (
STREAM_CHANNEL (TYPE(NAME='MEMORY', PROPERTIES('block-queue-size'='2000')))
);

Reserved word

ALTER, MIGRATION, RULE, READ, WRITE, WORKER_THREAD, BATCH_SIZE, SHARDING_SIZE,
STREAM_CHANNEL, TYPE, NAME, PROPERTIES

9.2. ShardingSphere-Proxy 303

Apache ShardingSphere document

Related links

• Reserved word

REGISTERMIGRATION SOURCE STORAGE UNIT

Description

The REGISTER MIGRATION SOURCE STORAGE UNIT syntax is used to register migration source
storage unit for the currently connection.

Syntax

RegisterStorageUnit ::=
'REGISTER' 'MIGRATION' 'SOURCE' 'STORAGE' 'UNIT' storageUnitDefinition (','

storageUnitDefinition)*

storageUnitDefinition ::=
StorageUnitName '(' 'URL' '=' url ',' 'USER' '=' user (',' 'PASSWORD' '='

password)? (',' propertiesDefinition)?')'

storageUnitName ::=
identifier

url ::=
string

user ::=
string

password ::=
string

propertiesDefinition ::=
'PROPERTIES' '(' (key '=' value) (',' key '=' value)* ')'

key ::=
string

value ::=
literal

9.2. ShardingSphere-Proxy 304

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• Confirm that the registered migration source storage unit can be connected normally, otherwise
it will not be added successfully;

• storageUnitName is case‐sensitive;

• storageUnitName needs to be unique within the current connection;

• storageUnitName name only allows letters, numbers and _, and must start with a letter;

• poolProperty is used to customize connection pool parameters, keymust be the same as the
connection pool parameter name, value supports int and String types;

• When password contains special characters, it is recommended to use the string form; For ex‐
ample, the string form of password@123 is "password@123".

• The data migration source storage unit currently only supports registration using URL, and tem‐
porarily does not support using HOST and PORT.

Example

• Register migration source storage unit

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

",
USER="root",
PASSWORD="root"

);

• Register migration source storage unit and set connection pool parameters

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

Reserved word

REGISTER, MIGRATION, SOURCE, STORAGE, UNIT, USER, PASSWORD, PROPERTIES, URL

9.2. ShardingSphere-Proxy 305

Apache ShardingSphere document

Related links

• Reserved word

UNREGISTERMIGRATION SOURCE STORAGE UNIT

Description

The UNREGISTER MIGRATION SOURCE STORAGE UNIT syntax is used to unregistermigration source
storage unit from the current connection

Syntax

UnregisterMigrationSourceStorageUnit ::=
'UNREGISTER' 'MIGRATION' 'SOURCE' 'STORAGE' 'UNIT' storageUnitName (','

storageUnitName)*

storageUnitName ::=
identifier

Supplement

• UNREGISTER MIGRATION SOURCE STORAGE UNIT will only unregister storage unit in Proxy,
the real data source corresponding to the storage unit will not be dropped;

Example

• Drop a migration source storage unit

UNREGISTER MIGRATION SOURCE STORAGE UNIT ds_0;

• Drop multiple migration source storage units

UNREGISTER MIGRATION SOURCE STORAGE UNIT ds_1, ds_2;

Reserved word

UNREGISTER、MIGRATION、SOURCE、STORAGE、UNIT

9.2. ShardingSphere-Proxy 306

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Related links

• Reserved word

SHOWMIGRATION SOURCE STORAGE UNITS

Description

The SHOW MIGRATION SOURCE STORAGE UNITS syntax is used to query the registered migration
source storage units

Syntax

ShowStorageUnit ::=
'SHOW' 'MIGRATION' 'SOURCE' 'STORAGE' 'UNITS'

Return Value Description

Column Description

name Storage unit name
type Storage unit type
host Storage unit host
port Storage unit port
db Database name
attribute Storage unit attribute

Example

• Query registered migration source storage units

SHOW MIGRATION SOURCE STORAGE UNITS;

mysql> SHOW MIGRATION SOURCE STORAGE UNITS;
+------+-------+-----------+------+----------------+-------------------------------
--+---------------------------+---------------------------+---------------+--------
-------+-----------+------------------+
| name | type | host | port | db | connection_timeout_
milliseconds | idle_timeout_milliseconds | max_lifetime_milliseconds | max_pool_
size | min_pool_size | read_only | other_attributes |
+------+-------+-----------+------+----------------+-------------------------------
--+---------------------------+---------------------------+---------------+--------
-------+-----------+------------------+
| ds_1 | MySQL | 127.0.0.1 | 3306 | migration_ds_0 |
| | | |

9.2. ShardingSphere-Proxy 307

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

| | |
+------+-------+-----------+------+----------------+-------------------------------
--+---------------------------+---------------------------+---------------+--------
-------+-----------+------------------+
1 row in set (0.01 sec)

Reserved word

SHOW, MIGRATION, SOURCE, STORAGE, UNITS

Related links

• Reserved word

MIGRATE TABLE INTO

Description

MIGRATE TABLE INTO syntax is used to migration table from source to target

Syntax

MigrateTableInto ::=
'MIGRATE' 'TABLE' migrationSource '.' tableName 'INTO' (databaseName '.')?

tableName

migrationSource ::=
identifier

databaseName ::=
identifier

tableName ::=
identifier

9.2. ShardingSphere-Proxy 308

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Example

• Migrate table from source to current database

MIGRATE TABLE ds_0.t_order INTO t_order;

• Migrate table from source to specified database

UNREGISTER MIGRATION SOURCE STORAGE UNIT ds_1, ds_2;

Reserved word

MIGRATE, TABLE, INTO

Related links

• Reserved word

SHOWMIGRATION LIST

Description

The SHOW MIGRATION LIST syntax is used to query migration job list.

Syntax

ShowMigrationList ::=
'SHOW' 'MIGRATION' 'LIST'

9.2. ShardingSphere-Proxy 309

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return Values Description

Columns Description

id migration job id
tables migration tables
job_item_count migration job sharding number
active migration job states
create_time migration job create time
stop_time migration job stop time

Example

• Query migration job list

SHOW MIGRATION LIST;

mysql> SHOW MIGRATION LIST;
+---------------------------------------+---------+----------------+--------+------
---------------+---------------------+
| id | tables | job_item_count | active |
create_time | stop_time |
+---------------------------------------+---------+----------------+--------+------
---------------+---------------------+
| j01013a38b0184e07c864627b5bb05da09ee0 | t_order | 1 | false | 2022-
10-31 18:18:24 | 2022-10-31 18:18:31 |
+---------------------------------------+---------+----------------+--------+------
---------------+---------------------+
1 row in set (0.28 sec)

Reserved word

SHOW, MIGRATION, LIST

Related links

• Reserved word

9.2. ShardingSphere-Proxy 310

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOWMIGRATION STATUS

Description

The SHOW MIGRATION STATUS syntax is used to query migration job status for specified migration
job.

Syntax

ShowMigrationStatus ::=
'SHOW' 'MIGRATION' 'STATUS' migrationJobId

migrationJobId ::=
string

Supplement

• migrationJobId needs to be obtained through SHOW MIGRATION LIST syntax query

Return Value Description

column Description

item migration job sharding serial number
data source migration source
status migration job status
processed_records_count number of processed rows
inventory_finished_percentage finished percentage of migration job
incremental_idle_seconds incremental idle time
error_message error message

Example

• Query migration job status

SHOW MIGRATION STATUS 'j010180026753ef0e25d3932d94d1673ba551';

mysql> SHOW MIGRATION STATUS 'j010180026753ef0e25d3932d94d1673ba551';
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------

9.2. ShardingSphere-Proxy 311

Apache ShardingSphere document

+-------------------------------+--------------------------+---------------+
| 0 | ds_1 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 25 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
1 row in set (0.01 sec)

Reserved word

SHOW, MIGRATION, STATUS

Related links

• Reserved word

SHOWMIGRATION CHECK ALGORITHM

Description

The SHOW MIGRATION RULE syntax is used to query migration check algorithm.

Syntax

ShowMigrationCheckAlgorithm ::=
'SHOW' 'MIGRATION' 'CHECK' 'ALGORITHMS'

Return Value Description

Column Description

type migration check algorithm type
supported_database_types supported database type
description Description of migration check algorithm

9.2. ShardingSphere-Proxy 312

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Query migration check algorithm

SHOW MIGRATION CHECK ALGORITHMS;

mysql> SHOW MIGRATION CHECK ALGORITHMS;
+-------------+--+-----
-----------------------+
| type | supported_database_types |
description |
+-------------+--+-----
-----------------------+
| CRC32_MATCH | MySQL |
Match CRC32 of records. |
| DATA_MATCH | SQL92,MySQL,MariaDB,PostgreSQL,openGauss,Oracle,SQLServer,H2 |
Match raw data of records. |
+-------------+--+-----
-----------------------+
2 rows in set (0.03 sec)

Reserved word

SHOW, MIGRATION, CHECK, ALGORITHMS

Related links

• Reserved word

CHECKMIGRATION

Description

The CHECK MIGRATION LIST syntax is used to check data consistancy in migration job.

Syntax

ShowMigrationList ::=
'CHECK' 'MIGRATION' migrationJobId 'BY' 'TYPE' '(' 'NAME' '='

migrationCheckAlgorithmType ')'

migrationJobId ::=
string

9.2. ShardingSphere-Proxy 313

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

migrationCheckAlgorithmType ::=
string

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

• migrationCheckAlgorithmType needs to be obtained through SHOW MIGRATION CHECK
ALGORITHMS syntax query

Example

• check data consistancy in migration job

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6' BY TYPE (NAME='CRC32_MATCH
');

Reserved word

CHECK, MIGRATION, BY, TYPE

Related links

• Reserved word

• SHOWMIGRATION LIST

• SHOWMIGRATION CHECK ALGORITHMS

SHOWMIGRATION CHECK STATUS

Description

The SHOW MIGRATION CHECK STATUS syntax is used to query migration check status for specified
migration job.

9.2. ShardingSphere-Proxy 314

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-check-algorithm/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-check-algorithm/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-check-algorithm/

Apache ShardingSphere document

Syntax

ShowMigrationCheckStatus ::=
'SHOW' 'MIGRATION' 'CHECK' 'STATUS' migrationJobId

migrationJobId ::=
string

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

Return Value Description

Columns Description

tables migration check table
result check result
finished_percentage check finished finished_percentage
remaining_seconds check remaining time
check_begin_time check begin time
check_end_time check end time
error_message error message

Example

• Query migration check status

SHOW MIGRATION CHECK STATUS 'j010180026753ef0e25d3932d94d1673ba551';

mysql> SHOW MIGRATION CHECK STATUS 'j010180026753ef0e25d3932d94d1673ba551';
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-11-01 17:57:39.
940 | 2022-11-01 17:57:40.587 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
1 row in set (0.01 sec)

9.2. ShardingSphere-Proxy 315

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Reserved word

SHOW, MIGRATION, CHECK, STATUS

Related links

• Reserved word

• SHOWMIGRATION LIST

STARTMIGRATION CHECK

Description

The START MIGRATION CHECK syntax is used to stop migration check process.

Syntax

StartMigrationCheck ::=
'START' 'MIGRATION' 'CHECK' migrationJobId

migrationJobId ::=
string

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

Example

• Stop migration check process

START MIGRATION CHECK 'j010180026753ef0e25d3932d94d1673ba551';

Reserved word

START, MIGRATION, CHECK

9.2. ShardingSphere-Proxy 316

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Related links

• Reserved word

• SHOWMIGRATION LIST

STOPMIGRATION CHECK

Description

The STOP MIGRATION CHECK syntax is used to stop migration check process.

Syntax

StopMigrationCheck ::=
'STOP' 'MIGRATION' 'CHECK' migrationJobId

migrationJobId ::=
string

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

Example

• Stop migration check process

STOP MIGRATION CHECK 'j010180026753ef0e25d3932d94d1673ba551';

Reserved word

STOP, MIGRATION, CHECK

Related links

• Reserved word

• SHOWMIGRATION LIST

9.2. ShardingSphere-Proxy 317

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

STARTMIGRATION

Description

The START MIGRATION syntax is used to start migration process.

Syntax

StartMigration ::=
'START' 'MIGRATION' migrationJobId

migrationJobId ::=
string

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

Example

• Start migration process

START MIGRATION 'j010180026753ef0e25d3932d94d1673ba551';

Reserved word

START, MIGRATION

Related links

• Reserved word

• SHOWMIGRATION LIST

STOPMIGRATION

Description

The STOP MIGRATION syntax is used to stop migration process.

9.2. ShardingSphere-Proxy 318

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Syntax

StopMigration ::=
'STOP' 'MIGRATION' migrationJobId

migrationJobId ::=
string

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

Example

• Stop migration process

STOP MIGRATION 'j010180026753ef0e25d3932d94d1673ba551';

Reserved word

STOP, MIGRATION

Related links

• Reserved word

• SHOWMIGRATION LIST

COMMIT MIGRATION

Description

The COMMIT MIGRATION syntax is used to commit migration process.

Syntax

CommitMigration ::=
'COMMIT' 'MIGRATION' migrationJobId

migrationJobId ::=
string

9.2. ShardingSphere-Proxy 319

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

Example

• Commit migration process

COMMIT MIGRATION 'j010180026753ef0e25d3932d94d1673ba551';

Reserved word

COMMIT, MIGRATION

Related links

• Reserved word

• SHOWMIGRATION LIST

ROLLBACKMIGRATION

Description

The ROLLBACK MIGRATION syntax is used to rollback migration process.

Syntax

RollbackMigration ::=
'ROLLBACK' 'MIGRATION' migrationJobId

migrationJobId ::=
string

Supplement

• migrationJobId needs to be obtained through SHOWMIGRATION LIST syntax query

• After the statement is executed, the target will be cleaned up

9.2. ShardingSphere-Proxy 320

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Example

• Rollback migration process

ROLLBACK MIGRATION 'j010180026753ef0e25d3932d94d1673ba551';

Reserved word

ROLLBACK, MIGRATION

Related links

• Reserved word

• SHOWMIGRATION LIST

SHOW COMPUTE NODE INFO

Description

The SHOW COMPUTE NODE INFO syntax is used to query current proxy instance information. ###
Syntax

ShowComputeNodeInfo ::=
'SHOW' 'COMPUTE' 'NODE' 'INFO'

Return Value Description

Columns Description

instance_id proxy instance id
host host address
port port number
status proxy instance status
mode_type proxy instance mode
worker_id worker id
labels labels

9.2. ShardingSphere-Proxy 321

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/migration/show-migration-list/

Apache ShardingSphere document

Example

• Query current proxy instance information

SHOW COMPUTE NODE INFO;

mysql> SHOW COMPUTE NODE INFO;
+--------------------------------------+---------------+------+--------+-----------
+-----------+--------+
| instance_id | host | port | status | mode_type
| worker_id | labels |
+--------------------------------------+---------------+------+--------+-----------
+-----------+--------+
| 734bb036-b15d-4af0-be87-2372d8b6a0cd | 192.168.5.163 | 3307 | OK | Cluster
| -1 | |
+--------------------------------------+---------------+------+--------+-----------
+-----------+--------+
1 row in set (0.01 sec)

Reserved word

SHOW, COMPUTE, NODE, INFO

Related links

• Reserved word

SHOW COMPUTE NODEMODE

Description

The SHOW COMPUTE NODE MODE syntax is used to query current proxy instance mode configuration
information. ### Syntax

ShowComputeNodeInfo ::=
'SHOW' 'COMPUTE' 'NODE' 'MODE'

9.2. ShardingSphere-Proxy 322

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return Value Description

Columns Description

type type of proxy mode configuration
repository type of persist repository
props properties of persist repository

Example

• Query current proxy instance mode configuration information

SHOW COMPUTE NODE MODE;

mysql> SHOW COMPUTE NODE MODE;
+---------+------------+---

--------------------------+
| type | repository | props

|
+---------+------------+---

--------------------------+
| Cluster | ZooKeeper | {"operationTimeoutMilliseconds":500,"timeToLiveSeconds
":60,"maxRetries":3,"namespace":"governance_ds","server-lists":"localhost:2181",
"retryIntervalMilliseconds":500} |
+---------+------------+---

--------------------------+
1 row in set (0.00 sec)

Reserved word

SHOW, COMPUTE, NODE, MODE

Related links

• Reserved word

9.2. ShardingSphere-Proxy 323

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SET DIST VARIABLE

Description

The SET DIST VARIABLE syntax is used to set system variables. ### Syntax

SetDistVariable ::=
'SET' 'DIST' 'VARIABLE' (proxyPropertyName '=' proxyPropertyValue | 'agent_

plugins_enabled' '=' agentPluginsEnabled)

proxyPropertyName ::=
identifier

proxyPropertyValue ::=
literal

agentPluginsEnabled ::=
boolean

Supplement

• proxy_property_name is oneof properties configurationofPROXY, name is split byunderscore

• agent_plugins_enabled is use to set the agent plugins enable status, the default value is
FALSE

• system_log_level is the system log level, only affects the log printing of PROXY, the default
value is INFO

Example

• Set property configuration of Proxy

SET DIST VARIABLE sql_show = true;

• Set agent plugin enable status

9.2. ShardingSphere-Proxy 324

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/

Apache ShardingSphere document

SET DIST VARIABLE agent_plugins_enabled = TRUE;

Reserved word

SET, DIST, VARIABLE

Related links

• Reserved word

SHOWDIST VARIABLE

Description

The SHOW DIST VARIABLE syntax is used to query PROXY system variables configuration.

Syntax

ShowDistVariable ::=
'SHOW' 'DIST' ('VARIABLES' ('LIKE' likePattern)?| 'VARIABLE' 'WHERE' 'NAME' '='

variableName)

likePattern ::=
string

variableName ::=
identifier

Return Value Description

Columns Description

variable_name system variable name
variable_value system variable value

9.2. ShardingSphere-Proxy 325

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When variableName is not specified, the default is query all PROXY variables configuration.

Example

• Query all system variables configuration of PROXY

SHOW DIST VARIABLES;

mysql> SHOW DIST VARIABLES;
+---------------------------------------+-----------------+
| variable_name | variable_value |
+---------------------------------------+-----------------+
agent_plugins_enabled	true
cached_connections	0
cdc_server_port	33071
check_table_metadata_enabled	false
kernel_executor_size	0
max_connections_size_per_query	1
proxy_backend_query_fetch_size	-1
proxy_default_port	3307
proxy_frontend_database_protocol_type	
proxy_frontend_executor_size	0
proxy_frontend_flush_threshold	128
proxy_frontend_max_connections	0
proxy_frontend_ssl_cipher	
proxy_frontend_ssl_enabled	false
proxy_frontend_ssl_version	TLSv1.2,TLSv1.3
proxy_meta_data_collector_enabled	true
proxy_netty_backlog	1024
sql_federation_type	NONE
sql_show	false
sql_simple	false
system_log_level	INFO
+---------------------------------------+-----------------+
21 rows in set (0.01 sec)

• Query specified system variable configuration of PROXY

SHOW DIST VARIABLE WHERE NAME = sql_show;

mysql> SHOW DIST VARIABLE WHERE NAME = sql_show;
+---------------+----------------+
| variable_name | variable_value |
+---------------+----------------+
| sql_show | false |

9.2. ShardingSphere-Proxy 326

Apache ShardingSphere document

+---------------+----------------+
1 row in set (0.00 sec)

Reserved word

SHOW, DIST, VARIABLE, VARIABLES, NAME

Related links

• Reserved word

REFRESH TABLE METADATA

Description

The REFRESH TABLE METADATA syntax is used to refresh table metadata.

Syntax

RefreshTableMetadata ::=
'REFRESH' 'TABLE' 'METADATA' (tableName | tableName 'FROM' 'STORAGE' 'UNIT'

storageUnitName ('SCHEMA' schemaName)?)?

tableName ::=
identifier

storageUnitName ::=
identifier

schemaName ::=
identifier

Supplement

• WhentableName andstorageUnitName is not specified, the default is to refresh all tablemeta‐
data.

• refresh table metadata need to use DATABASE. If DATABASE is not used, No database se-
lected will be prompted.

• If there are no tables in the schema, the schema will be deleted.

9.2. ShardingSphere-Proxy 327

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Example

• Refresh specified table’s metadata in specified schema of a specified storage unit

REFRESH TABLE METADATA t_order FROM STORAGE UNIT ds_1 SCHEMA db_schema;

• Refresh all tables’metadata in specified schema of a specified storage unit

REFRESH TABLE METADATA FROM STORAGE UNIT ds_1 SCHEMA db_schema;

• Refresh metadata for specified table in specified storage unit

REFRESH TABLE METADATA t_order FROM STORAGE UNIT ds_1;

• Refresh metadata for specified table

REFRESH TABLE METADATA t_order;

• Refresh all table metadata

REFRESH TABLE METADATA;

Reserved word

REFRESH, TABLE, METADATA, FROM, STORAGE, UNIT

Related links

• Reserved word

REFRESH DATABASE METADATA FROMGOVERNANCE CENTER

Description

The REFRESH DATABASE METADATA FROM GOVERNANCE CENTER syntax is used to pull the latest
configuration from the governance center and refresh the metadata of the local logic database.

Syntax

RefreshDatabaseMetadataFromGovernanceCenter ::=
'REFRESH' 'DATABASE' 'METADATA' databaseName? 'FROM' 'GOVERNANCE' 'CENTER'

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 328

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Supplement

• When databaseName is not specified, the default is to refresh all database metadata.

• refresh table metadata need to use DATABASE. If DATABASE is not used, No database se-
lected will be prompted.

Example

• Refresh metadata for specified database

REFRESH DATABASE METADATA sharding_db FROM GOVERNANCE CENTER;

• Refresh all database metadata

REFRESH DATABASE METADATA FROM GOVERNANCE CENTER;

Reserved word

REFRESH, DATABASE, METADATA, FROM, GOVERNANCE, CENTER

Related links

• Reserved word

SHOW TABLE METADATA

Description

The SHOW TABLE METADATA syntax is used to query tabe metadata.

Syntax

ShowTableMetadata ::=
'SHOW' 'TABLE' 'METADATA' tableName (',' tableName)* ('FROM' databaseName)?

tableName ::=
identifier

databaseName ::=
identifier

9.2. ShardingSphere-Proxy 329

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return Value Description

Columns Description

schema_name database name
table_name table name
type metadata type
name metadata name

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Example

• Query matadata of multiple tables from specified database

SHOW TABLE METADATA t_order, t_order_1 FROM sharding_db;

mysql> SHOW TABLE METADATA t_order, t_order_1 FROM sharding_db;
+-------------------+------------+--------+----------+
| schema_name | table_name | type | name |
+-------------------+------------+--------+----------+
sharding_db	t_order_1	COLUMN	order_id
sharding_db	t_order_1	COLUMN	user_id
sharding_db	t_order_1	COLUMN	status
sharding_db	t_order_1	INDEX	PRIMARY
sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status
sharding_db	t_order	INDEX	PRIMARY
+-------------------+------------+--------+----------+
8 rows in set (0.01 sec)

• Query metadata of one table from specified database

SHOW TABLE METADATA t_order FROM sharding_db;

mysql> SHOW TABLE METADATA t_order FROM sharding_db;
+-------------------+------------+--------+----------+
| schema_name | table_name | type | name |
+-------------------+------------+--------+----------+
sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status

9.2. ShardingSphere-Proxy 330

Apache ShardingSphere document

| sharding_db | t_order | INDEX | PRIMARY |
+-------------------+------------+--------+----------+
4 rows in set (0.00 sec)

• Query metadata of multiple tables from current database

SHOW TABLE METADATA t_order, t_order_1;

mysql> SHOW TABLE METADATA t_order, t_order_1;
+-------------------+------------+--------+----------+
| schema_name | table_name | type | name |
+-------------------+------------+--------+----------+
sharding_db	t_order_1	COLUMN	order_id
sharding_db	t_order_1	COLUMN	user_id
sharding_db	t_order_1	COLUMN	status
sharding_db	t_order_1	INDEX	PRIMARY
sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status
sharding_db	t_order	INDEX	PRIMARY
+-------------------+------------+--------+----------+
8 rows in set (0.00 sec)

• Query metadata of one table from current database

SHOW TABLE METADATA t_order;

mysql> SHOW TABLE METADATA t_order;
+-------------------+------------+--------+----------+
| schema_name | table_name | type | name |
+-------------+------------+--------+----------+
sharding_db	t_order	COLUMN	order_id
sharding_db	t_order	COLUMN	user_id
sharding_db	t_order	COLUMN	status
sharding_db	t_order	INDEX	PRIMARY
+-------------------+------------+--------+----------+
4 rows in set (0.01 sec)

9.2. ShardingSphere-Proxy 331

Apache ShardingSphere document

Reserved word

SHOW, TABLE, METADATA, FROM

Related links

• Reserved word

EXPORT DATABASE CONFIGURATION

Description

The EXPORT DATABASE CONFIGURATION syntax is used to export storage units and rule configura‐
tions to YAML format.

Syntax

ExportDatabaseConfiguration ::=
'EXPORT' 'DATABASE' 'CONFIGURATION' ('FROM' databaseName)? ('TO' 'FILE'

filePath)?

databaseName ::=
identifier

filePath ::=
string

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

• When filePath is not specified, the storage units and rule configurations will export to screen.
Example

• Export storage units and rule configurations from specified database to specified file path

EXPORT DATABASE CONFIGURATION FROM sharding_db TO FILE "/xxx/config_sharding_db.
yaml";

• Export storage units and rule configurations from specified database to screen

EXPORT DATABASE CONFIGURATION FROM sharding_db;

9.2. ShardingSphere-Proxy 332

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

mysql> EXPORT DATABASE CONFIGURATION FROM sharding_db;
+--

--+
| result

|
+--

--+
| databaseName: sharding_db
dataSources:

ds_1:
password: 123456
url: jdbc:mysql://127.0.0.1:3306/migration_ds_0
username: root
minPoolSize: 1
connectionTimeoutMilliseconds: 30000
maxLifetimeMilliseconds: 2100000
readOnly: false
idleTimeoutMilliseconds: 60000
maxPoolSize: 50

ds_2:
password: 123456
url: jdbc:mysql://127.0.0.1:3306/db1
username: root
minPoolSize: 1
connectionTimeoutMilliseconds: 30000
maxLifetimeMilliseconds: 2100000
readOnly: false
idleTimeoutMilliseconds: 60000
maxPoolSize: 50

rules:
|

+--

9.2. ShardingSphere-Proxy 333

Apache ShardingSphere document

--+
1 row in set (0.00 sec)

• Export storage units and rule configurations from current database to specified file path

EXPORT DATABASE CONFIGURATION TO FILE "/xxx/config_sharding_db.yaml";

• Export storage units and rule configurations from current database to screen

EXPORT DATABASE CONFIGURATION;

mysql> EXPORT DATABASE CONFIGURATION;
+--

--+
| result

|
+--

--+
| databaseName: sharding_db
dataSources:

ds_1:
password: 123456
url: jdbc:mysql://127.0.0.1:3306/migration_ds_0
username: root
minPoolSize: 1
connectionTimeoutMilliseconds: 30000
maxLifetimeMilliseconds: 2100000
readOnly: false
idleTimeoutMilliseconds: 60000

9.2. ShardingSphere-Proxy 334

Apache ShardingSphere document

maxPoolSize: 50
ds_2:
password: 123456
url: jdbc:mysql://127.0.0.1:3306/db1
username: root
minPoolSize: 1
connectionTimeoutMilliseconds: 30000
maxLifetimeMilliseconds: 2100000
readOnly: false
idleTimeoutMilliseconds: 60000
maxPoolSize: 50

rules:
|

+--

--+
1 row in set (0.00 sec)

Reserved word

EXPORT, DATABASE, CONFIGURATION, FROM, TO, FILE

Related links

• Reserved word

IMPORT DATABASE CONFIGURATION

Description

The IMPORT DATABASE CONFIGURATION syntax is used to import YAML configuration to specified
database.

9.2. ShardingSphere-Proxy 335

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Syntax

ExportDatabaseConfiguration ::=
'IMPORT' 'DATABASE' 'CONFIGURATION' 'FROM' 'FILE' filePath ('TO' databaseName)?

databaseName ::=
identifier

filePath ::=
string

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

• The IMPORT DATABASE CONFIGURATION syntax only supports import operations on empty
database.

Example

• Import the configuration in YAML into the specified database

IMPORT DATABASE CONFIGURATION FROM FILE "/xxx/config_sharding_db.yaml" TO sharding_
db;

• Import the configuration in YAML into the current database

IMPORT DATABASE CONFIGURATION FROM FILE "/xxx/config_sharding_db.yaml";

Reserved word

IMPORT, DATABASE, CONFIGURATION, FROM, FILE, TO

Related links

• Reserved word

9.2. ShardingSphere-Proxy 336

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

SHOWRULES USED STORAGE UNIT

Description

The SHOW RULES USED STORAGE UNIT syntax is used to query the rules for using the specified
storage unit in specified database.

Syntax

ShowRulesUsedStorageUnit ::=
'SHOW' 'RULES' 'USED' 'STORAGE' 'UNIT' storageUnitName ('FROM' databaseName)?

storageUnitName ::=
identifier

databaseName ::=
identifier

Return Value Description

Columns Description

type rule type
name rule name

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Example

• Query the rules for using the specified storage unit in specified database

SHOW RULES USED STORAGE UNIT ds_1 FROM sharding_db;

mysql> SHOW RULES USED STORAGE UNIT ds_1 FROM sharding_db;
+---------------------+------------+
| type | name |
+---------------------+------------+
| readwrite_splitting | ms_group_0 |
| readwrite_splitting | ms_group_0 |
+---------------------+------------+
2 rows in set (0.01 sec)

9.2. ShardingSphere-Proxy 337

Apache ShardingSphere document

• Query the rules for using the specified storage unit in current database

SHOW RULES USED STORAGE UNIT ds_1;

mysql> SHOW RULES USED STORAGE UNIT ds_1;
+---------------------+------------+
| type | name |
+---------------------+------------+
| readwrite_splitting | ms_group_0 |
| readwrite_splitting | ms_group_0 |
+---------------------+------------+
2 rows in set (0.01 sec)

Reserved word

SHOW, RULES, USED, STORAGE, UNIT, FROM

Related links

• Reserved word

RUL Syntax

RUL (Resource Utility Language) responsible for SQL parsing, SQL formatting, preview execution plan
and more utility functions.

PARSE SQL

Description

The PARSE SQL syntax is used to parse SQL and output abstract syntax tree.

Syntax

ParseSql ::=
'PARSE' sqlStatement

9.2. ShardingSphere-Proxy 338

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Return Value Description

Column Description

parsed_statement parsed SQL statement type
parsed_statement_detail detail of the parsed statement

Example

• Parse SQL and output abstract syntax tree

PARSE SELECT * FROM t_order;

mysql> PARSE SELECT * FROM t_order;
+----------------------+---

--+
| parsed_statement | parsed_statement_detail

|
+----------------------+---

--+
| MySQLSelectStatement | {"projections":{"startIndex":7,"stopIndex":7,"projections
":[{"startIndex":7,"stopIndex":7}],"distinctRow":false},"from":{"tableName":{
"startIndex":14,"stopIndex":20,"identifier":{"value":"t_order","quoteCharacter":
"NONE"}}},"parameterCount":0,"parameterMarkerSegments":[],"commentSegments":[]} |
+----------------------+---

--+
1 row in set (0.01 sec)

9.2. ShardingSphere-Proxy 339

Apache ShardingSphere document

Reserved word

PARSE

Related links

• Reserved word

FORMAT SQL

Description

The FORMAT SQL syntax is used to parse SQL and output formatted SQL statement.

Syntax

ParseSql ::=
'FORMAT' sqlStatement

Return Value Description

Column Description

formatted_result formatted SQL statement

Example

• Parse SQL and output formatted SQL statement

FORMAT SELECT * FROM t_order;

mysql> FORMAT SELECT * FROM t_order;
+-------------------------+
| formatted_result |
+-------------------------+
| SELECT *
FROM t_order; |
+-------------------------+
1 row in set (0.00 sec)

9.2. ShardingSphere-Proxy 340

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Reserved word

FORMAT

Related links

• Reserved word

PREVIEW SQL

Description

The PREVIEW SQL syntax is used to preview SQL execution plan.

Syntax

PreviewSql ::=
'PREVIEW' sqlStatement

Return Value Description

Column Description

data_source_name storage unit name
actual_sql actual excute SQL statement

Example

• Preview SQL execution plan

PREVIEW SELECT * FROM t_order;

mysql> PREVIEW SELECT * FROM t_order;
+------------------+-----------------------+
| data_source_name | actual_sql |
+------------------+-----------------------+
| su_1 | SELECT * FROM t_order |
+------------------+-----------------------+
1 row in set (0.18 sec)

9.2. ShardingSphere-Proxy 341

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Reserved word

PREVIEW

Related links

• Reserved word

Reserved word

RDL

Basic ReservedWords

CREATE, ALTER, DROP, TABLE, RULE, TYPE, NAME, PROPERTIES, TRUE, FALSE, IF, NOT, EXISTS

Storage Unit Definition

ADD, RESOURCE, IF, EXISTS, HOST, PORT, DB, USER, PASSWORD, URL , IGNORE, SINGLE, TABLES

Rule Definition

Sharding

DEFAULT,SHARDING,BROADCAST,REFERENCE,DATABASE,STRATEGY,RULES,ALGORITHM ,DATAN-
ODES, DATABASE_STRATEGY, TABLE_STRATEGY, KEY_GENERATE_STRATEGY, RESOURCES, SHARD-
ING_COLUMN, KEY , GENERATOR, SHARDING_COLUMNS, KEY_GENERATOR, SHARDING_ALGORITHM,
COLUMN, AUDIT_STRATEGY , AUDITORS, ALLOW_HINT_DISABLE

Broadcast table

BROADCAST

Single Table

SET, DEFAULT, SINGLE, STORAGE, UNIT, RANDOM

9.2. ShardingSphere-Proxy 342

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/reserved-word/

Apache ShardingSphere document

Readwrite-Splitting

READWRITE_SPLITTING, WRITE_STORAGE_UNIT, READ_STORAGE_UNITS ,
AUTO_AWARE_RESOURCE

Encrypt

ENCRYPT, COLUMNS, CIPHER, ENCRYPT_ALGORITHM

Database Discovery

DB_DISCOVERY, STORAGE_UNITS, HEARTBEAT

Shadow

SHADOW, DEFAULT, SOURCE, SHADOW

MASK

MASK, COLUMNS

RQL

Basic ReservedWords

SHOW, COUNT, DEFAULT, RULE, RULES, TABLE, DATABASE, FROM, UNUSED, USED

Resource Definition

RESOURCES, UNUSED, USED

Rule Query

SHARDING

DEFAULT, SHARDING, BROADCAST, REFERENCE, STRATEGY, ALGORITHM, ALGORITHMS, AUDITORS ,
KEY, GENERATOR, GENERATORS, AUDITOR, AUDITORS, NODES

9.2. ShardingSphere-Proxy 343

Apache ShardingSphere document

Single Table

SINGLE, STORAGE, UNIT

Readwrite-Splitting

READWRITE_SPLITTING

Encrypt

ENCRYPT

Database Discovery

DB_DISCOVERY, TYPES, HEARTBEATS

Shadow

SHADOW, ALGORITHMS

MASK

MASK

RAL

ALTER, READWRITE_SPLITTING, RULE, RULES, FROM, ENABLE, DISABLE, SHOW, COMPUTE, NODES,
NODE , STATUS, LABEL, RELABEL, WITH, UNLABEL, AUTHORITY, TRANSACTION, SQL_PARSER, DE-
FAULT, TYPE , NAME, PROPERTIES, SQL_COMMENT_PARSE_ENABLE, PARSE_TREE_CACHE, INI-
TIAL_CAPACITY, MAXIMUM_SIZE , CONCURRENCY_LEVEL, SQL_STATEMENT_CACHE, TRAFFIC,
TRAFFIC_ALGORITHM, LOAD_BALANCER, CREATE , DATABASE_VALUE, TABLE_VALUE, CLEAR, MI-
GRATION, READ, WRITE, WORKER_THREAD, BATCH_SIZE , SHARDING_SIZE, STREAM_CHANNEL,
REGISTER, URL, UNREGISTER, UNITS, INTO, LIST, CHECK, BY , STOP, START, ROLLBACK, COMMIT,
INFO, MODE, DIST, VARIABLE, VARIABLES, WHERE, DROPSET , SET, HINT, SOURCE, ADD, SHARDING,
STORAGE, UNIT, USER, PASSWORD, REFRESH, METADATA, TABLE , DATABASE, GOVERNANCE, CENTER,
EXPORT, CONFIGURATION, TO, FILE, IMPORT, USED

9.2. ShardingSphere-Proxy 344

Apache ShardingSphere document

RUL

PARSE, FORMAT, PREVIEW

Supplement

• The above reserved words are not case‐sensitive

Usage

This chapter will introduce how to use DistSQL tomanage resources and rules in a distributed database.

Pre-work

Use MySQL as example, can replace to other databases.

1. Start the MySQL service;

2. Create to be registered MySQL databases;

3. Create role and user in MySQL with creation permission for ShardingSphere‐Proxy;

4. Start Zookeeper service;

5. Add mode and authentication configurations to server.yaml;

6. Start ShardingSphere‐Proxy;

7. Use SDK or terminal connect to ShardingSphere‐Proxy.

Create Logic Database

1. Create logic database

CREATE DATABASE foo_db;

2. Use newly created logic database

USE foo_db;

9.2. ShardingSphere-Proxy 345

Apache ShardingSphere document

Resource Operation

More details please see concentrate rule examples.

Rule Operation

More details please see concentrate rule examples.

