
Apache ShardingSphere document
v5.2.1

Apache ShardingSphere

Oct 18, 2022

Contents

1 Overview 1
1.1 What is ShardingSphere . 1

1.1.1 Introduction . 1
ShardingSphere‐JDBC . 1
ShardingSphere‐Proxy . 1

1.1.2 Product Features . 2
1.1.3 Advantages . 2

1.2 Design Philosophy . 3
1.2.1 Connect: Create database upper level standard 4
1.2.2 Enhance: Database computing enhancement engine 4
1.2.3 Pluggable: Building database function ecology 4

L1 Kernel Layer . 5
L2 Feature Layer . 5
L3 Ecosystem Layer . 5

1.3 Deployment . 5
1.3.1 Using ShardingSphere‐JDBC . 5
1.3.2 Using ShardingSphere‐Proxy . 6
1.3.3 Hybrid Architecture . 7

1.4 Running Modes . 8
1.4.1 Standalone Mode . 8
1.4.2 Cluster Mode . 8

1.5 Roadmap . 9
1.6 Get Involved . 9

2 Quick Start 10
2.1 ShardingSphere‐JDBC . 10

2.1.1 Scenarios . 10
2.1.2 Limitations . 10
2.1.3 Requirements . 10
2.1.4 Procedure . 10

2.2 ShardingSphere‐Proxy . 12

i

2.2.1 Scenarios . 12
2.2.2 Limitations . 12
2.2.3 Requirements . 13
2.2.4 Procedure . 13

3 Features 15
3.1 Sharding . 15

3.1.1 Background . 15
Vertical Sharding . 16
Horizontal Sharding . 17

3.1.2 Challenges . 18
3.1.3 Goal . 18
3.1.4 Application Scenarios . 18

Mass data high concurrency in OLTP scenarios 18
Mass data real‐time analysis in OLAP scenarios 19

3.1.5 Related References . 19
3.1.6 Core Concept . 19

Table . 19
Data Nodes . 21
Sharding . 22

3.1.7 Limitations . 24
Stable Support . 24
Experimental Support . 26
Do not Support . 27

3.1.8 Appendix with SQL operator . 27
3.2 Distributed Transaction . 27

3.2.1 Background . 27
3.2.2 Challenge . 28
3.2.3 Goal . 28
3.2.4 How it works . 28

LOCAL Transaction . 29
XA Transaction . 29
BASE Transaction . 30

3.2.5 Application Scenarios . 31
Application Scenarios for ShardingSphere XA Transactions 31
Application Scenarios for ShardingSphere BASE Transaction 31
Application Scenarios for ShardingSphere LOCAL Transaction 31

3.2.6 Related references . 31
3.2.7 Core Concept . 31

XA Protocol . 31
3.2.8 Limitations . 32

LOCAL Transaction . 32
XA Transaction . 32
BASE Transaction . 33

3.2.9 Appendix with SQL operator . 33

ii

3.3 Readwrite‐splitting . 33
3.3.1 Background . 33
3.3.2 Challenges . 34
3.3.3 Goal . 35
3.3.4 Application Scenarios . 35

Complex primary‐secondary database architecture 35
3.3.5 Related References . 36
3.3.6 Core Concept . 36

Primary database . 36
Secondary database . 36
Primary‐Secondary synchronization . 36
Load balancer policy . 36

3.3.7 Limitations . 36
3.4 HA . 37

3.4.1 Background . 37
3.4.2 Challenges . 37
3.4.3 Goal . 38
3.4.4 Application Scenarios . 38
3.4.5 Related References . 38
3.4.6 Core Concept . 38

High Availability Type . 38
Dynamic Read/Write Splitting . 38

3.4.7 Limitations . 39
Supported . 39
Not supported . 39

3.5 DB Gateway . 39
3.5.1 Background . 39
3.5.2 Challenges . 39
3.5.3 Goal . 39
3.5.4 Application Scenarios . 39
3.5.5 Core Concept . 40

SQL Dialect . 40
3.5.6 Limitations . 40

3.6 Traffic Governance . 40
3.6.1 Background . 40
3.6.2 Challenges . 40
3.6.3 Goal . 40
3.6.4 Application Scenarios . 41

Overloaded compute node protection . 41
Storage node traffic limit . 41

3.6.5 Core Concept . 41
Circuit Breaker . 41
Request Limit . 41

3.7 Data Migration . 41
3.7.1 Background . 41

iii

3.7.2 Challenges . 42
3.7.3 Goal . 42
3.7.4 Application Scenarios . 42
3.7.5 Related References . 42
3.7.6 Core Concept . 42

Nodes . 42
Cluster . 42
Source . 43
Target . 43
Data Migration Process . 43
Stock Data . 43
Incremental Data . 43

3.7.7 Limitations . 43
Procedures Supported . 43
Procedures not supported . 43

3.8 Encryption . 44
3.8.1 Background . 44
3.8.2 Challenges . 44
3.8.3 Goal . 45
3.8.4 Application Scenarios . 45

Newly launched services . 45
Existing services . 45

3.8.5 Related References . 45
3.8.6 Core Concept . 45

Logic column . 45
Cipher column . 46
Query assistant column . 46
Plain column . 46

3.8.7 Limitations . 46
3.8.8 Appendix with SQL operator . 46

3.9 Shadow . 46
3.9.1 Background . 46
3.9.2 Challenges . 47
3.9.3 Goal . 47
3.9.4 Application Scenario . 47
3.9.5 Related References . 48
3.9.6 Core Concept . 48

Production Database . 48
Shadow Database . 48
Shadow Algorithm . 48

3.9.7 Limitations . 48
Hint based shadow algorithm . 48
Column based shadow algorithm . 48

3.10 Observability . 49
3.10.1 Background . 49

iv

3.10.2 Challenges . 51
3.10.3 Goal . 51
3.10.4 Application Scenarios . 51

Monitoring panel . 51
Monitoring application performance . 51
Tracing application links . 51

3.10.5 Related References . 52
3.10.6 Core Concept . 52

Agent . 52
APM . 52
Tracing . 52
Metrics . 52
Logging . 52

4 User Manual 53
4.1 ShardingSphere‐JDBC . 53

4.1.1 YAML Configuration . 54
Overview . 54
Usage . 54
YAML Syntax Explanation . 55
Mode . 55
Data Source . 57
Rules . 58
Algorithm . 78
JDBC Driver . 79

4.1.2 Java API . 81
Overview . 81
Usage . 82
Mode . 83
Data Source . 86
Rules . 87
Algorithm . 110

4.1.3 Spring Boot Starter . 111
Overview . 111
Usage . 112
Mode . 113
Data Source . 114
Rules . 116
Algorithm . 133

4.1.4 Spring Namespace . 134
Overview . 134
Usage . 134
Mode . 136
Data Source . 139
Rules . 140

v

Algorithm . 162
4.1.5 Special API . 164

Sharding . 164
Readwrite Splitting . 167
Transaction . 169

4.1.6 Unsupported Items . 180
DataSource Interface . 180
Connection Interface . 180
Statement and PreparedStatement Interface . 180
ResultSet Interface . 180
JDBC 4.1 . 181

4.2 ShardingSphere‐Proxy . 181
4.2.1 Startup . 181

Use Binary Tar . 181
Use Docker . 183
Build GraalVM Native Image(Alpha) . 185
Use Helm . 188
Add dependencies . 194

4.2.2 Yaml Configuration . 196
Authorization . 196
Properties . 198
Rules . 200

4.2.3 DistSQL . 200
Definition . 200
Related Concepts . 201
Impact on the System . 201
Limitations . 203
How it works . 203
Related References . 203
Syntax . 203
Usage . 248

4.2.4 Data Migration . 255
Introduction . 255
Build . 256
Manual . 260

4.2.5 Observability . 272
Compile source code . 272
Agent configuration . 272
Usage in ShardingSphere‐Proxy . 275
Metrics . 277

4.2.6 Optional Plugins . 278
4.2.7 Session Management . 280

Usage . 281
4.3 Common Configuration . 282

4.3.1 Properties Configuration . 282

vi

Background . 282
Parameters . 283
Procedure . 284
Sample . 284

4.3.2 Builtin Algorithm . 284
Introduction . 284
Usage . 284
Metadata Repository . 284
Sharding Algorithm . 287
Key Generate Algorithm . 298
Load Balance Algorithm . 303
Encryption Algorithm . 306
Shadow Algorithm . 308
SQL Translator . 310
Sharding Audit Algorithm . 311

4.4 Error Code . 312
4.4.1 SQL Error Code . 312

Kernel Exception . 312
Feature Exception . 316
Other Exception . 318

4.4.2 Server Error Code . 318

5 DevManual 320
5.1 Mode . 320

5.1.1 StandalonePersistRepository . 320
Fully‐qualified class name . 320
Definition . 320
Implementation classes . 320

5.1.2 ClusterPersistRepository . 321
Fully‐qualified class name . 321
Definition . 321
Implementation classes . 321

5.1.3 GovernanceWatcher . 321
Fully‐qualified class name . 321
Definition . 321
Implementation classes . 322

5.2 Configuration . 322
5.2.1 RuleBuilder . 322

Fully‐qualified class name . 322
Definition . 323
Implementation classes . 324

5.2.2 YamlRuleConfigurationSwapper . 325
Fully‐qualified class name . 325
Definition . 325
Implementation classes . 326

vii

5.2.3 ShardingSphereYamlConstruct . 327
Fully‐qualified class name . 327
Definition . 327
Implementation classes . 327

5.3 Kernel . 327
5.3.1 SQLRouter . 327

Fully‐qualified class name . 327
Definition . 327
Implementation classes . 328

5.3.2 SQLRewriteContextDecorator . 328
Fully‐qualified class name . 328
Definition . 328
Implementation classes . 328

5.3.3 SQLExecutionHook . 329
Fully‐qualified class name . 329
Definition . 329
Implementation classes . 329

5.3.4 ResultProcessEngine . 329
Fully‐qualified class name . 329
Definition . 329
Implementation classes . 329

5.4 DataSource . 330
5.4.1 DatabaseType . 330

Fully‐qualified class name . 330
Definition . 330
Implementation classes . 331

5.4.2 DialectSchemaMetaDataLoader . 332
Fully‐qualified class name . 332
Definition . 332
Implementation classes . 333

5.4.3 DataSourcePoolMetaData . 334
Fully‐qualified class name . 334
Definition . 334
Implementation classes . 334

5.4.4 DataSourcePoolActiveDetector . 334
Fully‐qualified class name . 334
Definition . 334
Implementation classes . 334

5.5 SQL Parser . 335
5.5.1 DatabaseTypedSQLParserFacade . 335

Fully‐qualified class name . 335
Definition . 335
Implementation classes . 335

5.5.2 SQLVisitorFacade . 335
Fully‐qualified class name . 335

viii

Definition . 336
Implementation classes . 336

5.6 Proxy . 337
5.6.1 DatabaseProtocolFrontendEngine . 337

Fully‐qualified class name . 337
Definition . 337
Implementation classes . 337

5.6.2 AuthorityProvideAlgorithm . 337
Fully‐qualified class name . 337
Definition . 337
Implementation classes . 337

5.7 Data Sharding . 338
5.7.1 ShardingAlgorithm . 338

Fully‐qualified class name . 338
Definition . 338
Implementation classes . 339

5.7.2 KeyGenerateAlgorithm . 340
Fully‐qualified class name . 340
Definition . 340
Implementation classes . 340

5.7.3 ShardingAuditAlgorithm . 340
Fully‐qualified class name . 340
Definition . 340
Implementation classes . 341

5.7.4 DatetimeService . 341
Fully‐qualified class name . 341
Definition . 341
Implementation classes . 341

5.8 Readwrite‐splitting . 342
5.8.1 ReadQueryLoadBalanceAlgorithm . 342

Fully‐qualified class name . 342
Definition . 342
Implementation classes . 343

5.9 HA . 344
5.9.1 DatabaseDiscoveryProviderAlgorithm . 344

Fully‐qualified class name . 344
Definition . 344
Implementation classes . 344

5.10 Distributed Transaction . 344
5.10.1 ShardingSphereTransactionManager . 344

Fully‐qualified class name . 344
Definition . 345
Implementation classes . 345

5.10.2 XATransactionManagerProvider . 345
Fully‐qualified class name . 345

ix

Definition . 345
Implementation classes . 345

5.10.3 XADataSourceDefinition . 346
Fully‐qualified class name . 346
Definition . 346
Implementation classes . 346

5.10.4 DataSourcePropertyProvider . 346
Fully‐qualified class name . 346
Definition . 347
Implementation classes . 347

5.11 SQL Checker . 347
5.11.1 SQLChecker . 347

Fully‐qualified class name . 347
Definition . 347
Implementation classes . 347

5.12 Encryption . 347
5.12.1 EncryptAlgorithm . 347

Fully‐qualified class name . 347
Definition . 348
Implementation classes . 348

5.13 Shadow DB . 348
5.13.1 ShadowAlgorithm . 348

Fully‐qualified class name . 348
Definition . 348
Implementation classes . 349

5.14 Observability . 349
5.14.1 PluginBootService . 349

Fully‐qualified class name . 349
Definition . 349
Implementation classes . 350

5.14.2 PluginDefinitionService . 351
Fully‐qualified class name . 351
Definition . 351
Implementation classes . 352

6 Test Manual 353
6.1 Integration Test . 353
6.2 Module Test . 353
6.3 Performance Test . 353
6.4 Sysbench Test . 354
6.5 Integration Test . 354

6.5.1 Design . 354
Test case . 354
Test environment . 354
Test engine . 355

x

6.5.2 User Guide . 355
Test case configuration . 355
Environment configuration . 356
Run the test engine . 357

6.6 Performance Test . 358
6.6.1 SysBench ShardingSphere‐Proxy Empty Rule Performance Test 358

Objectives . 358
Set up the test environment . 358
Test phase . 360

6.6.2 BenchmarkSQL ShardingSphere‐Proxy Sharding Performance Test 362
Objective . 362
Method . 362
Fine tuning to test tools . 362
Stress testing environment or parameter recommendations 363
Appendix . 364
BenchmarkSQL 5.0 PostgreSQL statement list . 367

6.7 Module Test . 376
6.7.1 SQL Parser Test . 376

Prepare Data . 376
6.7.2 SQL Rewrite Test . 377

Target . 377
6.8 Scaling Integration Test . 379

6.8.1 Objectives . 379
6.8.2 Test environment . 379
6.8.3 User guide . 379

Environment setup . 379
Test case . 379
Running the test case . 380

7 Reference 381
7.1 Database Compatibility . 381
7.2 Database Gateway . 382
7.3 Management . 382

7.3.1 Data Structure in Registry Center . 382
/rules . 383
/props . 384
/metadata/databaseName/versions/{versionNumber}/dataSources 384
/metadata/databaseName/versions/{versionNumber}/rules 385
/metadata/databaseName/schemas/{schemaName}/tables 385
/nodes/compute_nodes . 385
/nodes/storage_nodes . 386

7.4 Sharding . 386
7.4.1 SQL Parser . 387
7.4.2 SQL Route . 387
7.4.3 SQL Rewrite . 387

xi

7.4.4 SQL Execution . 387
7.4.5 Result Merger . 387
7.4.6 Query Optimization . 387
7.4.7 Parse Engine . 387

Abstract Syntax Tree . 388
SQL Parser Engine . 389

7.4.8 Route Engine . 392
Sharding Route . 392
Broadcast Route . 394

7.4.9 Rewrite Engine . 396
Rewriting for Correctness . 396
Identifier Rewriting . 396
Column Derivation . 398
Pagination Correction . 400
Batch Split . 401
Rewriting for Optimization . 402

7.4.10 Execute Engine . 403
Connection Mode . 404
Automatic Execution Engine . 405

7.4.11 Merger Engine . 409
Traversal Merger . 409
Order‐by Merger . 409
Group‐by Merger . 411
Aggregation Merger . 414
Pagination Merger . 414

7.5 Transaction . 415
7.5.1 Navigation . 415
7.5.2 XA Transaction . 415

Transaction Begin . 416
Execute actual sharding SQL . 416
Commit or Rollback . 417

7.5.3 Seata BASE transaction . 417
Init Seata Engine . 418
Transaction Begin . 418
Execute actual sharding SQL . 418
Commit or Rollback . 419

7.6 Data Migration . 419
7.6.1 Explanation . 419
7.6.2 Execution Stage Explained . 420

Preparation . 420
Stock data migration . 420
The Synchronization of incremental data . 420
Traffic Switching . 420

7.6.3 References . 421
7.7 Encryption . 421

xii

7.7.1 Overall Architecture . 421
7.7.2 Encryption Rules . 422
7.7.3 Encryption Process . 423

Detailed Solution . 425
7.7.4 New Business . 425
7.7.5 Online Business Transformation . 426

The advantages of Middleware encryption service 432
Solution . 432

7.7.6 EncryptAlgorithm . 432
7.8 Shadow . 433

7.8.1 How it works . 433
DML sentence . 433
DDL sentence . 434

7.8.2 References . 434
7.9 Oberservability . 434

7.9.1 How it works . 434
7.10 DistSQL . 435

7.10.1 Syntax . 435
RDL Syntax . 436
RQL Syntax . 474
RAL Syntax . 489
Reserved word . 489

7.11 Architecture . 491

8 FAQ 493
8.1 JDBC . 493

8.1.1 JDBC Why there may be an error when configure both shardingsphere‐jdbc‐
spring‐boot‐starter and a spring‐boot‐starter of certain datasource pool (such as
druid)? . 493

8.1.2 JDBCWhy is xsd unable to be found when Spring Namespace is used? 493
8.1.3 JDBC Found a JtaTransactionManager in spring boot project when integrating

with XAtransaction. 494
8.1.4 JDBCThe tableNameand columnName configured in yaml or properties leading

incorrect result when loading Oracle metadata？ 494
8.2 Proxy . 495

8.2.1 Proxy In Windows environment, could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how to solve it? 495

8.2.2 Proxy How to add a new logic database dynamically when use ShardingSphere‐
Proxy? . 495

8.2.3 Proxy How to use suitable database tools connecting ShardingSphere‐Proxy? . . 495
8.2.4 Proxy When using a client such as Navicat to connect to ShardingSphere‐Proxy,

if ShardingSphere‐Proxy does not create a database or does not add a resource,
the client connection will fail? . 496

8.3 Sharding . 496

xiii

8.3.1 Sharding How to solve Cloud not resolve placeholder ⋯in string
value ⋯ error? . 496

8.3.2 Sharding Why does float number appear in the return result of inline expression?496
8.3.3 Sharding If shardingdatabase is partial, should tableswithout shardingdatabase

& table configured in sharding rules? . 496
8.3.4 Sharding When generic Long type SingleKeyTableShardingAlgorithm is

used, why does the ClassCastException: Integer can not cast to
Long exception appear? . 497

8.3.5 [Sharding:raw‐latex:PROXY] When implementing the StandardShardingAl-
gorithm custom algorithm, the specific type of Comparable is specified as
Long, and the field type in the database table is bigint, a ClassCastExcep-
tion: Integer can not cast to Long exception occurs. 497

8.3.6 Sharding Why is the default distributed auto‐augment key strategy provided by
ShardingSphere not continuous and most of them end with even numbers? . . 497

8.3.7 Sharding How to allow range query with using inline sharding strategy (BE‐
TWEEN AND, >, <, >=, <=)? . 497

8.3.8 ShardingWhy doesmy custom distributed primary key do not work after imple‐
menting KeyGenerateAlgorithm interface and configuring type property? . 498

8.3.9 Sharding In addition to internal distributed primary key, does ShardingSphere
support other native auto‐increment keys? . 498

8.4 Encryption . 498
8.4.1 Encryption How to solve that data encryption can’t work with JPA? 498

8.5 DistSQL . 498
8.5.1 DistSQLHow to set customJDBCconnectionproperties or connectionpool prop‐

erties when adding a data source using DistSQL? 498
8.5.2 DistSQL How to solve Resource [xxx] is still used by [Sin-

gleTableRule]. exception when dropping a data source using DistSQL? . . . 499
8.5.3 DistSQL How to solve Failed to get driver instance for jd-

bcURL=xxx. exception when adding a data source using DistSQL? 499
8.6 Other . 499

8.6.1 Other How to debug when SQL can not be executed rightly in ShardingSphere? 499
8.6.2 Other Why do some compiling errors appear? Why did not the IDEA index the

generated codes? . 500
8.6.3 Other In SQLSever and PostgreSQL, why does the aggregation column without

alias throw exception? . 500
8.6.4 OtherWhy does Oracle database throw“Order by valuemust implements Com‐

parable”exception when using Timestamp Order By? 500
8.6.5 Other In Windows environment,when cloning ShardingSphere source code

through Git, why prompt filename too long and how to solve it? 501
8.6.6 Other How to solve Type is required error? 502
8.6.7 Other How to speed up the metadata loading when service starts up? 502
8.6.8 Other The ANTLR plugin generates codes in the same level directory as src,

which is easy to commit by mistake. How to avoid it? 502
8.6.9 Other Why is the database sharding result not correct when using Proxool? . . 503

xiv

8.6.10 Other The property settings in the configuration file do not take effect when in‐
tegrating ShardingSphere with Spring Boot 2.x ? 504

9 Downloads 506
9.1 Latest Releases . 506

9.1.1 Apache ShardingSphere ‐ Version: 5.2.1 (Release Date: Oct 18th, 2022) 506
9.2 All Releases . 506
9.3 Verify the Releases . 506

xv

1
Overview

1.1 What is ShardingSphere

1.1.1 Introduction

Apache ShardingSphere is an ecosystem to transform any database into a distributed database system,
and enhance it with sharding, elastic scaling, encryption features & more.

The project is committed to providing a multi‐source heterogeneous, enhanced database platform and
further building an ecosystem around the upper layer of the platform. Database Plus, the design phi‐
losophy of Apache ShardingSphere, aims at building the standard and ecosystem on the upper layer of
the heterogeneous database. It focuses on how to make full and reasonable use of the computing and
storage capabilities of existing databases rather than creating a brand new database. It attaches greater
importance to the collaboration between multiple databases instead of the database itself.

ShardingSphere-JDBC

ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC
layer.

ShardingSphere-Proxy

ShardingSphere‐Proxy is a transparent database proxy, providing a database server that encapsulates
database binary protocol to support heterogeneous languages.

1

Apache ShardingSphere document, v5.2.1

1.1.2 Product Features

Fea-
ture

Definition

Data
Shard‐
ing

Data sharding is an effective way to deal with massive data storage and computing. Shard‐
ingSphere provides a distributed database solution based on the underlying database,
which can scale computing and storage horizontally.

Dis‐
tributed
Trans‐
action

Transactional capability is key to ensuring database integrity and security and is also one
of the databases’core technologies. With a hybrid engine based on XA and BASE trans‐
actions, ShardingSphere provides distributed transaction capabilities on top of standalone
databases, enabling data security across underlying data sources.

Read/write
Split‐
ting

Read/write splitting can be used to cope with business access with high stress. Sharding‐
Sphere provides flexible read/write splitting capabilities and can achieve read access load
balancing based on the understanding of SQL semantics and the ability to perceive the un‐
derlying database topology.

High
Avail‐
ability

High availability is a basic requirement for a data storage and computing platform. Guar‐
antee the HA of your distributed database cluster with ShardingSphere’s Operator on Ku‐
bernetes, and the native HA of your existing data sources.

Data
Mi‐
gra‐
tion

Data migration is the key to connecting data ecosystems. SharingSphere provides migra‐
tion capabilities to help users migrate the data from other data sources, while simultane‐
ously performing data sharding.

Query
Feder‐
ation

Federated queries are effective in utilizing data in a complex data environment. Sharding‐
Sphere provides complex data query and analysis capabilities across data sources, simpli‐
fying the data aggregation from different data locations.

Data
En‐
cryp‐
tion

Data Encryption is a basic way to ensure data security. ShardingSphere provides a com‐
plete, transparent, secure, and low‐cost data encryption solution.

Shadow
Database

In full‐link online load testing scenarios, ShardingSphere supports data isolation in com‐
plex load testing scenarios through the shadow database function. Execute your load test‐
ing scenarios in a production environment without worrying about test data polluting your
production data.

1.1.3 Advantages

• Ultimate Performance

Having been polished for years, the driver is close to a native JDBC in terms of efficiency, with ultimate
performance.

• Ecosystem Compatibility

The proxy can be accessed by any application using MySQL/PostgreSQL protocol, and the driver can
connect to any database that implements JDBC specifications.

1.1. What is ShardingSphere 2

Apache ShardingSphere document, v5.2.1

• Zero Business Intrusion

In response to database switchover scenarios, ShardingSphere can achieve smooth business migration
without business intrusion.

• Low Ops & Maintenance Cost

ShardingSphere offers a flat learning curve to DBAs and is interaction‐friendly while allowing the orig‐
inal technology stack to remain unchanged.

• Security & Stability

It can provide enhancement capability based onmature databaseswhile ensuring security and stability.

• Elastic Extention

It supports computing, storage, and smooth online expansion, which canmeet diverse business needs.

• Open Ecosystem

It can provide users with flexibility thanks to custom systems based onmulti‐level (kernel, feature, and
ecosystem) plugin capabilities.

1.2 Design Philosophy

ShardingSphere adopts the database plus design philosophy, which is committed to building the stan‐
dards and ecology of the upper layer of the database and supplementing the missing capabilities of the
database in the ecology.

1.2. Design Philosophy 3

Apache ShardingSphere document, v5.2.1

1.2.1 Connect: Create database upper level standard

Through flexible adaptation of database protocols, SQL dialects, and database storage, it can quickly
build standards on top of multi‐modal heterogeneous databases, while providing standardized connec‐
tion mode for applications through built‐in DistSQL.

1.2.2 Enhance: Database computing enhancement engine

It can further provide distributed capabilities and traffic enhancement functions based on native
database capabilities. The former can break through the bottleneck of the underlying database in com‐
puting and storage, while the latter provides more diversified data application enhancement capabili‐
ties through traffic deformation, redirection, governance, authentication, and analysis.

1.2.3 Pluggable: Building database function ecology

The pluggable architecture of Apache ShardingSphere is composed of three layers ‐ L1 Kernel Layer, L2
Feature Layer and L3 Ecosystem Layer.

1.2. Design Philosophy 4

Apache ShardingSphere document, v5.2.1

L1 Kernel Layer

An abstraction of databases’basic capabilities. All the components are required and the specific im‐
plementation method can be replaced thanks to plugins. It includes a query optimizer, distributed
transaction engine, distributed execution engine, permission engine and scheduling engine.

L2 Feature Layer

Used to provide enhancement capabilities. All components are optional, allowing you to choose
whether to include zero or multiple components. Components are isolated from each other, and mul‐
tiple components can be used together by overlaying. It includes data sharding, read/write splitting,
database high availability, data encryption and shadow database and so on. The user‐defined feature
can be fully customized and extended for the top‐level interface defined by Apache ShardingSphere
without changing kernel codes.

L3 Ecosystem Layer

It is used to integrate and merge the current database ecosystems. The ecosystem layer includes
database protocol, SQL parser and storage adapter, corresponding to the way in which Apache Shard‐
ingSphere provides services by database protocol, the way in which SQL dialect operates data, and the
database type that interacts with storage nodes.

1.3 Deployment

Apache ShardingSphere includes two independent clients: ShardingSphere‐JDBC & ShardingSphere‐
Proxy. They all provide functions of data scale‐out, distributed transaction and distributed governance,
applicable in a variety of scenarios such as Java isomorphism, heterogeneous languages, and a cloud‐
native environment.

1.3.1 Using ShardingSphere-JDBC

ShardingSphere‐JDBC is a lightweight Java framework that provides additional services at Java’s JDBC
layer. With the client connecting directly to the database, it provides services in the form of jar and
requires no extra deployment and dependence. It can be considered as an enhanced version of the
JDBC driver, which is fully compatible with JDBC and all kinds of ORM frameworks.

• Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC
Template, or direct use of JDBC;

• Support any third‐party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP;

• Support any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any
JDBC adapted databases.

1.3. Deployment 5

Apache ShardingSphere document, v5.2.1

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost More Less
Heterogeneous language Java Only Any
Performance Low loss Relatively High loss
Decentralization Yes No
Static entry No Yes

1.3.2 Using ShardingSphere-Proxy

ShardingSphere‐Proxy is a transparent database proxy, providing a database server that encapsulates
database binary protocol to support heterogeneous languages. Currently, MySQL and PostgreSQL pro‐
tocols are provided. It can use any kind of terminal that is compatible with MySQL or PostgreSQL pro‐
tocol to operate data, which is more friendly to DBAs.

• Transparent to applications, it can be used directly as MySQL/PostgreSQL;

• Compatible with MySQL‐based databases, such as MariaDB, and PostgreSQL‐based databases,
such as openGauss;

• Applicable to any kind of client that is compatible with MySQL/PostgreSQL protocol, such as
MySQL Command Client, MySQLWorkbench, etc.

1.3. Deployment 6

Apache ShardingSphere document, v5.2.1

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost More Less
Heterogeneous language Java Only Any
Performance Low loss Relatively High loss
Decentralization Yes No
Static entry No Yes

1.3.3 Hybrid Architecture

ShardingSphere‐JDBC adopts a decentralized architecture, applicable to high‐performance light‐weight
OLTP applications developed with Java. ShardingSphere‐Proxy provides static entry and supports all
languages, applicable to OLAP applications and the sharding databases management and operation
situation.

Apache ShardingSphere is an ecosystem composed of multiple access ports. By combining
ShardingSphere‐JDBC and ShardingSphere‐Proxy, and using the same registry to configure sharding
strategies, it can flexibly build application systems for various scenarios, allowing architects to freely
adjust the system architecture according to the current businesses.

1.3. Deployment 7

Apache ShardingSphere document, v5.2.1

1.4 Running Modes

Apache ShardingSphere provides two running modes: standalone mode and cluster mode.

1.4.1 Standalone Mode

It can achieve data persistence in terms of metadata information such as data sources and rules, but it
is not able to synchronize metadata to multiple Apache ShardingSphere instances or be aware of each
other in a cluster environment. Updating metadata through one instance causes inconsistencies in
other instances because they cannot get the latest metadata.

It is ideal for engineers to build a ShardingSphere environment locally.

1.4.2 Cluster Mode

It provides metadata sharing between multiple Apache ShardingSphere instances and the capability to
coordinate states in distributed scenarios.

It provides the capabilities necessary for distributed systems, such as horizontal scaling of computing
capability and high availability. Clustered environments need to store metadata and coordinate nodes’
status through a separately deployed registry center.

We suggest using cluster mode in production environment.

1.4. Running Modes 8

Apache ShardingSphere document, v5.2.1

1.5 Roadmap

1.6 Get Involved

ShardingSphere became an Apache Top‐Level Project on April 16, 2020. You are welcome to check out
the mailing list and discuss via mail.

1.5. Roadmap 9

https://apache.org/index.html#projects-list
mailto:dev@shardingsphere.apache.org

2
Quick Start

In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere.

Example Codes: https://github.com/apache/shardingsphere/tree/master/examples

2.1 ShardingSphere-JDBC

2.1.1 Scenarios

There are four ways you can configure Apache ShardingSphere: Java, YAML, Spring namespace
and Spring boot starter. Developers can choose the preferred method according to their re‐
quirements.

2.1.2 Limitations

Currently only Java language is supported.

2.1.3 Requirements

The development environment requires Java JRE 8 or later.

2.1.4 Procedure

1. Rules configuration.

Please refer to User Manual for more details.

2. Import Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>

10

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/

Apache ShardingSphere document, v5.2.1

<version>${latest.release.version}</version>
</dependency>

Notice: Please change ${latest.release.version} to the actual version.

3. Edit application.yml.

spring:
shardingsphere:

datasource:
names: ds_0, ds_1
ds_0:
type: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&

useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password:

ds_1:
type: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&

useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
sharding:

tables:
...

2.1. ShardingSphere-JDBC 11

Apache ShardingSphere document, v5.2.1

2.2 ShardingSphere-Proxy

2.2.1 Scenarios

ShardingSphere‐Proxy is positioned as a transparent database proxy. It theoretically supports any client
operation data using MySQL, PostgreSQL and openGauss protocols, and is friendly to heterogeneous
languages and operation and maintenance scenarios.

2.2.2 Limitations

Proxy provides limited support for systemdatabases / tables (such as information_schema, pg_catalog).
When connecting to Proxy through some graph database clients, the client or proxy may have an er‐
ror prompt. You can use command‐line clients (mysql, psql, gsql, etc.) to connect to the Proxy’s
authentication function.

2.2. ShardingSphere-Proxy 12

Apache ShardingSphere document, v5.2.1

2.2.3 Requirements

Starting ShardingSphere‐ProxywithDocker requiresnoadditional dependency. To start theProxyusing
binary distribution, the environment must have Java JRE 8 or higher.

2.2.4 Procedure

1. Get ShardingSphere‐Proxy.

ShardingSphere‐Proxy is available at: ‐ Binary Distribution ‐ Docker ‐ Helm

2. Rule configuration.

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml.

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/config-xxx.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the proxy extract path. for example: /opt/
shardingsphere-proxy-bin/

Please refer to Configuration Manual for more details.

3. Import dependencies.

If the backend database is PostgreSQL or openGauss, no additional dependencies are required.

If the backend database is MySQL, please download mysql‐connector‐java‐5.1.47.jar or mysql‐
connector‐java‐8.0.11.jar and put it into the %SHARDINGSPHERE_PROXY_HOME%/ext-lib directory.

4. Start server.

• Use the default configuration to start

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

The default port is 3307, while the default profile directory is %SHARDINGSPHERE_PROXY_HOME%/
conf/.

• Customize port and profile directory

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${proxy_port} ${proxy_conf_directory}

• Force start

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh -f

Use the -f parameter to force start the Proxy. This parameter will ignore the abnormal data source
during startup and start the Proxy forcibly. After the Proxy is started, you can remove the abnormal
data source by DistSQL.

5. Use ShardingSphere‐Proxy.

Use MySQL or PostgreSQL or openGauss client to connect ShardingSphere‐Proxy.

Use the MySQL client to connect to the ShardingSphere‐Proxy:

2.2. ShardingSphere-Proxy 13

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/docker/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/helm/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document, v5.2.1

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}

Use the PostgreSQL client to connect to the ShardingSphere‐Proxy:

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

Use the openGauss client to connect to the ShardingSphere‐Proxy:

gsql -r -h ${proxy_host} -p ${proxy_port} -U ${proxy_username} -W ${proxy_password}

2.2. ShardingSphere-Proxy 14

3
Features

Apache ShardingSphere provides a variety of features, from database kernel and database distributed
solution to applications closed features.

There is no boundary for these features, warmly welcomemore open source engineers to join the com‐
munity and provide exciting ideas and features.

3.1 Sharding

3.1.1 Background

The traditional solution that stores all the data in one concentrated node has hardly satisfied the re‐
quirement of massive data scenario in three aspects, performance, availability and operation cost.

In performance, the relational database mostly uses B+ tree index. When the data amount exceeds the
threshold, deeper indexwill increase the disk IO access number, and thereby, weaken the performance
of query. In the same time, high concurrency requests also make the centralized database to be the
greatest limitation of the system.

In availability, capacity can be expanded at a relatively low cost and any extent with stateless service,
which canmake all the pressure, at last, fall on the database. But the single data nodeor simple primary‐
replica structure has been harder and harder to take these pressures. Therefore, database availability
has become the key to the whole system.

From the aspect of operation costs, when the data in a database instance has reached above the thresh‐
old, DBA’s operation pressure will also increase. The time cost of data backup and data recovery will
be more uncontrollable with increasing amount of data. Generally, it is a relatively reasonable range
for the data in single database case to be within 1TB.

Under the circumstance that traditional relational databases cannot satisfy the requirement of the In‐
ternet, there are more and more attempts to store the data in native distributed NoSQL. But its incom‐
patibility with SQL and imperfection in ecosystem block it from defeating the relational database in the
competition, so the relational database still holds an unshakable position.

Sharding refers to splitting the data in one database and storing them in multiple tables and databases

15

Apache ShardingSphere document, v5.2.1

according to some certain standard, so that the performance and availability can be improved. Both
methods can effectively avoid the query limitation caused by data exceeding affordable threshold.
What’s more, database sharding can also effectively disperse TPS. Table sharding, though cannot ease
the database pressure, can provide possibilities to transfer distributed transactions to local transac‐
tions, since cross‐database upgrades are once involved, distributed transactions can turn pretty tricky
sometimes. The use of multiple primary‐replica sharding method can effectively avoid the data con‐
centrating on one node and increase the architecture availability.

Splitting data through database sharding and table sharding is an effective method to deal with high
TPS and mass amount data system, because it can keep the data amount lower than the threshold and
evacuate the traffic. Sharding method can be divided into vertical sharding and horizontal sharding.

Vertical Sharding

According to business shardingmethod, it is called vertical sharding, or longitudinal sharding, the core
concept of which is to specialize databases for different uses. Before sharding, a database consists of
many tables corresponding to different businesses. But after sharding, tables are categorized into dif‐
ferent databases according to business, and the pressure is also separated into different databases. The
diagram below has presented the solution to assign user tables and order tables to different databases
by vertical sharding according to business need.

Vertical sharding requires to adjust the architecture and design from time to time. Generally speaking,
it is not soon enough to deal with fast changing needs from Internet business and not able to really
solve the single‐node problem. it can ease problems brought by the high data amount and concurrency

3.1. Sharding 16

Apache ShardingSphere document, v5.2.1

amount, but cannot solve them completely. After vertical sharding, if the data amount in the table still
exceeds the single node threshold, it should be further processed by horizontal sharding.

Horizontal Sharding

Horizontal sharding is also called transverse sharding. Compared with the categorization method
according to business logic of vertical sharding, horizontal sharding categorizes data to multiple
databases or tables according to some certain rules through certain fields, with each sharding con‐
taining only part of the data. For example, according to primary key sharding, even primary keys are
put into the 0 database (or table) and odd primary keys are put into the 1 database (or table), which is
illustrated as the following diagram.

Theoretically, horizontal sharding has overcome the limitation of data processing volume in singlema‐
chine and canbe extended relatively freely, so it canbe taken as a standard solution to database sharding
and table sharding.

3.1. Sharding 17

Apache ShardingSphere document, v5.2.1

3.1.2 Challenges

Although data sharding solves problems regarding performance, availability, and backup recovery of
single points, the distributed architecture has introduced new problems while gaining benefits.

One of the major challenges is that application development engineers and database administrators
become extremely overwhelmed with all these operations after such a scattered way of data sharding.
They need to know from which specific sub‐table can they fetch the data needed.

Another challenge is that SQL that works correctly in one single‐node database does not necessarily
work correctly in a sharded database. For example, table splitting results in table name changes, or
incorrect handling of operations such as paging, sorting, and aggregate grouping.

Cross‐library transactions are also tricky for a distributed database cluster. Reasonable use of table
splitting canminimize the use of local transactions while reducing the amount of data in a single table,
and appropriate use of different tables in the same database can effectively avoid the trouble caused
by distributed transactions. In scenarios where cross‐library transactions cannot be avoided, some
businesses might still be in the need to maintain transaction consistency. The XA‐based distributed
transactions are not used by Internet giants on a large scale because their performance cannot meet
the needs in scenarios with high concurrency, andmost of them use flexible transactions with ultimate
consistency instead of strong consistent transactions.

3.1.3 Goal

The main design goal of the data sharding modular of Apache ShardingSphere is to try to reduce the
influence of sharding, in order to let users use horizontal sharding database group like one database.

3.1.4 Application Scenarios

Mass data high concurrency in OLTP scenarios

Most relational databases use B+ tree indexes, but when the amount of data exceeds the threshold, the
increase in index depth will also increase the number of I/O in accessing the disk, which will lower the
query performance. Data sharding through ShardingSphere enables data stored in a single database
to be dispersed into multiple databases or tables according to a business dimension, which improves
performance. The ShardingSphere‐JDBC access port can meet the performance requirements of high
concurrency in OLTP scenarios.

3.1. Sharding 18

Apache ShardingSphere document, v5.2.1

Mass data real-time analysis in OLAP scenarios

In traditional database architecture, if users want to analyze data, they need to use ETL tools first, syn‐
chronize the data to the data platform, and then perform data analysis. However, ETL tools will greatly
reduce the effectiveness of data analysis. ShardingSphere‐Proxy provides support for static entry and
heterogeneous languages, independent of application deployment, which is suitable for real‐time anal‐
ysis in OLAP scenarios.

3.1.5 Related References

• User Guide: sharding

• Developer Guide: sharding

3.1.6 Core Concept

Table

Tables are a key concept for transparent data sharding. Apache ShardingSphere adapts to the data
sharding requirements under different scenarios by providing diverse table types.

Logic Table

The logical name of the horizontally sharded database (table) of the same structure is the logical identi‐
fier of the table in SQL. Example: Order data is split into 10 tables according to the primary key endings,
are t_order_0 to t_order_9, and their logical table names are t_order.

Actual Table

Physical tables that exist in the horizontally sharded databases. Those are, t_order_0 to t_order_9
in the previous example.

Binding Table

Refers to a set of sharded tables with consistent sharding rules. When using binding tables for multi‐
table associated query, a sharding key must be used for the association, otherwise, Cartesian product
association or cross‐library association will occur, affecting query efficiency.

For example, if the t_order table and t_order_item table are both sharded according to order_id
and are correlated using order_id, the two tables are binding tables. The multi‐table associated
queries between binding tables will not have a Cartesian product association, so the associated queries
will be much more effective. Here is an example,

If SQL is:

3.1. Sharding 19

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

In the case where no binding table relationships are being set, assume that the sharding key order_id
routes the value 10 to slice 0 and the value 11 to slice 1, then the routed SQL should be 4 items, which
are presented as a Cartesian product:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

After the relationships between binding tables are configured and associated with order_id, the routed
SQL should then be 2 items:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

The t_order table will be used by ShardingSphere as the master table for the entire binding table since
it specifies the sharding condition. All routing calculations will use only the policy of the primary table,
then the sharding calculations for the t_order_item table will use the t_order condition.

Broadcast data frame

Refers to tables that exist in all sharded data sources. The table structure and its data are identical in
each database. Suitable for scenarios where the data volume is small and queries are required to be
associated with tables of massive data, e.g., dictionary tables.

3.1. Sharding 20

Apache ShardingSphere document, v5.2.1

Single Table

Refers to the only table that exists in all sharded data sources. Suitable for tables with a small amount
of data and do not need to be sharded.

Data Nodes

The smallest unit of the data shard, consists of the data source name and the real table. Example:
ds_0.t_order_0.

The mapping relationship between the logical table and the real table can be classified into two forms:
uniform distribution and custom distribution.

Uniform Distribution

refers to situations where the data table exhibits a uniform distribution within each data source. For
example:

db0
├── t_order0
└── t_order1

db1
├── t_order0
└── t_order1

The configuration of data nodes:

db0.t_order0, db0.t_order1, db1.t_order0, db1.t_order1

Customized Distribution

Data table exhibiting a patterned distribution. For example:

db0
├── t_order0
└── t_order1

db1
├── t_order2
├── t_order3
└── t_order4

configuration of data nodes:

db0.t_order0, db0.t_order1, db1.t_order2, db1.t_order3, db1.t_order4

3.1. Sharding 21

Apache ShardingSphere document, v5.2.1

Sharding

Sharding key

A database field is used to split a database (table) horizontally. Example: If the order primary key in
the order table is sharded by modulo, the order primary key is a sharded field. If there is no sharded
field in SQL, full routing will be executed, of which performance is poor. In addition to the support for
single‐sharding fields, Apache ShardingSphere also supports sharding based on multiple fields.

Sharding Algorithm

Algorithm for sharding data, supporting =, >=, <=, >, <, BETWEEN and IN. The sharding algorithm can
be implemented by the developers themselves or can use the Apache ShardingSphere built‐in sharding
algorithm, syntax sugar, which is very flexible.

Automatic Sharding Algorithm

Sharding algorithm—syntactic sugar is for conveniently hosting all data nodes without users having
to concern themselves with the physical distribution of actual tables. Includes implementations of
common sharding algorithms such as modulo, hash, range, and time.

Customized Sharding Algorithm

Provides a portal for application developers to implement their sharding algorithms that are closely
related to their business operations, while allowing users to manage the physical distribution of actual
tables themselves. Customized sharding algorithms are further divided into: ‐ Standard Sharding Algo‐
rithm Used to deal with scenarios where sharding is performed using a single key as the sharding key
=, IN, BETWEEN AND, >, <, >=, <=. ‐ Composite Sharding AlgorithmUsed to cope with scenarios where
multiple keys are used as sharding keys. The logic containing multiple sharding keys is very compli‐
cated and requires the application developers to handle it on their own. ‐ Hint Sharding Algorithm For
scenarios involving Hint sharding.

Sharding Strategy

Consisting of a sharding key and sharding algorithm, which is abstracted independently due to the
independence of the sharding algorithm. What is viable for sharding operations is the sharding key +
sharding algorithm, known as sharding strategy.

3.1. Sharding 22

Apache ShardingSphere document, v5.2.1

Mandatory Sharding routing

For the scenario where the sharded field is not determined by SQL but by other external conditions,
you can use SQLHint to inject the shard value. Example: Conduct database sharding by employee login
primary key, but there is no such field in the database. SQL Hint can be used both via Java API and SQL
annotation. See Mandatory Sharding Routing for details.

Row Value Expressions

Row expressions are designed to address the two main issues of configuration simplification and inte‐
gration. In the cumbersome configuration rules of data sharding, the large number of repetitive con‐
figurations makes the configuration itself difficult to maintain as the number of data nodes increases.
The data node configuration workload can be effectively simplified by row expressions.

For the common sharding algorithm, using Java code implementation does not help to manage the
configuration uniformly. But by writing the sharding algorithm through line expressions, the rule con‐
figuration can be effectively stored together, which is easier to browse and store.

Row expressions are very intuitive, just use ${ expression } or $->{ expression } in the config‐
uration to identify the row expressions. Data nodes and sharding algorithms are currently supported.
The content of row expressions uses Groovy syntax, and all operations supported by Groovy are sup‐
ported by row expressions. For example:

${begin..end} denotes the range interval

${[unit1, unit2, unit_x]} denotes the enumeration value

If there are multiple ${ expression } or $->{ expression } expressions in a row expression,
the final result of the whole expression will be a Cartesian combination based on the result of each
sub‐expression.

e.g. The following row expression:

${['online', 'offline']}_table${1..3}

Finally, it can be parsed as this:

online_table1, online_table2, online_table3, offline_table1, offline_table2,
offline_table3

Distributed Primary Key

In traditional database software development, automatic primary key generation is a basic require‐
ment. Various databases provide support for this requirement, such as self‐incrementing keys of
MySQL, self‐incrementing sequences of Oracle, etc. After data sharding, it is very tricky to generate
global unique primary keys for different data nodes. Self‐incrementing keys between different ac‐
tual tables within the same logical table generate repetitive primary keys because they are not mu‐
tually aware. Although collisions can be avoided by constraining the initial value and step size of self‐

3.1. Sharding 23

Apache ShardingSphere document, v5.2.1

incrementing primary keys, additional operational and maintenance rules are necessary to be intro‐
duced, rendering the solution lacking in completeness and scalability.

Many third‐party solutions can perfectly solve this problem, such as UUID, which relies on specific al‐
gorithms to self‐generate non‐repeating keys, or by introducing primary key generation services. To
facilitate users and meet their demands for different scenarios, Apache ShardingSphere not only pro‐
vides built‐in distributed primary key generators, such as UUID and SNOWFLAKE but also abstracts
the interface of distributed primary key generators to enable users to implement their own customized
self‐extending primary key generators.

3.1.7 Limitations

Compatible with all commonly used SQL that routes to single data nodes; SQL routing to multiple data
nodes is divided, because of complexity issues, into three conditions: stable support, experimental
support, and no support.

Stable Support

Full support for DML, DDL, DCL, TCL, and commonDALs. Support for complex queries such as paging,
de‐duplication, sorting, grouping, aggregation, table association, etc. Support SCHEMA DDL and DML
statements of PostgreSQL and openGauss database.

Normal Queries

• main statement SELECT

SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE predicates]
[GROUP BY {col_name | position} [ASC | DESC], ...]
[ORDER BY {col_name | position} [ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

• select_expr

* |
[DISTINCT] COLUMN_NAME [AS] [alias] |
(MAX | MIN | SUM | AVG)(COLUMN_NAME | alias) [AS] [alias] |
COUNT(* | COLUMN_NAME | alias) [AS] [alias]

• table_reference

tbl_name [AS] alias] [index_hint_list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON
conditional_expr | USING (column_list)]

3.1. Sharding 24

Apache ShardingSphere document, v5.2.1

Sub-query

Stable support is provided by the kernel when both the subquery and the outer query specify a shard
key and the values of the slice key remain consistent. e.g:

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 1;

Sub‐query for pagination can be stably supported by the kernel. e.g.:

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT * FROM t_order) row_
WHERE rownum <= ?) WHERE rownum > ?;

Pagination Query

MySQL, PostgreSQL, and openGauss are fully supported, Oracle and SQLServer are only partially sup‐
ported due to more intricate paging queries.

Pagination for Oracle and SQLServer needs to be handled by subqueries, and ShardingSphere supports
paging‐related subqueries.

• Oracle Support pagination by rownum

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id
FROM t_order o JOIN t_order_item i ON o.order_id = i.order_id) row_ WHERE rownum <=
?) WHERE rownum > ?

• SQL Server Support pagination that coordinates TOP + ROW_NUMBER() OVER

SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS
rownum, * FROM t_order o) AS temp WHERE temp.rownum > ? ORDER BY temp.order_id

Support pagination by OFFSET FETCH after SQLServer 2012

SELECT * FROM t_order o ORDER BY id OFFSET ? ROW FETCH NEXT ? ROWS ONLY

• MySQL, PostgreSQL and openGauss all support LIMIT paginationwithout the need for sub‐query：

SELECT * FROM t_order o ORDER BY id LIMIT ? OFFSET ?

Shard keys included in operation expressions

When the sharding key is contained in an expression, the value used for sharding cannot be extracted
through the SQL letters and will result in full routing.

For example, assume create_time is a sharding key.

SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01';

3.1. Sharding 25

https://shardingsphere.apache.org/document/current/cn/features/sharding/use-norms/pagination/

Apache ShardingSphere document, v5.2.1

Experimental Support

Experimental support refers specifically to support provided by implementing Federation execution
engine, an experimental product that is still under development. Although largely available to users, it
still requires significant optimization.

Sub-query

The Federation execution engine provides support for subqueries and outer queries that do not both
specify a sharding key or have inconsistent values for the sharding key.

e.g:

SELECT * FROM (SELECT * FROM t_order) o;

SELECT * FROM (SELECT * FROM t_order) o WHERE o.order_id = 1;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 2;

Cross-database Associated query

When multiple tables in an associated query are distributed across different database instances, the
Federation execution engine can provide support. Assuming that t_order and t_order_item are sharded
tables withmultiple data nodes while no binding table rules are configured, and t_user and t_user_role
are single tables distributed across different database instances, then the Federation execution engine
can support the following common associated queries.

SELECT * FROM t_order o INNER JOIN t_order_item i ON o.order_id = i.order_id WHERE
o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user u ON o.user_id = u.user_id WHERE o.user_
id = 1;

SELECT * FROM t_order o LEFT JOIN t_user_role r ON o.user_id = r.user_id WHERE o.
user_id = 1;

SELECT * FROM t_order_item i LEFT JOIN t_user u ON i.user_id = u.user_id WHERE i.
user_id = 1;

SELECT * FROM t_order_item i RIGHT JOIN t_user_role r ON i.user_id = r.user_id
WHERE i.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role r ON u.user_id = r.user_id WHERE u.
user_id = 1;

3.1. Sharding 26

Apache ShardingSphere document, v5.2.1

Do not Support

CASEWHEN

The following CASE WHEN statements are not supported: ‐ CASE WHEN contains sub‐query ‐ Logic
names are used in CASE WHEN(Please use an alias)

Pagination Query

Due to the complexity of paging queries, there are currently somepaging queries that are not supported
forOracle and SQLServer, such as: ‐ Oracle The pagingmethod of rownum+BETWEEN is not supported
at present

• SQLServer Currently, pagination with WITH xxx AS (SELECT ⋯) is not supported. Since the
SQLServer paging statement automatically generated by Hibernate uses the WITH statement,
Hibernate‐based SQLServer paging is not supported at this moment. Pagination using two TOP +
subquery also cannot be supported at this time.

3.1.8 Appendix with SQL operator

Unsupported SQL:

• CASE WHEN contains sub‐query

• Logical table names are used in CASE WHEN(Please use an alias)

• INSERT INTO tbl_name (col1, col2,⋯) SELECT * FROM tbl_nameWHERE col3 = ?（The SELECT
clause does not support * and the built‐in distributed primary key generator）

• REPLACE INTO tbl_name (col1, col2,⋯) SELECT * FROM tbl_nameWHERE col3 = ?（The SELECT
clause does not support * and the built‐in distributed primary key generator）

• SELECT MAX(tbl_name.col1) FROM tbl_name (If the query column is a function expression, use
the table alias instead of the table name）

3.2 Distributed Transaction

3.2.1 Background

Database transactions should satisfy the features of ACID (atomicity, consistency, isolation and dura‐
bility).

• Atomicity: transactions are executed as a whole, and either all or none is executed.

• Consistency: transactions should ensure that the state of data remains consistent after the tran‐
sition.

• Isolation: when multiple transactions execute concurrently, the execution of one transaction
should not affect the execution of others.

3.2. Distributed Transaction 27

Apache ShardingSphere document, v5.2.1

• Durability: when a transaction committedmodifies data, the operation will be saved persistently.

In single data node, transactions are only restricted to the access and control of single database re‐
sources, called local transactions. Almost all themature relational databases have provided native sup‐
port for local transactions. But in distributed application situations based onmicro‐services, more and
moreof themrequire to includemultiple accesses to services and the correspondingdatabase resources
in the same transaction. As a result, distributed transactions appear.

Though the relational database has provided perfect native ACID support, it can become an obstacle to
the system performance under distributed situations. How tomake databases satisfy ACID features un‐
der distributed situations or find a corresponding substitute solution, is the priority work of distributed
transactions.

3.2.2 Challenge

For different application situations, developers need to reasonably weight the performance and the
function between all kinds of distributed transactions.

Highly consistent transactions do not have totally the same API and functions as soft transactions, and
they cannot switch between each other freely and invisibly. The choice betweenhighly consistent trans‐
actions and soft transactions as early as development decision‐making phase has sharply increased the
design and development cost.

Highly consistent transactions based on XA is relatively easy to use, but is not good at dealing with long
transaction and high concurrency situation of the Internet. With a high access cost, soft transactions
require developers to transform the application and realize resources lock and backward compensa‐
tion.

3.2.3 Goal

The main design goal of the distributed transaction modular of Apache ShardingSphere is to integrate
existingmature transaction cases to provide an unified distributed transaction interface for local trans‐
actions, 2PC transactions and soft transactions; compensate for the deficiencies of current solutions to
provide a one‐stop distributed transaction solution.

3.2.4 How it works

ShardingSphere provides begin/ commit/rollback traditional transaction interfaces externally, and pro‐
vides distributed transaction capabilities through LOCAL, XA and BASE modes.

3.2. Distributed Transaction 28

Apache ShardingSphere document, v5.2.1

LOCAL Transaction

LOCAL mode is implemented based on ShardingSphere’s proxy database interfaces, that is be‐
gin/commit/rolllback. For a logical SQL, ShardingSphere starts transactions on each proxied database
with the begin directive, executes the actual SQL, and performs commit/rollback. Since each data node
manages its own transactions, there is no coordination and communication between them, and they
do not knowwhether other data node transactions succeed or not. There is no loss in performance, but
strong consistency and final consistency cannot be guaranteed.

XA Transaction

XA transaction adopts the concepts including AP(application program), TM(transaction manager) and
RM(resourcemanager) to ensure the strong consistency of distributed transactions. Those concepts are
abstracted from DTP mode which is defined by X/OPEN group. Among them, TM and RM use XA pro‐
tocol to carry out both‐way communication, which is realized through two‐phase commit. Compared
to traditional local transactions, XA transaction adds a preparation stage where the database can also
inform the caller whether the transaction can be committed, in addition to passively accepting commit
instructions. TM can collect the results of all branch transactions and make atomic commit at the end
to ensure the strong consistency of transactions.

XA transaction is implemented based on the interface of ShardingSphere’s proxy database xa
start/end/prepare/commit/rollback/recover.

For a logical SQL, ShardingSphere starts transactions in each proxied database with the xa begin direc‐
tive, integrates TM internally for coordinating branch transactions, and performs xa commit /rollback.

3.2. Distributed Transaction 29

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Apache ShardingSphere document, v5.2.1

Distributed transactions based on XA protocol are more suitable for short transactions with fixed exe‐
cution time because the required resources need to be locked during execution. For long transactions,
data exclusivity during the entire transaction will have an impact on performance in concurrent sce‐
narios.

BASE Transaction

If a transaction that implements ACID is called a rigid transaction, then a transaction based on a BASE
transaction element is called a flexible transaction. BASE stands for basic availability, soft state, and
eventual consistency.

• Basically Available: ensure that distributed transaction parties are not necessarily online at the
same time.

• Soft state: system status updates are allowed to have a certain delay, and the delay may not be
recognized by customers.

• Eventually consistent: guarantee the eventual consistency of the system by means of messaging.

ACID transaction puts a high demand for isolation, where all resources must be locked during the exe‐
cution of transactions. Flexible transaction is to move mutex operations from the resource level to the
business level through business logic. Reduce the requirement for strong consistency in exchange for
higher system throughput.

ACID‐based strong consistency transactions and BASE‐based final consistency transactions are not a
jack of all trades and can fully leverage their advantages in the most appropriate scenarios. Apache
ShardingSphere integrates the operational scheme taking SEATA as the flexible transaction. The fol‐
lowing table can be used for comparison to help developers choose the suitable technology.

LOCAL XA BASE

Business transf
ormation

None None Seata server needed

Con sistency Not supported Not supported Final consistency
I solation Not supported Supported Business side guaran‐

teed
Co ncurrent per
formance

no loss severe loss slight loss

Applied s cenar‐
ios

Inconsistent processing by
the business side

short transaction & low‐
level concurrency

long transaction &
high concurrency

3.2. Distributed Transaction 30

Apache ShardingSphere document, v5.2.1

3.2.5 Application Scenarios

Thedatabase’s transactions canmeetACIDbusiness requirements in a standalone application scenario.
However, in distributed scenarios, traditional database solutions cannot manage and control global
transactions, and users may find data inconsistency on multiple database nodes.

ShardingSphere distributed transactionmakes it easier to process distributed transactions andprovides
flexible and diverse solutions. Users can select the distributed transaction solutions that best fit their
business scenarios among LOCAL, XA, and BASE modes.

Application Scenarios for ShardingSphere XA Transactions

Strong data consistency is guaranteed in a distributed environment in terms of XA transactions. How‐
ever, its performancemay be degraded due to the synchronous blocking problem. It applies to business
scenarios that require strong data consistency and low concurrency performance.

Application Scenarios for ShardingSphere BASE Transaction

In termsofBASE transactions, final data consistency is guaranteed in adistributed environment. Unlike
XA transactions, resources are not locked during the whole transaction process, so its performance is
relatively higher.

Application Scenarios for ShardingSphere LOCAL Transaction

In terms of LOCAL transactions, the data consistency and isolation among database nodes are not guar‐
anteed in a distributed environment. Therefore, the business sides need to handle the inconsistencies
by themselves. This applies to business scenarios where users would like to handle data inconsistency
in a distributed environment by themselves.

3.2.6 Related references

• YAML distributed transaction configuration

3.2.7 Core Concept

XA Protocol

The original distributed transactionmodel of XA protocol is the“X/Open Distributed Transaction Pro‐
cessing (DTP)”model, XA protocol for short, which was proposed by the X/Open international consor‐
tium.

3.2. Distributed Transaction 31

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/

Apache ShardingSphere document, v5.2.1

3.2.8 Limitations

Though Apache ShardingSphere intends to be compatible with all distributed scenario and best perfor‐
mance, under CAP theorem guidance, there is no sliver bullet with distributed transaction solution.

Apache ShardingSphere wants to give the user choice of distributed transaction type and use the most
suitable solution in different scenarios.

LOCAL Transaction

Supported

• Support none‐cross‐database transactions. For example, sharding table or sharding databasewith
its route result in same database;

• Support cross‐database transactions caused by logic exceptions. For example, update two
databases in transaction with exception thrown, data can rollback in both databases.

Unsupported

• Do not support the cross‐database transactions caused by network or hardware crash. For exam‐
ple, when update two databases in transaction, if one database crashes before commit, then only
the data of the other database can commit.

XA Transaction

Supported

• Support Savepoint;

• PostgreSQL/OpenGauss, in the transaction block, the SQL execution is abnormal，then run Com-
mit，transactions are automatically rollback;

• Support cross‐database transactions after sharding;

• Operation atomicity and high data consistency in 2PC transactions;

• When service is down and restarted, commit and rollback transactions can be recovered auto‐
matically;

• Support use XA and non‐XA connection pool together;

• Support transactions across multiple logical databases.

3.2. Distributed Transaction 32

Apache ShardingSphere document, v5.2.1

Unsupported

• Recover committing and rolling back in other machines after the service is down;

• MySQL,in the transaction block, the SQL execution is abnormal, and run Commit, and data re‐
mains consistent.

BASE Transaction

Supported

• Support cross‐database transactions after sharding;

• Rollback transaction according to undo log;

• Support recovery committing transaction automatically after the service is down.

Unsupported

• Do not support isolation level.

3.2.9 Appendix with SQL operator

Unsupported SQL：
• RAL and RDL operations of DistSQL are used in transactions.

• DDL statements are used in XA transactions.

3.3 Readwrite-splitting

3.3.1 Background

Database throughput has faced the bottleneck with increasing TPS. For the application with massive
concurrence read but less write in the same time, we can divide the database into a primary database
and a replica database. The primary database is responsible for the insert, delete and update of trans‐
actions, while the replica database is responsible for queries. It can significantly improve the query
performance of the whole system by effectively avoiding row locks.

One primary database with multiple replica databases can further enhance processing capacity by dis‐
tributing queries evenly into multiple data replicas. Multiple primary databases with multiple replica
databases can enhance not only throughput but also availability. Therefore, the system can still run
normally, even though any database is down or physical disk destroyed.

Different from the sharding that separates data to all nodes according to sharding keys, readwrite‐
splitting routes read and write separately to primary database and replica databases according SQL
analysis.

3.3. Readwrite-splitting 33

Apache ShardingSphere document, v5.2.1

Data in readwrite‐splitting nodes are consistent, whereas that in shards is not. The combined use of
sharding and readwrite‐splitting will effectively enhance the system performance.

3.3.2 Challenges

Though readwrite‐splitting can enhance system throughput and availability, it also brings inconsis‐
tent data, including that among multiple primary databases and among primary databases and replica
databases. What’smore, it also brings the same problem as data sharding, complicating developer and
operator’smaintenance andoperation. The following diagramhas shown the complex topological rela‐
tions between applications and database groups when sharding used together with readwrite‐splitting.

3.3. Readwrite-splitting 34

Apache ShardingSphere document, v5.2.1

3.3.3 Goal

The main design goal of readwrite‐splitting of Apache ShardingSphere is to try to reduce the influence
of readwrite‐splitting, in order to let users use primary‐replica database group like one database.

3.3.4 Application Scenarios

Complex primary-secondary database architecture

Many systems rely on the configuration of primary‐secondary database architecture to improve the
throughput of the whole system. Nevertheless, this configuration can make it more complex to use
services.

After accessing ShardingSphere, the read/write splitting feature can be used to manage primary‐
secondary databases and achieve transparent read/write splitting, enabling users to use databases with
primary/secondary architecture just like using one single database.

3.3. Readwrite-splitting 35

Apache ShardingSphere document, v5.2.1

3.3.5 Related References

Java API

YAML Configuration

Spring Boot Starter

Spring Namespace

3.3.6 Core Concept

Primary database

The primary database is used to add, update, and delete data operations. Currently, only single primary
database is supported.

Secondary database

The secondary database is used to query data operations andmulti‐secondary databases are supported.

Primary-Secondary synchronization

It refers to the operation of asynchronously synchronizing data from a primary database to a secondary
database. Due to the asynchronism of primary‐secondary synchronization, data from the primary and
secondary databases may be inconsistent for a short time.

Load balancer policy

Channel query requests to different secondary databases through load balancer policy.

3.3.7 Limitations

• Data synchronization of primary and secondary databases is not supported.

• Data inconsistency resulting from data synchronization delays between primary and secondary
databases is not supported.

• Multi‐write of primary database is not supported.

• Transactional consistency between primary and secondary databases is not supported. In the
primary‐secondary model, both data reads and writes in transactions use the primary database.

3.3. Readwrite-splitting 36

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting

Apache ShardingSphere document, v5.2.1

3.4 HA

3.4.1 Background

High availability is the most basic requirement of modern systems. As the cornerstone of the system,
the database is also essential for high availability.

In the distributed database systemwith storage‐compute splitting, the high availability solution of stor‐
age node and compute node are different. The stateful storage nodes need to pay attention to data
consistency, health detection, primary node election and so on; The stateless compute nodes need to
detect the changes of storage nodes, they also need to set up an independent load balancer and have
the ability of service discovery and request distribution.

Apache ShardingSphere provides compute nodes and reuse database as storage nodes. Therefore, the
high availability solution it adopts is to use the high availability solution of the database itself as the
high availability of the storage node, and detect the changes automatically.

3.4.2 Challenges

Apache ShardingSphere needs to detect high availability solution of diversified storage nodes automat‐
ically, and can also integrate the readwrite splitting dynamically, which is the main challenge of imple‐
mentation.

3.4. HA 37

Apache ShardingSphere document, v5.2.1

3.4.3 Goal

The main goal of Apache ShardingSphere high availability module which is ensuring 7 * 24‐hour unin‐
terrupted database service as much as possible.

3.4.4 Application Scenarios

In most cases, high availability is used in conjunction with read/write splitting. When the relationship
between users’write database and read database changes, ShardingSphere dynamically senses and
corrects the internal primary/secondary relationship, thus ensuring the correct routing of the read and
write traffic. At the same time, when the secondary database breaks down, ShardingSphere can also
dynamically correct the state of storage nodes to ensure correct distribution of the read traffic.

3.4.5 Related References

Java API

YAML Configuration

Spring Boot Starter

Spring Namespace

3.4.6 Core Concept

High Availability Type

Apache ShardingSphere does not provide database high availability capability. It senses the change
of databases’primary‐secondary relationship through a third‐party provided high availability solu‐
tion. Specifically, ShardingSphere is capable of finding databases, automatically sensing the pri‐
mary/secondary database relationship, and correcting compute nodes’connections to databases.

Dynamic Read/Write Splitting

When high availability and read/write splitting are adopted together, it is not necessary to config‐
ure specific primary and secondary databases for read/write splitting. Highly available data sources
dynamically correct the primary/secondary relationship of read/write splitting and properly channel
read/write traffic.

3.4. HA 38

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/ha
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/ha
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha

Apache ShardingSphere document, v5.2.1

3.4.7 Limitations

Supported

• MySQL MGR single‐primary mode

• MySQL Primary/secondary replication mode

• openGauss Primary/secondary replication mode

Not supported

• MySQL MGRMulti‐primary mode

3.5 DB Gateway

3.5.1 Background

With the trend of database fragmentation, using multiple types of databases together has become the
norm. The scenario of using one SQL dialect to access all heterogeneous databases is increasing.

3.5.2 Challenges

The existence of diversified databases makes it difficult to standardize the SQL dialect accessing the
database. Engineers need to use different dialects for different kinds of databases, and there is no uni‐
fied query platform.

Automatically translate different types of database dialects into the dialects used by the database, so
that engineers can use any database dialect to access all heterogeneous databases, which can reduce
development and maintenance cost greatly.

3.5.3 Goal

The goal of database gateway for Apache ShardingSphere is translating SQL automatically among vari‐
ous databases.

3.5.4 Application Scenarios

As business scenarios and database products of enterprises become increasingly diversified, the con‐
nection between business applications and various database products becomes extremely complex.
ShardingSphere database gateway can shield the connection between business applications and the
underlying diversified databases. At the same time, it provides a unified access protocol and syntax
system for different business scenarios, which can help enterprises quickly build a unified data access
platform.

3.5. DB Gateway 39

Apache ShardingSphere document, v5.2.1

3.5.5 Core Concept

SQL Dialect

SQL dialect means database dialect, and it indicates that some database projects have their own unique
syntax in addition to SQL, which are also called dialects. Different database projects may have different
SQL dialects.

3.5.6 Limitations

The SQL dialect translation of Apache ShardingSphere is experimental.

Currently, only MySQL/PostgreSQL dialects can be automatically translated. Engineers can use MySQL
dialects and protocols to access PostgreSQL databases and vice versa.

3.6 Traffic Governance

3.6.1 Background

As the scale of data continues to expand, a distributed database has become a trend gradually. The
unified management ability of cluster perspective, and control ability of individual components are
necessary ability in modern database system.

3.6.2 Challenges

The challenge is ability which are unified management of centralized management, and operation in
case of single node in failure.

Centralized management is to uniformly manage the state of database storage nodes and middleware
computing nodes, and can detect the latest updates in the distributed environment in real time, further
provide information with control and scheduling.

In the overload traffic scenario, circuit breaker and request limiting for a node to ensurewhole database
cluster can run continuously is a challenge to control ability of a single node.

3.6.3 Goal

The goal of Apache ShardingSpheremanagementmodule is to realize the integratedmanagement abil‐
ity from database to computing node, and provide control ability for components in case of failure.

3.6. Traffic Governance 40

Apache ShardingSphere document, v5.2.1

3.6.4 Application Scenarios

Overloaded compute node protection

When a compute node in a ShardingSphere cluster exceeds its load, the circuit breaker function is used
to block the traffic to the compute node, to ensure that the whole cluster continues to provide stable
services.

Storage node traffic limit

In the read‐write splitting scenario where a storage node responsible for the read traffic in a Shard‐
ingSphere cluster receives overloaded requests, the traffic limit function is used to block traffic from
compute nodes to the storage node, to ensure normal response of the storage node cluster.

3.6.5 Core Concept

Circuit Breaker

Fuse connection between Apache ShardingSphere and the database. When an Apache ShardingSphere
node exceeds the max load, stop the node’s access to the database, so that the database can ensure
sufficient resources to provide services for other Apache ShardingSphere nodes.

Request Limit

In the faceof overload requests, open request limiting toprotect some requests can still respondquickly.

3.7 Data Migration

3.7.1 Background

In a scenario where the business continues to develop and the amount of data and concurrency reaches
a certain extent, the traditional single databasemay face problems in terms of performance, scalability
and availability.

Although NoSQL solutions can solve the above problems through data sharding and horizontal scale‐
out, NoSQL databases generally do not support transactions and SQL.

ShardingSphere can also solve the above problems and supports data sharding andhorizontal scale‐out,
while at the same time, also supporting distributed transactions and SQL.

The data migration scheme provided by ShardingSphere can help the traditional single database
smoothly switch to ShardingSphere.

3.7. Data Migration 41

Apache ShardingSphere document, v5.2.1

3.7.2 Challenges

The data migration process should not affect the running services. So the first challenge is to minimize
the time window during which data is not available.

Next, data migration should not affect existing data. So the second challenge is to ensure the data cor‐
rectness.

3.7.3 Goal

Themajor goal of Apache ShardingSphere in performing data migration is to reduce the impact of data
migration on services and provide a one‐stop universal data migration solution.

3.7.4 Application Scenarios

Application scenario one: when an application system is using a traditional single database, and the
amount of data in a single table reaches 100 million and is still growing rapidly, a single database that
continues to run with a high load will become the bottleneck of the system.

Once the database becomes the bottleneck, it is useless to scale out the application server. Instead, it
is the database that needs to be scaled out.

3.7.5 Related References

• Configurations of data migration

• Reference of data migration

3.7.6 Core Concept

Nodes

Instances for running compute or storage tier component processes. These can either be physical ma‐
chines, virtual machines, or containers, etc.

Cluster

Multiple nodes that are assembled together to provide a specified service.

3.7. Data Migration 42

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/migration/
https://shardingsphere.apache.org/document/current/en/reference/migration/

Apache ShardingSphere document, v5.2.1

Source

The storage cluster where the original data resides.

Target

The target storage cluster to which the original data is to be migrated.

Data Migration Process

The entire process of replicating data from one storage cluster to another.

Stock Data

The data that was already in the data node before the data migration operation started.

Incremental Data

New data generated by operational systems during the execution of data migration operations.

3.7.7 Limitations

Procedures Supported

• Migration of peripheral data to databases managed by Apache ShardingSphere.

• Migration of integer or string unique key tables.

• Migration of integer or string primary key tables.

Procedures not supported

• Migration without primary key and unique key tables.

• Migration of composite primary key or composite unique key tables.

• Migration on top of the current storage node is not supported, so a brand new database cluster
needs to be prepared as the migration target cluster.

3.7. Data Migration 43

Apache ShardingSphere document, v5.2.1

3.8 Encryption

3.8.1 Background

Security control has always been a crucial link of data governance, data encryption falls into this cat‐
egory. For both Internet enterprises and traditional sectors, data security has always been a highly
valued and sensitive topic. Data encryption refers to transforming some sensitive information through
encrypt rules to safely protect the private data. Data involves client’s security or business sensibil‐
ity, such as ID number, phone number, card number, client number and other personal information,
requires data encryption according to relevant regulations.

The demand for data encryption is generally divided into two situations in real business scenarios:

1. When the new business start to launch, and the security department stipulates that the sensitive
information related to users, such as banks andmobile phone numbers, should be encrypted and
stored in the database, and then decrypted when used. Because it is a brand new system, there is
no inventory data cleaning problem, so the implementation is relatively simple.

2. For the service has been launched, and plaintext has been stored in the database before. The
relevant department suddenly needs to encrypt the data from the on‐line business. This scenario
generally needs to deal with three issues as followings:

• How to encrypt the historical data, a.k.a.s data clean.

• How to encrypt the newly added data and store it in the database without changing the business
SQL and logic; then decrypt the taken out data when use it.

• How to securely, seamlessly and transparently migrate plaintext and ciphertext data between
business systems.

3.8.2 Challenges

In the real business scenario, the relevant business development team often needs to implement and
maintain a set of encryption and decryption system according to the needs of the company’s secu‐
rity department. When the encryption scenario changes, the encryption system often faces the risk of
reconstruction or modification. In addition, for the online business system, it is relatively complex to
realize seamless encryption transformationwith transparency, security and low riskwithoutmodifying
the business logic and SQL.

3.8. Encryption 44

Apache ShardingSphere document, v5.2.1

3.8.3 Goal

Provides a security and transparent data encryption solution, which is the main design goal of Apache
ShardingSphere data encryption module.

3.8.4 Application Scenarios

Newly launched services

For scenarios requiring the quick launch of new services while respecting encryption regulations. The
ShardingSphere encryption feature can be used to quickly achieve compliant data encryption, without
requiring users to develop complex encryption systems.

At the same time, its flexibility can also help users avoid complex rebuilding and modification risks
caused by encryption scenario changes.

Existing services

Formature services that have already been launched, users need to consider the historical data cleans‐
ing and the switchover between old and new features.

By accessing ShardingSphere encrypt, users can easily complete the encryption transformation of the
system, and it can also help users securely and quickly switch between old and new features. Users can
transparently use encryption and decryption features without changing any business logic and SQL.

3.8.5 Related References

• Configuration: Data Encryption

• Developer Guide: Data Encryption

3.8.6 Core Concept

Logic column

It is used to calculate the encryption anddecryption columns and it is the logical identifier of the column
in SQL. Logical columns contain ciphertext columns (mandatory), query‐helper columns (optional),
and plaintext columns (optional).

3.8. Encryption 45

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

Cipher column

Encrypted data columns.

Query assistant column

It is a helper column used for queries. For some non‐idempotent encryption algorithms with higher
security levels, irreversible idempotent columns are provided for queries.

Plain column

The column is used to store plaintext and provide services during the migration of encrypted data. It
can be deleted after the data cleansing is complete.

3.8.7 Limitations

• You need to process the original data on stocks in the database by yourself.

• The case‐insensitive queries are not supported for encrypted fields.

• Comparison operations are not supported for encrypted fields, such as GREATER THAN, LESS
THAN, ORDER BY, BETWEEN, LIKE.

• Calculationoperations arenot supported for encryptedfields, suchasAVG, SUM,andcomputation
expressions.

3.8.8 Appendix with SQL operator

Unsupported SQL：
• The case‐insensitive queries are not supported by encrypted fields.

• Comparison operations are not supported for encrypted fields, such as GREATER THAN, LESS
THAN, ORDER BY, BETWEEN, LIKE.

• Calculationoperations arenot supported for encryptedfields, suchasAVG, SUM,andcomputation
expressions.

3.9 Shadow

3.9.1 Background

Under the distributed application architecture based onmicroservices, business requires multiple ser‐
vices to be completed through a series of services andmiddleware calls. The pressure testing of a single
service can no longer reflect the real scenario.

3.9. Shadow 46

Apache ShardingSphere document, v5.2.1

In the test environment, the cost of rebuild complete set of pressure test environment similar to the
production environment is too high. It is usually impossible to simulate the complexity and data of the
production environment.

So, it is the better way to use the production environment for pressure test. The test results obtained
real capacity and performance of the system accurately.

3.9.2 Challenges

pressure testing on production environment is a complex and huge task. Coordination and adjustments
between microservices and middlewares required to cope with the transparent transmission of differ‐
ent flow rates and pressure test tags. Usually we will build a complete set of pressure testing platform
for different test plans.

Data isolation have to be done at the database‐level, in order to ensure the reliability and integrity of
the production data, data generated by pressure testing routed to test database. Prevent test data from
polluting the real data in the production database.

This requires business applications to perform data classification based on the transparently transmit‐
ted pressure test identification before executing SQL, and route the corresponding SQL to the corre‐
sponding data source.

3.9.3 Goal

Apache ShardingSphere focuses on data solutions in pressure testing on production environment.

Themain goal of the Apache ShardingSphere shadow Databasemodule is routing pressure testing data
to user defined database automatically.

3.9.4 Application Scenario

In order to improve the accuracy of stress testing and reduce the testing cost under the distributed appli‐
cation architecture based on microservices, stress testing is usually carried out in production environ‐
ments, which will notably increase testing risks. However, the ShardingSphere shadow DB function,
combinedwith the flexible configuration of the shadow algorithm, can address data pollution, improve
database performance, andmeet the requirements of online stress testing in complex business scenar‐
ios.

3.9. Shadow 47

Apache ShardingSphere document, v5.2.1

3.9.5 Related References

• Java API: shadow DB

• YAML configuration: shadow DB

• Spring Boot Starter: shadow DB

• Spring Namespace: shadow DB

3.9.6 Core Concept

Production Database

Database for production data

Shadow Database

The Database for stress test data isolation. Configurations should be the same as the Production
Database.

Shadow Algorithm

Shadow Algorithm, which is closely related to business operations, currently has 2 types.

• Column based shadow algorithmRouting to shadow database by recognizing data from SQL. Suit‐
able for stress test scenario that has an emphasis on data list.

• Hint based shadow algorithm Routing to shadow database by recognizing comments from SQL.
Suitable for stress test driven by the identification of upstream system passage.

3.9.7 Limitations

Hint based shadow algorithm

No

Column based shadow algorithm

Does not support DDL.

Does not support scope, group, subqueries such as BETWEEN, GROUP BY⋯HAVING, etc.

SQL support list

• INSERT

3.9. Shadow 48

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/

Apache ShardingSphere document, v5.2.1

SQL support or not

INSERT INTO table (column,⋯) VALUES (value,⋯) support
INSERT INTO table (column,⋯) VALUES (value,⋯),(value,⋯),⋯ support
INSERT INTO table (column,⋯) SELECT column1 from table1 where column1 =
value1

do not sup‐
port

• SELECT/UPDATE/DELETE

•
condition ca tegories*

SQL •
support or not*

= SELECT/UPDATE/DELETE ⋯
WHERE column = value

support

LIKE/NOT LIKE SELECT/UPDATE/DELETE ⋯
WHERE column LIKE/NOT
LIKE value

support

IN/NOT IN SELECT/UPDATE/DELETE ⋯
WHERE column IN/NOT IN
(value1,value2,⋯)

support

BETWEEN SELECT/UPDATE/DELETE ⋯
WHERE column BETWEEN
value1 AND value2

do not support

GROUP BY⋯HAVING⋯ SELECT/UPDATE/DELETE ⋯
WHERE ⋯GROUP BY column
HAVING column > value

do not support

Sub Query SELECT/UPDATE/DELETE ⋯
WHERE column = (SELECT
column FROM table WHERE
column = value)

do not support

3.10 Observability

3.10.1 Background

In order to grasp the distributed system status, observe running state of the cluster is a new challenge.
The point‐to‐point operationmode of logging in to a specific server cannot suite to large number of dis‐
tributed servers. Telemetry through observable data is the recommended operation and maintenance
mode for them. Tracking, metrics and logging are important ways to obtain observable data of system
status.

APM (application performance monitoring) is to monitor and diagnose the performance of the system
by collecting, storing and analyzing the observable data of the system. Its main functions include per‐
formance index monitoring, call stack analysis, service topology, etc.

3.10. Observability 49

Apache ShardingSphere document, v5.2.1

Apache ShardingSphere is not responsible for gathering, storing and demonstrating APMdata, but pro‐
vides the necessary information for the APM. In other words, Apache ShardingSphere is only respon‐
sible for generating valuable data and submitting it to relevant systems through standard protocols or
plug‐ins. Tracing is to obtain the tracking information of SQL parsing and SQL execution. Apache
ShardingSphere provides support for SkyWalking, Zipkin, Jaeger and OpenTelemetry by default. It also
supports users to develop customized components through plug‐in.

• Use Zipkin or Jaeger Just provides correct Zipkin or Jaeger server information in the agent config‐
uration file.

• Use OpenTelemetry OpenTelemetrywasmerged byOpenTracing andOpenCencus in 2019. In this
way, you only need to fill in the appropriate configuration in the agent configuration file according
to OpenTelemetry SDK Autoconfigure Guide.

• Use SkyWalking Enable the SkyWalking plug‐in in configuration file and need to configure the
SkyWalking apm‐toolkit.

• Use SkyWalking’s automatic monitor probe Cooperating with Apache SkyWalking team, Apache
ShardingSphere team has realized ShardingSphere automatic monitor probe to automatically
send performance data to SkyWalking. Note that automatic probe in this way cannot be used
together with Apache ShardingSphere plug‐in probe.

Metrics used to collect and display statistical indicator of cluster. Apache ShardingSphere supports
Prometheus by default.

3.10. Observability 50

https://skywalking.apache.org/

Apache ShardingSphere document, v5.2.1

3.10.2 Challenges

Tracing andmetrics need to collect system information through event tracking. Lots of events tracking
make kernel code mess, difficult to maintain, and difficult to customize extend.

3.10.3 Goal

The goal of Apache ShardingSphere observability module is providing as many performance and sta‐
tistical indicators as possible and isolating kernel code and embedded code.

3.10.4 Application Scenarios

ShardingSphere provides observability for applications through the Agent module, and this feature ap‐
plies to the following scenarios:

Monitoring panel

The system’s static information (such as application version) and dynamic information (such as the
number of threads and SQL processing information) are exposed to a third‐party application (such as
Prometheus) using a standard interface. Administrators can visually monitor the real‐time system sta‐
tus.

Monitoring application performance

In ShardingSphere, a SQL statement needs to go through the processes of parsing, routing, rewriting,
execution, and result merging before it is finally executed and the response can be output. If a SQL
statement is complex and the overall execution takes a long time, how do we know which procedure
has room for optimization?

Through Agent plus Tracing, administrators can learn about the time consumption of each step of SQL
execution. Thus, they can easily locate performance risks and formulate targeted SQL optimization
schemes.

Tracing application links

In a distributed application plus data sharding scenario, it is tricky to figure out which node the SQL
statement is issued from and which data source the statement is finally executed on. If an exception
occurs during SQL execution, how do we locate the node where the exception occurred?

Agent + Tracing can help users solve the above problems.

Through tracing the full link of the SQL execution process, users can get complete information such as
“where the SQL comes from and where it is sent to”.

They can also visually observe the SQL routing situation through the generated topological graph,make
timely responses, and quickly locate the root cause of problems.

3.10. Observability 51

Apache ShardingSphere document, v5.2.1

3.10.5 Related References

• Usage of observability

• Dev guide: observability

• Implementation

3.10.6 Core Concept

Agent

Based on bytecode enhancement and plugin design to provide tracing, metrics and logging features.

Only after the plugin of the Agent is enabled, the monitoring indicator data can be output to the third‐
party APM for display.

APM

APM is an acronym for Application Performance Monitoring.

Focusing on the performance diagnosis of distributed systems, its main functions include call chain
display, application topology analysis, etc.

Tracing

Tracing data between distributed services or internal processes will be collected by agent. It will then
be sent to third‐party APM systems.

Metrics

System statistical indicators are collected through probes and written to the time series database for
display by third‐party applications.

Logging

The log can be easily expanded through the agent to providemore information for analyzing the system
running status.

3.10. Observability 52

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/observability/
https://shardingsphere.apache.org/document/current/en/dev-manual/agent/
https://shardingsphere.apache.org/document/current/en/reference/observability/

4
User Manual

This chapter describes how to use projects of Apache ShardingSphere.

4.1 ShardingSphere-JDBC

Configuration is the only module in ShardingSphere‐JDBC that interacts with application devel‐
opers, through which developers can quickly and clearly understand the functions provided by
ShardingSphere‐JDBC.

This chapter is a configuration manual for ShardingSphere‐JDBC, which can also be referred to as a
dictionary if necessary.

ShardingSphere‐JDBC has provided 4 kinds of configuration methods for different situations. By con‐
figuration, application developers can flexibly use data sharding, readwrite‐splitting, data encryption,
shadow database or the combination of them.

Mixed rule configurations are very similar to single rule configuration, except for the differences from
single rule to multiple rules.

It should be noted that the superposition between rules are data source and table name related. If
the previous rule is data source oriented aggregation, the next rule needs to use the aggregated logical
data source name configured by the previous rule when configuring the data source; Similarly, if the
previous rule is table oriented aggregation, the next rule needs to use the aggregated logical table name
configured by the previous rule when configuring the table.

Please refer to Example for more details.

53

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example

Apache ShardingSphere document, v5.2.1

4.1.1 YAML Configuration

Overview

YAML configuration provides interactionwith ShardingSphere JDBC through configuration files. When

usedwith the governancemodule together, the configuration of persistence in the configuration center

is YAML format.

YAML configuration is the most common configuration mode, which can omit the complexity of pro‐
gramming and simplify user configuration.
Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

YAML Format

ShardingSphere‐JDBC YAML file consists of database name, mode configuration, data sourcemap, rule
configurations and properties.

Note: The example connection pool is HikariCP, which can be replaced with other connection pools
according to business scenarios.

JDBC logic database name. Through this parameter to connect ShardingSphere-JDBC
and ShardingSphere-Proxy.
Default value: logic_db
databaseName (?):

mode:

dataSources:

rules:
- !FOO_XXX

...
- !BAR_XXX

...

props:
key_1: value_1
key_2: value_2

4.1. ShardingSphere-JDBC 54

Note: The YAML configuration file supports more than 3MB of configuration content.

Apache ShardingSphere document, v5.2.1

Please refer to Mode Confiugration for more mode details.

Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

Create Data Source

The ShardingSphereDataSource created by YamlShardingSphereDataSourceFactory implements the
standard JDBC DataSource interface.

File yamlFile = // Indicate YAML file
DataSource dataSource = YamlShardingSphereDataSourceFactory.
createDataSource(yamlFile);

Use Data Source

Same with Java API.

YAML Syntax Explanation

!!means instantiation of that class

!means self‐defined alias

-means one or multiple can be included

[]means array, can substitutable with - each other

Mode

Parameters

mode (?): # Default value is Standalone
type: # Type of mode configuration. Values could be: Standalone, Cluster
repository (?): # Persist repository configuration

4.1. ShardingSphere-JDBC 55

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules

Apache ShardingSphere document, v5.2.1

Standalone Mode

mode:
type: Standalone
repository:

type: # Type of persist repository
props: # Properties of persist repository
foo_key: foo_value
bar_key: bar_value

Cluster Mode (recommended)

mode:
type: Cluster
repository:

type: # Type of persist repository
props: # Properties of persist repository
namespace: # Namespace of registry center
server-lists: # Server lists of registry center
foo_key: foo_value
bar_key: bar_value

Notes

1. Cluster mode deployment is recommended for production environment.

2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information
there.

Sample

Standalone Mode

mode:
type: Standalone
repository:

type: JDBC

4.1. ShardingSphere-JDBC 56

Apache ShardingSphere document, v5.2.1

Cluster Mode (recommended)

mode:
type: Cluster
repository:

type: ZooKeeper
props:
namespace: governance
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60

Related References

• Installation and Usage of ZooKeeper Registry Center

• Please refer to Builtin Persist Repository List for more details about the type of repository.

Data Source

Background

ShardingSphere‐JDBC Supports all JDBC drivers and database connection pools.

In this example, the database driver is MySQL, and the connection pool is HikariCP, which
can be replaced with other database drivers and connection pools. When using ShardingSphere
JDBC, the property name of the JDBC pool depends on the definition of the respective JDBC
pool and is not defined by ShardingSphere. For related processing, please refer to the class
org.apache.shardingsphere.infra.datasource.pool.creator.DataSourcePoolCreator. For example, with
Alibaba Druid 1.2.9, using url instead of jdbcUrl in the example below is the expected behavior.

Parameters

dataSources: # Data sources configuration, multiple <data-source-name> available
<data-source-name>: # Data source name

dataSourceClassName: # Data source class name
driverClassName: # The database driver class name is subject to the

configuration of the database connection pool itself
jdbcUrl: # The database URL connection is subject to the configuration of the

database connection pool itself
username: # Database user name, subject to the configuration of the database

connection pool itself
password: # The database password is subject to the configuration of the

database connection pool itself
... Other properties of data source pool

4.1. ShardingSphere-JDBC 57

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.2.1

Sample

dataSources:
ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:

ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root
password:

Configure other data sources

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a YAML rule configurationmanual
for ShardingSphere‐JDBC.

Sharding

Background

Data sharding YAML configuration is highly readable. The dependencies between sharding rules can
be quickly understood through the YAML format. ShardingSphere automatically creates the Sharding‐
SphereDataSource object according to YAML configuration, which can reduce unnecessary coding for
users.

Parameters

rules:
- !SHARDING
tables: # Sharding table configuration

<logic-table-name> (+): # Logic table name
actualDataNodes (?): # Describe data source names and actual tables (refer to

Inline syntax rules)
databaseStrategy (?): # Databases sharding strategy, use default databases

sharding strategy if absent. sharding strategy below can choose only one.
standard: # For single sharding column scenario

shardingColumn: # Sharding column name

4.1. ShardingSphere-JDBC 58

Apache ShardingSphere document, v5.2.1

shardingAlgorithmName: # Sharding algorithm name
complex: # For multiple sharding columns scenario

shardingColumns: # Sharding column names, multiple columns separated with
comma

shardingAlgorithmName: # Sharding algorithm name
hint: # Sharding by hint

shardingAlgorithmName: # Sharding algorithm name
none: # Do not sharding

tableStrategy: # Tables sharding strategy, same as database sharding strategy
keyGenerateStrategy: # Key generator strategy
column: # Column name of key generator
keyGeneratorName: # Key generator name

auditStrategy: # Sharding audit strategy
auditorNames: # Sharding auditor name

- <auditor-name>
- <auditor-name>

allowHintDisable: true # Enable or disable sharding audit hint
autoTables: # Auto Sharding table configuration

t_order_auto: # Logic table name
actualDataSources (?): # Data source names
shardingStrategy: # Sharding strategy
standard: # For single sharding column scenario

shardingColumn: # Sharding column name
shardingAlgorithmName: # Auto sharding algorithm name

bindingTables (+): # Binding tables
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>

broadcastTables (+): # Broadcast tables
- <table-name>
- <table-name>

defaultDatabaseStrategy: # Default strategy for database sharding
defaultTableStrategy: # Default strategy for table sharding
defaultKeyGenerateStrategy: # Default Key generator strategy
defaultShardingColumn: # Default sharding column name

Sharding algorithm configuration
shardingAlgorithms:

<sharding-algorithm-name> (+): # Sharding algorithm name
type: # Sharding algorithm type
props: # Sharding algorithm properties
...

Key generate algorithm configuration
keyGenerators:

<key-generate-algorithm-name> (+): # Key generate algorithm name
type: # Key generate algorithm type
props: # Key generate algorithm properties
...

4.1. ShardingSphere-JDBC 59

Apache ShardingSphere document, v5.2.1

Sharding audit algorithm configuration
auditors:

<sharding-audit-algorithm-name> (+): # Sharding audit algorithm name
type: # Sharding audit algorithm type
props: # Sharding audit algorithm properties
...

Procedure

1. Configure data sharding rules in YAML files, including data source, sharding rules, and global
attributes and other configuration items.

2. Call createDataSource method of the object YamlShardingSphereDataSourceFactory. Create
ShardingSphereDataSource according to the configuration information in YAML files.

Sample

The YAML configuration sample of data sharding is as follows:

dataSources:
ds_0:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !SHARDING
tables:

t_order:
actualDataNodes: ds_${0..1}.t_order_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: t-order-inline

keyGenerateStrategy:

4.1. ShardingSphere-JDBC 60

Apache ShardingSphere document, v5.2.1

column: order_id
keyGeneratorName: snowflake

auditStrategy:
auditorNames:

- sharding_key_required_auditor
allowHintDisable: true

t_order_item:
actualDataNodes: ds_${0..1}.t_order_item_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order-item-inline

keyGenerateStrategy:
column: order_item_id
keyGeneratorName: snowflake

t_account:
actualDataNodes: ds_${0..1}.t_account_${0..1}
tableStrategy:

standard:
shardingAlgorithmName: t-account-inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

defaultShardingColumn: account_id
bindingTables:

- t_order,t_order_item
broadcastTables:

- t_address
defaultDatabaseStrategy:

standard:
shardingColumn: user_id
shardingAlgorithmName: database-inline

defaultTableStrategy:
none:

shardingAlgorithms:
database-inline:
type: INLINE
props:

algorithm-expression: ds_${user_id % 2}
t-order-inline:
type: INLINE
props:

algorithm-expression: t_order_${order_id % 2}
t_order-item-inline:
type: INLINE
props:

algorithm-expression: t_order_item_${order_id % 2}

4.1. ShardingSphere-JDBC 61

Apache ShardingSphere document, v5.2.1

t-account-inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

auditors:
sharding_key_required_auditor:
type: DML_SHARDING_CONDITIONS

props:
sql-show: false

Read theYAMLconfiguration to create a data source according to the createDataSourcemethodofYaml‐
ShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile("/META-INF/sharding-
databases-tables.yaml"));

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Readwrite-splitting

Background

Read/write splitting YAML configuration is highly readable. The YAML format enables you to quickly
understand the dependencies between read/write sharding rules. ShardingSphere automatically cre‐
ates the ShardingSphereDataSource object according to the YAML configuration, which reduces unnec‐
essary coding for users.

Parameters

Static Readwrite-splitting

rules:
- !READWRITE_SPLITTING
dataSources:

<data-source-name> (+): # Logic data source name of readwrite-splitting
static-strategy: # Readwrite-splitting type
write-data-source-name: # Write data source name

4.1. ShardingSphere-JDBC 62

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

read-data-source-names: # Read data source names, multiple data source
names separated with comma

loadBalancerName: # Load balance algorithm name

Load balance algorithm configuration
loadBalancers:

<load-balancer-name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
...

Dynamic Readwrite-splitting

rules:
- !READWRITE_SPLITTING
dataSources:

<data-source-name> (+): # Logic data source name of readwrite-splitting
dynamic-strategy: # Readwrite-splitting type
auto-aware-data-source-name: # Database discovery logic data source name
write-data-source-query-enabled: # All read data source are offline, write

data source whether the data source is responsible for read traffic
loadBalancerName: # Load balance algorithm name

Load balance algorithm configuration
loadBalancers:

<load-balancer-name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
...

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Read‐write splitting‐Core features for more details about query consistent routing.