Notice

1. Currently, DROP DATABASE will only remove the logical distributed database, not the
user’s actual database;

2. DROP TABLE will delete all logical fragmented tables and actual tables in the database;

3. CREATE DATABASE will only create a logical distributed database, so users need to
create actual databases in advance.

Sharding

Storage unit Operation

• Configure data source information

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

9.2. ShardingSphere-Proxy 346

Apache ShardingSphere document

Rule Operation

• Create sharding rule

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

• Create sharding table

CREATE TABLE `t_order` (
`order_id` int NOT NULL,
`user_id` int NOT NULL,
`status` varchar(45) DEFAULT NULL,
PRIMARY KEY (`order_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

• Drop sharding table

DROP TABLE t_order;

• Drop sharding rule

DROP SHARDING TABLE RULE t_order;

• Unregister storage unit

UNREGISTER STORAGE UNIT ds_0, ds_1;

• Drop distributed database

DROP DATABASE foo_db;

Readwrite_splitting

Storage unit Operation

REGISTER STORAGE UNIT write_ds (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),read_ds (
HOST="127.0.0.1",

9.2. ShardingSphere-Proxy 347

Apache ShardingSphere document

PORT=3307,
DB="ds_0",
USER="root",
PASSWORD="root"

);

Rule Operation

• Create readwrite_splitting rule

CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds),
TYPE(NAME="random")
);

• Alter readwrite_splitting rule

ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_STORAGE_UNIT=write_ds,
READ_STORAGE_UNITS(read_ds),
TYPE(NAME="random",PROPERTIES("read_weight"="2:0"))
);

• Drop readwrite_splitting rule

DROP READWRITE_SPLITTING RULE group_0;

• Unregister storage unit

UNREGISTER STORAGE UNIT write_ds,read_ds;

• Drop distributed database

DROP DATABASE readwrite_splitting_db;

Encrypt

Storage unit Operation

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",

9.2. ShardingSphere-Proxy 348

Apache ShardingSphere document

PASSWORD="root"
);

Rule Operation

• Create encrypt rule

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,CIPHER=user_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',
PROPERTIES('aes-key-value'='123456abc')))),

(NAME=order_id,CIPHER =order_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='RC4',
PROPERTIES('rc4-key-value'='123456abc'))))
));

• Create encrypt table

CREATE TABLE `t_encrypt` (
`id` int(11) NOT NULL,
`user_id` varchar(45) DEFAULT NULL,
`order_id` varchar(45) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

• Alter encrypt rule

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,CIPHER=user_cipher,ENCRYPT_ALGORITHM(TYPE(NAME='AES',
PROPERTIES('aes-key-value'='123456abc'))))
));

• Drop encrypt rule

DROP ENCRYPT RULE t_encrypt;

• Unregister storage unit

UNREGISTER STORAGE UNIT ds_0;

• Drop distributed database

DROP DATABASE encrypt_db;

9.2. ShardingSphere-Proxy 349

Apache ShardingSphere document

MASK

Storage unit Operation

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

);

Rule Operation

• Create mask rule

CREATE MASK RULE t_mask (
COLUMNS(

(NAME=phone_number,TYPE(NAME='MASK_FROM_X_TO_Y', PROPERTIES("from-x"=1,
"to-y"=2, "replace-char"="*"))),

(NAME=address,TYPE(NAME='MD5'))
));

• Create mask table

CREATE TABLE `t_mask` (
`id` int(11) NOT NULL,
`user_id` varchar(45) DEFAULT NULL,
`phone_number` varchar(45) DEFAULT NULL,
`address` varchar(45) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

• Alter mask rule

ALTER MASK RULE t_mask (
COLUMNS(

(NAME=user_id,TYPE(NAME='MD5'))
));

• Drop mask rule

DROP MASK RULE t_mask;

• Unregister storage unit

9.2. ShardingSphere-Proxy 350

Apache ShardingSphere document

UNREGISTER STORAGE UNIT ds_0;

• Drop distributed database

DROP DATABASE mask_db;

Shadow

Storage unit Operation

REGISTER STORAGE UNIT ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

Rule Operation

• Create shadow rule

CREATE SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_1,
t_order(TYPE(NAME="SQL_HINT"),TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"=
"insert","column"="user_id", "regex"='[1]'))),
t_order_item(TYPE(NAME="SQL_HINT")));

• Alter shadow rule

ALTER SHADOW RULE group_0(
SOURCE=ds_0,

9.2. ShardingSphere-Proxy 351

Apache ShardingSphere document

SHADOW=ds_2,
t_order_item(TYPE(NAME="SQL_HINT")));

• Drop shadow rule

DROP SHADOW RULE group_0;

• Unregister storage unit

UNREGISTER STORAGE UNIT ds_0,ds_1,ds_2;

• Drop distributed database

DROP DATABASE foo_db;

9.2.4 Data Migration

Introduction

ShardingSphere provides solution of migrating data since 4.1.0.

Build

Background

For systems running on a single database that urgently need to securely and simply migrate data to a
horizontally sharded database.

Prerequisites

• Proxy is developed in JAVA, and JDK version 1.8 or later is recommended.

• Data migration adopts the cluster mode, and ZooKeeper is currently supported as the registry.

Procedure

1. Get ShardingSphere‐Proxy. Please refer to proxy startup guide for details.

2. Modify the configuration file conf/server.yaml. Please refer to mode configuration for de‐
tails.

Currently, modemust be Cluster, and the corresponding registry must be started in advance.

Configuration sample:

9.2. ShardingSphere-Proxy 352

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/

Apache ShardingSphere document

mode:
type: Cluster
repository:
type: ZooKeeper
props:

namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

3. Introduce JDBC driver.

Proxy has included JDBC driver of PostgreSQL.

If the backend is connected to the following databases, download the corresponding JDBC driver jar
package and put it into the ${shardingsphere-proxy}/ext-lib directory.

DatabaseJDBC Driver Reference

MySQL ˋmysql‐co nnector‐java‐5.1.49.jar < https://repo1.maven.org/m
aven2/mysql/mysql‐connect or‐java/5.1.49/mysql‐conn ector‐java‐
5.1.49.jar>ˋ__

Con‐
nector/J
Versions

open‐
Gauss

opengauss‐jdbc‐3.0.0 .jar

If you aremigrating to a heterogeneous database, then you could usemore types of database. Introduce
JDBC driver as above too.

4. Start ShardingSphere‐Proxy:

sh bin/start.sh

5. View the proxy log logs/stdout.log. If you see the following statements:

[INFO] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy start
success

The startup will have been successful.

6. Configure and migrate on demand.

6.1. Query configuration.

SHOW MIGRATION RULE;

The default configuration is as follows.

+--+-------------------
-------------------+---+

9.2. ShardingSphere-Proxy 353

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/3.0.0/opengauss-jdbc-3.0.0.jar

Apache ShardingSphere document

| read | write
| stream_channel |

+--+-------------------
-------------------+---+
| {"workerThread":20,"batchSize":1000,"shardingSize":10000000} | {"workerThread
":20,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} |
+--+-------------------
-------------------+---+

6.2. Alter configuration (Optional).

Since the migration rule has default values, there is no need to create it, only the ALTER statement is
provided.

A completely configured DistSQL is as follows.

ALTER MIGRATION RULE (
READ(

WORKER_THREAD=20,
BATCH_SIZE=1000,
SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))

),
WRITE(

WORKER_THREAD=20,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))

),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='2000')))
);

Configuration item description:

ALTER MIGRATION RULE (
READ(-- Data reading configuration. If it is not configured, part of the
parameters will take effect by default.

WORKER_THREAD=20, -- Obtain the thread pool size of all the data from the source
side. If it is not configured, the default value is used.

BATCH_SIZE=1000, -- The maximum number of records returned by a query operation.
If it is not configured, the default value is used.

SHARDING_SIZE=10000000, -- Sharding size of all the data. If it is not
configured, the default value is used.

RATE_LIMITER (-- Traffic limit algorithm. If it is not configured, traffic is
not limited.

TYPE(-- Algorithm type. Option: QPS
NAME='QPS',
PROPERTIES(-- Algorithm property
'qps'='500'
)))

9.2. ShardingSphere-Proxy 354

Apache ShardingSphere document

),
WRITE(-- Data writing configuration. If it is not configured, part of the
parameters will take effect by default.

WORKER_THREAD=20, -- The size of the thread pool on which data is written into
the target side. If it is not configured, the default value is used.

BATCH_SIZE=1000, -- The maximum number of records for a batch write operation. If
it is not configured, the default value is used.

RATE_LIMITER (-- Traffic limit algorithm. If it is not configured, traffic is
not limited.

TYPE(-- Algorithm type. Option: TPS
NAME='TPS',
PROPERTIES(-- Algorithm property.
'tps'='2000'
)))

),
STREAM_CHANNEL (-- Data channel. It connects producers and consumers, used for
reading and writing procedures. If it is not configured, the MEMORY type is used by
default.
TYPE(-- Algorithm type. Option: MEMORY
NAME='MEMORY',
PROPERTIES(-- Algorithm property
'block-queue-size'='2000' -- Property: blocking queue size.
)))
);

DistSQL sample: configure READ for traffic limit.

ALTER MIGRATION RULE (
READ(

RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
)
);

Configure data reading for traffic limit. Other configurations use default values.

6.3. Restore configuration.

To restore the default configuration, also through the ALTER statement.

ALTER MIGRATION RULE (
READ(

WORKER_THREAD=20,
BATCH_SIZE=1000,
SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))

),
WRITE(

WORKER_THREAD=20,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))

9.2. ShardingSphere-Proxy 355

Apache ShardingSphere document

),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='2000')))
);

Manual

MySQL user guide

Environment

Supported MySQL versions: 5.1.15 to 8.0.x.

Authority required

1. Enable binlog in source

MySQL 5.7 my.cnf configuration sample:

[mysqld]
server-id=1
log-bin=mysql-bin
binlog-format=row
binlog-row-image=full
max_connections=600

Run the following command and check whether binlog is enabled.

show variables like '%log_bin%';
show variables like '%binlog%';

If the following information is displayed, binlog is enabled.

+---+---------------------------------------+
| Variable_name | Value |
+---+---------------------------------------+
log_bin	ON
binlog_format	ROW
binlog_row_image	FULL
+---+---------------------------------------+

2. Grant Replication‐related permissions for source MySQL account.

Run the following command to check whether the user has migration permission.

SHOW GRANTS FOR 'migration_user';

Result sample:

9.2. ShardingSphere-Proxy 356

Apache ShardingSphere document

+--+
|Grants for ${username}@${host} |
+--+
|GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO ${username}@${host} |
|....... |
+--+

3. Grant DDL DML permissions for MySQL account

Source MySQL account needs SELECT permission. Example:

GRANT SELECT ON migration_ds_0.* TO `migration_user`@`%`;

Target MySQL account needs part of DDL and all DML permissions. Example:

GRANT CREATE, DROP, INDEX, SELECT, INSERT, UPDATE, DELETE ON *.* TO `migration_
user`@`%`;

Please refer to MySQL GRANT

Complete procedure example

Requirements

1. Prepare the source database, table, and data in MySQL.

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0 DEFAULT CHARSET utf8;

USE migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in MySQL.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12 DEFAULT CHARSET utf8;

9.2. ShardingSphere-Proxy 357

https://dev.mysql.com/doc/refman/8.0/en/grant.html

Apache ShardingSphere document

Procedure

1. Create a new logical database in proxy and configure storage units and rules.

CREATE DATABASE sharding_db;

USE sharding_db

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_10?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_11?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_12?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‐creation statements in
proxy.

2. Configure the source storage units in proxy.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Start data migration.

9.2. ShardingSphere-Proxy 358

Apache ShardingSphere document

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | job_item_count | active |
create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. View the data migration details.

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Result example:

+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. Verify data consistency.

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6' BY TYPE (NAME='CRC32_MATCH
');

Data consistency check algorithm list:

SHOW MIGRATION CHECK ALGORITHMS;

Result example:

9.2. ShardingSphere-Proxy 359

Apache ShardingSphere document

+-------------+--+-----
-----------------------+
| type | supported_database_types |
description |
+-------------+--+-----
-----------------------+
| CRC32_MATCH | MySQL |
Match CRC32 of records. |
| DATA_MATCH | SQL92,MySQL,MariaDB,PostgreSQL,openGauss,Oracle,SQLServer,H2 |
Match raw data of records. |
+-------------+--+-----
-----------------------+

If encrypt rule is configured in target proxy, then DATA_MATCH could be used.

If you are migrating to a heterogeneous database, then DATA_MATCH could be used.

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Result example:

+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. Commit the job.

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Please refer to RAL#Migration for more details.

PostgreSQL user guide

Environment

Supported PostgreSQL version: 9.4 or later.

9.2. ShardingSphere-Proxy 360

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration

Apache ShardingSphere document

Authority required

1. Enable test_decoding in source.

2. Modify WAL configuration in source.

postgresql.conf configuration sample:

wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

Please refer to Write Ahead Log and Replication for details.

3. Grant replication permission for source PostgreSQL account.

pg_hba.conf instance configuration:

host replication repl_acct 0.0.0.0/0 md5

Please refer to The pg_hba.conf File for details.

4. Grant DDL DML permissions for PostgreSQL account.

If you are using a non‐super admin account for migration, you need to GRANT CREATE and CONNECT
privileges on the database used for migration.

GRANT CREATE, CONNECT ON DATABASE migration_ds_0 TO migration_user;

The account also needs to have access to the migrated tables and schema. Take the t_order table under
test schema as an example.

\c migration_ds_0

GRANT USAGE ON SCHEMA test TO GROUP migration_user;
GRANT SELECT ON TABLE test.t_order TO migration_user;

PostgreSQL has the concept of OWNER, and if the account is the OWNER of a database, SCHEMA, or
table, the relevant steps can be omitted.

Please refer to PostgreSQL GRANT

9.2. ShardingSphere-Proxy 361

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html
https://www.postgresql.org/docs/9.6/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/sql-grant.html

Apache ShardingSphere document

Complete procedure example

Requirements

1. Prepare the source database, table, and data in PostgreSQL.

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in PostgreSQL.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

Procedure

1. Create a new logical database in proxy and configure storage units and rules.

CREATE DATABASE sharding_db;

\c sharding_db

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_10",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_11",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_12",

9.2. ShardingSphere-Proxy 362

Apache ShardingSphere document

USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‐creation statements in
proxy.

2. Configure the source storage units in proxy.

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_0",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Enable data migration.

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema name.

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | job_item_count | active |
create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |

9.2. ShardingSphere-Proxy 363

Apache ShardingSphere document

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. View the data migration details.

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Result example:

+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. Verify data consistency.

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Result example:

+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. Commit the job.

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Please refer to RAL#Migration for more details.

9.2. ShardingSphere-Proxy 364

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration

Apache ShardingSphere document

openGauss user guide

Environment

Supported openGauss version: 2.0.1 to 3.0.0.

Authority required

1. Modify WAL configuration in source.

postgresql.conf configuration sample:

wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

Please refer to Write Ahead Log and Replication for details.

2. Grant replication permission for source openGauss account.

pg_hba.conf instance configuration:

host replication repl_acct 0.0.0.0/0 md5

Please refer to Configuring Client Access Authentication and Example: Logic Replication Code for de‐
tails.

3. Grant DDL DML permissions for openGauss account.

If you are using a non‐super admin account for migration, you need to GRANT CREATE and CONNECT
privileges on the database used for migration.

GRANT CREATE, CONNECT ON DATABASE migration_ds_0 TO migration_user;

The account also needs to have access to the migrated tables and schema. Take the t_order table under
test schema as an example.

\c migration_ds_0

GRANT USAGE ON SCHEMA test TO GROUP migration_user;
GRANT SELECT ON TABLE test.t_order TO migration_user;

openGauss has the concept of OWNER, and if the account is the OWNER of a database, SCHEMA, or
table, the relevant steps can be omitted.

openGauss does not allow normal accounts to operate in public schema, so if the migrated table is in
public schema, you need to authorize additional.

Please refer to openGauss GRANT

9.2. ShardingSphere-Proxy 365

https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/settings.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/sending-server.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/configuring-client-access-authentication.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html
https://docs.opengauss.org/en/docs/2.0.1/docs/Developerguide/grant.html

Apache ShardingSphere document

GRANT ALL PRIVILEGES TO migration_user;

Complete procedure example

Requirements

1. Prepare the source database, table, and data.

1.1. Isomorphic database.

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

1.2. Heterogeneous database.

MySQL example:

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0 DEFAULT CHARSET utf8;

USE migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in openGauss.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

9.2. ShardingSphere-Proxy 366

Apache ShardingSphere document

Procedure

1. Create a new logical database and configure storage units and rules.

1.1. Create logic database.

CREATE DATABASE sharding_db;

\c sharding_db

1.2. Register storage units.

REGISTER STORAGE UNIT ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_10",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_11",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_12",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

1.3. Create sharding table rule.

CREATE SHARDING TABLE RULE t_order(
STORAGE_UNITS(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

1.4. Create target table.

If you are migrating to a heterogeneous database, you need to execute the table‐creation statements in
proxy.

MySQL example:

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

2. Configure the source storage units in proxy.

2.1. Isomorphic database.

9.2. ShardingSphere-Proxy 367

Apache ShardingSphere document

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_0",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

2.2. Heterogeneous database.

MySQL example:

REGISTER MIGRATION SOURCE STORAGE UNIT ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Enable data migration.

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema name.

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | job_item_count | active |
create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. View the data migration details.

9.2. ShardingSphere-Proxy 368

Apache ShardingSphere document

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Result example:

+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. Verify data consistency.

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Result example:

+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. Commit the job.

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

Please refer to RAL#Migration for more details.

9.2. ShardingSphere-Proxy 369

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration

Apache ShardingSphere document

9.2.5 Observability

Agent

Compile source code

Download Apache ShardingSphere from GitHub,Then compile.

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Dspotbugs.
skip=true -Drat.skip=true -Djacoco.skip=true -DskipITs -DskipTests -Prelease

Artifact is distribution/agent/target/apache‐shardingsphere‐${latest.release.version}‐shardingsphere‐
agent‐bin.tar.gz

Directory structure

Create agent directory, and unzip agent distribution package to the directory.

mkdir agent
tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin.
tar.gz -C agent
cd agent
tree
├── LICENSE
├── NOTICE
├── conf
│ └── agent.yaml
├── plugins
│ ├── lib
│ │ ├── shardingsphere-agent-metrics-core-${latest.release.version}.jar
│ │ └── shardingsphere-agent-plugin-core-${latest.release.version}.jar
│ ├── logging
│ │ └── shardingsphere-agent-logging-file-${latest.release.version}.jar
│ ├── metrics
│ │ └── shardingsphere-agent-metrics-prometheus-${latest.release.version}.jar
│ └── tracing
│ ├── shardingsphere-agent-tracing-opentelemetry-${latest.release.version}.jar
└── shardingsphere-agent-${latest.release.version}.jar

Agent log output location is agent/logs/stdout.log.

9.2. ShardingSphere-Proxy 370

Apache ShardingSphere document

Configuration

conf/agent.yaml is used to manage agent configuration. Built‐in plugins include File, Prometheus,
OpenTelemetry.

plugins:
logging:
File:
props:
level: "INFO"
metrics:
Prometheus:
host: "localhost"
port: 9090
props:
jvm-information-collector-enabled: "true"
tracing:
OpenTelemetry:
props:
otel.service.name: "shardingsphere"
otel.traces.exporter: "jaeger"
otel.exporter.otlp.traces.endpoint: "http://localhost:14250"
otel.traces.sampler: "always_on"

Plugin description

File

Currently, the File plugin only outputs the time‐consuming log output of buildingmetadata, and has no
other log output for the time being.

Prometheus

Used for exposure monitoring metrics.

• Parameter description

Name Description

host host IP
port port
jvm‐i nformation‐collector‐enabled whether to collect JVM indicator information

9.2. ShardingSphere-Proxy 371

Apache ShardingSphere document

OpenTelemetry

OpenTelemetry can export tracing data to Jaeger, Zipkin.

• Parameter description

Name Description

otel.service.name service name
otel.traces.exporter traces exporter
otel.exporter.otlp.traces.endpoint traces endpoint
otel.traces.sampler traces sampler

Parameter reference OpenTelemetry SDK Autoconfigure

Usage in ShardingSphere-Proxy

Using via a non-container environment

• Edit the startup script

Configure the absolute path of shardingsphere‐agent‐${latest.release.version}.jar to the start.sh startup
script of shardingsphere proxy.

nohup java ${JAVA_OPTS} ${JAVA_MEM_OPTS} \
-javaagent:/xxxxx/agent/shardingsphere-agent-${latest.release.version}.jar \
-classpath ${CLASS_PATH} ${MAIN_CLASS} >> ${STDOUT_FILE} 2>&1 &

• Start ShardingSphere‐Proxy

bin/start.sh

After startup, you can find the plugin info in the log of ShardingSphere‐Proxy, Metric and Tracing
data can be viewed through the configured monitoring address.

Use via container environment

• Assume that the following corresponding configurations have been completed locally.

– Folder ./custom/agent/ that contains all files after unpacking ShardingSphere‐Agent bi‐
nary package

– The folder containing the configuration files of ShardingSphere‐Proxy such as server.
yaml is ./custom/conf/

• At this point, the use of ShardingSphere‐Agent can be configured through the environment vari‐
able JVM_OPT. Taking starting in the Docker Compose environment as an example, a reasonable
docker-compose.yml example is as follows.

9.2. ShardingSphere-Proxy 372

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure

Apache ShardingSphere document

version: "3.8"

services:
apache-shardingsphere-proxy:
image: apache/shardingsphere-proxy:latest
environment:

JVM_OPTS: "-javaagent:/agent/shardingsphere-agent-${latest.release.version}.
jar"

PORT: 3308
volumes:

- ./custom/agent:/agent/
- ./custom/conf:/opt/shardingsphere-proxy/conf/

ports:
- "13308:3308"

Metrics

Name T y p e Description

b uild_info G A U G
E

Build information

parsed_
sql_total

C O U N
T E R

Total count of parsed by type (INSERT, UPDATE, DELETE, SELECT,
DDL, DCL, DAL, TCL, RQL, RDL, RAL, RUL)

routed_
sql_total

C O U N
T E R

Total count of routed by type (INSERT, UPDATE, DELETE, SELECT)

r outed_res
ult_total

C O U N
T E R

Total count of routed result (data source routed, table routed)

pr oxy_state G A U G
E

Status information of ShardingSphere‐Proxy. 0 is OK; 1 is CIRCUIT
BREAK; 2 is LOCK

pr oxy_meta_
data_info

G A U G
E

Meta data information of ShardingSphere‐Proxy. database_count is
logic number of databases; storage_unit_count is number of storage
units

proxy_c ur‐
rent_co nnec‐
tions

G A U G
E

Current connections of ShardingSphere‐Proxy

pr oxy_reque
sts_total

C O U N
T E R

Total requests of ShardingSphere‐Proxy

proxy_ trans‐
acti ons_total

C O U N
T E R

Total transactions of ShardingSphere‐Proxy, classify by commit, roll‐
back

p roxy_exec
ute_laten
cy_millis

H I S T O
G R AM

Execute latency millis histogram of ShardingSphere‐Proxy

proxy_ex
ecute_err
ors_total

C O U N
T E R

Total executor errors of ShardingSphere‐Proxy

9.2. ShardingSphere-Proxy 373

Apache ShardingSphere document

9.2.6 Optional Plugins

ShardingSphere only includes the implementation of the core SPI by default, and there is a part of
the SPI that contains third‐party dependencies in Git Source Implemented plugins are not included.
Retrievable at https://central.sonatype.com/.

SPI and existing implementation classes of SPI corresponding to all plugins can be retrieved at https:
//shardingsphere.apache.org/document/current/cn/dev‐manual/.

All the built‐in plugins for ShardingSphere‐Proxy are listed below in the form of‘groupId:artifactId’.
• org.apache.shardingsphere:shardingsphere-cluster-mode-repository-etcd,
etcd implementation of persistent definition of cluster mode configuration information

• org.apache.shardingsphere:shardingsphere-cluster-mode-repository-zookeeper,
the zookeeper implementation of the persistent definition of cluster mode configuration infor‐
mation

• org.apache.shardingsphere:shardingsphere-jdbc-core, JDBC core

• org.apache.shardingsphere:shardingsphere-db-protocol-core, database protocol
core

• org.apache.shardingsphere:shardingsphere-mysql-protocol, the MySQL imple‐
mentation of the database protocol

• org.apache.shardingsphere:shardingsphere-postgresql-protocol, the Post‐
greSQL implementation of the database protocol

• org.apache.shardingsphere:shardingsphere-opengauss-protocol, the OpenGauss
implementation of the database protocol

• org.apache.shardingsphere:shardingsphere-proxy-frontend-core, used by
ShardingSphere‐Proxy to parse and adapt the protocol for accessing the database

• org.apache.shardingsphere:shardingsphere-proxy-frontend-mysql, a MySQL im‐
plementation for ShardingSphere‐Proxy toparse andadapt theprotocol for accessing thedatabase

• org.apache.shardingsphere:shardingsphere-proxy-frontend-postgresql, a
PostgreSQL implementation for ShardingSphere‐Proxy to parse and adapt the protocol for
accessing the database

• org.apache.shardingsphere:shardingsphere-proxy-frontend-opengauss, an
openGauss implementation for ShardingSphere‐Proxy to parse and adapt the protocol for
accessing the database

• org.apache.shardingsphere:shardingsphere-proxy-backend-core, the backend
core for ShardingSphere Proxy

• org.apache.shardingsphere:shardingsphere-standalone-mode-core, the persis‐
tence definition core of single‐machine mode configuration information

For the core org.apache.shardingsphere:shardingsphere-jdbc-core,Its built‐in plugins
referenceShardingSphere‐JDBC Optional Plugins.

9.2. ShardingSphere-Proxy 374

https://central.sonatype.com/
https://shardingsphere.apache.org/document/current/cn/dev-manual/
https://shardingsphere.apache.org/document/current/cn/dev-manual/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/optional-plugins/

Apache ShardingSphere document

If ShardingSphere Proxy needs to use optional plugins, you need to download the JAR containing its SPI
implementation and its dependent JARs fromMaven Central.

All optional plugins are listed below in the form of groupId:artifactId.

• Standalone mode configuration information persistence definition

– org.apache.shardingsphere:shardingsphere-standalone-mode-repository-jdbc,
JDBC based persistence

• Cluster mode configuration information persistence definition

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-nacos,
Nacos based persistence

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-consul,
Consul based persistence

• XA transaction manager provider definition

– org.apache.shardingsphere:shardingsphere-transaction-xa-narayana, XA
distributed transaction manager based on Narayana

• SQL translator

– org.apache.shardingsphere:shardingsphere-sql-translator-jooq-provider,
JooQ SQL translator

9.2.7 Session Management

ShardingSphere supports session management. You can view the current session or kill the session
through the SQL of the native database. At present, this function is only available when the storage
node is MySQL. MySQL SHOW PROCESSLIST and KILL commands are supported.

Usage

View Session

Different methods of viewing sessions are supported for different associated databases. The SHOW
PROCESSLIST command can be used to view sessions for associated MySQL databases. Sharding‐
Sphere will automatically generate a unique UUID ID as the ID, and store the SQL execution informa‐
tion in each instance. When this command is executed, ShardingSphere will collect and synchronize
the SQL execution information of each computing node through the governance center, and then sum‐
marize and return it to the user.

mysql> show processlist;
+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+
| Id | User | Host | db | Command |
Time | State | Info |
+----------------------------------+------+-----------+-------------+---------+----

9.2. ShardingSphere-Proxy 375

Apache ShardingSphere document

--+---------------+------------------+
| 05ede3bd584fd4a429dcaac382be2973 | root | 127.0.0.1 | sharding_db | Execute | 2
| Executing 0/1 | select sleep(10) |

| f9e5c97431567415fe10badc5fa46378 | root | 127.0.0.1 | sharding_db | Sleep | 690
| | |

+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+

• Output Description

Simulates the output of native MySQL, but the Id field is a special random string.

Kill Session

The user determines whether the KILL statement needs to be executed according to the results re‐
turned by SHOW PROCESSLIST. ShardingSphere cancels the SQL being executed according to the ID
in the KILL statement.

mysql> kill 05ede3bd584fd4a429dcaac382be2973;
Query OK, 0 rows affected (0.04 sec)

mysql> show processlist;
Empty set (0.02 sec)

9.2.8 Logging Configuration

Background

ShardingSphere uses Logback for log management, and the Java SPI internally to provide default log
configuration. Users can use XML files to configure customized log output. Proxy will preferentially
read the log configuration provided in logback.xml in the /conf directory.

The following steps describe how to customize the log configuration.

Procedure

1. Create file conf/logback.xml

Customize the logger level and pattern, etc. according to your needs. > It is recommended to make
modifications based on the configuration example

2. View logs

After ShardingSphere‐Proxy starts, the log will be output to the logs directory, select the target log file
to view.

9.2. ShardingSphere-Proxy 376

Apache ShardingSphere document

Sample

<?xml version="1.0"?>
<!--

~ Licensed to the Apache Software Foundation (ASF) under one or more
~ contributor license agreements. See the NOTICE file distributed with
~ this work for additional information regarding copyright ownership.
~ The ASF licenses this file to You under the Apache License, Version 2.0
~ (the "License"); you may not use this file except in compliance with
~ the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing, software
~ distributed under the License is distributed on an "AS IS" BASIS,
~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
~ See the License for the specific language governing permissions and
~ limitations under the License.
-->

<configuration>
<appender name="console" class="ch.qos.logback.core.ConsoleAppender">

<encoder>
<pattern>[%-5level] %d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %logger{36} -

%msg%n</pattern>
</encoder>

</appender>
<logger name="org.apache.shardingsphere" level="info" additivity="false">

<appender-ref ref="console" />
</logger>

<logger name="com.zaxxer.hikari" level="error" />

<logger name="com.atomikos" level="error" />

<logger name="io.netty" level="error" />

<root>
<level value="info" />
<appender-ref ref="console" />

</root>
</configuration>

9.2. ShardingSphere-Proxy 377

Apache ShardingSphere document

9.3 Common Configuration

This chapter mainly introduces general configuration, including property configuration and built‐in
algorithm configuration.

9.3.1 Properties Configuration

Background

Apache ShardingSphere provides the way of property configuration to configure system level configu‐
ration.

9.3. Common Configuration 378

Apache ShardingSphere document

Parameters

•
Name*

•
D a t a T y p e *

Description •
D e f a u l t V a l u e *

sql ‐show (?) b o o l e a n Whether show SQL
or not in log. Print
SQL details can help
developers debug
easier. The log details
include: logic SQL,
actual SQL and SQL
parse result. Enable
this property will log
into log topic Shard-
ingSphere-SQL, log
level is INFO

f a l s e

sql‐s imple (?) b o o l e a n Whether show SQL de‐
tails in simple style

f a l s e

kerne l‐exe cutor ‐size
(?)

i n t The max thread size
of worker group to
execute SQL. One
ShardingSphereData‐
Source will use a
independent thread
pool, it does not share
thread pool even dif‐
ferent data source in
same JVM

i n f i n i t e

max‐c onnec tions ‐
size ‐per‐ query (?)

i n t Max opened connec‐
tion size for each
query

1

che ck‐ta ble‐m etada
ta‐en abled (?)

b o o l e a n Whether validate table
meta data consistency
when application
startup or updated

f a l s e

9.3. Common Configuration 379

Apache ShardingSphere document

Procedure

1. Properties configuration is directly configured in the profile used by ShardingSphere‐JDBC. The
format is as follows:

props:
sql-show: true

Sample

The example of ShardingSphere warehouse contains property configurations of various scenarios.
Please refer to: https://github.com/apache/shardingsphere/tree/master/examples

9.3.2 Builtin Algorithm

Introduction

Apache ShardingSphere allows developers to implement algorithms via SPI; At the same time, Apache
ShardingSphere also provides a couple of builtin algorithms for simplify developers.

Usage

The builtin algorithms are configured by type and props. Type is defined by the algorithm in SPI, and
props is used to deliver the customized parameters of the algorithm.

No matter which configuration type is used, the configured algorithm is named and passed to the cor‐
responding rule configuration. This chapter distinguishes and lists all the builtin algorithms of Apache
ShardingSphere according to its functions for developers’reference.

Metadata Repository

Background

Apache ShardingSphere provides differentmetadata persistencemethods for different runningmodes.
Users can freely choose the most appropriate way to store metadata while configuring the running
mode.

9.3. Common Configuration 380

https://github.com/apache/shardingsphere/tree/master/examples

Apache ShardingSphere document

Parameters

Database Repository

Type: JDBC

Mode: Standalone

Attributes:

•
N am e *

•
T y p e *

Description Default Value

p r o v i d e r S t r i n g Type for metadata per‐
sist, the optional value
is H2, MySQL

H2

j d b c _ u r l S t r i n g JDBC URL j d bc : h2 : m
em:config;DB_CLOSE_DELAY=‐
1;DAT
ABASE_TO_UPPER=false;MODE=MYSQL

u s e r n a m e S t r i n g username sa
p a s s w o r d S t r i n g password

ZooKeeper Repository

Type: ZooKeeper

Mode: Cluster

Attributes:

Name Type Description Default Value

retryInte rvalMilliseconds int Milliseconds of retry interval 500
maxRetries int Max retries of client connection 3
t imeToLiveSeconds int Seconds of ephemeral data live 60
operationTim eoutMilliseconds int Milliseconds of operation timeout 500
digest String Password of login

Etcd Repository

Type: Etcd

Mode: Cluster

Attributes:

9.3. Common Configuration 381

jdbc:h2:m

Apache ShardingSphere document

Name Type Description Default Value

timeToLiveSeconds long Seconds of ephemeral data live 30
connectionTimeout long Seconds of connection timeout 30

Nacos Repository

Type: Nacos

Mode: Cluster

Attributes:

Name Type Description Default Value

clusterIp String Unique identifier in cluster Host IP
retryInte rvalMilliseconds long Milliseconds of retry interval 500
maxRetries int Max retries for client to check data availability 3
t imeToLiveSeconds int Seconds of ephemeral instance live 30

Consul Repository

Type: Consul

Mode: Cluster

Attributes:

Name Type Description Default Value

t imeToLiveSeconds String Seconds of ephemeral instance live 30s
blockQu eryTimeToSeconds long Seconds of query timeout 60

Procedure

1. Configure running mode in server.yaml.

2. Configure metadata persistence warehouse type.

Sample

• Standalone mode configuration method.

mode:
type: Standalone
repository:
type: JDBC
props:

9.3. Common Configuration 382

Apache ShardingSphere document

provider: H2
jdbc_url: jdbc:h2:mem:config;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;

MODE=MYSQL
username: test
password: Test@123

• Cluster mode.

mode:
type: Cluster
repository:
type: zookeeper
props:

namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

Sharding Algorithm

Background

ShardingSphere built‐in algorithms provide a variety of sharding algorithms, which can be divided into
automatic sharding algorithms, standard sharding algorithms, composite sharding algorithms, andhint
sharding algorithms, and can meet the needs of most business scenarios of users.

Additionally, considering the complexity of business scenarios, the built‐in algorithm also provides a
way to customize the sharding algorithm. Users can complete complex sharding logic by writing java
code.

It should be noted that the sharding logic of the automatic sharding algorithm is automaticallymanaged
by ShardingSphere and needs to be used by configuring the autoTables sharding rules.

Parameters

Auto Sharding Algorithm

Modulo Sharding Algorithm

Type: MOD

Attributes:

Name DataType Description

sharding‐count int Sharding count

9.3. Common Configuration 383

Apache ShardingSphere document

Hash Modulo Sharding Algorithm

Type: HASH_MOD

Attributes:

Name DataType Description

sharding‐count int Sharding count

Volume Based Range Sharding Algorithm

Type: VOLUME_RANGE

Attributes:

Name DataType Description

range‐lower long Range lower bound, throw exception if lower than bound
range‐upper long Range upper bound, throw exception if upper than bound
sharding‐volume long Sharding volume

Boundary Based Range Sharding Algorithm

Type: BOUNDARY_RANGE

Attributes:

Name Dat
aType

Description

shardi ng‐
ranges

String Rangeof shardingborder,multiple boundaries separatedby commas

Auto Interval Sharding Algorithm

Type: AUTO_INTERVAL

Attributes:

9.3. Common Configuration 384

Apache ShardingSphere document

Name •
D a t a T y p e *

Description

da tet ime ‐lo wer S t r i n g Shard datetime begin bound‐
ary, pattern: yyyy‐MM‐dd
HH:mm:ss

da tet ime ‐up per S t r i n g Shard datetime end bound‐
ary, pattern: yyyy‐MM‐dd
HH:mm:ss

s har din g‐s eco nds l o n g Max seconds for the data in
one shard, allows sharding
key timestamp format seconds
with time precision, but time
precision after seconds is auto‐
matically erased

Standard Sharding Algorithm

Apache ShardingSphere built‐in standard sharding algorithm are:

Inline Sharding Algorithm

With Groovy expressions, InlineShardingStrategy provides single‐key support for the sharding
operation of = and IN in SQL. Simple sharding algorithms can be used through a simple configuration
to avoid laborious Java code developments. For example, t_user_$->{u_id % 8}means table t_user
is divided into 8 tables according to u_id, with table names from t_user_0 to t_user_7. Please refer
to Inline Expression for more details.

Type: INLINE

Attributes:

Name •
D a t a T y p e *

Description D efa ult Val ue

algori thm‐expression S t r i n g Inline expression
sharding algorithm

•

allow‐rang e‐query‐
with‐i nline‐sharding
(?)

b o o l e a n Whether range query
is allowed. Note:
range query will ig‐
nore sharding strategy
and conduct full rout‐
ing

fa lse

9.3. Common Configuration 385

https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/#implementation-classes

Apache ShardingSphere document

Interval Sharding Algorithm

This algorithm actively ignores the time zone information of datetime-pattern. This means that
when datetime-lower, datetime-upper and the incoming shard key contain time zone informa‐
tion, time zone conversion will not occur due to time zone inconsistencies. When the incoming shard‐
ing key is java.time.Instant, there is a special case, which will carry the time zone information of
the system and convert it into the string format of datetime-pattern, and then proceed to the next
sharding.

Type: INTERVAL

Attributes:

9.3. Common Configuration 386

Apache ShardingSphere document

N ame •
D a t a T y p e *

Description •
D e f a u l t V a l u e *

date time ‐pat tern S t r i n g Timestamp pattern
of sharding value,
must can be trans‐
formed to Java Lo‐
calDateTime. For
example: yyyy‐MM‐dd
HH:mm:ss, yyyy‐
MM‐dd or HH:mm:ss
etc. But Gy‐MM etc.
related to java.
time.chrono.
JapaneseDate are
not supported

•

da teti me‐l ower S t r i n g Datetime sharding
lower boundary,
pattern is defined
datetime-pattern

•

da teti me‐u pper (?) S t r i n g Datetime sharding
upper boundary,
pattern is defined
datetime-pattern

N o w

sha rdin g‐su ffix ‐pat
tern

S t r i n g Suffix pattern of
sharding data sources
or tables, must can
be transformed to
Java LocalDateTime,
must be consis‐
tent with date-
time-interval-unit.
For example: yyyyMM

•

date time ‐int erva l‐am
ount (?)

i n t Interval of sharding
value, after which
the next shard will be
entered

1

da teti me‐i nter val‐
unit (?)

S t r i n g Unit of sharding value
interval, must can be
transformed to Java
ChronoUnit’s Enum
value. For example:
MONTHS

D A Y S

9.3. Common Configuration 387

Apache ShardingSphere document

Complex Sharding Algorithm

Complex Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

Name •
D a t a T y p e *

Description D efa ult Val ue

sh arding‐columns (?) S t r i n g sharing columnnames •

algori thm‐expression S t r i n g Inline expression
sharding algorithm

•

allow‐rang e‐query‐
with‐i nline‐sharding
(?)

b o o l e a n Whether range query
is allowed. Note:
range query will ig‐
nore sharding strategy
and conduct full rout‐
ing

fa lse

Hint Sharding Algorithm

Hint Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

Name DataType Description Default Value

algor ithm‐expression String Inline expression sharding algorithm ${value}

Class Based Sharding Algorithm

Realize custom extension by configuring the sharding strategy type and algorithm class name.
CLASS_BASED allows additional custom properties to be passed into the algorithm class. The passed
properties can be retrieved through the java.util.Properties class instance with the property
name props. Refer to Git’s org.apache.shardingsphere.example.extension.sharding.
algortihm.classbased.fixture.ClassBasedStandardShardingAlgorithmFixture.