4.1. ShardingSphere-JDBC 63

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

Procedure

1. Add read/write splitting data source.

2. Set the load balancer algorithm.

3. Use read/write data source.

Sample

rules:
- !READWRITE_SPLITTING
dataSources:

readwrite_ds:
staticStrategy:
writeDataSourceName: write_ds
readDataSourceNames:

- read_ds_0
- read_ds_1

loadBalancerName: random
loadBalancers:

random:
type: RANDOM

Related References

• Read‐write splitting‐Core features

• Java API: read‐write splitting

• Spring Boot Starter: read‐write splitting

• Spring namespace: read‐write splitting

Distributed Transaction

Background

ShardingSphere provides three modes for distributed transactions LOCAL, XA, BASE.

4.1. ShardingSphere-JDBC 64

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

Parameters

rules:
- !TRANSACTION

defaultType: # Transaction mode, optional value LOCAL/XA/BASE
providerType: # Specific implementation of the mode

Procedure

Use LOCAL Mode

The content of the server.yaml configuration file is as follows:

rules:
- !TRANSACTION

defaultType: LOCAL

Use XA Mode

The content of the server.yaml configuration file is as follows:

rules:
- !TRANSACTION

defaultType: XA
providerType: Narayana/Atomikos

To manually add Narayana‐related dependencies:

jta-5.12.4.Final.jar
arjuna-5.12.4.Final.jar
common-5.12.4.Final.jar
jboss-connector-api_1.7_spec-1.0.0.Final.jar
jboss-logging-3.2.1.Final.jar
jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
jboss-transaction-spi-7.6.0.Final.jar
narayana-jts-integration-5.12.4.Final.jar
shardingsphere-transaction-xa-narayana-x.x.x-SNAPSHOT.jar

4.1. ShardingSphere-JDBC 65

Apache ShardingSphere document, v5.2.1

Use BASE Mode

The content of the server.yaml configuration file is as follows:

rules:
- !TRANSACTION

defaultType: BASE
providerType: Seata

Build a Seata Server, add relevant configuration files and Seata dependencies, see ShardingSphere In‐
tegrates Seata Flexible Transactions

HA

Background

Through YAML format, ShardingSphere will automatically create the ShardingSphereDataSource
object according to the YAML configuration, reducing unnecessary coding work for users.

Parameters

rules:
- !READWRITE_SPLITTING
dataSources:

replica_ds:
dynamicStrategy:
autoAwareDataSourceName: # High availability rule logical data source name

- !DB_DISCOVERY
dataSources:

<data-source-name> (+): # Logic data source name
dataSourceNames: # Data source names
- <data-source>
- <data-source>

discoveryHeartbeatName: # Detect heartbeat name
discoveryTypeName: # Database discovery type name

Heartbeat Configuration
discoveryHeartbeats:

<discovery-heartbeat-name> (+): # heartbeat name
props:
keep-alive-cron: # This is cron expression, such as：'0/5 * * * * ?'

Database Discovery Configuration
discoveryTypes:

<discovery-type-name> (+): # Database discovery type name

4.1. ShardingSphere-JDBC 66

https://community.sphere-ex.com/t/topic/404
https://community.sphere-ex.com/t/topic/404

Apache ShardingSphere document, v5.2.1

type: # Database discovery type, such as: MySQL.MGR
props (?):
group-name: 92504d5b-6dec-11e8-91ea-246e9612aaf1 # Required parameters for

database discovery types, such as MGR's group-name

Sample

databaseName: database_discovery_db

dataSources:
ds_0:

url: jdbc:mysql://127.0.0.1:33306/primary_demo_ds?serverTimezone=UTC&
useSSL=false

username: root
password:
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

ds_1:
url: jdbc:mysql://127.0.0.1:33307/primary_demo_ds?serverTimezone=UTC&

useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

ds_2:
url: jdbc:mysql://127.0.0.1:33308/primary_demo_ds?serverTimezone=UTC&

useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

rules:
- !READWRITE_SPLITTING
dataSources:
replica_ds:
dynamicStrategy:

4.1. ShardingSphere-JDBC 67

Apache ShardingSphere document, v5.2.1

autoAwareDataSourceName: readwrite_ds
- !DB_DISCOVERY

dataSources:
readwrite_ds:
dataSourceNames:

- ds_0
- ds_1
- ds_2

discoveryHeartbeatName: mgr-heartbeat
discoveryTypeName: mgr

discoveryHeartbeats:
mgr-heartbeat:
props:

keep-alive-cron: '0/5 * * * * ?'
discoveryTypes:
mgr:
type: MySQL.MGR
props:

group-name: 558edd3c-02ec-11ea-9bb3-080027e39bd2

Related References

• Feature Description of HA

• JAVA API: HA

• Spring Boot Starter: HA

• Spring Namespace: HA

Encryption

Background

TheYAMLconfigurationapproach todata encryption is highly readable,with theYAML format enabling
a quick understanding of dependencies between encryption rules. Based on the YAML configuration,
ShardingSphere automatically completes the creation of ShardingSphereDataSource objects, reducing
unnecessary coding efforts for users.

4.1. ShardingSphere-JDBC 68

https://shardingsphere.apache.org/document/current/en/features/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha/

Apache ShardingSphere document, v5.2.1

Parameters

rules:
- !ENCRYPT
tables:

<table-name> (+): # Encrypt table name
columns:
<column-name> (+): # Encrypt logic column name

cipherColumn: # Cipher column name
assistedQueryColumn (?): # Assisted query column name
plainColumn (?): # Plain column name
encryptorName: # Encrypt algorithm name

queryWithCipherColumn(?): # The current table whether query with cipher
column for data encrypt.

Encrypt algorithm configuration
encryptors:

<encrypt-algorithm-name> (+): # Encrypt algorithm name
type: # Encrypt algorithm type
props: # Encrypt algorithm properties
...

queryWithCipherColumn: # Whether query with cipher column for data encrypt. User
you can use plaintext to query if have

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Procedure

1. Configure data encryption rules in the YAML file, including data sources, encryption rules, global
attributes, and other configuration items.

2. Using the createDataSource of calling theYamlShardingSphereDataSourceFactory object to create
ShardingSphereDataSource based on the configuration information in the YAML file.

Sample

The data encryption YAML configurations are as follows:

dataSources:
unique_ds:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

4.1. ShardingSphere-JDBC 69

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

rules:
- !ENCRYPT
tables:

t_user:
columns:
username:

plainColumn: username_plain
cipherColumn: username
encryptorName: name-encryptor

pwd:
cipherColumn: pwd
assistedQueryColumn: assisted_query_pwd
encryptorName: pwd_encryptor

encryptors:
name-encryptor:
type: AES
props:
aes-key-value: 123456abc

pwd_encryptor:
type: assistedTest

Read theYAMLconfiguration to create a data source according to the createDataSourcemethodofYaml‐
ShardingSphereDataSourceFactory.

YamlShardingSphereDataSourceFactory.createDataSource(getFile());

Related References

• Core Feature: Data Encryption

• Developer Guide: Data Encryption

4.1. ShardingSphere-JDBC 70

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

Shadow DB

Background

Please refer to the following configuration in order to use the ShardingSphere shadow DB feature in
ShardingSphere‐Proxy.

Parameters

rules:
- !SHADOW
dataSources:

shadowDataSource:
productionDataSourceName: # production data source name
shadowDataSourceName: # shadow data source name

tables:
<table-name>:
dataSourceNames: # shadow table associates shadow data source name list
- <shadow-data-source>

shadowAlgorithmNames: # shadow table associates shadow algorithm name list
- <shadow-algorithm-name>

defaultShadowAlgorithmName: # default shadow algorithm name (option)
shadowAlgorithms:

<shadow-algorithm-name> (+): # shadow algorithm name
type: # shadow algorithm type
props: # shadow algorithm attribute configuration

Please refer to Built‐in shadow algorithm list for more details.

Procedure

1. Configure shadow DB rules in the YAML file, including data sources, shadow library rules, global
properties and other configuration items;

2. Call the createDataSource() method of the YamlShardingSphereDataSourceFactory
object to create a ShardingSphereDataSource based on the configuration information in theYAML
file.

4.1. ShardingSphere-JDBC 71

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document, v5.2.1

Sample

The YAML configuration sample of shadow DB is as follows:

dataSources:
ds:

url: jdbc:mysql://127.0.0.1:3306/ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

shadow_ds:
url: jdbc:mysql://127.0.0.1:3306/shadow_ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

rules:
- !SHADOW
dataSources:

shadowDataSource:
productionDataSourceName: ds
shadowDataSourceName: shadow_ds

tables:
t_order:
dataSourceNames:
- shadowDataSource

shadowAlgorithmNames:
- user-id-insert-match-algorithm
- simple-hint-algorithm

shadowAlgorithms:
user-id-insert-match-algorithm:
type: REGEX_MATCH
props:
operation: insert
column: user_id
regex: "[1]"

simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

4.1. ShardingSphere-JDBC 72

Apache ShardingSphere document, v5.2.1

Related References

• Core Features of Shadow DB

• JAVA API: Shadow DB Configuration

• Spring Boot Starter: Shadow DB Configuration

• Spring Namespace: Shadow DB Configuration

SQL-parser

Background

The SQL parser YAML configuration is readable and easy to use. The YAML files allow you to separate
the code from the configuration, and easily modify the configuration file as needed.

Parameters

rules:
- !SQL_PARSER
sqlCommentParseEnabled: # Whether to parse SQL comments
sqlStatementCache: # SQL statement local cache

initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache

parseTreeCache: # Parse tree local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache

Procedure

1. Set local cache configuration.

2. Set parser configuration.

3. Use a parsing engine to parse SQL.

Sample

rules:
- !SQL_PARSER

sqlCommentParseEnabled: true
sqlStatementCache:
initialCapacity: 2000
maximumSize: 65535

parseTreeCache:

4.1. ShardingSphere-JDBC 73

https://shardingsphere.apache.org/document/current/en/features/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/

Apache ShardingSphere document, v5.2.1

initialCapacity: 128
maximumSize: 1024

Related References

• JAVA API: SQL Parsing

• Spring Boot Starter: SQL Parsing

• Spring namespace: SQL Parsing

SQL Translator

Configuration Item Explanation

rules:
- !SQL_TRANSLATOR
type: # SQL translator type
useOriginalSQLWhenTranslatingFailed: # Whether use original SQL when translating

failed

Mixed Rules

Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, high avail‐
ability, and data decryption. These features can be used independently or in combination. Below, you
will find the parameters’explanation and configuration samples based on YAML.

Parameters

rules:
- !SHARDING

tables:
<logic-table-name>: # Logical table name:
actualDataNodes: # consists of logical data source name plus table name

(refer to Inline syntax rules)
tableStrategy: # Table shards strategy. The same as database shards

strategy
standard:
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name

keyGenerateStrategy:
column: # Auto-increment column name. By default, the auto-increment

4.1. ShardingSphere-JDBC 74

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

primary key generator is not used.
keyGeneratorName: # Distributed sequence algorithm name

defaultDatabaseStrategy:
standard:
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name

shardingAlgorithms:
<sharding-algorithm-name>: # Sharding algorithm name
type: INLINE
props:

algorithm-expression: # INLINE expression
t_order_inline:
type: INLINE
props:

algorithm-expression: # INLINE expression
keyGenerators:
<key-generate-algorithm-name> (+): # Distributed sequence algorithm name
type: # Distributed sequence algorithm type
props: # Property configuration of distributed sequence algorithm

- !READWRITE_SPLITTING
dataSources:
<data-source-name>: # Read/write splitting logical data source name
dynamicStrategy: # Read/write splitting type

autoAwareDataSourceName: # Database discovery logical data source name
<data-source-name>: # Read/write splitting logical data source name
dynamicStrategy: # Read/write splitting type

autoAwareDataSourceName: # Database discovery logical data source name
- !DB_DISCOVERY

dataSources:
<data-source-name>:
dataSourceNames: # Data source name list

- ds_0
- ds_1
- ds_2

discoveryHeartbeatName: # Detect heartbeat name
discoveryTypeName: # Database discovery type name

<data-source-name>:
dataSourceNames: # Data source name list

- ds_3
- ds_4
- ds_5

discoveryHeartbeatName: # Detect heartbeat name
discoveryTypeName: # Database discovery type name

discoveryHeartbeats:
<discovery-heartbeat-name>: # Heartbeat name
props:

keep-alive-cron: # cron expression, such as '0/5 * * * * ?'
discoveryTypes:

4.1. ShardingSphere-JDBC 75

Apache ShardingSphere document, v5.2.1

<discovery-type-name>: # Database discovery type name
type: # Database discovery type, such as MySQL.MGR.
props:

group-name: # Required parameter of database discovery type, such as MGR
's group-name.
- !ENCRYPT

encryptors:
<encrypt-algorithm-name> (+): # Encryption and decryption algorithm name
type: # Encryption and decryption algorithm type
props: # Encryption and decryption algorithm property configuration

<encrypt-algorithm-name> (+): # Encryption and decryption algorithm name
type: # Encryption and decryption algorithm type

tables:
<table-name>: # Encryption table name
columns:

<column-name>: # Encryption name
plainColumn: # Plaincolumn name
cipherColumn: # Ciphercolumn name
encryptorName: # Encryption algorithm name

<column-name>: # Encryption column name
cipherColumn: # Ciphercolumn name
encryptorName: # Encryption algorithm name

Samples

rules:
- !SHARDING

tables:
t_order:
actualDataNodes: replica_ds_${0..1}.t_order_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:

shardingColumn: user_id
shardingAlgorithmName: database_inline

shardingAlgorithms:
database_inline:

type: INLINE
props:

algorithm-expression: replica_ds_${user_id % 2}

4.1. ShardingSphere-JDBC 76

Apache ShardingSphere document, v5.2.1

t_order_inline:
type: INLINE
props:

algorithm-expression: t_order_${order_id % 2}
t_order_item_inline:
type: INLINE
props:

algorithm-expression: t_order_item_${order_id % 2}
keyGenerators:
snowflake:
type: SNOWFLAKE

- !READWRITE_SPLITTING
dataSources:
replica_ds_0:
dynamicStrategy:

autoAwareDataSourceName: readwrite_ds_0
replica_ds_1:
dynamicStrategy:

autoAwareDataSourceName: readwrite_ds_1
- !DB_DISCOVERY

dataSources:
readwrite_ds_0:
dataSourceNames:

- ds_0
- ds_1
- ds_2

discoveryHeartbeatName: mgr-heartbeat
discoveryTypeName: mgr

readwrite_ds_1:
dataSourceNames:

- ds_3
- ds_4
- ds_5

discoveryHeartbeatName: mgr-heartbeat
discoveryTypeName: mgr

discoveryHeartbeats:
mgr-heartbeat:
props:

keep-alive-cron: '0/5 * * * * ?'
discoveryTypes:
mgr:
type: MySQL.MGR
props:

group-name: 558edd3c-02ec-11ea-9bb3-080027e39bd2
- !ENCRYPT

encryptors:
aes_encryptor:
type: AES

4.1. ShardingSphere-JDBC 77

Apache ShardingSphere document, v5.2.1

props:
aes-key-value: 123456abc

md5_encryptor:
type: MD5

tables:
t_encrypt:
columns:

user_id:
plainColumn: user_plain
cipherColumn: user_cipher
encryptorName: aes_encryptor

order_id:
cipherColumn: order_cipher
encryptorName: md5_encryptor

Algorithm

Sharding

shardingAlgorithms:
algorithmName is specified by users, and its property has to be consistent with

that of shardingAlgorithmName in the sharding strategy.
<algorithmName>:

type and props, please refer to the built-in sharding algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/sharding/

type: xxx
props:
xxx: xxx

Encryption

encryptors:
encryptorName is specified by users, and its property should be consistent with

that of encryptorName in encryption rules.
<encryptorName>:

type and props, please refer to the built-in encryption algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/

type: xxx
props:
xxx: xxx

4.1. ShardingSphere-JDBC 78

Apache ShardingSphere document, v5.2.1

Read/Write Splitting Load Balancer

loadBalancers:
loadBalancerName is specified by users, and its property has to be consistent

with that of loadBalancerName in read/write splitting rules.
type and props, please refer to the built-in read/write splitting algorithm

load balancer: https://shardingsphere.apache.org/document/current/en/user-manual/
common-config/builtin-algorithm/load-balance/

type: xxx
props:
xxx: xxx

Shadow DB

loadBalancers:
shadowAlgorithmName is specified by users, and its property has to be

consistent with that of shadowAlgorithmNames in shadow DB rules.
<shadowAlgorithmName>:

type and props, please refer to the built-in shadow DB algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/

type: xxx
props:
xxx: xxx

High Availability

discoveryTypes:
discoveryTypeName is specified by users, and its property has to be consistent

with that of discoveryTypeName in the database discovery rules.
type: xxx
props:
xxx: xxx

JDBC Driver

Background

ShardingSphere‐JDBC provides a JDBC Driver, which can be used only through configuration changes
without rewriting the code.

4.1. ShardingSphere-JDBC 79

Apache ShardingSphere document, v5.2.1

Parameters

Driver Class Name

org.apache.shardingsphere.driver.ShardingSphereDriver

URL Configuration

• Use jdbc:shardingsphere: as prefix

• Configuration file: xxx.yaml, keep consist format with YAML Configuration

• Configuration file loading rule:

– No prefix means that the configuration file is loaded from the absolute path

– classpath: prefix indicates that the configuration file is loaded from the classpath

Procedure

1. Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

2. Use drive

• Use native drivers:

Class.forName("org.apache.shardingsphere.driver.ShardingSphereDriver");
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = DriverManager.getConnection(jdbcUrl);
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

• Use database connection pool:

4.1. ShardingSphere-JDBC 80

jdbc:shardingsphere
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/

Apache ShardingSphere document, v5.2.1

String driverClassName = "org.apache.shardingsphere.driver.ShardingSphereDriver";
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

// Take HikariCP as an example
HikariDataSource dataSource = new HikariDataSource();
dataSource.setDriverClassName(driverClassName);
dataSource.setJdbcUrl(jdbcUrl);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

Sample

Load JDBC URL of config.yaml profile in classpath:

jdbc:shardingsphere:classpath:config.yaml

Load JDBC URL of config.yaml profile in absolute path

jdbc:shardingsphere:/path/to/config.yaml

4.1.2 Java API

Overview

Java API is the basic configuration methods in ShardingSphere‐JDBC, and other configurations will
eventually be transformed into Java API configuration methods.

The Java API is themost complex and flexible configurationmethod, which is suitable for the scenarios
requiring dynamic configuration through programming.

4.1. ShardingSphere-JDBC 81

Apache ShardingSphere document, v5.2.1

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Create Data Source

ShardingSphere‐JDBC Java API consists of database name, mode configuration, data source map, rule
configurations and properties.

The ShardingSphereDataSource created by ShardingSphereDataSourceFactory implements the stan‐
dard JDBC DataSource interface.

String databaseName = "foo_schema"; // Indicate logic database name
ModeConfiguration modeConfig = ... // Build mode configuration
Map<String, DataSource> dataSourceMap = ... // Build actual data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build concentrate rule
configurations
Properties props = ... // Build properties
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

Please refer to Mode Confiugration for more mode details.

Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

Use Data Source

Developer can choose tousenative JDBCorORMframeworks suchas JPA,Hibernate orMyBatis through
the DataSource.

Take native JDBC usage as an example:

// Create ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();

4.1. ShardingSphere-JDBC 82

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules

Apache ShardingSphere document, v5.2.1

PreparedStatement ps = conn.prepareStatement(sql)) {
ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

Mode

Background

Build the running mode through Java API.

Parameters

Class name: org.apache.shardingsphere.infra.config.mode.ModeConfiguration

Attributes:

•
N am e *

Da taType Description D ef au lt Va lu e

t y p e String Type of mode configu‐
rationValues could be:
Standalone or Cluster

St an da lo ne

r e p o s i t o r y Pe rsistRe positor
yConfig uration

Persist repository
configurationStan‐
dalone type uses
StandalonePer‐
sistRepositoryCon‐
figurationCluster
type uses ClusterPer‐
sistRepositoryConfig‐
uration

4.1. ShardingSphere-JDBC 83

Apache ShardingSphere document, v5.2.1

Standalone Persist Configuration

Classname: org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepositoryConfiguration

Attributes:

Name DataType Description

type String Type of persist repository
props Properties Properties of persist repository

Cluster Persist Configuration

Classname: org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration

Attributes:

Name Data Type Description

type String Type of persist repository
namespace String Namespace of registry center
server‐lists String Server lists of registry center
props Properties Properties of persist repository

Notes

1. Cluster mode deployment is recommended for production environment.

2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information
there.

Procedure

Introduce Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.

4.1. ShardingSphere-JDBC 84

Apache ShardingSphere document, v5.2.1

Sample

Standalone Mode

ModeConfiguration modeConfig = createModeConfiguration();
Map<String, DataSource> dataSourceMap = ... // Building real data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build property configuration
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private ModeConfiguration createModeConfiguration() {
return new ModeConfiguration("Standalone", new

StandalonePersistRepositoryConfiguration("JDBC", new Properties()));
}

Cluster Mode (Recommended)

ModeConfiguration modeConfig = createModeConfiguration();
Map<String, DataSource> dataSourceMap = ... // Building real data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build property configuration
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private ModeConfiguration createModeConfiguration() {
return new ModeConfiguration("Cluster", new

ClusterPersistRepositoryConfiguration("ZooKeeper", "governance-sharding-db",
"localhost:2181", new Properties()));
}

Related References

• Installation and Usage of ZooKeeper Registry Center

• Please refer to Builtin Persist Repository List for more details about type of repository.

4.1. ShardingSphere-JDBC 85

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.2.1

Data Source

Background

ShardingSphere‐JDBC supports all database JDBC drivers and connection pools.

This section describes how to configure data sources through the JAVA API.

Procedure

1. Import Maven dependency.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.

Sample

ModeConfiguration modeConfig = // Build running mode
Map<String, DataSource> dataSourceMap = createDataSources();
Collection<RuleConfiguration> ruleConfigs = ... // Build specific rules
Properties props = ... // Build attribute configuration
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private Map<String, DataSource> createDataSources() {
Map<String, DataSource> dataSourceMap = new HashMap<>();
// Configure the 1st data source
HikariDataSource dataSource1 = new HikariDataSource();
dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
dataSource1.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSource1.setUsername("root");
dataSource1.setPassword("");
dataSourceMap.put("ds_1", dataSource1);

// Configure the 2nd data source
HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");

4.1. ShardingSphere-JDBC 86

Apache ShardingSphere document, v5.2.1

dataSourceMap.put("ds_2", dataSource2);
}

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a java rule configuration manual
for ShardingSphere‐JDBC.

Sharding

Background

The Java API rule configuration for data sharding, which allows users to create ShardingSphereData‐
Source objects directly by writing Java code, is flexible enough to integrate various types of business
systems without relying on additional jar packages.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

Attributes:

4.1. ShardingSphere-JDBC 87

Apache ShardingSphere document, v5.2.1

Name DataType Description Default Value

tables (+) Collec
tion<ShardingTable
RuleConfiguration>

Sharding table rules •

autoTables (+) Collection
<ShardingAutoTable
RuleConfiguration>

Sharding auto table
rules

•

bindin gTableGroups
(*)

Collection<String> Binding table rules Empty

bro adcastTables (*) Collection<String> Broadcast table rules Empty
default DatabaseShar
dingStrategy (?)

ShardingStr ategyCon‐
figuration

Default database
sharding strategy

Not sharding

defa ultTableShar
dingStrategy (?)

ShardingStr ategyCon‐
figuration

Default table sharding
strategy

Not sharding

de faultKeyGene rateS‐
trategy (?)

KeyGene ratorConfig‐
uration

Default key generator S nowflake

defaultA uditStrategy
(?)

ShardingAuditStr
ategyConfiguration

Default key auditor DML_SHA RDING_CO
NDITIONS

defaultSh ardingCol‐
umn (?)

String Default sharding col‐
umn name

None

shardi ngAlgorithms
(+)

Map<String, Algor
ithmConfiguration>

Sharding algorithm
name and configura‐
tions

None

k eyGenerators (?) Map<String, Algor
ithmConfiguration>

Key generate algo‐
rithm name and
configurations

None

auditors (?) Map<String, Algor
ithmConfiguration>

Sharding audit al‐
gorithm name and
configurations

None

Sharding Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

Attributes:

4.1. ShardingSphere-JDBC 88

Apache ShardingSphere document, v5.2.1

•
Name*

Da taType Description Default Value

logic Table String Name of sharding
logic table

•

actua lData Nodes (?) String Describe data source
names and actual
tables, delimiter as
point. Multiple data
nodes split by comma,
support inline expres‐
sion

Broadcast table or
databases sharding
only

data baseS hardi ngStr
ategy (?)

S harding Strateg
yConfig uration

Databases sharding
strategy

Use default databases
sharding strategy

t ableS hardi ngStr at‐
egy (?)

S harding Strateg
yConfig uration

Tables sharding strat‐
egy

Use default tables
sharding strategy

keyG enera teStr ategy
(?)

KeyG enerato rConfig
uration

Key generator configu‐
ration

Use default key gener‐
ator

aud itStr ategy (?) Shardi ngAudit Strateg
yConfig uration

Sharding audit strat‐
egy configuration

Use default auditor

Sharding Auto Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

Attributes:

Name DataType Description Default Value

lo gicTable String Name of sharding
logic table

•

a ctualDat aSources (?) String Data source names.
Multiple data nodes
split by comma

Use all configured data
sources

sharding Strategy (?) Shardin gStrategyCo
nfiguration

Sharding strategy Use default sharding
strategy

key Generate Strategy
(?)

Key GeneratorCo nfig‐
uration

Key generator configu‐
ration

Use default key gener‐
ator

4.1. ShardingSphere-JDBC 89

Apache ShardingSphere document, v5.2.1

Sharding Strategy Configuration

Standard Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumn String Sharding column name
shardingAlgorithmName String Sharding algorithm name

Complex Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumns String Sharding column name, separated by commas
shardingAlgorithmName String Sharding algorithm name

Hint Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingAlgorithmName String Sharding algorithm name

None Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration

Attributes: None

Please refer to Built‐in Sharding Algorithm List for more details about type of algorithm.

4.1. ShardingSphere-JDBC 90

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding

Apache ShardingSphere document, v5.2.1

Distributed Key Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration

Attributes:

Name DataType Description

column String Column name of key generate
keyGeneratorName String key generate algorithm name

Please refer to Built‐in Key Generate Algorithm List for more details about type of algorithm.

Sharding audit Strategy Configuration

Classname：org.apache.shardingsphere.sharding.api.config.strategy.audit.ShardingAuditStrategyConfiguration
Attributes：

Name DataType Description

auditorNames Collection<String> Sharding audit algorithm name
allowHintDisable Boolean Enable or disable sharding audit hint

Please refer to Built‐in Sharding Audit Algorithm List for more details about type of algorithm.

Procedure

1. Create an authentic data source mapping relationship, with key as the logical name of the data
source and value as the DataSource object.

2. Create the sharding rule object ShardingRuleConfiguration, and initialize the sharding table ob‐
jects—ShardingTableRuleConfiguration, the set of bound tables, the set of broadcast tables, and
parameters like library sharding strategy and the database sharding strategy, on which the data
sharding depends.

3. Using the ShardingSphereDataSource method of calling the ShardingSphereDataSourceFactory
subject to create the ShardingSphereDataSource.

Sample

public final class ShardingDatabasesAndTablesConfigurationPrecise implements
ExampleConfiguration {

@Override
public DataSource getDataSource() throws SQLException {

return ShardingSphereDataSourceFactory.
createDataSource(createDataSourceMap(), Collections.

4.1. ShardingSphere-JDBC 91

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit

Apache ShardingSphere document, v5.2.1

singleton(createShardingRuleConfiguration()), new Properties());
}

private ShardingRuleConfiguration createShardingRuleConfiguration() {
ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables().add(getOrderTableRuleConfiguration());
result.getTables().add(getOrderItemTableRuleConfiguration());
result.getBindingTableGroups().add("t_order, t_order_item");
result.getBroadcastTables().add("t_address");
result.setDefaultDatabaseShardingStrategy(new

StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy(new

StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", "demo_ds_${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration(

"INLINE", props));
result.getShardingAlgorithms().put("standard_test_tbl", new

AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration(

"SNOWFLAKE", new Properties()));
result.getAuditors().put("sharding_key_required_auditor", new

AlgorithmConfiguration("DML_SHARDING_CONDITIONS", new Properties()));
return result;

}

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(

"t_order", "demo_ds_${0..1}.t_order_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_

id", "snowflake"));
result.setAuditStrategy(new ShardingAuditStrategyConfiguration(Collections.

singleton("sharding_key_required_auditor"), true));
return result;

}

private ShardingTableRuleConfiguration getOrderItemTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(

"t_order_item", "demo_ds_${0..1}.t_order_item_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_

item_id", "snowflake"));
return result;

}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>();
result.put("demo_ds_0", DataSourceUtil.createDataSource("demo_ds_0"));
result.put("demo_ds_1", DataSourceUtil.createDataSource("demo_ds_1"));

4.1. ShardingSphere-JDBC 92

Apache ShardingSphere document, v5.2.1

return result;
}

}

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Readwrite-splitting

Background

The read/write splitting configured in Java API form can be easily applied to various scenarios without
relying on additional jar packages. Users only need to construct the read/write splitting data source
through java code to be able to use the read/write splitting function.

Parameters Explained

Entry

Class name: org.apache.shardingsphere.readwritesplitting.api.ReadwriteSplittingRuleConfiguration

Configurable Properties:

•
Name*

DataType Description

d ataSo urces (+) Colle
ction<ReadwriteSplittingDa
taSourceRuleConfiguration>

Data sources of write and reads

loa dBala ncers (*) Map<String, AlgorithmConfig‐
uration>

Load balance algorithm name
and configurations of replica
data sources

4.1. ShardingSphere-JDBC 93

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

Primary-secondary Data Source Configuration

Classname: org.apache.shardingsphere.readwritesplitting.api.rule.ReadwriteSplittingDataSourceRuleConfiguration

Configurable Properties:

Name •
Dat aTy pe*

Description Default Value

name Str ing Readwrite‐splitting
data source name

•

stat icStrategy Str ing Static Readwrite‐
splitting configuration

•

dynam icStrategy P rop ert ies Dynamic Readwrite‐
splitting configuration

•

loadBa lancerName (?) Str ing Load balance algo‐
rithm name of replica
sources

Round robin load bal‐
ance algorithm

Classname：org.apache.shardingsphere.readwritesplitting.api.strategy.StaticReadwriteSplittingStrategyConfiguration
Configurable Properties:

Name DataType Description

writeDataSourceName String Write data source name
readDataSourceNames List<String> Read data sources list

Classname：org.apache.shardingsphere.readwritesplitting.api.strategy.DynamicReadwriteSplittingStrategyConfiguration

Configurable Properties:

Name •
D a t a T y p e *

Description De fault V alue

aut oAwareData
SourceName

S t r i n g Database discovery
logic data source name

•

writeDa taSourceQu
eryEnabled (?)

S t r i n g All read data source
are offline, write
data source whether
the data source is
responsible for read
traffic

true

Please refer to Built‐in Load Balance Algorithm List for details on algorithm types. Please refer to Read‐
write splitting‐Core features for more details about query consistent routing.

4.1. ShardingSphere-JDBC 94

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

Operating Procedures

1. Add read‐write splitting data source

2. Set load balancing algorithms

3. Use read‐write splitting data source

Configuration Examples

public DataSource getDataSource() throws SQLException {
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfig = new

ReadwriteSplittingDataSourceRuleConfiguration(
"demo_read_query_ds", new

StaticReadwriteSplittingStrategyConfiguration("demo_write_ds",
Arrays.asList("demo_read_ds_0", "demo_read_ds_1")), null,"demo_

weight_lb");
Properties algorithmProps = new Properties();
algorithmProps.setProperty("demo_read_ds_0", "2");
algorithmProps.setProperty("demo_read_ds_1", "1");
Map<String, AlgorithmConfiguration> algorithmConfigMap = new HashMap<>(1);
algorithmConfigMap.put("demo_weight_lb", new AlgorithmConfiguration("WEIGHT

", algorithmProps));
ReadwriteSplittingRuleConfiguration ruleConfig = new

ReadwriteSplittingRuleConfiguration(Collections.singleton(dataSourceConfig),
algorithmConfigMap);

Properties props = new Properties();
props.setProperty("sql-show", Boolean.TRUE.toString());
return ShardingSphereDataSourceFactory.

createDataSource(createDataSourceMap(), Collections.singleton(ruleConfig), props);
}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>(3, 1);
result.put("demo_write_ds", DataSourceUtil.createDataSource("demo_write_ds

"));
result.put("demo_read_ds_0", DataSourceUtil.createDataSource("demo_read_ds_

0"));
result.put("demo_read_ds_1", DataSourceUtil.createDataSource("demo_read_ds_

1"));
return result;

}

4.1. ShardingSphere-JDBC 95

Apache ShardingSphere document, v5.2.1

References

• Read‐write splitting‐Core features

• YAML Configuration: read‐write splitting

• Spring Boot Starter: read‐write splitting

• Spring namespace: read‐write splitting

Distributed Transaction

Root Configuration

org.apache.shardingsphere.transaction.config.TransactionRuleConfiguration

Attributes:

name DataType Description

defaultType String Default transaction type
providerType (?) String Transaction provider type
props (?) Properties Transaction properties

HA

Background

Build high availability rule configuration through Java API.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.dbdiscovery.api.config.DatabaseDiscoveryRuleConfiguration
Attributes:

Name Data Type Description

dataSources (+) Collection<DatabaseDisco veryData‐
SourceRuleConfiguration>

Data source configuration

discover yHeart‐
beats (+)

Map<String, Database DiscoveryHeartBeat‐
Configuration>

Detect heartbeat configura‐
tion

dis coveryTypes
(+)

Map<String, AlgorithmConfiguration> Database discovery type con‐
figuration

4.1. ShardingSphere-JDBC 96

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

Data Source Configuration

Classname: org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryDataSourceRuleConfiguration

Attributes:

Name Data Type Description

groupName (+) String Database discovery group name
data SourceNames
(+)

Co llection
<String>

Data source names, multiple data source names separated
with comma. Such as: ds_0, ds_1

discoveryHe art‐
beatName (+)

String Detect heartbeat name

discov eryType‐
Name (+)

String Database discovery type name

Detect Heartbeat Configuration

Classname: org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryHeartBeatConfiguration

Attributes:

•
N am e *

•
Da ta T yp e*

Description

p r o p s (+) Pr op er ti es Detect heartbeat attribute
configuration, keep‐alive‐cron
configuration, cron expres‐
sion. Such as: 0/5 * * * *
?

Database Discovery Type Configuration

Class name: org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

Attributes：

Name Data Type Description

t ype (+) S tring Database discovery type, such as: MySQL.MGR
pr ops (?) Prope

rties
Required parameters for high‐availability types, such as MGR’s group‐
name

4.1. ShardingSphere-JDBC 97

Apache ShardingSphere document, v5.2.1

Procedure

1. Import Maven dependency.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.

Sample

// Build data source ds_0, ds_1, ds_2
Map<String, DataSource> dataSourceMap = new HashMap<>(3, 1);
dataSourceMap.put("ds_0", createDataSource1("primary_demo_ds"));
dataSourceMap.put("ds_1", createDataSource2("primary_demo_ds"));
dataSourceMap.put("ds_2", createDataSource3("primary_demo_ds"));

DataSource dataSource = ShardingSphereDataSourceFactory.createDataSource("database_
discovery_db", dataSourceMap, Arrays.asList(createDatabaseDiscoveryConfiguration(),
createReadwriteSplittingConfiguration()), null);

private static DatabaseDiscoveryRuleConfiguration
createDatabaseDiscoveryConfiguration() {

DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration = new
DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds", Arrays.asList("ds_0,
ds_1, ds_2"), "mgr-heartbeat", "mgr");

return new DatabaseDiscoveryRuleConfiguration(Collections.
singleton(dataSourceRuleConfiguration), createDiscoveryHeartbeats(),
createDiscoveryTypes());
}

private static ReadwriteSplittingRuleConfiguration
createReadwriteSplittingConfiguration() {

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds", new
DynamicReadwriteSplittingStrategyConfiguration("readwrite_ds", true), "");

return new ReadwriteSplittingRuleConfiguration(Arrays.
asList(dataSourceConfiguration1), Collections.emptyMap());
}

private static Map<String, AlgorithmConfiguration> createDiscoveryTypes() {
Map<String, AlgorithmConfiguration> discoveryTypes = new HashMap<>(1， 1);
Properties props = new Properties();
props.put("group-name", "558edd3c-02ec-11ea-9bb3-080027e39bd2");

4.1. ShardingSphere-JDBC 98

Apache ShardingSphere document, v5.2.1

discoveryTypes.put("mgr", new AlgorithmConfiguration("MGR", props));
return discoveryTypes;

}

private static Map<String, DatabaseDiscoveryHeartBeatConfiguration>
createDiscoveryHeartbeats() {

Map<String, DatabaseDiscoveryHeartBeatConfiguration>
discoveryHeartBeatConfiguration = new HashMap<>(1， 1);

Properties props = new Properties();
props.put("keep-alive-cron", "0/5 * * * * ?");
discoveryHeartBeatConfiguration.put("mgr-heartbeat", new

DatabaseDiscoveryHeartBeatConfiguration(props));
return discoveryHeartBeatConfiguration;

}

Related References

• Feature Description of HA

• YAML Configuration: HA

• Spring Boot Starter: HA

• Spring Namespace: HA

Encryption

Background

The data encryption Java API rule configuration allows users to directly create ShardingSphereData‐
Source objects by writing java code. The Java API configuration method is very flexible and can inte‐
grate various types of business systems without relying on additional jar packages.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

Attributes:

4.1. ShardingSphere-JDBC 99

https://shardingsphere.apache.org/document/current/en/features/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha/

Apache ShardingSphere document, v5.2.1

Name DataType Description D efa
ult Val
ue

tables (+) Collection<En crypt‐
TableRule Configura‐
tion>

Encrypt table rule configurations

enc ryptors (+) Map<String, Algo‐
rithm Configuration>

Encrypt algorithm name and configurations

queryWi thCi‐
phe rColumn
(?)

boolean Whether query with cipher column for data en‐
crypt. User you can use plaintext to query if
have

t rue

Encrypt Table Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

Attributes:

Name DataType Description

name String Table name
columns (+) Collection<Encr yptColumn‐

RuleConfiguration>
Encrypt column rule configurations

queryWi thCipher‐
Column (?)

boolean The current table whether query with cipher
column for data encrypt

Encrypt Column Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

Attributes:

Name D
ataType

Description

logicColumn String Logic column name
cipherColumn String Cipher column name
assistedQueryColumn (?) String Assisted query column name
plainColumn (?) String Plain column name
encryptorName String Encrypt algorithm name
assistedQueryEncryptor‐
Name

String Assisted query encrypt algorithm name

queryWithCipherCol‐
umn (?)

boolean The current column whether query with cipher column for
data encrypt

4.1. ShardingSphere-JDBC 100

Apache ShardingSphere document, v5.2.1

Encrypt Algorithm Configuration

Class name: org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

Attributes:

Name DataType Description

name String Encrypt algorithm name
type String Encrypt algorithm type
properties Properties Encrypt algorithm properties

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Procedure

1. Create a real data source mapping relationship, where key is the logical name of the data source
and value is the datasource object.

2. Create the encryption rule object EncryptRuleConfiguration, and initialize the encryption table
object EncryptTableRuleConfiguration, encryption algorithm and other parameters in the object.

3. Call createDataSource of ShardingSphereDataSourceFactory to create ShardingSphereData‐
Source.

Sample

public final class EncryptDatabasesConfiguration implements ExampleConfiguration {

@Override
public DataSource getDataSource() {

Properties props = new Properties();
props.setProperty("aes-key-value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new

EncryptColumnRuleConfiguration("username", "username", "", "username_plain", "name_
encryptor", null);

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_pwd", "", "pwd_
encryptor", null);

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest), null);

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new
LinkedHashMap<>(2, 1);

encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration(
"AES", props));

encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(
"assistedTest", props));

4.1. ShardingSphere-JDBC 101

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

EncryptRuleConfiguration encryptRuleConfig = new
EncryptRuleConfiguration(Collections.singleton(encryptTableRuleConfig),
encryptAlgorithmConfigs);

try {
return ShardingSphereDataSourceFactory.createDataSource(DataSourceUtil.

createDataSource("demo_ds"), Collections.singleton(encryptRuleConfig), props);
} catch (final SQLException ex) {

ex.printStackTrace();
return null;

}
}

}

Related References

• The feature description of Data Encryption

• Dev Guide of Data Encryption

Shadow DB

Background

In thedistributed application architecturebasedonmicroservices, businesses requiremultiple services
to be completed through a series of services and middleware, so the stress test of a single service can
no longer meet the needs of real scenarios. If we reconstruct a stress test environment similar to the
production environment, it is too expensive and often fails to simulate the complexity and traffic of the
online environment. For this reason, the industry often chooses the full link stress test, which is per‐
formed in the production environment, so that the test results can accurately reflect the true capacity
and performance of the system.

Parameters

Root Configuration

Class name: org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

Attributes:

4.1. ShardingSphere-JDBC 102

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encryption/

Apache ShardingSphere document, v5.2.1

Name Data Type Description

dataSources Map<String, ShadowD ataSource‐
Configuration>

shadow data source mapping name
and configuration

tables Map<String, Sh adowTableCon‐
figuration>

shadow table name and configuration

shad owAlgorithms Map<String, AlgorithmConfigu‐
ration>

shadow algorithm name and configu‐
ration

de faultShadowA lgo‐
rithmName

String default shadow algorithm name

Shadow Data Source Configuration

Classname: org.apache.shardingsphere.shadow.api.config.datasource.ShadowDataSourceConfiguration

Attributes:

Name DataType Description

productionDataSourceName String Production data source name
shadowDataSourceName String Shadow data source name

Shadow Table Configuration

Class name: org.apache.shardingsphere.shadow.api.config.table.ShadowTableConfiguration

Attributes:

Name Data Type Description

dataSourceNames Collec‐
tion<String>

shadow table associates shadow data source mapping
name list

sh adowAlgorithm‐
Names

Collec‐
tion<String>

shadow table associates shadow algorithm name list

Shadow Algorithm Configuration

Class name：org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

Attributes:

Name Data Type Description

type String shadow algorithm type
props Properties shadow algorithm configuration

Please refer to Built‐in Shadow Algorithm List.

4.1. ShardingSphere-JDBC 103

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document, v5.2.1

Procedure

1. Create production and shadow data source.

2. Configure shadow rule.

• Configure shadow data source

• Configure shadow table

• Configure shadow algorithm

Sample

public final class ShadowConfiguration {

@Override
public DataSource getDataSource() throws SQLException {

Map<String, DataSource> dataSourceMap = createDataSourceMap();
return ShardingSphereDataSourceFactory.createDataSource(dataSourceMap,

createRuleConfigurations(), createShardingSphereProps());
}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new LinkedHashMap<>();
result.put("ds", DataSourceUtil.createDataSource("demo_ds"));
result.put("ds_shadow", DataSourceUtil.createDataSource("shadow_demo_ds"));
return result;

}

private Collection<RuleConfiguration> createRuleConfigurations() {
Collection<RuleConfiguration> result = new LinkedList<>();
ShadowRuleConfiguration shadowRule = new ShadowRuleConfiguration();
shadowRule.setDataSources(createShadowDataSources());
shadowRule.setTables(createShadowTables());
shadowRule.setShadowAlgorithms(createShadowAlgorithmConfigurations());
result.add(shadowRule);
return result;

}

private Map<String, ShadowDataSourceConfiguration> createShadowDataSources() {
Map<String, ShadowDataSourceConfiguration> result = new LinkedHashMap<>();
result.put("shadow-data-source", new ShadowDataSourceConfiguration("ds",

"ds_shadow"));
return result;

}

private Map<String, ShadowTableConfiguration> createShadowTables() {
Map<String, ShadowTableConfiguration> result = new LinkedHashMap<>();

4.1. ShardingSphere-JDBC 104

Apache ShardingSphere document, v5.2.1

result.put("t_user", new ShadowTableConfiguration(Collections.
singletonList("shadow-data-source"), createShadowAlgorithmNames()));

return result;
}

private Collection<String> createShadowAlgorithmNames() {
Collection<String> result = new LinkedList<>();
result.add("user-id-insert-match-algorithm");
result.add("simple-hint-algorithm");
return result;

}

private Map<String, AlgorithmConfiguration>
createShadowAlgorithmConfigurations() {

Map<String, AlgorithmConfiguration> result = new LinkedHashMap<>();
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_type");
userIdInsertProps.setProperty("value", "1");
result.put("user-id-insert-match-algorithm", new AlgorithmConfiguration(

"VALUE_MATCH", userIdInsertProps));
return result;

}
}

Related References

Features Description of Shadow DB

SQL Parser

Background

SQL is the standard language for users to communicate with databases. The SQL parsing engine is
responsible for parsing the SQL string into an abstract syntax tree for Apache ShardingSphere to un‐
derstand and implement its incremental function. Currently, MySQL, PostgreSQL, SQLServer, Oracle,
openGauss and SQL dialects conforming to SQL92 specifications are supported. Due to the complexity
of SQL syntax, there are still a few unsupported SQLs. By using SQL parsing in the form of Java API, you
can easily integrate into various systems and flexibly customize user requirements.

4.1. ShardingSphere-JDBC 105

https://shardingsphere.apache.org/document/current/en/features/shadow/

Apache ShardingSphere document, v5.2.1

Parameters

Class: org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration

Attributes:

name DataType Description

sqlCommentParseEnabled (?) boolean Whether to parse SQL comments
parseTreeCache (?) CacheOption Parse syntax tree local cache configuration
sqlStatementCache (?) CacheOption sql statement local cache configuration

Cache option Configuration

Class：org.apache.shardingsphere.sql.parser.api.CacheOption

Attributes:

name •
D a t a T y p e *

Des cription Default Value

ini tia lCa pac ity i n t Initial capacity of local
cache

parser syntax tree lo‐
cal cache default value
128, SQL statement
cache default value
2000

ma xim umS ize (?) l o n g Maximum capacity of
local cache

The default value of
local cache for pars‐
ing syntax tree is 1024,
and the default value
of sql statement cache
is 65535

Procedure

1. Set local cache configuration.

2. Set resolution configuration.

3. Use the parsing engine to parse SQL.

4.1. ShardingSphere-JDBC 106

Apache ShardingSphere document, v5.2.1

Sample

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine("MySQL", cacheOption);
ParseASTNode parseASTNode = parserEngine.parse("SELECT t.id, t.name, t.age FROM
table1 AS t ORDER BY t.id DESC;", false);
SQLVisitorEngine visitorEngine = new SQLVisitorEngine("MySQL", "STATEMENT", false,
new Properties());
MySQLStatement sqlStatement = visitorEngine.visit(parseASTNode);
System.out.println(sqlStatement.toString());

Related References

• YAML Configuration: SQL Parser

• Spring Boot Starter: SQL Parser

• Spring Namespace: SQL Parser

SQL Translator

Root Configuration

Class: org.apache.shardingsphere.sqltranslator.api.config.SQLTranslatorRuleConfiguration

Attributes:

name D ataT
ype

Description

type St ring SQL translator type
useOrigina lSQLWhenTranslating‐
Failed (?)

boo lean Whether use original SQL when translating
failed

Mixed Rules

Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, high avail‐
ability, and data decryption. These features can be used independently or in combination. Below, you
will find the configuration samples based on JAVA API.