Type：CLASS_BASED

Attributes：

9.3. Common Configuration 388

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/#row-value-expressions
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/#row-value-expressions

Apache ShardingSphere document

Name D ataT
ype

Description

strategy St ring Sharding strategy type, support STANDARD, COMPLEX or HINT
(case insensitive)

algorith mClass‐
Name

St ring Fully qualified name of sharding algorithm

Procedure

1. When using data sharding, configure the corresponding data sharding algorithm under the
shardingAlgorithms attribute.

Sample

rules:
- !SHARDING

tables:
t_order:

actualDataNodes: ds_${0..1}.t_order_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

t_order_item:
actualDataNodes: ds_${0..1}.t_order_item_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_item_inline

keyGenerateStrategy:
column: order_item_id
keyGeneratorName: snowflake

t_account:
actualDataNodes: ds_${0..1}.t_account_${0..1}
tableStrategy:

standard:
shardingAlgorithmName: t_account_inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

defaultShardingColumn: account_id
bindingTables:

9.3. Common Configuration 389

Apache ShardingSphere document

- t_order,t_order_item
defaultDatabaseStrategy:
standard:

shardingColumn: user_id
shardingAlgorithmName: database_inline

defaultTableStrategy:
none:

shardingAlgorithms:
database_inline:

type: INLINE
props:

algorithm-expression: ds_${user_id % 2}
t_order_inline:

type: INLINE
props:

algorithm-expression: t_order_${order_id % 2}
t_order_item_inline:

type: INLINE
props:

algorithm-expression: t_order_item_${order_id % 2}
t_account_inline:

type: INLINE
props:

algorithm-expression: t_account_${account_id % 2}
keyGenerators:
snowflake:

type: SNOWFLAKE

- !BROADCAST
tables:
- t_address

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

9.3. Common Configuration 390

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document

Key Generate Algorithm

Background

In traditional database software development, automatic primary key generation is a basic requirement
and various databases provide support for this requirement, such as MySQL’s self‐incrementing keys,
Oracle’s self‐incrementing sequences, etc.

After data sharding, it is a very tricky problem to generate global unique primary keys from different
data nodes. Self‐incrementing keys between different actual tables within the same logical table gen‐
erate duplicate primary keys because they are not mutually perceived.

Although collisions can be avoided by constraining the initial value and step size of self‐incrementing
primary keys, additional O&M rulesmust to be introduced, making the solution lack completeness and
scalability.

There are many third‐party solutions that can perfectly solve this problem, such as UUID, which re‐
lies on specific algorithms to generate non‐duplicate keys, or by introducing primary key generation
services.

In order to cater to the requirements of different users in different scenarios, Apache ShardingSphere
not only provides built‐in distributed primary key generators, such as UUID, SNOWFLAKE, but also
abstracts the interface of distributed primary key generators to facilitate users to implement their own
customized primary key generators.

Parameters

Snowflake

Type: SNOWFLAKE

Attributes:

9.3. Common Configuration 391

Apache ShardingSphere document

Name •
D a t a T y p e *

Description •
D e f a u l t V a l u e *

wor ker ‐id (?) l o n g The unique ID for
working machine

0

ma x‐t ole rat e‐t ime ‐
di ffe ren ce‐mil lis eco
nds (?)

l o n g The max tolerate time
for different server’s
time difference in mil‐
liseconds

1 0 m i l l i s e c o n d s

max‐v ibr ati on‐ off set
(?)

i n t The max upper limit
value of vibrate
number, range [0,
4096). Notice: To use
the generated value
of this algorithm as
sharding value, it is
recommended to con‐
figure this property.
The algorithm gener‐
ates keymod 2^n (2^n
is usually the sharding
amount of tables or
databases) in different
milliseconds and the
result is always 0 or 1.
To prevent the above
sharding problem, it is
recommended to con‐
figure this property,
its value is (2^n)-1

1

Note: worker‐id is optional 1. In standalone mode, support user‐defined configuration, if the user does
not configure the default value of 0. 2. In clustermode, it will be automatically generated by the system,
and duplicate values will not be generated in the same namespace.

9.3. Common Configuration 392

Apache ShardingSphere document

UUID

Type: UUID

Attributes: None

Procedure

1. Policy of distributed primary key configurations is for columns when configuring data sharding
rules.

Sample

• Snowflake Algorithms

keyGenerators:
snowflake:
type: SNOWFLAKE

• UUID

keyGenerators:
uuid:
type: UUID

Load Balance Algorithm

Background

ShardingSphere built‐in provides a variety of load balancer algorithms, including polling algorithm,
random access algorithm and weight access algorithm, which canmeet users’needs in most business
scenarios.

Moreover, considering the complexity of the business scenario, the built‐in algorithm also provides an
extension mode. Users can implement the load balancer algorithm they need based on SPI interface.

Parameters

Round-robin Load Balance Algorithm

Type: ROUND_ROBIN

9.3. Common Configuration 393

Apache ShardingSphere document

Random Load Balance Algorithm

Type: RANDOM

Weight Load Balance Algorithm

Type: WEIGHT

Attributes:

N am e •
D a t a T y p e *

Description

$ {r ep li ca ‐n am e} d o u b l e Attribute name uses the name
of the replica, and the param‐
eter fills in the weight value
corresponding to the replica.
Weight parameter range min >
0, total <= Double.MAX_VALUE.

Procedure

1. Configure a load balancer algorithm for the loadBalancers attribute to use read/write splitting.

Sample

rules:
- !READWRITE_SPLITTING

dataSources:
readwrite_ds:

writeDataSourceName: write_ds
readDataSourceNames:

- read_ds_0
- read_ds_1

transactionalReadQueryStrategy: PRIMARY
loadBalancerName: random

loadBalancers:
random:

type: RANDOM

9.3. Common Configuration 394

Apache ShardingSphere document

Related References

• Core Feature: Read/Write Splitting

• Developer Guide: Read/Write Splitting

Encryption Algorithm

Background

Encryption algorithms are by the encryption features of Apache ShardingSphere. A variety of algo‐
rithms are built‐in to make it easy for users to fully leverage the feature.

Parameters

Standard Encrypt Algorithm

AES Encrypt Algorithm

Type: AES

Attributes:

Name Dat aType Description

aes‐key‐value String AES KEY
digest ‐algorithm‐name String AES KEY DIGEST ALGORITHM (optional, default: SHA‐1)

RC4 Encrypt Algorithm

Type: RC4

Attributes:

Name DataType Description

rc4‐key‐value String RC4 KEY

Like Encrypt Algorithm

CharDigestLike Encrypt Algorithm

Type：CHAR_DIGEST_LIKE

Attributes：

9.3. Common Configuration 395

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/dev-manual/readwrite-splitting/

Apache ShardingSphere document

Name DataType Description

delta int Character Unicode offset（decimal number）
mask int Character encryption mask（decimal number）
start int Ciphertext Unicode initial code（decimal number）
dict String Common words

Assisted Encrypt Algorithm

MD5 Assisted Encrypt Algorithm

Type: MD5

Attributes:

Name DataType Description

salt String Salt value(optional)

Operating Procedure

1. Configure encryptors in an encryption rule.

2. Use relevant algorithm types in encryptors.

Configuration Examples

rules:
- !ENCRYPT

tables:
t_user:

columns:
username:
cipher:
name: username
encryptorName: name_encryptor

likeQuery:
name: name_like
encryptorName: like_encryptor

encryptors:
like_encryptor:

type: CHAR_DIGEST_LIKE
name_encryptor:

type: AES
props:

aes-key-value: 123456abc

9.3. Common Configuration 396

Apache ShardingSphere document

Related References

• Core Feature: Data Encrypt

• Developer Guide: Data Encrypt

Shadow Algorithm

Background

The shadow DB feature carries out shadow measurement to SQL statements executed. Shadow mea‐
surement supports two types of algorithms, and users can choose one or a combination of them based
on actual business needs.

Parameters

Column-based shadow algorithm

Column valuematching shadow algorithm

Type：VALUE_MATCH

Attribute Name Data Type Description

column String shadow column
operation String SQL operation type (INSERT, UPDATE, DELETE, SELECT)
value String value matched by shadow column

Column-based Regexmatching algorithm

Type：REGEX_MATCH

Attribute Name Data Type Description

column String match a column
operation String SQL operation type（INSERT, UPDATE, DELETE, SELECT）
regex String shadow columnmatching Regex

9.3. Common Configuration 397

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document

Hint-based shadow algorithm

SQL HINT shadow algorithm

Type：SQL_HINT

/* SHARDINGSPHERE_HINT: SHADOW=true */

Configuration sample

• Java API

public final class ShadowConfiguration {
// ...

private AlgorithmConfiguration createShadowAlgorithmConfiguration() {
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_id");
userIdInsertProps.setProperty("value", "1");
return new AlgorithmConfiguration("VALUE_MATCH", userIdInsertProps);

}

// ...
}

• YAML:

shadowAlgorithms:
user-id-insert-algorithm:
type: VALUE_MATCH
props:

column: user_id
operation: insert
value: 1

SQL Translator

Native SQL translator

Type: NATIVE

Attributes:

None

Default SQL translator, does not implement yet.

9.3. Common Configuration 398

Apache ShardingSphere document

JooQ SQL translator

Type: JOOQ

Attributes:

None

Because of it need JooQdependency, ShardingSphere does not include themodule, please use below
XML to import it by Maven.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-translator-jooq-provider</artifactId>
<version>${project.version}</version>

</dependency>

Sharding Audit Algorithm

Background

The sharding audit is to audit the SQL statements in the sharding database. Sharding audit not only
intercept illegal SQL statements, but also gather the SQL statistics.

Parameters

DML_SHARDING_CONDITIONS algorithm

Type: DML_SHARDING_CONDITIONS

Procedure

1. when configuring data sharding rules, create sharding audit configurations.

Sample

• DML_SHARDING_CONDITIONS

auditors:
sharding_key_required_auditor:
type: DML_SHARDING_CONDITIONS

9.3. Common Configuration 399

Apache ShardingSphere document

Data Masking Algorithm

Background

Data masking algorithms are by the mask features of Apache ShardingSphere. A variety of algorithms
are built‐in to make it easy for users to fully leverage the feature.

Parameters

Hash Data Masking Algorithm

MD5 Data Masking Algorithm

Type: MD5

Attributes:

Name DataType Description

salt String Salt value (optional)

Mask Data Masking Algorithm

Keep First N Last M Data Masking Algorithm

Type: KEEP_FIRST_N_LAST_M

Attributes:

Name DataType Description

first‐n int first n substring
last‐m int last m substring
replace‐char String replace char

Keep From X To Y Data Masking Algorithm

Type: KEEP_FROM_X_TO_Y

Attributes:

Name DataType Description

from‐x int start position (from 0)
to‐y int end position (from 0)
replace‐char String replace char

9.3. Common Configuration 400

Apache ShardingSphere document

Mask First N Last M Data Masking Algorithm

Type: MASK_FIRST_N_LAST_M

Attributes:

Name DataType Description

first‐n int first n substring
last‐m int last m substring
replace‐char String replace char

Mask From X To Y Data Masking Algorithm

Type: MASK_FROM_X_TO_Y

Attributes:

Name DataType Description

from‐x int start position (from 0)
to‐y int end position (from 0)
replace‐char String replace char

Mask Before Special Chars Data Masking Algorithm

Type: MASK_BEFORE_SPECIAL_CHARS

Attributes:

Name DataType Description

special‐chars String Special chars (first appearance)
replace‐char String replace char

Mask After Special Chars Data Masking Algorithm

Type: MASK_AFTER_SPECIAL_CHARS

Attributes:

Name DataType Description

special‐chars String Special chars (first appearance)
replace‐char String replace char

9.3. Common Configuration 401

Apache ShardingSphere document

Replace Data Masking Algorithm

Personal Identity Number Random Replace Data Masking Algorithm

Type: PERSONAL_IDENTITY_NUMBER_RANDOM_REPLACE

Attributes:

Name Data
Type

Description

alpha‐two‐ country‐area‐
code

S tring alpha two country area code (Optional, default value:
CN)

Military Identity Number Random Replace Data Masking Algorithm

类型：MILITARY_IDENTITY_NUMBER_RANDOM_REPLACE

可配置属性：

Name Data Type Description

type‐codes S tring military identity number type codes (separate with comma)

Telephone Random Replace Data Masking Algorithm

Type: TELEPHONE_RANDOM_REPLACE

Attributes:

N am e •
D a t a T y p e *

Description

n et wo rk ‐n um be rs S t r i n g Network numbers (separate
with comma, default value:
130,131,132,133,134,135,136,
137,138,139,150,151,152,153,155,156,157,158,159,166,170,176,
177,178,180,181,182,183,184,185,186,187,188,189,191,198,199)

9.3. Common Configuration 402

Apache ShardingSphere document

Landline Number Random Replace Data Masking Algorithm

Type: LANDLINE_NUMBER_RANDOM_REPLACE

Attributes:

Name DataType Description

landline‐numbers String Landline numbers (separate with comma)

Generic table random replace algorithm.

Type: GENERIC_TABLE_RANDOM_REPLACE

Attributes:

Name D at aT
yp e

Description

upperc ase‐lett
er‐codes

St ri
ng

Uppercase letter codes (separate with comma, default value: A
,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z)

lowerc ase‐lett
er‐codes

St ri
ng

Lowercase‐letter codes (separate with comma, default value: a
,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)

digi tal‐rand
om‐codes

St ri
ng

Numbers (separate with comma, default value: 0,1,2,3,4,5,6,7,8,9)

speci al‐codes St ri
ng

Special codes (separate with comma, default value:
~,!,@,#,$,%,^,&,*,:,<,>,¦)

Unified credit code random replace algorithm

Type: UNIFIED_CREDIT_CODE_RANDOM_REPLACE

Attributes:

Name Dat aType Description

registrat ion‐department‐codes String Registration department code (separate with comma)
category‐codes String Category code (separate with comma)
administr ative‐division‐codes String Administrative division code (separate with comma)

9.3. Common Configuration 403

Apache ShardingSphere document

Operating Procedure

1. Configure maskAlgorithms in a mask rule.

2. Use relevant algorithm types in maskAlgorithms.

Configuration Examples

rules:
- !MASK

tables:
t_user:

columns:
password:
maskAlgorithm: md5_mask

email:
maskAlgorithm: mask_before_special_chars_mask

telephone:
maskAlgorithm: keep_first_n_last_m_mask

maskAlgorithms:
md5_mask:

type: MD5
mask_before_special_chars_mask:

type: MASK_BEFORE_SPECIAL_CHARS
props:

special-chars: '@'
replace-char: '*'

keep_first_n_last_m_mask:
type: KEEP_FIRST_N_LAST_M
props:

first-n: 3
last-m: 4
replace-char: '*'

9.3. Common Configuration 404

Apache ShardingSphere document

Related References

• Core Feature: Data Masking

• Developer Guide: Data Masking

9.3.3 SQL Hint

Background

At present, most relational databases basically provide SQL Hint as a supplement to SQL syntax. SQL
Hint allows users to intervene in the execution process of SQL through the built‐in Hint syntax of the
database, to complete some special functions or realize optimization of SQL execution. ShardingSphere
also provides SQL Hint syntax, allowing users to perform force route for sharding and read‐write split‐
ting, and data source pass through.

Use specification

The SQL Hint syntax of ShardingSphere needs to be written in SQL in the form of comments. The
SQL Hint syntax format only supports /* */ temporarily, and the Hint content needs to start with
SHARDINGSPHERE_HINT:, and then define the attribute key/value pairs corresponding to different
features, separated by commas when there are multiple attributes. The SQL Hint syntax format of
ShardingSphere is as follows:

/* SHARDINGSPHERE_HINT: {key} = {value}, {key} = {value} */ SELECT * FROM t_order;

To use the SQL Hint, you need to set sqlCommentParseEnabled in ShardingSphere SQL Parser rule
to true to enable the SQL comment parsing. In addition, if you use the MySQL client to connect, you
need to add the -c option to retain comments, and the client defaults to --skip-comments to filter
comments.

Parameters

The following attributes can be defined in ShardingSphere SQL Hint. In order to be compatible with
the lower version SQL Hint syntax, the attributes defined in the alias can also be used:

9.3. Common Configuration 405

https://shardingsphere.apache.org/document/current/en/features/mask/
https://shardingsphere.apache.org/document/current/en/dev-manual/mask/

Apache ShardingSphere document

Name Alias •
Da ta T yp e*

Description Def ault Va lue

SHA RD‐
ING_DATA
BASE_VALUE
(?)

shardin gDataba
seValue

Co mp ar ab le Database shard‐
ing value, used
when config Hint
sharding strategy

•

SHARDING_T
ABLE_VALUE (?)

shar dingTab leV‐
alue

Co mp ar ab le Table shard‐
ing value, used
when config Hint
sharding strategy

•

WRITE_
ROUTE_ONLY
(?)

writeRo uteOnly b oo le an Route to the write
datasource when
use readwrite‐
splitting

f alse

DATA_S
OURCE_NAME
(?)

dataSou rceName St ri ng Data source pass
through, route
SQL directly to
the specified data
source

•

SKIP_S
QL_REWRITE
(?)

skipSQL Rewrite b oo le an Skip the SQL
rewrite phase

f alse

DISABLE_A
UDIT_NAMES (?)

dis ableAud it‐
Names

St ri ng Disable the speci‐
fied SQL audit al‐
gorithm

•

SHADOW (?) shadow b oo le an Route to the
shadow data‐
source when use
shadow

f alse

SQL Hint

Sharding

The optional attributes of sharding SQL Hint include:

• {table}.SHARDING_DATABASE_VALUE: used to add data source sharding value corresponding
to the {table} table, multiple attributes are separated by commas;

• {table}.SHARDING_TABLE_VALUE: used to add table sharding value corresponding to the
{table} table, multiple attributes are separated by commas.

In the case of only database sharding, when forcing routing to a certain datasource, you can
use the SHARDING_DATABASE_VALUEmethod to set the sharding value without specifying
{table}.

9.3. Common Configuration 406

Apache ShardingSphere document

An example of using the SQL Hint of sharding:

/* SHARDINGSPHERE_HINT: t_order.SHARDING_DATABASE_VALUE=1, t_order.SHARDING_TABLE_
VALUE=1 */ SELECT * FROM t_order;

ReadwriteSplitting

The optional attribute of read‐write splitting SQL Hint is WRITE_ROUTE_ONLY, and true means that
the current SQL is forced to be routed to write datasource for execution.

An example of using the SQL Hint for read‐write splitting:

/* SHARDINGSPHERE_HINT: WRITE_ROUTE_ONLY=true */ SELECT * FROM t_order;

DataSource Pass Through

The optional attribute of datasource pass through SQL Hint is DATA_SOURCE_NAME, which needs to
specify the name of the data source registered in the ShardingSphere logic database.

An example of using the SQL Hint of data source pass through:

/* SHARDINGSPHERE_HINT: DATA_SOURCE_NAME=ds_0 */ SELECT * FROM t_order;

SKIP SQL REWRITE

The optional attribute of skip SQL rewriting SQL Hint is SKIP_SQL_REWRITE, and truemeans skip‐
ping the current SQL rewriting stage.

An example of skipping SQL rewrite SQL Hint:

/* SHARDINGSPHERE_HINT: SKIP_SQL_REWRITE=true */ SELECT * FROM t_order;

DISABLE SQL AUDIT

The optional attribute of disable SQL audit is DISABLE_AUDIT_NAMES, you need to specify names of
SQL audit algorithm that needs to be disabled, and multiple SQL audit algorithms need to be separated
by commas.

An example of disable sql audit SQL Hint:

/* SHARDINGSPHERE_HINT: DISABLE_AUDIT_NAMES=sharding_key_required_auditor */ SELECT
* FROM t_order;

9.3. Common Configuration 407

Apache ShardingSphere document

SHADOW

The optional attribute of the shadow database pressure test SQL Hint is SHADOW, and truemeans that
the current SQL will be routed to the shadow database data source for execution.

An example of using shadow SQL Hint:

/* SHARDINGSPHERE_HINT: SHADOW=true */ SELECT * FROM t_order;

9.4 Error Code

This chapter lists error codes of Apache ShardingSphere. They include SQL error codes and server error
codes.

All contents of this chapter are draft, the error codes maybe need to adjust.

9.4.1 SQL Error Code

SQL error codes provide by standard SQL State, Vendor Code and Reason, which return to client
when SQL execute error.

the error codes are draft, still need to be adjusted.

Kernel Exception

Meta data

SQL S tate Vendor
Code

Reason

4 2000 10000 There is no storage unit in database ˋ%sˋ.
0 8000 10001 The URL ˋ%sˋ is not recognized, please refer to the pattern ˋ%sˋ.
4 2000 10002 Cannot support 3‐tier structure for actual data node ˋ%sˋwith JDBC ˋ%sˋ.
H Y004 10003 Invalid format for actual data node ˋ%sˋ.
4 2000 10004 Unsupported SQL node conversion for SQL statement ˋ%sˋ.
H Y000 10005 Column‘%s’in field list is ambiguous.
4 2S02 10006 Unknown column‘%s’in‘field list’.
4 2000 10010 Rule does not exist.
4 2S02 10020 Schema ˋ%sˋ does not exist.
4 2S02 10021 Single table ˋ%sˋ does not exist.
H Y000 10022 Can not load table with database name ˋ%sˋ and data source name ˋ%sˋ.
0 A000 10030 Can not drop schema ˋ%sˋ because of contains tables.
0 A000 10040 Unsupported storage type of ˋ%s.%sˋ.

9.4. Error Code 408

Apache ShardingSphere document

Data

SQL State Vendor Code Reason

HY004 11000 Invalid value ˋ%sˋ.
HY004 11001 Unsupported conversion data type ˋ%sˋ for value ˋ%sˋ.
HY004 11010 Unsupported conversion stream charset ˋ%sˋ.

Syntax

SQL
State

Vendor
Code

Reason

42000 12000 You have an error in your SQL syntax: %s
42000 12001 Can not accept SQL type ˋ%sˋ.
42000 12002 SQL String can not be NULL or empty.
42000 12010 Can not support variable ˋ%sˋ.
42S02 12011 Can not find column label ˋ%sˋ.
42S02 12012 Can not find driver url provider for ˋ%s\. | | HV00 8 | 12020 | Column

index \%dˋ is out of range.
0A000 12100 DROP TABLE⋯CASCADE is not supported.

9.4. Error Code 409

Apache ShardingSphere document

Connection

SQ L
S t a
t e

V e n d
o r C o
d e

Reason

0 8 0
0 0

1 3 0 0
0

Can not register driver, reason is: %s

0 8 0
0 0

1 3 0 0
1

Can not register SQL federation driver, reason is: %s

0 1 0
0 0

1 3 0 1
0

Circuit break open, the request has been ignored.

0 1 0
0 0

1 3 0 1
1

The cluster status is read‐only.

0 1 0
0 0

1 3 0 1
2

The cluster status is unavailable.

0 8 0
0 0

1 3 0 2
0

Can not get %d connections one time, partition succeed connection(%d) have re‐
leased. Please consider increasing the ˋmaxPoolSizeˋ of the data sources or decreas‐
ing the ˋmax‐connections‐size‐per‐queryˋ in properties.

0 8 0
0 0

1 3 0 3
0

Connection has been closed.

0 8 0
0 0

1 3 0 3
1

Result set has been closed.

H Y
0 0 0

1 3 0 9
0

Load datetime from database failed, reason: %s

9.4. Error Code 410

Apache ShardingSphere document

Transaction

SQL S
tate

V endor
Code

Reason

2 5000 14000 Switch transaction type failed, please terminate the current transaction.
2 5000 14001 Can not find transaction manager of ˋ%sˋ.
2 5000 14002 Transaction timeout should more than 0s.
2 5000 14100 JDBC does not support operations across multiple logical databases in

transaction.
2 5000 14200 Can not start new XA transaction in a active transaction.
2 5000 14201 Failed to create ˋ%sˋ XA data source.
2 5000 14202 Max length of xa unique resource name ˋ%sˋ exceeded: should be less than

45.
2 5000 14203 Check privileges failed on data source, reason is: ˋ%sˋ
2 5000 14204 Failed to create XA transaction manager, requires ˋ%sˋ privileges
2 5000 14205 Close transaction manager failed, ˋ%sˋ
2 5000 14301 ShardingSphere Seata‐AT transaction has been disabled.
2 5000 14302 Please config application id within seata.conf file.

Lock

SQL S
tate

V endor
Code

Reason

H Y000 15000 The table ˋ%sˋ of schema ˋ%sˋ is locked.
H Y000 15001 The table ˋ%sˋ of schema ˋ%sˋ lock wait timeout of ˋ%sˋ milliseconds ex‐

ceeded.

Audit

SQL State Vendor Code Reason

44000 16000 SQL audit failed, error message: %s.
44000 16001 Hint datasource: %s is not exist.

9.4. Error Code 411

Apache ShardingSphere document

Authority

SQL State Vendor Code Reason

44000 16500 Access denied for operation %s.

Cluster

SQL State Vendor Code Reason

HY000 17000 Work ID assigned failed, which can not exceed 1024.
HY000 17002 File access failed, reason is: %s
HY000 17010 Cluster persist repository error, reason is: %s

Migration

SQL S tate V endor Code Reason

4 2S02 18002 There is no rule in database ˋ%sˋ.
4 4000 18003 Mode configuration does not exist.
4 4000 18004 Target database name is null. You could define it in DistSQL or select a database.
2 2023 18005 There is invalid parameter value: %s.
H Y000 18020 Failed to get DDL for table ˋ%sˋ.
4 2S01 18030 Duplicate storage unit names ˋ%sˋ.
4 2S02 18031 Storage units names ˋ%sˋ do not exist.
0 8000 18051 Data check table ˋ%sˋ failed.
0 A000 18052 Unsupported pipeline database type ˋ%sˋ.
0 A000 18053 Unsupported CRC32 data consistency calculate algorithm with database type ˋ%sˋ.
0 A000 18054 Unsupported mode type ˋ%sˋ.
H Y000 18080 Can not find pipeline job ˋ%sˋ.
H Y000 18081 Job has already started.
H Y000 18082 Sharding count of job ˋ%sˋ is 0.
H Y000 18083 Can not split by range for table ˋ%sˋ, reason is: %s
H Y000 18084 Can not split by unique key ˋ%sˋ for table ˋ%sˋ, reason is: %s
H Y000 18085 Target table ˋ%sˋ is not empty.
0 1007 18086 Source data source lacks %s privilege(s).
H Y000 18087 Source data source required ˋ%s = %sˋ, now is ˋ%sˋ.
H Y000 18088 User ˋ%sˋ does exist.
0 8000 18089 Check privileges failed on source data source, reason is: %s
0 8000 18090 Data sources can not connect, reason is: %s
H Y000 18091 Importer job write data failed.
0 8000 18092 Get binlog position failed by job ˋ%sˋ, reason is: %s

continues on next page

9.4. Error Code 412

Apache ShardingSphere document

Table 1 – continued from previous page

SQL S tate V endor Code Reason

H Y000 18093 Can not poll event because of binlog sync channel already closed.
H Y000 18095 Can not find consistency check job of ˋ%sˋ.
H Y000 18096 Uncompleted consistency check job ˋ%sˋ exists.
H Y000 18200 Not find stream data source table.
H Y000 18201 CDC server exception, reason is: %s.
H Y000 18202 CDC login failed, reason is: %s

DistSQL

SQL State Vendor Code Reason

44000 19000 Can not process invalid storage units, error message is: %s
44000 19001 Storage units ˋ%sˋ do not exist in database ˋ%sˋ.
44000 19002 There is no storage unit in the database ˋ%sˋ.
44000 19003 Storage units ˋ%sˋ is still used by ˋ%sˋ.
44000 19004 Duplicate storage unit names ˋ%sˋ.
44000 19100 Invalid ˋ%sˋ rule ˋ%sˋ, error message is: %s
44000 19101 %s rules ˋ%sˋ do not exist in database ˋ%sˋ.
44000 19102 %s rules ˋ%sˋ in database ˋ%sˋ are still in used.
44000 19103 %s rule ˋ%sˋ has been enabled in database ˋ%sˋ.
44000 19104 %s rule ˋ%sˋ has been disabled in database ˋ%sˋ.
44000 19105 Duplicate %s rule names ˋ%sˋ in database ˋ%sˋ.
44000 19150 Invalid %s algorithm(s) ˋ%sˋ.
44000 19151 %s algorithm(s) ˋ%sˋ do not exist in database ˋ%sˋ.
44000 19152 %s algorithms ˋ%sˋ in database ˋ%sˋ are still in used.
44000 19153 Duplicate %s algorithms ˋ%sˋ in database ˋ%sˋ.

Feature Exception

Data Sharding

S QL S ta te Ven dor C ode Reason

4 40 00 20 000 Can not find table rule with logic tables ˋ%sˋ.
4 40 00 20 001 Can not get uniformed table structure for logic table ˋ%sˋ, it has different meta data of actual tables are as follows: %s
4 2S 02 20 002 Can not find data source in sharding rule, invalid actual data node ˋ%sˋ.
4 40 00 20 003 Data nodes must be configured for sharding table ˋ%sˋ.
4 40 00 20 004 Actual table ˋ%s.%sˋ is not in table rule configuration.
4 40 00 20 005 Can not find binding actual table, data source is ˋ%sˋ, logic table is ˋ%sˋ, other actual table is ˋ%sˋ.
4 40 00 20 006 Actual tables ˋ%sˋ are in use.

continues on next page

9.4. Error Code 413

Apache ShardingSphere document

Table 2 – continued from previous page

S QL S ta te Ven dor C ode Reason

4 2S 01 20 007 Index ˋ%sˋ already exists.
4 2S 02 20 008 Index ˋ%sˋ does not exist.
4 2S 01 20 009 View name has to bind to %s tables.
4 40 00 20 010 ˋ%sˋ algorithm does not exist in database ˋ%sˋ.
4 40 00 20 011 ˋ%sˋ configuration does not exist in database ˋ%sˋ.
4 40 00 20 012 Invalid binding table configuration in ShardingRuleConfiguration.
4 40 00 20 013 Can not find sharding rule.
4 40 00 20 014 Only allowed 0 or 1 sharding strategy configuration.
4 40 00 20 020 Sharding value can’t be null in sql statement.
H Y0 04 20 021 Found different types for sharding value ˋ%sˋ.
H Y0 04 20 022 Invalid %s, datetime pattern should be ˋ%sˋ, value is ˋ%sˋ.
4 40 00 20 023 Sharding value %s subtract stop offset %d can not be less than start offset %d.
4 40 00 20 024 %s value ˋ%sˋ must implements Comparable.
0 A0 00 20 040 Can not support operation ˋ%sˋ with sharding table ˋ%sˋ.
4 40 00 20 041 Can not update sharding value for table ˋ%sˋ.
0 A0 00 20 042 The CREATE VIEW statement contains unsupported query statement.
4 40 00 20 043 PREPARE statement can not support sharding tables route to same data sources.
4 40 00 20 044 The table inserted and the table selected must be the same or bind tables.
0 A0 00 20 045 Can not support DML operation with multiple tables ˋ%sˋ.
4 20 00 20 046 %s⋯LIMIT can not support route to multiple data nodes.
4 40 00 20 047 Can not find actual data source intersection for logic tables ˋ%sˋ.
4 20 00 20 048 INSERT INTO⋯SELECT can not support applying key generator with absent generate key column.
0 A0 00 20 049 Alter view rename .. to .. statement should have same config for ˋ%sˋ and ˋ%sˋ.
H Y0 00 20 060 ˋ%s %sˋ can not route correctly for %s ˋ%sˋ.
4 2S 02 20 061 Can not get route result, please check your sharding rule configuration.
3 40 00 20 062 Can not get cursor name from fetch statement.
H Y0 00 20 080 Sharding algorithm class ˋ%sˋ should be implement ˋ%sˋ.
H Y0 00 20 081 Routed target ˋ%sˋ does not exist, available targets are ˋ%sˋ.
4 40 00 20 082 Inline sharding algorithms expression ˋ%sˋ and sharding column ˋ%sˋ do not match.
H Y0 00 20 083 Sharding algorithm ˋ%sˋ initialization failed, reason is: %s.
4 40 00 20 084 Complex inline algorithm need %d sharing columns, but only found %d.
4 40 00 20 085 No sharding database route info.
4 40 00 20 086 Some routed data sources do not belong to configured data sources. routed data sources: ˋ%sˋ, configured data sources: ˋ%sˋ.
4 40 00 20 087 Please check your sharding conditions ˋ%sˋ to avoid same record in table ˋ%sˋ routing to multiple data nodes.
4 40 00 20 088 Cannot found routing table factor, data source: %s, actual table: %s.
4 40 00 20 090 Can not find strategy for generate keys with table ˋ%sˋ.
H Y0 00 20 091 Key generate algorithm ˋ%sˋ initialization failed, reason is: %s.
H Y0 00 20 092 Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds.
H Y0 00 20 099 Sharding plugin error, reason is: %s

9.4. Error Code 414

Apache ShardingSphere document

Readwrite-splitting

SQL St ate V endor Code Reason

44 000 20270 Inline expression %s names
size error.

HY 004 20280 Invalid read database weight
ˋ%sˋ.

44 000 20281 Load balancer algorithm ˋ%sˋ
initialization failed, reason is:
ˋ%s.ˋˋ| | 44000 | 20290 | Data
source name is required in
database

ˋˋ%s.ˋˋ| | 44000 |
20291 | Write data

source name is required in
databaseˋˋˋ%s.| | 44 000
| 20292 | Read data
source names is requ
ired in databaseˋ%s.ˋˋ| |
44000 | 20293

Can not config
duplicate %s data
source ˋˋ%sˋ

in database ˋ%s.| | 4 2S02
| 20294 | %s data source
name \%sˋ not in database
ˋ%s.ˋˋ| | 44000 | 20295 | Auto
aware data source name is re‐
quired in database ˋ ˋ%s.ˋˋ| |
42S02 | 20296 | Not found load

balance type in
database ˋˋ%s.ˋˋ| |
44000 |

20297 | Weight load balancer
datasource name con fig does
not match data sources in
database ˋˋ%s.ˋ

9.4. Error Code 415

Apache ShardingSphere document

Database HA

SQL S
tate

Vendor
Code

Reason

4 4000 20300 No available database discovery rule configuration in database ˋ%sˋ.
4 4000 20301 Group name is required.
4 4000 20302 Data source names are required.
4 4000 20303 Can not found database discovery data source rule in database ˋ%sˋ.
H Y000 20380 MGR plugin is not active in database ˋ%sˋ.
4 4000 20381 MGR is not in single primary mode in database ˋ%sˋ.
4 4000 20382 ˋ%sˋ is not in MGR replication group member in database ˋ%sˋ.
4 4000 20383 Group name in MGR is not same with configured one ˋ%sˋ in database

ˋ%sˋ.
4 2S01 20390 MySQL Duplicate primary data source in database ˋ%sˋ.
4 2S02 20391 Primary data source not found in database ˋ%sˋ.

SQL Dialect Translator

SQL State Vendor Code Reason

42000 20440 Can not support database ˋ%sˋ in SQL translation.
42000 20441 Translation error, SQL is: %s

Traffic Management

SQL State Vendor Code Reason

42S02 20500 Can not get traffic execution unit.

9.4. Error Code 416

Apache ShardingSphere document

Data Encrypt

SQL St
ate

Ve ndor
Code

Reason

44 000 2 0700 Can not find logic encrypt column by ˋ%sˋ.
44 000 2 0701 Fail to find encrypt column ˋ%sˋ from table ˋ%sˋ.
44 000 2 0702 Altered column ˋ%sˋmust use same encrypt algorithmwith previous column

ˋ%sˋ in table ˋ%sˋ.
42 000 2 0740 Insert value of index ˋ%sˋ can not support for encrypt.
0A 000 2 0741 The SQL clause ˋ%sˋ is unsupported in encrypt rule.
HY 004 2 0780 Encrypt algorithm ˋ%sˋ initialization failed, reason is: %s.
HY 004 2 0781 ˋ%sˋ column’s encryptor name ˋ%sˋ does not match encrypt algorithm type

ˋ%s in database ˋ%sˋ.
44 000 2 0703 Cipher column of ˋ%sˋ can not be null in database ˋ%sˋ.
44 000 2 0704 Can not find (STANDARD|ASSIST_QUERY|LIKE_QUERY) encryptor in table

ˋ%sˋ and column ˋ%sˋ.
44 000 2 0705 Assisted query column of ˋ%sˋ can not be null in database ˋ%sˋ.
44 000 2 0707 Like query column of ˋ%sˋ can not be null in database ˋ%sˋ.
44 000 2 0709 Can not find encrypt table: ˋ%sˋ.
44 000 2 0710 Can not found registered encryptor ˋ%sˋ in database ˋ%sˋ.

Shadow Database

SQL St
ate

Ve ndor
Code

Reason

44 000 2 0800 ˋ%sˋ algorithm does not exist in database ˋ%sˋ.
44 000 2 0801 ˋ%sˋ configuration does not exist in database ˋ%sˋ.
44 000 2 0802 No available shadow data sources mappings in shadow table ˋ%sˋ.
44 000 2 0803 Column shadow algorithm ˋ%sˋ operation only supports one column map‐

ping in shadow table ˋ%sˋ.
HY 004 2 0820 Shadow column ˋ%sˋ of table ˋ%sˋ does not support ˋ%sˋ type.
42 000 2 0840 Insert value of index ˋ%sˋ can not support for shadow.
HY 000 2 0880 Shadow algorithm ˋ%sˋ initialization failed, reason is: %s.
44 000 2 0881 Default shadow algorithm class should be implement HintShadowAlgorithm.

9.4. Error Code 417

Apache ShardingSphere document

Data Masking

SQL State Vendor Code Reason

HY000 20980 Mask algorithm ˋ%sˋ initialization failed, reason is: %s.
42S02 20990 Invalid mask algorithm ˋ%sˋ in database ˋ%sˋ.

Other Exception

SQL State Vendor Code Reason

HY004 30000 Unknown exception: %s
0A000 30001 Unsupported SQL operation: %s
0A000 30002 Database protocol exception: %s
0A000 30003 Unsupported command: %s

9.4.2 Server Error Code

Unique codes provided when server exception occur, which printed by Proxy backend or JDBC startup
logs.

Error Code Reason

SPI‐00001 No implementation class load from SPI ˋ%sˋ with type ˋ%sˋ.
DATA‐SOURCE‐00001 Data source unavailable.
PROPS‐00001 Value ˋ%sˋ of ˋ%sˋ cannot convert to type ˋ%sˋ.
PROXY‐00001 Load database server info failed.
SPRING‐00001 Can not find JNDI data source.
SPRING‐SHARDING‐00001 Can not support type ˋ%sˋ.

9.4. Error Code 418

10
Dev Manual

Apache ShardingSphere provides dozens of SPI based extensions. it is very convenient to customize the
functions for developers.

This chapter lists all SPI extensions of Apache ShardingSphere. If there is no special requirement, users
can use the built‐in implementation provided by Apache ShardingSphere; advanced users can refer to
the interfaces for customized implementation.

Apache ShardingSphere community welcomes developers to feed back their implementations to the
open‐source community, so that more users can benefit from it.

10.1 Mode

10.1.1 StandalonePersistRepository

Fully-qualified class name

`org.apache.shardingsphere.mode.repository.standalone.
StandalonePersistRepository <https://github.com/apache/shardingsphere/blob/master
/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/s
tandalone/StandalonePersistRepository.java>ˋ__

Definition

Standalone mode configuration information persistence definition

419

https://github.com/apache/shardingsphere/pulls
https://github.com/apache/shardingsphere/blob/master/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/standalone/StandalonePersistRepository.java
https://github.com/apache/shardingsphere/blob/master/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/standalone/StandalonePersistRepository.java
https://github.com/apache/shardingsphere/blob/master/mode/type/standalone/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/standalone/StandalonePersistRepository.java

Apache ShardingSphere document

Implementation classes

C on fi gu ra ti on T yp e •
De sc ri pt io n*

Fully-qualified class name

JD BC JD BC ‐b as ed p er si st en ce `org.apache.
shardingsphere.mode.
reposit ory.standalone.
jdbc.JDBCRepository
<h t t p s : / / g i t h u b . c o m /a
pache/shardingsphere/blob/master/mode/type/standalone/repo
sitory/provider/jdbc/src/main/java/org/apache/shardingsphe
re/mode/repository/standalone/jdbc/JDBCRepository.java>ˋ__

10.1.2 ClusterPersistRepository

Fully-qualified class name

`org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepository
<https://github.com/apache/shardingsphere/blob/master/mode/type/cluster/repository/api/src/main
/java/org/apache/shardingsphere/mode/repository/cluster/ClusterPersistRepository.java>ˋ__

Definition

Cluster mode configuration information persistence definition

10.1. Mode 420

https://github.com/a
https://github.com/apache/shardingsphere/blob/master/mode/type/cluster/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/cluster/ClusterPersistRepository.java
https://github.com/apache/shardingsphere/blob/master/mode/type/cluster/repository/api/src/main/java/org/apache/shardingsphere/mode/repository/cluster/ClusterPersistRepository.java

Apache ShardingSphere document

Implementation classes

•
C o n f i g u r a t i o n T y p e *

•
Des cri pti on*

Fully-qualified class name

Z o o K e e p e r ZooKeeper ba sedpe rsi ste nce `org.apache.
shardingsphere.
mode.repository.
cluster.zook eeper.
ZookeeperRepository
<h t t p s : / / g i t h u b . c o m
/ a p a c h e / s h a rding‐
sphere/blob/master/mode/type/cluster/repository/provi
der/zookeeper/src/main/java/org/apache/shardingsphere/mode
/reposi‐
tory/cluster/zookeeper/ZookeeperRepository.java>ˋ__

e t c d E tcd ba sed pe rsi ste nce `org.apache.
shardingsphere.mod
e.repository.cluster.
etcd.EtcdRepository
<h t t p s : / / g i t h ub
.com/apache/shardingsphere/blob/master/mode/type/cluster/r
eposi‐
tory/provider/etcd/src/main/java/org/apache/shardings
phere/mode/repository/cluster/etcd/EtcdRepository.java>ˋ__

N a c o s Na cos ba sed pe rsi ste nce `org.apache.
shardingsphere.mode.
rep ository.cluster.
nacos.NacosRepository
<h t t p s : / / g i t h u b . c o
m/apache/shardingsphere/blob/master/mode/type/cluster/repo
sitory/provider/nacos/src/main/java/org/apache/shardingsph
ere/mode/repository/cluster/nacos/NacosRepository.java>ˋ__

C o n s u l Con sul ba sed pe rsi ste nce `org.apache.
shardingsphere.mode.
reposito ry.cluster.
consul.ConsulRepository
<h t t p s : / / g i t h u b . c o m /a
pache/shardingsphere/blob/master/mode/type/cluster/reposit
ory/provider/consul/src/main/java/org/apache/shardingspher
e/mode/repository/cluster/consul/ConsulRepository.java>ˋ__

10.1. Mode 421

https://github.com/apache/sha
https://github.com/apache/sha
https://github
https://github.co
https://github.com/a

Apache ShardingSphere document

10.2 SQL Parser

10.2.1 DatabaseTypedSQLParserFacade

Fully-qualified class name

`org.apache.shardingsphere.sql.parser.spi.SQLDialectParserFacade <https://github
.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/
sql/parser/spi/SQLDialectParserFacade.java>ˋ__

Definition

Database typed SQL parser facade service definition

10.2. SQL Parser 422

https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLDialectParserFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLDialectParserFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLDialectParserFacade.java

Apache ShardingSphere document

Implementation classes

•
C o n f i g u r a t i o n T y p e *

De scrip tion Fully-qualified class name

M y S Q L SQL p arser entry based on
MySQL

`org.apache.sharding
sphere.sql.parser.
mysql.parser.
MySQLParserFacade <htt
ps://github.com/apache/shardingsphere/blob/master/parse
r/sql/dialect/mysql/src/main/java/org/apache/shardingsp
here/sql/parser/mysql/parser/MySQLParserFacade.java>ˋ__

P o s t g r e S Q L SQL p arser entry based on
Postg reSQL

`org.apache.
shardingsphere.
sql.parser.postgre
sql.parser.
PostgreSQLParserFacade
<h t t p s : / / g i t h u b . c om
/apache/shardingsphere/blob/master/parser/sql/dialect/p
ost‐
gresql/src/main/java/org/apache/shardingsphere/sql/p
ar‐
ser/postgresql/parser/PostgreSQLParserFacade.java>ˋ__

S Q L S e r v e r SQL p arser entry based on
SQLS erver

`org.apache.
shardingsphere.
sql.parser.sq
lserver.parser.
SQLServerParserFacade
<h t t p s : / / g i t h ub.
com/apache/shardingsphere/blob/master/parser/sql/dialec
t/sqlserver/src/main/java/org/apache/shardingsphere/sql
/parser/sqlserver/parser/SQLServerParserFacade.java>ˋ__

O r a c l e SQL p arser entry based on O
racle

`org.apache.
shardingspher e.sql.
parser.oracle.parser.
OracleParserFacade
<https:
//github.com/apache/shardingsphere/blob/master/parser/s
ql/dialect/oracle/src/main/java/org/apache/shardingsphe
re/sql/parser/oracle/parser/OracleParserFacade.java>ˋ__

S Q L 9 2 SQL p arser entry based on
SQL92

`org.apache.sharding
sphere.sql.parser.
sql92.parser.
SQL92ParserFacade <htt
ps://github.com/apache/shardingsphere/blob/master/parse
r/sql/dialect/sql92/src/main/java/org/apache/shardingsp
here/sql/parser/sql92/parser/SQL92ParserFacade.java>ˋ__

o p e n G a u s s SQL p arser entry based on
open Gauss

`org.apache.
shardingsphere.
sql.parser.op en-
gauss.parser.
OpenGaussParserFacade
<h t t p s : / / g i t h ub.
com/apache/shardingsphere/blob/master/parser/sql/dialec
t/opengauss/src/main/java/org/apache/shardingsphere/sql
/parser/opengauss/parser/OpenGaussParserFacade.java>ˋ__

10.2. SQL Parser 423

https://github.com
https://github
https://github

Apache ShardingSphere document

10.2.2 SQLStatementVisitorFacade

Fully-qualified class name

`org.apache.shardingsphere.sql.parser.spi.SQLStatementVisitorFacade <https://gi
thub.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsph
ere/sql/parser/spi/SQLStatementVisitorFacade.java>ˋ__

Definition

SQL visitor facade class definition

10.2. SQL Parser 424

https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLStatementVisitorFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLStatementVisitorFacade.java
https://github.com/apache/shardingsphere/blob/master/parser/sql/spi/src/main/java/org/apache/shardingsphere/sql/parser/spi/SQLStatementVisitorFacade.java

Apache ShardingSphere document

Implementation classes

•
C o n f i g u r a t i o n T y p e *

•
Desc ript ion*

Fully-qualified class name

M y S Q L M ySQL sy ntax tree vis itor e
ntry

`org.apache.
shardingsphere.
sql.parser.mysql.
visitor.st atement.
MySQLStatementVisitorFacade
<h t t p s : / / g i t h u b . c om
/apache/shardingsphere/blob/master/parser/sql/dialect/mys
ql/src/main/java/org/apache/shardingsphere/sql/parser/mys
ql/visitor/statement/MySQLStatementVisitorFacade.java>ˋ__

P o s t g r e S Q L Po stgr eSQL sy ntax tree vis itor
e ntry

`org.apache.shardingsp
here.sql.parser.
postgresql.visitor.
statement.PostgreSQLSt
atementVisitorFa-
cade <h t t p s : / / g i t h u b
. c o m / a p a c h e / s h a r d i n
gsphere/blob/master/parser/sql/dialect/postgresql/src/mai
n/java/org/apache/shardingsphere/sql/parser/postgresql/vi
sitor/statement/PostgreSQLStatementVisitorFacade.java>ˋ__

S Q L S e r v e r S QLSe rver sy ntax tree vis itor
e ntry

`org.apache.shard in-
gsphere.sql.parser.
sqlserver.visitor.
statement.SQLServe
rStatementVisitor-
Facade <h t t p s : / / g i t h u b
. c om / a p a c h e / s h ar ding‐
sphere/blob/master/parser/sql/dialect/sqlserver/src/m
ain/java/org/apache/shardingsphere/sql/parser/sqlserver/v
isi‐
tor/statement/SQLServerStatementVisitorFacade.java>ˋ__

O r a c l e Or acle sy ntax tree vis itor e
ntry

`o rg.apache.
shardingsphere.
sql.parser.oracle.
visitor.statem ent.
OracleStatementVisitorFacade
<h t t p s : / / g i t h u b . c om / a p
ache/shardingsphere/blob/master/parser/sql/dialect/oracle
/src/main/java/org/apache/shardingsphere/sql/parser/oracl
e/visitor/statement/OracleStatementVisitorFacade.java>ˋ__

S Q L 9 2 S QL92 sy ntax tree vis itor e
ntry

`org.apache.
shardingsphere.
sql.parser.sql92.
visitor.st atement.
SQL92StatementVisitorFacade
<h t t p s : / / g i t h u b . c om
/apache/shardingsphere/blob/master/parser/sql/dialect/sql
92/src/main/java/org/apache/shardingsphere/sql/parser/sql
92/visi‐
tor/statement/SQL92StatementVisitorFacade.java>ˋ__

o p e n G a u s s o penG auss sy ntax tree vis itor
e ntry

`org.apache.shard in-
gsphere.sql.parser.
opengauss.visitor.
statement.OpenGaus
sStatementVisitor-
Facade <h t t p s : / / g i t h u b
. c om / a p a c h e / s h ar ding‐
sphere/blob/master/parser/sql/dialect/opengauss/src/m
ain/java/org/apache/shardingsphere/sql/parser/opengauss/v
isi‐
tor/statement/OpenGaussStatementVisitorFacade.java>ˋ__

10.2. SQL Parser 425

https://github.com
https://github.com/apache/shardin
https://github.com/apache/shardin
https://github.com/apache/shar
https://github.com/apache/shar
https://github.com/ap
https://github.com
https://github.com/apache/shar
https://github.com/apache/shar

Apache ShardingSphere document

10.3 Data Sharding

10.3.1 ShardingAlgorithm

Fully-qualified class name

`org.apache.shardingsphere.sharding.spi.ShardingAlgorithm <https://github.com/apa
che/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/s
harding/spi/ShardingAlgorithm.java>ˋ__

Definition

Sharding Algorithm definition

10.3. Data Sharding 426

https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAlgorithm.java

Apache ShardingSphere document

Implementation classes

•
C o n f i g u r a t i o n T y p
e *

•
A u t o C r e a t e T a b l e
s *

Desc ription Fully-qualified class
name

MO D Y Modulo sharding a lgo‐
rithm

`org.apache.
sha rding-
sphere.sharding.
algorithm.
sharding.mod.
ModSh ardingAl-
gorithm <h t t p s :
/ / g i t h u b . c o m / a
p a c h e / s h ar ding‐
sphere/blob/master/features/sharding/core/src
/main/java/org/apache/shardingsphere/sharding/alg
orithm/sharding/mod/ModShardingAlgorithm.java>ˋ__

H A S H _ M O D Y Hashmodulo sharding
a lgorithm

`org.apache.
shardingsph
ere.sharding.
algorithm.
sharding.mod.
HashModShardi
ngAlgorithm
<h t t p s : / / g i t h u b . c
om/apache/sharding
sphere/blob/master/features/sharding/core/src/mai
n/java/org/apache/shardingsphere/sharding/algorit
hm/sharding/mod/HashModShardingAlgorithm.java>ˋ__

B O U N D A R Y _ R A
N G E

Y Boundary based range
sharding a lgorithm

ˋˋ
org.apache.shardingsphere.sharding.algorithm.sha
rd-
ing.range.BoundaryBasedRangeShardingAlgorithm`

<https://gi
thub.com
/apache/sh
ardingsphe
re/blob/m

aster/features/sharding/core/src/main/java/org/ap
ache/shardingsphere/sharding/algorithm/sharding/r
ange/BoundaryBasedRangeShardingAlgorithm.java>ˋ__

V O L U M E _ R A N G
E

Y Volume based range
sharding a lgorithm

ˋˋorg.apache.shardingsphere.sharding.algorithm
.shard-
ing.range.VolumeBasedRangeShardingAlgorithm
` <https://github.com
/ a p a c h e / s h a r d i
ngsphere/blob /mas‐
ter/features/sharding/core/src/main/java/org/
apache/shardingsphere/sharding/algorithm/sharding
/range/VolumeBasedRangeShardingAlgorithm.java>ˋ__

A U T O _ I N T E R V A
L

Y Mutable interval
sharding a lgorithm

`org.apache.
shardingsphere.
sharding.algorit
hm.sharding.
datetime.
AutoIntervalShardingAlgorith
m <https:/ /gi thub.c
o m / a p a c h e / s h a r
d i n g s p h e r e / b lo
b/master/features/sharding/core/src/main/java/org
/apache/shardingsphere/sharding/algorithm/shardin
g/datetime/AutoIntervalShardingAlgorithm.java>ˋ__

I N T E R V A L N Fixed interval shard‐
ing a lgorithm

`org.apache.
shardingsphere.
sharding .
algorithm.
sharding.
datetime.
IntervalShardingAlgo
rithm <h t t p s :
/ / g i t hub . c om / apa
che/shardingsphere
/blob/master/features/sharding/core/src/main/java
/org/apache/shardingsphere/sharding/algorithm/sha
rd‐
ing/datetime/IntervalShardingAlgorithm.java>ˋ__

C L A S S _ B A S E D N Class based sharding a
lgorithm

`org.apache.
shardingsphere.
sharding.algorit
hm.sharding.
classbased.
ClassBasedShardingAlgorith
m <https:/ /gi thub.c
o m / a p a c h e / s h a r
d i n g s p h e r e / b lo
b/master/features/sharding/core/src/main/java/org
/apache/shardingsphere/sharding/algorithm/shardin
g/classbased/ClassBasedShardingAlgorithm.java>ˋ__

I N L I N E N Inline sharding a lgo‐
rithm

`org.apache.
shardingsphere.
sharding.
algorithm.
sharding.inline.
InlineSharding
Algorithm
<https://github.com
/apache/shardingsp
here/blob/master/features/sharding/core/src/main/
java/org/apache/shardingsphere/sharding/algorithm
/shard‐
ing/inline/InlineShardingAlgorithm.java>ˋ__

C O M P L E X _ I N L I
N E

N Complex inline shard‐
ing a lgorithm

`org.apache.
shardingsphere.
sharding.algori
thm.sharding.
complex.
ComplexInlineShardingAlgorit
hm <h t t p s :
//github.com/apach
e/shardingsphere/bl
ob/master/features/sharding/core/src/main/java/or
g/apache/shardingsphere/sharding/algorithm/shardi
ng/inline/ComplexInlineShardingAlgorithm.java>ˋ__

H I N T _ I N L I N E N Hint inline sharding a
lgorithm

`org.apache.
shardingsphere.
shar ding.
algorithm.
sharding.hint.
HintInlineShardingAl
gorithm <h t t p s :
/ / g i t h u b . c o m / a
pache/shardingsphe
re/blob/master/features/sharding/core/src/main/ja
va/org/apache/shardingsphere/sharding/algorithm/s
hard‐
ing/hint/HintInlineShardingAlgorithm.java>ˋ__

10.3. Data Sharding 427

https://github.com/apache/shar
https://github.com/apache/shar
https://github.com/apache/shar
https://github.com/apache/sharding
https://github.com/apache/sharding
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob/m
https://github.com/apache/shardingsphere/blob
https://github.com/apache/shardingsphere/blob
https://github.com/apache/shardingsphere/blob
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere
https://github.com/apache/shardingsphere
https://github.com/apache/shardingsphere
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsp
https://github.com/apache/shardingsp
https://github.com/apache/shardingsphere/bl
https://github.com/apache/shardingsphere/bl
https://github.com/apache/shardingsphere/bl
https://github.com/apache/shardingsphe
https://github.com/apache/shardingsphe
https://github.com/apache/shardingsphe

Apache ShardingSphere document

10.3.2 KeyGenerateAlgorithm

Fully-qualified class name

`org.apache.shardingsphere.sharding.spi.KeyGenerateAlgorithm <https://github.com
/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphe
re/sharding/spi/KeyGenerateAlgorithm.java>ˋ__

Definition

Distributed Key Generating Algorithm definition

Implementation classes

•
C o n f i g u r a t i o n T y p e *

Descr iption Fully-qualified class name

S N OW F L A K E Sn owflake key g enerate al
gorithm

`org.apache.
shardingsphere.
sharding.algorithm.
keyg en.
SnowflakeKeyGenerateAlgorithm
<h t t p s : / / g i t h u b . c om
/apache/shardingsphere/blob/master/features/sharding/c
ore/src/main/java/org/apache/shardingsphere/sharding/a
lgo‐
rithm/keygen/SnowflakeKeyGenerateAlgorithm.java>ˋ__

U U I D UUID key g enerate al gorithm `org.apache.
shardingsphere.
sharding.algo
rithm.keygen.
UUIDKeyGenerateAlgorithm
<h t t p s : / / g i t h u
b.com/apache/shardingsphere/blob/master/features/shard
ing/core/src/main/java/org/apache/shardingsphere/shard
ing/algorithm/keygen/UUIDKeyGenerateAlgorithm.java>ˋ__

10.3. Data Sharding 428

https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/KeyGenerateAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/KeyGenerateAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/KeyGenerateAlgorithm.java
https://github.com
https://githu

Apache ShardingSphere document

10.3.3 ShardingAuditAlgorithm

Fully-qualified class name

`org.apache.shardingsphere.sharding.spi.ShardingAuditAlgorithm <https://github.c
om/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsp
here/sharding/spi/ShardingAuditAlgorithm.java>ˋ__

Definition

Sharding audit algorithm definition

Implementation classes

•
C o n f i g u r a t i o n T y p e *

Desc ription Fully-qualified class name

DM L _ S H A R D I N G _ C O N
D I T I O N S

Prohibit DML auditing a lgo‐
rithm without sharding co ndi‐
tions

`org.apache.
shardingsphere.shard
ing.algorithm.audit.
DMLShardingConditionsShardingAud
itAlgorithm <https : / /g i th
ub.com/apache/shardingsph
ere/blob/master/features/sharding/core/src/main/java
/org/apache/shardingsphere/sharding/algorithm/audit/
DMLShardingCondi‐
tionsShardingAuditAlgo‐
rithm.java>ˋ__

10.3.4 DatetimeService

Fully-qualified class name

`org.apache.shardingsphere.timeservice.spi.TimestampService <https://github.com
/apache/shardingsphere/blob/master/kernel/time‐service/api/src/main/java/org/apache/shardingsp
here/timeservice/spi/TimestampService.java>ˋ__

10.3. Data Sharding 429

https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAuditAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAuditAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/sharding/api/src/main/java/org/apache/shardingsphere/sharding/spi/ShardingAuditAlgorithm.java
https://github.com/apache/shardingsph
https://github.com/apache/shardingsph
https://github.com/apache/shardingsphere/blob/master/kernel/time-service/api/src/main/java/org/apache/shardingsphere/timeservice/spi/TimestampService.java
https://github.com/apache/shardingsphere/blob/master/kernel/time-service/api/src/main/java/org/apache/shardingsphere/timeservice/spi/TimestampService.java
https://github.com/apache/shardingsphere/blob/master/kernel/time-service/api/src/main/java/org/apache/shardingsphere/timeservice/spi/TimestampService.java

Apache ShardingSphere document

Definition

Obtain the current date for routing definition

Implementation classes

C on fi
gu ra ti
on T yp
e

Des cription Fully-qualified class name

Da ta
ba se Ti
me st
am pS
er vi ce

Get the cur‐
rent time
from the
database for
routing

`org.apache. shardingsphere.timeservice.type.
database.DatabaseTi mestampService <https://github.com
/apache/shardin gsphere/blob/master/kernel/time‐service/type/databa
se/src/main/java/org/apache/shardingsphere/timeserv
ice/type/database/DatabaseTimestampService.java>ˋ__

Sy st
em Ti
me st
am pS
er vi ce

Get the cur‐
rent time
from the
ap plication
system for
routing

`o rg.apache.shardingsphere.timeservice.type.
system.Sy stemTimestampService <h t t p s : / / g i t h u b . c om
/ a p a c h e / s hardingsphere/blob/master/kernel/time‐service/type/
system/src/main/java/org/apache/shardingsphere/time ser‐
vice/type/system/SystemTimestampService.java>ˋ__

10.4 Readwrite-splitting

10.4.1 ReadQueryLoadBalanceAlgorithm

Fully-qualified class name

`org.apache.shardingsphere.readwritesplitting.spi.ReadQueryLoadBalanceAlgorithm
<https://github.com/apache/shardingsphere/blob/master/features/readwrite‐splitting/api/src/main/
java/org/apache/shardingsphere/readwritesplitting/spi/ReadQueryLoadBalanceAlgorithm.java>ˋ__

Definition

Read query load balance algorithm’s definition

10.4. Readwrite-splitting 430

https://github.com/apache/shardin
https://github.com/apache/shardin
https://github.com/apache/s
https://github.com/apache/s
https://github.com/apache/shardingsphere/blob/master/features/readwrite-splitting/api/src/main/java/org/apache/shardingsphere/readwritesplitting/spi/ReadQueryLoadBalanceAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/readwrite-splitting/api/src/main/java/org/apache/shardingsphere/readwritesplitting/spi/ReadQueryLoadBalanceAlgorithm.java

Apache ShardingSphere document

Implementation classes

•
C o n f i g u r a t i o n T y p e *

Descr iption Fully-qualified class name

R O U N D _ R O B I N the read d atabase load b
alancer al gorithm based on
polling

`or g.apache.
shardingsphere.
readwritesplitting.
algorithm.l oadbalance.
RoundRobinReadQueryLoadBalanceAlgorithm
< https://github.com/apache/
shardingsphere/blob/master/f
eatures/readwrite‐
splitting/core/src/main/java/org/apa
che/shardingsphere/readwritesplitting/algorithm/loadba
lance/RoundRobinReadQueryLoadBalanceAlgorithm.java>ˋ__

R A N D OM the read d atabase load b
alancer al gorithm based on
random

ˋˋorg.apache.shardingsphere.readwritesplitting.alg
orithm.loadbalance.RandomReadQueryLoadBalanceAlgorithm
` <https://github.com/apach
e/shardingsphere/blob/mast
er/features/readwrite‐
splitting/core/src/main/java/org
/apache/shardingsphere/readwritesplitting/algorithm/lo
adbal‐
ance/RandomReadQueryLoadBalanceAlgorithm.java>ˋ__

W E I G H T the read d atabase load b
alancer al gorithm based on
weight

ˋˋorg.apache.shardingsphere.readwritesplitting.alg
orithm.loadbalance.WeightReadQueryLoadBalanceAlgorithm
` <https://github.com/apach
e/shardingsphere/blob/mast
er/features/readwrite‐
splitting/core/src/main/java/org
/apache/shardingsphere/readwritesplitting/algorithm/lo
adbal‐
ance/WeightReadQueryLoadBalanceAlgorithm.java>ˋ__

10.5 SQL Audit

10.5.1 SQLAuditor

Fully-qualified class name

`org.apache.shardingsphere.infra.executor.audit.SQLAuditor <https://github.com/a
pache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/

10.5. SQL Audit 431

https://github.com/apache/shardingsphere/blob/master/f
https://github.com/apache/shardingsphere/blob/master/f
https://github.com/apache/shardingsphere/blob/mast
https://github.com/apache/shardingsphere/blob/mast
https://github.com/apache/shardingsphere/blob/mast
https://github.com/apache/shardingsphere/blob/mast
https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java
https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java
https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java

Apache ShardingSphere document

executor/audit/SQLAuditor.java>ˋ__

Definition

SQL auditor class definition

Implementation classes

C on fi gu ra ti on T yp e •
D e s c r i p t i o n *

Fully-qualified class name

Sh ar di ng S h a r d i n g a u d i t o r `org.apache.
shardingsphere.
sharding.auditor.
Sharding SQLAuditor
<h t tp s : / / g i t hub . com/apa
che / s h a r d i n g sphe r e / b lo
b/master/features/sharding/core/src/main/java/org/apache/s
harding‐
sphere/sharding/auditor/ShardingSQLAuditor.java>ˋ__

10.6 Encryption

10.6.1 EncryptAlgorithm

Fully-qualified class name

`org.apache.shardingsphere.encrypt.spi.EncryptAlgorithm <https://github.com/apach
e/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encr
ypt/spi/EncryptAlgorithm.java>ˋ__

Definition

Data encrypt algorithm definition

10.6. Encryption 432

https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java
https://github.com/apache/shardingsphere/blob/master/infra/executor/src/main/java/org/apache/shardingsphere/infra/executor/audit/SQLAuditor.java
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blo
https://github.com/apache/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encrypt/spi/EncryptAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encrypt/spi/EncryptAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/encrypt/api/src/main/java/org/apache/shardingsphere/encrypt/spi/EncryptAlgorithm.java

Apache ShardingSphere document

Implementation classes

•
C o n f i g u r a t i o n T y p e *

•
Descri ption*

Fully-qualified class name

A E S AES data e ncrypt alg orithm `org.apache.
shardingsphere.enc
rypt.algorithm.encrypt.
AESEncryptAlgorithm
<h t t p s : //
github.com/apache/shardingsphere/blob/master/features/
en‐
crypt/core/src/main/java/org/apache/shardingsphere/e
ncrypt/algorithm/standard/AESEncryptAlgorithm.java>ˋ__

R C 4 RC4 data e ncrypt alg orithm `org.apache.
shardingsphere.enc
rypt.algorithm.encrypt.
RC4EncryptAlgorithm
<h t t p s : //
github.com/apache/shardingsphere/blob/master/features/
en‐
crypt/core/src/main/java/org/apache/shardingsphere/e
ncrypt/algorithm/standard/RC4EncryptAlgorithm.java>ˋ__

M D 5 MD5 as sisted query e ncrypt
alg orithm

`org.apache.
shardingsphere.encrypt.
alg orithm.encrypt.
MD5EncryptAlgorithm
<h t t p s : / / g i t h u b .c
om/apache/shardingsphere/blob/master/features/encrypt/
core/src/main/java/org/apache/shardingsphere/encrypt/a
lgo‐
rithm/assisted/MD5AssistedEncryptAlgorithm.java>ˋ__

C H A R _ D I G E S T _ L I K E Data encr yption algo rithms
for like q ueries

`org.apache.
shardingsphere.encrypt.
algorithm. like.
CharDigestLikeEncryptAlgorithm
<h t t p s : / / g i t h ub.
com/apache/shardingsphere/blob/master/features/encrypt
/core/src/main/java/org/apache/shardingsphere/encrypt/
algo‐
rithm/like/CharDigestLikeEncryptAlgorithm.java>ˋ__

10.6. Encryption 433

https://
https://
https://github.c
https://github

Apache ShardingSphere document

10.7 Data Masking

10.7.1 MaskAlgorithm

Fully-qualified class name

`org.apache.shardingsphere.mask.spi.MaskAlgorithm <https://github.com/apache/shardi
ngsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/Mask
Algorithm.java>ˋ__

Definition

Data masking algorithm definition

10.7. Data Masking 434

https://github.com/apache/shardingsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/MaskAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/MaskAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/mask/api/src/main/java/org/apache/shardingsphere/mask/spi/MaskAlgorithm.java

Apache ShardingSphere document

Implementation classes

C onfi gura
tion T ype

Desc ription Fully-qualified class name

MD5 Data mask‐
ing a lgo‐
rithm based
on MD5

`org.apache.shardingsphere.m ask.
algorithm.hash.MD5MaskAlgorithm <h t t p s : / / gi
thub.com/apache/shardingsphere/blob/master/featur
es/mask/core/src/main/java/org/apache/shardingsph
ere/mask/algorithm/hash/MD5MaskAlgorithm.java>ˋ__

KEE P_FI
RST_ N_LA
ST_M

Keep first n
last m data
masking a
lgorithm

`org. apache.shardingsphere.mask.algorithm.cover.
KeepFi rstNLastMMaskAlgorithm <h t t p s : / / g i t h u b . c
o m / a p a c he/shardingsphere/blob/master/features/mask/core/
src/main/java/org/apache/shardingsphere/mask/algo
rithm/cover/KeepFirstNLastMMaskAlgorithm.java>ˋ__

KEEP _FRO
M_X_ TO_Y

Keep from
x to y data
masking a
lgorithm

ˋ org.apache.shardingsphere.mask.algorithm.
cover. KeepFromXToYMaskAlgorithm <h t t p s : / / g i t h u b
. c o m /a pache/shardingsphere/blob/master/features/mask/co
re/src/main/java/org/apache/shardingsphere/mask/a lgo‐
rithm/cover/KeepFromXToYMaskAlgorithm.java>ˋ__

MAS K_FI
RST_ N_LA
ST_M

Mask first n
last m data
masking a
lgorithm

`org. apache.shardingsphere.mask.algorithm.cover.
MaskFi rstNLastMMaskAlgorithm <h t t p s : / / g i t h u b . c
o m / a p a c he/shardingsphere/blob/master/features/mask/core/
src/main/java/org/apache/shardingsphere/mask/algo
rithm/cover/MaskFirstNLastMMaskAlgorithm.java>ˋ__

MASK _FRO
M_X_ TO_Y

Mask from
x to y data
masking a
lgorithm

ˋ org.apache.shardingsphere.mask.algorithm.
cover. MaskFromXToYMaskAlgorithm <h t t p s : / / g i t h u b
. c o m /a pache/shardingsphere/blob/master/features/mask/co
re/src/main/java/org/apache/shardingsphere/mask/a lgo‐
rithm/cover/MaskFromXToYMaskAlgorithm.java>ˋ__

M ASK_
BEFO RE_S
PECI AL_C
HARS

Mask before
special chars
data masking
a lgorithm

`org.apache .shardingsphere.mask.algorithm.cover.
MaskBeforeSp ecialCharsAlgorithm <https://github.com
/ a p a c h e/ shardingsphere/blob/master/features/mask/core/src
/main/java/org/apache/shardingsphere/mask/algorit
hm/cover/MaskBeforeSpecialCharsAlgorithm.java>ˋ__

MASK _AFT
ER_S PECI
AL_C HARS

Mask after
special chars
data masking
a lgorithm

`org.apac he.shardingsphere.mask.algorithm.cover.
MaskAfterS pecialCharsAlgorithm <h t t p s : / / g i t h u b . c
om / a p a c h e /shardingsphere/blob/master/features/mask/core/sr
c/main/java/org/apache/shardingsphere/mask/algori
thm/cover/MaskAfterSpecialCharsAlgorithm.java>ˋ__

PER SONA
L_ID ENTI
TY_N
UMBE
R_RA
NDOM
_REP LACE

Personal
identity
number ran‐
dom replace
data masking
a lgorithm

`org.apache.shardingsphere.mask.algorithm .
replace.PersonalIdentityNumberRandomReplaceAlgor
ithm <h t t p s : / / g i t h u b . c o m / a p a c h e / s h a r d i n g s p
h e r e / blob/master/features/mask/core/src/main/java/org/
apache/shardingsphere/mask/algorithm/replace/Pers onalIden‐
tityNumberRandomReplaceAlgorithm.java>ˋ__

MIL ITAR
Y_ID ENTI
TY_N
UMBE
R_RA
NDOM
_REP LACE

Military
identity
number ran‐
dom replace
data masking
a lgorithm

`org.apache.shardingsphere.mask.algorithm .
replace.MilitaryIdentityNumberRandomReplaceAlgor
ithm <h t t p s : / / g i t h u b . c o m / a p a c h e / s h a r d i n g s p
h e r e / blob/master/features/mask/core/src/main/java/org/
apache/shardingsphere/mask/algorithm/replace/Mili taryIdenti‐
tyNumberRandomReplaceAlgorithm.java>ˋ__

TELE PHON
E_RA
NDOM
_REP LACE

T elephone
random re‐
place data
masking a
lgorithm

`org.apache.sha rdingsphere.mask.algorithm.
replace.TelephoneRando mReplaceAlgo-
rithm <h t t p s : / / g i t h u b . c o m / a p a c h e / sh ard‐
ingsphere/blob/master/features/mask/core/src/m
ain/java/org/apache/shardingsphere/mask/algorithm /re‐
place/TelephoneRandomReplaceAlgorithm.java>ˋ__

LA NDLI
NE_N
UMBE
R_RA
NDOM
_REP LACE

Landline
number ran‐
dom replace
data masking
a lgorithm

`org.apache .shardingsphere.mask.algorithm.
replace.LandlineNu mberRandomAlgorithm <https://github
.com/apache/ shardingsphere/blob/master/features/mask/core/src
/main/java/org/apache/shardingsphere/mask/algorit
hm/replace/LandlineNumberRandomAlgorithm.java>ˋ__

GENE RIC_
TABL E_RA
NDOM
_REP LACE

Generic ta‐
ble random
replace a
lgorithm

`org.apache.shardings phere.mask.algorithm.
replace.GenericTableRandomRe placeAlgo-
rithm <h t t p s : / / g i t h u b . c o m / a p a c h e / s h a r d
ingsphere/blob/master/features/mask/core/src/main
/java/org/apache/shardingsphere/mask/algorithm/re
place/GenericTableRandomReplaceAlgorithm.java>ˋ__

UN IFIE
D_CR EDIT
_COD E_RA
NDOM
_REP LACE

Unified
credit code
random
replace a
lgorithm

`org.apache.shardingsphere.mask .algorithm.
replace.UnifiedCreditCodeRandomReplace Al-
gorithm <h t t p s : / / g i t h u b . c o m / a p a c h e / s h a r d i n g
sp here/blob/master/features/mask/core/src/main/java
/org/apache/shardingsphere/mask/algorithm/replace /Unified‐
CreditCodeRandomReplaceAlgorithm.java>ˋ__

10.7. Data Masking 435

https://gi
https://github.com/apac
https://github.com/apac
https://github.com/a
https://github.com/a
https://github.com/apac
https://github.com/apac
https://github.com/a
https://github.com/a
https://github.com/apache/
https://github.com/apache/
https://github.com/apache
https://github.com/apache
https://github.com/apache/shardingsphere/
https://github.com/apache/shardingsphere/
https://github.com/apache/shardingsphere/
https://github.com/apache/shardingsphere/
https://github.com/apache/sh
https://github.com/apache/
https://github.com/apache/
https://github.com/apache/shard
https://github.com/apache/shardingsp
https://github.com/apache/shardingsp

Apache ShardingSphere document

10.8 Shadow DB

10.8.1 ShadowAlgorithm

Fully-qualified class name

`org.apache.shardingsphere.shadow.spi.ShadowAlgorithm <https://github.com/apache/
shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shado
w/spi/ShadowAlgorithm.java>ˋ__

Definition

Shadow algorithm’s definition

10.8. Shadow DB 436

https://github.com/apache/shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shadow/spi/ShadowAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shadow/spi/ShadowAlgorithm.java
https://github.com/apache/shardingsphere/blob/master/features/shadow/api/src/main/java/org/apache/shardingsphere/shadow/spi/ShadowAlgorithm.java

Apache ShardingSphere document

Implementation classes

•
C o n f i g u r a t i o n T y p e *

Desc ription Fully-qualified class name

V A L U E _ M A T C H Match shadow al gorithms
based on field values

`org.apache.shard
ingsphere.shadow.
algorithm.shadow.
column.ColumnValueM
atchedShadowAlgo-
rithm <h t t p s : / / g i t h u b
. c o m / a p a c h e / sh arding‐
sphere/blob/master/features/shadow/core/src/mai
n/java/org/apache/shardingsphere/shadow/algorithm/sha
dow/column/ColumnValueMatchedShadowAlgorithm.java>ˋ__

R E G E X _ M A T C H Regular matching shadow a
lgorithm based on field value

`org.apache.shard
ingsphere.shadow.
algorithm.shadow.
column.ColumnRegexM
atchedShadowAlgo-
rithm <h t t p s : / / g i t h u b
. c o m / a p a c h e / sh arding‐
sphere/blob/master/features/shadow/core/src/mai
n/java/org/apache/shardingsphere/shadow/algorithm/sha
dow/column/ColumnRegexMatchedShadowAlgorithm.java>ˋ__

S Q L _ H I N T Shadow a lgorithm on sql hint `org.apache.
shardingsphere.shadow.
algorithm. shadow.hint.
SQLHintShadowAlgorithm
<h t t p s : / / g i t h ub.
com/apache/shardingsphere/blob/master/features/shadow
/core/src/main/java/org/apache/shardingsphere/shadow/
algo‐
rithm/shadow/hint/SQLHintShadowAlgorithm.java>ˋ__

10.9 Observability

10.9.1 PluginLifecycleService

Fully-qualified class name

`org.apache.shardingsphere.agent.spi.PluginLifecycleService <https://github.com
/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi

10.9. Observability 437

https://github.com/apache/sh
https://github.com/apache/sh
https://github.com/apache/sh
https://github.com/apache/sh
https://github
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java

Apache ShardingSphere document

/PluginLifecycleService.java>ˋ__

Definition

Plug lifecycle management interface

Implementation classes

•
C o n f i g u r a t i o n T y p e *

•
Descri ption*

Fully-qualified class name

F i l e L ogging plug lif ecycle mana
gement class

`org.apa che.
shardingsphere.agent.
plugin.logging.file.
FileLoggin gPluginLife-
cycleService <h t t p s : / / g i
thub.com/apache/sh arding‐
sphere/blob/master/agent/plugins/logging/type/fil
e/src/main/java/org/apache/shardingsphere/agent/plugin/
log‐
ging/file/FileLoggingPluginLifecycleService.java>ˋ__

P r o m e t h e u s Prom etheus plug lif ecycle
mana gement class

`org.apache.
shardingsphe re.
agent.plugin.
metrics.prometheus.
PrometheusPluginLife
cycleService <https://gith
ub.com/apache/shardingspher
e/blob/master/agent/plugins/metrics/type/prometheus/src
/main/java/org/apache/shardingsphere/agent/plugin/metri
cs/prometheus/PrometheusPluginLifecycleService.java>ˋ__

O p e n T e l e m e t r y Op enTele metryT racing plug
lif ecycle mana gement class

`org.apache.
shardingsphere.
agent.plugin.tracing.
opent elemetry.
OpenTelemetryTracingPluginLifecycleService
< h t t p s : / / g i t h u b . c o m
/ a p a c h e / s h a r d i n g s p
h e r e / b l o b / m a s t e r / a g
ent/plugins/tracing/type/opentelemetry/src/main/java/or
g/apache/shardingsphere/agent/plugin/tracing/openteleme
try/OpenTelemetryTracingPluginLifecycleService.java>ˋ__

10.9. Observability 438

https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/shardingsphere/blob/master/agent/api/src/main/java/org/apache/shardingsphere/agent/spi/PluginLifecycleService.java
https://github.com/apache/sh
https://github.com/apache/sh
https://github.com/apache/shardingspher
https://github.com/apache/shardingspher
https://github.com/apache/shardingsphere/blob/master/ag
https://github.com/apache/shardingsphere/blob/master/ag
https://github.com/apache/shardingsphere/blob/master/ag

11
Test Manual

Apache ShardingSphere provides test engines for integration, module and performance.