4.1. ShardingSphere-JDBC 107

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

Samples

// Sharding configuration
private ShardingRuleConfiguration createShardingRuleConfiguration() {

ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables().add(getOrderTableRuleConfiguration());
result.setDefaultDatabaseShardingStrategy(new

StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy(new

StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", "demo_ds_${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration("INLINE

", props));
result.getShardingAlgorithms().put("standard_test_tbl", new

AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration(

"SNOWFLAKE", new Properties()));
return result;

}

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration("t_

order", "demo_ds_${0..1}.t_order_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_id",

"snowflake"));
return result;

}

// Dynamic read/write splitting configuration
private static ReadwriteSplittingRuleConfiguration
createReadwriteSplittingConfiguration() {

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_0", new
DynamicReadwriteSplittingStrategyConfiguration("readwrite_ds_0", true), "");

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_1", new
DynamicReadwriteSplittingStrategyConfiguration("readwrite_ds_1", true), "");

Collection<ReadwriteSplittingDataSourceRuleConfiguration> dataSources = new
LinkedList<>();

dataSources.add(dataSourceRuleConfiguration1);
dataSources.add(dataSourceRuleConfiguration2);
return new ReadwriteSplittingRuleConfiguration(dataSources, Collections.

emptyMap());
}

// Database discovery configuration
private static DatabaseDiscoveryRuleConfiguration

4.1. ShardingSphere-JDBC 108

Apache ShardingSphere document, v5.2.1

createDatabaseDiscoveryConfiguration() {
DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration1 = new

DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds_0", Arrays.asList("ds_0,
ds_1, ds_2"), "mgr-heartbeat", "mgr");

DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration2 = new
DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds_1", Arrays.asList("ds_3,
ds_4, ds_5"), "mgr-heartbeat", "mgr");

Collection<DatabaseDiscoveryDataSourceRuleConfiguration> dataSources = new
LinkedList<>();

dataSources.add(dataSourceRuleConfiguration1);
dataSources.add(dataSourceRuleConfiguration2);
return new DatabaseDiscoveryRuleConfiguration(configs,

createDiscoveryHeartbeats(), createDiscoveryTypes());
}

private static DatabaseDiscoveryRuleConfiguration
createDatabaseDiscoveryConfiguration() {

DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration = new
DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds_1", Arrays.asList("ds_3,
ds_4, ds_5"), "mgr-heartbeat", "mgr");

return new DatabaseDiscoveryRuleConfiguration(Collections.
singleton(dataSourceRuleConfiguration), createDiscoveryHeartbeats(),
createDiscoveryTypes());
}

private static Map<String, AlgorithmConfiguration> createDiscoveryTypes() {
Map<String, AlgorithmConfiguration> result = new HashMap<>(1， 1);
Properties props = new Properties();
props.put("group-name", "558edd3c-02ec-11ea-9bb3-080027e39bd2");
discoveryTypes.put("mgr", new AlgorithmConfiguration("MGR", props));
return result;

}

private static Map<String, DatabaseDiscoveryHeartBeatConfiguration>
createDiscoveryHeartbeats() {

Map<String, DatabaseDiscoveryHeartBeatConfiguration> result = new HashMap<>(1，
1);

Properties props = new Properties();
props.put("keep-alive-cron", "0/5 * * * * ?");
discoveryHeartBeatConfiguration.put("mgr-heartbeat", new

DatabaseDiscoveryHeartBeatConfiguration(props));
return result;

}

// Data decryption configuration
public EncryptRuleConfiguration createEncryptRuleConfiguration() {

Properties props = new Properties();
props.setProperty("aes-key-value", "123456");

4.1. ShardingSphere-JDBC 109

Apache ShardingSphere document, v5.2.1

EncryptColumnRuleConfiguration columnConfigAes = new
EncryptColumnRuleConfiguration("username", "username", "", "username_plain", "name_
encryptor", null);

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_pwd", "", "pwd_
encryptor", null);

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest), null);

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new LinkedHashMap
<>(2, 1);

encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration("AES",
props));

encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(
"assistedTest", props));

EncryptRuleConfiguration result = new EncryptRuleConfiguration(Collections.
singleton(encryptTableRuleConfig), encryptAlgorithmConfigs);

return result;
}

Algorithm

Sharding

ShardingRuleConfiguration ruleConfiguration = new ShardingRuleConfiguration();
// algorithmName is specified by users and should be consistent with the sharding
algorithm in the sharding strategy.
// type and props, please refer to the built-in sharding algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/sharding/
ruleConfiguration.getShardingAlgorithms().put("algorithmName", new
AlgorithmConfiguration("xxx", new Properties()));

Encryption

// encryptorName is specified by users, and its property should be consistent with
that of encryptorName in encryption rules.
// type and props, please refer to the built-in encryption algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/
Map<String, AlgorithmConfiguration> algorithmConfigs = new LinkedHashMap<>(1, 1);
algorithmConfigs.put("encryptorName", new AlgorithmConfiguration("xxx", new
Properties()));

4.1. ShardingSphere-JDBC 110

Apache ShardingSphere document, v5.2.1

Read/Write Splitting Load Balancer

// loadBalancerName is specified by users, and its property has to be consistent
with that of loadBalancerName in read/write splitting rules.
// type and props, please refer to the built-in read/write splitting algorithm load
balancer: https://shardingsphere.apache.org/document/current/en/user-manual/common-
config/builtin-algorithm/load-balance/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>(1, 1);
algorithmConfigs.put("loadBalancerName", new AlgorithmConfiguration("xxx", new
Properties()));

Shadow DB

// shadowAlgorithmName is specified by users, and its property has to be consistent
with that of shadowAlgorithmNames in shadow DB rules.
// type and props, please refer to the built-in shadow DB algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>(1, 1);
algorithmConfigs.put("shadowAlgorithmName", new AlgorithmConfiguration("xxx", new
Properties()));

High Availability

// discoveryTypeName is specified by users, and its property has to be consistent
with that of discoveryTypeName in database discovery rules.
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>(1, 1);
algorithmConfigs.put("discoveryTypeName", new AlgorithmConfiguration("xxx", new
Properties()));

4.1.3 Spring Boot Starter

Overview

ShardingSphere‐JDBC provides official Spring Boot Starter to make convenient for developers to inte‐
grate ShardingSphere‐JDBC and Spring Boot.

4.1. ShardingSphere-JDBC 111

Apache ShardingSphere document, v5.2.1

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Spring Boot Properties

ShardingSphere‐JDBC spring boot properties consists of database name, mode configuration, data
source map, rule configurations and properties.

JDBC logic database name. Through this parameter to connect ShardingSphere-JDBC
and ShardingSphere-Proxy.
spring.shardingsphere.database.name= # logic database name, default value: logic_db
spring.shardingsphere.mode.xxx= # mode configuration
spring.shardingsphere.dataSource.xxx= # data source map
spring.shardingsphere.rules.xxx= # rule configurations
spring.shardingsphere.props= # properties

Please refer to Mode Confiugration for more mode details.

Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

Use Data Source

Developer can inject to use native JDBC or ORM frameworks such as JPA, Hibernate orMyBatis through
the DataSource.

Take native JDBC usage as an example:

@Resource
private DataSource dataSource;

4.1. ShardingSphere-JDBC 112

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules

Apache ShardingSphere document, v5.2.1

Mode

Parameters

mode (?): # Default value is Standalone
type: # Type of mode configuration. Values could be: Standalone or Cluster
repository (?): # Persist repository configuration

Standalone Mode

mode:
type: Standalone
repository:

type: # Type of persist repository
props: # Properties of persist repository
foo_key: foo_value
bar_key: bar_value

Cluster Mode (recommended)

mode:
type: Cluster
repository:

type: # Type of persist repository
props: # Properties of persist repository
namespace: # Namespace of registry center
server-lists: # Server lists of registry center
foo_key: foo_value
bar_key: bar_value

Notes

1. Cluster mode deployment is recommended for production environment.

2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information
there.

4.1. ShardingSphere-JDBC 113

Apache ShardingSphere document, v5.2.1

Sample

Standalone Mode

mode:
type: Standalone
repository:

type: JDBC

Cluster Mode (recommended)

mode:
type: Cluster
repository:

type: ZooKeeper
props:
namespace: governance
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60

Related References

• Installation and Usage of ZooKeeper Registry Center

• Please refer to Builtin Persist Repository List for more details about the type of repository.

Data Source

Background information

Use local datasource

The database driver showed in the example is MySQL and the connection pool is HikariCP, either of
which can be replaced by other database drivers and connection pools. When using ShardingSphere
JDBC, the property names of the JDBC pools depend on its own definition instead of being fixed by
ShardingSphere. See relevant procedures at org.apache.shardingsphere.infra.datasource.
pool.creator.DataSourcePoolCreator. For example, using url instead of jdbc-url for Al‐
ibaba Druid 1.2.9 is the expected behavior.

4.1. ShardingSphere-JDBC 114

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.2.1

Use datasource JNDI

If youwish to use JNDI for database configuration, you can replace a series of datasource configurations
with spring.shardingsphere.datasource.${datasourceName}.jndiNamewhen you are us‐
ing ShardingSphere‐JDBC on application servers(e.g. Tomcat).

Parameters Explanation

Using local datasource

spring.shardingsphere.datasource.names= # Actual datasource names. Multiple
datasources are separated with comma

<actual-data-source-name> to show actual datasource name
spring.shardingsphere.datasource.<actual-data-source-name>.type= # Full class name
of the database connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.driver-class-name= #
Database-driven class name, based on the database connection pool's own
configuration
spring.shardingsphere.datasource.<actual-data-source-name>.jdbc-url= # Database URL
connection, in ine with the connection pool's own configuration
spring.shardingsphere.datasource.<actual-data-source-name>.username= # database
user names，in line with the connection pool's own configuration
spring.shardingsphere.datasource.<actual-data-source-name>.password= # database
password ，in line with the connection pool's own configuration
spring.shardingsphere.datasource.<actual-data-source-name>.<xxx>= # ... Other
properties of the database connection pool

Using JNDI datasource

spring.shardingsphere.datasource.names= # Authentic datasource names. Multiple
datasources are separated with comma
<actual-data-source-name> to show actual datasource name
spring.shardingsphere.datasource.<actual-data-source-name>.jndi-name= # datasource
JNDI

4.1. ShardingSphere-JDBC 115

Apache ShardingSphere document, v5.2.1

Configuration Examples

Using local datasource

configure actual datasource
spring.shardingsphere.datasource.names=ds1,ds2

configure the first datasource
spring.shardingsphere.datasource.ds1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds1.jdbc-url=jdbc:mysql://localhost:3306/ds1
spring.shardingsphere.datasource.ds1.username=root
spring.shardingsphere.datasource.ds1.password=

configure the second datasource
spring.shardingsphere.datasource.ds2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds2.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds2.jdbc-url=jdbc:mysql://localhost:3306/ds2
spring.shardingsphere.datasource.ds2.username=root
spring.shardingsphere.datasource.ds2.password=

Using JNDI datasource

configure actual datasource
spring.shardingsphere.datasource.names=ds1,ds2
configure the first datasource
spring.shardingsphere.datasource.ds1.jndi-name=java:comp/env/jdbc/ds1
configure the second datasource
spring.shardingsphere.datasource.ds2.jndi-name=java:comp/env/jdbc/ds2

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a Spring Boot Starter rule configu‐
ration manual for ShardingSphere‐JDBC.

Sharding

Background

SpringBoot Starter’s data sharding configuration applies to business scenarios that use SpringBoot,
which canmaximize SpringBoot’s capabilities, such as configuration initialization and Beanmanage‐
ment. It can complete the creation of the ShardingSphereDataSource object and reduce unnecessary
coding.

4.1. ShardingSphere-JDBC 116

Apache ShardingSphere document, v5.2.1

Parameters

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

Standard sharding table configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= #
Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means sharding
databases only.

Databases sharding strategy, use default databases sharding strategy if absent.
sharding strategy below can choose only one.

For single sharding column scenario
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-algorithm-name= # Sharding algorithm name

For multiple sharding columns scenario
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-columns= # Sharding column names, multiple columns separated with comma
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-algorithm-name= # Sharding algorithm name

Sharding by hint
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.hint.
sharding-algorithm-name= # Sharding algorithm name

Tables sharding strategy, same as database sharding strategy
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= #
Omitted

Auto sharding table configuraiton
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.actual-data-
sources= # data source names

spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-algorithm-name= # Auto sharding algorithm name

Key generator strategy configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # Column name of key generator
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # Key generator name

4.1. ShardingSphere-JDBC 117

Apache ShardingSphere document, v5.2.1

Sharding auditor strategy configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.audit-strategy.auditor-
names= # Sharding auditor name
spring.shardingsphere.rules.sharding.tables.<table-name>.audit-strategy.allow-hint-
disable= # Enable or disable sharding audit hint

spring.shardingsphere.rules.sharding.binding-tables[0]= # Binding table name
spring.shardingsphere.rules.sharding.binding-tables[1]= # Binding table name
spring.shardingsphere.rules.sharding.binding-tables[x]= # Binding table name

spring.shardingsphere.rules.sharding.broadcast-tables[0]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[1]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[x]= # Broadcast tables

spring.shardingsphere.rules.sharding.default-database-strategy.xxx= # Default
strategy for database sharding
spring.shardingsphere.rules.sharding.default-table-strategy.xxx= # Default strategy
for table sharding
spring.shardingsphere.rules.sharding.default-key-generate-strategy.xxx= # Default
Key generator strategy
spring.shardingsphere.rules.sharding.default-sharding-column= # Default sharding
column name

Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # Sharding algorithm type
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx=# Sharding algorithm properties

Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # Key generate algorithm type
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # Key generate algorithm properties

Sharding audit algorithm configuration
spring.shardingsphere.rules.sharding.auditors.<sharding-audit-algorithm-name>.type=
Sharing audit algorithm type
spring.shardingsphere.rules.sharding.auditors.<sharding-audit-algorithm-name>.
props.xxx= # Sharding audit algorithm properties

Please refer to Built‐in Sharding Algorithm List and Built‐in Key Generate Algorithm List for more de‐
tails about type of algorithm.

Attention: Inline expression identifier canuse${...} or$->{...}, but${...} is conflict
with spring placeholder of properties, so use $->{...} on spring environment is better.

4.1. ShardingSphere-JDBC 118

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen

Apache ShardingSphere document, v5.2.1

Procedure

1. Configure data sharding rules in the SpringBoot file, including data sources, sharding rules, and
global attributes.

2. Start the SpringBoot program. The configuration is automatically loaded and the ShardingSphere‐
DataSource is initialized.

Sample

spring.shardingsphere.mode.type=Standalone
spring.shardingsphere.mode.repository.type=JDBC

spring.shardingsphere.datasource.names=ds-0,ds-1

spring.shardingsphere.datasource.ds-0.jdbc-url=jdbc:mysql://localhost:3306/demo_ds_
0?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds-0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds-0.username=root
spring.shardingsphere.datasource.ds-0.password=

spring.shardingsphere.datasource.ds-1.jdbc-url=jdbc:mysql://localhost:3306/demo_ds_
1?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds-1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds-1.username=root
spring.shardingsphere.datasource.ds-1.password=

spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
column=user_id
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
algorithm-name=database-inline
spring.shardingsphere.rules.sharding.binding-tables[0]=t_order,t_order_item
spring.shardingsphere.rules.sharding.broadcast-tables=t_address

spring.shardingsphere.rules.sharding.tables.t_order.actual-data-nodes=ds-$->{0..1}.
t_order_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-algorithm-name=t-order-inline

spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.
column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.key-
generator-name=snowflake
spring.shardingsphere.rules.sharding.tables.t_order.audit-strategy.auditor-

4.1. ShardingSphere-JDBC 119

Apache ShardingSphere document, v5.2.1

names=shardingKeyAudit
spring.shardingsphere.rules.sharding.tables.t_order.audit-strategy.allow-hint-
disable=true

spring.shardingsphere.rules.sharding.tables.t_order_item.actual-data-nodes=ds-$->
{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order_item.table-strategy.standard.
sharding-column=order_id
spring.shardingsphere.rules.sharding.tables.t_order_item.table-strategy.standard.
sharding-algorithm-name=t-order-item-inline

spring.shardingsphere.rules.sharding.tables.t_order_item.key-generate-strategy.
column=order_item_id
spring.shardingsphere.rules.sharding.tables.t_order_item.key-generate-strategy.key-
generator-name=snowflake

spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.props.
algorithm-expression=ds-$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.props.
algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-item-inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-item-inline.props.
algorithm-expression=t_order_item_$->{order_id % 2}

spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE
spring.shardingsphere.rules.sharding.auditors.shardingKeyAudit.type=DML_SHARDING_
CONDITIONS

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Readwrite splitting

Background

The read‐write splitting configuration method of Spring Boot Starter is suitable for business scenarios
using SpringBoot and canmaximize the capabilities of initializing SringBoot configuration process and
bean management to complete the creation of ShardingSphereDataSource object, reducing unneces‐
sary coding work.

4.1. ShardingSphere-JDBC 120

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

Parameters Explained

Static Readwrite-splitting

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.static-strategy.write-data-source-name= # Write data source name
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.static-strategy.read-data-source-names= # Read data source names,
multiple data source names separated with comma
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # Load balance algorithm name

Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # Load balance algorithm type
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx= # Load balance algorithm properties

Dynamic Readwrite-splitting

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.auto-aware-data-source-name= # Database
discovery logic data source name
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.write-data-source-query-enabled= # All read data
source are offline, write data source whether the data source is responsible for
read traffic
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # Load balance algorithm name

Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # Load balance algorithm type
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx= # Load balance algorithm properties

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Read‐write splitting‐Core features for more details about query consistent routing.

4.1. ShardingSphere-JDBC 121

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

Operating Procedure

1. Add read/write splitting data source.

2. Set load‐balancing algorithm.

3. Use read/write splitting data source.

Configuration Examples

spring.shardingsphere.rules.readwrite-splitting.data-sources.readwrite_ds.static-
strategy.write-data-source-name=write-ds
spring.shardingsphere.rules.readwrite-splitting.data-sources.readwrite_ds.static-
strategy.read-data-source-names=read-ds-0,read-ds-1
spring.shardingsphere.rules.readwrite-splitting.data-sources.readwrite_ds.load-
balancer-name=round_robin
spring.shardingsphere.rules.readwrite-splitting.load-balancers.round_robin.
type=ROUND_ROBIN

References

• Read‐write splitting‐Core features

• Java API: read‐write splitting

• YAML Configuration: read‐write splitting

• Spring namespace: read‐write splitting

HA

Background

The Spring Boot Starter configuration method is applicable to business scenarios using Spring‐
Boot. It can make full use of the SpringBoot configuration initialization and bean management capa‐
bilities, to automatically complete the creation of ShardingSphereDataSource objects.

Parameters

spring.shardingsphere.datasource.names= # Omit data source configuration, please
refer to the user manual

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.auto-aware-data-source-name= # Logical data
source name discovered by the database

4.1. ShardingSphere-JDBC 122

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.data-source-names= # Data source name. Multiple data sources are
separated by commas, for example: ds_0, ds_1
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-heartbeat-name= # Detect heartbeat name
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-type-name= # Database discovery type name
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.<discovery-
heartbeat-name>.props.keep-alive-cron= # Cron expression, such as: '0/5 * * * * ?'
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type= # Database discovery type, such as: MySQL.MGR
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.group-name= # Necessary parameters of database discovery type, such as
group-name of MGR

Procedure

1. Import MAVEN dependency.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${latest.release.version}</version>

</dependency>

Note: please change ˋ${latest.release.version}’to the actual version number.

Sample

spring.shardingsphere.datasource.names=ds-0,ds-1,ds-2
spring.shardingsphere.datasource.ds-0.jdbc-url = jdbc:mysql://127.0.0.1:13306/
primary_demo_ds?serverTimezone=UTC&useSSL=false
spring.shardingsphere.datasource.ds-0.username=root
spring.shardingsphere.datasource.ds-0.password=
spring.shardingsphere.datasource.ds-0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-0.driver-class-name=com.mysql.cj.jdbc.Driver

spring.shardingsphere.datasource.ds-1.jdbc-url = jdbc:mysql://127.0.0.1:13307/
primary_demo_ds?serverTimezone=UTC&useSSL=false
spring.shardingsphere.datasource.ds-1.username=root
spring.shardingsphere.datasource.ds-1.password=
spring.shardingsphere.datasource.ds-1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-1.driver-class-name=com.mysql.cj.jdbc.Driver

spring.shardingsphere.datasource.ds-2.jdbc-url = jdbc:mysql://127.0.0.1:13308/
primary_demo_ds?serverTimezone=UTC&useSSL=false

4.1. ShardingSphere-JDBC 123

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.datasource.ds-2.username=root
spring.shardingsphere.datasource.ds-2.password=
spring.shardingsphere.datasource.ds-2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-2.driver-class-name=com.mysql.cj.jdbc.Driver

spring.shardingsphere.rules.readwrite-splitting.data-sources.replica_ds.dynamic-
strategy.auto-aware-data-source-name=readwrite_ds

spring.shardingsphere.rules.database-discovery.data-sources.readwrite_ds.data-
source-names=ds-0, ds-1, ds-2
spring.shardingsphere.rules.database-discovery.data-sources.readwrite_ds.discovery-
heartbeat-name=mgr-heartbeat
spring.shardingsphere.rules.database-discovery.data-sources.readwrite_ds.discovery-
type-name=mgr
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.mgr-heartbeat.
props.keep-alive-cron=0/5 * * * * ?
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.type=MGR
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.props.
groupName=b13df29e-90b6-11e8-8d1b-525400fc3996

Related References

• Feature Description of HA

• JAVA API: HA

• YAML Configuration: HA

• Spring Namespace: HA

Encryption

Background

The configuration method for Spring Boot Starter Data Encryption is suitable for business scenarios
using SpringBoot and can make the most of SringBoot’s configuration initialization and Bean man‐
agement capabilities to complete the creation of ShardingSphereDataSource objects, reducing unnec‐
essary coding work.

4.1. ShardingSphere-JDBC 124

https://shardingsphere.apache.org/document/current/en/features/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha/

Apache ShardingSphere document, v5.2.1

Parameters

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.encrypt.tables.<table-name>.query-with-cipher-column= #
Whether the table uses cipher columns for query
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
cipher-column= # Cipher column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # Assisted query column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # Plain column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # Encrypt algorithm name

Encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= #
Encrypt algorithm type
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
Encrypt algorithm properties

spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # Whether query with
cipher column for data encrypt. User you can use plaintext to query if have

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Procedure

1. Configure the data encryption rules in the SpringBoot file, including the data source, encryption
rules, global properties and other items.

2. Start the SpringBoot program, which will automatically load the configuration and initialize the
ShardingSphereDataSource.

Sample

spring.shardingsphere.datasource.names=ds

spring.shardingsphere.datasource.ds.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds.jdbc-url=jdbc:mysql://localhost:3306/demo_ds?
serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds.username=root
spring.shardingsphere.datasource.ds.password=

4.1. ShardingSphere-JDBC 125

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc

spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor

spring.shardingsphere.props.query-with-cipher-column=true
spring.shardingsphere.props.sql-show=true

Related References

• Core Feature: Data Encryption

• Developer Guide: Data Encryption

Shadow DB

Background

If you want to use the ShardingSphere Shadow DB feature in the Spring Boot environment, please refer
to the following configuration.

Parameters

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.production-data-
source-name= # Production data source name
spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.shadow-data-
source-name= # Shadow data source name

spring.shardingsphere.rules.shadow.tables.<table-name>.data-source-names= # Shadow
table location shadow data source names (multiple values are separated by ",")
spring.shardingsphere.rules.shadow.tables.<table-name>.shadow-algorithm-names= #
Shadow table location shadow algorithm names (multiple values are separated by ",")

4.1. ShardingSphere-JDBC 126

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.shadow.defaultShadowAlgorithmName= # Default shadow
algorithm name, optional item.

spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.type=
Shadow algorithm type
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.props.
xxx= # Shadow algorithm property configuration

For details, see list of built‐in shadow algorithms

Procedure

1. Configure the shadow library rules in the SpringBoot file, including configuration items such as
data sources, shadow rules, and global properties.

2. Start the SpringBoot program, the configuration will be loaded automatically, and the Sharding‐
SphereDataSource will be initialized.

Sample

spring.shardingsphere.datasource.names=ds,shadow-ds

spring.shardingsphere.datasource.ds.jdbc-url=jdbc:mysql://localhost:3306/ds?
serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds.username=root
spring.shardingsphere.datasource.ds.password=

spring.shardingsphere.datasource.shadow-ds.jdbc-url=jdbc:mysql://localhost:3306/
shadow_ds?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.shadow-ds.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.shadow-ds.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.shadow-ds.username=root
spring.shardingsphere.datasource.shadow-ds.password=

spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.production-data-
source-name=ds
spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.shadow-data-
source-name=shadow-ds

spring.shardingsphere.rules.shadow.tables.t_user.data-source-names=shadow-data-
source
spring.shardingsphere.rules.shadow.tables.t_user.shadow-algorithm-names=user-id-
insert-match-algorithm,simple-hint-algorithm

4.1. ShardingSphere-JDBC 127

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow/

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.type=VALUE_MATCH
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.props.operation=insert
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.props.column=user_id
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.props.value=1

spring.shardingsphere.rules.shadow.shadow-algorithms.simple-hint-algorithm.
type=SIMPLE_HINT
spring.shardingsphere.rules.shadow.shadow-algorithms.simple-hint-algorithm.props.
shadow=true
spring.shardingsphere.rules.shadow.shadow-algorithms.simple-hint-algorithm.props.
foo=bar

Related References

• Feature Description of Shadow DB

• JAVA API: Shadow DB

• YAML Configuration: Shadow DB

• Spring Namespace: Shadow DB

• Dev Guide: Shadow DB

SQL Parser

Background

The configuration method of Spring Boot Starter is applicable to business scenarios using SpringBoot.
In this way, the SpringBoot configuration initialization and bean management capabilities can be used
to the greatest extent, so as to simplify code development.

Parameters

spring.shardingsphere.rules.sql-parser.sql-comment-parse-enabled= # Whether to
parse SQL comments

spring.shardingsphere.rules.sql-parser.sql-statement-cache.initial-capacity= #
Initial capacity of SQL statement local cache
spring.shardingsphere.rules.sql-parser.sql-statement-cache.maximum-size= # Maximum
capacity of SQL statement local cache

4.1. ShardingSphere-JDBC 128

https://shardingsphere.apache.org/document/current/en/features/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/
https://shardingsphere.apache.org/document/current/en/dev-manual/shadow/

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.sql-parser.parse-tree-cache.initial-capacity= # Initial
capacity of parse tree local cache
spring.shardingsphere.rules.sql-parser.parse-tree-cache.maximum-size= # Maximum
local cache capacity of parse tree

Procedure

1. Set local cache configuration

2. Set parser configuration

3. use the parser engine to parse SQL

Sample

spring.shardingsphere.rules.sql-parser.sql-comment-parse-enabled=true

spring.shardingsphere.rules.sql-parser.sql-statement-cache.initial-capacity=2000
spring.shardingsphere.rules.sql-parser.sql-statement-cache.maximum-size=65535

spring.shardingsphere.rules.sql-parser.parse-tree-cache.initial-capacity=128
spring.shardingsphere.rules.sql-parser.parse-tree-cache.maximum-size=1024

Related References

• JAVA API: SQL Parser

• YAML Configuration: SQL Parser

• Spring Namespace: SQL Parser

Mixed Rules

Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, high avail‐
ability, and data decryption. These features can be used independently or in combination.

Below, you will find the parameters’explanation and configuration samples based on SpringBoot
Starter.

4.1. ShardingSphere-JDBC 129

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

Parameters

spring.shardingsphere.datasource.names= # Please refer to the user manual for the
data source configuration
Standard sharding table configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= # It
consists of data source name plus table name, separated by decimal points. Multiple
tables are separated by commas, and inline expression is supported. By default, a
data node is generated with a known data source and logical table name, used for
broadcast tables (that is, each database needs the same table for associated
queries, mostly the dictionary table) or the situation when only database sharding
is needed and all databases have the same table structure.
Standard sharding scenarios used for a single shard key
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-algorithm-name= # sharding algorithm name
Table shards strategy. The same as database shards strategy
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= # Omit
Distributed sequence strategy configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # Distributed sequence column name
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # Distributed sequence algorithm name
Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # Sharding algorithm type
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx= # Sharidng algorithm property configuration
Distributed sequence algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # Distributed sequence algorithm type
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # Property configuration of distributed sequence algorithm
Dynamic read/write splitting configuration
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.auto-aware-data-source-name= # logical data
source name of database discovery
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.write-data-source-query-enabled= # All the read
databases went offline. Whether the primary database bears the read traffic.
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # Load balancer algorithm name
Database discovery configuration
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.data-source-names= # Data source name. Multiple data sources are
separated by commas, such as ds_0, ds_1.
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-

4.1. ShardingSphere-JDBC 130

Apache ShardingSphere document, v5.2.1

data-source-name>.discovery-heartbeat-name= # Detect heartbeat name
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-type-name= # Database discovery type name
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.<discovery-
heartbeat-name>.props.keep-alive-cron= # cron expression, such as '0/5 * * * * ?'.
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type= # Database discovery type, such as MySQL.MGR.
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.group-name= # Required parameter of database discovery type, such as
MGR's group-name.
Data desensitization configuration
spring.shardingsphere.rules.encrypt.tables.<table-name>.query-with-cipher-column= #
Whether the table uses ciphercolumn for queries.
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
cipher-column= # Ciphercolumn name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # Query column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # Plaincolumn name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # Encryption algorithm name
Encryption algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= #
Encryption algorithm type
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
Encryption algorithm property configuration
spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # Whether use
ciphercolumn for queries. You can use the plaincolumn for queries if it's
available.

Samples

Sharding configuration
spring.shardingsphere.rules.sharding.tables.t_order.actual-data-nodes=replica-ds-$-
>{0..1}.t_order_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-algorithm-name=t-order-inline
spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.
column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.key-
generator-name=snowflake
spring.shardingsphere.rules.sharding.tables.t_order_item.actual-data-nodes=replica-
ds-$->{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order_item.table-strategy.standard.

4.1. ShardingSphere-JDBC 131

Apache ShardingSphere document, v5.2.1

sharding-column=order_id
spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.props.
algorithm-expression=replica_ds-$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.props.
algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE
Dynamic read/write splitting configuration
spring.shardingsphere.rules.readwrite-splitting.data-sources.replica-ds-0.dynamic-
strategy.auto-aware-data-source-name=readwrite-ds-0
spring.shardingsphere.rules.readwrite-splitting.data-sources.replica-ds-1.dynamic-
strategy.auto-aware-data-source-name=readwrite-ds-1
Database discovery configuration
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-0.data-
source-names=ds-0, ds-1, ds-2
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-0.
discovery-heartbeat-name=mgr-heartbeat
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-0.
discovery-type-name=mgr
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-1.data-
source-names=ds-3, ds-4, ds-5
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-1.
discovery-heartbeat-name=mgr-heartbeat
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-1.
discovery-type-name=mgr
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.mgr-heartbeat.
props.keep-alive-cron=0/5 * * * * ?
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.type=MGR
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.props.
groupName=b13df29e-90b6-11e8-8d1b-525400fc3996
Data decryption
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor
spring.shardingsphere.props.query-with-cipher-column=true
spring.shardingsphere.props.sql-show=true

4.1. ShardingSphere-JDBC 132

Apache ShardingSphere document, v5.2.1

Algorithm

Sharding

sharding-algorithm-name is specified by users and its property should be
consistent with that of sharding-algorithm-name in the sharding strategy.
type and props, please refer to the built-in sharding algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/sharding/
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type=xxx
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx=xxx

Encryption

encrypt-algorithm-name is specified by users, and its property should be
consistent with that of encryptor-name in encryption rules.
type and props, please refer to the built-in encryption algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type=xxx
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.
xxx=xxx

Read/Write Splitting Load Balancer

load-balance-algorithm-name is specified by users, and its property has to be
consistent with that of load-balancer-name in read/write splitting rules.
type and props, please refer to the built-in read/write splitting algorithm load
balancer: https://shardingsphere.apache.org/document/current/en/user-manual/common-
config/builtin-algorithm/load-balance/
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type=xxx
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx=xxx

4.1. ShardingSphere-JDBC 133

Apache ShardingSphere document, v5.2.1

Shadow DB

shadow-algorithm-name is specified by users, and its property has to be
consistent with that of shadow-algorithm-names in shadow DB rules.
type and props, please refer to the built-in shadow DB algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.
type=xxx
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.props.
xxx=xxx

High Availability

discovery-type-name is specified by users, and its property has to be consistent
with that of discovery-type-name in database discovery rules.
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type=xxx
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.xxx=xxx

4.1.4 Spring Namespace

Overview

ShardingSphere‐JDBC provides official Spring Namespace to make convenient for developers to inte‐
grate ShardingSphere‐JDBC and Spring.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

4.1. ShardingSphere-JDBC 134

Apache ShardingSphere document, v5.2.1

Configure Spring Bean

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‐5.2.1.
xsd

<shardingsphere:data‐source />

N ame •
T y p e *

Description

id A t t r i b u t e Spring Bean Id
d atab ase‐ name (?) A t t r i b u t e JDBC data source alias
d ata‐ sour ce‐n ames A t t r i b u t e Data source name, multiple

data source names are sepa‐
rated by commas

r ule‐ refs A t t r i b u t e Rule name, multiple rule
names are separated by com‐
mas

mode (?) T a g Mode configuration
p rops (?) T a g Properties configuration,

Please refer to Properties
Configuration for more details

Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<shardingsphere:data-source id="ds" database-name="foo_schema" data-source-

names="..." rule-refs="...">
<shardingsphere:mode type="..." />
<props>

<prop key="xxx.xxx">${xxx.xxx}</prop>
</props>

</shardingsphere:data-source>

4.1. ShardingSphere-JDBC 135

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.2.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.2.1.xsd
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/props
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/props

Apache ShardingSphere document, v5.2.1

</beans>

Use Data Source

Same with Spring Boot Starter.

Mode

Background

The default configuration uses standalone mode.

Parameters Explained

Standalone Mode

Namespace:http://shardingsphere.apache.org/schema/shardingsphere/mode‐
repository/standalone/repository‐5.1.1.xsd

Name Type Description

id Property Persistent repository Bean name
type Property Persistent repository Type
props (?) Tag Properties required for persistent repository

Cluster Mode(Recommended)

Namespace：http://shardingsphere.apache.org/schema/shardingsphere/mode‐repository/cluster/re
pository‐5.1.1.xsd

Name Type Description

id Property Persistent repository Bean name
type Property Persistent repository Type
namespace Property Registry Center namespace
server‐lists Property Registry Center Link
props (?) Tag Properties required for persistent repository

4.1. ShardingSphere-JDBC 136

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.1.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.1.1.xsd

Apache ShardingSphere document, v5.2.1

Tips:

1. For production environments, it is recommended to use cluster mode deployment.

2. The ZooKeeper registry center is recommended for cluster mode deployment.

3. If there is configuration information in the ZooKeeper, please refer to the config information
there.

Operating Procedures

Introduce MAVEN dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${latest.release.version}</version>

</dependency>

Note: Please change ${latest.release.version} to the actual version number.

Configuration Example

Standalone Mode

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:standalone="http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/standalone

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/standalone/repository.xsd">

<standalone:repository id="standaloneRepository" type="JDBC">
</standalone:repository>

<shardingsphere:data-source id="ds" database-name="foo_db" data-source-names=".

4.1. ShardingSphere-JDBC 137

Apache ShardingSphere document, v5.2.1

.." rule-refs="..." >
<shardingsphere:mode type="Standalone" repository-ref="standaloneRepository

" />
</shardingsphere:data-source>

</beans>

Cluster Mode

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode-

repository/cluster"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster/repository.xsd">

<cluster:repository id="clusterRepository" type="Zookeeper" namespace=
"regCenter" server-lists="localhost:3182">

<props>
<prop key="max-retries">3</prop>
<prop key="operation-timeout-milliseconds">1000</prop>

</props>
</cluster:repository>

<shardingsphere:data-source id="ds" database-name="foo_db" data-source-names=".
.." rule-refs="...">

<shardingsphere:mode type="Cluster" repository-ref="clusterRepository" />
</shardingsphere:data-source>

</beans>

4.1. ShardingSphere-JDBC 138

Apache ShardingSphere document, v5.2.1

Relevant References

• Installation and use of ZooKeeper Registry Center

• For details about persistent repository, please refer to List of Built‐in repository types

Data Source

Background

Any data source object configured as Spring bean can be used with the Spring namespace of
ShardingSphere‐JDBC Data Planning.

The database driver in the example is MySQL and the connection pool is HikariCP, both of which
can be replaced by other database drivers and connection pools. When using ShardingSphere
JDBC, the property names of the JDBC pools depend on the definition of JDBC pools themselves
respectively, rather than being rigidly defined by ShardingSphere. For relevant processing, you
can see reference class org.apache.shardingsphere.infra.datasource.pool.creator.
DataSourcePoolCreator. As for Alibaba Druid 1.2.9, using url instead of jdbcUrl as in the fol‐
lowing example is the expected behavior.

Configuration Examples

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<bean id="ds1" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close

">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="ds2" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close
">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds2" />

4.1. ShardingSphere-JDBC 139

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html

Apache ShardingSphere document, v5.2.1

<property name="username" value="root" />
<property name="password" value="" />

</bean>

<shardingsphere:data-source id="ds" database-name="foo_schema" data-source-
names="ds1,ds2" rule-refs="..." />
</beans>

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a Spring namespace rule configu‐
ration manual for ShardingSphere‐JDBC.

Sharding

Background

The configuration method of data sharding Spring Namespace is applicable to traditional Spring
projects. The sharding rules and attributes are configured through the namespace xml configuration
file. Spring completes the creation and management of ShardingSphereDataSource objects to avoid
additional coding work.

Parameters

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‐5.2.1.xsd

<sharding:rule />

Name T ype Description

id A ttri bute Spring Bean Id
table‐rules (?) Tag Sharding table rule configuration
auto‐table‐rules (?) Tag Automatic sharding table rule configuration
binding‐table‐rules (?) Tag Binding table rule configuration
broadcast‐table‐rules (?) Tag Broadcast table rule configuration
def ault‐database‐strategy‐ref (?) A ttri bute Default database strategy name
default‐table‐strategy‐ref (?) A ttri bute Default table strategy name
default ‐key‐generate‐strategy‐ref (?) A ttri bute Default key generate strategy name
default‐audit‐strategy‐ref (?) A ttri bute Default sharding audit strategy name
default‐sharding‐column (?) A ttri bute Default sharding column name

<sharding:table‐rule />

4.1. ShardingSphere-JDBC 140

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.2.1.xsd

Apache ShardingSphere document, v5.2.1

•
Name*

•
T y p e *

Description

l ogic‐ table A t t r i b u t e Logic table name
ac tual‐ data‐ nodes A t t r i b u t e Describe data source names

and actual tables, delimiter as
point, multiple data nodes sep‐
aratedwith comma, support in‐
line expression. Absent means
sharding databases only.

actu al‐da ta‐so urces A t t r i b u t e Data source names for auto
sharding table

d ataba se‐st rateg y‐ref A t t r i b u t e Database strategy name for
standard sharding table

tab le‐st rateg y‐ref A t t r i b u t e Table strategy name for stan‐
dard sharding table

s hardi ng‐st rateg y‐ref A t t r i b u t e sharding strategy name for
auto sharding table

key‐g enera te‐st rateg y‐ref A t t r i b u t e Key generate strategy name
aud it‐st rateg y‐ref A t t r i b u t e Sharding audit strategy name

<sharding:binding‐table‐rules />

Name Type Description

binding‐table‐rule (+) Tag Binding table rule configuration

<sharding:binding‐table‐rule />

Name •
Type*

Description

logi c‐tables Attr ibute Binding table name, multiple
tables separated with comma

<sharding:broadcast‐table‐rules />

Name Type Description

broadcast‐table‐rule (+) Tag Broadcast table rule configuration

<sharding:broadcast‐table‐rule />

Name Type Description

table Attribute Broadcast table name

<sharding:standard‐strategy />

4.1. ShardingSphere-JDBC 141

Apache ShardingSphere document, v5.2.1

Name Type Description

id Attribute Standard sharding strategy name
sharding‐column Attribute Sharding column name
algorithm‐ref Attribute Sharding algorithm name

<sharding:complex‐strategy />

Name T ype Description

id A ttri bute Complex sharding strategy name
shardi ng‐
columns

A ttri bute Sharding column names, multiple columns separated with
comma

alg orithm‐ref A ttri bute Sharding algorithm name

<sharding:hint‐strategy />

Name Type Description

id Attribute Hint sharding strategy name
algorithm‐ref Attribute Sharding algorithm name

<sharding:none‐strategy />

Name Type Description

id Attribute Sharding strategy name

<sharding:key‐generate‐strategy />

Name Type Description

id Attribute Key generate strategy name
column Attribute Key generate column name
algorithm‐ref Attribute Key generate algorithm name

<sharding:audit‐strategy />

Name Type Description

id Attribute Sharding audit strategy name
allow‐hint‐disable Attribute Enable or disable sharding audit hint
auditors Tag Sharding audit algorithm name

<sharding:auditors />

Name Type Description

auditor Tag Sharding audit algorithm name

4.1. ShardingSphere-JDBC 142

Apache ShardingSphere document, v5.2.1

<sharding:auditor />

Name Type Description

algorithm‐ref Attribute Sharding audit algorithm name

<sharding:sharding‐algorithm />

Name Type Description

id Attribute Sharding algorithm name
type Attribute Sharding algorithm type
props (?) Tag Sharding algorithm properties

<sharding:key‐generate‐algorithm />

Name Type Description

id Attribute Key generate algorithm name
type Attribute Key generate algorithm type
props (?) Tag Key generate algorithm properties

<sharding:audit‐algorithm />

Name Type Description

id Attribute Sharding audit algorithm name
type Attribute Sharding audit algorithm type
props (?) Tag Sharding audit algorithm properties

Please refer to Built‐in Sharding Audit Algorithm List, Built‐in Key Generate Algorithm List and Built‐in
Sharding Audit Algorithm List for more details about type of algorithm.

Attention: Inline expression identifier canuse${...} or$->{...}, but${...} is conflict
with spring placeholder of properties, so use $->{...} on spring environment is better.

Procedure

1. Configure data sharding rules in the Spring Namespace configuration file, including data source,
sharding rules, global attributes and other configuration items.

2. Start the Spring program, the configurationwill be loaded automatically, and the ShardingSphere‐
DataSource will be initialized.

4.1. ShardingSphere-JDBC 143

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit

Apache ShardingSphere document, v5.2.1

Sample

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:sharding="http://shardingsphere.apache.org/schema/shardingsphere/

sharding"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-

context.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

datasource
http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

sharding
http://shardingsphere.apache.org/schema/shardingsphere/

sharding/sharding.xsd
">

<context:component-scan base-package="org.apache.shardingsphere.example.core.
mybatis" />

<bean id="demo_ds_0" class="com.zaxxer.hikari.HikariDataSource" destroy-method=
"close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/demo_ds_0?

serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
"/>

<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<bean id="demo_ds_1" class="com.zaxxer.hikari.HikariDataSource" destroy-method=
"close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/demo_ds_1?

serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
"/>

<property name="username" value="root"/>
<property name="password" value=""/>

4.1. ShardingSphere-JDBC 144

Apache ShardingSphere document, v5.2.1

</bean>

<sharding:standard-strategy id="databaseStrategy" sharding-column="user_id"
algorithm-ref="inlineStrategyShardingAlgorithm" />

<sharding:sharding-algorithm id="inlineStrategyShardingAlgorithm" type="INLINE
">

<props>
<prop key="algorithm-expression">demo_ds_${user_id % 2}</prop>

</props>
</sharding:sharding-algorithm>

<sharding:key-generate-algorithm id="snowflakeAlgorithm" type="SNOWFLAKE">
</sharding:key-generate-algorithm>

<sharding:audit-algorithm id="auditAlgorithm" type="DML_SHARDING_CONDITIONS" />

<sharding:key-generate-strategy id="orderKeyGenerator" column="order_id"
algorithm-ref="snowflakeAlgorithm" />

<sharding:key-generate-strategy id="itemKeyGenerator" column="order_item_id"
algorithm-ref="snowflakeAlgorithm" />

<sharding:audit-strategy id="defaultAudit" allow-hint-disable="true">
<sharding:auditors>

<sharding:auditor algorithm-ref="auditAlgorithm" />
</sharding:auditors>

</sharding:audit-strategy>
<sharding:audit-strategy id="shardingKeyAudit" allow-hint-disable="true">

<sharding:auditors>
<sharding:auditor algorithm-ref="auditAlgorithm" />

</sharding:auditors>
</sharding:audit-strategy>

<sharding:rule id="shardingRule">
<sharding:table-rules>

<sharding:table-rule logic-table="t_order" database-strategy-ref=
"databaseStrategy" key-generate-strategy-ref="orderKeyGenerator" audit-strategy-
ref="shardingKeyAudit" />

<sharding:table-rule logic-table="t_order_item" database-strategy-ref=
"databaseStrategy" key-generate-strategy-ref="itemKeyGenerator" />

</sharding:table-rules>
<sharding:binding-table-rules>

<sharding:binding-table-rule logic-tables="t_order,t_order_item"/>
</sharding:binding-table-rules>
<sharding:broadcast-table-rules>

<sharding:broadcast-table-rule table="t_address"/>
</sharding:broadcast-table-rules>

</sharding:rule>

4.1. ShardingSphere-JDBC 145

Apache ShardingSphere document, v5.2.1

<shardingsphere:data-source id="shardingDataSource" database-name="sharding-
databases" data-source-names="demo_ds_0, demo_ds_1" rule-refs="shardingRule" />

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<tx:annotation-driven />

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
<property name="dataSource" ref="shardingDataSource"/>
<property name="mapperLocations" value="classpath*:META-INF/mappers/*.xml"/

>
</bean>

<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
<property name="basePackage" value="org.apache.shardingsphere.example.core.

mybatis.repository"/>
<property name="sqlSessionFactoryBeanName" value="sqlSessionFactory"/>

</bean>
</beans>

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Readwrite-splitting

Background

Spring namespace read/write splitting configuration method is suitable for conventional Spring
projects, determine sharding rules and properties through namespace XML configuration files, and
let Spring do the creation and management of ShardingSphereDataSource objects, avoiding additional
coding work.

4.1. ShardingSphere-JDBC 146

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

Parameters Explained

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/readwrite‐splitting/readwrit
e‐splitting‐5.2.1.xsd

<readwrite‐splitting:rule />

Name •
Type*

Description

id Attr ibute Spring Bean Id
data‐source‐rule (+) Tag Readwrite‐splitting data source

rule configuration

<readwrite‐splitting:data‐source‐rule />

Name Type Description

id Attribute Readwrite‐splitting data source rule name
static‐strategy Tag Static Readwrite‐splitting type
dynamic‐strategy Tag Dynamic Readwrite‐splitting type
l oad‐balance‐algorithm‐ref Attribute Load balance algorithm name

<readwrite‐splitting:static‐strategy />

Name •
T y p e *

Description

id A t t r i b u t e Static readwrite‐splitting name
write‐d ata‐source‐name A t t r i b u t e Write data source name
read‐da ta‐source‐names A t t r i b u t e Read data source names, mul‐

tiple data source names sepa‐
rated with comma

load‐balanc e‐algorithm‐ref A t t r i b u t e Load balance algorithm name

<readwrite‐splitting:dynamic‐strategy />

4.1. ShardingSphere-JDBC 147

http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.2.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.2.1.xsd

Apache ShardingSphere document, v5.2.1

Name •
T y p e *

Description

id A t t r i b u t e Dynamic readwrite‐splitting
name

aut o‐aware‐data ‐source‐name A t t r i b u t e Database discovery logic data
source name

write‐d ata‐source‐q uery‐
enabled

A t t r i b u t e All read data source are offline,
write data source whether the
data source is responsible for
read traffic

lo ad‐balance‐a lgorithm‐ref A t t r i b u t e Load balance algorithm name

<readwrite‐splitting:load‐balance‐algorithm />

Name Type Description

id Attribute Load balance algorithm name
type Attribute Load balance algorithm type
props (?) Tag Load balance algorithm properties

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Read‐write splitting‐Core features for more details about query consistent routing.

Operating Procedures

1. Add read/write splitting data source.

2. Set the load balancing algorithm.

3. Using read/write splitting data sources.

Configuration Example

<readwrite-splitting:load-balance-algorithm id="randomStrategy" type="RANDOM" />

<readwrite-splitting:rule id="readWriteSplittingRule">
<readwrite-splitting:data-source-rule id="demo_ds" load-balance-algorithm-ref=

"randomStrategy">
<readwrite-splitting:static-strategy id="staticStrategy" write-data-source-

name="demo_write_ds" read-data-source-names="demo_read_ds_0, demo_read_ds_1"/>
</readwrite-splitting:data-source-rule>

</readwrite-splitting:rule>

<shardingsphere:data-source id="readWriteSplittingDataSource" data-source-names=
"demo_write_ds, demo_read_ds_0, demo_read_ds_1" rule-refs="readWriteSplittingRule"
/>

4.1. ShardingSphere-JDBC 148

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

Related References

• Read‐write splitting‐Core features

• Java API: read‐write splitting

• YAML Configuration: read‐write splitting

• Spring Boot Starter: read‐write splitting

HA

Background

The Spring namespace configuration method, applicable to traditional Spring projects, configures
highly availability rules by means of namespace XML configuration files, and Spring completes the
creation and management of ShardingSphereDataSource objects.