11.1 Integration Test

Provide point to point test which connect real ShardingSphere and database instances.

They define SQLs in XML files, engine run for each database independently. All test engines designed
to modify the configuration files to execute all assertions without any Java code modification. It does
not depend on any third‐party environment, ShardingSphere‐Proxy and database used for testing are
provided by docker image.

11.2 Module Test

Provide module test engine for complex modules.

They define SQLs in XML files, engine run for each database independently too It includes SQL parser
and SQL rewriter modules.

11.3 Performance Test

Provide multiple performance test methods, includes Sysbench, JMH or TPCC and so on.

439

Apache ShardingSphere document

11.4 Sysbench Test

11.5 Integration Test

11.5.1 Design

The integration testing consists of three modules: test case, test environment and test engine.

Test case

It is used to define the SQL to be tested and the assertion data of the test results.

Each case defines one SQL, which can define multiple database execution types.

Test environment

It is used to set up the database and ShardingSphere‐Proxy environment for running test cases. The
environment is classified into environment preparation mode, database type, and scenario.

Environment preparation mode is divided into Native and Docker, and Embed type will be supported
in the future. ‐ Native environment is used for test cases to run directly in the test environment pro‐
vided by the developer, suitable for debugging scenarios; ‐ Docker environment is directly built when
Maven runs the Docker‐Compose plug‐in. It is suitable for cloud compilation environment and testing
ShardingSphere‐Proxy, such as GitHub Action; ‐ Embed environment is built when the test framework
automatically builds embeddedMySQL. It is suitable for the local environment test of ShardingSphere‐
JDBC.

Currently, the Native environment is adopted by default, and ShardingSphere‐JDBC + H2 database is
used to run test cases. Maven’s-pit. Env.docker parameter specifies how theDocker environment
is run. In the future, ShardingSphere‐JDBC + MySQL of the Embed environment will be adopted to
replace the default environment type used when Native executes test cases.

Database types currently support MySQL, PostgreSQL, SQLServer, and Oracle, and test cases can be
executed using ShardingSphere‐JDBC or ShardingSphere‐Proxy.

Scenarios are used to test the supporting rules of ShardingSphere. Currently, data sharding and
read/write splitting and other related scenarios are supported, and the combination of scenarios will
be improved continuously in the future.

11.4. Sysbench Test 440

Apache ShardingSphere document

Test engine

It is used to read test cases in batches and execute and assert test results line by line.

The test engine arranges test cases and environments to test as many scenarios as possible with the
fewest test cases.

Each SQL generates a test report in the combination of database type * access port type *
SQL execution mode * JDBC execution mode * Scenario. Currently, each dimension is
supported as follows:

• Database types: H2, MySQL, PostgreSQL, SQLServer, and Oracle;

• Access port types: ShardingSphere‐JDBC and ShardingSphere‐Proxy;

• SQL execution modes: Statement and PreparedStatement;

• JDBC execution modes: execute and executeQuery/executeUpdate;

• Scenarios: database shards, table shards, read/write splitting and sharding + read/write splitting

Therefore, one SQLwill drive Database type (5) * Access port type (2) * SQL execution
mode (2) * JDBC execution mode (2) * Scenario (4) = 160 test cases to be run to achieve
the pursuit of high quality.

11.5.2 User Guide

Module path：test/e2e/sql

Test case configuration

SQL test case is inresources/cases/${SQL-TYPE}/${SQL-TYPE}-integration-test-cases.
xml.

The case file format is as follows:

<integration-test-cases>
<test-case sql="${SQL}">

<assertion parameters="${value_1}:${type_1}, ${value_2}:${type_2}"
expected-data-file="${dataset_file_1}.xml" />

<!-- ... more assertions -->
<assertion parameters="${value_3}:${type_3}, ${value_4}:${type_4}"

expected-data-file="${dataset_file_2}.xml" />
</test-case>

<!-- ... more test cases -->
</integration-test-cases>

The lookup rule of expected-data-fileis as follows: 1. Find the file dataset\
${SCENARIO_NAME}\${DATABASE_TYPE}\${dataset_file}.xml in the same level directory; 2.
Find the file dataset\${SCENARIO_NAME}\${dataset_file}.xml in the same level directory;

11.5. Integration Test 441

Apache ShardingSphere document

3. Find the file dataset\${dataset_file}.xml in the same level directory; 4. Report an error if
none of them are found.

The assertion file format is as follows:

<dataset>
<metadata>

<column name="column_1" />
<!-- ... more columns -->
<column name="column_n" />

</metadata>
<row values="value_01, value_02" />
<!-- ... more rows -->
<row values="value_n1, value_n2" />

</dataset>

Environment configuration

${SCENARIO-TYPE} Refers to the scenario name used to identify a unique scenario during the test
engine run. ${DATABASE-TYPE} refers to the database types.

Native environment configuration

Directory: src/test/resources/env/${SCENARIO-TYPE}

• scenario-env.properties: data source configuration；
• rules.yaml: rule configuration；
• databases.xml: name of the real database；
• dataset.xml: initialize the data；
• init-sql\${DATABASE-TYPE}\init.sql: initialize the database and table structure；
• authority.xml: to be supplemented.

Docker environment configuration

Directory: src/test/resources/docker/${SCENARIO-TYPE}

• docker-compose.yml: Docker‐Compose config files, used for Docker environment startup；
• proxy/conf/config-${SCENARIO-TYPE}.yaml: rule configuration。

The Docker environment configuration provides a remote debugging port for ShardingSphere‐
Proxy. You can find the second exposed port for remote debugging in ˋˋshardingsphere‐proxyˋˋ of
the ˋˋdocker‐comemage. ymlˋˋ file.

11.5. Integration Test 442

Apache ShardingSphere document

Run the test engine

Configure the running environment of the test engine

Control the test engine by configuring src/test/resources/env/engine-env.properties.

All attribute values can be dynamically injected via Maven command line -D.

Scenario type. Multiple values can be separated by commas. Optional values: db,
tbl, dbtbl_with_replica_query, replica_query
it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

Whether to run additional test cases
it.run.additional.cases=false

Configure the environment type. Only one value is supported. Optional value:
docker or null. The default value: null.
it.cluster.env.type=${it.env}
Access port types to be tested. Multiple values can be separated by commas.
Optional value: jdbc, proxy. The default value: jdbc
it.cluster.adapters=jdbc

Scenario type. Multiple values can be separated by commas. Optional value: H2,
MySQL, Oracle, SQLServer, PostgreSQL
it.cluster.databases=H2,MySQL,Oracle,SQLServer,PostgreSQL

Run debuggingmode

• Standard test engine Run org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.General${SQL-TYPE}E2EIT to start the test engines of different SQL types.

• Batch test engine Run org.apache.shardingsphere.test.integration.engine.dml.
BatchDMLE2EIT to start the batch test engine for the test addBatch() provided for DML state‐
ments.

• Additional test engine Run org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.Additional${SQL-TYPE}E2EIT to start the test engine with more JDBC
method calls. Additional test engines need to be enabled by setting it.run.additional.
cases=true.

11.5. Integration Test 443

Apache ShardingSphere document

Run Docker mode

./mvnw -B clean install -f test/e2e/pom.xml -Pit.env.docker -Dit.cluster.
adapters=proxy,jdbc -Dit.scenarios=${scenario_name_1,scenario_name_2,scenario_name_
n} -Dit.cluster.databases=MySQL

Run the above command to build aDockermirrorapache/shardingsphere-proxy-test:latest
used for integration testing. If you only modify the test code, you can reuse the existing test mirror
without rebuilding it. Skip themirrorbuilding and run the integration testingdirectlywith the following
command:

./mvnw -B clean install -f test/e2e/sql/pom.xml -Pit.env.docker -Dit.cluster.
adapters=proxy,jdbc -Dit.scenarios=${scenario_name_1,scenario_name_2,scenario_name_
n} -Dit.cluster.databases=MySQL

Remote debug Proxy code in Docker container

Remote debug Proxy started by docker image

E2E Test Proxy image opens the 3308 port by default for remote debugging of the instance in the con‐
tainer. Use the following method to connect and debug the Proxy code in the container with IDE tools
such as IDEA:

IDEA ‐> Run ‐> Edit Configurations ‐> Add New Configuration ‐> Remote JVM Debug

Edit the corresponding information: ‐ Name: A descriptive name, such as e2e‐debug. ‐ Host: A IP that
can access docker, such as 127.0.0.1 ‐ Port: debugging port 3308. ‐ use module classpath: The root
directory of the project shardingsphere.

After editing the above information, run Run ‐> Run ‐> e2e‐debug in IDEA to start the remote debug of
IDEA.

Remote debug Proxy started by Testcontainer

Note: If the Proxy container is started by Testcontainer, because the 3308 port is not
exposed before Testcontainer starts, it cannot be debugged by the Remote debug
Proxy started by docker image method. Debug Testcontainer started Proxy
container by the following method: ‐ Set a breakpoint in the relevant startup class
of Testcontainer, for example, after the line containerComposer.start(); in
BaseE2EIT#setUp() in the suite test, at this time, the relevant containers must have
been started. ‐ Access breakpoint debugging mode through shortcut key Alt + F8,
and view the port mapped by the 3308 mapping of the Proxy object under the con‐
tainerComposer (the external mapping port of Testcontainer is random). For exam‐
ple, the expression ((ShardingSphereProxyClusterContainer)((java.util.
LinkedList)((ITContainers)((ClusterContainerComposer)containerComposer).
containers).dockerContainers).getLast()).getMappedPort(3308) get the

11.5. Integration Test 444

Apache ShardingSphere document

mapped random port 51837.(or get mapped port by docker ps) ‐ See the Remote debug
Proxy started by docker imagemethod, set the Name, Host, Port, and use the port
got in previous step.

After editing the above information, run Run ‐> Run ‐> e2e‐debug in IDEA to start the remote debug of
IDEA.

Notice

1. To test Oracle, add an Oracle driver dependency to pom.xml.

2. In order to ensure the integrity and legibility of the test data, 10 database shards and 10 table
shards are used in the sharding of the integration testing, which takes a long time to run the test
cases completely.

11.6 Performance Test

Provides result for each performance test tools.

11.6.1 SysBench ShardingSphere-Proxy Empty Rule Performance Test

Objectives

Compare the performance of ShardingSphere‐Proxy and MySQL 1. Sysbench directly carries out stress
testing on theperformance ofMySQL. 1. Sysbenchdirectly carries out stress testing on ShardingSphere‐
Proxy (directly connect MySQL).

Based on the above two groups of experiments, we can figure out the loss of MySQL when using
ShardingSphere‐Proxy.

Set up the test environment

Server information

1. Db‐related configuration: it is recommended that the memory is larger than the amount of data
to be tested, so that the data is stored in the memory hot block, and the rest can be adjusted.

2. ShardingSphere‐Proxy‐related configuration: it is recommended to use a high‐performance,
multi‐core CPU, and other configurations can be customized.

3. Disable swap partitions on all servers involved in the stress testing.

11.6. Performance Test 445

Apache ShardingSphere document

Database

[mysqld]
innodb_buffer_pool_size=${MORE_THAN_DATA_SIZE}
innodb-log-file-size=3000000000
innodb-log-files-in-group=5
innodb-flush-log-at-trx-commit=0
innodb-change-buffer-max-size=40
back_log=900
innodb_max_dirty_pages_pct=75
innodb_open_files=20480
innodb_buffer_pool_instances=8
innodb_page_cleaners=8
innodb_purge_threads=2
innodb_read_io_threads=8
innodb_write_io_threads=8
table_open_cache=102400
log_timestamps=system
thread_cache_size=16384
transaction_isolation=READ-COMMITTED

Appropriate tuning can be considered to magnify the underlying DB performance, so
that the experiment doesn't subject to DB performance bottleneck.

Stress testing tool

Refer to sysbench’s GitHub

ShardingSphere-Proxy

bin/start.sh

-Xmx16g -Xms16g -Xmn8g # Adjust JVM parameters

config.yaml

databaseName: sharding_db

dataSources:
ds_0:
url: jdbc:mysql://***.***.***.***:****/test?serverTimezone=UTC&useSSL=false #

Parameters can be adjusted appropriately
username: test
password:

11.6. Performance Test 446

https://github.com/akopytov/sysbench

Apache ShardingSphere document

connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200 # The maximum ConnPool is set to ${the number of concurrencies

in stress testing}, which is consistent with the number of concurrencies in stress
testing to shield the impact of additional connections in the process of stress
testing.

minPoolSize: 200 # The minimum ConnPool is set to ${the number of concurrencies
in stress testing}, which is consistent with the number of concurrencies in stress
testing to shield the impact of connections initialization in the process of stress
testing.

rules: []

Test phase

Environment setup

sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-
user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-
size=1000000 --report-interval=10 --time=100 --threads=200 cleanup
sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-
user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-
size=1000000 --report-interval=10 --time=100 --threads=200 prepare

Stress testing command

sysbench oltp_read_write --mysql-host=${DB/PROXY_IP} --mysql-port=${DB/PROXY_PORT}
--mysql-user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --
table-size=1000000 --report-interval=10 --time=100 --threads=200 run

Stress testing report analysis

sysbench 1.0.20 (using bundled LuaJIT 2.1.0-beta2)
Running the test with following options:
Number of threads: 200
Report intermediate results every 10 second(s)
Initializing random number generator from current time
Initializing worker threads...
Threads started!
Report test results every 10 seconds, and the number of tps, reads per second,
writes per second, and the total response time of more than 95th percentile.
[10s] thds: 200 tps: 11161.70 qps: 223453.06 (r/w/o: 156451.76/44658.51/22342.80)

11.6. Performance Test 447

Apache ShardingSphere document

lat (ms,95%): 27.17 err/s: 0.00 reconn/s: 0.00
...
[120s] thds: 200 tps: 11731.00 qps: 234638.36 (r/w/o: 164251.67/46924.69/23462.
00) lat (ms,95%): 24.38 err/s: 0.00 reconn/s: 0.00
SQL statistics:

queries performed:
read: 19560590 # number of

reads
write: 5588740 # number of

writes
other: 27943700 # number of

other operations (COMMIT etc.)
total: 27943700 # the total

number
transactions: 1397185 (11638.59 per sec.) # number of

transactions (per second)
queries: 27943700 (232771.76 per sec.) # number of

statements executed (per second)
ignored errors: 0 (0.00 per sec.) # number of

ignored errors (per second)
reconnects: 0 (0.00 per sec.) # number of

reconnections (per second)

General statistics:
total time: 120.0463s # total

time
total number of events: 1397185 # toal

number of transactions

Latency (ms):
min: 5.37 # minimum

latency
avg: 17.13 # average

latency
max: 109.75 # maximum

latency
95th percentile: 24.83 # average

response time of over 95th percentile.
sum: 23999546.19

Threads fairness:
events (avg/stddev): 6985.9250/34.74 # On

average, 6985.9250 events were completed per thread, and the standard deviation is
34.74

execution time (avg/stddev): 119.9977/0.01 # The
average time of each thread is 119.9977 seconds, and the standard deviation is 0.01

11.6. Performance Test 448

Apache ShardingSphere document

Noticeable features

1. CPU utilization ratio of the server where ShardingSphere‐Proxy resides. It is better to make full
use of CPU.

2. I/O of the server disk where the DB resides. The lower the physical read value is, the better.

3. Network IO of the server involved in the stress testing.

11.6.2 BenchmarkSQL ShardingSphere-Proxy Sharding Performance Test

Objective

BenchmarkSQL tool is used to test the sharding performance of ShardingSphere‐Proxy.

Method

ShardingSphere‐Proxy supports the TPC‐C test through BenchmarkSQL 5.0. In addition to the con‐
tent described in this document, BenchmarkSQL is operated according to the original document
HOW-TO-RUN.txt.

Fine tuning to test tools

Unlike stand‐alone database stress testing, distributed database solutions inevitably face trade‐offs in
functions. It is recommended to make the following adjustments when using BenchmarkSQL to carry
out stress testing on ShardingSphere‐Proxy.

Remove the foreign key and extraHistID

Modify run/runDatabaseBuild.sh in the BenchmarkSQL directory at line 17.

Before modification:

AFTER_LOAD="indexCreates foreignKeys extraHistID buildFinish"

After modification:

AFTER_LOAD="indexCreates buildFinish"

11.6. Performance Test 449

https://sourceforge.net/projects/benchmarksql/

Apache ShardingSphere document

Stress testing environment or parameter recommendations

Note: None of the parametersmentioned in this section are absolute values and need to be adjusted
based on actual test results.

It is recommended to run ShardingSphere using Java 17

ShardingSphere can be compiled using Java 8.

When using Java 17, maximize the ShardingSphere performance by default.

ShardingSphere data sharding recommendations

The data sharding of BenchmarkSQL can use the warehouse id in each table as the sharding key.

One of the tables bmsql_item has no warehouse id and has a fixed data volume of 100,000 rows: ‐
You can take i_id as a sharding key. However, the same Proxy connection may hold connections to
multiple different data sources at the same time. ‐ Or you can give up sharding and store it in a single
data source. But a data sourcemay be under great pressure. ‐ Or youmay choose range‐based sharding
for i_id, such as 1‐50000 for data source 0 and 50001‐100000 for data source 1.

BenchmarkSQL has the following SQL involving multiple tables:

SELECT c_discount, c_last, c_credit, w_tax
FROM bmsql_customer

JOIN bmsql_warehouse ON (w_id = c_w_id)
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

AND o_id = (
SELECT max(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
)

If the warehouse id is used as the sharding key, the tables involved in the above SQL can be configured
as bindingTable:

rules:
- !SHARDING
bindingTables:

- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_line

For the data sharding configuration with warehouse id as the sharding key, refer to the appendix of this
document.

11.6. Performance Test 450

Apache ShardingSphere document

PostgreSQL JDBC URL parameter recommendations

Adjust the JDBCURL in the configurationfile used byBenchmarkSQL, that is, the value of the parameter
name conn: ‐ Adding the parameter defaultRowFetchSize=50may reduce the number of fetch for
multi‐row result sets. You need to increase or decrease the number according to actual test results. ‐
Adding the parameter reWriteBatchedInserts=true may reduce the time spent on bulk inserts,
such as preparing data or bulk inserts for the New Order business. Whether to enable the operation
depends on actual test results.

props.pg file excerpt. It is suggested to change the parameter value of conn in line 3.

db=postgres
driver=org.postgresql.Driver
conn=jdbc:postgresql://localhost:5432/postgres?defaultRowFetchSize=50&
reWriteBatchedInserts=true
user=benchmarksql
password=PWbmsql

ShardingSphere-Proxy server.yaml parameter recommendations

The default value of proxy-backend-query-fetch-size is ‐1. Changing it to about 50 can mini‐
mize the number of fetch for multi‐row result sets.

The default value of proxy-frontend-executor-size is CPU * 2 and can be reduced to about CPU
* 0.5 based on actual test results. If NUMA is involved, set this parameter to the number of physical
cores per CPU based on actual test results.

server.yaml file excerpt:

props:
proxy-backend-query-fetch-size: 50
proxy-frontend-executor-size: 32 # 4*32C aarch64
proxy-frontend-executor-size: 12 # 2*12C24T x86

Appendix

BenchmarkSQL data sharding reference configuration

Adjust pool size according to the actual stress testing process.

databaseName: bmsql_sharding
dataSources:

ds_0:
url: jdbc:postgresql://db0.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000

11.6. Performance Test 451

Apache ShardingSphere document

idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_1:
url: jdbc:postgresql://db1.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_2:
url: jdbc:postgresql://db2.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_3:
url: jdbc:postgresql://db3.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

rules:
- !SHARDING
bindingTables:

- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_line

defaultDatabaseStrategy:
none:

defaultTableStrategy:
none:

keyGenerators:
snowflake:

type: SNOWFLAKE
tables:

bmsql_config:
actualDataNodes: ds_0.bmsql_config

11.6. Performance Test 452

Apache ShardingSphere document

bmsql_warehouse:
actualDataNodes: ds_${0..3}.bmsql_warehouse
databaseStrategy:
standard:
shardingColumn: w_id
shardingAlgorithmName: mod_4

bmsql_district:
actualDataNodes: ds_${0..3}.bmsql_district
databaseStrategy:
standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_4

bmsql_customer:
actualDataNodes: ds_${0..3}.bmsql_customer
databaseStrategy:
standard:
shardingColumn: c_w_id
shardingAlgorithmName: mod_4

bmsql_item:
actualDataNodes: ds_${0..3}.bmsql_item
databaseStrategy:
standard:
shardingColumn: i_id
shardingAlgorithmName: mod_4

bmsql_history:
actualDataNodes: ds_${0..3}.bmsql_history
databaseStrategy:

standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_4

bmsql_oorder:
actualDataNodes: ds_${0..3}.bmsql_oorder
databaseStrategy:
standard:

shardingColumn: o_w_id
shardingAlgorithmName: mod_4

bmsql_stock:
actualDataNodes: ds_${0..3}.bmsql_stock
databaseStrategy:
standard:

shardingColumn: s_w_id
shardingAlgorithmName: mod_4

11.6. Performance Test 453

Apache ShardingSphere document

bmsql_new_order:
actualDataNodes: ds_${0..3}.bmsql_new_order
databaseStrategy:
standard:
shardingColumn: no_w_id
shardingAlgorithmName: mod_4

bmsql_order_line:
actualDataNodes: ds_${0..3}.bmsql_order_line
databaseStrategy:
standard:
shardingColumn: ol_w_id
shardingAlgorithmName: mod_4

shardingAlgorithms:
mod_4:

type: MOD
props:
sharding-count: 4

BenchmarkSQL 5.0 PostgreSQL statement list

Create tables

create table bmsql_config (
cfg_name varchar(30) primary key,
cfg_value varchar(50)

);

create table bmsql_warehouse (
w_id integer not null,
w_ytd decimal(12,2),
w_tax decimal(4,4),
w_name varchar(10),
w_street_1 varchar(20),
w_street_2 varchar(20),
w_city varchar(20),
w_state char(2),
w_zip char(9)

);

create table bmsql_district (
d_w_id integer not null,
d_id integer not null,
d_ytd decimal(12,2),
d_tax decimal(4,4),

11.6. Performance Test 454

Apache ShardingSphere document

d_next_o_id integer,
d_name varchar(10),
d_street_1 varchar(20),
d_street_2 varchar(20),
d_city varchar(20),
d_state char(2),
d_zip char(9)

);

create table bmsql_customer (
c_w_id integer not null,
c_d_id integer not null,
c_id integer not null,
c_discount decimal(4,4),
c_credit char(2),
c_last varchar(16),
c_first varchar(16),
c_credit_lim decimal(12,2),
c_balance decimal(12,2),
c_ytd_payment decimal(12,2),
c_payment_cnt integer,
c_delivery_cnt integer,
c_street_1 varchar(20),
c_street_2 varchar(20),
c_city varchar(20),
c_state char(2),
c_zip char(9),
c_phone char(16),
c_since timestamp,
c_middle char(2),
c_data varchar(500)

);

create sequence bmsql_hist_id_seq;

create table bmsql_history (
hist_id integer,
h_c_id integer,
h_c_d_id integer,
h_c_w_id integer,
h_d_id integer,
h_w_id integer,
h_date timestamp,
h_amount decimal(6,2),
h_data varchar(24)

);

create table bmsql_new_order (

11.6. Performance Test 455

Apache ShardingSphere document

no_w_id integer not null,
no_d_id integer not null,
no_o_id integer not null

);

create table bmsql_oorder (
o_w_id integer not null,
o_d_id integer not null,
o_id integer not null,
o_c_id integer,
o_carrier_id integer,
o_ol_cnt integer,
o_all_local integer,
o_entry_d timestamp

);

create table bmsql_order_line (
ol_w_id integer not null,
ol_d_id integer not null,
ol_o_id integer not null,
ol_number integer not null,
ol_i_id integer not null,
ol_delivery_d timestamp,
ol_amount decimal(6,2),
ol_supply_w_id integer,
ol_quantity integer,
ol_dist_info char(24)

);

create table bmsql_item (
i_id integer not null,
i_name varchar(24),
i_price decimal(5,2),
i_data varchar(50),
i_im_id integer

);

create table bmsql_stock (
s_w_id integer not null,
s_i_id integer not null,
s_quantity integer,
s_ytd integer,
s_order_cnt integer,
s_remote_cnt integer,
s_data varchar(50),
s_dist_01 char(24),
s_dist_02 char(24),
s_dist_03 char(24),

11.6. Performance Test 456

Apache ShardingSphere document

s_dist_04 char(24),
s_dist_05 char(24),
s_dist_06 char(24),
s_dist_07 char(24),
s_dist_08 char(24),
s_dist_09 char(24),
s_dist_10 char(24)

);

Create indexes

alter table bmsql_warehouse add constraint bmsql_warehouse_pkey
primary key (w_id);

alter table bmsql_district add constraint bmsql_district_pkey
primary key (d_w_id, d_id);

alter table bmsql_customer add constraint bmsql_customer_pkey
primary key (c_w_id, c_d_id, c_id);

create index bmsql_customer_idx1
on bmsql_customer (c_w_id, c_d_id, c_last, c_first);

alter table bmsql_oorder add constraint bmsql_oorder_pkey
primary key (o_w_id, o_d_id, o_id);

create unique index bmsql_oorder_idx1
on bmsql_oorder (o_w_id, o_d_id, o_carrier_id, o_id);

alter table bmsql_new_order add constraint bmsql_new_order_pkey
primary key (no_w_id, no_d_id, no_o_id);

alter table bmsql_order_line add constraint bmsql_order_line_pkey
primary key (ol_w_id, ol_d_id, ol_o_id, ol_number);

alter table bmsql_stock add constraint bmsql_stock_pkey
primary key (s_w_id, s_i_id);

alter table bmsql_item add constraint bmsql_item_pkey
primary key (i_id);

11.6. Performance Test 457

Apache ShardingSphere document

NewOrder business

stmtNewOrderSelectWhseCust

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderSelectDist

SELECT d_tax, d_next_o_id
FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?
FOR UPDATE

stmtNewOrderUpdateDist

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderInsertOrder

INSERT INTO bmsql_oorder (
o_id, o_d_id, o_w_id, o_c_id, o_entry_d,
o_ol_cnt, o_all_local)

VALUES (?, ?, ?, ?, ?, ?, ?)

stmtNewOrderInsertNewOrder

INSERT INTO bmsql_new_order (
no_o_id, no_d_id, no_w_id)

VALUES (?, ?, ?)

stmtNewOrderSelectStock

SELECT s_quantity, s_data,
s_dist_01, s_dist_02, s_dist_03, s_dist_04,
s_dist_05, s_dist_06, s_dist_07, s_dist_08,
s_dist_09, s_dist_10

FROM bmsql_stock
WHERE s_w_id = ? AND s_i_id = ?
FOR UPDATE

stmtNewOrderSelectItem

SELECT i_price, i_name, i_data
FROM bmsql_item
WHERE i_id = ?

11.6. Performance Test 458

Apache ShardingSphere document

stmtNewOrderUpdateStock

UPDATE bmsql_stock
SET s_quantity = ?, s_ytd = s_ytd + ?,

s_order_cnt = s_order_cnt + 1,
s_remote_cnt = s_remote_cnt + ?

WHERE s_w_id = ? AND s_i_id = ?

stmtNewOrderInsertOrderLine

INSERT INTO bmsql_order_line (
ol_o_id, ol_d_id, ol_w_id, ol_number,
ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_dist_info)

VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)

Payment business

stmtPaymentSelectWarehouse

SELECT w_name, w_street_1, w_street_2, w_city,
w_state, w_zip

FROM bmsql_warehouse
WHERE w_id = ?

stmtPaymentSelectDistrict

SELECT d_name, d_street_1, d_street_2, d_city,
d_state, d_zip

FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?

stmtPaymentSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtPaymentSelectCustomer

SELECT c_first, c_middle, c_last, c_street_1, c_street_2,
c_city, c_state, c_zip, c_phone, c_since, c_credit,
c_credit_lim, c_discount, c_balance

FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?
FOR UPDATE

stmtPaymentSelectCustomerData

11.6. Performance Test 459

Apache ShardingSphere document

SELECT c_data
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateWarehouse

UPDATE bmsql_warehouse
SET w_ytd = w_ytd + ?
WHERE w_id = ?

stmtPaymentUpdateDistrict

UPDATE bmsql_district
SET d_ytd = d_ytd + ?
WHERE d_w_id = ? AND d_id = ?

stmtPaymentUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateCustomerWithData

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1,
c_data = ?

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentInsertHistory

INSERT INTO bmsql_history (
h_c_id, h_c_d_id, h_c_w_id, h_d_id, h_w_id,
h_date, h_amount, h_data)

VALUES (?, ?, ?, ?, ?, ?, ?, ?)

11.6. Performance Test 460

Apache ShardingSphere document

Order Status business

stmtOrderStatusSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtOrderStatusSelectCustomer

SELECT c_first, c_middle, c_last, c_balance
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtOrderStatusSelectLastOrder

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

AND o_id = (
SELECT max(o_id)

FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

)

stmtOrderStatusSelectOrderLine

SELECT ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_delivery_d

FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?
ORDER BY ol_w_id, ol_d_id, ol_o_id, ol_number

Stock level business

stmtStockLevelSelectLow

SELECT count(*) AS low_stock FROM (
SELECT s_w_id, s_i_id, s_quantity

FROM bmsql_stock
WHERE s_w_id = ? AND s_quantity < ? AND s_i_id IN (

SELECT ol_i_id
FROM bmsql_district
JOIN bmsql_order_line ON ol_w_id = d_w_id
AND ol_d_id = d_id
AND ol_o_id >= d_next_o_id - 20
AND ol_o_id < d_next_o_id

11.6. Performance Test 461

Apache ShardingSphere document

WHERE d_w_id = ? AND d_id = ?
)

) AS L

Delivery BG business

stmtDeliveryBGSelectOldestNewOrder

SELECT no_o_id
FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ?
ORDER BY no_o_id ASC

stmtDeliveryBGDeleteOldestNewOrder

DELETE FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ? AND no_o_id = ?

stmtDeliveryBGSelectOrder

SELECT o_c_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGUpdateOrder

UPDATE bmsql_oorder
SET o_carrier_id = ?
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGSelectSumOLAmount

SELECT sum(ol_amount) AS sum_ol_amount
FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateOrderLine

UPDATE bmsql_order_line
SET ol_delivery_d = ?
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance + ?,

c_delivery_cnt = c_delivery_cnt + 1
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

11.6. Performance Test 462

Apache ShardingSphere document

11.7 Module Test

Provides test engine with each complex modules.

11.7.1 SQL Parser Test

Prepare Data

Not like Integration test, SQL parse test does not need a specific database environment, just define the
sql to parse, and the assert data:

SQL Data

As mentioned sql-case-id in Integration test, test‐case‐id could be shared in different module
to test, and the file is at shardingsphere-sql-parser/shardingsphere-sql-parser-test/
src/main/resources/sql/supported/${SQL-TYPE}/*.xml

Assert Data

The assert data is atshardingsphere-sql-parser/shardingsphere-sql-parser-test/src/
main/resources/case/${SQL-TYPE}/*.xml in that xml file, it could assert against the table
name, token or sql condition and so on. For example:

<parser-result-sets>
<parser-result sql-case-id="insert_with_multiple_values">

<tables>
<table name="t_order" />

</tables>
<tokens>

<table-token start-index="12" table-name="t_order" length="7" />
</tokens>
<sharding-conditions>

<and-condition>
<condition column-name="order_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
</and-condition>
<and-condition>

<condition column-name="order_id" table-name="t_order" operator=
"EQUAL">

11.7. Module Test 463

Apache ShardingSphere document

<value literal="2" type="int" />
</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="2" type="int" />

</condition>
</and-condition>

</sharding-conditions>
</parser-result>

</parser-result-sets>

When these configs are ready, launch the test engine in shardingsphere-sql-parser/
shardingsphere-sql-parser-test to test SQL parse.

11.7.2 SQL Rewrite Test

Target

Facing logic databases and tables cannot be executed directly in actual databases. SQL rewrite is used
to rewrite logic SQL into rightly executable ones in actual databases, including two parts, correctness
rewrite and optimization rewrite. rewrite tests are for these targets.

Test

The rewrite tests are in the test folder under sharding-core/sharding-core-rewrite . Follow‐
ings are the main part for rewrite tests:

• test engine

• environment configuration

• assert data

Test engine is the entrance of rewrite tests, just like other test engines, through Junit Parameterized,
read every and each data in the xml file under the target test type in test\resources, and then assert
by the engine one by one

Environment configuration is the yaml file under test type under test\resources\yaml. The con‐
figuration file contains dataSources, shardingRule, encryptRule and other info. for example:

dataSources:
db: !!com.zaxxer.hikari.HikariDataSource
driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:db;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:

sharding Rules

11.7. Module Test 464

https://github.com/junit-team/junit4/wiki/Parameterized-tests

Apache ShardingSphere document

rules:
- !SHARDING

tables:
t_account:

actualDataNodes: db.t_account_${0..1}
tableStrategy:

standard:
shardingColumn: account_id
shardingAlgorithmName: account_table_inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

t_account_detail:
actualDataNodes: db.t_account_detail_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: account_detail_table_inline

bindingTables:
- t_account, t_account_detail

shardingAlgorithms:
account_table_inline:

type: INLINE
props:

algorithm-expression: t_account_${account_id % 2}
account_detail_table_inline:

type: INLINE
props:

algorithm-expression: t_account_detail_${account_id % 2}
keyGenerators:
snowflake:

type: SNOWFLAKE

Assert data are in the xml under test type in test\resources. In the xml file, yaml-rulemeans the
environment configuration file path, input contains the target SQL and parameters, output contains
the expected SQL and parameters. The db-type described the type for SQL parse, default is SQL92.
For example:

<rewrite-assertions yaml-rule="yaml/sharding/sharding-rule.yaml">
<!-- to change SQL parse type, change db-type -->
<rewrite-assertion id="create_index_for_mysql" db-type="MySQL">

<input sql="CREATE INDEX index_name ON t_account ('status')" />
<output sql="CREATE INDEX index_name ON t_account_0 ('status')" />
<output sql="CREATE INDEX index_name ON t_account_1 ('status')" />

</rewrite-assertion>
</rewrite-assertions>

After set up the assert data and environment configuration, rewrite test engine will assert the corre‐

11.7. Module Test 465

Apache ShardingSphere document

sponding SQL without any Java code modification.

11.8 Pipeline E2E Test

11.8.1 Objectives

Verify the functional correctness of pipeline scenarios.

11.8.2 Test environment type

Currently, NATIVE and DOCKER are available. 1. NATIVE : Run on developer local machine. Need
to start ShardingSphere‐Proxy instance and database instance by developer. It could be used for local
debugging. 2. DOCKER : Run on docker started by Maven plugin. It could be used for GitHub Actions,
and it could be used for local debugging too.

Supported databases: MySQL, PostgreSQL and openGuass.

11.8.3 User guide

Module path: test/e2e/operation/pipeline.

Environment setup

${DOCKER-IMAGE} refers to the name of a docker mirror, such as mysql:5.7. ${DATABASE-TYPE}
refers to database types.

Directory: src/test/resources/env/ ‐ it-env.properties: Environment setup configu‐
ration file. ‐ ${DATABASE-TYPE}/server.yaml: ShardingSphere‐Proxy configuration fi;e. ‐
${DATABASE-TYPE}/initdb.sql: Database initialization SQL file. ‐ ${DATABASE-TYPE}/*.cnf,
.conf: Database configuration files. ‐ common/.xml: DistSQL files. ‐ scenario/: SQL files for
different scenarios.

Test case

Test case example: MySQLMigrationGeneralE2EIT. Functions included: ‐ Database‐level migration (all
tables). ‐ Table‐level migration (any number). ‐ Verify migration data consistency. ‐ Support restart
during data migration. ‐ Support integer primary keys during data migration. ‐ Support string primary
keys during data migration. ‐ A non‐administrator account can be used to migrate data.

11.8. Pipeline E2E Test 466

Apache ShardingSphere document

Running the test case

Any property of it-env.properties could be defined by Maven command line parameter -D, and
its priority is higher than configuration file.

NATIVE environment setup

1. Start ShardingSphere‐Proxy (port should be 3307): refer to proxy startup guide, or run org.
apache.shardingsphere.proxy.Bootstrap in IDE after modifying proxy/bootstrap/
src/main/resources/conf/server.yaml.

Refer to following files for proxy server.yaml configuration: ‐
test/e2e/operation/pipeline/src/test/resources/env/mysql/server‐8.yaml ‐
test/e2e/operation/pipeline/src/test/resources/env/postgresql/server.yaml ‐
test/e2e/operation/pipeline/src/test/resources/env/opengauss/server.yaml

2. Start registry center (e.g. ZooKeeper) and database.

3. Take MySQL as an example, it-env.properties could be configured as follows:

pipeline.it.env.type=NATIVE
pipeline.it.native.database=mysql
pipeline.it.native.mysql.username=root
pipeline.it.native.mysql.password=root
pipeline.it.native.mysql.port=3306

4. Find test class and start it on IDE.

DOCKER environment setup

Refer to .github/workflows/e2e-pipeline.yml for more details.