Parameters Explained

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/database‐discovery/databas
e‐discovery‐5.1.1.xsd

<database‐discovery:rule />

Name Type Description

id Property Spring Bean Id
data‐source‐rule (+) Tag Configuration of data source rules
discovery‐heartbeat (+) Tag Configuration of heartbeat rules detection

<database‐discovery:data‐source‐rule />

Name •
T y p e *

Description

id P r o p e r t y Data source rules name
data‐source‐names P r o p e r t y Data source name，multiple

datasources are divided by
comma,such as：ds_0, ds_1

d iscovery‐heartbeat‐name P r o p e r t y Detect heartbeat name
discovery‐type‐name P r o p e r t y type name of database discov‐

ery

<database‐discovery:discovery‐heartbeat />

4.1. ShardingSphere-JDBC 149

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting/
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.1.xsd

Apache ShardingSphere document, v5.2.1

Name •
T y p e *

Description

id P r o p e r t y heartbeat listen name
props 标 | property configuration of heartbeat签 | listen，cron expression

of
keep‐alive‐cron property

configuration，such as：‘0/5 * * *

* ?’

<database‐discovery:discovery‐type />

Name Ty pe Description

id Pr ope
rty

Type name of database discovery

type Pr ope
rty

Database discovery type，such as：MySQL.MGR

props
(?)

Tag Configuration of database discovery type，such as group‐name property con‐
figuration of MGR

Operating Procedures

1. Introduce Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${latest.release.version}</version>

</dependency>

Configuration Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode-

repository/cluster"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:database-discovery="http://shardingsphere.apache.org/schema/

shardingsphere/database-discovery"
xmlns:readwrite-splitting="http://shardingsphere.apache.org/schema/

shardingsphere/readwrite-splitting"
xsi:schemaLocation="http://www.springframework.org/schema/beans

4.1. ShardingSphere-JDBC 150

Apache ShardingSphere document, v5.2.1

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
database-discovery

http://shardingsphere.apache.org/schema/shardingsphere/
database-discovery/database-discovery.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting/readwrite-splitting.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster/repository.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<bean id="ds_0" class="com.zaxxer.hikari.HikariDataSource" destroy-method=

"close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://127.0.0.1:33306/primary_demo_

ds?serverTimezone=UTC&useSSL=false&useUnicode=true&
characterEncoding=UTF-8" />

<property name="username" value="root" />
<property name="password" value="" />

</bean>
<bean id="ds_1" class="com.zaxxer.hikari.HikariDataSource" destroy-method=

"close">
<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://127.0.0.1:33307/primary_demo_

ds?serverTimezone=UTC&useSSL=false&useUnicode=true&
characterEncoding=UTF-8" />

<property name="username" value="root" />
<property name="password" value="" />

</bean>
<bean id="ds_2" class="com.zaxxer.hikari.HikariDataSource" destroy-method=

"close">
<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://127.0.0.1:33308/primary_demo_

ds?useSSL=false"/>
<property name="username" value="root"/>
<property name="password" value=""/>

</bean>
<cluster:repository id="clusterRepository" type="ZooKeeper" namespace=

"governance" server-lists="localhost:2181">
<props>

4.1. ShardingSphere-JDBC 151

Apache ShardingSphere document, v5.2.1

<prop key="max-retries">3</prop>
<prop key="operation-timeout-milliseconds">3000</prop>

</props>
</cluster:repository>
<readwrite-splitting:rule id="readWriteSplittingRule">

<readwrite-splitting:data-source-rule id="replica_ds">
<readwrite-splitting:dynamic-strategy id="dynamicStrategy" auto-aware-

data-source-name="readwrite_ds" />
</readwrite-splitting:data-source-rule>

</readwrite-splitting:rule>
<database-discovery:rule id="mgrDatabaseDiscoveryRule">

<database-discovery:data-source-rule id="readwrite_ds" data-source-names=
"ds_0,ds_1,ds_2" discovery-heartbeat-name="mgr-heartbeat" discovery-type-name="mgr"
/>

<database-discovery:discovery-heartbeat id="mgr-heartbeat">
<props>

<prop key="keep-alive-cron" >0/5 * * * * ?</prop>
</props>

</database-discovery:discovery-heartbeat>
</database-discovery:rule>
<database-discovery:discovery-type id="mgr" type="MySQL.MGR">

<props>
<prop key="group-name">558edd3c-02ec-11ea-9bb3-080027e39bd2</prop>

</props>
</database-discovery:discovery-type>
<shardingsphere:data-source id="databaseDiscoveryDataSource" schema-name=

"database-discovery-db" data-source-names="ds_0, ds_1, ds_2" rule-refs=
"readWriteSplittingRule, mgrDatabaseDiscoveryRule">

<shardingsphere:mode repository-ref="clusterRepository" type="Cluster" />
</shardingsphere:data-source>

</beans>

Related References

• Feature Description of HA

• JAVA API: HA

• YAML Configuration: HA

• Spring Boot Starter: HA

4.1. ShardingSphere-JDBC 152

https://shardingsphere.apache.org/document/current/en/features/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/ha/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha/

Apache ShardingSphere document, v5.2.1

Encryption

Background

Spring Namespace’s data encryption configuration applies to the traditional Spring projects. Sharding
rules and attributes are configured through theXMLconfigurationfile of thenamespace. Spring creates
and manages the ShardingSphereDataSource object, reducing unnecessary coding.

Parameters

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt‐5.2.1.xsd

<encrypt:rule />

Name •
T y p e *

Description Def ault Va lue

id A t t r i b u t e Spring Bean Id
que ryWithCip herCol‐
umn (?)

A t t r i b u t e Whether querywith ci‐
pher column for data
encrypt. User you can
use plaintext to query
if have

true

table (+) T a g Encrypt table configu‐
ration

<encrypt:table />

Name •
T y p e *

Description

name A t t r i b u t e Encrypt table name
column (+) T a g Encrypt column configuration
que ry‐with‐ciph er‐column(?)
(?)

A t t r i b u t e Whether the table query with
cipher column for data en‐
crypt. User you can use plain‐
text to query if have

<encrypt:column />

Name Type Description

logic‐column Attribute Column logic name
cipher‐column Attribute Cipher column name
assisted‐query‐column (?) Attribute Assisted query column name
plain‐column (?) Attribute Plain column name
encrypt‐algorithm‐ref Attribute Encrypt algorithm name

4.1. ShardingSphere-JDBC 153

http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.2.1.xsd

Apache ShardingSphere document, v5.2.1

<encrypt:encrypt‐algorithm />

Name Type Description

id Attribute Encrypt algorithm name
type Attribute Encrypt algorithm type
props (?) Tag Encrypt algorithm properties

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Procedure

1. Configure data encryption rules in the Spring namespace configuration file, including data
sources, encryption rules, and global attributes.

2. Start the Spring program, and it will automatically load the configuration and initialize the Shard‐
ingSphereDataSource.

Sample

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:encrypt="http://shardingsphere.apache.org/schema/shardingsphere/

encrypt"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-

context.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

datasource
http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

encrypt
http://shardingsphere.apache.org/schema/shardingsphere/

encrypt/encrypt.xsd
">

<context:component-scan base-package="org.apache.shardingsphere.example.core.
mybatis" />

4.1. ShardingSphere-JDBC 154

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

<bean id="ds" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close
">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/demo_ds?

serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
"/>

<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<encrypt:encrypt-algorithm id="name_encryptor" type="AES">
<props>

<prop key="aes-key-value">123456</prop>
</props>

</encrypt:encrypt-algorithm>
<encrypt:encrypt-algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user">

<encrypt:column logic-column="username" cipher-column="username" plain-
column="username_plain" encrypt-algorithm-ref="name_encryptor" />

<encrypt:column logic-column="pwd" cipher-column="pwd" assisted-query-
column="assisted_query_pwd" encrypt-algorithm-ref="pwd_encryptor" />

</encrypt:table>
</encrypt:rule>

<shardingsphere:data-source id="encryptDataSource" data-source-names="ds" rule-
refs="encryptRule" />

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="encryptDataSource" />
</bean>
<tx:annotation-driven />

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
<property name="dataSource" ref="encryptDataSource"/>
<property name="mapperLocations" value="classpath*:META-INF/mappers/*.xml"/

>
</bean>

<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
<property name="basePackage" value="org.apache.shardingsphere.example.core.

mybatis.repository"/>
<property name="sqlSessionFactoryBeanName" value="sqlSessionFactory"/>

</bean>
</beans>

4.1. ShardingSphere-JDBC 155

Apache ShardingSphere document, v5.2.1

Related References

• Core Feature: Data Encryption

• Developer Guide: Data Encryption

Shadow DB

Background

Under the distributed application architecture based on microservices, the business needs multiple
services to be completed through a series of service and middleware calls, so the stress test of a single
service can no longer represent the real scenario. In the test environment, rebuilding a complete set
of pressure test environments similar to the production environment would mean an excessively high
cost, and often an inability to simulate the complexity and flow of the online environment. Therefore,
enterprises usually select the full link voltage test method, i.e. a pressure test in the production envi‐
ronment, so that the test results can accurately reflect the system’s real capacity and performance
level.

Parameters

Configuration Entry

<shadow:rule />

Configurable Properties:

Name Type Description

id Attribute Spring Bean Id
data‐source(?) Tag Shadow data source configuration
shadow‐table(?) Tag Shadow table configuration
shadow‐algorithm(?) Tag Shadow table configuration
default‐shado w‐algorithm‐name(?) Tag Default shadow algorithm configuration

4.1. ShardingSphere-JDBC 156

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

Shadow data source configuration:

<shadow:data-source />

Name Type Description

id Attribute Spring Bean Id
production‐data‐source‐name Attribute Production data source name
shadow‐data‐source‐name Attribute Shadow data source name

Shadow table configuration:

<shadow:shadow-table />

Name Type Description

name At‐
tribute

Shadow table name

data‐
sources

At‐
tribute

Shadow table associated shadow data source name list (multiple values are
separated by“,”)

algorithm
(?)

Tag Shadow table association shadow algorithm configuration

<shadow:algorithm />

Name Type Description

s hadow‐algorithm‐ref Attribute Shadow table association shadow algorithm name

Shadow algorithm configuration:

<shadow:shadow-algorithm />

Name Type Description

id Attribute Shadow algorithm name
type Attribute Shadow algorithm type
props (?) Tag Shadow algorithm attribute configuration

Refer to Builin Shadow Algorithm for details

4.1. ShardingSphere-JDBC 157

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/shadow/

Apache ShardingSphere document, v5.2.1

Procedure

1. Create production and shadow data sources.

2. Configure shadow rules.

• Configure shadow data sources.

• Configure shadow table.

• Configure shadow algorithm.

Sample

<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xmlns:shadow="http://shardingsphere.apache.org/
schema/shardingsphere/shadow" xsi:schemaLocation="http://www.springframework.org/
schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
shadow

http://shardingsphere.apache.org/schema/shardingsphere/
shadow/shadow.xsd

">
<shadow:shadow-algorithm id="user-id-insert-match-algorithm" type="VALUE_MATCH

">
<props>

<prop key="operation">insert</prop>
<prop key="column">user_id</prop>
<prop key="value">1</prop>

</props>
</shadow:shadow-algorithm>

<shadow:rule id="shadowRule">
<shadow:data-source id="shadow-data-source" production-data-source-name="ds

" shadow-data-source-name="ds_shadow"/>
<shadow:shadow-table name="t_user" data-sources="shadow-data-source">

<shadow:algorithm shadow-algorithm-ref="user-id-insert-match-algorithm"
/>

</shadow:shadow-table>
</shadow:rule>

</beans>

4.1. ShardingSphere-JDBC 158

Apache ShardingSphere document, v5.2.1

Related References

• Feature Description of Shadow DB

• JAVA API: Shadow DB

• YAML Configuration: Shadow DB

• Spring Namespace: Shadow DB

• Dev Guide: Shadow DB

SQL Parser

Background

Spring namespace’s SQL parser configuration applies to traditional Spring projects. SQL parsing rules
and attributes can be configured through the XML configuration files of the namespace.

Parameters

Namespace：http://shardingsphere.apache.org/schema/shardingsphere/sql‐parser/sql‐parser‐5.2.1.
xsd

<sql‐parser:rule />

Name Type Description

id Attribute Spring Bean Id
sql‐comment‐parse‐enable Attribute Whether to parse SQL comments
parse‐tree‐cache‐ref Attribute Parse tree local cache name
sql‐statement‐cache‐ref Attribute SQL statement local cache name

<sql‐parser:cache‐option />

Name Type Description

id Attribute Local cache configuration item name
initial‐capacity Attribute Initial capacity of local cache
maximum‐size Attribute Maximum capacity of local cache

4.1. ShardingSphere-JDBC 159

https://shardingsphere.apache.org/document/current/en/features/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/
https://shardingsphere.apache.org/document/current/en/dev-manual/shadow/
http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.2.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.2.1.xsd

Apache ShardingSphere document, v5.2.1

Procedure

1. Set local cache configuration.

2. Set parser configuration.

3. Parse SQL with a parsing engine.

Sample

<sql-parser:rule id="sqlParseRule" sql-comment-parse-enable="true" parse-tree-
cache-ref="parseTreeCache" sql-statement-cache-ref="sqlStatementCache" />
<sql-parser:cache-option id="sqlStatementCache" initial-capacity="1024" maximum-
size="1024"/>
<sql-parser:cache-option id="parseTreeCache" initial-capacity="1024" maximum-size=
"1024"/>

Related References

• JAVA API: SQL Parser

• YAML Configuration: SQL Parser

• Spring Boot Starter: SQL Parser

Mixed Rules

Background

ShardingSphere provides a variety of features, such as data sharding, read/write splitting, high avail‐
ability, and data decryption. These features can be used independently or in combination.

Below, you will find the configuration samples based on Spring Namespace.

Samples

<!-- Sharding configuration -->
<sharding:standard-strategy id="databaseStrategy" sharding-column="user_id"
algorithm-ref="inlineStrategyShardingAlgorithm" />
<sharding:sharding-algorithm id="inlineStrategyShardingAlgorithm" type="INLINE">

<props>
<prop key="algorithm-expression">replica_ds_${user_id % 2}</prop>

</props>
</sharding:sharding-algorithm>
<sharding:key-generate-algorithm id="snowflakeAlgorithm" type="SNOWFLAKE">
</sharding:key-generate-algorithm>

4.1. ShardingSphere-JDBC 160

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

<sharding:key-generate-strategy id="orderKeyGenerator" column="order_id" algorithm-
ref="snowflakeAlgorithm" />
<sharding:rule id="shardingRule">

<sharding:table-rules>
<sharding:table-rule logic-table="t_order" database-strategy-ref=

"databaseStrategy" key-generate-strategy-ref="orderKeyGenerator" />
</sharding:table-rules>

</sharding:rule>

<!-- Dynamic read/write splitting configuration -->
<readwrite-splitting:rule id="readWriteSplittingRule">

<readwrite-splitting:data-source-rule id="replica_ds_0">
<readwrite-splitting:dynamic-strategy id="dynamicStrategy" auto-aware-data-

source-name="readwrite_ds_0" />
</readwrite-splitting:data-source-rule>
<readwrite-splitting:data-source-rule id="replica_ds_1">

<readwrite-splitting:dynamic-strategy id="dynamicStrategy" auto-aware-data-
source-name="readwrite_ds_1" />

</readwrite-splitting:data-source-rule>
</readwrite-splitting:rule>

<!-- Database discovery configuration -->
<database-discovery:rule id="mgrDatabaseDiscoveryRule">

<database-discovery:data-source-rule id="readwrite_ds_0" data-source-names="ds_
0,ds_1,ds_2" discovery-heartbeat-name="mgr-heartbeat" discovery-type-name="mgr" />

<database-discovery:data-source-rule id="readwrite_ds_1" data-source-names="ds_
3,ds_4,ds_5" discovery-heartbeat-name="mgr-heartbeat" discovery-type-name="mgr" />

<database-discovery:discovery-heartbeat id="mgr-heartbeat">
<props>

<prop key="keep-alive-cron" >0/5 * * * * ?</prop>
</props>

</database-discovery:discovery-heartbeat>
</database-discovery:rule>
<database-discovery:discovery-type id="mgr" type="MySQL.MGR">

<props>
<prop key="group-name">558edd3c-02ec-11ea-9bb3-080027e39bd2</prop>

</props>
</database-discovery:discovery-type>

<!-- Data decryption configuration -->
<encrypt:encrypt-algorithm id="name_encryptor" type="AES">

<props>
<prop key="aes-key-value">123456</prop>

</props>
</encrypt:encrypt-algorithm>
<encrypt:encrypt-algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">

4.1. ShardingSphere-JDBC 161

Apache ShardingSphere document, v5.2.1

<encrypt:table name="t_user">
<encrypt:column logic-column="username" cipher-column="username" plain-

column="username_plain" encrypt-algorithm-ref="name_encryptor" />
<encrypt:column logic-column="pwd" cipher-column="pwd" assisted-query-

column="assisted_query_pwd" encrypt-algorithm-ref="pwd_encryptor" />
</encrypt:table>

</encrypt:rule>

Algorithm

Sharding

<!-- algorithmName is specified by users and its property should be consistent with
that of algorithm-ref in the sharding strategy. -->
<!-- type and props, please refer to the built-in sharding algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/sharding/ -->
<sharding:sharding-algorithm id="algorithmName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</sharding:sharding-algorithm>

Encryption

<!-- encryptorName is specified by users, and its property should be consistent
with that of encrypt-algorithm-ref in encryption rules. -->
<!-- type and props, please refer to the built-in encryption algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/encrypt/ -->
<encrypt:encrypt-algorithm id="encryptorName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</encrypt:encrypt-algorithm>

4.1. ShardingSphere-JDBC 162

Apache ShardingSphere document, v5.2.1

Read/Write Splitting Load Balancer

<!-- loadBalancerName is specified by users, and its property has to be consistent
with that of load-balance-algorithm-ref in read/write splitting rules. -->
<!-- type and props, please refer to the built-in read/write splitting algorithm
load balancer: https://shardingsphere.apache.org/document/current/en/user-manual/
common-config/builtin-algorithm/load-balance/ -->
<readwrite-splitting:load-balance-algorithm id="loadBalancerName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</readwrite-splitting:load-balance-algorithm>

Shadow DB

<!-- shadowAlgorithmName is specified by users, and its property has to be
consistent with that of shadow-algorithm-ref in shadow DB rules. -->
<!-- type and props, please refer to the built-in shadow DB algorithm: https://
shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-
algorithm/shadow/ -->
<shadow:shadow-algorithm id="shadowAlgorithmName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</shadow:shadow-algorithm>

High Availability

<!-- discoveryTypeName is specified by users, and its property has to be consistent
with that of discovery-type-name in database discovery rules. -->
<database-discovery:discovery-type id="discoveryTypeName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</database-discovery:discovery-type>

4.1. ShardingSphere-JDBC 163

Apache ShardingSphere document, v5.2.1

4.1.5 Special API

This chapter will introduce the special API of ShardingSphere‐JDBC.

Sharding

This chapter will introduce the Sharding API of ShardingSphere‐JDBC.

Hint

Background

Apache ShardingSphere uses ThreadLocal to manage sharding key values for mandatory routing. A
sharding value can be added by programming to the HintManager that takes effect only within the
current thread. Apache ShardingSphere can also do mandatory routing by adding comments to SQL.

Main application scenarios for Hint: ‐ The sharding fields do not exist in the SQL and database table
structure but in the external business logic. ‐ Certain data operations are forced to be performed in
given databases.

Procedure

1. Call HintManager.getInstance() to obtain an instance of HintManager.

2. Use HintManager.addDatabaseShardingValue, HintManager.addTableShardingValue to set the
sharding key value.

3. Execute SQL statements to complete routing and execution.

4. Call HintManager.close to clean up the contents of ThreadLocal.

Sample

Sharding with Hint

Hint Configuration

Hint algorithms require users to implement the interface of org.apache.shardingsphere.api.
sharding.hint.HintShardingAlgorithm. Apache ShardingSphere will acquire sharding values
from HintManager to route.

Take the following configurations for reference:

rules:
- !SHARDING
tables:

t_order:

4.1. ShardingSphere-JDBC 164

Apache ShardingSphere document, v5.2.1

actualDataNodes: demo_ds_${0..1}.t_order_${0..1}
databaseStrategy:
hint:

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
tableStrategy:
hint:

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
defaultTableStrategy:

none:
defaultKeyGenerateStrategy:

type: SNOWFLAKE
column: order_id

props:
sql-show: true

Get HintManager

HintManager hintManager = HintManager.getInstance();

Add Sharding Value

• Use hintManager.addDatabaseShardingValue to add sharding key value of data source.

• Use hintManager.addTableShardingValue to add sharding key value of table.

Users can usehintManager.setDatabaseShardingValue to add sharding in hint route
to some certain sharding database without sharding tables.

4.1. ShardingSphere-JDBC 165

Apache ShardingSphere document, v5.2.1

Clean Hint Values

Sharding values are saved in ThreadLocal, so it is necessary to use hintManager.close() to clean
ThreadLocal.

ˋˋHintManagerˋˋ has implemented ˋˋAutoCloseableˋˋ. We recommend to close it automaticallywith
ˋˋtry with resourceˋˋ.

Codes:

// Sharding database and table with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

// Sharding database and one database route with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

Use special SQL comments

Terms of Use

To use SQL Hint function, users need to set sqlCommentParseEnabled to true. The comment for‐

mat only supports /* */ for now. The content needs to start with SHARDINGSPHERE_HINT:, and an

d optional attributes include:

• {table}.SHARDING_DATABASE_VALUE: used to add the data source sharding value
corresponding to{table}table, multiple attributes are separated by commas;

4.1. ShardingSphere-JDBC 166

Apache ShardingSphere document, v5.2.1

• {table}.SHARDING_TABLE_VALUE: used to add the table sharding value corresponding to{
table}table, multiple attributes are separated by commas.

Codes:

/* SHARDINGSPHERE_HINT: t_order.SHARDING_DATABASE_VALUE=1, t_order.SHARDING_TABLE_VALU

E=1 */

SELECT*FROMt_order;

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Readwrite Splitting

This chapter will introduce the Readwrite Splitting API of ShardingSphere‐JDBC.

Hint

Background

Apache ShardingSphere uses ThreadLocal to manage primary database routing marks for mandatory
routing. A primary database routing mark can be added to HintManager through programming, and
this value is valid only in the current thread. Apache ShardingSphere can also route the primary
database by adding comments to SQL.

Hint ismainly used to performmandatory data operations in the primary database under the read/write
splitting scenarios.

Procedure

1. Call HintManager.getInstance() to obtain HintManager instance.

2. CallHintManager.setWriteRouteOnly()method to set the primary database routingmarks.

3. Execute SQL statements to complete routing and execution.

4. Call HintManager.close() to clear the content of ThreadLocal.

4.1. ShardingSphere-JDBC 167

Users can useSHARDING_DATABASE_VALUEto set sharding value in hint route to some certain
 sharding database without sharding tables.

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

Sample

Primary Route with Hint

Usemanual programming

Get HintManager

Be the same as sharding based on hint.

Configure Primary Database Route

• Use hintManager.setWriteRouteOnly to configure primary database route.

Clean Hint Value

Be the same as data sharding based on hint.

Codes:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setWriteRouteOnly();
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

Use special SQL comments

Terms of Use

To use SQL Hint function, users need to set sqlCommentParseEnabled to true. The comment for‐
mat only supports /* */ for now. The content needs to start with SHARDINGSPHERE_HINT:, and the
attribute name needs to be WRITE_ROUTE_ONLY.

4.1. ShardingSphere-JDBC 168

Apache ShardingSphere document, v5.2.1

Codes:

/* SHARDINGSPHERE_HINT: WRITE_ROUTE_ONLY=true */
SELECT * FROM t_order;

Related References

• Core Feature: Readwrite Splitting

• Developer Guide: Readwrite Splitting

Transaction

Using distributed transaction through Apache ShardingSphere is no different from local transaction. In
addition to transparent use of distributed transaction, Apache ShardingSphere can switch distributed
transaction types every time the database accesses.

Supported transaction types include local, XA and BASE. It can be set before creating a database con‐
nection, and default value can be set when Apache ShardingSphere startup.

Use Java API

Background

With ShardingSphere‐JDBC, XA and BASE mode transactions can be used through the API.

Prerequisites

Introducing Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA's Narayana mode -->
<dependency>

4.1. ShardingSphere-JDBC 169

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/dev-manual/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${project.version}</version>

</dependency>

<!-- This module is required when using BASE transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Procedure

1. Set the transaction type

2. Perform the business logic

Sample

TransactionTypeHolder.set(TransactionType.XA); // support TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE

try (Connection conn = dataSource.getConnection()) { // use
ShardingSphereDataSource

conn.setAutoCommit(false);
PreparedStatement ps = conn.prepareStatement("INSERT INTO t_order (user_id,

status) VALUES (?, ?)");
ps.setObject(1, 1000);
ps.setObject(2, "init");
ps.executeUpdate();
conn.commit();
}

Use Spring Boot Starter

Background

ShardingSphere‐JDBC can be used through spring boot starter. ## Prerequisites

Introducing Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

4.1. ShardingSphere-JDBC 170

Apache ShardingSphere document, v5.2.1

</dependency>

<!-- This module is required when using XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA's Narayana mode -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${project.version}</version>

</dependency>

<!-- This module is required when using BASE transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Procedure

1. Configure the transaction Type

2. Use distributed transactions

Sample

Configure the transaction Type

@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {

@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {

return new DataSourceTransactionManager(dataSource);
}

@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {

return new JdbcTemplate(dataSource);

4.1. ShardingSphere-JDBC 171

Apache ShardingSphere document, v5.2.1

}
}

Use distributed transactions

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // 支持 TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();
});
}

Use Spring Namespace

Background

ShardingSphere‐JDBC can be used through spring namespace.

Prerequisites

Introducing Maven denpendency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA's Narayana mode -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>

4.1. ShardingSphere-JDBC 172

Apache ShardingSphere document, v5.2.1

<version>${project.version}</version>
</dependency>

<!-- This module is required when using BASE transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Procedure

1. Configure the transaction manager

2. Use distributed transactions

Sample

Configure the transactionmanager

<!-- Configuration of ShardingDataSource -->
<!-- ... -->

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<tx:annotation-driven />

<!-- Enable automatic scanning of @ShardingSphereTransactionType annotation and use
Spring's native AOP for class and method enhancements -->
<sharding:tx-type-annotation-driven />

Use distributed transactions

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // support TransactionType.
LOCAL, TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

4.1. ShardingSphere-JDBC 173

Apache ShardingSphere document, v5.2.1

ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();
});
}

Atomikos Transaction

Background

Apache ShardingSphere provides XA transactions, and the default XA transactionmanager is Atomikos.

Procedure

1. Configure the transaction type

2. Configure Atomikos

Sample

Configure the transaction type

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Atomikos

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Atomikos

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Atomikos</prop>
</props>

</shardingsphere:data-source>

4.1. ShardingSphere-JDBC 174

Apache ShardingSphere document, v5.2.1

Configure Atomikos

Atomikos configuration items can be customized by adding jta.properties to the project’s class‐
path.

See Atomikos’s official documentation for more details.

Data Recovery

xa_tx.log is generated in the logs directory of the project. This is the log required for recovering
XA crash. Do not delete it.

Bitronix Transaction

background

Apache ShardingSphere provides XA transactions that integrate with the Bitronix implementation.

Prerequisites

Introducing Maven dependency

<properties>
<btm.version>2.1.3</btm.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-bitronix</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>

4.1. ShardingSphere-JDBC 175

https://www.atomikos.com/Documentation/JtaProperties

Apache ShardingSphere document, v5.2.1

<groupId>org.codehaus.btm</groupId>
<artifactId>btm</artifactId>
<version>${btm.version}</version>

</dependency>

Procedure

1. Configure the XA transaction type

2. Configure Bitronix

Sample

Configure the XA transaction type

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Bitronix

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Bitronix

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Bitronix</prop>
</props>

</shardingsphere:data-source>

Configure Bitronix (Deletable)

See Bitronix’s Official Documentation for more details.

4.1. ShardingSphere-JDBC 176

https://github.com/bitronix/btm/wiki

Apache ShardingSphere document, v5.2.1

Narayana Transaction

Background

Apache ShardingSphere provides XA transactions that integrate with the Narayana implementation.

Prerequisites

Introducing Maven dependency

<properties>
<narayana.version>5.12.4.Final</narayana.version>
<jboss-transaction-spi.version>7.6.0.Final</jboss-transaction-spi.version>
<jboss-logging.version>3.2.1.Final</jboss-logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- This module is required when using XA transactions -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${shardingsphere.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jta</groupId>
<artifactId>jta</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana-jts-integration</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss</groupId>
<artifactId>jboss-transaction-spi</artifactId>
<version>${jboss-transaction-spi.version}</version>

4.1. ShardingSphere-JDBC 177

Apache ShardingSphere document, v5.2.1

</dependency>
<dependency>

<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>${jboss-logging.version}</version>

</dependency>

Procedure

1. Configure Narayana

2. Set the XA transaction type

Sample

Configure Narayana

Narayana configuration items can be customized by adding jbossts-properties.xml to the
project’s classpath.

See Narayana’s Official Documentation for more details.

Set the XA transaction type

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Narayana

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Narayana

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Narayana</prop>
</props>

</shardingsphere:data-source>

4.1. ShardingSphere-JDBC 178

https://narayana.io/documentation/index.html

Apache ShardingSphere document, v5.2.1

Seata Transaction

Background

Apache ShardingSphere provides BASE transactions that integrate the Seata implementation.

Procedure

1. Start Seata Server

2. Create the log table

3. Add the Seata configuration

Sample

Start Seata Server

Refer to seata‐work‐shop to download and start the Seata server.

Create undo_log table

Create the undo_log table in each shard database instance (take MySQL as an example).

CREATE TABLE IF NOT EXISTS `undo_log`
(
`id` BIGINT(20) NOT NULL AUTO_INCREMENT COMMENT 'increment id',
`branch_id` BIGINT(20) NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(100) NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as

serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME NOT NULL COMMENT 'modify datetime',
PRIMARY KEY (`id`),
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)

) ENGINE = InnoDB
AUTO_INCREMENT = 1
DEFAULT CHARSET = utf8 COMMENT ='AT transaction mode undo table';

4.1. ShardingSphere-JDBC 179

https://github.com/seata/seata-workshop

Apache ShardingSphere document, v5.2.1

Modify configuration

Add the seata.conf file to the classpath.

client {
application.id = example ## Apply the only primary key
transaction.service.group = my_test_tx_group ## The transaction group it

belongs to.
}

Modify the file.conf and registry.conf files of Seata as required.

4.1.6 Unsupported Items

DataSource Interface

• Do not support timeout related operations

Connection Interface

• Do not support operations of stored procedure, function and cursor

• Do not support native SQL

• Do not support savepoint related operations

• Do not support Schema/Catalog operation

• Do not support self‐defined type mapping

Statement and PreparedStatement Interface

• Do not support statements that return multiple result sets (stored procedures, multiple pieces of
non‐SELECT data)

• Do not support the operation of international characters

ResultSet Interface

• Do not support getting result set pointer position

• Do not support changing result pointer position through none‐next method

• Do not support revising the content of result set

• Do not support acquiring international characters

• Do not support getting Array

4.1. ShardingSphere-JDBC 180

Apache ShardingSphere document, v5.2.1

JDBC 4.1

• Do not support new functions of JDBC 4.1 interface

For all the unsupported methods, please read org.apache.shardingsphere.driver.jdbc.
unsupported package.

4.2 ShardingSphere-Proxy

Configuration is the only module in ShardingSphere‐Proxy that interacts with application devel‐
opers, through which developer can quickly and clearly understand the functions provided by
ShardingSphere‐Proxy.

This chapter is a configuration manual for ShardingSphere‐Proxy, which can also be referred to as a
dictionary if necessary.

ShardingSphere‐Proxy provided YAML configuration, and used DistSQL to communicate. By config‐
uration, application developers can flexibly use data sharding, readwrite‐splitting, data encryption,
shadow database or the combination of them.

Rule configuration keeps consist with YAMLconfiguration of ShardingSphere‐JDBC.DistSQL andYAML
can be replaced each other.

Please refer to Example for more details.

4.2.1 Startup

This chapter will introduce the deployment and startup of ShardingSphere‐Proxy.

Use Binary Tar

Background

This section describes how to start ShardingSphere‐Proxy by binary release packages

Premise

Start the Proxy with a binary package requires an environment with Java JRE 8 or later.

4.2. ShardingSphere-Proxy 181

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example

Apache ShardingSphere document, v5.2.1

Steps

1. Obtain the binary release package of ShardingSphere‐Proxy

Obtain the binary release package of ShardingSphere‐Proxy on the download page.

2. Configure conf/server.yaml

ShardingSphere‐Proxy’s operationalmode is configured onserver.yaml, and its configurationmode
is the same with that of ShardingSphere‐JDBC. Refer to mode of configuration.

Please refer to the following links for other configuration items: * Permission configuration * Property
configuration

3. Configure conf/config-*.yaml

Modify files namedwith the prefixconfig- in theconf directory, such asconf/config-sharding.
yaml file and configure sharding rules and read/write splitting rules. See Confuguration Mannual for
configuration methods. The * part of the config-*.yaml file can be named whatever you want.

ShardingSphere‐Proxy supports multiple logical data sources. Each YAML configuration file named
with the prefix config- is a logical data source.

4. Introduce database driver (Optional)

If the backend is connected to a PostgreSQL or openGauss database, no additional dependencies need
to be introduced.

If the backend is connected to a MySQL database, please download mysql‐connector‐java‐5.1.47.jar or
mysql‐connector‐java‐8.0.11.jar, and put it into the ext-lib directory.

5. Introduce dependencies required by the cluster mode (Optional)

ShardingSphere‐Proxy integrates the ZooKeeper Curator client by default. ZooKeeper is used in cluster
mode without introducing other dependencies.

If the cluster mode uses Etcd, the client drivers of Etcd jetcd‐core 0.5.0 need to be copied into the
ext-lib directory.

6. Introduce dependencies required by distributed transactions (Optional)

It is the same with ShardingSphere‐JDBC. Please refer to Distributed Transaction for more details.

7. Introduce custom algorithm (Optional)

If you need to use a user‐defined algorithm class, you can configure custom algorithm in the following
ways:

1. Implement the algorithm implementation class defined by `ShardingAlgorithm`.
2. Create a `META-INF/services` directory under the project `resources` directory.
3. Create file `org.apache.shardingsphere.sharding.spi.ShardingAlgorithm` under the
directory `META-INF/services`.
4. Writes the fully qualified class name of the implementation class to a file
`org.apache.shardingsphere.sharding.spi.ShardingAlgorithm`
5. Package the above Java files into jar packages.
6. Copy the above jar package to the `ext-lib` directory.

4.2. ShardingSphere-Proxy 182

https://shardingsphere.apache.org/document/current/en/downloads/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/authentication/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/io/etcd/jetcd-core/0.5.0/jetcd-core-0.5.0.jar
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/special-api/transaction/

Apache ShardingSphere document, v5.2.1

7. Configure the Java file reference of the above custom algorithm implementation
class in a YAML file, see [Configuration rule](https://shardingsphere.apache.org/
document/current/en/user-manual/shardingsphere-proxy/yaml-config/) for more
details.

8. Start ShardingSphere‐Proxy

In Linux or macOS, run bin/start.sh. In Windows, run bin/start.bat to start ShardingSphere‐
Proxy. The default listening port is3307 and the default configuration directory is theconfdirectory in
Proxy. The startup script can specify the listening port and the configuration file directory by running
the following command:

bin/start.sh [port] [/path/to/conf]

9. Connect ShardingSphere‐Proxy with client

Run the MySQL/PostgreSQL/openGauss client command to directly operate ShardingSphere‐Proxy.

Connect ShardingSphere‐Proxy with MySQL client:

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}

Connect ShardingSphere‐Proxy with PostgreSQL:

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

Connect ShardingSphere‐Proxy with openGauss client:

gsql -r -h ${proxy_host} -p ${proxy_port} -U ${proxy_username} -W ${proxy_password}

Sample

Please refer to samples on ShardingSphere repository for complete configuration: https://github.com
/apache/shardingsphere/tree/master/examples/shardingsphere‐proxy‐example

Use Docker

Background

This chapter is an introduction about how to start ShardingSphere‐Proxy via Docker

4.2. ShardingSphere-Proxy 183

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example

Apache ShardingSphere document, v5.2.1

Notice

Using Docker to start ShardingSphere‐Proxy does not require additional package supoort.

Steps

1. Acquire Docker Image

• Method 1 (Recommended): Pull from DockerHub

docker pull apache/shardingsphere-proxy

• Method 2: Acquire latest master branch image master: https://github.com/apache/shardingsphe
re/pkgs/container/shardingsphere‐proxy

• Method 3: Build your own image

git clone https://github.com/apache/shardingsphere
mvn clean install
cd shardingsphere-distribution/shardingsphere-proxy-distribution
mvn clean package -Prelease,docker

If the following problems emerge, please make sure Docker daemon Process is running.

I/O exception (java.io.IOException) caught when processing request to {}->unix://
localhost:80: Connection refused？

2. Configure conf/server.yaml and conf/config-*.yaml

Configuration file template can be attained from the Docker container and can be copied to any direc‐
tory on the host:

docker run -d --name tmp --entrypoint=bash apache/shardingsphere-proxy
docker cp tmp:/opt/shardingsphere-proxy/conf /host/path/to/conf
docker rm tmp

Since the network conditions inside the container may differ from those of the host, if errors such as
“cannot connect to the database”occurs, please make sure that the IP of the database specified in the
conf/config-*.yaml configuration file can be accessed from inside the Docker container.

For details, please refer to ShardingSphere‐Proxy quick start manual ‐ binary distribution packages.

3. (Optional) Introduce third‐party dependencies or customized algorithms

If you have any of the following requirements: * ShardingSphere‐Proxy Backend use MySQL Database;
* Implement customized algorithms; * Use Etcd as Registry Center in cluster mode.

Please create ext-lib directory anywhere inside the host and refer to the steps in ShardingSphere‐
Proxy quick start manual ‐ binary distribution packages.

4. Start ShardingSphere‐Proxy container

4.2. ShardingSphere-Proxy 184

https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/

Apache ShardingSphere document, v5.2.1

Mount the conf and ext-lib directories from the host to the container. Start the container:

docker run -d \
-v /host/path/to/conf:/opt/shardingsphere-proxy/conf \
-v /host/path/to/ext-lib:/opt/shardingsphere-proxy/ext-lib \
-e PORT=3308 -p13308:3308 apache/shardingsphere-proxy:latest

ext-lib is not necessary during the process. Users canmount it at will. ShardingSphere‐Proxy default

portal 3307 can be designated according to environment variable -e PORT Customized JVM related

parameters can be set according to environment variable JVM_OPTS

5. Use Client to connect to ShardingSphere‐Proxy

Please refer to ShardingSphere‐Proxy quick start manual ‐ binary distribution packages.

Configuration Example

For full configuration, please refer to the examples given in ShardingSphere library: https://github.c
om/apache/shardingsphere/tree/master/examples/shardingsphere‐proxy‐example
Build GraalVM Native Image(Alpha)

Background

This section mainly introduces how to build the Native Image of ShardingSphere‐Proxy and the cor‐
responding Docker Image through the native-image component of GraalVM.

Notice

• ShardingSphere Proxy is not yet ready to integrate with GraalVM Native Image. It has daily build
tasks at https://github.com/apache/shardingsphere/actions/ for testing builds.

• If you find that the build process hasmissing GraalVMReachability Metadata, A new issue should
be opened at https://github.com/oracle/graalvm‐reachability‐metadata, And submit a PR con‐
taining GraalVM Reachability Metadata missing from ShardingSphere itself or dependent third‐
party libraries.

• Themaster branch of ShardingSphere is not yet ready to handle unit tests inNative Image, Need to
wait for the integration of Junit 5 Platform, you always need to build GraalVMNative Image in the
process, Plus -DskipNativeTests or -DskipTests parameter specific to GraalVM Native
Build Tools to skip unit tests in Native Image.

• This section assumes a Linux (amd64, aarch64), MacOS (amd64) or Windows (amd64) environ‐
ment. If you are on MacOS(aarch64/M1) environment, you need to follow https://github.com/ora
cle/graal/issues/2666 which is not closed yet.

4.2. ShardingSphere-Proxy 185

Note:

Support setting environment variable CGROUP_ MEM_ OPTS: used to set related memory paramet

ers in the container environment. The default values in the script are:

-XX:InitialRAMPercentage=80.0-XX:MaxRAMPercentage=80.0-XX:MinRAMPercentage=80.0

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/actions/
https://github.com/oracle/graalvm-reachability-metadata
https://github.com/oracle/graal/issues/2666
https://github.com/oracle/graal/issues/2666

Apache ShardingSphere document, v5.2.1

Premise

1. Install and configure GraalVM CE or GraalVM EE for JDK 17 according to https://www.graalv
m.org/downloads/. GraalVM CE for JDK 17 can also be installed via SDKMAN!.

2. Install the native-image component via the GraalVM Updater tool.

3. Install the local toolchain as required by https://www.graalvm.org/22.2/reference‐manual/nati
ve‐image/#prerequisites.

4. If you need to build a Docker Image, make sure docker-cli is in the system environment vari‐
ables.

Steps

1. Get Apache ShardingSphere Git Source

• Get it at the download page or https://github.com/apache/shardingsphere/tree/master.

2. Build the product on the command line, in two cases.

• Scenario 1: No need to use JARs with SPI implementations or 3rd party dependencies

• Execute the following command in the same directory of Git Source to directly complete the con‐
struction of Native Image.

./mvnw -am -pl shardingsphere-distribution/shardingsphere-proxy-native-distribution
-B -Pnative -DskipTests -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -
Dspotless.apply.skip=true -Drat.skip=true clean package

• Scenario 2: It is necessary to use a JAR that has an SPI implementation or a third‐party dependent
JAR of a LICENSE such as GPL V2.

• Add SPI implementation JARs or third‐party dependent JARs to dependencies in sharding-
sphere-distribution/shardingsphere-proxy-native-distribution/pom.xml.
Examples are as follows

<dependencies>
<dependency>

<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.30</version>

</dependency>
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-translator-jooq-provider</artifactId>
<version>5.2.0</version>

</dependency>
</dependencies>

• Build GraalVM Native Image via command line.

4.2. ShardingSphere-Proxy 186

https://www.graalvm.org/downloads/
https://www.graalvm.org/downloads/
https://www.graalvm.org/22.2/reference-manual/native-image/#prerequisites
https://www.graalvm.org/22.2/reference-manual/native-image/#prerequisites
https://shardingsphere.apache.org/document/current/en/downloads/
https://github.com/apache/shardingsphere/tree/master

Apache ShardingSphere document, v5.2.1

./mvnw -am -pl shardingsphere-distribution/shardingsphere-proxy-native-distribution
-B -Pnative -DskipTests -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -
Dspotless.apply.skip=true -Drat.skip=true clean package

3. Start Native Image through the command line, you need to bring two parameters, The first param‐
eter is the port used by ShardingSphere Proxy, and the second parameter is the /conf folder that
contains server.yamlwritten by you, Assuming the folder ./custom/conf already exists, the
example is

./apache-shardingsphere-proxy 3307 ./custom/conf

4. If you need to build a Docker Image, after adding the dependencies of the SPI implementation or
third‐party dependencies, execute the following commands on the command line.

./mvnw -am -pl shardingsphere-distribution/shardingsphere-proxy-native-distribution
-B -Pnative,docker.native -DskipTests -Dmaven.javadoc.skip=true -Dcheckstyle.
skip=true -Dspotless.apply.skip=true -Drat .skip=true clean package

• Assuming that there is a conf folder containing server.yaml as ./custom/conf, you
can start the Docker Image corresponding to GraalVM Native Image through the following
docker-compose.yml file.

version: "3.8"

services:
apache-shardingsphere-proxy-native:

image: apache/shardingsphere-proxy-native:latest
volumes:
- ./custom/conf:/conf

ports:
- "3307:3307"

• If you use the default build configuration, you can of course use
scratch as the base docker image for shardingsphere-distribution/
shardingsphere-proxy-native-distribution/Dockerfile. But if you actively
add jvmArgs to -H:+StaticExecutableWithDynamicLibC for the native profile
of pom.xml, To statically link everything except glic, you should switch the base image to
busybox:glic. Refer to https://www.graalvm.org/22.2/reference‐manual/native‐ ima
ge/guides/build‐ static‐ executables/. Also note that some third‐party dependencies will
require more system libraries, such as libdl. So make sure to adjust the base docker image
and the content of pom.xml and Dockerfile under shardingsphere-distribution/
shardingsphere-proxy-native-distribution according to your usage.

4.2. ShardingSphere-Proxy 187

https://www.graalvm.org/22.2/reference-manual/native-image/guides/build-static-executables/
https://www.graalvm.org/22.2/reference-manual/native-image/guides/build-static-executables/

Apache ShardingSphere document, v5.2.1

Use Helm

Background

Use Helm to provide guidance for the installation of ShardingSphere‐Proxy instance in a Kubernetes
cluster. For more details, please checkout ShardingSphere‐on‐Cloud.

Requirements

• Kubernetes 1.18+

• kubectl

• Helm 3.2.0+

• StorageClass of PV (Persistent Volumes) can be dynamically applied for persistent data (Optional)
.