1. Build docker image.

./mvnw -B clean install -am -pl test/e2e/operation/pipeline -Pit.env.docker -
DskipTests

Running the above command will build a docker image apache/
shardingsphere-proxy-test:latest.

The docker image has port 3308 for remote debugging.

If only test code is modified, you could reuse existing docker image.

2. Configure it-env.properties.

pipeline.it.env.type=DOCKER
pipeline.it.docker.mysql.version=mysql:5.7

3. Run test cases.

11.8. Pipeline E2E Test 467

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/

Apache ShardingSphere document

Take MySQL as an example:

./mvnw -nsu -B install -f test/e2e/operation/pipeline/pom.xml -Dpipeline.it.env.
type=docker -Dpipeline.it.docker.mysql.version=mysql:5.7

11.8. Pipeline E2E Test 468

12
Reference

This chapter contains a section of technical implementation with Apache ShardingSphere, which pro‐
vide the reference with users and developers.

12.1 Database Compatibility

• SQL compatibility

SQL is the standard language for users to communicate with databases. The SQL parsing engine is
responsible for parsing SQL strings into abstract syntax trees so that Apache ShardingSphere can un‐
derstand and implement its incremental function. ShardingSphere currently supports MySQL, Post‐
greSQL, SQLServer, Oracle, openGauss, and SQL dialects conforming to the SQL92 standard. Due to
the complexity of SQL syntax, a few SQL are not supported for now.

469

Apache ShardingSphere document

• Database protocol compatibility

Apache ShardingSphere currently implements MySQL and PostgreSQL protocols according to different
data protocols.

• Supported features

Apache ShardingSphere provides distributed collaboration capabilities for databases. At the same time,
it abstracts some database features to the upper layer for unified management, so as to facilitate users.

Therefore, native SQL will not deliver the features provided uniformly to the database, and a message
will be displayed indicating that the operation is not supported. Users can replace it with methods
provided by ShardingSphere.

12.2 Database Gateway

Apache ShardingSphere provides the ability for SQL dialect translation to achieve automatic conversion
between database dialects. For example, users can use MySQL client to connect ShardingSphere and
send SQLbased onMySQLdialect. ShardingSphere can automatically identify user protocol and storage
node type, automatically complete SQL dialect conversion, and access heterogeneous storage nodes
such as PostgreSQL.

12.3 Management

12.3.1 Data Structure in Registry Center

Under a defined namespace, rules, props and metadata nodes persist in YAML. Modifying nodes
can dynamically refresh configurations. nodes persist the runtime node of the database access object,
to distinguish different database access instances. statistics persist data records in system tables.

namespace
├──rules # Global rule

configuration
├ ├──transaction
├ ├ ├──active_version

12.2. Database Gateway 470

Apache ShardingSphere document

├ ├ ├──versions
├ ├ ├ ├──0
├──props # Properties configuration
├ ├──active_verison
├ ├──versions
├ ├ ├──0
├──metadata # Metadata configuration
├ ├──${databaseName}
├ ├ ├──data_sources
├ ├ ├ ├──units # Storage unit

configuration
├ ├ ├ ├ ├──${dataSourceName}
├ ├ ├ ├ ├ ├──active_verison # Active version
├ ├ ├ ├ ├ ├──versions # version list
├ ├ ├ ├ ├ ├ ├──0
├ ├ ├ ├ ├──...
├ ├ ├ ├──nodes # Storage node

configuration
├ ├ ├ ├ ├──${dataSourceName}
├ ├ ├ ├ ├ ├──active_verison # Active version
├ ├ ├ ├ ├ ├──versions # version list
├ ├ ├ ├ ├ ├ ├──0
├ ├ ├ ├ ├──...
├ ├ ├──schemas # Schema list
├ ├ ├ ├──${schemaName}
├ ├ ├ ├ ├──tables # Table configuration
├ ├ ├ ├ ├ ├──${tableName}
├ ├ ├ ├ ├ ├ ├──active_verison # Active version
├ ├ ├ ├ ├ ├ ├──versions # version list
├ ├ ├ ├ ├ ├ ├ ├──0
├ ├ ├ ├ ├ ├──...
├ ├ ├ ├ ├──views # View configuration
├ ├ ├ ├ ├ ├──${viewName}
├ ├ ├ ├ ├ ├ ├──active_verison # Active version
├ ├ ├ ├ ├ ├ ├──versions # version list
├ ├ ├ ├ ├ ├ ├ ├──0
├ ├ ├ ├ ├ ├──...
├ ├ ├──rules
├ ├ ├ ├──sharding
├ ├ ├ ├ ├──algorithms
├ ├ ├ ├ ├ ├──${algorithmName} # algorithm name
├ ├ ├ ├ ├ ├ ├──active_verison # Active version
├ ├ ├ ├ ├ ├ ├──versions # version list
├ ├ ├ ├ ├ ├ ├ ├──0
├ ├ ├ ├ ├ ├──...
├ ├ ├ ├ ├──key_generators
├ ├ ├ ├ ├ ├──${keyGeneratorName} # keyGenerator name
├ ├ ├ ├ ├ ├ ├──active_verison # Active version

12.3. Management 471

Apache ShardingSphere document

├ ├ ├ ├ ├ ├ ├──versions # version list
├ ├ ├ ├ ├ ├ ├ ├──0
├ ├ ├ ├ ├ ├──...
├ ├ ├ ├ ├──tables
├ ├ ├ ├ ├ ├──${tableName} # logic table name
├ ├ ├ ├ ├ ├ ├──active_verison # Active version
├ ├ ├ ├ ├ ├ ├──versions # version list
├ ├ ├ ├ ├ ├ ├ ├──0
├ ├ ├ ├ ├ ├──...
├──nodes
├ ├──compute_nodes
├ ├ ├──online
├ ├ ├ ├──proxy
├ ├ ├ ├ ├──UUID # Proxy instance identifier
├ ├ ├ ├ ├──....
├ ├ ├ ├──jdbc
├ ├ ├ ├ ├──UUID # JDBC instance identifier
├ ├ ├ ├ ├──....
├ ├ ├──status
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──worker_id
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──show_process_list_trigger
├ ├ ├ ├──process_id:UUID
├ ├ ├ ├──....
├ ├ ├──labels
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├──storage_nodes
├ ├ ├──${databaseName.groupName.ds}
├ ├ ├──${databaseName.groupName.ds}
├──statistics
├ ├──shardingsphere
├ ├ ├──schemas
├ ├ ├ ├──shardingsphere
├ ├ ├ ├ ├──tables # system tables
├ ├ ├ ├ ├ ├──sharding_table_statistics # sharding

statistics table
├ ├ ├ ├ ├ ├ ├──8a2dcb0d97c3d86ef77b3d4651a1d7d0 # md5
├ ├ ├ ├ ├ ├──cluster_information # cluster information

table

12.3. Management 472

Apache ShardingSphere document

/rules

These are the global rule configurations, transaction configuration.

transaction:
defaultType: XA
providerType: Atomikos

/props

These are the properties’configurations. Please refer to the Configuration Manual for more details.

kernel-executor-size: 20
sql-show: true

/metadata/${databaseName}/data_sources/units/ds_0/versions/0

Database connection pools, whose properties (e.g. DBCP, C3P0, Druid and HikariCP) are to be config‐
ured by the user.

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-1

/metadata/${databaseName}/data_sources/nodes/ds_0/versions/0

Database connection pools, whose properties (e.g. DBCP, C3P0, Druid and HikariCP) are to be config‐
ured by the user.

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1

12.3. Management 473

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/props/

Apache ShardingSphere document

password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-1

/metadata/${databaseName}/rules/sharding/tables/t_order/versions/0

Sharding configuration。

actualDataNodes: ds_${0..1}.t_order_${0..1}
auditStrategy:

allowHintDisable: true
auditorNames:
- t_order_dml_sharding_conditions_0

databaseStrategy:
standard:
shardingAlgorithmName: t_order_database_inline
shardingColumn: user_id

keyGenerateStrategy:
column: another_id
keyGeneratorName: t_order_snowflake

logicTable: t_order
tableStrategy:

standard:
shardingAlgorithmName: t_order_table_inline
shardingColumn: order_id

/metadata/databaseName/schemas/{schemaName}/tables/t_order/versions/0

Use separate node storage for each table.

name: t_order # Table name
columns: # Columns

id: # Column name
caseSensitive: false
dataType: 0
generated: false
name: id
primaryKey: trues

order_id:
caseSensitive: false
dataType: 0

12.3. Management 474

Apache ShardingSphere document

generated: false
name: order_id
primaryKey: false

indexs: # Index
t_user_order_id_index: # Index name
name: t_user_order_id_index

/nodes/compute_nodes

It includes running instance information of database access object, with sub‐nodes as the identifiers of
the currently running instance, which is automatically generated at each startup using UUID.

The identifiers are temporary nodes, which are registered when instances are online and cleared when
instances are offline. The registry center monitors the change of those nodes to govern the database
access of running instances and other things.

/nodes/storage_nodes

It can orchestrate a replica database, and delete or disable data dynamically.

12.4 Sharding

The figure below shows how shardingworks. According towhether query and optimization are needed,
it can be divided into the Simple Push Down process and SQL Federation execution engine process.
Simple Push Down process consists of SQL parser => SQL binder => SQL router => SQL
rewriter => SQL executor => result merger, mainly used to deal with SQL execution in
standard sharding scenarios. SQL Federation execution engine consists of SQL parser => SQL
binder => logical optimization => physical optimization => data fetcher
=> operator calculation. This process performs logical optimization and physical optimization
internally, during which the standard kernel procedure is adopted to route, rewrite, execute andmerge
the optimized logical SQL.

12.4. Sharding 475

Apache ShardingSphere document

12.4.1 SQL Parser

It is divided into the lexical parser and syntactic parser. SQL is first split into indivisible words through
a lexical parser.

The syntactic parser is then used to analyze SQL and ultimately extract the parsing context, which can
include tables, options, ordering items, grouping items, aggregation functions, pagination information,
query conditions, and placeholders that may be modified.

12.4. Sharding 476

Apache ShardingSphere document

12.4.2 SQL Route

The sharding strategy configured by the user is matched according to the parsing context and the rout‐
ing path is generated. Currently, sharding router and broadcast router are supported.

12.4.3 SQL Rewrite

Rewrite SQL into statements that can be executed correctly in a real database. SQL rewriting is divided
into rewriting for correctness and rewriting for optimization.

12.4.4 SQL Execution

It executes asynchronously through a multithreaded executor.

12.4.5 Result Merger

Itmergesmultiple execution result sets to achieve output through the unified JDBC interface. The result
merger includes the streammerger, memory merger and appended merger using decorator mode.

12.4.6 Query Optimization

Supported by the experimental Federation Execution Engine, it optimizes complex queries such as as‐
sociated queries and sub‐queries and supports distributed queries across multiple database instances.
It internally optimizes query plans using relational algebra to query results through optimal plans.

12.4.7 Parse Engine

SQL is relatively simple comparedwith other programming languages, but it’s still a complete program‐
ming language. Therefore, there’s no essential difference between parsing SQL syntax and parsing
other languages (such as Java, C and Go, etc.).

Abstract Syntax Tree

The parsing process is divided into lexical parsing and syntactic parsing. The lexical parser is used to
split SQL into indivisible atomic symbols called Tokens.

Tokens are classified into keywords, expressions, literals, and operators based on the dictionaries pro‐
vided by different database dialects. The syntactic parser is then used to convert the output of the
lexical parser into an abstract syntax tree.

For example:

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

12.4. Sharding 477

Apache ShardingSphere document

After the above SQL is parsed, its AST (Abstract Syntax Tree) is as follows:

The tokens for keywords in the AST are green, while the tokens for variables are red, and gray ones
indicate that further splitting is required.

Finally, the domain model is traversed through the abstract syntax tree by visitor; the context required
for sharding is extracted through the domainmodel (SQLStatement); and then,mark locations thatmay
need rewriting.

The parsing context for sharding includes select items, table, sharding condition, auto‐increment pri‐
mary key, and Order By, Group By, and pagination information (Limit, Rownum, Top). The SQL parsing
process is irreversible.

Each Token is parsed in the original SQL order, providing high performance. Taking the similarities
and differences of SQL dialects of various databases into consideration, the SQL dialect dictionary of
various databases is provided in the parsing module.

SQL Parser Engine

Iteration

SQL parsing is the core of sharding solutions, and its performance and compatibility are the most im‐
portant indicators. ShardingSphere’s SQL parser has undergone three iterations and upgrades.

To achieve high performance and fast implementation, the first generation of SQL parsers used Druid
prior to V1.4.x. In practical tests, its performance far exceeds that of other parsers.

12.4. Sharding 478

Apache ShardingSphere document

The second generation of SQL parsers started from V1.5.x. ShardingSphere uses a completely self‐
developed SQL parsing engine. Owing to different purposes, ShardingSphere does not need to convert
SQL into a complete abstract syntax tree, nor does it require a second traversal through the accessor
pattern. It uses a half‐parsingmethod to extract only the context requiredbydata sharding, thus further
improving the performance and compatibility of SQL parsing.

The third generation of SQL parsers, starting with V3.0.x, attempts to use ANTLR as a generator of SQL
parsing engines and uses Visit to obtain SQL statements from the AST. Since V5.0.x, the architecture
of the parsing engine has been restructured and adjusted. Moreover, the AST obtained from the first
parsing is stored in the cache so that the parsing results of the same SQL can be directly obtained next
time to improve parsing efficiency. Therefore, it is recommended that you use PreparedStatement, a
SQL‐precompiled method, to improve performance.

Features

• Independent SQL parsing engine

• The syntax rules can be easily expanded and modified (using ANTLR)

• Support multiple dialects

Database Status

MySQL perfect supported
PostgreSQL perfect supported
SQLServer supported
Oracle supported
SQL92 supported
openGauss supported

API Usage

• Introducing Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-engine</artifactId>
<version>${project.version}</version>

</dependency>
<!-- According to the needs, introduce the parsing module of the specified dialect
(take MySQL as an example), you can add all the supported dialects, or just what
you need -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-mysql</artifactId>
<version>${project.version}</version>

</dependency>

12.4. Sharding 479

Apache ShardingSphere document

• Obtain AST

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine("MySQL", cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);

• Obtain SQLStatement

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine("MySQL", cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(sql, "STATEMENT",
useCache, new Properties());
SQLStatement sqlStatement = sqlVisitorEngine.visit(parseASTNode);

• SQL Formatting

new SQLFormatEngine(databaseType, cacheOption).format(sql, useCache, props);

Example：

12.4. Sharding 480

Apache ShardingSphere document

Original SQL Formatted SQL

select a+1 asb, namen from table1 join table2
where id=1 and name=‘lu’;

SELECT a + 1 AS b, name nFROM table1 JOIN ta‐
ble2WHERE id = 1 and name =‘lu’
;

select id, name, age, sex, ss, yy from table1
where id=1;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1;

select id, name, age, count(*) as n, (select id,
name, age, sex from table2 where id=2) as
sid, yyyy from table1 where id=1;

SELECT id , name , age , COUNT(*)
AS n, (SELECT id
, name , age , sex
 FROM ta‐
ble2 WHERE
 id = 2) AS
sid, yyyy FROM table1WHERE id = 1;

select id, name, age, sex, ss, yy from table1
where id=1 and name=1 and a=1 and b=2 and
c=4 and d=3;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1 and name =
1 and a = 1 and b = 2 and c
= 4 and d = 3;

ALTER TABLE t_order ADD column4
DATE, ADD column5 DATETIME, engine
ss max_rows 10,min_rows 2, ADD column6
TIMESTAMP, ADD column7 TIME;

ALTER TABLE t_order ADD col‐
umn4 DATE, ADD column5 DATE‐
TIME, ENGINE ss MAX_ROWS
10, MIN_ROWS 2, ADD column6
TIMESTAMP, ADD column7 TIME

CREATE TABLE IF NOT EXISTS runoob_
tbl(runoob_id INT UNSIGNED
AUTO_INCREME NT,runoob_title VAR‐
CHAR(100) NOT NUL L,runoob_author
VARCHAR(40) NOT N ULL,runoob_test
NATIONAL CHAR(40), submis-
sion_date DATE,PRIMARY KEY
(runoo b_id))ENGINE=InnoDB DEFAULT
CHARSET=utf8;

CREATE TABLE IF NOT EXISTS runoob_tbl
(runoob_id INT UNSIGNED
AUTO_INCREMENT, runoob_title VAR‐
CHAR(100) NOT NULL, runoob_author
VARCHAR(40) NOT NULL, runoob_test
NATIONAL CHAR(40), submission_date
DATE, PRIMARY KEY (runoob_id)) EN‐
GINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO t _order_item(order_id,
user_id, status, creation_date) values (1, 1,
‘insert’, ‘2017‐08‐08’), (2, 2, ‘insert’,
‘2017‐08‐08’) ON DUPLICATE KEY UPDATE
status =‘init’;

INSERT INTO t_order_item (order_id , user_id , sta‐
tus , creation_date)VALUES (1, 1,‘insert’,
‘2017‐08‐08’), (2, 2,‘insert’,‘2017‐08‐08’
)ON DUPLICATE KEY UPDATE status =‘init’;

INSERT INTO t_order SET order_id =
1, user_id = 1, status = convert(to_
base64(aes_encrypt(1, ‘key’)) USING
utf8) ON DUPLICATE KEY UPDATE status =
VALUES(status);

INSERT INTO t_order SET order_id =
1, user_id = 1, status = CON‐
VERT(to_base64(aes_encrypt(1 , ‘key’)) USING
utf8)ON DUPLICATE KEY UPDATE status = VAL‐
UES(status);

INSERT INTO t_order (order_id, user_id, sta‐
tus) SELECT order_id, user_id, status FROM
t_order WHERE order_id = 1;

INSERT INTO t_order (order_id , user_id , sta‐
tus) SELECT order_id , user_id , status FROM
t_orderWHERE order_id = 1;

12.4. Sharding 481

Apache ShardingSphere document

12.4.8 Route Engine

Sharding strategies for databases and tables are matched based on the parsing context, and routing
paths are generated. SQL with shard keys can be divided into the single‐shard router (the shard key
operator is equal), multi‐shard router (the shard key operator is IN), and range router (the shard key
operator is BETWEEN). SQL that does not carry shard keys adopts broadcast routing.

Sharding strategies can usually be configured either by the built‐in database or by the user. The built‐
in database scheme is relatively simple, and the built‐in sharding strategy can be roughly divided into
mantissa modulo, hash, range, label, time, etc.

The sharding strategies configured by the user are more flexible. You can customize the compound
sharding strategy based on the user’s requirements. If it is used with automatic data migration, users
do not need to work on the sharding strategies.

Sharding and data balancing can be automatically achieved by the middle layer of the database, and
distributed databases can achieve elastic scalability. In the planning of ShardingSphere, the elastic
scaling function will be available at V4.x.

Sharding Route

The scenario that is routed based on shard keys is divided into three types: direct route, standard route,
and Cartesian route.

Direct Route

The requirement for direct route is relatively harsh. It needs to be sharded by Hint (using HintAPI to
specify routes to databases and tables), and it can avoid SQL parsing and subsequent result merge on
the premise of having database shards but not table shards.

Therefore, it is the most compatible one and can execute any SQL in complex scenarios including sub‐
queries and custom functions. The direct route can also be used when shard keys are not in SQL. For
example, set the key for database sharding to 3,

hintManager.setDatabaseShardingValue(3);

If the routing algorithm is value % 2, when a logical database t_order corresponds to two physical
databasest_order_0 and t_order_1, the SQL will be executed on t_order_1 after routing. The
following is a sample code using the API.

String sql = "SELECT * FROM t_order";
try (

HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {

while (rs.next()) {

12.4. Sharding 482

Apache ShardingSphere document

//...
}

}
}

Standard Route

The standard route is the most recommended sharding method, and it is applicable to SQL that does
not contain an associated query or only contains the associated query between binding tables.

When the sharding operator is equal, the routing result will fall into a single database (table). When the
sharding operator is BETWEEN or IN, the routing result will not necessarily fall into a unique database
(table).

Therefore, logical SQL may eventually be split into multiple real SQL to be executed. For example, if
the data sharding is carried out according to the odd and even numbers of order_id, the SQL for a single
table query is as follows:

SELECT * FROM t_order WHERE order_id IN (1, 2);

Then the routing result should be:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

An associated query for a binding table is as complex as a single table query and they have the same
performance. For example, if the SQL of an associated query that contains binding tables is as follows:

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_
id IN (1, 2);

Then the routing result should be:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

As you can see, the number of SQL splits is consistent with that of a single table.

12.4. Sharding 483

Apache ShardingSphere document

Cartesian Route

The Cartesian route is the most complex one because it cannot locate sharding rules according to the
relationship between binding tables, so associated queries between unbound tables need to be disas‐
sembled and executed as cartesian product combinations. If the SQL in the previous example was not
configured with binding table relationships, the routing result would be:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

The Cartesian route query has low performance, so think carefully when you use it.

Broadcast Route

For SQL that does not carry shard keys, broadcast routes are used. According to the SQL type, it can
be further divided into five types: full database and table route, full database route, full instance route,
unicast route, and block route.

Full database and table route

The full database table route is used to handle operations on all real tables related to its logical tables
in the database, including DQL and DML without shard keys, as well as DDL, etc. For example:

SELECT * FROM t_order WHERE good_prority IN (1, 10);

All tables in all databases will be traversed, matching logical tables and real table names one by one.
The table that can be matched will be executed. The routing result would be:

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

12.4. Sharding 484

Apache ShardingSphere document

Full database route

The full database route is used to handle operations on the database, including database management
commands of type SET for database settings and transaction control statements such as TCL.

In this case, all real database matching names are traversed based on the logical database name, and
the command is executed in the real database. For example:

SET autocommit=0;

If the command is executed in t_order, t_orderwhich has two real databases, it is actually executed
on both t_order_0 and t_order_1.

Full instance route

Full instance route is used for DCL operations, and authorized statements are used for database in‐
stances.

No matter how many schemas are contained in an instance, each database instance is executed only
once. For example:

CREATE USER customer@127.0.0.1 identified BY '123';

This command will be executed on all real database instances to ensure that users can access each
instance.

Unicast Route

The unicast route is used to obtain the information of a real table. It only needs to obtain data from any
real table in any database. For example:

DESCRIBE t_order;

t_order_0 and t_order_1, the two real tables of t_order, have the same description structure, so
this command is executed only once on any real table.

Block Route

Block route is used to block SQL operations on the database, for example:

USE order_db;

This commandwill not be executed in a real database because ShardingSphere uses the logical Schema
and there is no need to send the Schema shift command to the database.

The overall structure of the routing engine is as follows.

12.4. Sharding 485

Apache ShardingSphere document

12.4.9 Rewrite Engine

SQLwritten by engineers for logical databases and tables cannot be directly executed in real databases.

SQL rewriting is used to rewrite logical SQL into SQL that can be executed correctly in real databases.
It includes rewriting for correctness and rewriting for optimization.

Rewriting for Correctness

In a scenario with table shards, you need to rewrite the logical table name in the table shards configu‐
ration to the real table name obtained after routing.

Only database shards donot require rewriting table names. Additionally, it also includes columnderiva‐
tion and pagination information correction.

Identifier Rewriting

The identifiers that need to be overwritten include table names, index names, and Schema names.

Rewriting table names is the process of finding the location of the logical table in the original SQL and
rewriting it into a real table.

Table name rewriting is a typical scenario that requires SQL parsing. For example, if logical SQL is:

12.4. Sharding 486

Apache ShardingSphere document

SELECT order_id FROM t_order WHERE order_id=1;

Assume that the SQL is configured with the shard key order_id and order_id=1, it will be routed to
shard table 1. Then the rewritten SQL should be:

SELECT order_id FROM t_order_1 WHERE order_id=1;

In the simplest SQL scenario, it doesn’t seem tomatterwhether or not the SQL is parsed into an abstract
syntax tree.

SQL can be rewritten correctly only by finding and replacing strings. However, it is impossible to
achieve the same effect in the following scenarios.

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

The correct rewritten SQL would be:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

Instead of:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

Because theremay be characters similar to the table name, you cannot rewrite SQL simply by replacing
strings.

Let’s look at a more complex scenario:

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order
xxx';

The above SQL uses the table name as an identifier of the field, so it needs to be modified when SQL is
rewritten:

SELECT t_order_1.order_id FROM t_order_1 WHERE t_order_1.order_id=1 AND remarks='
t_order xxx';

If a table alias is defined in SQL, the alias does not need to bemodified, even if it is the same as the table
name. For example:

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

Rewriting the table name is enough for SQL rewriting.

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

The index name is another identifier that can be rewritten. In some databases (such as MySQL and
SQLServer), indexes are created in the dimension of tables.

12.4. Sharding 487

Apache ShardingSphere document

Indexes in different tables canhave the samename. In other databases (such as PostgreSQLandOracle),
indexes are created in the dimension of databases, and even indexes on different tables should have
unique names.

In ShardingSphere, schemas aremanaged in the sameway as tables. Logical Schemas are used toman‐
age a set of data sources.

Therefore, ShardingSphere needs to replace the logical Schemawritten by the user in SQLwith the real
database Schema.

Currently, ShardingSphere does not support the use of Schema in DQL and DML statements. It only
supports the use of Schema in database management statements. For example:

SHOW COLUMNS FROM t_order FROM order_ds;

Schema rewriting refers to the rewriting of a logical Schema using unicast routing to a correct and real
Schema that is randomly found.

Column Derivation

There are two cases that need to complement columns in a query statement. In the first case, Shard‐
ingSphere needs to get the data during the result merge, but the data is not returned by the queried
SQL.

In this case, it mainly applies to GROUP BY and ORDER BY. When merging the results, you need to
group and order the field items according to GROUP BY and ORDER BY, but if the original SQL does not
contain grouping or ordering items in the selections, you need to rewrite the original SQL. Let’s look
at a scenario where the original SQL has the required information for result merge.

SELECT order_id, user_id FROM t_order ORDER BY user_id;

Since user_id is used for sorting, the data of user_id needs to be retrieved in the result merge. And
the above SQL can obtain the data of user_id, so there is no need to add columns.

If the selection does not contain the columns required tomerge the results, you need to fill the columns,
as in the following SQL:

SELECT order_id FROM t_order ORDER BY user_id;

Since the original SQL does not contain the user_id required in the result merge, you need to fill in
and rewrite the SQL. Then SQL would be:

SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_order ORDER BY user_id;

It should be noted that only missing columns are complemented instead of all columns. And SQL that
contains * in the SELECT statement will also selectively complement columns based on the metadata
information of the table. Here is a relatively complex column derivation scenario of SQL:

SELECT o.* FROM t_order o, t_order_item i WHERE o.order_id=i.order_id ORDER BY
user_id, order_item_id;

12.4. Sharding 488

Apache ShardingSphere document

We assume that only the table t_order_item contains the column order_item_id. According to
the metadata information of the table, when the result is merged, the user_id in the ordering items
exists on the table t_order, so there is no need to add columns. order_item_id is not in t_order,
so column derivation is required. Then SQL would become:

SELECT o.*, order_item_id AS ORDER_BY_DERIVED_0 FROM t_order o, t_order_item i
WHERE o.order_id=i.order_id ORDER BY user_id, order_item_id;

The second case of column derivation is the use of AVG aggregate functions. In distributed scenarios,
using (avg1 + avg2 + avg3)/3 to calculate the average is incorrect and should be rewritten as (sum1 +
sum2 + sum3) /(count1 + count2 + count3). In this case, rewriting the SQL containing AVG to SUM and
COUNT is required, and recalculating the average when the results are merged. For example:

SELECT AVG(price) FROM t_order WHERE user_id=1;

The above SQL should be rewritten as:

SELECT COUNT(price) AS AVG_DERIVED_COUNT_0, SUM(price) AS AVG_DERIVED_SUM_0 FROM t_
order WHERE user_id=1;

Then you can calculate the average correctly by merging the results.

The last type of column derivation is the one that does not need to write the primary key field if the
database auto‐increment primary key is used during executing an INSERT SQL statement. However,
the auto‐increment primary key of the database cannotmeet the unique primary key in distributed sce‐
narios. Therefore, ShardingSphere provides the generation strategy of the distributed auto‐increment
primary key. Users can replace the existing auto‐increment primary key transparently with the dis‐
tributed auto‐increment primary key without changing the existing code through column derivation.
The generation strategy for distributed auto‐increment primary keys is described below, and here only
SQL rewriting is illustrated. For example, if the primary key of tablet_order isorder_id, the original
SQL would be:

INSERT INTO t_order (`field1`, `field2`) VALUES (10, 1);

As you can see, the above SQL does not contain the auto‐increment primary key, which requires the
database itself to fill. After ShardingSphere is configured with the auto‐increment primary key, SQL
will be rewritten as:

INSERT INTO t_order (`field1`, `field2`, order_id) VALUES (10, 1, xxxxx);

The rewritten SQL will add column names of the primary key and auto‐increment primary key values
generated automatically at the end of the INSERT FIELD and INSERT VALUE. The xxxxx in the above
SQL represents the auto‐increment primary key value generated automatically.

If the INSERT SQL does not contain the column name of the table, ShardingSphere can also compare
the number of parameters and the number of columns in the tablemeta information and automatically
generate auto‐increment primary keys. For example, the original SQL is:

12.4. Sharding 489

Apache ShardingSphere document

INSERT INTO t_order VALUES (10, 1);

The rewritten SQL will simply add the auto‐increment primary key in the column order in which the
primary key locates:

INSERT INTO t_order VALUES (xxxxx, 10, 1);

If you use placeholders to write SQL, you only need to rewrite the parameter list, not the SQL itself.

Pagination Correction

The scenario of acquiring pagination data from multiple databases is different from that of one single
database. If every 10 pieces of data are taken as one page, the userwants to take the second page of data.
It is not correct to acquire LIMIT 10, 10 under sharding situations, or take out the first 10 pieces of
data according to sorting conditions after merging. For example, if SQL is:

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

The following picture shows the pagination execution results without SQL rewriting.

As shown in the picture, if you want to acquire the second and the third piece of data sorted by score in
both tables, and they are supposed to be 95 and 90.

Since executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and
80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can only merge from 90,
80, 85 and 75 already acquired, so the right result cannot be acquired anyway.

12.4. Sharding 490

Apache ShardingSphere document

The right way is to rewrite pagination conditions as LIMIT 0, 3, take out all the data from the first
two pages and calculate the right data based on sorting conditions. The following picture shows the
execution results of pagination after SQL rewrite.

The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are
many ways to avoid using LIMIT as pagination method, such as constructing a secondary index to the
number of line records and line offsets or using the end ID of the last pagination data as a condition for
the next query.

When revising pagination information, if the users use the placeholder to write SQL, they only need to
rewrite the parameter list rather than SQL itself.

Batch Split

When using bulk inserted SQL, if the inserted data crosses shards, the SQL needs to be rewritten to
prevent excess data from being written to the database.

The insertion operation differs from the query operation in that the query statement does not affect
the data even if it uses the shard key that does not exist in the current shard. In contrast, insertion
operations must remove excess shard keys. For example, see the following SQL:

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, 'xxx');

If the database is still divided into two parts according to the odd and even number of order_id, this
SQL will be executed after its table name is revised. Then, both shards will be written with the same
record.

12.4. Sharding 491

Apache ShardingSphere document

Though only the data that satisfies sharding conditions can be retrieved from the query statement, it is
not reasonable for the schema to have excessive data. So SQL should be rewritten as:

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

IN query is similar to batch insertion, but IN operationwill not lead towrong data query result. Through
rewriting IN query, the query performance can be further improved. See the following SQL:

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

The SQL is rewritten as：

SELECT * FROM t_order_0 WHERE order_id IN (2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 3);

Thequeryperformancewill be further improved. Fornow, ShardingSpherehasnot realized this rewrite
strategy, so the current rewrite result is:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

Though the execution result of SQL is right, it did not achieve the highest query efficiency.

Rewriting for Optimization

Its purpose is to effectively improve performance without influencing the correctness of the query. It
can be divided into single node optimization and streammerger optimization.

Single Node Optimization

It refers to the optimization that stops the SQL rewrite from the route to the single node. After acquiring
one route result, if it is routed to a single data node, there is no need to involve result merger, as well as
rewrites such as column derivation and pagination information correction.

In particular, there is no need to read from the first piece of information, which reduces the pressure
on the database to a large extent and saves meaningless consumption of the network bandwidth.

StreamMerger Optimization

It only adds ORDER BY and ordering items and sorting orders identical with grouping items to SQL that
contains GROUP BY. And it is used to transfer memory merger to stream merger. Stream merger and
memory merger will be explained in detail in the result merger section.

The overall structure of the rewrite engine is shown in the following picture.

12.4. Sharding 492

Apache ShardingSphere document

12.4.10 Execute Engine

ShardingSphere uses an automated execution engine to safely and efficiently send the real SQL, which
has been routed and rewritten, to the underlying data source for execution.

It doesnot simply sendSQLdirectly to thedata source for execution via JDBC,nor are execution requests
placed directly into a thread pool for concurrent execution.

It focuses more on the creation of a balanced data source connection, the consumption generated by
the memory usage, and the maximum utilization of the concurrency. The objective of the execution
engine is to automatically balance resource control with execution efficiency.

Connection Mode

From the perspective of resource control, the connection number a business can make to the database
should be limited. It can effectively prevent certain business operations from occupying excessive re‐
sources, exhausting database connection resources, and influencing the normal access of other busi‐
nesses.

Especially when one database instance contains many sub‐tables, a logical SQL that does not contain
any shard key will produce a large number of real SQLs that fall into different tables in one database. If
each real SQL takes an independent connection, a query will undoubtedly take up excessive resources.

From theperspective of execution efficiency,maintaining an independent database connection for each
shard query can make more effective use of multi‐thread to improve execution efficiency.

12.4. Sharding 493

Apache ShardingSphere document

Creating a separate thread for each database connection allows I/O consumption to be processed in
parallel. Maintaining a separate database connection for each shard also prevents premature loading
of query result data into memory.

It is enough for independent database connections tomaintain result set quotation and cursor position,
and move the cursor when acquiring corresponding data.

Merging the result set bymoving down its cursor is called the streammerger. It does not need to load all
the query results into thememory, which can effectively savememory resources effectively and reduce
the frequency of garbage collection.

If each shard query cannot be guaranteed to have an independent database connection, the current
query result set needs to be loaded into memory before reusing the database connection to obtain the
query result set of the next shard table. Therefore, though the stream merger can be used, it will also
degenerate into the memory merger in this scenario.

On the one hand, we need to control and protect database connection resources; on the other hand, it
is important to save middleware memory resources by adopting a better merging mode. How to deal
with the relationship between the two is a problem that the ShardingSphere execution engine needs to
solve. Specifically, if an SQL is sharded through the ShardingSphere, it needs to operate on 200 tables
under a database instance. So, should we choose to create 200 connections in parallel, or one connec‐
tion in sequence? How to choose between efficiency and resource control? For the above scenario,
ShardingSphere provides a solution. It introduces the concept of Connection Mode, which is divided
into MEMORY_STRICTLY and CONNECTION_STRICTLY.

MEMORY_STRICTLY Mode

The prerequisite to using this mode is that ShardingSphere does not restrict the connection number of
one operation. If the actual executed SQL needs to operate 200 tables in some database instance, it will
create a new database connection for each table and deal with them concurrently throughmulti‐thread
to maximize the execution efficiency. When SQL meets the conditions, stream merger is preferred to
avoid memory overflow or frequent garbage recycling.

CONNECTION_STRICTLY Mode

The prerequisite to using this mode is that ShardingSphere strictly restricts the connection consump‐
tion number of one operation. If the SQL to be executed needs to operate 200 tables in a database
instance, it will create one database connection and operate them serially. If shards exist in different
databases, it will still adopt multi‐thread operations for different databases, but with only one database
connection being created for each operation in each database. It prevents the problem of consuming
too many database connections for one request. The mode chooses memory merger all the time.

The MEMORY_STRICTLY mode applies to OLAP operation and can increase the system throughput by
removing database connection restrictions. It is also applicable to OLTP operation, which usually has
shard keys and can be routed to a single shard. So it is a wise choice to control database connections
strictly to make sure that database resources in an online system can be used by more applications.

12.4. Sharding 494

Apache ShardingSphere document

Automatic Execution Engine

ShardingSphere initially leaves the decision of which mode to use up to the users and they can choose
to useMEMORY_STRICTLYmode or CONNECTION_STRICTLYmode according to their actual business
scenarios.

This solution gives users the right to choose, whomust understand the pros and cons of the twomodes
and make a choice based on the requirements of the business scenarios. No doubt, it is not the best
solution as it increases users’learning and use costs.

This dichotomy solution, which leaves the switching of the twomodes to static initialization, lacks flex‐
ibility. In practical scenarios, the routing result varies with SQL and placeholder indexes. This means
that some operations may need to use memory merger, while others may prefer stream merger. Con‐
nectionmodes should not be set by the user before ShardingSphere is started, but should be determined
dynamically based on the SQL and placeholder indexes scenarios.

In order to reduce the usage cost for users and achieve a dynamic connection mode, ShardingSphere
has extracted the concept of the automatic execution engine to eliminate the connection mode con‐
cept internally. The user does not need to know what the MEMORY_STRICTLY mode and CONNEC‐
TION_STRICTLY mode are, but the execution engine automatically selects the best execution scheme
according to the current scenario.

The automatic execution engine chooses the connection mode based on each SQL operation. For each
SQL request, the automatic execution engine will do real‐time calculations and evaluations according
to its route result and execute the appropriate connection mode automatically to strike the optimal
balance between resource control and efficiency. For the automatic execution engine, users only need
to configure maxConnectionSizePerQuery, which represents the maximum connection number
allowed by each database for one query.

The execution engine is divided into two phases: preparation and execution.

Preparation Phrase

As indicated by its name, this phrase is used to prepare the data to be executed. It can be divided into
two steps: result set grouping and unit creation.

Result set grouping is the key to realizing the internal connectionmodel concept. According to the con‐
figuration items of maxConnectionSizePerQuery, the execution engine will choose an appropriate
connection mode based on the current route result.

Detailed steps are as follow:

1. Group SQL route results according to data source names.

2. As we can see in the following formula, users can acquire the SQL route result set to be executed
by each database instancewithin themaxConnectionSizePerQuerypermission range and cal‐
culate the optimal connection mode of this request.

12.4. Sharding 495

Apache ShardingSphere document

Within the scope of the maxConnectionSizePerQuery allowed, when the request number that one con‐
nection needs to execute is more than 1, the current database connection cannot hold the correspond‐
ing data result set, so it must use memory merger. On the contrary, when the number equals 1, the
current database connection can hold the corresponding data result set, and it can use streammerger.

Each connection mode selection is specific to each physical database. That is, if you route to more
than one database in the same query, the connection mode of each database may not be the same,
and they may be mixed. Users can use the route grouping result acquired from the last step to create
the execution unit. When the data source uses technologies, such as the database connection pool, to
control database connection numbers, there is a chance that a deadlock will occur if concurrency is
not handled properly while retrieving database connections. As multiple requests wait for each other
to release database connection resources, starvation occurs, causing the crossing deadlock.