Procedure

Online installation

1. Add ShardingSphere‐Proxy to the local helm repo:

helm repo add shardingsphere https://shardingsphere.apache.org/charts

2. Install ShardingSphere‐Proxy charts:

helm install shardingsphere-proxy shardingsphere/shardingsphere-proxy

Source installation

1. Charts will be installed with default configuration if the following commands are executed:

git clone https://github.com/apache/shardingsphere-on-cloud.git
cd charts/shardingsphere-proxy/charts/governance
helm dependency build
cd ../..
helm dependency build
cd ..
helm install shardingsphere-proxy shardingsphere-proxy

Note:

1. Please refer to the configuration items description below for more details:

2. Execute helm list to acquire all installed releases.

4.2. ShardingSphere-Proxy 188

https://helm.sh/
https://github.com/apache/shardingsphere-on-cloud

Apache ShardingSphere document, v5.2.1

Uninstall

1. Delete all release records by default, add --keep-history to keep them.

helm uninstall shardingsphere-proxy

Parameters

Governance-Node parameters

Name Description V al ue

gover nance.enabled Switch to enable or disable the governance helm chart ˋˋ tr ue ˋˋ

Governance-Node ZooKeeper parameters

Name Description Value

gove rnance.zookeeper.enabled Switch to enable or disable the
ZooKeeper helm chart

true

governanc e.zookeeper.
replicaCount

Number of ZooKeeper nodes 1

governance.zooke eper.
persistence.enabled

Enable persistence on ZooKeeper
using PVC(s)

ˋ false`

governance.zookeeper. persis-
tence.storageClass

Persistent Volume storage class ""

governance.zookeeper .
persistence.accessModes

Persistent Volume access modes ["R eadWrite
Once"]

governance.zo okeeper.
persistence.size

Persistent Volume size 8Gi

governance.zo okeeper.
resources.limits

The resources limits for the
ZooKeeper containers

{}

governance.zookeeper.r es-
ources.requests.memory

The requested memory for the
ZooKeeper containers

ˋ 256Mi`

governance.zookeepe r.
resources.requests.cpu

The requested cpu for the
ZooKeeper containers

250m

4.2. ShardingSphere-Proxy 189

Apache ShardingSphere document, v5.2.1

Compute-Node ShardingSphere-Proxy parameters

Name Description Value

compute.i mage.
repository

Image name of ShardingSphere‐Proxy. a pache/sharding
sphere-proxy

compute.i mage.
pullPolicy

The policy for pulling ShardingSphere‐
Proxy image

ˋˋ IfNotPresentˋˋ

co mpute.image.tag ShardingSphere‐Proxy image tag 5.1.2
compute.i magePullSe-
crets

Specify docker‐registry secret names as
an array

[]

compute.r esources.
limits

The resources limits for the
ShardingSphere‐Proxy containers

{}

c ompute.resources.
requests.memory

The requested memory for the
ShardingSphere‐Proxy containers

2Gi

compute.resourc es.
requests.cpu

The requested cpu for the
ShardingSphere‐Proxy containers

200m

c ompute.replicas Number of cluster replicas 3
compu te.service.type ShardingSphere‐Proxy network mode ClusterIP
compu te.service.port ShardingSphere‐Proxy expose port 3307
compute.mysqlCo nnec-
tor.version

MySQL connector version 5.1.49

co mpute.startPort ShardingSphere‐Proxy start port 3307
compu te.serverConfig Server Configuration file for

ShardingSphere‐Proxy
""

Sample

values.yaml

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

4.2. ShardingSphere-Proxy 190

Apache ShardingSphere document, v5.2.1

#

@section Governance-Node parameters
@param governance.enabled Switch to enable or disable the governance helm chart
##
governance:
enabled: true
@section Governance-Node ZooKeeper parameters
zookeeper:

@param governance.zookeeper.enabled Switch to enable or disable the
ZooKeeper helm chart

##
enabled: true
@param governance.zookeeper.replicaCount Number of ZooKeeper nodes
##
replicaCount: 1
ZooKeeper Persistence parameters
ref: https://kubernetes.io/docs/user-guide/persistent-volumes/
@param governance.zookeeper.persistence.enabled Enable persistence on

ZooKeeper using PVC(s)
@param governance.zookeeper.persistence.storageClass Persistent Volume

storage class
@param governance.zookeeper.persistence.accessModes Persistent Volume access

modes
@param governance.zookeeper.persistence.size Persistent Volume size
##
persistence:
enabled: false
storageClass: ""
accessModes:

- ReadWriteOnce
size: 8Gi

ZooKeeper's resource requests and limits
ref: https://kubernetes.io/docs/user-guide/compute-resources/
@param governance.zookeeper.resources.limits The resources limits for the

ZooKeeper containers
@param governance.zookeeper.resources.requests.memory The requested memory

for the ZooKeeper containers
@param governance.zookeeper.resources.requests.cpu The requested cpu for the

ZooKeeper containers
##
resources:
limits: {}
requests:

memory: 256Mi
cpu: 250m

@section Compute-Node parameters

4.2. ShardingSphere-Proxy 191

Apache ShardingSphere document, v5.2.1

##
compute:
@section Compute-Node ShardingSphere-Proxy parameters
ref: https://kubernetes.io/docs/concepts/containers/images/
@param compute.image.repository Image name of ShardingSphere-Proxy.
@param compute.image.pullPolicy The policy for pulling ShardingSphere-Proxy

image
@param compute.image.tag ShardingSphere-Proxy image tag
##
image:

repository: "apache/shardingsphere-proxy"
pullPolicy: IfNotPresent
Overrides the image tag whose default is the chart appVersion.
##
tag: "5.1.2"

@param compute.imagePullSecrets Specify docker-registry secret names as an
array
e.g：
imagePullSecrets:
- name: myRegistryKeySecretName
##
imagePullSecrets: []
ShardingSphere-Proxy resource requests and limits
ref: https://kubernetes.io/docs/concepts/configuration/manage-resources-

containers/
@param compute.resources.limits The resources limits for the ShardingSphere-

Proxy containers
@param compute.resources.requests.memory The requested memory for the

ShardingSphere-Proxy containers
@param compute.resources.requests.cpu The requested cpu for the

ShardingSphere-Proxy containers
##
resources:

limits: {}
requests:
memory: 2Gi
cpu: 200m

ShardingSphere-Proxy Deployment Configuration
ref: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
ref: https://kubernetes.io/docs/concepts/services-networking/service/
@param compute.replicas Number of cluster replicas
##
replicas: 3
@param compute.service.type ShardingSphere-Proxy network mode
@param compute.service.port ShardingSphere-Proxy expose port
##
service:

type: ClusterIP

4.2. ShardingSphere-Proxy 192

Apache ShardingSphere document, v5.2.1

port: 3307
MySQL connector Configuration
ref: https://shardingsphere.apache.org/document/current/en/quick-start/

shardingsphere-proxy-quick-start/
@param compute.mysqlConnector.version MySQL connector version
##
mysqlConnector:

version: "5.1.49"
@param compute.startPort ShardingSphere-Proxy start port
ShardingSphere-Proxy start port
ref: https://shardingsphere.apache.org/document/current/en/user-manual/

shardingsphere-proxy/startup/docker/
##
startPort: 3307
@section Compute-Node ShardingSphere-Proxy ServerConfiguration parameters
NOTE: If you use the sub-charts to deploy Zookeeper, the server-lists field

must be "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.Namespace }}",
otherwise please fill in the correct zookeeper address
The server.yaml is auto-generated based on this parameter.
If it is empty, the server.yaml is also empty.
ref: https://shardingsphere.apache.org/document/current/en/user-manual/

shardingsphere-jdbc/yaml-config/mode/
ref: https://shardingsphere.apache.org/document/current/en/user-manual/common-

config/builtin-algorithm/metadata-repository/
##
serverConfig:

@section Compute-Node ShardingSphere-Proxy ServerConfiguration authority
parameters

NOTE: It is used to set up initial user to login compute node, and authority
data of storage node.

ref: https://shardingsphere.apache.org/document/current/en/user-manual/
shardingsphere-proxy/yaml-config/authentication/

@param compute.serverConfig.authority.privilege.type authority provider for
storage node, the default value is ALL_PERMITTED

@param compute.serverConfig.authority.users[0].password Password for compute
node.

@param compute.serverConfig.authority.users[0].user Username,authorized host
for compute node. Format: <username>@<hostname> hostname is % or empty string means
do not care about authorized host

##
authority:
privilege:

type: ALL_PRIVILEGES_PERMITTED
users:
- password: root

user: root@%
@section Compute-Node ShardingSphere-Proxy ServerConfiguration mode

Configuration parameters

4.2. ShardingSphere-Proxy 193

Apache ShardingSphere document, v5.2.1

@param compute.serverConfig.mode.type Type of mode configuration. Now only
support Cluster mode

@param compute.serverConfig.mode.repository.props.namespace Namespace of
registry center

@param compute.serverConfig.mode.repository.props.server-lists Server lists
of registry center

@param compute.serverConfig.mode.repository.props.maxRetries Max retries of
client connection

@param compute.serverConfig.mode.repository.props.
operationTimeoutMilliseconds Milliseconds of operation timeout

@param compute.serverConfig.mode.repository.props.retryIntervalMilliseconds
Milliseconds of retry interval

@param compute.serverConfig.mode.repository.props.timeToLiveSeconds Seconds
of ephemeral data live

@param compute.serverConfig.mode.repository.type Type of persist repository.
Now only support ZooKeeper

@param compute.serverConfig.mode.overwrite Whether overwrite persistent
configuration with local configuration

##
mode:
type: Cluster
repository:

type: ZooKeeper
props:

maxRetries: 3
namespace: governance_ds
operationTimeoutMilliseconds: 5000
retryIntervalMilliseconds: 500
server-lists: "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.

Namespace }}"
timeToLiveSeconds: 60

overwrite: true

Add dependencies

This chapter mainly introduces how to download optional dependencies of ShardingSphere.

Add Bitronix dependencies

Add Bitronix dependencies

Adding Bitronix dependencies requires downloading the following jar files and adding them under
ext-lib path.

4.2. ShardingSphere-Proxy 194

Apache ShardingSphere document, v5.2.1

jar file downloads

• btm‐2.1.3.jar

• shardingsphere‐transaction‐xa‐bitronix.jar

Please download the corresponding shardingsphere-transaction-xa-bitronix.jar file ac‐
cording to the proxy version.

Add Narayana dependencies

Add Narayana dependencies

Adding Narayana dependencies requires downloading the following jar files and adding them under
ext-lib path.

jar file downloads

• arjuna‐5.12.4.Final.jar

• common‐5.12.4.Final.jar

• javax.activation‐api‐1.2.0.jar

• jaxb‐api‐2.3.0.jar

• jaxb‐core‐2.3.0.jar

• jaxb‐impl‐2.3.0.jar

• jboss‐connector‐api_1.7_spec‐1.0.0.Final.jar

• jboss‐logging‐3.2.1.Final.jar

• jboss‐transaction‐api_1.2_spec‐1.0.0.Alpha3.jar

• jboss‐transaction‐spi‐7.6.0.Final.jar

• jta‐5.12.4.Final.jar

• narayana‐jts‐integration‐5.12.4.Final.jar

• shardingsphere‐transaction‐xa‐narayana.jar

Please download the corresponding shardingsphere-transaction-xa-narayana.jar file ac‐
cording to the proxy version.

4.2. ShardingSphere-Proxy 195

https://repo1.maven.org/maven2/org/codehaus/btm/btm/2.1.3/btm-2.1.3.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-bitronix
https://repo1.maven.org/maven2/org/jboss/narayana/arjunacore/arjuna/5.12.4.Final/arjuna-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/common/5.12.4.Final/common-5.12.4.Final.jar
https://repo1.maven.org/maven2/javax/activation/javax.activation-api/1.2.0/javax.activation-api-1.2.0.jar
https://repo1.maven.org/maven2/javax/xml/bind/jaxb-api/2.3.0/jaxb-api-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-core/2.3.0/jaxb-core-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-impl/2.3.0/jaxb-impl-2.3.0.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/resource/jboss-connector-api_1.7_spec/1.0.0.Final/jboss-connector-api_1.7_spec-1.0.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/logging/jboss-logging/3.2.1.Final/jboss-logging-3.2.1.Final.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/transaction/jboss-transaction-api_1.2_spec/1.0.0.Alpha3/jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
https://repo1.maven.org/maven2/org/jboss/jboss-transaction-spi/7.6.0.Final/jboss-transaction-spi-7.6.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jta/jta/5.12.4.Final/jta-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jts/narayana-jts-integration/5.12.4.Final/narayana-jts-integration-5.12.4.Final.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-narayana

Apache ShardingSphere document, v5.2.1

4.2.2 Yaml Configuration

The YAML configuration of ShardingSphere‐JDBC is the subset of ShardingSphere‐Proxy. In server.
yaml file, ShardingSphere‐Proxy can configure authority feature and more properties for Proxy only.

This chapter will introduce the extra YAML configuration of ShardingSphere‐Proxy.
Authorization

Authorization configuration provided for users who can connect to ShardingSphere‐Proxy. Users can
be granted different authorities.

Background

ShardingSphere‐Proxy uses the global rule, Authority Rule (identified as !AUTHORITY), to configure
user and authorization information.

Thanks to ShardingSphere’s pluggable architecture, Proxy provides two levels of authority providers,
namely:

• ALL_PERMITTED: grant all authorities by default without authentication.

• DATABASE_PERMITTED: grant users the authority to specify a logical database, mapped through
user-database-mappings.

The administrator can choose which authority provider to use as needed when configuring the Author‐
ity Rule.

Parameter

rules:
- !AUTHORITY

users:
- # Specify the username, authorized host, and password for logging in to the

compute node. Format: <username>@<hostname>:<password>. When the hostname is % or
an empty string, it indicates that the authorized host is not limited.

provider:
type: # The authority provider type for storage node. The default value is

ALL_PERMITTED.

4.2. ShardingSphere-Proxy 196

Note: The YAML configuration file supports more than 3MB of configuration content.

Apache ShardingSphere document, v5.2.1

Sample

ALL_PERMITTED

rules:
- !AUTHORITY

users:
- root@localhost:root
- my_user@:pwd

provider:
type: ALL_PERMITTED

The above configuration indicates: ‐ The user root can connect to Proxy only through localhost, and
the password is root. ‐ The user my_user can connect to Proxy through any host, and the password is
pwd. ‐ The provider type is ALL_PERMITTED, which indicates that users are granted all authorities
by default without authentication.

DATABASE_PERMITTED

rules:
- !AUTHORITY

users:
- root@localhost:root
- my_user@:pwd

provider:
type: DATABASE_PERMITTED
props:
user-database-mappings: root@localhost=sharding_db, root@localhost=test_db,

my_user@=sharding_db

The above configuration indicates: ‐ The provider type is DATABASE_PERMITTED, which indicates
that users are granted database‐level authority and configuration is needed. ‐ The user root can con‐
nect to Proxy only through localhost and can access sharding_db and test_db. ‐ The user my_user
can connect to Proxy through any host and can access sharding_db.

4.2. ShardingSphere-Proxy 197

http://localhost
http://localhost

Apache ShardingSphere document, v5.2.1

Related References

Please refer to Authority Provider for specific implementation of authority provider.

Properties

Background

Apache ShardingSphere can configure system‐level configuration throughproperty configuration. This
section describes the configuration items in server.yaml.

4.2. ShardingSphere-Proxy 198

https://shardingsphere.apache.org/document/current/en/dev-manual/proxy

Apache ShardingSphere document, v5.2.1

Parameters

N ame •
D a t a T y p e *

Description •
D e f a u l t *

•
D y n am i c U p d a
t e *

sql‐ show (?) b o o l e a n Whether to print
SQL in logs.
Printing SQL
can help devel‐
opers quickly
locate system
problems. Logs
contain the fol‐
lowing contents:
logical SQL,
authentic SQL
and SQL pars‐
ing result. If
configuration is
enabled，logs
will use Topic
Sharding-
Sphere-SQL，
and log level is
INFO。

f a l s e T r u e

sq l‐si mple (?) b o o l e a n Whether to print
simple SQL in
logs.

f a l s e T r u e

kern el‐e xecu
tor‐ size (?)

i n t Set the size of
the thread pool
for task pro‐
cessing. Each
ShardingSphere‐
DataSource uses
an independent
thread pool，and
different data
sources on the
same JVM do
not share thread
pools.

i n f i n i t e F a l s e

ma x‐co nnec tion
s‐si ze‐p er‐q uery
(?)

i n t The maximum
number of con‐
nections that a
query request
can use in each
database in‐
stance.

1 T r u e

chec k‐ta ble‐
meta data ‐ena
bled (?)

b o o l e a n Whether shard
metadata is
checked for
structural con‐
sistency when
the program
is started and
updated.

f a l s e T r u e

pr oxy‐ fron tend
‐flu sh‐t hres hold
(?)

i n t Set the I/O re‐
fresh threshold
for the number
of transmitted
data items in
ShardingSphere‐
Proxy.

1 2 8 T r u e

pr oxy‐ hint ‐ena
bled (?)

b o o l e a n Whether Hint
is allowed in
ShardingSphere‐
Proxy. Using
Hint changes
the Proxy’s
threading model
from IO mul‐
tiplexing to a
separate thread
per request, re‐
ducing Proxy’s
throughput.

f a l s e T r u e

pr oxy‐ back end‐
quer y‐fe tch‐ size
(?)

i n t The number
of rows of data
obtained when
the backend
Proxy interacts
with databases
(using a cursor).
A larger number
may increase
the occupied
memory of
ShardingSphere‐
Proxy. The
default value of
‐1 indicates the
minimum value
for JDBC driver.

•
1

T r u e

prox y‐fr onte nd‐
e xecu tor‐ size (?)

i n t The number of
threads in the
Netty thread
pool of front‐end
Proxy.

0 F a l s e

pro xy‐b acke nd‐
e xecu tor‐ suit
able (?)

S t r i n g Options: OLAP
and OLTP. The
OLTP option may
reduce the time
overhead when
writing packets
to the client，but
if the number
of client con‐
nections exceeds
proxy-frontend-executor-size，
especially with
slow SQL, it can
cause a longer
delay to SQL
execution and
even block con‐
nections to other
clients.

O L A P T r u e

pr oxy‐ fron tend
‐max ‐con nect
ions (?)

i n t The maximum
number of clients
that can be con‐
nected to Proxy.
The default value
of 0 indicates that
there’s no limit.

0 T r u e

sql ‐fed erat ion‐
type (?)

S t r i n g SQL federation
executor type, in‐
cluding: NONE,
ORIGINAL, AD‐
VANCED.

N O N E F a l s e

pro xy‐mysql ‐def
ault ‐ver sion (?)

S t r i n g Proxy specifies
the MySQL ver‐
sion through
configuration
files, and the
default verison is
5.7.22.

2 2 F a l s e

pr oxy‐ defa ult‐
port (?)

S t r i n g Proxy specifies
the default win‐
dow through
configuration
files.

3 3 0 7 F a l s e

pro xy‐n etty ‐bac
klog (?)

i n t Proxy specifies
the default netty
back_log pa‐
rameter through
configuration
files.

1 0 2 4 F a l s e

4.2. ShardingSphere-Proxy 199

Apache ShardingSphere document, v5.2.1

Property configuration can be modified according to DistSQL#RAL. Properties that support dynamic
change can take effect immediately. Properties that do not support dynamic change take effect after a
restart.

Sample

For a complete sample, please refer to server.yaml in ShardingSphere’s repository：https://github
.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere‐pr
oxy/shardingsphere‐proxy‐bootstrap/src/main/resources/conf/server.yaml#L71‐L93

Rules

Background

This section describes how to configure the rules for ShardingSphere‐Proxy.

Parameters Explained

Rules configuration of ShardingSphere‐Proxy is the same as that of ShardingSphere‐JDBC. For details,
please refer to ShardingSphere‐JDBC Rules Configuration.

Notice

Unlike ShardingSphere‐JDBC, the following rules need to be configured in server.yaml of
ShardingSphere‐Proxy:

• SQL Parsing

• Distributed Operations

• SQL Translator

4.2.3 DistSQL

This chapter will introduce the detailed syntax of DistSQL.

Definition

DistSQL (Distributed SQL) is Apache ShardingSphere’s specific SQL, providing additional operation
capabilities compared to standard SQL.

Flexible rule configuration and resource management & control capabilities are one of the character‐
istics of Apache ShardingSphere.

4.2. ShardingSphere-Proxy 200

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/

Apache ShardingSphere document, v5.2.1

When using 4.x and earlier versions, developers can operate data just like using a database, but they
need to configure resources and rules through YAML file (or registry center). However, the YAML file
format and the changes brought by using the registry center made it unfriendly to DBAs.

Starting from version 5.x, DistSQL enables users to operate Apache ShardingSphere just like a database,
transforming it from a framework and middleware for developers to a database product for DBAs.

Related Concepts

DistSQL is divided into RDL, RQL, RAL and RUL.

RDL

Resource & Rule Definition Language, is responsible for the definition of resources and rules.

RQL

Resource & Rule Query Language, is responsible for the query of resources and rules.

RAL

Resource&RuleAdministrationLanguage, is responsible for hint, circuit breaker, configuration import
and export, scaling control and other management functions.

RUL

Resource & Rule Utility Language, is responsible for SQL parsing, SQL formatting, preview execution
plan, etc.

Impact on the System

Before

Before having DistSQL, users used SQL to operate data while using YAML configuration files to manage
ShardingSphere, as shown below:

4.2. ShardingSphere-Proxy 201

Apache ShardingSphere document, v5.2.1

At that time, users faced the following problems: ‐ Different types of clients are required to operate data
and manage ShardingSphere configuration. ‐ Multiple logical databases require multiple YAML files. ‐
Editing a YAML file requires writing permissions. ‐ Need to restart ShardingSphere after editing YAML.

After

With the advent of DistSQL, the operation of ShardingSphere has also changed:

Now, the user experience has been greatly improved: ‐ Uses the same client to operate data and Shard‐
ingSphere configuration. ‐ No need for additional YAML files, and the logical databases are managed
through DistSQL. ‐ Editing permissions for files are no longer required, and configuration is managed
through DistSQL. ‐ Configuration changes take effect in real‐time without restarting ShardingSphere.

4.2. ShardingSphere-Proxy 202

Apache ShardingSphere document, v5.2.1

Limitations

DistSQL can be used only with ShardingSphere‐Proxy, not with ShardingSphere‐JDBC for now.

How it works

Like standard SQL, DistSQL is recognized by the parsing engine of ShardingSphere. It converts the
input statement into an abstract syntax tree and then generates the Statement corresponding to each
grammar, which is processed by the appropriate Handler.

Related References

User Manual: DistSQL

Syntax

This chapter describes the syntax of DistSQL in detail, and introduces use of DistSQL with practical
examples.

Syntax Rule

In DistSQL statement, except for keywords, the input format of other elements shall conform to the
following rules.

4.2. ShardingSphere-Proxy 203

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/

Apache ShardingSphere document, v5.2.1

Identifier

1. The identifier represents an object in the SQL statement, including:

• database name

• table name

• column name

• index name

• resource name

• rule name

• algorithm name

2. The allowed characters in the identifier are: [A-Z, A-Z, 0-9, _] (letters, numbers, under‐
scores) and should start with a letter.

3. When keywords or special characters appear in the identifier, use the backticks (ˋ).

Literal

Types of literals include:

• string: enclosed in single quotes (’) or double quotes (“)

• int: it is generally a positive integer, such as 0‐9;

Note: some DistSQL syntax allows negative values. In this case, a negative sign (‐) can be added before
the number, such as ‐1.

• boolean, containing only true & false. Case insensitive.

RDL Syntax

RDL (Resource & Rule Definition Language) responsible for definition of resources/rules.

Resource Definition

Syntax

ADD RESOURCE resourceDefinition [, resourceDefinition] ...

ALTER RESOURCE resourceDefinition [, resourceDefinition] ...

DROP RESOURCE resourceName [, resourceName] ... [ignore single tables]

resourceDefinition:
simpleSource | urlSource

4.2. ShardingSphere-Proxy 204

Apache ShardingSphere document, v5.2.1

simpleSource:
resourceName(HOST=hostname,PORT=port,DB=dbName,USER=user [,PASSWORD=password]

[,PROPERTIES(property [,property]) ...])

urlSource:
resourceName(URL=url,USER=user [,PASSWORD=password] [,PROPERTIES(property [,

property]) ...])

property:
key=value

Parameters Explained

Name DataType Description

resourceName IDENTIFIER Resource name
hostname STRING Host or IP
port INT Port
dbName STRING DB name
url STRING URL
user STRING username
password STRING password

Notes

• Before adding resources, please confirm that a distributed database has been created, and execute
the use command to successfully select a database;

• Confirm that the resource to be added or altered can be connected, otherwise the operation will
not be successful;

• Duplicate resourceName is not allowed;

• PROPERTIES is used to customize connection pool parameters, key and value are both STRING
types;

• ALTER RESOURCE is not allowed to change the real data source associated with this resource;

• ALTER RESOURCE will switch the connection pool. This operation may affect the ongoing busi‐
ness, please use it with caution;

• DROP RESOURCE will only delete logical resources, not real data sources;

• Resources referenced by rules cannot be deleted;

• If the resource is only referenced bysingle table rule, and the user confirms that the restric‐
tion can be ignored, the optional parameter ignore single tables can be added to perform
forced deletion.

4.2. ShardingSphere-Proxy 205

Apache ShardingSphere document, v5.2.1

Example

ADD RESOURCE resource_0 (
HOST="127.0.0.1",
PORT=3306,
DB="db0",
USER="root",
PASSWORD="root"

),resource_1 (
HOST="127.0.0.1",
PORT=3306,
DB="db1",
USER="root"

),resource_2 (
HOST="127.0.0.1",
PORT=3306,
DB="db2",
USER="root",
PROPERTIES("maximumPoolSize"="10")

),resource_3 (
URL="jdbc:mysql://127.0.0.1:3306/db3?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"="10","idleTimeout"="30000")

);

ALTER RESOURCE resource_0 (
HOST="127.0.0.1",
PORT=3309,
DB="db0",
USER="root",
PASSWORD="root"

),resource_1 (
URL="jdbc:mysql://127.0.0.1:3309/db1?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"="10","idleTimeout"="30000")

);

DROP RESOURCE resource_0, resource_1;
DROP RESOURCE resource_2, resource_3 ignore single tables;

4.2. ShardingSphere-Proxy 206

Apache ShardingSphere document, v5.2.1

Rule Definition

This chapter describes the syntax of rule definition.

Sharding

Syntax

Sharding Table Rule

CREATE SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

ALTER SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

DROP SHARDING TABLE RULE tableName [, tableName] ...

CREATE DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

ALTER DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

DROP DEFAULT SHARDING shardingScope STRATEGY;

CREATE SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

ALTER SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

DROP SHARDING ALGORITHM algorithmName [, algorithmName] ...

CREATE SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

ALTER SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

DROP SHARDING KEY GENERATOR [IF EXISTS] keyGeneratorName [, keyGeneratorName] ...

CREATE SHARDING AUDITOR auditorDefinition [, auditorDefinition] ...

ALTER SHARDING AUDITOR auditorDefinition [, auditorDefinition] ...

DROP SHARDING AUDITOR [IF EXISTS] auditorName [, auditorName] ...

shardingTableRuleDefinition:
shardingAutoTableRule | shardingTableRule

4.2. ShardingSphere-Proxy 207

Apache ShardingSphere document, v5.2.1

shardingAutoTableRule:
tableName(resources, shardingColumn, algorithmDefinition [,

keyGenerateDeclaration] [, auditDeclaration])

shardingTableRule:
tableName(dataNodes [, databaseStrategy] [, tableStrategy] [,

keyGenerateDeclaration] [, auditDeclaration])

resources:
RESOURCES(resource [, resource] ...)

dataNodes:
DATANODES(dataNode [, dataNode] ...)

resource:
resourceName | inlineExpression

dataNode:
dataNodeName | inlineExpression

shardingColumn:
SHARDING_COLUMN=columnName

algorithmDefinition:
TYPE(NAME=shardingAlgorithmType [, PROPERTIES([algorithmProperties])])

keyGenerateDeclaration:
keyGenerateDefinition | keyGenerateConstruction

keyGenerateDefinition:
KEY_GENERATE_STRATEGY(COLUMN=columnName, strategyDefinition)

auditDeclaration:
auditDefinition | auditStrategy

auditDefinition:
AUDIT_STRATEGY([(singleAuditDefinition),(singleAuditDefinition)], ALLOW_HINT_

DISABLE=true)

singleAuditDefinition:
NAME=auditor1, algorithmDefinition

auditStrategy:
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2], ALLOW_HINT_DISABLE=true)

shardingScope:
DATABASE | TABLE

4.2. ShardingSphere-Proxy 208

Apache ShardingSphere document, v5.2.1

databaseStrategy:
DATABASE_STRATEGY(shardingStrategy)

tableStrategy:
TABLE_STRATEGY(shardingStrategy)

keyGenerateConstruction
KEY_GENERATE_STRATEGY(COLUMN=columnName, KEY_

GENERATOR=keyGenerateAlgorithmName)

shardingStrategy:
TYPE=strategyType, shardingColumn, shardingAlgorithm

shardingAlgorithm:
existingAlgorithm | autoCreativeAlgorithm

existingAlgorithm:
SHARDING_ALGORITHM=shardingAlgorithmName

autoCreativeAlgorithm:
SHARDING_ALGORITHM(algorithmDefinition)

strategyDefinition:
TYPE(NAME=keyGenerateStrategyType [, PROPERTIES([algorithmProperties])])

shardingAlgorithmDefinition:
shardingAlgorithmName(algorithmDefinition)

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

keyGeneratorDefinition:
keyGeneratorName (algorithmDefinition)

auditorDefinition:
auditorName (auditorAlgorithmDefinition)

auditorAlgorithmDefinition:
TYPE(NAME=auditorAlgorithmType [, PROPERTIES([algorithmProperties])])

• RESOURCES needs to use data source resources managed by RDL

• shardingAlgorithmType specifies the type of automatic sharding algorithm, please refer to
Auto Sharding Algorithm

• keyGenerateStrategyType specifies the distributed primary key generation strategy, please

4.2. ShardingSphere-Proxy 209

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/

Apache ShardingSphere document, v5.2.1

refer to Key Generate Algorithm

• auditorAlgorithmType specifies the sharding audit strategy, please refer to Sharding Audit
Algorithm；

• Duplicate tableName will not be created

• shardingAlgorithm can be reused by different Sharding Table Rule, so when executing
DROP SHARDING TABLE RULE, the corresponding shardingAlgorithm will not be removed

• To remove shardingAlgorithm, please execute DROP SHARDING ALGORITHM

• strategyType specifies the sharding strategy, please refer toSharding Strategy

• Sharding Table Rule supports both Auto Table and Table at the same time. The two types
are different in syntax. For the corresponding configuration file, please refer to Sharding

• When using the autoCreativeAlgorithm way to specify shardingStrategy, a new
sharding algorithm will be created automatically. The algorithm naming rule is table-
Name_strategyType_shardingAlgorithmType, such as t_order_database_inline

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

ALTER SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

DROP SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

bindTableRulesDefinition:
(tableName [, tableName] ...)

• ALTER will overwrite the binding table configuration in the database with the new configuration

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

ALTER SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

DROP SHARDING BROADCAST TABLE RULES

• ALTERwill overwrite the broadcast table configuration in the databasewith thenewconfiguration

4.2. ShardingSphere-Proxy 210

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#sharding-strategy
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/

Apache ShardingSphere document, v5.2.1

Example

Sharding Table Rule

Key Generator

CREATE SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME="SNOWFLAKE")
);

ALTER SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME="SNOWFLAKE"))
);

DROP SHARDING KEY GENERATOR snowflake_key_generator;

Auditor

CREATE SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS")
);

ALTER SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS")
);

DROP SHARDING AUDITOR IF EXISTS sharding_key_required_auditor;

Auto Table

CREATE SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

ALTER SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1,resource_2,resource_3),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="16")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

DROP SHARDING TABLE RULE t_order;

DROP SHARDING ALGORITHM t_order_hash_mod;

Table

4.2. ShardingSphere-Proxy 211

Apache ShardingSphere document, v5.2.1

CREATE SHARDING ALGORITHM table_inline (
TYPE(NAME="inline",PROPERTIES("algorithm-expression"="t_order_item_${order_id % 2}
"))
);

CREATE SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..1}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="resource_${user_id
% 2}")))),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

ALTER SHARDING ALGORITHM database_inline (
TYPE(NAME="inline",PROPERTIES("algorithm-expression"="resource_${user_id % 4}"))
),table_inline (
TYPE(NAME="inline",PROPERTIES("algorithm-expression"="t_order_item_${order_id % 4}
"))
);

ALTER SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

DROP SHARDING TABLE RULE t_order_item;

DROP SHARDING ALGORITHM database_inline;

CREATE DEFAULT SHARDING DATABASE STRATEGY (
TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=database_inline
);

ALTER DEFAULT SHARDING DATABASE STRATEGY (
TYPE="standard",SHARDING_COLUMN=another_id,SHARDING_ALGORITHM=database_inline
);

DROP DEFAULT SHARDING DATABASE STRATEGY;

4.2. ShardingSphere-Proxy 212

Apache ShardingSphere document, v5.2.1

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item),(t_1,t_2);

ALTER SHARDING BINDING TABLE RULES (t_order,t_order_item);

DROP SHARDING BINDING TABLE RULES;

DROP SHARDING BINDING TABLE RULES (t_order,t_order_item);

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (t_b,t_a);

ALTER SHARDING BROADCAST TABLE RULES (t_b,t_a,t_3);

DROP SHARDING BROADCAST TABLE RULES;

Single Table

Definition

CREATE DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

ALTER DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

DROP DEFAULT SINGLE TABLE RULE

singleTableRuleDefinition:
RESOURCE = resourceName

• RESOURCE needs to use data source resource managed by RDL

Example

Single Table Rule

CREATE DEFAULT SINGLE TABLE RULE RESOURCE = ds_0

ALTER DEFAULT SINGLE TABLE RULE RESOURCE = ds_1

DROP DEFAULT SINGLE TABLE RULE

4.2. ShardingSphere-Proxy 213

Apache ShardingSphere document, v5.2.1

Readwrite-Splitting

Syntax

CREATE READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition] ...

ALTER READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition] ...

DROP READWRITE_SPLITTING RULE ruleName [, ruleName] ...

readwriteSplittingRuleDefinition:
ruleName ([staticReadwriteSplittingRuleDefinition |

dynamicReadwriteSplittingRuleDefinition]
[, loadBalancerDefinition])

staticReadwriteSplittingRuleDefinition:
WRITE_RESOURCE=writeResourceName, READ_RESOURCES(resourceName [, resourceName]

...)

dynamicReadwriteSplittingRuleDefinition:
AUTO_AWARE_RESOURCE=resourceName [, WRITE_DATA_SOURCE_QUERY_

ENABLED=writeDataSourceQueryEnabled]

loadBalancerDefinition:
TYPE(NAME=loadBalancerType [, PROPERTIES([algorithmProperties])])

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

writeDataSourceQueryEnabled:
TRUE | FALSE

4.2. ShardingSphere-Proxy 214

Apache ShardingSphere document, v5.2.1

Parameters Explained

name Da te Ty
pe

Description

ruleName ID EN TI
FI ER

Rule name

writeRe source‐
Name

ID EN TI
FI ER

Write data source name

readRe sourceName ID EN TI
FI ER

Read data source name

a utoAwareRe
sourceName

ID EN TI
FI ER

Database discovery logic data source name

writeDa taSourceQu
eryEnabled

B OO LE
AN

All read data source are offline, write data source whether the
data source is responsible for read traffic

loadBa lancerType ST RI NG Load balancing algorithm type

Notes

• Support the creation of static readwrite‐splitting rules and dynamic readwrite‐splitting rules

• Dynamic readwrite‐splitting rules rely on database discovery rules

• loadBalancerType specifies the load balancing algorithm type, please refer to Load Balance
Algorithm

• Duplicate ruleName will not be created

Example

// Static
CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1),
TYPE(NAME="random")
);

// Dynamic
CREATE READWRITE_SPLITTING RULE ms_group_1 (
AUTO_AWARE_RESOURCE=group_0,
WRITE_DATA_SOURCE_QUERY_ENABLED=false,
TYPE(NAME="random",PROPERTIES(write_ds=2,read_ds_0=2,read_ds_1=2,read_ds_2=1))
);

ALTER READWRITE_SPLITTING RULE ms_group_1 (
WRITE_RESOURCE=write_ds,

4.2. ShardingSphere-Proxy 215

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document, v5.2.1

READ_RESOURCES(read_ds_0,read_ds_1,read_ds_2),
TYPE(NAME="random",PROPERTIES(write_ds=2,read_ds_0=2,read_ds_1=2,read_ds_2=1))
);

DROP READWRITE_SPLITTING RULE ms_group_1;

DB Discovery

Syntax

CREATE DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

ALTER DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

DROP DB_DISCOVERY RULE ruleName [, ruleName] ...

CREATE DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

ALTER DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

DROP DB_DISCOVERY TYPE discoveryTypeName [, discoveryTypeName] ...

CREATE DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

ALTER DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

DROP DB_DISCOVERY HEARTBEAT discoveryHeartbeatName [, discoveryHeartbeatName] ...

ruleDefinition:
(databaseDiscoveryRuleDefinition | databaseDiscoveryRuleConstruction)

databaseDiscoveryRuleDefinition
ruleName (resources, typeDefinition, heartbeatDefinition)

databaseDiscoveryRuleConstruction
ruleName (resources, TYPE = discoveryTypeName, HEARTBEAT =

discoveryHeartbeatName)

databaseDiscoveryTypeDefinition
discoveryTypeName (typeDefinition)

databaseDiscoveryHeartbaetDefinition

4.2. ShardingSphere-Proxy 216

Apache ShardingSphere document, v5.2.1

discoveryHeartbeatName (PROPERTIES (properties))

resources:
RESOURCES(resourceName [, resourceName] ...)

typeDefinition:
TYPE(NAME=typeName [, PROPERTIES([properties])])

heartbeatDefinition
HEARTBEAT (PROPERTIES (properties))

properties:
property [, property] ...

property:
key=value

Parameters Explained

name DateType Description

discoveryTypeName IDENTIFIER Database discovery type name
ruleName IDENTIFIER Rule name
discoveryHeartbeatName IDENTIFIER Detect heartbeat name
typeName STRING Database discovery type, such as: MySQL.MGR
resourceName IDENTIFIER Resource name

Notes

• discoveryType specifies the database discovery service type, ShardingSphere has built‐in
support for MySQL.MGR

• Duplicate ruleName will not be created

• The discoveryType and discoveryHeartbeat being used cannot be deleted

• Names with - need to use " " when changing

• When removing the discoveryRule, the discoveryType and discoveryHeartbeat used
by the discoveryRule will not be removed

4.2. ShardingSphere-Proxy 217

Apache ShardingSphere document, v5.2.1

Example

When creating a discoveryRule, create both discoveryType and discoveryHeartbeat

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='246e9612-aaf1')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

DROP DB_DISCOVERY RULE db_discovery_group_0;

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

Use the existing discoveryType and discoveryHeartbeat to create a discoveryRule

CREATE DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec'))

);

CREATE DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/5 * * * * ?')

);

CREATE DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

ALTER DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='246e9612-aaf1'))

);

ALTER DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/10 * * * * ?')

);

4.2. ShardingSphere-Proxy 218

Apache ShardingSphere document, v5.2.1

ALTER DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

DROP DB_DISCOVERY RULE db_discovery_group_1;

DROP DB_DISCOVERY TYPE db_discovery_group_1_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat;

Encrypt

Syntax

CREATE ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

ALTER ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

DROP ENCRYPT RULE tableName [, tableName] ...

encryptRuleDefinition:
tableName(COLUMNS(columnDefinition [, columnDefinition] ...), QUERY_WITH_

CIPHER_COLUMN=queryWithCipherColumn)

columnDefinition:
(NAME=columnName [, PLAIN=plainColumnName] , CIPHER=cipherColumnName,

encryptAlgorithm)

encryptAlgorithm:
TYPE(NAME=encryptAlgorithmType [, PROPERTIES([algorithmProperties])])

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

4.2. ShardingSphere-Proxy 219

Apache ShardingSphere document, v5.2.1

Parameters Explained

name DateType Description

tableName IDENTIFIER Table name
columnName IDENTIFIER Logic column name
plainColumnName IDENTIFIER Plain column name
cipherColumnName IDENTIFIER Cipher column name
encryptAlgorithmType STRING Encryption algorithm type name

Notes

• PLAIN specifies the plain column, CIPHER specifies the cipher column

• encryptAlgorithmType specifies the encryption algorithm type, please refer to Encryption
Algorithm

• Duplicate tableName will not be created

• queryWithCipherColumn support uppercase or lowercase true or false

Example

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER =order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=true),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=FALSE);

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id,CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=TRUE);

DROP ENCRYPT RULE t_encrypt,t_encrypt_2;

4.2. ShardingSphere-Proxy 220

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document, v5.2.1

Shadow

Syntax

CREATE SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

ALTER SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

CREATE SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

ALTER SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

DROP SHADOW RULE ruleName [, ruleName] ...

DROP SHADOW ALGORITHM algorithmName [, algorithmName] ...

CREATE DEFAULT SHADOW ALGORITHM NAME = algorithmName

shadowRuleDefinition: ruleName(resourceMapping, shadowTableRule [, shadowTableRule]
...)

resourceMapping: SOURCE=resourceName, SHADOW=resourceName

shadowTableRule: tableName(shadowAlgorithm [, shadowAlgorithm] ...)

shadowAlgorithm: ([algorithmName,] TYPE(NAME=shadowAlgorithmType,
PROPERTIES([algorithmProperties] ...)))

algorithmProperties: algorithmProperty [, algorithmProperty] ...

algorithmProperty: key=value

Parameters Explained

name DateType Description

ruleName IDENTIFIER Rule name
resourceName IDENTIFIER Resource name
tableName IDENTIFIER Shadow table name
algorithmName IDENTIFIER Shadow algorithm name
shadowAlgorithmType STRING Shadow algorithm type

4.2. ShardingSphere-Proxy 221

Apache ShardingSphere document, v5.2.1

Notes

• Duplicate ruleName cannot be created

• resourceMapping specifies the mapping relationship between the source database and the
shadow library. You need to use the resourcemanaged by RDL, please refer to resource

• shadowAlgorithm can act on multiple shadowTableRule at the same time

• If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SIMPLE_HINT

• shadowTableRule can be reused by different shadowRuleDefinition, so when executing
DROP SHADOW RULE, the corresponding shadowTableRule will not be removed

• shadowAlgorithm can be reused by different shadowTableRule, so when executing ALTER
SHADOW RULE, the corresponding shadowAlgorithm will not be removed

Example

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true
", "foo"="bar"))),(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert","column
"="user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=
"user_id", "value"='1')))));

ALTER SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true
", "foo"="bar"))),(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert","column
"="user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=
"user_id", "value"='1')))));

CREATE SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true", "foo"=
"bar"))),
(user_id_match_algorithm, TYPE(NAME="REGEX_MATCH",PROPERTIES("operation"="insert",
"column"="user_id", "regex"='[1]')));

ALTER SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="false", "foo
"="bar"))),

4.2. ShardingSphere-Proxy 222

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.2.1

(user_id_match_algorithm, TYPE(NAME="VALUE_MATCH",PROPERTIES("operation"="insert",
"column"="user_id", "value"='1')));

DROP SHADOW RULE shadow_rule;

DROP SHADOW ALGORITHM simple_hint_algorithm;

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

RQL Syntax

RQL (Resource & Rule Query Language) responsible for resources/rules query.

Resource Query

Syntax

SHOW DATABASE RESOURCES [FROM databaseName]

Return Value Description

Column Description

name Data source name
type Data source type
host Data source host
port Data source port
db Database name
attribute Data source attribute

Example

mysql> SHOW DATABASE RESOURCES;
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

4.2. ShardingSphere-Proxy 223

Apache ShardingSphere document, v5.2.1

--+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

--+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":"8192
","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"poolName":"HikariPool-1","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":"8192
","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"poolName":"HikariPool-2","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

4.2. ShardingSphere-Proxy 224

Apache ShardingSphere document, v5.2.1

--+
2 rows in set (0.84 sec)

Rule Query

This chapter describes the syntax of rule query.