For example, suppose that a query requires obtaining two database connections at a data source and
routing queries to two sub‐tables of the same database. It is possible that query A has obtained one
database connection from this data source and is waiting to obtain another database connection.

Query B has also acquired a database connection at the data source and is also waiting for another
database connection to be acquired. If the maximum number of connections allowed in the database
connection pool is 2, then the two query requests will wait forever. The following diagram depicts a
deadlock situation.

12.4. Sharding 496

Apache ShardingSphere document

ShardingSphere synchronizes database connections to avoid deadlocks. When it creates the execution
unit, it atomically obtains all the database connections required by the SQL request at one time, elimi‐
nating the possibility of obtaining partial resources in each query request.

Because the operation on the database is very frequent, locking a database connection each time when
acquiring it will reduce the concurrency of ShardingSphere. Therefore, ShardingSphere has improved
two aspects here:

1. Locking can be avoided and only one database connection needs to be obtained each time. Be‐
cause under this circumstance, two requests waiting for each other will not happen, so there is no
need for locking. Most OLTP operations use shard keys to route to the unique data node, which
makes the system completely unlocked and further improves the concurrency efficiency. In ad‐
dition to routing to a single shard, read/write‐splitting also belongs to this category.

2. Locking resources only happens in MEMORY_STRICTLY mode. When using CONNEC‐
TION_STRICTLY mode, all the query result sets will release database connection resources after
loading them to the memory, so deadlock wait will not appear.

12.4. Sharding 497

Apache ShardingSphere document

Execution Phrase

This stage is used to actually execute SQL and is divided into two steps: group execution and merger
result generation.

Group execution can distribute execution unit groups generated in the preparation phase to the un‐
derlying concurrency engine and send events for each key step during the execution process, such as
starting, successful and failed execution events. The execution engine only focuses on sending events
rather than subscribers to the event. Other ShardingSphere modules, such as distributed transactions,
call linked tracing and so on, will subscribe to the events of interest and process them accordingly.

ShardingSphere generates memory merger result sets or stream merger result sets through the con‐
nection mode acquired in the preparation phase. And then it passes the result set to the result merger
engine for the next step.

The overall structure of the execution engine is divided as shown below.

12.4. Sharding 498

Apache ShardingSphere document

12.4.11 Merger Engine

Result merger refers tomergingmulti‐data result sets acquired from all the data nodes as one result set
and returning it to the requesting client correctly.

The result merger supported by ShardingSphere can be divided into five functional types: traversal,
order‐by, group‐by, pagination and aggregation, which are combined rather than mutually exclusive.
From the perspective of structure, it can be divided into stream merger, memory merger and decora‐
tor merger, among which stream merger and memory merger are mutually exclusive, and decorator
merger can be further processed based on streammerger and memory merger.

Since the result set is returned from the database one by one instead of being loaded to the memory all
at a time, themethod ofmerging the result sets returned from the database can greatly reducememory
consumption and is the preferred method of merging.

Streammergermeans that each time the data is obtained from the result set is able to return the correct
single piece of data line by line. It is the best fit with the native method of returning the result set of the
database. Traversal, order‐by, and stream group‐by are all examples of the streammerger.

Memory merger needs to traverse all the data in the result set and store it in the memory first. After
unified grouping, ordering, aggregation and other calculations, the data is packaged into the data result
set accessed one by one and returned.

Decorator merger merges and reinforces all the result sets function uniformly. Currently, decorator
merger has two types: pagination merger and aggregation merger.

Traversal Merger

As the simplest mergermethod, traversal merger only requires the combination of multiple data result
sets into a one‐way linked table. After traversing current data result sets in the linked table, it only needs
to move the elements of the linked table back one bit and continue traversing the next data result set.

Order-by Merger

Because there is an ORDER BY statement in SQL, each data result has its own order. So it only needs to
sort data value that the result set cursor currently points to, which is equal to sorting multiple ordered
arrays. Therefore, order‐by merger is the most suitable sorting algorithm in this scenario.

When merging ordered queries, ShardingSphere will compare current data values in each result set
(which is realized by the Java Comparable interface) and put them into the priority queue. Each time
when acquiring the next piece of data, it only needs to move down the result set cursor at the top of the
queue, reenter the priority order according to the new cursor and relocate its own position.

Here is an instance to explain ShardingSphere’s order‐by merger. The following picture is an illus‐
tration of ordering by the score. Data result sets returned by 3 tables are shown in the example and
each of them has already been ordered according to the score, but there is no order between the 3 data
result sets. Order the data value that the result set cursor currently points to in these 3 result sets. Then
put them into the priority queue. The first data value of t_score_0 is the biggest, followed by that

12.4. Sharding 499

Apache ShardingSphere document

of t_score_2 and t_score_1 in sequence. Thus, the priority queue is ordered by the sequence of
t_score_0, t_score_2 and t_score_1.

The following diagram illustrates how the order‐by merger works when using next call. We can see
from the diagram that when using the next call, t_score_0 at the first of the queue will be popped
out. After returning the data value currently pointed by the cursor (i.e., 100) to the requesting client,
the cursor will be moved down and t_score_0 will be put back into the queue.

While the priority queue will also be ordered according to the t_score_0 data value (90 here) pointed
by the cursor of the current data result set. According to the current value, t_score_0 is at the end of
the queue, and the data result set of t_score_2, originally in the second place of the queue, automat‐
ically moves to the first place of the queue.

In the second next call, t_score_2 in the first place is popped out. Its value pointed by the cursor of
the data result set is returned to the client end, with its cursor moved down to rejoin the queue, and the
following will be the same way. If there is no data in the result set, it will not rejoin the queue.

12.4. Sharding 500

Apache ShardingSphere document

It can be seen thatwhen data in each result set is ordered, butmultiple result sets are disordered, Shard‐
ingSphere can still order themwith no need to upload all the data to thememory. In the streammerger
method, each next operation only acquires the right piece of data each time, which saves memory
consumption to a large extent.

On the other hand, the order‐by merger has maintained the orderliness on the horizontal axis and
vertical axis of the data result set. Naturally ordered, the vertical axis refers to each data result set
itself, which is acquired by SQL with ORDER BY. The horizontal axis refers to the current value pointed
by each data result set, and its order needs to be maintained by the priority queue. Each time when the
current cursor moves down, it requires putting the result set in the priority order again, which means
only the cursor of the first data result set can be moved down.

Group-by Merger

Group‐bymerger is themost complex one and canbe divided into streamgroup‐bymerger andmemory
group‐by merger. Stream group‐by merger requires that the SQL’s ordering items must be consistent
with the field and ordering types (ASC or DESC) of the group‐by item; otherwise, data correctness can
only be guaranteed by memory merger.

For instance, if it is sharded based on subject, the table structure contains the examinees’name (to sim‐
plify, name repetition is not taken into consideration) and score. The following SQL is used to acquire
each examinee’s total score:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

12.4. Sharding 501

Apache ShardingSphere document

When order‐by item and group‐by item are totally consistent, the data obtained is continuous. The data
required by group‐by is all stored in the data value that the data result set cursor currently points to.
Thus, stream group‐by merger can be used, as illustrated by the diagram:

The merging logic is similar to that of order‐by merger. The following picture shows how the stream
group‐by merger works in the next call.

12.4. Sharding 502

Apache ShardingSphere document

We can see from the picture that, in the first next call, t_score_java in the first place will be popped
out of the queue, along with other result set data having the same grouping value of“Jerry”. After
acquiring all the students’scores with the name of“Jerry”, the accumulation operation will proceed.
Hence, after the first next call is finished, the result set acquired is the sum of Jerry’s scores. At the
same time, all the cursors in data result sets will bemoved down to a different data value next to“Jerry”
and reordered according to the current result set value. Thus, the data that contains the second name
“John”will be put at the beginning of the queue.

Stream group‐by merger is different from order‐by merger only in two aspects:

1. It will take out all the data with the same group item frommultiple data result sets at once.

2. It carried out the aggregation calculation according to the aggregation function type.

For the inconsistency between the grouping item and ordering item, it requires uploading all the data to
thememory to group and aggregate, since the relevant data value needed to acquire group information
is not continuous, and stream merger is not available. For example, acquire each examinee’s total
score through the following SQL and order them from the highest to the lowest:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

Then, stream merger is not able to use, for the data taken out from each result set is the same as the
original data of the order‐by merger diagram in the upper half part structure.

When SQL only contains the group‐by statement, according to different database implementations, its
sorting order may not be the same as the group order. The lack of an ordering statement indicates
the order is not important in this SQL. Therefore, through the optimization of SQL rewriting, Sharding‐

12.4. Sharding 503

Apache ShardingSphere document

Sphere can automatically add the ordering item the same as the grouping item, converting it from the
memory merger that consumes memory to the streammerger.

Aggregation Merger

Whether it is stream group‐by merger or memory group‐by merger, they process the aggregation func‐
tion in the same way. In addition to grouped SQL, ungrouped SQL can also use aggregate functions.
Therefore, aggregation merger is an additional merging ability based on what has been introduced
above, i.e., the decorator mode. The aggregation function can be categorized into three types: compar‐
ison, sum and average.

The comparison aggregation function refers to MAX and MIN. They need to compare all the result set
data of each group and simply return the maximum or minimum value.

The sum aggregation function refers to SUM and COUNT. They need to sum up all the result set data of
each group.

The average aggregation function refers only to AVG. It must be calculated through SUM and COUNT
rewritten by SQL, which has been mentioned in the SQL rewriting section.

Pagination Merger

All themerger types above can be paginated. Pagination is the decorator added to other kinds of merg‐
ers. ShardingSphere strengthens its ability to paginate the data result set through decorator mode. The
pagination merger is responsible for filtering unnecessary data.

ShardingSphere’s pagination function can be misleading to users in that they may think it will take
a large amount of memory. In distributed scenarios, it can only guarantee the data correctness by
rewriting LIMIT 10000000, 10 to LIMIT 0, 10000010. Users can easily misunderstand that
ShardingSphere uploads a large amount ofmeaningless data to thememory and has the risk ofmemory
overflow. Actually, it can be known from the principle of stream merger that only memory group‐by
merger will upload all the data to the memory. Generally speaking, SQL used for OLAP grouping, is
often applied tomassive calculations or small result generation, and it won’t generate vast result data.
Except for memory group‐by merger, other scenarios all use stream merger to acquire data result set.
So ShardingSphere would skip unnecessary data through the next call method in the result set, rather
than storing it in the memory.

But it should be noted that pagination with LIMIT is not the best practice, because a large amount of
data still needs to be transmitted to ShardingSphere’s memory space for ordering. LIMIT cannot
query data by index, so paginating with ID is a better solution if ID continuity can be guaranteed. For
example:

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id;

Or query the next page through the ID of the last query result, for example:

SELECT * FROM t_order WHERE id > 10000000 LIMIT 10;

12.4. Sharding 504

Apache ShardingSphere document

The overall structure of the merger engine is shown in the following diagram:

12.5 Transaction

12.5.1 Navigation

This chapter mainly introduces the principles of the distributed transactions:

• 2PC transaction with XA

• BASE transaction with Seata

12.5.2 XA Transaction

XAShardingSphereTransactionManager is XA transaction manager of Apache ShardingSphere.
Itsmain responsibility ismanage and adaptmultiple data sources, and sent corresponding transactions
to concrete XA transaction manager.

12.5. Transaction 505

Apache ShardingSphere document

Transaction Begin

When receiving set autoCommit=0 from client, XAShardingSphereTransactionManager will
use XA transaction managers to start overall XA transactions, which is marked by XID.

Execute actual sharding SQL

After XAShardingSphereTransactionManager register the corresponding XAResource to the cur‐
rent XA transaction, transactionmanagerwill send XAResource.start command to databases. After
databases received XAResource.end command, all SQL operator will mark as XA transaction.

For example:

XAResource1.start ## execute in the enlist phase
statement.execute("sql1");
statement.execute("sql2");
XAResource1.end ## execute in the commit phase

sql1 and sql2 in example will be marked as XA transaction.

12.5. Transaction 506

Apache ShardingSphere document

Commit or Rollback

After XAShardingSphereTransactionManager receives the commit command in the access, it will
delegate it to the actual XA manager. It will collect all the registered XAResource in the thread, before
sending XAResource.end to mark the boundary for the XA transaction. Then it will send prepare
command one by one to collect votes from XAResource. If all the XAResource feedback is OK, it will
send commit command to finally finish it; If there is any No XAResource feedback, it will send roll‐
back command to roll back. After sending the commit command, all XAResource exceptions will be
submitted again according to the recovery log to ensure the atomicity and high consistency.

For example:

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResource1.commit
XAResource2.commit

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResource1.rollback
XAResource2.rollback

12.5.3 Seata BASE transaction

When integrating Seata AT transaction, we need to integrate TM, RM and TC component into Shard‐
ingSphere transaction manager. Seata have proxied DataSource interface in order to RPC with TC.
Similarly, Apache ShardingSphere faced to DataSource interface to aggregate data sources too. After
Seata DataSource encapsulation, it is easy to put Seata AT transaction into Apache ShardingSphere
sharding ecosystem.

12.5. Transaction 507

Apache ShardingSphere document

Init Seata Engine

When an application containing ShardingSphereTransactionBaseSeataAT startup, the user‐
configuredDataSourcewill bewrapped into seata DataSourceProxy throughseata.conf, then reg‐
istered into RM.

Transaction Begin

TM controls the boundaries of global transactions. TM obtains the global transaction ID by sending Be‐
gin instructions to TC. All branch transactions participate in the global transaction through this global
transaction ID. The context of the global transaction ID will be stored in the thread local variable.

Execute actual sharding SQL

Actual SQL in Seata global transaction will be intercepted to generate undo snapshots by RM and sends
participate instructions to TC to join global transaction. Since actual sharding SQLs executed in multi‐
threads, global transaction context should transfer from main thread to child thread, which is exactly
the same as context transfer between services.

12.5. Transaction 508

Apache ShardingSphere document

Commit or Rollback

When submitting a seata transaction, TM sends TC the commit and rollback instructions of the global
transaction. TC coordinates all branch transactions for commit and rollback according to the global
transaction ID.

12.6 Data Migration

12.6.1 Explanation

The current data migration solution uses a completely new database cluster as the migration target.

This implementation has the following advantages:

1. No impact on the original data during migration.

2. No risk in case of migration failure.

3. Freedom from sharding strategy limitations.

The implementation has the following disadvantages:

1. Redundant servers can exist for a certain period of time.

2. All data needs to be moved.

A single data migration mainly consists of the following phases:

1. Preparation.

2. Stock data migration.

3. The synchronization of incremental data.

4. Traffic switching .

12.6. Data Migration 509

Apache ShardingSphere document

12.6.2 Execution Stage Explained

Preparation

In the preparation stage, the data migration module verifies data source connectivity and permissions,
counts stock data statistics, records the log and finally shards the tasks according to data volume and
parallelism set by the users.

Stock datamigration

Execute the stock data migration tasks that have been sharded during preparation stage. The stock
migration stage uses JDBC queries to read data directly from the source and write into the target based
on the sharding rules and other configurations.

The Synchronization of incremental data

Since the duration of stock data migration depends on factors such as data volume and parallelism,
it is necessary to synchronize the data added to the business operations during this period. Different
databases differ in technical details, but in general they are all based on replication protocols or WAL
logs to achieve the capture of changed data.

• MySQL: subscribe and parse binlog.

• PostgreSQL: uses official logical replication test_decoding.

The incremental data captured is also written into the new data nodes by the data migration modules.
When synchronization of incremental data is completed (the incremental data flow is not interrupted
since the business system is still in function), you can then move to the traffic switching stage.

Traffic Switching

During this stage, there may be a read‐only period of time, where data in the source data nodes is al‐
lowed to be in static mode for a short period of time to ensure that the incremental synchronization
can be fully completed. Users can set this by shifting the database to read‐only status or by controlling
the traffic flow generated from the source.

The length of this read‐only window depends on whether users need to perform consistency checks on
the data and the exact amount of data in this scenario. Consistency check is an independent task. It
supports separate start/stop and breakpoint resume.

Once confirmed, the data migration is complete. Users can then switch the read traffic or write traffic
to Apache ShardingSphere.

12.6. Data Migration 510

https://www.postgresql.org/docs/9.4/test-decoding.html

Apache ShardingSphere document

12.6.3 References

Configurations of data migration

12.7 Encryption

Apache ShardingSphere parses the SQL entered by users and rewrites the SQL according to the encryp‐
tion rules provided by users.

When a user queries data, it only retrieves ciphertext data from the database, decrypts it, and finally
returns the decrypted source data to the user. Apache ShardingSphere achieves a transparent and au‐
tomatic data encryption process. Users can use encrypted data as normal data without paying attention
to the implementation details of data encryption.

12.7.1 Overall Architecture

The encryptedmodule intercepts the SQL initiated by the user and parses and understands the SQL be‐
havior through the SQL syntactic parser. Then it finds out the fields to be encrypted and the encryption
and decryption algorithm according to the encryption rules introduced by the user and interacts with
the underlying database.

Apache ShardingSphere will encrypt the plaintext requested by users and store it in the underlying
database. When the user queries, the ciphertext is extracted from the database, decrypted, and re‐

12.7. Encryption 511

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/migration/

Apache ShardingSphere document

turned to the terminal user. By shielding the data encryption process, users do not need to operate the
SQL parsing process, data encryption, and data decryption.

12.7.2 Encryption Rules

Before explaining the whole process, we need to understand the encryption rules and configuration.
Encryption configuration is mainly divided into three parts: data source configuration, encryptor con‐
figuration, encryption table configuration, as shown in the figure below:

Data source configuration: the configuration of the data source.

Encryptor configuration: refers to the encryption algorithm used for encryption and decryption. Cur‐
rently, ShardingSphere has three built‐in encryption and decryption algorithms: AES, MD5 and RC4.
Users can also implement a set of encryption and decryption algorithms by implementing the inter‐
faces provided by ShardingSphere.

Encryption table configuration: it is used to tell ShardingSphere which column in the data table is used
to store ciphertext data (cipherColumn), and which column the user would like to use for SQLwriting
(logicColumn).

What does it mean by“which column the user would like to use for SQL writing (logicCol‐
umn)”? We have to know first why the encrypted module exists. The goal of the encrypted
module is to shield the underlying data encryption process, which means we don’t want
users to know how data is encrypted and decrypted, and how to store ciphertext data into
cipherColumn. In other words, we don’t want users to know there is a cipherColumn
or how they are used. Therefore, we need to provide the user with a conceptual column

12.7. Encryption 512

Apache ShardingSphere document

that can be separated from the real column in the underlying database. It may or may not
be a real column in the database table so that users can change the column names of ci-
pherColumn of the underlying database at will. The only thingwe have to ensure is that the
user’s SQL is written towards the logical column, and the correctmapping relation between
logicColumn and cipherColumn can be seen in the encryption rules.

Query attribute configuration: if both plaintext and ciphertext data are stored in the underlying
database table, this attribute can be used to determine whether to query the plaintext data in the
database table and return it directly, or query the ciphertext data and return it after decryption through
Apache ShardingSphere. This attribute can be configured at the table level and the entire rule level. The
table‐level has the highest priority.

12.7.3 Encryption Process

For example, if there is a table named t_user in the database, and they’re two fields in the table:
pwd_cipher for storing ciphertext data, and logicColumn is defined as pwd, then users should write
SQL for logicColumn, that is INSERT INTO t_user SET pwd = '123'. Apache ShardingSphere
receives the SQL and finds that the pwd is the logicColumn based on the encryption configuration
provided by the user. Therefore, it encrypts the logical column and its corresponding plaintext data.

Apache ShardingSphere transforms the column names and data encryption mapping between the log‐
ical columns facing users and cipher columns facing the underlying database. As shown in the figure
below:

The user’s SQL is separated from the underlying data table structure according to the encryption rules

12.7. Encryption 513

Apache ShardingSphere document

provided by the user so that the user’s SQLwriting does not depend on the real database table structure.

The connection, mapping, and transformation between the user and the underlying database are han‐
dled by Apache ShardingSphere.

The picture below shows the processing flow and conversion logic when the encryptionmodule is used
to add, delete, change and check, as shown in the figure below.

Detailed Solution

After understanding Apache ShardingSphere’s encryption process, you can combine the encryption
configuration and encryption process according to your scenario. The entire design & development
was conceived to address the pain points encountered in business scenarios. So, how to use Apache
ShardingSphere to meet the business requirements mentioned before?

Business scenario analysis: the newly launched business is relatively simple because it starts from
scratch and there’s no need to clean up historical data.

Solution description: after selecting the appropriate encryption algorithm, such as AES, you only need
to configure the logical column (write SQL for users) and the ciphertext column (the data table stores
the ciphertext data). The logical columns and ciphertext columns can also be different. The following
configurations are recommended (in YAML format):

-!ENCRYPT
encryptors:
aes_encryptor:

12.7. Encryption 514

Apache ShardingSphere document

type: AES
props:

aes-key-value: 123456abc
tables:
t_user:

columns:
pwd:
cipher:
name: pwd_cipher
encryptorName: aes_encryptor

assistedQuery:
name: pwd_assisted_query
encryptorName: pwd_assisted_query_cipher

With the above configuration, Apache ShardingSphere only needs to convert logicColumn, cipher-
Column, and assistedQueryColumn.

The underlying data table does not store plaintext, and only ciphertext is stored, which is also the re‐
quirement of the security audit. The overall processing flow is shown in the figure below:

12.7. Encryption 515

Apache ShardingSphere document

The advantages of Middleware encryption service

1. Automatic and transparent data encryption process. Encryption implementation details are no
longer a concern for users.

2. It provides a variety of built‐in and third‐party (AKS) encryption algorithms, which are available
through simple configurations.

3. It provides an encryption algorithm API interface. Users can implement the interface to use a
custom encryption algorithm for data encryption.

4. It can switch among different encryption algorithms.

Solution

Apache ShardingSphere provides an encryption algorithm for data encryption, namely EncryptAl-
gorithm.

On the one hand, Apache ShardingSphere provides users with built‐in implementation classes for en‐
cryption and decryption, which are available through configurations by users.

On the other hand, in order to be applicable to different scenarios, we also opened the encryption and
decryption interfaces, and users can provide specific implementation classes according to these two
types of interfaces.

After simple configuration, Apache ShardingSphere can call user‐defined encryption and decryption
schemes for data encryption.

12.7.4 EncryptAlgorithm

The solution provides two methods, encrypt() and decrypt(), to encrypt or decrypt data. When
users perform INSERT, DELETE and UPDATE operations, ShardingSphere will parse, rewrite and route
SQL according to the configuration.

It will also use encrypt() to encrypt data and store them in the database. When using SELECT, they
will decrypt sensitive data from the database with decrypt() and finally return the original data to
users.

Currently, Apache ShardingSphere provides three types of implementations for this kind of encryption
solution, including MD5 (irreversible), AES (reversible) and RC4 (reversible), which can be used after
configuration.

12.7. Encryption 516

Apache ShardingSphere document

12.8 Mask

Apache ShardingSphere achieves the desensitization of the original data by parsing the SQL queried by
users and masking the SQL execution results according to the desensitization rules provided by users.

12.8.1 Overall Architecture

The desensitization module intercepts the SQL initiated by the user, analyzes and executes it through
the SQL syntax parser. It then masks the query results by finding out the fields to be desensitized and
the desensitization algorithm to be used according to the rules passed specified by the user, and returns
to the client.

12.8.2 Mask Rules

Before explaining the whole process in detail, we need to first understand the desensitization rules and
configuration, which is the basis of understanding the whole process.

Desensitization configuration is mainly divided into three parts: data source configuration, desensiti‐
zation algorithm configuration, desensitization table configuration:

12.8. Mask 517

Apache ShardingSphere document

Data source configuration: the configuration of the data source.

Mask algorithm configuration: currently, ShardingSphere has a variety of built‐
in desensitization algorithms: MD5, KEEP_FIRST_N_LAST_M, KEEP_FROM_X_TO_Y
, MASK_FIRST_N_LAST_M, MASK_FROM_X_TO_Y, MASK_BEFORE_SPECIAL_CHARS,
MASK_AFTER_SPECIAL_CHARS, PERSONAL_IDENTITY_NUMBER_RANDOM_REPLACE, MILI‐
TARY_IDENTITY_NUMBER_RANDOM_REPLACE, and TELEPHONE_RANDOM_REPLACE.

Users can also implement a set of desensitization algorithms by implementing the interface provided
by ShardingSphere.

Mask table configuration: used to tell ShardingSphere which column in the data table is used for data
desensitization and which algorithm is used for desensitization.

Themask rule takes effect after it is created

Query attribute configuration: if both plaintext and ciphertext data are stored in the underlying
database table, this attribute can be used to determine whether to query the plaintext data in the
database table and return it directly, or query the ciphertext data and return it after decryption through
Apache ShardingSphere.

This attribute can be configured at the table level and the entire rule level. The table‐level has the
highest priority.

12.8. Mask 518

Apache ShardingSphere document

12.8.3 Mask Process

For example, if there is a table in the database called t_user and there is a field in the table called
phone_number that uses MASK_FROM_X_TO_Y, Apache ShardingSphere does not change the data
store.

It’ll only mask the result according to the desensitization algorithm, to achieve the desensitization
effect.

As shown in the picture below:

12.9 Shadow

12.9.1 How it works

Apache ShardingSphere determines the incoming SQL via shadow by parsing the SQL and routing it to
the production or shadow database based on the shadow rules set by the user in the configuration file.

12.9. Shadow 519

Apache ShardingSphere document

In the example of an INSERT statement, when writing data, Apache ShardingSphere parses the SQL
and then constructs a routing chain based on the rules in the configuration file. In the current version,
the shadow feature is at the last execution unit in the routing chain, i.e. if other rules exist that require
routing, such as sharding, Apache ShardingSphere will first route to a particular database according
to the sharding rules, and then run the shadow routing determination process to determine that the
execution SQL meets the configuration set by shadow rules. Then data is routed to the corresponding
shadow database, while the production data remains unchanged.

DML sentence

Two algorithms are supported. Shadow determination first determines whether the execution SQL‐
related table intersects with the configured shadow table. If the result is positive, the shadow algorithm
within the part of intersection associated with the shadow table will be determined sequentially. If any
of the determination is successful, the SQL statement is routed to the shadow library. If there is no
intersection or the shadow algorithm determination is unsuccessful, the SQL statement is routed to the
production database.

12.9. Shadow 520

Apache ShardingSphere document

DDL sentence

Only supports shadow algorithm with comments attached. In stress testing scenarios, DDL statements
are generally not required for testing, and are usedmainlywhen initializing ormodifying shadow tables
in the shadow database. The shadow determination will first determine whether the execution SQL
contains comments or not. If the result is a yes, the HINT shadow algorithm configured in the shadow
rules determines them in order. The SQL statement is routed to the shadow database if any of the
determinations are successful. If the execution SQL does not contain comments or the HINT shadow
algorithm determination is unsuccessful, the SQL statements are routed to the production database.

12.9.2 References

JAVA API: shadow database configuration

YAMLconfiguration: shadow database

12.10 Oberservability

12.10.1 How it works

ShardingSphere‐Agent module provides an observable framework for ShardingSphere, which is imple‐
mented based on Java Agent.

Metrics, tracing and logging functions are integrated into the agent through plugins, as shown in the
following figure:

12.10. Oberservability 521

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/

Apache ShardingSphere document

• Themetrics plugin is used to collect and display statistical indicators for the entire cluster. Apache
ShardingSphere supports Prometheus by default.

• The tracing plugin is used to obtain the link trace information of SQL parsing and SQL execu‐
tion. Apache ShardingSphere provides support for exporting tracing data to Jaeger and Zipkin by
default. It also supports users developing customized tracing components through plugin.

• The default logging plugin shows how to record additional logs in ShardingSphere. In practical
applications, users need to explore according to their own needs.

12.11 Architecture

Apache ShardingSphere’s pluggable architecture is designed to enable developers to customize their
own unique systems by adding the desired features, just like adding building blocks.

A plugin‐oriented architecture has very high requirements for program architecture design. It requires
making each module independent, and using a pluggable kernel to combine various functions in an
overlapping manner. Designing an architecture system that completely isolates the feature develop‐
ment not only fosters an active open source community, but also ensures the quality of the project.

Apache ShardingSphere began to focus on the pluggable architecture since version 5.X, and the func‐
tional components of the project can be flexibly extended in a pluggable manner. Currently, features
such as data sharding, read/write splitting, database high availability, data encryption, shadow DB
stress testing, and support for SQL and protocols such as MySQL, PostgreSQL, SQLServer, Oracle, etc.

12.11. Architecture 522

Apache ShardingSphere document

are woven into the project through plugins. Apache ShardingSphere has provided dozens of SPIs (ser‐
vice provider interfaces) as extension points of the system, with the total number still increasing.

12.11. Architecture 523

13
FAQ

13.1 MODE

13.1.1 MODE What is the difference between cluster mode Cluster and Compati-
ble_Cluster?

Answer:

Themetadata structurewas adjusted in version 5.4.0, Cluster represents themetadata structure of the
new version, and Compatible_Cluster represents the metadata structure of versions before 5.4.0.

13.2 JDBC

13.2.1 JDBC Found a JtaTransactionManager in spring boot project when integrating
with XAtransaction.

Answer:

1. shardingsphere-transaction-xa-core include atomikos, it will trigger auto‐configuration
mechanism in spring‐boot, add @SpringBootApplication(exclude = JtaAutoConfigu-
ration.class) will solve it.

13.2.2 JDBCThe tableNameand columnNameconfigured in yamlor properties leading
incorrect result when loading Oracle metadata？

Answer:

Note that, in Oracle’smetadata, the tableName and columnName is default UPPERCASE,while double‐
quoted such as CREATE TABLE "TableName"("Id" number) the tableName and columnName is
the actual content double‐quoted, refer to the following SQL for the reality in metadata:

524

Apache ShardingSphere document

SELECT OWNER, TABLE_NAME, COLUMN_NAME, DATA_TYPE FROM ALL_TAB_COLUMNS WHERE TABLE_
NAME IN ('TableName')

ShardingSphere uses the OracleTableMetaDataLoader to load the metadata, keep the tableName
and columnName in the yaml or properties consistent with the metadata. ShardingSphere assembled
the SQL using the following code:

private String getTableMetaDataSQL(final Collection<String> tables, final
DatabaseMetaData metaData) throws SQLException {

StringBuilder stringBuilder = new StringBuilder(28);
if (versionContainsIdentityColumn(metaData)) {

stringBuilder.append(", IDENTITY_COLUMN");
}
if (versionContainsCollation(metaData)) {

stringBuilder.append(", COLLATION");
}
String collation = stringBuilder.toString();
return tables.isEmpty() ? String.format(TABLE_META_DATA_SQL, collation)

: String.format(TABLE_META_DATA_SQL_IN_TABLES, collation, tables.
stream().map(each -> String.format("'%s'", each)).collect(Collectors.joining(",
")));
}

13.2.3 JDBCSQLException: Unable to unwrap to interface com.mysql.
jdbc.Connection exception thrownwhen using MySQL XA transaction

Answer:

Incompatibility betweenmultipleMySQLdrivers. Because theMySQL5 version of the driver class under
the class path is loaded first, when trying to call the unwrap method in the MySQL8 driver, the type
conversion exception occurs.

The solutions: Check whether there are both MySQL5 and MySQL8 drivers in the class path, and only
keep one driver package of the corresponding version.

The exception stack is as follows:

Caused by: java.sql.SQLException: Unable to unwrap to interface com.mysql.jdbc.
Connection

at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:129)
at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:97)
at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:89)
at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:63)
at com.mysql.cj.jdbc.ConnectionImpl.unwrap(ConnectionImpl.java:2650)
at com.zaxxer.hikari.pool.ProxyConnection.unwrap(ProxyConnection.java:481)
at org.apache.shardingsphere.transaction.xa.jta.connection.dialect.

MySQLXAConnectionWrapper.wrap(MySQLXAConnectionWrapper.java:46)
at org.apache.shardingsphere.transaction.xa.jta.datasource.

13.2. JDBC 525

Apache ShardingSphere document

XATransactionDataSource.getConnection(XATransactionDataSource.java:89)
at org.apache.shardingsphere.transaction.xa.XAShardingSphereTransactionManager.

getConnection(XAShardingSphereTransactionManager.java:96

13.3 Proxy

13.3.1 Proxy In Windows environment, could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how to solve it?

Answer:

Some decompression toolsmay truncate the file namewhen decompressing the ShardingSphere‐Proxy
binary package, resulting in some classes not being found. The solutions: Open cmd.exe and execute
the following command:

tar zxvf apache-shardingsphere-${RELEASE.VERSION}-shardingsphere-proxy-bin.tar.gz

13.3.2 Proxy How to add a new logic database dynamically when use ShardingSphere-
Proxy?

Answer:

Whenusing ShardingSphere‐Proxy, users can dynamically create or drop logic database throughDist-
SQL, the syntax is as follows:

CREATE DATABASE [IF NOT EXISTS] databaseName;
DROP DATABASE [IF EXISTS] databaseName;

Example:

CREATE DATABASE sharding_db;
DROP DATABASE sharding_db;

13.3.3 Proxy How to use suitable database tools connecting ShardingSphere-Proxy?

Answer:

1. ShardingSphere‐Proxy could be considered as a MySQL server, so we recommend using MySQL
command line tool to connect to and operate it.

2. If userswould like to use a third‐party database tool, theremaybe some errors cause of the certain
implementation/options.

3. The currently tested third‐party database tools are as follows:

• DataGrip: 2020.1, 2021.1 (turn on“introspect using jdbc metadata”in idea or datagrip).

13.3. Proxy 526

Apache ShardingSphere document

• MySQLWorkBench: 8.0.25.

13.3.4 Proxy When using a client to connect to ShardingSphere-Proxy, if
ShardingSphere-Proxy does not create a database or does not register a
storage unit, the client connection will fail?

Answer:

1. Third‐party database tools will send some SQL query metadata when connecting to
ShardingSphere‐Proxy. When ShardingSphere‐Proxy does not create a Database or does
not register a Storage Unit, ShardingSphere‐Proxy cannot execute SQL.

2. It is recommended to createdatabase and registerstorage unitfirst, and thenuse third‐party
database tools to connect.

3. Please refer to Related introduction the details about storage unit.

13.4 Sharding

13.4.1 Sharding How to solve Cloud not resolve placeholder ⋯in string
value ⋯ error?

Answer:

${...} or $->{...} can be used in inline expression identifiers, but the former one clashes with
place holders in Spring property files, so $->{...} is recommended to be used in Spring as inline
expression identifiers.

13.4.2 Sharding Why does float number appear in the return result of inline expres-
sion?

Answer:

The division result of Java integers is also integer, but in Groovy syntax of inline expression, the divi‐
sion result of integers is float number. To obtain integer division result, A/B needs to be modified as
A.intdiv(B).

13.4. Sharding 527

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

13.4.3 Sharding If sharding database is partial, should tables without sharding
database & table configured in sharding rules?

Answer:

No, ShardingSphere will recognize it automatically.

13.4.4 Sharding When generic Long type SingleKeyTableShardingAlgorithm is
used, why does the ClassCastException: Integer can not cast to
Long exception appear?

Answer:

You must make sure the field in the database table is consistent with that in the sharding algorithms.
For example, the field type in database is int(11) and the sharding type corresponds to genetic type is
Integer. If you want to configure Long type, please make sure the field type in the database is bigint.

13.4.5 [Sharding:raw-latex:PROXY] When implementing the Standard-
ShardingAlgorithm custom algorithm, the specific type of Compara-
ble is specified as Long, and the field type in the database table is bigint, a
ClassCastException: Integer can not cast to Long exception
occurs.

Answer：
When implementing the doSharding method, it is not recommended to specify the specific type
of Comparable in the method declaration, but to convert the type in the implementation of the
doShardingmethod. You can refer to the ModShardingAlgorithm#doShardingmethod.

13.4.6 ShardingWhy is the default distributed auto-augment key strategy provided by
ShardingSphere not continuous andmost of them endwith even numbers?

Answer:

ShardingSphere uses snowflake algorithms as the default distributed auto‐augment key strategy to
make sure unrepeated and decentralized auto‐augment sequence is generated under the distributed
situations. Therefore, auto‐augment keys can be incremental but not continuous. But the last four
numbers of snowflake algorithm are incremental value within one millisecond. Thus, if concurrency
degree in one millisecond is not high, the last four numbers are likely to be zero, which explains why
the rate of even end number is higher. In 3.1.0 version, the problem of ending with even numbers has
been totally solved, please refer to: https://github.com/apache/shardingsphere/issues/1617

13.4. Sharding 528

https://github.com/apache/shardingsphere/issues/1617

Apache ShardingSphere document

13.4.7 Sharding How to allow range query with using inline sharding strategy (BE-
TWEEN AND, >, <, >=, <=)?

Answer:

1. Update to 4.1.0 above.

2. Configure(A tip here: then each range query will be broadcast to every sharding table):

• Version 4.x: allow.range.query.with.inline.sharding totrue (Default value isfalse).

• Version 5.x: allow-range-query-with-inline-sharding to true in InlineShardingStrat‐
egy (Default value is false).

13.4.8 ShardingWhydoesmy customdistributed primary key do notwork after imple-
menting KeyGenerateAlgorithm interface and configuring type property?

Answer:

Service Provider Interface (SPI) is a kind of API for the third party to implement or expand. Except
implementing interface, you also need to create a corresponding file in META-INF/services tomake
the JVM load these SPI implementations. More detail for SPI usage, please search by yourself. Other
ShardingSphere functionality implementation will take effect in the same way.

13.4.9 Sharding In addition to internal distributed primary key, does ShardingSphere
support other native auto-increment keys?

Answer:

Yes. But there is restriction to the use of native auto‐increment keys, whichmeans they cannot be used
as sharding keys at the same time. Since ShardingSphere does not have the database table structure and
native auto‐increment key is not included in original SQL, it cannot parse that field to the sharding field.
If the auto‐increment key is not sharding key, it can be returned normally and is needless to be cared.
But if the auto‐increment key is also used as sharding key, ShardingSphere cannot parse its sharding
value, whichwillmake SQL routed tomultiple tables and influence the rightness of the application. The
premise for returning native auto‐increment key is that INSERT SQL is eventually routed to one table.
Therefore, auto‐increment key will return zero when INSERT SQL returns multiple tables.

13.5 DistSQL

13.5.1 DistSQL How to set custom JDBC connection properties or connection pool
properties when adding a data source using DistSQL?

Answer:

1. If you need to customize JDBC connection properties, please take the urlSource way to define
dataSource.

13.5. DistSQL 529

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

Apache ShardingSphere document

2. ShardingSphere presets necessary connection pool properties, such as maxPoolSize, idle-
Timeout, etc. If you need to add or overwrite the properties, please specify it with PROPERTIES
in the dataSource.

3. Please refer to Related introduction for above rules.

13.5.2 DistSQL How to solve Storage unit [xxx] is still used by [Sin-
gleRule]. exception when dropping a data source using DistSQL?

Answer：
1. Storage units referenced by rules cannot be deleted

2. If the storage unit is only referenced by single rule, and the user confirms that the restriction can
be ignored, the optional parameter ignore single tables can be added to perform forced deletion

UNREGISTER STORAGE UNIT storageUnitName [, storageUnitName] ... [ignore single
tables]

13.5.3 DistSQL How to solve Failed to get driver instance for jd-
bcURL=xxx. exception when adding a data source using DistSQL?

Answer：
ShardingSphere Proxy do not have jdbc driver during deployment. Some example of this include
mysql-connector. To use it otherwise following syntax can be used:

REGISTER STORAGE UNIT storageUnit [..., storageUnit]

13.6 Other

13.6.1 Other How to debug when SQL can not be executed rightly in ShardingSphere?

Answer:

sql.show configuration is provided in ShardingSphere‐Proxy and post‐1.5.0 version of
ShardingSphere‐JDBC, enabling the context parsing, rewritten SQL and the routed data source
printed to info log. sql.show configuration is off in default, and users can turn it on in configurations.
A Tip: Property sql.show has changed to sql-show in version 5.x.

13.6. Other 530

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/storage-unit-definition/

Apache ShardingSphere document

13.6.2 Other Why do some compiling errors appear? Why did not the IDEA index the
generated codes?

Answer:

ShardingSphere uses lombok to enable minimal coding. For more details about using and install‐
ment, please refer to the official website of lombok. The codes under the package org.apache.
shardingsphere.sql.parser.autogen are generated by ANTLR. You may execute the following
command to generate codes:

./mvnw -Dcheckstyle.skip=true -Dspotbugs.skip=true -Drat.skip=true -Dmaven.javadoc.
skip=true -Djacoco.skip=true -DskipITs -DskipTests install -T1C

The generated codes such as org.apache.shardingsphere.sql.parser.autogen.
PostgreSQLStatementParsermay be too large to be indexed by the IDEA. You may configure the
IDEA’s property idea.max.intellisense.filesize=10000.

13.6.3 Other In SQLSever and PostgreSQL, why does the aggregation column without
alias throw exception?

Answer:

SQLServer and PostgreSQLwill rename aggregation columns acquiredwithout alias, such as the follow‐
ing SQL:

SELECT SUM(num), SUM(num2) FROM tablexxx;

Columns acquired by SQLServer are empty string and (2); columns acquired by PostgreSQL are empty
sum and sum(2). It will cause error because ShardingSphere is unable to find the corresponding col‐
umn. The right SQL should be written as:

SELECT SUM(num) AS sum_num, SUM(num2) AS sum_num2 FROM tablexxx;

13.6.4 OtherWhydoesOracle database throw“Order by valuemust implements Com-
parable”exception when using Timestamp Order By?

Answer:

There are two solutions for the above problem: 1. Configure JVM parameter “‐
oracle.jdbc.J2EE13Compliant=true”2. Set System.getProperties().setProperty(“ora‐
cle.jdbc.J2EE13Compliant”,“true”) codes in the initialization of the project. Reasons: org.apache.
shardingsphere.sharding.merge.dql.orderby.OrderByValue#getOrderValues():

private List<Comparable<?>> getOrderValues() throws SQLException {
List<Comparable<?>> result = new ArrayList<>(orderByItems.size());
for (OrderByItem each : orderByItems) {

Object value = queryResult.getValue(each.getIndex(), Object.class);

13.6. Other 531

https://projectlombok.org/download.html

Apache ShardingSphere document

Preconditions.checkState(null == value || value instanceof Comparable,
"Order by value must implements Comparable");

result.add((Comparable<?>) value);
}
return result;

}

After using resultSet.getObject(int index), for TimeStamp oracle, the system will decide whether
to return java.sql.TimeStamp or define oralce.sql.TIMESTAMP according to the property of ora‐
cle.jdbc.J2EE13Compliant. See oracle.jdbc.driver.TimestampAccessor#getObject(int var1) method in
ojdbc codes for more detail:

Object getObject(int var1) throws SQLException {
Object var2 = null;
if(this.rowSpaceIndicator == null) {

DatabaseError.throwSqlException(21);
}
if(this.rowSpaceIndicator[this.indicatorIndex + var1] != -1) {

if(this.externalType != 0) {
switch(this.externalType) {
case 93:

return this.getTimestamp(var1);
default:

DatabaseError.throwSqlException(4);
return null;

}
}
if(this.statement.connection.j2ee13Compliant) {

var2 = this.getTimestamp(var1);
} else {

var2 = this.getTIMESTAMP(var1);
}

}
return var2;

}

13.6.5 Other In Windows environment,when cloning ShardingSphere source code
through Git, why prompt filename too long and how to solve it?

Answer:

To ensure the readability of source code,the ShardingSphere Coding Specification requires that the
naming of classes,methods and variables be literal and avoid abbreviations,which may result in some
source files have long names. Since the Git version of Windows is compiled using msys,it uses the old
version of Windows Api,limiting the file name to nomore than 260 characters. The solutions are as fol‐
lows: Open cmd.exe (youneed to add git to environment variables) and execute the following command
to allow git supporting log paths:

13.6. Other 532

Apache ShardingSphere document

git config --global core.longpaths true

Ifweusewindows 10, also need enablewin32 log paths in registry editor or group strategy(need reboot):
> Create the registry keyHKLM\SYSTEM\CurrentControlSet\Control\FileSystem LongPath-
sEnabled (Type: REG_DWORD) in registry editor, and be set to 1. > Or click“setting”button in system
menu, print“Group Policy”to open a new window“Edit Group Policy”, and then click‘Computer
Configuration’>‘Administrative Templates’>‘System’>‘Filesystem’, and then turn on‘Enable
Win32 long paths’option. Reference material: https://docs.microsoft.com/zh‐cn/windows/desktop/
FileIO/naming‐a‐file https://ourcodeworld.com/articles/read/109/how‐to‐solve‐filename‐too‐long‐err
or‐in‐git‐powershell‐and‐github‐application‐for‐windows

13.6.6 Other How to solve Type is required error?

Answer:

In Apache ShardingSphere, many functionality implementation are uploaded through SPI, such as Dis‐
tributed Primary Key. These functions load SPI implementation by configuring the type, so the type
must be specified in the configuration file.

13.6.7 Other How to speed up themetadata loading when service starts up?

Answer:

1. Update to 4.0.1 above, which helps speed up the process of loading table metadata.

2. Configure:

• max.connections.size.per.query(Default value is 1) higher referring to connection pool
you adopt(Version >= 3.0.0.M3 & Version < 5.0.0).

• max-connections-size-per-query(Default value is 1) higher referring to connection pool
you adopt(Version >= 5.0.0).

13.6.8 Other The ANTLR plugin generates codes in the same level directory as src,
which is easy to commit bymistake. How to avoid it?

Answer:

Goto Settings ‐> Languages & Frameworks ‐> ANTLR v4 default project settings and
configure the output directory of the generated code as target/gen as shown:

13.6. Other 533

https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
jetbrains://idea/settings?name=Languages+%26+Frameworks--ANTLR+v4+default+project+settings

Apache ShardingSphere document

13.6.9 Other Why is the database sharding result not correct when using Proxool?

Answer:

When using Proxool to configure multiple data sources, each one of them should be configured with
alias. It is because Proxool would check whether existing alias is included in the connection pool or
not when acquiring connections, so without alias, each connectionwill be acquired from the same data
source. The followings are core codes from ProxoolDataSource getConnection method in Proxool:

if(!ConnectionPoolManager.getInstance().isPoolExists(this.alias)) {
this.registerPool();

}

For more alias usages, please refer to Proxool official website.

13.6. Other 534

http://proxool.sourceforge.net/configure.html

14
Downloads

14.1 Latest Releases

Apache ShardingSphere is released as source code tarballs with corresponding binary tarballs for con‐
venience. The downloads are distributed via mirror sites and should be checked for tampering using
GPG or SHA‐512.

14.1.1 Apache ShardingSphere - Version: 5.4.0 (Release Date: June 30th, 2023)

• Source Codes: SRC (ASC, SHA512)

• ShardingSphere‐JDBC Binary Distribution: TAR (ASC, SHA512)

• ShardingSphere‐Proxy Binary Distribution: TAR (ASC, SHA512)

• ShardingSphere‐Agent Binary Distribution: TAR (ASC, SHA512)

14.2 All Releases

Find all releases in the Archive repository. Find all incubator releases in the Archive incubator reposi‐
tory.

14.3 Verify the Releases

PGP signatures KEYS

It is essential that you verify the integrity of the downloaded files using the PGP or SHA signatures. The
PGP signatures can be verified using GPG or PGP. Please download the KEYS as well as the asc signature
files for relevant distribution. It is recommended to get these files from themain distribution directory
and not from the mirrors.

535

https://www.apache.org/dyn/closer.lua/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-src.zip
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-src.zip.asc
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-src.zip.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-jdbc-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-jdbc-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-jdbc-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-proxy-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-proxy-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-proxy-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-agent-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-agent-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.4.0/apache-shardingsphere-5.4.0-shardingsphere-agent-bin.tar.gz.sha512
https://archive.apache.org/dist/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://downloads.apache.org/shardingsphere/KEYS

Apache ShardingSphere document

gpg -i KEYS

or

pgpk -a KEYS

or

pgp -ka KEYS

To verify the binaries/sources you can download the relevant asc files for it from main distribution
directory and follow the below guide.

gpg --verify apache-shardingsphere-********.asc apache-shardingsphere-*********

or

pgpv apache-shardingsphere-********.asc

or

pgp apache-shardingsphere-********.asc

14.3. Verify the Releases 536

	What is ShardingSphere
	Introduction
	ShardingSphere-JDBC
	ShardingSphere-Proxy

	Product Features
	Advantages

	Design Philosophy
	Connect: Create database upper level standard
	Enhance: Database computing enhancement engine
	Pluggable: Building database function ecology
	L1 Kernel Layer
	L2 Feature Layer
	L3 Ecosystem Layer

	Deployment
	Using ShardingSphere-JDBC
	Using ShardingSphere-Proxy
	Hybrid Architecture

	Running Modes
	Standalone Mode
	Cluster Mode

	Roadmap
	Get Involved
	Quick Start
	ShardingSphere-JDBC
	Scenarios
	Limitations
	Requirements
	Procedure

	ShardingSphere-Proxy
	Scenarios
	Limitations
	Requirements
	Procedure

	Features
	Sharding
	Background
	Vertical Sharding
	Horizontal Sharding

	Challenges
	Goal
	Application Scenarios
	Mass data high concurrency in OLTP scenarios
	Mass data real-time analysis in OLAP scenarios

	Related References
	Core Concept
	Table
	Logic Table
	Actual Table
	Binding Table
	Broadcast data frame
	Single Table

	Data Nodes
	Uniform Distribution
	Customized Distribution

	Sharding
	Sharding key
	Sharding Algorithm
	Automatic Sharding Algorithm
	Customized Sharding Algorithm
	Sharding Strategy
	Mandatory Sharding routing
	Row Value Expressions
	Distributed Primary Key

	Limitations
	Stable Support
	Normal Queries
	Sub-query
	Pagination Query
	Shard keys included in operation expressions
	LOAD DATA / LOAD XML

	Experimental Support
	Sub-query
	Cross-database Associated query

	Do not Support
	CASE WHEN
	Pagination Query
	LOAD DATA / LOAD XML

	Appendix with SQL operator

	Distributed Transaction
	Background
	Challenge
	Goal
	How it works
	LOCAL Transaction
	XA Transaction
	BASE Transaction

	Application Scenarios
	Application Scenarios for ShardingSphere XA Transactions
	Application Scenarios for ShardingSphere BASE Transaction
	Application Scenarios for ShardingSphere LOCAL Transaction

	Related references
	Core Concept
	XA Protocol

	Limitations
	LOCAL Transaction
	Unsupported

	XA Transaction
	Unsupported

	BASE Transaction
	Unsupported

	Appendix with SQL operator

	Readwrite-splitting
	Background
	Challenges
	Goal
	Application Scenarios
	Complex primary-secondary database architecture

	Related References
	Core Concept
	Primary database
	Secondary database
	Primary-Secondary synchronization
	Load balancer policy

	Limitations

	DB Gateway
	Background
	Challenges
	Goal
	Application Scenarios
	Core Concept
	SQL Dialect

	Limitations

	Traffic Governance
	Background
	Challenges
	Goal
	Application Scenarios
	Overloaded compute node protection
	Storage node traffic limit

	Core Concept
	Circuit Breaker
	Request Limit

	Data Migration
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	Nodes
	Cluster
	Source
	Target
	Data Migration Process
	Stock Data
	Incremental Data

	Limitations
	Procedures Supported
	Procedures not supported

	Encryption
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	Logic column
	Cipher column
	Assisted query column
	Like query column

	Limitations
	Appendix with SQL operator

	Data Masking
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	Logic column

	Limitations

	Shadow
	Background
	Challenges
	Goal
	Application Scenario
	Related References
	Core Concept
	Production Database
	Shadow Database
	Shadow Algorithm

	Limitations
	Hint based shadow algorithm
	Column based shadow algorithm

	Observability
	Background
	Challenges
	Goal
	Application Scenarios
	Monitoring panel
	Monitoring application performance
	Tracing application links

	Related References
	Core Concept
	Agent
	APM
	Tracing
	Metrics
	Logging

	User Manual
	ShardingSphere-JDBC
	YAML Configuration
	Overview
	Usage
	Import Maven Dependency
	YAML Format
	Create Data Source
	Use Data Source

	YAML Syntax Explanation
	Mode
	Parameters
	Standalone Mode
	Cluster Mode (recommended)

	Notes
	Sample
	Standalone Mode
	Cluster Mode (recommended)

	Related References

	Data Source
	Background
	Parameters
	Sample

	Rules
	Sharding
	Background
	Parameters
	Procedure
	Sample
	Related References

	Broadcast Table
	Background
	Parameters
	Procedure
	Sample

	Readwrite-splitting
	Background
	Parameters
	Readwrite-splitting
	Procedure
	Sample
	Related References

	Distributed Transaction
	Background
	Parameters
	Procedure
	Use LOCAL Mode
	Use XA Mode
	Use BASE Mode

	Encryption
	Background
	Parameters
	Procedure
	Sample
	Related References

	Data Masking
	Background
	Parameters
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL-parser
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL Translator
	Configuration Item Explanation

	Mixed Rules
	Background
	Parameters
	Samples

	Cache for Sharding Route
	Background
	Parameters
	Related References

	Single Table
	Background
	Parameters
	Related References

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability
	Data Masking

	JDBC Driver
	Background
	Parameters
	Driver Class Name
	URL Configuration

	Procedure
	Sample
	Spring Boot
	Overview
	Usage
	Import Maven Dependency
	Configure Spring Boot Properties
	Use Data Source

	Spring Namespace
	Overview
	Operation
	Import Maven Dependency
	Configure Spring Bean
	Configuration Item Explanation
	Example
	Use Data Source

	Java API
	Overview
	Usage
	Import Maven Dependency
	Create Data Source
	Use Data Source

	Mode
	Background
	Parameters
	Standalone Persist Configuration
	Cluster Persist Configuration

	Notes
	Procedure
	Introduce Maven Dependency

	Sample
	Standalone Mode
	Cluster Mode (Recommended)

	Related References

	Data Source
	Background
	Procedure
	1. Import Maven dependency.

	Sample

	Rules
	Sharding
	Background
	Parameters
	Root Configuration
	Sharding Table Configuration
	Sharding Auto Table Configuration
	Sharding Strategy Configuration
	Standard Sharding Strategy Configuration
	Complex Sharding Strategy Configuration
	Hint Sharding Strategy Configuration
	None Sharding Strategy Configuration
	Distributed Key Strategy Configuration
	Sharding audit Strategy Configuration
	Procedure
	Sample
	Related References

	Readwrite-splitting
	Background
	Parameters Explained
	Entry
	Primary-secondary Data Source Configuration
	Operating Procedures
	Configuration Examples
	References

	Distributed Transaction
	Root Configuration

	Encryption
	Background
	Parameters
	Root Configuration
	Encrypt Table Rule Configuration
	Encrypt Column Rule Configuration
	Encrypt Column Item Rule Configuration
	Encrypt Algorithm Configuration
	Procedure
	Sample
	Related References

	Data Masking
	Background
	Parameters
	Root Configuration
	Mask Table Rule Configuration
	Mask Column Rule Configuration
	Mask Algorithm Configuration
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Root Configuration
	Shadow Data Source Configuration
	Shadow Table Configuration
	Shadow Algorithm Configuration
	Procedure
	Sample
	Related References

	SQL Parser
	Background
	Parameters
	Cache option Configuration
	Procedure
	Sample
	Related References

	SQL Translator
	Root Configuration

	Mixed Rules
	Background
	Samples

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability
	Data Masking

	Special API
	Sharding
	Hint
	Background
	Procedure
	Sample
	Hint Configuration
	Get HintManager
	Add Sharding Value
	Clean Hint Values
	Codes:
	Related References

	Readwrite-splitting
	Hint
	Background
	Procedure
	Sample
	Primary Route with Hint
	Get HintManager
	Configure Primary Database Route
	Clean Hint Value
	Code:
	Route to the specified database with Hint
	Get HintManager
	Configure Database Route
	Code:
	Related References

	Transaction
	Use Java API
	Background
	Prerequisites
	Procedure
	Sample

	Atomikos Transaction
	Background
	Procedure
	Sample
	Configure the transaction type
	Configure Atomikos
	Data Recovery

	Narayana Transaction
	Background
	Prerequisites
	Procedure
	Sample
	Configure Narayana
	Set the XA transaction type

	Seata Transaction
	Background
	Procedure
	Sample
	Start Seata Server
	Create undo_log table
	Modify configuration

	Optional Plugins
	Unsupported Items
	DataSource Interface
	Connection Interface
	Statement and PreparedStatement Interface
	ResultSet Interface
	JDBC 4.1

	Observability
	Agent
	Compile source code
	Directory structure
	Configuration
	Plugin description
	File
	Prometheus
	OpenTelemetry

	Usage in ShardingSphere-JDBC
	Metrics

	ShardingSphere-Proxy
	Startup
	Use Binary Tar
	Background
	Premise
	Steps
	Sample

	Use Docker
	Background
	Notice
	Steps
	Configuration Example

	Build GraalVM Native Image(Alpha)
	Background
	Notice
	Premise
	Steps

	Observability
	Use Helm
	Background
	Requirements
	Procedure
	Online installation
	Source installation
	Uninstall

	Parameters
	Governance-Node parameters
	Governance-Node ZooKeeper parameters
	Compute-Node ShardingSphere-Proxy parameters

	Sample

	Add dependencies
	Add Narayana dependencies
	Add Narayana dependencies
	jar file downloads

	Yaml Configuration
	Authentication & Authorization
	Background
	Parameters
	Sample
	Minimalist configuration
	Authentication configuration
	Authorization configuration
	ALL_PERMITTED
	DATABASE_PERMITTED

	Related References

	Properties
	Background
	Parameters
	Sample

	Rules
	Background
	Parameters Explained
	Notice

	DistSQL
	Definition
	Related Concepts
	RDL
	RQL
	RAL
	RUL

	Impact on the System
	Before
	After

	Limitations
	How it works
	Related References
	Syntax
	Syntax Rule
	Identifier
	Literal
	Special Instructions

	RDL Syntax
	Storage Unit Definition
	REGISTER STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNREGISTER STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Rule Definition
	Sharding
	CREATE SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	1.Standard sharding table rule
	2.Auto sharding table rule
	3.Create sharding rule with ifNotExists clause
	Reserved word
	Related links
	ALTER SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	1.Standard sharding table rule
	2.Auto sharding table rule
	Reserved word
	Related links
	DROP SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CREATE DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHARDING KEY GENERATOR
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHARDING ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CREATE SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Example
	1.Create a sharding table reference rule
	2.Create multiple sharding table reference rules
	3.Create a sharding table reference rule with ifNotExists clause
	Reserved word
	Related links
	ALTER SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Example
	1. Alter a sharding table reference rule
	2. Alter multiple sharding table reference rules
	Reserved word
	Related links
	DROP SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Reserved word
	Related links
	Broadcast Table
	CREATE BROADCAST TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Create broadcast table rule
	Create broadcast table rule with ifNotExists clause
	Reserved word
	Related links
	DROP BROADCAST TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Single Table
	LOAD SINGLE TABLE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNLOAD SINGLE TABLE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SET DEFAULT SINGLE TABLE STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Readwrite-Splitting
	CREATE READWRITE_SPLITTING RULE
	Description
	Syntax
	Note
	Example
	Create a read/write splitting rule
	Create read/write splitting rule with the ifNotExists clause
	Reserved words
	Related links
	ALTER READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Example
	Alter a readwrite-splitting rule
	Reserved word
	Related links
	DROP READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	Encrypt
	CREATE ENCRYPT RULE
	Description
	Syntax
	Supplement
	Example
	Create an encrypt rule
	Create an encrypt rule with ifNotExists clause
	Reserved words
	Related links
	ALTER ENCRYPT RULE
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links
	DROP ENCRYPT RULE
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links
	Mask
	CREATE MASK RULE
	Description
	Syntax
	Note
	Example
	Create a mask rule
	Create mask rule with ifNotExists clause
	Reserved words
	Related links
	ALTER MASK RULE
	Description
	Syntax
	Supplement
	Example
	Alter a mask rule
	Reserved words
	Related links
	DROP MASK RULE
	Description
	Syntax
	Supplement
	Example
	Reserved words
	Related links
	Shadow
	CREATE SHADOW RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER SHADOW RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHADOW RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CREATE DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links

	RQL Syntax
	Storage Unit Query
	SHOW STORAGE UNITS
	Description
	Syntax
	Supplement
	Return Value Description
	Reserved word
	Related links
	Rule Query
	Sharding
	SHOW SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Reserved word
	Related links
	SHOW SHARDING ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW UNUSED SHARDING ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING KEY GENERATORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW UNUSED SHARDING KEY GENERATORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING AUDITORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW UNUSED SHARDING AUDITORS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE NODES
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE NODES
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE RULES USED KEY GENERATOR
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE RULES USED AUDITOR
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHARDING TABLE REFERENCE RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT SHARDING RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Broadcast Table
	SHOW BROADCAST TABLE RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT BROADCAST RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Single Table
	SHOW SINGLE TABLE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW DEFAULT SINGLE TABLE STORAGE UNIT
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	COUNT SINGLE_TABLE RULE
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW UNLOADED SINGLE TABLES
	Description
	Syntax
	Return value description
	Example
	Reserved word
	Related links
	Readwrite-Splitting
	SHOW READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Encrypt
	SHOW ENCRYPT RULES
	Description
	Syntax
	Note
	Return value description
	Example
	Reserved word
	Related links
	COUNT ENCRYPT RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Mask
	SHOW MASK RULES
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT MASK RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	Shadow
	SHOW SHADOW RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHADOW TABLE RULES
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW SHADOW ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	COUNT SHADOW RULE
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links

	RAL Syntax
	GLOBAL RULE
	SHOW AUTHORITY RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW TRANSACTION RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	ALTER TRANSACTION RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW SQL_PARSER RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	Alter SQL_PARSER Rule
	Description
	Syntax
	Note
	Example
	Reserved word
	Related links
	SHOW TRAFFIC RULE
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	ALTER TRAFFIC RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	CIRCUIT BREAKER
	ALTER READWRITE_SPLITTING RULE ENABLE/DISABLE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW STATUS FROM READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW COMPUTE NODES
	Description
	Return Value Description
	Example
	Dedicated Terminology
	Related links
	ENABLE/DISABLE COMPUTE NODE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	LABEL|RELABEL COMPUTE NODES
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNLABEL COMPUTE NODES
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	MIGRATUION
	SHOW MIGRATION RULE
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	ALTER MIGRATION RULE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	REGISTER MIGRATION SOURCE STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	UNREGISTER MIGRATION SOURCE STORAGE UNIT
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW MIGRATION SOURCE STORAGE UNITS
	Description
	Syntax
	Return Value Description
	Reserved word
	Related links
	MIGRATE TABLE INTO
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW MIGRATION LIST
	Description
	Syntax
	Return Values Description
	Example
	Reserved word
	Related links
	SHOW MIGRATION STATUS
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW MIGRATION CHECK ALGORITHM
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	CHECK MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW MIGRATION CHECK STATUS
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	Reserved word
	Related links
	START MIGRATION CHECK
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	STOP MIGRATION CHECK
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	START MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	STOP MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	COMMIT MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ROLLBACK MIGRATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW COMPUTE NODE INFO
	Description
	Return Value Description
	Example
	Reserved word
	Related links
	SHOW COMPUTE NODE MODE
	Description
	Return Value Description
	Example
	Reserved word
	Related links
	SET DIST VARIABLE
	Description
	Supplement
	Example
	Reserved word
	Related links
	SHOW DIST VARIABLE
	Description
	Syntax
	Return Value Description
	Supplement
	Example
	Reserved word
	Related links
	REFRESH TABLE METADATA
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	REFRESH DATABASE METADATA FROM GOVERNANCE CENTER
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW TABLE METADATA
	Description
	Syntax
	Return Value Description
	Supplement
	Example
	Reserved word
	Related links
	EXPORT DATABASE CONFIGURATION
	Description
	Syntax
	Supplement
	Reserved word
	Related links
	IMPORT DATABASE CONFIGURATION
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	SHOW RULES USED STORAGE UNIT
	Description
	Syntax
	Return Value Description
	Supplement
	Example
	Reserved word
	Related links

	RUL Syntax
	PARSE SQL
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	FORMAT SQL
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links
	PREVIEW SQL
	Description
	Syntax
	Return Value Description
	Example
	Reserved word
	Related links

	Reserved word
	RDL
	Basic Reserved Words
	Storage Unit Definition
	Rule Definition
	Sharding
	Broadcast table
	Single Table
	Readwrite-Splitting
	Encrypt
	Database Discovery
	Shadow
	MASK
	RQL
	Basic Reserved Words
	Resource Definition
	Rule Query
	SHARDING
	Single Table
	Readwrite-Splitting
	Encrypt
	Database Discovery
	Shadow
	MASK
	RAL
	RUL
	Supplement

	Usage
	Pre-work
	Create Logic Database
	Resource Operation
	Rule Operation
	Notice

	Sharding
	Storage unit Operation
	Rule Operation

	Readwrite_splitting
	Storage unit Operation
	Rule Operation

	Encrypt
	Storage unit Operation
	Rule Operation

	MASK
	Storage unit Operation
	Rule Operation

	Shadow
	Storage unit Operation
	Rule Operation

	Data Migration
	Introduction
	Build
	Background
	Prerequisites
	Procedure

	Manual
	MySQL user guide
	Environment
	Authority required
	Complete procedure example
	Requirements
	Procedure

	PostgreSQL user guide
	Environment
	Authority required
	Complete procedure example
	Requirements
	Procedure

	openGauss user guide
	Environment
	Authority required
	Complete procedure example
	Requirements
	Procedure

	Observability
	Agent
	Compile source code
	Directory structure
	Configuration
	Plugin description
	File
	Prometheus
	OpenTelemetry

	Usage in ShardingSphere-Proxy
	Using via a non-container environment
	Use via container environment

	Metrics

	Optional Plugins
	Session Management
	Usage
	View Session
	Kill Session

	Logging Configuration
	Background
	Procedure
	Sample

	Common Configuration
	Properties Configuration
	Background
	Parameters
	Procedure
	Sample

	Builtin Algorithm
	Introduction
	Usage
	Metadata Repository
	Background
	Parameters
	Database Repository
	ZooKeeper Repository
	Etcd Repository
	Nacos Repository
	Consul Repository

	Procedure
	Sample

	Sharding Algorithm
	Background
	Parameters
	Auto Sharding Algorithm
	Modulo Sharding Algorithm
	Hash Modulo Sharding Algorithm
	Volume Based Range Sharding Algorithm
	Boundary Based Range Sharding Algorithm
	Auto Interval Sharding Algorithm
	Standard Sharding Algorithm
	Inline Sharding Algorithm
	Interval Sharding Algorithm
	Complex Sharding Algorithm
	Complex Inline Sharding Algorithm
	Hint Sharding Algorithm
	Hint Inline Sharding Algorithm
	Class Based Sharding Algorithm

	Procedure
	Sample
	Related References

	Key Generate Algorithm
	Background
	Parameters
	Snowflake
	UUID

	Procedure
	Sample

	Load Balance Algorithm
	Background
	Parameters
	Round-robin Load Balance Algorithm
	Random Load Balance Algorithm
	Weight Load Balance Algorithm

	Procedure
	Sample
	Related References

	Encryption Algorithm
	Background
	Parameters
	Standard Encrypt Algorithm
	AES Encrypt Algorithm
	RC4 Encrypt Algorithm
	Like Encrypt Algorithm
	CharDigestLike Encrypt Algorithm
	Assisted Encrypt Algorithm
	MD5 Assisted Encrypt Algorithm

	Operating Procedure
	Configuration Examples
	Related References

	Shadow Algorithm
	Background
	Parameters
	Column-based shadow algorithm
	Column value matching shadow algorithm
	Column-based Regex matching algorithm
	Hint-based shadow algorithm
	SQL HINT shadow algorithm

	Configuration sample

	SQL Translator
	Native SQL translator
	JooQ SQL translator

	Sharding Audit Algorithm
	Background
	Parameters
	DML_SHARDING_CONDITIONS algorithm

	Procedure
	Sample

	Data Masking Algorithm
	Background
	Parameters
	Hash Data Masking Algorithm
	MD5 Data Masking Algorithm
	Mask Data Masking Algorithm
	Keep First N Last M Data Masking Algorithm
	Keep From X To Y Data Masking Algorithm
	Mask First N Last M Data Masking Algorithm
	Mask From X To Y Data Masking Algorithm
	Mask Before Special Chars Data Masking Algorithm
	Mask After Special Chars Data Masking Algorithm
	Replace Data Masking Algorithm
	Personal Identity Number Random Replace Data Masking Algorithm
	Military Identity Number Random Replace Data Masking Algorithm
	Telephone Random Replace Data Masking Algorithm
	Landline Number Random Replace Data Masking Algorithm
	Generic table random replace algorithm.
	Unified credit code random replace algorithm

	Operating Procedure
	Configuration Examples
	Related References

	SQL Hint
	Background
	Use specification
	Parameters
	SQL Hint
	Sharding
	ReadwriteSplitting
	DataSource Pass Through
	SKIP SQL REWRITE
	DISABLE SQL AUDIT
	SHADOW

	Error Code
	SQL Error Code
	Kernel Exception
	Meta data
	Data
	Syntax
	Connection
	Transaction
	Lock
	Audit
	Authority
	Cluster
	Migration
	DistSQL

	Feature Exception
	Data Sharding
	Readwrite-splitting
	Database HA
	SQL Dialect Translator
	Traffic Management
	Data Encrypt
	Shadow Database
	Data Masking

	Other Exception

	Server Error Code

	Dev Manual
	Mode
	StandalonePersistRepository
	Fully-qualified class name
	Definition
	Implementation classes

	ClusterPersistRepository
	Fully-qualified class name
	Definition
	Implementation classes

	SQL Parser
	DatabaseTypedSQLParserFacade
	Fully-qualified class name
	Definition
	Implementation classes

	SQLStatementVisitorFacade
	Fully-qualified class name
	Definition
	Implementation classes

	Data Sharding
	ShardingAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	KeyGenerateAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	ShardingAuditAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	DatetimeService
	Fully-qualified class name
	Definition
	Implementation classes

	Readwrite-splitting
	ReadQueryLoadBalanceAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	SQL Audit
	SQLAuditor
	Fully-qualified class name
	Definition
	Implementation classes

	Encryption
	EncryptAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Data Masking
	MaskAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Shadow DB
	ShadowAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Observability
	PluginLifecycleService
	Fully-qualified class name
	Definition
	Implementation classes

	Test Manual
	Integration Test
	Module Test
	Performance Test
	Sysbench Test
	Integration Test
	Design
	Test case
	Test environment
	Test engine

	User Guide
	Test case configuration
	Environment configuration
	Native environment configuration
	Docker environment configuration

	Run the test engine
	Configure the running environment of the test engine
	Run debugging mode
	Run Docker mode
	Remote debug Proxy code in Docker container
	Remote debug Proxy started by docker image
	Remote debug Proxy started by Testcontainer

	Notice

	Performance Test
	SysBench ShardingSphere-Proxy Empty Rule Performance Test
	Objectives
	Set up the test environment
	Server information
	Database
	Stress testing tool
	ShardingSphere-Proxy
	bin/start.sh
	config.yaml

	Test phase
	Environment setup
	Stress testing command
	Stress testing report analysis
	Noticeable features

	BenchmarkSQL ShardingSphere-Proxy Sharding Performance Test
	Objective
	Method
	Fine tuning to test tools
	Remove the foreign key and extraHistID

	Stress testing environment or parameter recommendations
	It is recommended to run ShardingSphere using Java 17
	ShardingSphere data sharding recommendations
	PostgreSQL JDBC URL parameter recommendations
	ShardingSphere-Proxy server.yaml parameter recommendations

	Appendix
	BenchmarkSQL data sharding reference configuration

	BenchmarkSQL 5.0 PostgreSQL statement list
	Create tables
	Create indexes
	New Order business
	Payment business
	Order Status business
	Stock level business
	Delivery BG business

	Module Test
	SQL Parser Test
	Prepare Data
	SQL Data
	Assert Data

	SQL Rewrite Test
	Target
	Test

	Pipeline E2E Test
	Objectives
	Test environment type
	User guide
	Environment setup
	Test case
	Running the test case
	NATIVE environment setup
	DOCKER environment setup

	Reference
	Database Compatibility
	Database Gateway
	Management
	Data Structure in Registry Center
	/rules
	/props
	/metadata/${databaseName}/data_sources/units/ds_0/versions/0
	/metadata/${databaseName}/data_sources/nodes/ds_0/versions/0
	/metadata/${databaseName}/rules/sharding/tables/t_order/versions/0
	/metadata/databaseName/schemas/{schemaName}/tables/t_order/versions/0
	/nodes/compute_nodes
	/nodes/storage_nodes

	Sharding
	SQL Parser
	SQL Route
	SQL Rewrite
	SQL Execution
	Result Merger
	Query Optimization
	Parse Engine
	Abstract Syntax Tree
	SQL Parser Engine
	Iteration
	Features
	API Usage

	Route Engine
	Sharding Route
	Direct Route
	Standard Route
	Cartesian Route

	Broadcast Route
	Full database and table route
	Full database route
	Full instance route
	Unicast Route
	Block Route

	Rewrite Engine
	Rewriting for Correctness
	Identifier Rewriting
	Column Derivation
	Pagination Correction
	Batch Split
	Rewriting for Optimization
	Single Node Optimization
	Stream Merger Optimization

	Execute Engine
	Connection Mode
	MEMORY_STRICTLY Mode
	CONNECTION_STRICTLY Mode

	Automatic Execution Engine
	Preparation Phrase
	Execution Phrase

	Merger Engine
	Traversal Merger
	Order-by Merger
	Group-by Merger
	Aggregation Merger
	Pagination Merger

	Transaction
	Navigation
	XA Transaction
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Seata BASE transaction
	Init Seata Engine
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Data Migration
	Explanation
	Execution Stage Explained
	Preparation
	Stock data migration
	The Synchronization of incremental data
	Traffic Switching

	References

	Encryption
	Overall Architecture
	Encryption Rules
	Encryption Process
	Detailed Solution
	The advantages of Middleware encryption service
	Solution

	EncryptAlgorithm

	Mask
	Overall Architecture
	Mask Rules
	Mask Process

	Shadow
	How it works
	DML sentence
	DDL sentence

	References

	Oberservability
	How it works

	Architecture

	FAQ
	MODE
	MODE What is the difference between cluster mode Cluster and Compatible_Cluster?

	JDBC
	JDBC Found a JtaTransactionManager in spring boot project when integrating with XAtransaction.
	JDBC The tableName and columnName configured in yaml or properties leading incorrect result when loading Oracle metadata？
	JDBC SQLException: Unable to unwrap to interface com.mysql.jdbc.Connection exception thrown when using MySQL XA transaction

	Proxy
	Proxy In Windows environment, could not find or load main class org.apache.shardingsphere.proxy.Bootstrap, how to solve it?
	Proxy How to add a new logic database dynamically when use ShardingSphere-Proxy?
	Proxy How to use suitable database tools connecting ShardingSphere-Proxy?
	Proxy When using a client to connect to ShardingSphere-Proxy, if ShardingSphere-Proxy does not create a database or does not register a storage unit, the client connection will fail?

	Sharding
	Sharding How to solve Cloud not resolve placeholder … in string value … error?
	Sharding Why does float number appear in the return result of inline expression?
	Sharding If sharding database is partial, should tables without sharding database & table configured in sharding rules?
	Sharding When generic Long type SingleKeyTableShardingAlgorithm is used, why does the ClassCastException: Integer can not cast to Long exception appear?
	[Sharding:raw-latex:PROXY] When implementing the StandardShardingAlgorithm custom algorithm, the specific type of Comparable is specified as Long, and the field type in the database table is bigint, a ClassCastException: Integer can not cast to Long exception occurs.
	Sharding Why is the default distributed auto-augment key strategy provided by ShardingSphere not continuous and most of them end with even numbers?
	Sharding How to allow range query with using inline sharding strategy (BETWEEN AND, >, <, >=, <=)?
	Sharding Why does my custom distributed primary key do not work after implementing KeyGenerateAlgorithm interface and configuring type property?
	Sharding In addition to internal distributed primary key, does ShardingSphere support other native auto-increment keys?

	DistSQL
	DistSQL How to set custom JDBC connection properties or connection pool properties when adding a data source using DistSQL?
	DistSQL How to solve Storage unit [xxx] is still used by [SingleRule]. exception when dropping a data source using DistSQL?
	DistSQL How to solve Failed to get driver instance for jdbcURL=xxx. exception when adding a data source using DistSQL?

	Other
	Other How to debug when SQL can not be executed rightly in ShardingSphere?
	Other Why do some compiling errors appear? Why did not the IDEA index the generated codes?
	Other In SQLSever and PostgreSQL, why does the aggregation column without alias throw exception?
	Other Why does Oracle database throw “Order by value must implements Comparable” exception when using Timestamp Order By?
	Other In Windows environment,when cloning ShardingSphere source code through Git, why prompt filename too long and how to solve it?
	Other How to solve Type is required error?
	Other How to speed up the metadata loading when service starts up?
	Other The ANTLR plugin generates codes in the same level directory as src, which is easy to commit by mistake. How to avoid it?
	Other Why is the database sharding result not correct when using Proxool?

	Downloads
	Latest Releases
	Apache ShardingSphere - Version: 5.4.0 (Release Date: June 30th, 2023)

	All Releases
	Verify the Releases