Sharding

Syntax

Sharding Table Rule

SHOW SHARDING TABLE tableRule | RULES [FROM databaseName]

SHOW SHARDING ALGORITHMS [FROM databaseName]

SHOW UNUSED SHARDING ALGORITHMS [FROM databaseName]

SHOW SHARDING AUDITORS [FROM databaseName]

SHOW SHARDING TABLE RULES USED ALGORITHM shardingAlgorithmName [FROM databaseName]

SHOW SHARDING KEY GENERATORS [FROM databaseName]

SHOW UNUSED SHARDING KEY GENERATORS [FROM databaseName]

SHOW UNUSED SHARDING AUDITORS [FROM databaseName]

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName [FROM databaseName]

SHOW SHARDING TABLE RULES USED AUDITOR auditorName [FROM databaseName]

SHOW DEFAULT SHARDING STRATEGY

SHOW SHARDING TABLE NODES

tableRule:
RULE tableName

• Support query all data fragmentation rules and specified table query

4.2. ShardingSphere-Proxy 225

Apache ShardingSphere document, v5.2.1

• Support query all sharding algorithms

• Support query all sharding audit algorithms

Sharding Binding Table Rule

SHOW SHARDING BINDING TABLE RULES [FROM databaseName]

Sharding Broadcast Table Rule

SHOW SHARDING BROADCAST TABLE RULES [FROM databaseName]

Sharding Table Rule

Column Description

table Logical table name
actual_data_nodes Actual data node
actual_data_sources Actual data source (Displayed when creating rules by RDL)
database_strategy_type Database sharding strategy type
da tabase_sharding_column Database sharding column
database_s harding_algorithm_type Database sharding algorithm type
database_sh arding_algorithm_props Database sharding algorithm properties
table_strategy_type Table sharding strategy type
table_sharding_column Table sharding column
table_s harding_algorithm_type Table sharding algorithm type
table_sh arding_algorithm_props Table sharding algorithm properties
key_generate_column Sharding key generator column
key_generator_type Sharding key generator type
key_generator_props Sharding key generator properties
auditor_types Sharding auditor types
allow_hint_disable Enable or disable sharding audit hint

Sharding Algorithms

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

4.2. ShardingSphere-Proxy 226

Apache ShardingSphere document, v5.2.1

Unused Sharding Algorithms

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Sharding auditors

Column Description

name Sharding audit algorithm name
type Sharding audit algorithm type
props Sharding audit algorithm properties

Unused Sharding Auditors

Column Description

name Sharding audit algorithm name
type Sharding audit algorithm type
props Sharding audit algorithm properties

Sharding key generators

Column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

Unused Sharding Key Generators

Column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

4.2. ShardingSphere-Proxy 227

Apache ShardingSphere document, v5.2.1

Default Sharding Strategy

Column Description

name Strategy name
type Sharding strategy type
sharding_column Sharding column
sharding_algorithm_name Sharding algorithm name
sharding_algorithm_type Sharding algorithm type
sharding_algorithm_props Sharding algorithm properties

Sharding Table Nodes

Column Description

name Sharding rule name
nodes Sharding nodes

Sharding Binding Table Rule

Column Description

sharding_binding_tables sharding Binding Table list

Sharding Broadcast Table Rule

Column Description

sharding_broadcast_tables sharding Broadcast Table list

Sharding Table Rule

SHOW SHARDING TABLE RULES

mysql> SHOW SHARDING TABLE RULES;
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_
strategy_type | database_sharding_column | database_sharding_algorithm_type |
database_sharding_algorithm_props | table_strategy_type | table_sharding_
column | table_sharding_algorithm_type | table_sharding_algorithm_props

4.2. ShardingSphere-Proxy 228

Apache ShardingSphere document, v5.2.1

| key_generate_column | key_generator_type | key_generator_props
|auditor_types | allow_hint_disable |
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE

| user_id | INLINE | algorithm-
expression:ds_${user_id % 2} | INLINE | order_id | INLINE

| algorithm-expression:t_order_${order_id % 2} | order_id
| SNOWFLAKE | |DML_SHARDING_CONDITIONS |true |

| t_order_item | ds_${0..1}.t_order_item_${0..1} | | INLINE
| user_id | INLINE | algorithm-

expression:ds_${user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_item_${order_id % 2} | order_item_id

| SNOWFLAKE | | | |
| t2 | | ds_0,ds_1 |

| | |
| mod | id | mod

| sharding-count:10 | |
| | | |

+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
3 rows in set (0.02 sec)

SHOW SHARDING TABLE RULE tableName

mysql> SHOW SHARDING TABLE RULE t_order;
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_
type | database_sharding_column | database_sharding_algorithm_type | database_
sharding_algorithm_props | table_strategy_type | table_sharding_column |
table_sharding_algorithm_type | table_sharding_algorithm_props |
key_generate_column | key_generator_type | key_generator_props | auditor_types |
allow_hint_disable |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+

4.2. ShardingSphere-Proxy 229

Apache ShardingSphere document, v5.2.1

| t_order | ds_${0..1}.t_order_${0..1} | | INLINE |
user_id | INLINE | algorithm-expression:ds_$
{user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_${order_id % 2} | order_id | SNOWFLAKE

| | DML_SHARDING_CONDITIONS |true |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+
1 row in set (0.01 sec)

SHOW SHARDING ALGORITHMS

mysql> SHOW SHARDING ALGORITHMS;
+-------------------------+--------+---
------+
| name | type | props

|
+-------------------------+--------+---
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
2} |
+-------------------------+--------+---
------+
2 row in set (0.01 sec)

SHOW UNUSED SHARDING ALGORITHMS

mysql> SHOW UNUSED SHARDING ALGORITHMS;
+---------------+--------+---+
| name | type | props |
+---------------+--------+---+
| t1_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
+---------------+--------+---+
1 row in set (0.01 sec)

SHOW SHARDING AUDITORS

mysql> SHOW SHARDING AUDITORS;
+------------+-------------------------+-------+
| name | type | props |
+------------+-------------------------+-------+
| dml_audit | DML_SHARDING_CONDITIONS | |
+------------+-------------------------+-------+
2 row in set (0.01 sec)

4.2. ShardingSphere-Proxy 230

Apache ShardingSphere document, v5.2.1

SHOW SHARDING TABLE RULES USED ALGORITHM shardingAlgorithmName

mysql> SHOW SHARDING TABLE RULES USED ALGORITHM t_order_inline;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |
+-------+---------+
1 row in set (0.01 sec)

SHOW SHARDING KEY GENERATORS

mysql> SHOW SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
t_order_snowflake	snowflake	
t_order_item_snowflake	snowflake	
uuid_key_generator	uuid	
+------------------------+-----------+-----------------+
3 row in set (0.01 sec)

SHOW UNUSED SHARDING KEY GENERATORS

mysql> SHOW UNUSED SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
| uuid_key_generator | uuid | |
+------------------------+-----------+-----------------+
1 row in set (0.01 sec)

SHOW UNUSED SHARDING KEY AUDITORS

mysql> SHOW UNUSED SHARDING KEY AUDITORS;
+------------+-------------------------+-------+
| name | type | props |
+------------+-------------------------+-------+
| dml_audit | DML_SHARDING_CONDITIONS | |
+------------+-------------------------+-------+
1 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName

mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |

4.2. ShardingSphere-Proxy 231

Apache ShardingSphere document, v5.2.1

+-------+---------+
1 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED AUDITOR auditorName

mysql> SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |
+-------+---------+
1 row in set (0.01 sec)

SHOW DEFAULT SHARDING STRATEGY

mysql> SHOW DEFAULT SHARDING STRATEGY ;

+----------+---------+--------------------+-------------------------+--------------
-----------+--+
| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |
+----------+---------+--------------------+-------------------------+--------------
-----------+--+
| TABLE | NONE | | |

| |
| DATABASE | STANDARD| order_id | database_inline | INLINE

| {algorithm-expression=ds_${user_id % 2}} |
+----------+---------+--------------------+-------------------------+--------------
-----------+--+
2 rows in set (0.07 sec)

SHOW SHARDING TABLE NODES

mysql> SHOW SHARDING TABLE NODES;
+---------+--+
| name | nodes |
+---------+--+
| t_order | ds_0.t_order_0, ds_1.t_order_1, ds_0.t_order_2, ds_1.t_order_3 |
+---------+--+
1 row in set (0.02 sec)

4.2. ShardingSphere-Proxy 232

Apache ShardingSphere document, v5.2.1

Sharding Binding Table Rule

mysql> SHOW SHARDING BINDING TABLE RULES;
+----------------------+
| sharding_binding_tables |
+----------------------+
| t_order,t_order_item |
| t1,t2 |
+----------------------+
2 rows in set (0.00 sec)

Sharding Broadcast Table Rule

mysql> SHOW SHARDING BROADCAST TABLE RULES;
+------------------------+
| sharding_broadcast_tables |
+------------------------+
| t_1 |
| t_2 |
+------------------------+
2 rows in set (0.00 sec)

Single Table

Syntax

SHOW SINGLE TABLE (table | RULES) [FROM databaseName]

SHOW SINGLE TABLES

COUNT SINGLE_TABLE RULE [FROM databaseName]

table:
TABLE tableName

Return Value Description

Single Table Rule

Column Description

name Rule name
resource_name Data source name

4.2. ShardingSphere-Proxy 233

Apache ShardingSphere document, v5.2.1

Single Table

Column Description

table_name Single table name
resource_name The resource name where the single table is located

Single Table Rule Count

Column Description

rule_name Single table rule name
database The database name where the single table is located
count The count of single table rules

Example

SHOW SINGLE TABLES RULES

sql> SHOW SINGLE TABLES RULES;
+---------+---------------+
| name | resource_name |
+---------+---------------+
| default | ds_1 |
+---------+---------------+
1 row in set (0.01 sec)

SHOW SINGLE TABLE tableName

sql> SHOW SINGLE TABLE t_single_0;
+----------------+---------------+
| table_name | resource_name |
+----------------+---------------+
| t_single_0 | ds_0 |
+----------------+---------------+
1 row in set (0.01 sec)

SHOW SINGLE TABLES

mysql> SHOW SINGLE TABLES;
+--------------+---------------+
| table_name | resource_name |
+--------------+---------------+
| t_single_0 | ds_0 |
| t_single_1 | ds_1 |
+--------------+---------------+
2 rows in set (0.02 sec)

4.2. ShardingSphere-Proxy 234

Apache ShardingSphere document, v5.2.1

COUNT SINGLE_TABLE RULE

mysql> COUNT SINGLE_TABLE RULE;
+--------------+----------+-------+
| rule_name | database | count |
+--------------+----------+-------+
| t_single_0 | ds | 2 |
+--------------+----------+-------+
1 row in set (0.02 sec)

Readwrite-Splitting

Syntax

SHOW READWRITE_SPLITTING RULES [FROM databaseName]

Return Value Description

Column Description

name Rule name
auto_aware_data_source_nameAuto‐Aware discovery data source name (Display configuration dynamic

readwrite splitting rules)
writ
e_data_source_query_enabled

All read data source are offline, write data sourcewhether the data source
is responsible for read traffic

write_data_source_name Write data source name
read_data_source_names Read data source name list
load_balancer_type Load balance algorithm type
load_balancer_props Load balance algorithm parameter

Example

Static Readwrite Splitting Rules

mysql> SHOW READWRITE_SPLITTING RULES;
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| ms_group_0 | | ds_primary | ds_slave_0,

4.2. ShardingSphere-Proxy 235

Apache ShardingSphere document, v5.2.1

ds_slave_1 | random | |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
1 row in set (0.00 sec)

Dynamic Readwrite Splitting Rules

mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_query_enabled |
write_data_source_name | read_data_source_names | load_balancer_type | load_
balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | |

| | random | read_weight=2:1
|

+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.01 sec)

Static Readwrite Splitting Rules And Dynamic Readwrite Splitting Rules

mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_query_enabled |
write_data_source_name | read_data_source_names | load_balancer_type | load_
balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | |
write_ds | read_ds_0, read_ds_1 | random | read_
weight=2:1 |
+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.00 sec)

4.2. ShardingSphere-Proxy 236

Apache ShardingSphere document, v5.2.1

DB Discovery

Syntax

SHOW DB_DISCOVERY RULES [FROM databaseName]

SHOW DB_DISCOVERY TYPES [FROM databaseName]

SHOW DB_DISCOVERY HEARTBEATS [FROM databaseName]

Return Value Description

DB Discovery Rule

Column Description

group_name Rule name
data_source_names Data source name list
primary_data_source_name Primary data source name
discovery_type Database discovery service type
discovery_heartbeat Database discovery service heartbeat

DB Discovery Type

Column Description

name Type name
type Type category
props Type properties

DB Discovery Heartbeat

Column Description

name Heartbeat name
props Heartbeat properties

4.2. ShardingSphere-Proxy 237

Apache ShardingSphere document, v5.2.1

Example

DB Discovery Rule

mysql> SHOW DB_DISCOVERY RULES;
+----------------------+-------------------+--------------------------+------------
---+-----------
---+
| group_name | data_source_names | primary_data_source_name | discovery_
type |
discovery_heartbeat |
+----------------------+-------------------+--------------------------+------------
---+-----------
---+
| db_discovery_group_0 | ds_0,ds_1,ds_2 | ds_0 | {name=db_
discovery_group_0_mgr, type=MySQL.MGR, props={group-name=92504d5b-6dec}} |
{name=db_discovery_group_0_heartbeat, props={keep-alive-cron=0/5 * * * * ?}} |
+----------------------+-------------------+--------------------------+------------
---+-----------
---+
1 row in set (0.20 sec)

DB Discovery Type

mysql> SHOW DB_DISCOVERY TYPES;
+---------------------------+------------+------------------------------+
| name | type | props |
+---------------------------+------------+------------------------------+
| db_discovery_group_0_mgr | MySQL.MGR | {group-name=92504d5b-6dec} |
+---------------------------+------------+------------------------------+
1 row in set (0.01 sec)

DB Discovery Heartbeat

mysql> SHOW DB_DISCOVERY HEARTBEATS;
+--------------------------------+---------------------------------+
| name | props |
+--------------------------------+---------------------------------+
| db_discovery_group_0_heartbeat | {keep-alive-cron=0/5 * * * * ?} |
+---------------------------------+---------------------------------+
1 row in set (0.01 sec)

4.2. ShardingSphere-Proxy 238

Apache ShardingSphere document, v5.2.1

Encrypt

Syntax

SHOW ENCRYPT RULES [FROM databaseName]

SHOW ENCRYPT TABLE RULE tableName [FROM databaseName]

• Support to query all data encryption rules and specify logical table name query

Return Value Description

Column Description

table Logical table name
logic_column Logical column name
logic_data_type Logical column data type
cipher_column Ciphertext column name
cipher_data_type Ciphertext column data type
plain_column Plaintext column name
plain_data_type Plaintext column data type
assisted_query_column Assisted query column name
assisted_query_data_type Assisted query column data type
encryptor_type Encryption algorithm type
encryptor_props Encryption algorithm parameter
query_with_cipher_column Whether to use encrypted column for query

Example

Show Encrypt Rules

mysql> SHOW ENCRYPT RULES FROM encrypt_db;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

4.2. ShardingSphere-Proxy 239

Apache ShardingSphere document, v5.2.1

| | | |
MD5 | | true |
| t_encrypt_2 | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | false |
| t_encrypt_2 | order_id | | order_cipher | |

| | | |
MD5 | | false |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
4 rows in set (0.78 sec)

Show Encrypt Table Rule Table Name

mysql> SHOW ENCRYPT TABLE RULE t_encrypt;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
2 rows in set (0.01 sec)

mysql> SHOW ENCRYPT TABLE RULE t_encrypt FROM encrypt_db;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |

4.2. ShardingSphere-Proxy 240

Apache ShardingSphere document, v5.2.1

AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
2 rows in set (0.01 sec))

Shadow

Syntax

SHOW SHADOW shadowRule | RULES [FROM databaseName]

SHOW SHADOW TABLE RULES [FROM databaseName]

SHOW SHADOW ALGORITHMS [FROM databaseName]

shadowRule:
RULE ruleName

• Support querying all shadow rules and specified table query

• Support querying all shadow table rules

• Support querying all shadow algorithms

Return Value Description

Shadow Rule

Column Description

rule_name Rule name
source_name Source database
shadow_name Shadow database
shadow_table Shadow table

4.2. ShardingSphere-Proxy 241

Apache ShardingSphere document, v5.2.1

Shadow Table Rule

Column Description

shadow_table Shadow table
shadow_algorithm_name Shadow algorithm name

Shadow Algorithms

Column Description

shadow_algorithm_name Shadow algorithm name
type Shadow algorithm type
props Shadow algorithm properties
is_default Default

Shadow Rule status

Column Description

status Enable

Example

SHOW SHADOW RULES

mysql> SHOW SHADOW RULES;
+--------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+--------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
| shadow_rule_2 | ds_2 | ds_shadow_2 | t_order_item |
+--------------------+-------------+-------------+--------------+
2 rows in set (0.02 sec)

SHOW SHADOW RULE ruleName

mysql> SHOW SHADOW RULE shadow_rule_1;
+------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
+------------------+-------------+-------------+--------------+
1 rows in set (0.01 sec)

4.2. ShardingSphere-Proxy 242

Apache ShardingSphere document, v5.2.1

SHOW SHADOW TABLE RULES

mysql> SHOW SHADOW TABLE RULES;
+--------------+---
-------------+
| shadow_table | shadow_algorithm_name

|
+--------------+---
-------------+
| t_order_1 | user_id_match_algorithm,simple_hint_algorithm_1

|
+--------------+---
-------------+
1 rows in set (0.01 sec)

SHOW SHADOW ALGORITHMS

mysql> SHOW SHADOW ALGORITHMS;
+-------------------------+--------------------+-----------------------------------
--------+----------------+
| shadow_algorithm_name | type | props

| is_default |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
| user_id_match_algorithm | REGEX_MATCH | operation=insert,column=user_id,
regex=[1] | false |
| simple_hint_algorithm_1 | SIMPLE_HINT | shadow=true,foo=bar

| false |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
2 rows in set (0.01 sec)

RAL Syntax

RAL (Resource & Rule Administration Language) responsible for hint, circuit breaker, configuration
import and export, scaling control and other management functions.

4.2. ShardingSphere-Proxy 243

Apache ShardingSphere document, v5.2.1

Hint

Statement Function Example

SET READ
WRITE_SPLITTING
HINT SOURCE = [auto /
write]

For current connection, set readwrite split‐
ting routing strategy (automatic or forced to
write data source)

SET READWRITE_
SPLITTINGHINT
SOURCE = write

SET SHARDING HINT
DATABASE_VALUE = yy

For current connection, set sharding value
for database sharding only, yy: sharding
value

SET SHARDING HINT
D ATABASE_VALUE =
100

ADD SHARDING HINT
DATABASE_VALUE xx = yy

For current connection, add sharding value
for table, xx: logic table, yy: database shard‐
ing value

ADD SHARDING HINT
D ATABASE_VALUE
t_order = 100

ADD SHARDING HINT
TABLE_VALUE xx = yy

For current connection, add sharding value
for table, xx: logic table, yy: table sharding
value

ADD SHARDING HINT
TABLE_VALUE t_order
= 100

CLEAR HINT For current connection, clear all hint set‐
tings

CLEAR HINT

CLEAR [SHARD‐
ING HINT / READ
WRITE_SPLITTING
HINT]

For current connection, clear hint settings of
sharding or readwrite splitting

CLEAR READWR
ITE_SPLITTING HINT

SHOW [SHARD‐
ING / READW
RITE_SPLITTING] HINT
STATUS

For current connection, query hint settings
of sharding or readwrite splitting

SHOW READWR
ITE_SPLITTING HINT
STATUS

4.2. ShardingSphere-Proxy 244

Apache ShardingSphere document, v5.2.1

Migration

Statement Function Example

MIGRATE TABLE ds.schema.table
INTO table

Migrate table from
source to target

MIGRATE TABLE
ds_0.public.t_order INTO t_order

SHOWMIGRATION LIST Query running list SHOWMIGRATION LIST
SHOWMIGRATION STATUS jobId Query migration status SHOWMIGRATION STATUS 1234
STOP MIGRATION jobId Stop migration STOP MIGRATION 1234
START MIGRATION jobId Start stopped migration START MIGRATION 1234
ROLLBACKMIGRATION jobId Rollback migration ROLLBACKMIGRATION 1234
COMMIT MIGRATION jobId Commit migration COMMIT MIGRATION 1234
CHECKMIGRATION jobId Data consistency check CHECKMIGRATION 1234
SHOW MIGRATION CHECK ALGO‐
RITHMS

Show available consis‐
tency check algorithms

SHOW MIGRATION CHECK AL‐
GORITHMS

CHECK MIGRATION jobId (by
type(n ame=algorithmTypeName)?

Data consistency check
with defined algorithm

CHECKMIGRATION 1234 by type
(name=“DATA_MATCH”)

Circuit Breaker

Statement Function Example

[ENABLE / DISABLE] READWRITE_SPLITTING
(READ)? resourceName [FROM databaseName]

Enable or disable
read data source

ENABLE REA
DWRITE_SPLITTING
READ resource_0

[ENABLE / DISABLE] INSTANCE instanceId Enable or disable
proxy instance

DISABLE INSTANCE in‐
stance_1

SHOW INSTANCE LIST Query proxy
instance infor‐
mation

SHOW INSTANCE LIST

SHOW READWRITE_SPLITTING (READ)? re‐
sourceName [FROM databaseName]

Query all read re‐
sources status

SHOW REA
DWRITE_SPLITTING
READ RESOURCES

4.2. ShardingSphere-Proxy 245

Apache ShardingSphere document, v5.2.1

Global Rule

Statement Function Example

SHOW AUTHORITY RULE Query authority rule config‐
uration

SHOW AUTHORITY RULE

SHOW TRANSACTION RULE Query transaction rule con‐
figuration

SHOW TRANSACTION RULE

SHOW SQL_PARSER RULE Query SQL parser rule con‐
figuration

SHOW SQL_PARSER RULE

ALTER TRANSAC‐
TION RULE(DEFAU
LT=xx,TYPE(NAME=xxx,
PROPERTIES(key1=va
lue1,key2=value2⋯)))

Alter transaction rule
configuration, DEFAULT:
default transaction type,
support LOCAL, XA, BASE;
NAME: name of transac‐
tion manager, support
Atomikos, Narayana and
Bitronix

ALTER TRANSACTION
RULE(DEFAULT=“XA”,T
YPE(NAME=“Narayana”,
PROPERTIES(“datab aseName”
=“jbossts”,“host”=“127.0.0.1”
)))

ALTER SQL_PARSER
RULE SQL_COMM
ENT_PARSE_ENABLE=xx,
PARSE_TREE_CACHE(INI‐
TIAL_CAPACITY=xx, MAX‐
IMUM_SIZE=xx, CO NCUR‐
RENCY_LEVEL=xx), S
QL_STATEMENT_CACHE(I
NITIAL_CAPACITY=xxx, MAX‐
IMUM_SIZE=xxx, CO NCUR‐
RENCY_LEVEL=xxx)

Alter SQL parser rule
configuration, SQL_CO
MMENT_PARSE_ENABLE:
whether to parse
the SQL comment,
PARSE_TREE_CACHE:
local cache configura‐
tion of syntax tree, S
QL_STATEMENT_CACHE:
local cache of SQL state‐
ment

ALTER SQL_PARSER
RULE SQL_COMMENT
_PARSE_ENABLE=false,
PARSE_TREE_CACHE(INI‐
TIAL_CAPACITY=10, MAX‐
IMUM_SIZE=11, C ON‐
CURRENCY_LEVEL=1),
SQL_STATEMENT_CACHE(
INITIAL_CAPACITY=11, MAX‐
IMUM_SIZE=11, CO NCUR‐
RENCY_LEVEL=100)

4.2. ShardingSphere-Proxy 246

Apache ShardingSphere document, v5.2.1

Other

Statement Function Example

SHOW INSTANCE INFO Query the instance information of the
proxy

SHOW INSTANCE INFO

SHOWMODE INFO Query themode configuration of the proxy SHOWMODE INFO
SET VARIABLE proxy
_property_name = xx

proxy_property_name is one of properties
configuration of proxy, name is split by un‐
derscore

SET VARIABLE
sql_show = true

SET VARIABLE tr ansac‐
tion_type = xx

Modify transaction_type of the current
connection, supports LOCAL, XA, BASE

SETVARIABLE tran sac‐
tion_type =“XA”

SET VARIABLE agent_p
lugins_enabled = [TRUE /
FALSE]

Set whether the agent plugins are enabled,
the default value is false

SET VARIABLE
agent_plu gins_enabled
= TRUE

SHOW ALL VARIABLES Query proxy all properties configuration SHOW ALL VARIABLES
SHOW VARIABLE vari‐
able_name

Query proxy variable, name is split by un‐
derscore

SHOW VARIABLE
sql_show

REFRESH TABLE META‐
DATA

Refresh the metadata of all tables REFRESH TABLE
METADATA

REFRESH TABLE META‐
DATA tableName

Refresh themetadata of the specified table REFRESH TABLE
METADATA t_order

REFRESH TABLE META‐
DATA tableName FROM
RESOURCE resourceName

Refresh the tables’metadata in the speci‐
fied data source

REFRESH TABLE
METADATA t_order
FROM RESOURCE ds_1

REFRESH TABLE META‐
DATA FROM RESOURCE
resourceName SCHEMA
schemaName

Refresh the tables’metadata in a schema
of a specified data source. If there are no
tables in the schema, the schema will be
deleted.

REFRESH TABLE
METADATA FROM RE‐
SOURCE ds_1 SCHEMA
db_schema

SHOW TABLE METADATA
tableName [, tableName]⋯

Query table metadata SHOW TABLE META‐
DATA t_order

EXPORT DATABASE
CONFIG [FROM
database_name] [, fil e=
“file_path”]

Export resources and rule configurations
to YAML format

EXPORT DATABASE
CONFIG FROM read‐
write_ splitting_db

IMPORT DATABASE CON‐
FIG FI LE=“file_path”

Import resources and rule configuration
from YAML, only supports import into an
empty database

IMPORT DATABASE
CONFIG FILE = “/x
xx/config‐sh ard‐
ing.yaml”

SHOW RULES USED RE‐
SOURCE resourceName
[from database]

Query the rules for using the specified re‐
source in database

SHOW RULES USED
RESOURCE ds_0 FROM
databaseName

4.2. ShardingSphere-Proxy 247

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/

Apache ShardingSphere document, v5.2.1

Notice

ShardingSphere‐Proxy does not support hint by default, to support it, set proxy-hint-enabled to
true in conf/server.yaml.

RUL Syntax

RUL (Resource Utility Language) responsible for SQL parsing, SQL formatting, preview execution plan
and more utility functions.

SQL Utility

St atement Function Example

PARSE SQL Parse SQL and output abstract syntax tree PARSE SELECT * FROM t_order
FORMAT SQL Parse SQLandoutput formated SQL statement FORMAT SELECT * FROM t_order
PREVIEW
SQL

Preview SQL execution plan PREVIEW SELECT * FROM
t_order

Usage

This chapter will introduce how to use DistSQL tomanage resources and rules in a distributed database.

Pre-work

Use MySQL as example, can replace to other databases.

1. Start the MySQL service;

2. Create to be registered MySQL databases;

3. Create role and user in MySQL with creation permission for ShardingSphere‐Proxy;

4. Start Zookeeper service;

5. Add mode and authentication configurations to server.yaml;

6. Start ShardingSphere‐Proxy;

7. Use SDK or terminal connect to ShardingSphere‐Proxy.

4.2. ShardingSphere-Proxy 248

Apache ShardingSphere document, v5.2.1

Create Logic Database

1. Create logic database

CREATE DATABASE foo_db;

2. Use newly created logic database

USE foo_db;

Resource Operation

More details please see concentrate rule examples.

Rule Operation

More details please see concentrate rule examples.

Notice

1. Currently, DROP DATABASE will only remove the logical distributed database, not the
user’s actual database;

2. DROP TABLE will delete all logical fragmented tables and actual tables in the database;

3. CREATE DATABASE will only create a logical distributed database, so users need to
create actual databases in advance.

Sharding

Resource Operation

• Configure data source information

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",

4.2. ShardingSphere-Proxy 249

Apache ShardingSphere document, v5.2.1

PASSWORD="root"
);

Rule Operation

• Create sharding rule

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

• Create sharding table

CREATE TABLE `t_order` (
`order_id` int NOT NULL,
`user_id` int NOT NULL,
`status` varchar(45) DEFAULT NULL,
PRIMARY KEY (`order_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

• Drop sharding table

DROP TABLE t_order;

• Drop sharding rule

DROP SHARDING TABLE RULE t_order;

• Drop resource

DROP RESOURCE ds_0, ds_1;

• Drop distributed database

DROP DATABASE foo_db;

4.2. ShardingSphere-Proxy 250

Apache ShardingSphere document, v5.2.1

Readwrite_splitting

Resource Operation

ADD RESOURCE write_ds (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),read_ds (
HOST="127.0.0.1",
PORT=3307,
DB="ds_0",
USER="root",
PASSWORD="root"

);

Rule Operation

• Create readwrite_splitting rule

CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME="random")
);

• Alter readwrite_splitting rule

ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME="random",PROPERTIES("read_weight"="2:0"))
);

• Drop readwrite_splitting rule

DROP READWRITE_SPLITTING RULE group_0;

• Drop resource

DROP RESOURCE write_ds,read_ds;

• Drop distributed database

4.2. ShardingSphere-Proxy 251

Apache ShardingSphere document, v5.2.1

DROP DATABASE readwrite_splitting_db;

Encrypt

Resource Operation

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

);

Rule Operation

• Create encrypt rule

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',
PROPERTIES('aes-key-value'='123456abc'))),

(NAME=order_id,PLAIN=order_plain,CIPHER =order_cipher,TYPE(NAME='RC4',
PROPERTIES('rc4-key-value'='123456abc')))
));

• Create encrypt table

CREATE TABLE `t_encrypt` (
`id` int(11) NOT NULL,
`user_id` varchar(45) DEFAULT NULL,
`order_id` varchar(45) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

• Alter encrypt rule

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',
PROPERTIES('aes-key-value'='123456abc')))
));

• Drop encrypt rule

4.2. ShardingSphere-Proxy 252

Apache ShardingSphere document, v5.2.1

DROP ENCRYPT RULE t_encrypt;

• Drop resource

DROP RESOURCE ds_0;

• Drop distributed database

DROP DATABASE encrypt_db;

DB Discovery

Resource Operation

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

Rule Operation

• Create DB discovery rule

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• Alter DB discovery rule

4.2. ShardingSphere-Proxy 253

Apache ShardingSphere document, v5.2.1

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• Drop db_discovery rule

DROP DB_DISCOVERY RULE db_discovery_group_0;

• Drop db_discovery type

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

• Drop db_discovery heartbeat

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

• Drop resource

DROP RESOURCE ds_0,ds_1,ds_2;

• Drop distributed database

DROP DATABASE discovery_db;

Shadow

Resource Operation

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",

4.2. ShardingSphere-Proxy 254

Apache ShardingSphere document, v5.2.1

PASSWORD="root"
);

Rule Operation

• Create shadow rule

CREATE SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_1,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar"))),
(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert","column"="user_id",
"regex"='[1]')))),
t_order_item((TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar")))));

• Alter shadow rule

ALTER SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_2,
t_order_item((TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar")))));

• Drop shadow rule

DROP SHADOW RULE group_0;

• Drop resource

DROP RESOURCE ds_0,ds_1,ds_2;

• Drop distributed database

DROP DATABASE foo_db;

4.2.4 Data Migration

Introduction

ShardingSphere provides solution of migrating data since 4.1.0.

4.2. ShardingSphere-Proxy 255

Apache ShardingSphere document, v5.2.1

Build

Background

For systems running on a single database that urgently need to securely and simply migrate data to a
horizontally sharded database.

Prerequisites

• Proxy is developed in JAVA, and JDK version 1.8 or later is recommended.

• Data migration adopts the cluster mode, and ZooKeeper is currently supported as the registry.

Procedure

1. Run the following command to compile the ShardingSphere‐Proxy binary package:

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

Release package：‐ /shardingsphere‐distribution/shardingsphere‐proxy‐distribution/target/apache‐
shardingsphere‐${latest.release.version}‐shardingsphere‐proxy‐bin.tar.gz

Or you can get the installation package through the Download Page

2. Decompress the proxy release package and modify the configuration file conf/
config-sharding.yaml. Please refer to proxy startup guide for details.

3. Modify the configuration file conf/server.yaml. Please refer to mode configuration for de‐
tails.

Currently, modemust be Cluster, and the corresponding registry must be started in advance.

Configuration sample:

mode:
type: Cluster
repository:

type: ZooKeeper
props:
namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

4. Introduce JDBC driver.

4.2. ShardingSphere-Proxy 256

https://shardingsphere.apache.org/document/current/en/downloads/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/

Apache ShardingSphere document, v5.2.1

Proxy has included JDBC driver of PostgreSQL.

If the backend is connected to the following databases, download the corresponding JDBC driver jar
package and put it into the ${shardingsphere-proxy}/ext-lib directory.

DatabaseJDBC Driver Reference

MySQL ˋmysql‐co nnector‐java‐5.1.47.jar < https://repo1.maven.org/m
aven2/mysql/mysql‐connect or‐java/5.1.47/mysql‐conn ector‐java‐
5.1.47.jar>ˋ__

Con‐
nector/J
Versions

open‐
Gauss

opengauss‐jdbc‐3.0.0 .jar

If youaremigrating to aheterogeneousdatabase, thenyoucouldusemore types of database, e.g.Oracle.
Introduce JDBC driver as above too.

5. Start ShardingSphere‐Proxy:

sh bin/start.sh

6. View the proxy log logs/stdout.log. If you see the following statements:

[INFO] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy start
success

The startup will have been successful.

7. Configure and migrate on demand.

7.1. Query configuration.

SHOW MIGRATION PROCESS CONFIGURATION;

The default configuration is as follows.

+--+-------------------
-------------------+--+
| read | write

| stream_channel |
+--+-------------------
-------------------+--+
| {"workerThread":40,"batchSize":1000,"shardingSize":10000000} | {"workerThread
":40,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":10000}} |
+--+-------------------
-------------------+--+

7.2. New configuration (Optional).

A default value is available if there is no configuration.

A completely configured DistSQL is as follows.

4.2. ShardingSphere-Proxy 257

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/3.0.0/opengauss-jdbc-3.0.0.jar

Apache ShardingSphere document, v5.2.1

CREATE MIGRATION PROCESS CONFIGURATION (
READ(
WORKER_THREAD=40,
BATCH_SIZE=1000,
SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))

),
WRITE(

WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))

),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='10000')))
);

Configuration item description:

CREATE MIGRATION PROCESS CONFIGURATION (
READ(-- Data reading configuration. If it is not configured, part of the
parameters will take effect by default.
WORKER_THREAD=40, -- Obtain the thread pool size of all the data from the source

side. If it is not configured, the default value is used.
BATCH_SIZE=1000, -- The maximum number of records returned by a query operation.

If it is not configured, the default value is used.
SHARDING_SIZE=10000000, -- Sharding size of all the data. If it is not

configured, the default value is used.
RATE_LIMITER (-- Traffic limit algorithm. If it is not configured, traffic is

not limited.
TYPE(-- Algorithm type. Option: QPS
NAME='QPS',
PROPERTIES(-- Algorithm property
'qps'='500'
)))

),
WRITE(-- Data writing configuration. If it is not configured, part of the
parameters will take effect by default.
WORKER_THREAD=40, -- The size of the thread pool on which data is written into

the target side. If it is not configured, the default value is used.
BATCH_SIZE=1000, -- The maximum number of records for a batch write operation. If

it is not configured, the default value is used.
RATE_LIMITER (-- Traffic limit algorithm. If it is not configured, traffic is

not limited.
TYPE(-- Algorithm type. Option: TPS
NAME='TPS',
PROPERTIES(-- Algorithm property.
'tps'='2000'
)))

),

4.2. ShardingSphere-Proxy 258

Apache ShardingSphere document, v5.2.1

STREAM_CHANNEL (-- Data channel. It connects producers and consumers, used for
reading and writing procedures. If it is not configured, the MEMORY type is used by
default.
TYPE(-- Algorithm type. Option: MEMORY
NAME='MEMORY',
PROPERTIES(-- Algorithm property
'block-queue-size'='10000' -- Property: blocking queue size.
)))
);

DistSQL sample: configure READ for traffic limit.

CREATE MIGRATION PROCESS CONFIGURATION (
READ(
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))

)
);

Configure data reading for traffic limit. Other configurations use default values.

7.3. Modify configuration.

ALTER MIGRATION PROCESS CONFIGURATION, and its internal structure is the same as that of
CREATE MIGRATION PROCESS CONFIGURATION.

DistSQL sample: modify traffic limit parameter

ALTER MIGRATION PROCESS CONFIGURATION (
READ(
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='1000')))

)
);

ALTER MIGRATION PROCESS CONFIGURATION (
READ(
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='1000')))

), WRITE(
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='1000')))

)
);

7.4. Clear configuration.

DistSQL sample: clear the configuration of READ and restore it to the default value.

DROP MIGRATION PROCESS CONFIGURATION '/READ';

DistSQL sample: clear the configuration of READ/RATE_LIMITER.

4.2. ShardingSphere-Proxy 259

Apache ShardingSphere document, v5.2.1

DROP MIGRATION PROCESS CONFIGURATION '/READ/RATE_LIMITER';

Manual

MySQL user guide

Environment

Supported MySQL versions: 5.1.15 to 8.0.x.

Authority required

1. Enable binlog

MySQL 5.7 my.cnf configuration sample:

[mysqld]
server-id=1
log-bin=mysql-bin
binlog-format=row
binlog-row-image=full
max_connections=600

Run the following command and check whether binlog is enabled.

show variables like '%log_bin%';
show variables like '%binlog%';

If the following information is displayed, binlog is enabled.

+---+---------------------------------------+
| Variable_name | Value |
+---+---------------------------------------+
log_bin	ON
binlog_format	ROW
binlog_row_image	FULL
+---+---------------------------------------+

2. Grant Replication‐related permissions for MySQL account.

Run the following command and see whether the user has migration permission.

SHOW GRANTS FOR 'user';

Result sample:

4.2. ShardingSphere-Proxy 260

Apache ShardingSphere document, v5.2.1

+--+
|Grants for ${username}@${host} |
+--+
|GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO ${username}@${host} |
|....... |
+--+

Complete procedure example

Prerequisite

1. Prepare the source database, table, and data in MySQL.

Sample:

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0 DEFAULT CHARSET utf8;

USE migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in MySQL.

Sample:

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12 DEFAULT CHARSET utf8;

4.2. ShardingSphere-Proxy 261

Apache ShardingSphere document, v5.2.1

Procedure

1. Create a new logical database in proxy and configure resources and rules.

CREATE DATABASE sharding_db;

USE sharding_db

ADD RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_10?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_11?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_12?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‐creation statements in
proxy.

2. Configure the source resources in proxy.

ADD MIGRATION SOURCE RESOURCE ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Start data migration.

4.2. ShardingSphere-Proxy 262

Apache ShardingSphere document, v5.2.1

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | sharding_total_count | active |
create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. View the data migration details.

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. Verify data consistency.

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6' BY TYPE (NAME='CRC32_MATCH
');
Query OK, 0 rows affected (0.09 sec)

Data consistency check algorithm list:

SHOW MIGRATION CHECK ALGORITHMS;
+-------------+--+-----
-----------------------+
| type | supported_database_types |

4.2. ShardingSphere-Proxy 263

Apache ShardingSphere document, v5.2.1

description |
+-------------+--+-----
-----------------------+
| CRC32_MATCH | MySQL |
Match CRC32 of records. |
| DATA_MATCH | SQL92,MySQL,MariaDB,PostgreSQL,openGauss,Oracle,SQLServer,H2 |
Match raw data of records. |
+-------------+--+-----
-----------------------+

If encrypt rule is configured in target proxy, then DATA_MATCH could be used.

If you are migrating to a heterogeneous database, then DATA_MATCH could be used.

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. Commit the job.

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. Refresh table metadata.

REFRESH TABLE METADATA;

Please refer to RAL#Migration for more details.

PostgreSQL user guide

Environment

Supported PostgreSQL version: 9.4 or later.

4.2. ShardingSphere-Proxy 264

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration

Apache ShardingSphere document, v5.2.1

Authority required

1. Enable test_decoding.

2. Modify WAL Configuration.

postgresql.conf configuration sample:

wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

Please refer to Write Ahead Log and Replication for details.

3. Configure PostgreSQL and grant Proxy the replication permission.

pg_hba.conf instance configuration:

host replication repl_acct 0.0.0.0/0 md5

Please refer to The pg_hba.conf File for details.

Complete procedure example

Prerequisite

1. Prepare the source database, table, and data in PostgreSQL.

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in PostgreSQL.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

4.2. ShardingSphere-Proxy 265

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html
https://www.postgresql.org/docs/9.6/auth-pg-hba-conf.html

Apache ShardingSphere document, v5.2.1

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

Procedure

1. Create a new logical database in proxy and configure resources and rules.

CREATE DATABASE sharding_db;

\c sharding_db

ADD RESOURCE ds_2 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_10",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_11",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_12",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‐creation statements in
proxy.

2. Configure the source resources in proxy.

ADD MIGRATION SOURCE RESOURCE ds_0 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_0",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Enable data migration.

4.2. ShardingSphere-Proxy 266

Apache ShardingSphere document, v5.2.1

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema name.

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | sharding_total_count | active |
create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. View the data migration details.

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. Verify data consistency.

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

Query data consistency check progress:

4.2. ShardingSphere-Proxy 267

Apache ShardingSphere document, v5.2.1

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. Commit the job.

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. Refresh table metadata.

REFRESH TABLE METADATA;

Please refer to RAL#Migration for more details.

openGauss user guide

Environment

Supported openGauss version: 2.0.1 to 3.0.0.

Authority required

1. Modify WAL configuration.

postgresql.conf configuration sample:

wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

Please refer to Write Ahead Log and Replication for details.

2. Configure openGauss and grant Proxy the replication permission.

pg_hba.conf instance configuration:

host replication repl_acct 0.0.0.0/0 md5

4.2. ShardingSphere-Proxy 268

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/settings.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/sending-server.html

Apache ShardingSphere document, v5.2.1

Please refer to Configuring Client Access Authentication and Example: Logic Replication Code for de‐
tails.

Complete procedure example

Prerequisite

1. Prepare the source database, table, and data in openGauss.

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. Prepare the target database in openGauss.

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

Procedure

1. Create a new logical database and configure resources and rules.

CREATE DATABASE sharding_db;

\c sharding_db

ADD RESOURCE ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_10",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_11",
USER="gaussdb",

4.2. ShardingSphere-Proxy 269

https://opengauss.org/en/docs/2.0.1/docs/Developerguide/configuring-client-access-authentication.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html

Apache ShardingSphere document, v5.2.1

PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_12",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

If you are migrating to a heterogeneous database, you need to execute the table‐creation statements in
proxy.

2. Configure the source resources in proxy.

ADD MIGRATION SOURCE RESOURCE ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_0",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. Enable data migration.

MIGRATE TABLE ds_0.t_order INTO t_order;

Or you can specify a target logical database.

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

Or you can specify a source schema name.

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. Check the data migration job list.

SHOW MIGRATION LIST;

Result example:

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | sharding_total_count | active |

4.2. ShardingSphere-Proxy 270

Apache ShardingSphere document, v5.2.1

create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. View the data migration details.

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. Verify data consistency.

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

Query data consistency check progress:

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. Commit the job.

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. Refresh table metadata.

REFRESH TABLE METADATA;

4.2. ShardingSphere-Proxy 271

Apache ShardingSphere document, v5.2.1

Please refer to RAL#Migration for more details.

4.2.5 Observability

Compile source code

Download Apache ShardingSphere from GitHub,Then compile.

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

Output directory: shardingsphere‐agent/shardingsphere‐agent‐distribution/target/apache‐
shardingsphere‐${latest.release.version}‐shardingsphere‐agent‐bin.tar.gz

Agent configuration

• Directory structure

Create agent directory, and unzip agent distribution package to the directory.

mkdir agent
tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-agent-
bin.tar.gz -C agent
cd agent
tree
.
└── apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin

├── LICENSE
├── NOTICE
├── conf
│ ├── agent.yaml
│ └── logback.xml
├── plugins
│ ├── shardingsphere-agent-logging-base-${latest.release.version}.jar
│ ├── shardingsphere-agent-metrics-prometheus-${latest.release.version}.jar
│ ├── shardingsphere-agent-tracing-jaeger-${latest.release.version}.jar
│ ├── shardingsphere-agent-tracing-opentelemetry-${latest.release.version}.

jar
│ ├── shardingsphere-agent-tracing-opentracing-${latest.release.version}.

jar
│ └── shardingsphere-agent-tracing-zipkin-${latest.release.version}.jar
└── shardingsphere-agent.jar

• Configuration file

conf/agent.yaml is used to manage agent configuration. Built‐in plugins include Jaeger, OpenTrac‐
ing, Zipkin, OpenTelemetry, BaseLogging and Prometheus. No plugin is enabled by default.

4.2. ShardingSphere-Proxy 272

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#migration

Apache ShardingSphere document, v5.2.1

plugins:
logging:
BaseLogging:
props:
level: "INFO"
metrics:
Prometheus:
host: "localhost"
port: 9090
props:
jvm-information-collector-enabled: "true"
tracing:
Jaeger:
host: "localhost"
port: 5775
props:
service-name: "shardingsphere"
jaeger-sampler-type: "const"
jaeger-sampler-param: "1"
Zipkin:
host: "localhost"
port: 9411
props:
service-name: "shardingsphere"
url-version: "/api/v2/spans"
sampler-type: "const"
sampler-param: "1"
OpenTracing:
props:
opentracing-tracer-class-name: "org.apache.skywalking.apm.toolkit.
opentracing.SkywalkingTracer"
OpenTelemetry:
props:
otel-resource-attributes: "service.name=shardingsphere"
otel-traces-exporter: "zipkin"

• Parameter description:

4.2. ShardingSphere-Proxy 273

Apache ShardingSphere document, v5.2.1

Name Descrip-
tion

V alue r ange Def ault v
alue

jvm‐infor
mation‐
collector‐
enabled

Start JVM
collector

t rue, f alse true

service‐
name

Tracking
service
name

Cu stom shar ding
sphe re‐a
gent

jaeger‐
sampler‐
type

Jaeger
sample
rate type

co nst, pr obab ilis tic, r atel imit ing, re mote c onst

jaeger‐
sampler‐
param

Jaeger
sam‐
ple rate
parameter

cons t:0, 1, p roba bili stic :0.0 ‐ 1.0, r atel imit ing: > 0, C
ustomize the number of acqu isit ions per sec ond, remo te：
need to c usto mize the re mote ser vice add res, JAEG ER_S
AMPL ER_M ANAG ER_H OST_ PORT

1 (c onst t
ype)

url‐
version

Zipkin url
address

Cu stom / api/ v2/s
pans

sampler‐
type

Zipkin
sample
rate type

co nst, c ount ing, r atel imit ing, boun dary c onst

sampler‐
param

Zipkin
sam‐
pling rate
parameter

cons t:0, 1, c ount ing: 0.01 ‐ 1.0, r atel imit ing: > 0, bou ndar
y:0. 0001 ‐ 1.0

1 (c onst t
ype)

otel‐
resource‐
attributes

open‐
telemetry
properties

St ring key v alue pair (, sp lit) s ervi ce.n
ame= shar
ding sphe
re‐a gent

otel‐
traces‐
exporter

Tracing
expoter

zip kin, ja eger zi pkin

otel‐
traces‐
sampler

Open‐
telemetry
sample
rate type

al ways _on, alw ays_ off, trac eidr atio a lway s_on

otel‐
traces‐
sampler‐
arg

Open‐
telemetry
sam‐
ple rate
parameter

tr acei drat io：0.0 ‐ 1.0 1.0

4.2. ShardingSphere-Proxy 274

Apache ShardingSphere document, v5.2.1

Usage in ShardingSphere-Proxy

Using via a non-container environment

• Edit the startup script

Configure the absolute path of shardingsphere‐agent.jar to the start.sh startup script of shardingsphere
proxy.

nohup java ${JAVA_OPTS} ${JAVA_MEM_OPTS} \
-javaagent:/xxxxx/agent/shardingsphere-agent.jar \
-classpath ${CLASS_PATH} ${MAIN_CLASS} >> ${STDOUT_FILE} 2>&1 &

• Start ShardingSphere‐Proxy

bin/start.sh

After startup, you can find the plugin info in the log of ShardingSphere‐Proxy, Metric and Tracing
data can be viewed through the configured monitoring address.

Use via container environment

• Assume that the following corresponding configurations have been completed locally.

– Folder ./custom/agent/ that contains all files after unpacking ShardingSphere‐Agent bi‐
nary package

– The folder containing the configuration files of ShardingSphere‐Proxy such as server.
yaml is ./custom/conf/

• At this point, the use of ShardingSphere‐Agent can be configured through the environment vari‐
able JVM_OPT. Taking starting in the Docker Compose environment as an example, a reasonable
docker-compose.yml example is as follows.

version: "3.8"

services:
apache-shardingsphere-proxy:

image: apache/shardingsphere-proxy:latest
environment:
JVM_OPTS: "-javaagent:/agent/shardingsphere-agent.jar"
PORT: 3308

volumes:
- ./custom/agent:/agent/
- ./custom/conf:/opt/shardingsphere-proxy/conf/

ports:
- "13308:3308"

4.2. ShardingSphere-Proxy 275

Apache ShardingSphere document, v5.2.1

4.2. ShardingSphere-Proxy 276

Apache ShardingSphere document, v5.2.1

Metrics

name ty pe description

proxy_ re‐
quest_total

C OU NT
ER

proxy request total

proxy_con nec‐
tion_total

G AU GE proxy connection total

pr oxy_execute_l
atency_millis

H IS TO
GR AM

proxy executor latency millis

proxy_execut
e_error_total

C OU NT
ER

proxy executor error total

route_sql _se‐
lect_total

C OU NT
ER

proxy executor route select sql total

route_sql _in‐
sert_total

C OU NT
ER

proxy executor route insert sql total

route_sql _up‐
date_total

C OU NT
ER

proxy executor route update sql total

route_sql
_delete_total

C OU NT
ER

proxy executor route delete sql total

route_dat
asource_total

C OU NT
ER

number of datasource routed

rout e_table_total C OU NT
ER

number of table routed

prox y_transaction
_commit_total

C OU NT
ER

transaction commit count total

proxy_ transac‐
tion_r ollback_total

C OU NT
ER

transaction rollback count total

parse_sql_dml _in‐
sert_total

C OU NT
ER

proxy executor parse insert sql total

parse_sql_dml
_delete_total

C OU NT
ER

proxy executor parse delete sql total

parse_sql_dml _up‐
date_total

C OU NT
ER

proxy executor parse update sql total

parse_sql_dml _se‐
lect_total

C OU NT
ER

proxy executor parse select sql total

parse_
sql_ddl_total

C OU NT
ER

proxy executor parse ddl sql total

parse_ sql_dcl_total C OU NT
ER

proxy executor parse dcl sql total

parse_ sql_dal_total C OU NT
ER

proxy executor parse dal sql total

parse_ sql_tcl_total C OU NT
ER

proxy executor parse tcl sql total

parse_dist_
sql_rql_total

C OU NT
ER

proxy executor parse rql sql total

parse_dist_
sql_rdl_total

C OU NT
ER

proxy executor parse rdl sql total

parse_dist_
sql_ral_total

C OU NT
ER

proxy executor parse ral sql total

build_info G AU GE build information
proxy_info G AU GE proxy information，state:1 OK，state:2 CIRCUIT BREAK
m eta_data_info G AU GE meta data information，schema_count:logic number of databases，

database_count:actual number of databases

4.2. ShardingSphere-Proxy 277

Apache ShardingSphere document, v5.2.1

4.2.6 Optional Plugins

ShardingSphere only includes the implementation of the core SPI by default, and there is a part of
the SPI that contains third‐party dependencies in Git Source Implemented plugins are not included.
Retrievable at https://central.sonatype.dev/.

SPI and existing implementation classes of SPI corresponding to all plugins can be retrieved at https:
//shardingsphere.apache.org/document/current/cn/dev‐manual/.

All built‐in plugins are listed below in the form of groupId:artifactId.

• org.apache.shardingsphere:shardingsphere-db-protocol-core, database protocol
core

• org.apache.shardingsphere:shardingsphere-mysql-protocol, the MySQL imple‐
mentation of the database protocol

• org.apache.shardingsphere:shardingsphere-postgresql-protocol, the Post‐
gresSQL implementation of the database protocol

• org.apache.shardingsphere:shardingsphere-opengauss-protocol, the OpenGauss
implementation of the database protocol

• org.apache.shardingsphere:shardingsphere-proxy-frontend-core, used by
ShardingSphere‐Proxy to parse and adapt the protocol for accessing the database

• org.apache.shardingsphere:shardingsphere-proxy-frontend-mysql, a MySQL im‐
plementation for ShardingSphere‐Proxy toparse andadapt theprotocol for accessing thedatabase

• org.apache.shardingsphere:shardingsphere-proxy-frontend-reactive-mysql,
the vertx-sql-client implementation of MySQL for ShardingSphere‐Proxy to parse and
adapt the protocol for accessing the database

• org.apache.shardingsphere:shardingsphere-proxy-frontend-postgresql, a
PostgresSQL implementation for ShardingSphere‐Proxy to parse and adapt the protocol for
accessing the database

• org.apache.shardingsphere:shardingsphere-proxy-frontend-opengauss, an
openGauss implementation for ShardingSphere‐Proxy to parse and adapt the protocol for
accessing the database

• org.apache.shardingsphere:shardingsphere-proxy-backend, the backend for Shard‐
ingSphere Proxy

• org.apache.shardingsphere:shardingsphere-cluster-mode-repository-zookeeper-curator,
the zookeeper implementation of the persistent definition of cluster mode configuration infor‐
mation

• org.apache.shardingsphere:shardingsphere-cluster-mode-repository-etcd,
etcd implementation of persistent definition of cluster mode configuration information

• org.apache.shardingsphere:shardingsphere-jdbc-core

For the core org.apache.shardingsphere:shardingsphere-jdbc-core, the following plugins
are built‐in.

4.2. ShardingSphere-Proxy 278

https://central.sonatype.dev/
https://shardingsphere.apache.org/document/current/cn/dev-manual/
https://shardingsphere.apache.org/document/current/cn/dev-manual/

Apache ShardingSphere document, v5.2.1

• org.apache.shardingsphere:shardingsphere-transaction-core, XA Distributed
Transaction Manager Core

• org.apache.shardingsphere:shardingsphere-sql-parser-sql92, the SQL 92 dialect
implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-mysql, MySQL dialect im‐
plementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-postgresql, Post‐
gresSQL dialect implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-oracle, Oracle dialect
parsing implementation for SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-sqlserver, the SQL
Server dialect implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-sql-parser-opengauss, the Open‐
Gauss dialect implementation of SQL parsing

• org.apache.shardingsphere:shardingsphere-mysql-dialect-exception, MySQL
implementation of database gateway

• org.apache.shardingsphere:shardingsphere-postgresql-dialect-exception,
PostgresSQL implementation of database gateway

• org.apache.shardingsphere:shardingsphere-authority-core, the user authority to
load the logical core

• org.apache.shardingsphere:shardingsphere-single-table-core, single‐table
(only the only table that exists in all sharded data sources) core

• org.apache.shardingsphere:shardingsphere-traffic-core, traffic governance core

• org.apache.shardingsphere:shardingsphere-infra-context, the kernel operation
and metadata refresh mechanism of Context

• org.apache.shardingsphere:shardingsphere-standalone-mode-core, the persis‐
tence definition core of single‐machine mode configuration information

• org.apache.shardingsphere:shardingsphere-standalone-mode-repository-jdbc-h2,
H2 implementation of persistent definition of configuration information in stand‐alone mode

• org.apache.shardingsphere:shardingsphere-cluster-mode-core, the persistent
definition core of cluster mode configuration information

• org.apache.shardingsphere:shardingsphere-sharding-core, data sharding core

• org.apache.shardingsphere:shardingsphere-sharding-cache, refer to https://gith
ub.com/apache/shardingsphere/issues/21223

• org.apache.shardingsphere:shardingsphere-readwrite-splitting-core, read‐
write splitting core

4.2. ShardingSphere-Proxy 279

https://github.com/apache/shardingsphere/issues/21223
https://github.com/apache/shardingsphere/issues/21223

Apache ShardingSphere document, v5.2.1

• org.apache.shardingsphere:shardingsphere-db-discovery-core, high availability
core

• org.apache.shardingsphere:shardingsphere-encrypt-core, data encryption core

• org.apache.shardingsphere:shardingsphere-shadow-core, shadow library core

• org.apache.shardingsphere:shardingsphere-sql-federation-core, federation
query executor core

• org.apache.shardingsphere:shardingsphere-sql-federation-executor-advanced,
the advanced implementation of federated query executor

• org.apache.shardingsphere:shardingsphere-sql-federation-executor-original,
the original implementation of federated query executor

• org.apache.shardingsphere:shardingsphere-parser-core, SQL parsing core

If ShardingSphere Proxy needs to use optional plugins, you need to download the JAR containing its SPI
implementation and its dependent JARs fromMaven Central.

All optional plugins are listed below in the form of groupId:artifactId.

• Cluster mode configuration information persistence definition

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-nacos,
Nacos based persistence

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-consul,
Consul based persistence

• XA transaction manager provider definition

– org.apache.shardingsphere:shardingsphere-transaction-xa-narayana, XA
distributed transaction manager based on Narayana

– org.apache.shardingsphere:shardingsphere-transaction-xa-bitronix, XA
distributed transaction manager based on Bitronix

• SQL translator

– org.apache.shardingsphere:shardingsphere-sql-translator-jooq-provider,
JooQ SQL translator

4.2.7 Session Management

ShardingSphere supports session management. You can view the current session or kill the session
through the SQL of the native database. At present, this function is only available when the storage
node is MySQL. MySQL SHOW PROCESSLIST and KILL commands are supported.

4.2. ShardingSphere-Proxy 280

Apache ShardingSphere document, v5.2.1

Usage

View Session

Different methods of viewing sessions are supported for different associated databases. The SHOW
PROCESSLIST command can be used to view sessions for associated MySQL databases. Sharding‐
Sphere will automatically generate a unique UUID ID as the ID, and store the SQL execution informa‐
tion in each instance. When this command is executed, ShardingSphere will collect and synchronize
the SQL execution information of each computing node through the governance center, and then sum‐
marize and return it to the user.

mysql> show processlist;
+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+
| Id | User | Host | db | Command |
Time | State | Info |
+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+
| 05ede3bd584fd4a429dcaac382be2973 | root | 127.0.0.1 | sharding_db | Execute | 2
| Executing 0/1 | select sleep(10) |

| f9e5c97431567415fe10badc5fa46378 | root | 127.0.0.1 | sharding_db | Sleep | 690
| | |

+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+

• Output Description

Simulates the output of native MySQL, but the Id field is a special random string.

Kill Session

The user determines whether the KILL statement needs to be executed according to the results re‐
turned by SHOW PROCESSLIST. ShardingSphere cancels the SQL being executed according to the ID
in the KILL statement.

mysql> kill 05ede3bd584fd4a429dcaac382be2973;
Query OK, 0 rows affected (0.04 sec)

mysql> show processlist;
Empty set (0.02 sec)

4.2. ShardingSphere-Proxy 281

Apache ShardingSphere document, v5.2.1

4.3 Common Configuration

This chapter mainly introduces general configuration, including property configuration and built‐in
algorithm configuration.

4.3.1 Properties Configuration

Background

Apache ShardingSphere provides the way of property configuration to configure system level configu‐
ration.

4.3. Common Configuration 282

Apache ShardingSphere document, v5.2.1

Parameters

•
Name*

•
D a t a T y p e *

Description •
D e f a u l t V a l u e *

sql ‐show (?) b o o l e a n Whether show SQL
or not in log. Print
SQL details can help
developers debug
easier. The log details
include: logic SQL,
actual SQL and SQL
parse result. Enable
this property will log
into log topic Shard-
ingSphere-SQL, log
level is INFO

f a l s e

sql‐s imple (?) b o o l e a n Whether show SQL de‐
tails in simple style

f a l s e

kerne l‐exe cutor ‐size
(?)

i n t The max thread size
of worker group to
execute SQL. One
ShardingSphereData‐
Source will use a
independent thread
pool, it does not share
thread pool even dif‐
ferent data source in
same JVM

i n f i n i t e

max‐c onnec tions ‐
size ‐per‐ query (?)

i n t Max opened connec‐
tion size for each
query

1

che ck‐ta ble‐m etada
ta‐en abled (?)

b o o l e a n Whether validate table
meta data consistency
when application
startup or updated

f a l s e

sql‐ feder ation ‐type
(?)

S t r i n g SQL federation execu‐
tor type, including:
NONE, ORIGINAL,
ADVANCED

N O N E

4.3. Common Configuration 283

Apache ShardingSphere document, v5.2.1

Procedure

1. Properties configuration is directly configured in the profile used by ShardingSphere‐JDBC. The
format is as follows:

props:
sql-show: true

Sample

The example of ShardingSphere warehouse contains property configurations of various scenarios.
Please refer to: https://github.com/apache/shardingsphere/tree/master/examples/shardingsphe
re‐jdbc‐example

4.3.2 Builtin Algorithm

Introduction

Apache ShardingSphere allows developers to implement algorithms via SPI; At the same time, Apache
ShardingSphere also provides a couple of builtin algorithms for simplify developers.

Usage

The builtin algorithms are configured by type and props. Type is defined by the algorithm in SPI, and
props is used to deliver the customized parameters of the algorithm.

No matter which configuration type is used, the configured algorithm is named and passed to the cor‐
responding rule configuration. This chapter distinguishes and lists all the builtin algorithms of Apache
ShardingSphere according to its functions for developers’reference.

Metadata Repository

Background

Apache ShardingSphere provides differentmetadata persistencemethods for different runningmodes.
Users can choose an appropriate way to store metadata while configuring the running mode.

4.3. Common Configuration 284

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example

Apache ShardingSphere document, v5.2.1

Parameters

Database Repository

Type: JDBC

Mode: Standalone

Attributes:

Name •
T y p e *

Description Default Value

provider S t r i n g Type for metadata per‐
sist

H2

jdbc_url S t r i n g JDBC URL jdb
c:h2:mem:config;DB_CLOSE_DELAY=‐
1;
DATABASE_TO_UPPER=false;MODE=MYSQL

username S t r i n g username sa
password S t r i n g password

ZooKeeper Repository

Type: ZooKeeper

Mode: Cluster

Attributes:

Name Type Description Default Value

retryInte rvalMilliseconds int Milliseconds of retry interval 500
maxRetries int Max retries of client connection 3
t imeToLiveSeconds int Seconds of ephemeral data live 60
operationTim eoutMilliseconds int Milliseconds of operation timeout 500
digest String Password of login

Etcd Repository

Type: Etcd

Mode: Cluster

Attributes:

4.3. Common Configuration 285

Apache ShardingSphere document, v5.2.1

Name Type Description Default Value

timeToLiveSeconds long Seconds of ephemeral data live 30
connectionTimeout long Seconds of connection timeout 30

Nacos Repository

Type: Nacos

Mode: Cluster

Attributes:

Name Type Description Default Value

clusterIp String Unique identifier in cluster Host IP
retryInte rvalMilliseconds long Milliseconds of retry interval 500
maxRetries int Max retries for client to check data availability 3
t imeToLiveSeconds int Seconds of ephemeral instance live 30

Consul Repository

Type: Consul

Mode: Cluster

Attributes:

Name Type Description Default Value

t imeToLiveSeconds String Seconds of ephemeral instance live 30s
blockQu eryTimeToSeconds long Seconds of query timeout 60

Procedure

1. Configure running mode in server.yaml.

2. Configure metadata persistence warehouse type.

Sample

• Standalone mode configuration method.

mode:
type: Standalone
repository:

type: JDBC
props:

4.3. Common Configuration 286

Apache ShardingSphere document, v5.2.1

provider: H2
jdbc_url: jdbc:h2:mem:config;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;

MODE=MYSQL
username: test
password: Test@123

• Cluster mode.

mode:
type: Cluster
repository:

type: zookeeper
props:
namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

Sharding Algorithm

Background

ShardingSphere built‐in algorithms provide a variety of sharding algorithms, which can be divided into
automatic sharding algorithms, standard sharding algorithms, composite sharding algorithms, andhint
sharding algorithms, and can meet the needs of most business scenarios of users.

Additionally, considering the complexity of business scenarios, the built‐in algorithm also provides a
way to customize the sharding algorithm. Users can complete complex sharding logic by writing java
code.

Parameters

Auto Sharding Algorithm

Modulo Sharding Algorithm

Type: MOD

Attributes:

Name DataType Description

sharding‐count int Sharding count

4.3. Common Configuration 287

Apache ShardingSphere document, v5.2.1

Modulo sharding algorithm provided by CosId

Modulo sharding algorithm implemented by the tool class based on me.ahoo.cosid:cosid-core.
See the discussion at https://github.com/apache/shardingsphere/issues/14047 .

Type: COSID_MOD

Attributes:

Name DataType Description

mod int Sharding count
logic‐name‐prefix String Prefix pattern of sharding data sources or tables

Hash Modulo Sharding Algorithm

Type: HASH_MOD

Attributes:

Name DataType Description

sharding‐count int Sharding count

Volume Based Range Sharding Algorithm

Type: VOLUME_RANGE

Attributes:

Name DataType Description

range‐lower long Range lower bound, throw exception if lower than bound
range‐upper long Range upper bound, throw exception if upper than bound
sharding‐volume long Sharding volume

Boundary Based Range Sharding Algorithm

Type: BOUNDARY_RANGE

Attributes:

Name Data
Type

Description

shardi ng‐
ranges

S tring Rangeof shardingborder,multiple boundaries separatedby commas

4.3. Common Configuration 288

https://github.com/apache/shardingsphere/issues/14047

Apache ShardingSphere document, v5.2.1

Auto Interval Sharding Algorithm

Type: AUTO_INTERVAL

Attributes:

Name •
D a t a T y p e *

Description

da tet ime ‐lo wer S t r i n g Shard datetime begin bound‐
ary, pattern: yyyy‐MM‐dd
HH:mm:ss

da tet ime ‐up per S t r i n g Shard datetime end bound‐
ary, pattern: yyyy‐MM‐dd
HH:mm:ss

s har din g‐s eco nds l o n g Max seconds for the data in
one shard, allows sharding
key timestamp format seconds
with time precision, but time
precision after seconds is
automatically erased

Standard Sharding Algorithm

Apache ShardingSphere built‐in standard sharding algorithm are:

Inline Sharding Algorithm

With Groovy expressions, InlineShardingStrategy provides single‐key support for the sharding
operation of = and IN in SQL. Simple sharding algorithms can be used through a simple configuration
to avoid laborious Java code developments. For example, t_user_$->{u_id % 8}means table t_user
is divided into 8 tables according to u_id, with table names from t_user_0 to t_user_7. Please refer
to Inline Expression for more details.

Type: INLINE

Attributes:

4.3. Common Configuration 289

https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/#implementation-classes

Apache ShardingSphere document, v5.2.1

Name •
D a t a T y p e *

Description D efa ult Val ue

algori thm‐expression S t r i n g Inline expression
sharding algorithm

•

allow‐rang e‐query‐
with‐i nline‐sharding
(?)

b o o l e a n Whether range query
is allowed. Note:
range query will
ignore sharding strat‐
egy and conduct full
routing

fa lse

Interval Sharding Algorithm

This algorithm actively ignores the time zone information of datetime-pattern. This means that
when datetime-lower, datetime-upper and the incoming shard key contain time zone informa‐
tion, time zone conversion will not occur due to time zone inconsistencies. When the incoming shard‐
ing key is java.time.Instant, there is a special case, which will carry the time zone information of
the system and convert it into the string format of datetime-pattern, and then proceed to the next
sharding.

Type: INTERVAL

Attributes:

4.3. Common Configuration 290

Apache ShardingSphere document, v5.2.1

N ame •
D a t a T y p e *

Description •
D e f a u l t V a l u e *

date time ‐pat tern S t r i n g Timestamp pattern
of sharding value,
must can be trans‐
formed to Java Lo‐
calDateTime. For
example: yyyy‐MM‐dd
HH:mm:ss, yyyy‐
MM‐dd or HH:mm:ss
etc. But Gy‐MM etc.
related to java.
time.chrono.
JapaneseDate are
not supported

•

da teti me‐l ower S t r i n g Datetime sharding
lower boundary,
pattern is defined
datetime-pattern

•

da teti me‐u pper (?) S t r i n g Datetime sharding
upper boundary,
pattern is defined
datetime-pattern

N o w

sha rdin g‐su ffix ‐pat
tern

S t r i n g Suffix pattern of
sharding data sources
or tables, must can
be transformed to
Java LocalDateTime,
must be consis‐
tent with date-
time-interval-unit.
For example: yyyyMM

•

date time ‐int erva l‐am
ount (?)

i n t Interval of sharding
value, after which
the next shard will be
entered

1

da teti me‐i nter val‐
unit (?)

S t r i n g Unit of sharding value
interval, must can be
transformed to Java
ChronoUnit’s Enum
value. For example:
MONTHS

D A Y S

4.3. Common Configuration 291

Apache ShardingSphere document, v5.2.1

Fixed interval sharding algorithm provided by CosId

A fixed time range sharding algorithm implemented by the tool class based on me.ahoo.
cosid:cosid-core. When the sharding key is a JSR‐310 containing class or a time‐related class, it
will be converted to java.time.LocalDateTime before the next sharding. See the discussion at
https://github.com/apache/shardingsphere/issues/14047.

Type：COSID_INTERVAL

Attributes：

4.3. Common Configuration 292

https://github.com/apache/shardingsphere/issues/14047

Apache ShardingSphere document, v5.2.1

•
Name*

•
D a t a T y p e *

Description •
D e f a u l t V a l u e *

zo ne‐id S t r i n g Time zone, which
must follow the
contained value
of java.time.
ZoneId. For example:
Asia/Shanghai

lo gic‐n ame‐p refix S t r i n g Prefix pattern of
sharding data sources
or tables

date time‐ lower S t r i n g Datetime sharding
lower boundary, pat‐
tern is consistent with
the timestamp for‐
mat of yyyy-MM-dd
HH:mm:ss

date time‐ upper S t r i n g Datetime sharding
upper boundary, pat‐
tern is consistent with
the timestamp for‐
mat of yyyy-MM-dd
HH:mm:ss

sha rding ‐suff ix‐pa
ttern

S t r i n g Suffix pattern of
sharding data sources
or tables, must can
be transformed to
Java LocalDateTime,
must be consis‐
tent with date-
time-interval-unit.
For example: yyyyMM

da tetim e‐int erval ‐
unit

S t r i n g Unit of sharding value
interval, must can be
transformed to Java
ChronoUnit’s Enum
value. For example:
MONTHS

date time‐ inter val‐a
mount

i n t Interval of sharding
value, after which
the next shard will be
entered

4.3. Common Configuration 293

Apache ShardingSphere document, v5.2.1

Snowflake key-based fixed interval sharding algorithm provided by CosId

Snowflake ID sharding algorithm with fixed time range implemented by tool class based on me.ahoo.
cosid:cosid-core. When the sharding key is a JSR‐310 containing class or a time‐related class, it
will be converted to java.time.LocalDateTime before the next sharding. See the discussion at
https://github.com/apache/shardingsphere/issues/14047.

Type：COSID_INTERVAL_SNOWFLAKE

Attributes：

4.3. Common Configuration 294

https://github.com/apache/shardingsphere/issues/14047

Apache ShardingSphere document, v5.2.1

•
Name*

•
D a t a T y p e *

Description •
D e f a u l t V a l u e *

zo ne‐id S t r i n g Time zone, which
must follow the
contained value
of java.time.
ZoneId. For example:
Asia/Shanghai

lo gic‐n ame‐p refix S t r i n g Prefix pattern of
sharding data sources
or tables

date time‐ lower S t r i n g Datetime sharding
lower boundary, pat‐
tern is consistent with
the timestamp for‐
mat of yyyy-MM-dd
HH:mm:ss

date time‐ upper S t r i n g Datetime sharding
upper boundary, pat‐
tern is consistent with
the timestamp for‐
mat of yyyy-MM-dd
HH:mm:ss

sha rding ‐suff ix‐pa
ttern

S t r i n g Suffix pattern of
sharding data sources
or tables, must can
be transformed to
Java LocalDateTime,
must be consis‐
tent with date-
time-interval-unit.
For example: yyyyMM

da tetim e‐int erval ‐
unit

S t r i n g Unit of sharding value
interval, must can be
transformed to Java
ChronoUnit’s Enum
value. For example:
MONTHS

date time‐ inter val‐a
mount

i n t Interval of sharding
value, after which
the next shard will be
entered

4.3. Common Configuration 295

Apache ShardingSphere document, v5.2.1

Complex Sharding Algorithm

Complex Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

Name •
D a t a T y p e *

Description D efa ult Val ue

sh arding‐columns (?) S t r i n g sharing columnnames •

algori thm‐expression S t r i n g Inline expression
sharding algorithm

•

allow‐rang e‐query‐
with‐i nline‐sharding
(?)

b o o l e a n Whether range query
is allowed. Note:
range query will
ignore sharding strat‐
egy and conduct full
routing

fa lse

Hint Sharding Algorithm

Hint Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

Name DataType Description Default Value

algor ithm‐expression String Inline expression sharding algorithm ${value}

Class Based Sharding Algorithm

Realize custom extension by configuring the sharding strategy type and algorithm class name.
CLASS_BASED allows additional custom properties to be passed into the algorithm class. The passed
properties can be retrieved through the java.util.Properties class instance with the property
name props. Refer to Git’s org.apache.shardingsphere.example.extension.sharding.
algortihm.classbased.fixture.ClassBasedStandardShardingAlgorithmFixture.

Type：CLASS_BASED

Attributes：

4.3. Common Configuration 296

https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/#implementation-classes
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/#implementation-classes

Apache ShardingSphere document, v5.2.1

Name Data
Type

Description

strategy S tring Sharding strategy type, support STANDARD, COMPLEX or HINT
(case insensitive)

algor ithmClass‐
Name

S tring Fully qualified name of sharding algorithm

Procedure

1. When using data sharding, configure the corresponding data sharding algorithm under the
shardingAlgorithms attribute.

Sample

rules:
- !SHARDING
tables:

t_order:
actualDataNodes: ds_${0..1}.t_order_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: t-order-inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

t_order_item:
actualDataNodes: ds_${0..1}.t_order_item_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: t_order-item-inline

keyGenerateStrategy:
column: order_item_id
keyGeneratorName: snowflake

t_account:
actualDataNodes: ds_${0..1}.t_account_${0..1}
tableStrategy:
standard:

shardingAlgorithmName: t-account-inline
keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

defaultShardingColumn: account_id
bindingTables:

4.3. Common Configuration 297

Apache ShardingSphere document, v5.2.1

- t_order,t_order_item
broadcastTables:

- t_address
defaultDatabaseStrategy:

standard:
shardingColumn: user_id
shardingAlgorithmName: database-inline

defaultTableStrategy:
none:

shardingAlgorithms:
database-inline:
type: INLINE
props:
algorithm-expression: ds_${user_id % 2}

t-order-inline:
type: INLINE
props:
algorithm-expression: t_order_${order_id % 2}

t_order-item-inline:
type: INLINE
props:
algorithm-expression: t_order_item_${order_id % 2}

t-account-inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

Related References

• Core Feature: Data Sharding

• Developer Guide: Data Sharding

Key Generate Algorithm

Background

In traditional database software development, automatic primary key generation is a basic requirement
and various databases provide support for this requirement, such as MySQL’s self‐incrementing keys,
Oracle’s self‐incrementing sequences, etc.

After data sharding, it is a very tricky problem to generate global unique primary keys from different

4.3. Common Configuration 298

https://shardingsphere.apache.org/document/current/en/features/sharding/
https://shardingsphere.apache.org/document/current/en/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

data nodes. Self‐incrementing keys between different actual tables within the same logical table gen‐
erate duplicate primary keys because they are not mutually perceived.

Although collisions can be avoided by constraining the initial value and step size of self‐incrementing
primary keys, additional O&M rulesmust to be introduced, making the solution lack completeness and
scalability.

There are many third‐party solutions that can perfectly solve this problem, such as UUID, which re‐
lies on specific algorithms to generate non‐duplicate keys, or by introducing primary key generation
services.

In order to cater to the requirements of different users in different scenarios, Apache ShardingSphere
not only provides built‐in distributed primary key generators, such as UUID, SNOWFLAKE, but also
abstracts the interface of distributed primary key generators to facilitate users to implement their own
customized primary key generators.

Parameters

Snowflake

Type: SNOWFLAKE

Attributes:

4.3. Common Configuration 299

Apache ShardingSphere document, v5.2.1

Name •
D a t a T y p e *

Description Def ault Va lue

worker‐id (?) l o n g The unique ID for
working machine

0

max ‐tolerate‐time‐diff
erence‐milliseconds
(?)

l o n g The max tolerate time
for different server’s
time difference in mil‐
liseconds

10 mill isec onds

m ax‐vibration‐offset
(?)

i n t The max upper limit
value of vibrate
number, range [0,
4096). Notice: To use
the generated value
of this algorithm as
sharding value, it is
recommended to con‐
figure this property.
The algorithm gener‐
ates keymod 2^n (2^n
is usually the sharding
amount of tables or
databases) in different
milliseconds and the
result is always 0 or 1.
To prevent the above
sharding problem, it is
recommended to con‐
figure this property,
its value is (2^n)-1

1

Note: worker‐id is optional 1. In standalone mode, support user‐defined configuration, if the user does
not configure the default value of 0. 2. In clustermode, it will be automatically generated by the system,
and duplicate values will not be generated in the same namespace.

4.3. Common Configuration 300

Apache ShardingSphere document, v5.2.1

Nano ID

Type:NANOID

Configurable Property:none

UUID

Type: UUID

Attributes: None

CosId

Type: COSID

Attributes：

•
N am e *

•
D a t a T y p e *

Description D ef au lt Va lu e

i d ‐ n a m e S t r i n g ID generator name ˋ _ _s ha re __ `

a s ‐ s t r i n g b o o l Whether to generate
a string type ID: Con‐
vert long type ID to
Base‐62 String type
(Long.MAX_VALUE
maximum string
length is 11 digits),
and ensure the order‐
ing of string IDs

ˋ f al se `

CosId-Snowflake

Type: COSID_SNOWFLAKE

Attributes：

4.3. Common Configuration 301

Apache ShardingSphere document, v5.2.1

•
N am e *

•
D a t a T y p e *

Description D ef au lt Va lu e

e p o c h S t r i n g EPOCH of Snowflake
ID Algorithm

ˋ 1 47 79 29 60 00 00 `

a s ‐ s t r i n g b o o l Whether to generate
a string type ID: Con‐
vert long type ID to
Base‐62 String type
(Long.MAX_VALUE
maximum string
length is 11 digits),
and ensure the order‐
ing of string IDs

ˋ f al se `

Procedure

1. Policy of distributed primary key configurations is for columns when configuring data sharding
rules.

Sample

• Snowflake Algorithms

keyGenerators:
snowflake:

type: SNOWFLAKE

• NanoID

keyGenerators:
nanoid:

type: NANOID

• UUID

keyGenerators:
nanoid:

type: UUID

4.3. Common Configuration 302

Apache ShardingSphere document, v5.2.1

Load Balance Algorithm

Background

ShardingSphere built‐in provides a variety of load balancer algorithms, including polling algorithm,
random access algorithm and weight access algorithm, which canmeet users’needs in most business
scenarios.

Moreover, considering the complexity of the business scenario, the built‐in algorithm also provides an
extension mode. Users can implement the load balancer algorithm they need based on SPI interface.

Parameters

Round-robin Load Balance Algorithm

Type: ROUND_ROBIN

Description: Within the transaction, read query are routed to the primary, and outside the transaction,
the round‐robin strategy is used to route to the replica.

Attributes: None

Random Load Balance Algorithm

Type: RANDOM

Description: Within the transaction, read query are routed to the primary, and outside the transaction,
the random strategy is used to route to the replica.

Attributes: None

Weight Load Balance Algorithm

Type: WEIGHT

Description: Within the transaction, read query are routed to the primary, and outside the transaction,
the weight strategy is used to route to the replica.

Attributes:

•
N am e *

•
D a t a T y p e *

Description

r e p l i c a ‐ n a m e } d o u b l e Attribute name uses the name
of the replica, and the param‐
eter fills in the weight value
corresponding to the replica.
Weight parameter range min >
0, total <= Double.MAX_VALUE.

4.3. Common Configuration 303

Apache ShardingSphere document, v5.2.1

Transaction Random Load Balance Algorithm

Type: TRANSACTION_RANDOM

Description: Display/non‐display open transaction, read query are routed to multiple replicas using
random strategy.

Attributes: None

Transaction Round-robin Load Balance Algorithm

Type: TRANSACTION_ROUND_ROBIN

Description: Display/non‐display open transaction, read query are routed to multiple replicas using
round‐robin strategy.

Attributes: None

TransactionWeight Load Balance Algorithm

Type: TRANSACTION_WEIGHT

Description: Display/non‐display open transaction, read query are routed to multiple replicas using
weight strategy.

Attributes:

•
N am e *

•
D a t a T y p e *

Description

r e p l i c a ‐ n a m e } d o u b l e Attribute name uses the name
of the replica, and the param‐
eter fills in the weight value
corresponding to the replica.
Weight parameter range min >
0, total <= Double.MAX_VALUE.

Fixed Replica Random Load Balance Algorithm

Type: FIXED_REPLICA_RANDOM

Description: Open transaction displayed, and the read query is routed to a fixed replica using random
strategy; otherwise, each read traffic is routed to a different replica using random strategy.

Attributes: None

4.3. Common Configuration 304

Apache ShardingSphere document, v5.2.1

Fixed Replica Round-robin Load Balance Algorithm

Type: FIXED_REPLICA_ROUND_ROBIN

Description: Open transaction displayed, and the read query is routed to a fixed replica using round‐
robin strategy; otherwise, each read traffic is routed to a different replica using round‐robin strategy.

Attributes: None

Fixed Replica Weight Load Balance Algorithm

Type: FIXED_REPLICA_WEIGHT

Description: Open transaction displayed, and the read query is routed to a fixed replica using weight
strategy; otherwise, each read traffic is routed to a different replica using weight strategy.

Attributes:

•
N am e *

•
D a t a T y p e *

Description

r e p l i c a ‐ n a m e } d o u b l e Attribute name uses the name
of the replica, and the param‐
eter fills in the weight value
corresponding to the replica.
Weight parameter range min >
0, total <= Double.MAX_VALUE.

Fixed Primary Load Balance Algorithm

Type: FIXED_PRIMARY

Description: All read query are routed to the primary.

Attributes: None

Procedure

1. Configure a load balancer algorithm for the loadBalancers attribute to use read/write splitting.

4.3. Common Configuration 305

Apache ShardingSphere document, v5.2.1

Sample

rules:
- !READWRITE_SPLITTING
dataSources:

readwrite_ds:
staticStrategy:
writeDataSourceName: write_ds
readDataSourceNames:

- read_ds_0
- read_ds_1

loadBalancerName: random
loadBalancers:

random:
type: RANDOM

Related References

• Core Feature: Read/Write Splitting

• Developer Guide: Read/Write Splitting

Encryption Algorithm

Background

Encryption algorithms are the algorithms used by the encryption features of Apache ShardingSphere.
A variety of algorithms are built‐in to make it easy for users to fully leverage the feature.

Parameters

MD5 Encrypt Algorithm

Type: MD5

Attributes: None

4.3. Common Configuration 306

https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/en/dev-manual/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

AES Encrypt Algorithm

Type: AES

Attributes:

Name DataType Description

aes‐key‐value String AES KEY

RC4 Encrypt Algorithm

Type: RC4

Attributes:

Name DataType Description

rc4‐key‐value String RC4 KEY

SM3 Encrypt Algorithm

Type: SM3

Attributes:

Name DataType Description

sm3‐salt String SM3 SALT (should be blank or 8 bytes long)

SM4 Encrypt Algorithm

Type: SM4

Attributes:

Name DataType Description

sm4‐key String SM4 KEY (should be 16 bytes)
sm4‐mode String SM4 MODE (should be CBC or ECB)
sm4‐iv String SM4 IV (should be specified on CBC, 16 bytes long)
sm4‐
padding

String SM4 PADDING (should be PKCS5Padding or PKCS7Padding, NoPadding ex‐
cepted)

4.3. Common Configuration 307

Apache ShardingSphere document, v5.2.1

Operating Procedures

1. Configure encryptors in an encryption rule.

2. Use relevant algorithm types in encryptors.

Configuration Examples

rules:
- !ENCRYPT
tables:

t_user:
columns:
username:

plainColumn: username_plain
cipherColumn: username
encryptorName: name-encryptor

encryptors:
name-encryptor:
type: AES
props:
aes-key-value: 123456abc

Related References

• Core Feature: Data Encrypt

• Developer Guide: Data Encrypt

Shadow Algorithm

Background

The shadow DB feature carries out shadow measurement to SQL statements executed. Shadow mea‐
surement supports two types of algorithms, and users can choose one or a combination of them based
on actual business needs.

Parameters

Column-based shadow algorithm

Column valuematching shadow algorithm

Type：VALUE_MATCH

4.3. Common Configuration 308

https://shardingsphere.apache.org/document/current/en/features/encrypt/
https://shardingsphere.apache.org/document/current/en/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

Attribute Name Data Type Description

column String shadow column
operation String SQL operation type (INSERT, UPDATE, DELETE, SELECT)
value String value matched by shadow column

Column-based Regexmatching algorithm

Type：REGEX_MATCH

Attribute Name Data Type Description

column String match a column
operation String SQL operation type（INSERT, UPDATE, DELETE, SELECT）
regex String shadow columnmatching Regex

Hint-based shadow algorithm

Simple Hint matching shadow algorithm

Type：SIMPLE_HINT

Attribute Name Data Type Description

foo String bar

Configuration sample

• Java API

public final class ShadowConfiguration {
// ...

private AlgorithmConfiguration createShadowAlgorithmConfiguration() {
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_id");
userIdInsertProps.setProperty("value", "1");
return new AlgorithmConfiguration("VALUE_MATCH", userIdInsertProps);

}

// ...
}

• YAML:

4.3. Common Configuration 309

Apache ShardingSphere document, v5.2.1

shadowAlgorithms:
user-id-insert-algorithm:

type: VALUE_MATCH
props:
column: user_id
operation: insert
value: 1

• Spring Boot Starter:

spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
type=VALUE_MATCH
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
props.operation=insert
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
props.column=user_id
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
props.value=1

• Spring Namespace:

<shadow:shadow-algorithm id="user-id-insert-algorithm" type="VALUE_MATCH">
<props>

<prop key="operation">insert</prop>
<prop key="column">user_id</prop>
<prop key="value">1</prop>

</props>
</shadow:shadow-algorithm>

SQL Translator

Native SQL translator

Type: NATIVE

Attributes:

None

Default SQL translator, does not implement yet.

4.3. Common Configuration 310

Apache ShardingSphere document, v5.2.1

JooQ SQL translator

Type: JOOQ

Attributes:

None

Because of it need JooQdependency, ShardingSphere does not include themodule, please use below
XML to import it by Maven.

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-translator-jooq-provider</artifactId>
<version>${project.version}</version>

</dependency>

Sharding Audit Algorithm

Background

The sharding audit is to audit the SQL statements in the sharding database. Sharding audit not only
intercept illegal SQL statements, but also gather the SQL statistics.

Parameters

DML_SHARDING_CONDITIONS algorithm

Type: DML_SHARDING_CONDITIONS

Procedure

1. when configuring data sharding rules, create sharding audit configurations.

Sample

• DML_SHARDING_CONDITIONS

auditors:
sharding_key_required_auditor:

type: DML_SHARDING_CONDITIONS

4.3. Common Configuration 311

Apache ShardingSphere document, v5.2.1

4.4 Error Code

This chapter lists error codes of Apache ShardingSphere. They include SQL error codes and server error
codes.

All contents of this chapter are draft, the error codes maybe need to adjust.

4.4.1 SQL Error Code

SQL error codes provide by standard SQL State, Vendor Code and Reason, which return to client
when SQL execute error.

the error codes are draft, still need to be adjusted.

Kernel Exception

Meta data

SQL State Vendor
Code

Reason

42000 10000 Resource does not exist.
08000 10001 The URL ˋ%sˋ is not recognized, please refer to the pattern ˋ%sˋ.
42000 10002 Can not support 3‐tier structure for actual data node ˋ%sˋwith JDBC ˋ%sˋ.
HY004 10003 Invalid format for actual data node ˋ%sˋ.
42000 10004 Unsupported SQL node conversion for SQL statement ˋ%sˋ.
42000 10010 Rule does not exist.
42S02 10020 Schema ˋ%sˋ does not exist.
42S02 10021 Single table ˋ%sˋ does not exist.
HY000 10022 Can not load table with database name ˋ%sˋ and data source name ˋ%sˋ.
0A000 10030 Can not drop schema ˋ%sˋ because of contains tables.

Data

SQL State Vendor Code Reason

HY004 11000 Invalid value ˋ%sˋ.
HY004 11001 Unsupported conversion data type ˋ%sˋ for value ˋ%sˋ.
HY004 11010 Unsupported conversion stream charset ˋ%sˋ.

4.4. Error Code 312

Apache ShardingSphere document, v5.2.1

Syntax

SQL State Vendor Code Reason

42000 12000 You have an error in your SQL syntax: %s
42000 12001 Can not accept SQL type ˋ%sˋ.
42000 12002 SQL String can not be NULL or empty.
42000 12010 Can not support variable ˋ%sˋ.
42S02 12011 Can not find column label ˋ%sˋ.
HV008 12020 Column index ˋ%dˋ is out of range.
0A000 12100 DROP TABLE⋯CASCADE is not supported.

Connection

SQL
State

Ven-
dor
Code

Reason

08000 13000 Can not register driver, reason is: %s
01000 13010 Circuit break open, the request has been ignored.
08000 13020 Can not get %d connections one time, partition succeed c onnection(%d) have re‐

leased. Please consider increasing the ˋmaxPoolSizeˋ of the data sources or decreasing
the ˋmax‐co nnections‐siz e‐per‐queryˋ in properties.

08000 13030 Connection has been closed.
08000 13031 Result set has been closed.
HY00013090 Load datetime from database failed, reason: %s

Transaction

SQL
State

Vendor
Code

Reason

25000 14000 Switch transaction type failed, please terminate the current transaction.
25000 14100 JDBC does not support operations across multiple logical databases in

transaction.
25000 14200 Can not start new XA transaction in a active transaction.
25000 14201 Failed to create ˋ%sˋ XA data source.

4.4. Error Code 313

Apache ShardingSphere document, v5.2.1

Lock

SQL
State

Vendor
Code

Reason

HY000 15000 The table ˋ%sˋ of schema ˋ%sˋ is locked.
HY000 15001 The table ˋ%sˋ of schema ˋ%sˋ lock wait timeout of ˋ%sˋ milliseconds ex‐

ceeded.

Audit

SQL State Vendor Code Reason

44000 16000 SQL check failed, error message: %s

Cluster

SQL State Vendor Code Reason

HY000 17000 Work ID assigned failed, which can not exceed 1024.
HY000 17001 Can not find ˋ%sˋ file for datetime initialize.
HY000 17002 File access failed, reason is: %s
HY000 17010 Cluster persist repository error, reason is: %s

4.4. Error Code 314

Apache ShardingSphere document, v5.2.1

Migration

SQL
State

Vendor
Code

Reason

44000 18001 Created process configuration already existed.
44000 18002 Altered process configuration does not exist.
HY000 18020 Failed to get DDL for table ˋ%sˋ.
42S01 18030 Duplicate resource names ˋ%sˋ.
42S02 18031 Resource names ˋ%sˋ do not exist.
0A000 18032 Unsupported data type ˋ%sˋ of unique key for pipeline job.
HY000 18050 Before data record is ˋ%sˋ, after data record is ˋ%sˋ.
08000 18051 Data check table ˋ%sˋ failed.
0A000 18052 Unsupported pipeline database type ˋ%sˋ.
0A000 18053 Unsupported CRC32 data consistency calculate algorithm with database type

ˋ%sˋ.
HY000 18080 Can not find pipeline job ˋ%sˋ.
HY000 18081 Job has already started.
HY000 18082 Sharding count of job ˋ%sˋ is 0.
HY000 18083 Can not split by range for table ˋ%sˋ, reason is: %s
HY000 18084 Can not split by unique key ˋ%sˋ for table ˋ%sˋ, reason is: %s
HY000 18085 Target table ˋ%sˋ is not empty.
01007 18086 Source data source lacks %s privilege(s).
HY000 18087 Source data source required ˋ%s = %sˋ, now is ˋ%sˋ.
HY000 18088 User ˋ%sˋ does exist.
08000 18089 Check privileges failed on source data source, reason is: %s
08000 18090 Data sources can not connect, reason is: %s
HY000 18091 Importer job write data failed.
08000 18092 Get binlog position failed by job ˋ%sˋ, reason is: %s
HY000 18093 Can not poll event because of binlog sync channel already closed.
HY000 18094 Task ˋ%sˋ execute failed.
HY000 18095 Job has already finished, please run ˋCHECK MIGRATION %sˋ to start a new

data consistency check job.
HY000 18096 Uncompleted consistency check job ˋ%sˋ exists.

4.4. Error Code 315

Apache ShardingSphere document, v5.2.1

DistSQL

SQL State Vendor Code Reason

44000 19000 Can not process invalid resources, error message is: %s
44000 19001 Resources ˋ%sˋ do not exist in database ˋ%sˋ.
44000 19002 There is no resource in the database ˋ%sˋ.
44000 19003 Resource ˋ%sˋ is still used by ˋ%sˋ.
44000 19004 Duplicate resource names ˋ%sˋ.
44000 19100 Invalid ˋ%sˋ rule ˋ%sˋ, error message is: %s
44000 19101 %s rules ˋ%sˋ do not exist in database ˋ%sˋ.
44000 19102 %s rules ˋ%sˋ in database ˋ%sˋ are still in used.
44000 19103 %s rule ˋ%sˋ has been enabled in database ˋ%sˋ.
44000 19104 %s rule ˋ%sˋ has been disabled in database ˋ%sˋ.
44000 19105 Duplicate %s rule names ˋ%sˋ in database ˋ%sˋ.
44000 19150 Invalid %s algorithm(s) ˋ%sˋ.
44000 19151 %s algorithm(s) ˋ%sˋ do not exist in database ˋ%sˋ.
44000 19152 %s algorithms ˋ%sˋ in database ˋ%sˋ are still in used.
44000 19153 Duplicate %s algorithms ˋ%sˋ in database ˋ%sˋ.

Feature Exception

Data Sharding

SQL State Vendor Code Reason

44000 20000 Can not find table rule with logic tables ˋ%sˋ.
44000 20001 Can not get uniformed table structure for logic table ˋ%sˋ, it has different meta data of actual tables are as follows: %s
42S02 20002 Can not find data source in sharding rule, invalid actual data node ˋ%sˋ.
44000 20003 Data nodes must be configured for sharding table ˋ%sˋ.
44000 20004 Actual table ˋ%s.%sˋ is not in table rule c onfiguration.
44000 20005 Can not find binding actual table, data source is ˋ%sˋ, logic table is ˋ%sˋ, other actual table is ˋ%sˋ.
44000 20006 Actual tables ˋ%sˋ are in use.
42S01 20007 Index ˋ%sˋ already exists.
42S02 20008 Index ˋ%sˋ does not exist.
42S01 20009 View name has to bind to %s tables.
44000 20020 Sharding value can’t be null in insert statement.
HY004 20021 Found different types for sharding value ˋ%sˋ.
HY004 20022 Invalid %s, datetime pattern should be ˋ%sˋ, value is ˋ%sˋ.
0A000 20040 Can not support operation ˋ%sˋ with sharding table ˋ%sˋ.
44000 20041 Can not update sharding value for table ˋ%sˋ.
0A000 20042 The CREATE VIEW statement contains unsupported query statement.
44000 20043 PREPARE statement can not support sharding tables route to same data sources.

continues on next page

4.4. Error Code 316

Apache ShardingSphere document, v5.2.1

Table 1 – continued from previous page

SQL State Vendor Code Reason

44000 20044 The table inserted and the table selected must be the same or bind tables.
0A000 20045 Can not support DML operation with multiple tables ˋ%sˋ.
42000 20046 %s⋯LIMIT can not support route to multiple data nodes.
44000 20047 Can not find actual data source intersection for logic tables ˋ%sˋ.
42000 20048 INSERT INTO⋯SELECT can not support applying key generator with absent generate key column.
0A000 20049 Alter view rename .. to .. statement should have same config for ˋ%sˋ and ˋ%sˋ.
HY000 20060 ˋ%s %sˋ can not route correctly for %s ˋ%sˋ.
42S02 20061 Can not get route result, please check your sharding rule c onfiguration.
34000 20062 Can not get cursor name from fetch statement.
HY000 20080 Sharding algorithm class ˋ%sˋ should be implement ˋ%sˋ.
HY000 20081 Routed target ˋ%sˋ does not exist, available targets are ˋ%sˋ.
44000 20082 Inline sharding algorithms expression ˋ%sˋ and sharding column ˋ%sˋ do not match.
44000 20090 Can not find strategy for generate keys with table ˋ%sˋ.
HY000 20099 Sharding plugin error, reason is: %s

Readwrite Splitting

SQL State Vendor Code Reason

HY004 20280 Invalid read database weight ˋ%sˋ.

Database HA

SQL
State

Vendor
Code

Reason

HY000 20380 MGR plugin is not active in database ˋ%sˋ.
44000 20381 MGR is not in single primary mode in database ˋ%sˋ.
44000 20382 ˋ%sˋ is not in MGR replication group member in database ˋ%sˋ.
44000 20383 Group name in MGR is not same with configured one ˋ%sˋ in database

ˋ%sˋ.

SQL Dialect Translator

SQL State Vendor Code Reason

42000 20440 Can not support database ˋ%sˋ in SQL translation.
42000 20441 Translation error, SQL is: %s

4.4. Error Code 317

Apache ShardingSphere document, v5.2.1

Traffic Management

SQL State Vendor Code Reason

42S02 20500 Can not get traffic execution unit.

Data Encrypt

SQL
State

Vendor
Code

Reason

44000 20700 Can not find logic encrypt column by ˋ%sˋ.
44000 20701 Fail to find encrypt column ˋ%sˋ from table ˋ%sˋ.
44000 20702 Altered column ˋ%sˋmust use same encrypt algorithmwith previous column

ˋ%sˋ in table ˋ%sˋ.
42000 20740 Insert value of index ˋ%sˋ can not support for encrypt.
0A000 20741 The SQL clause ˋ%sˋ is unsupported in encrypt rule.
HY004 20780 Encrypt algorithm ˋ%sˋ i nitialization failed, reason is: %s

Shadow Database

SQL State Vendor Code Reason

HY004 20820 Shadow column ˋ%sˋ of table ˋ%sˋ does not support ˋ%sˋ type.
42000 20840 Insert value of index ˋ%sˋ can not support for shadow.

Other Exception

SQL State Vendor Code Reason

HY004 30000 Unknown exception: %s
0A000 30001 Unsupported SQL operation: %s
0A000 30002 Database protocol exception: %s
0A000 30003 Unsupported command: %s

4.4.2 Server Error Code

Unique codes provided when server exception occur, which printed by Proxy backend or JDBC startup
logs.

4.4. Error Code 318

Apache ShardingSphere document, v5.2.1

Error Code Reason

SPI‐00001 No implementation class load from SPI ˋ%sˋ with type ˋ%sˋ.
DATA‐SOURCE‐00001 Data source unavailable.
PROPS‐00001 Value ˋ%sˋ of ˋ%sˋ cannot convert to type ˋ%sˋ.
PROXY‐00001 Load database server info failed.
SPRING‐00001 Can not find JNDI data source.
SPRING‐SHARDING‐00001 Can not support type ˋ%sˋ.

4.4. Error Code 319

5
Dev Manual

Apache ShardingSphere provides dozens of SPI based extensions. it is very convenient to customize the
functions for developers.

This chapter lists all SPI extensions of Apache ShardingSphere. If there is no special requirement, users
can use the built‐in implementation provided by Apache ShardingSphere; advanced users can refer to
the interfaces for customized implementation.

Apache ShardingSphere community welcomes developers to feed back their implementations to the
[open‐source community], so that more users can benefit from it.

5.1 Mode

5.1.1 StandalonePersistRepository

Fully-qualified class name

org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepository

Definition

Standalone mode configuration information persistence definition

Implementation classes

Configuration
Type

Description Fully-qualified class name

H2 H2‐based persis‐
tence

org.apache.shard ingsphere.mode.repository. stan‐
dalone.h2.H2Repository

320

Apache ShardingSphere document, v5.2.1

5.1.2 ClusterPersistRepository

Fully-qualified class name

org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepository

Definition

Cluster mode configuration information persistence definition

Implementation classes

Config-
uration
Type

Description Fully-qualified class name

ZooKeeper ZooKeeper based
persistence

org.apache.shardi ngsphere.mode.repositor
y.cluster.zookeeper.Cur atorZookeeperRepository

etcd Etcd based persis‐
tence

org.apache.shardingsphe re.mode.repository.clus
ter.etcd.EtcdRepository

Nacos Nacos based persis‐
tence

or g.apache.shardingsphere .mode.repository.cluste
r.nacos.NacosRepository

Consul Consul based per‐
sistence

org. apache.shardingsphere.m ode.repository.cluster. con‐
sul.ConsulRepository

5.1.3 GovernanceWatcher

Fully-qualified class name

org.apache.shardingsphere.mode.manager.cluster.coordinator.registry.GovernanceWatcher

Definition

Governance listener definition

5.1. Mode 321

Apache ShardingSphere document, v5.2.1

Implementation classes

Configuration Type Description Full y-qualified class name

Types: ADDED, UPDATED,
DELETED; WatchingKeys:
/nodes/compute_nodes

Compute node
state change
listener

org.apache. shardingsph ere.mode.ma
nager.clust er.coordina tor.registr y.status.co
mpute.watch er.ComputeN odeStateCha nged‐
Watcher

Types: ADDED,
DELETED; WatchingKeys:
/lock/database/locks

Database lock
state change
listener

org.apac he.sharding sphere.mode .manager.cl
uster.coord inator.lock .database.w atcher.Data
baseLockCha ngedWatcher

Types: ADDED,
DELETED; WatchingKeys:
/lock/distributed/locks

Distributed lock
change listener

org .apache.sha rdingsphere .mode.manag
er.cluster. coordinator .lock.distr ibuted.watc
her.Distrib utedLockCha ngedWatcher

Types: UPDATED; Watch‐
ingKeys: /rules

The global rule
configuration
change listener

org.apac he.sharding sphere.mode .manager.cl
uster.coord inator.regi stry.config .watcher.Gl
obalRuleCha ngedWatcher

Types: ADDED, UPDATED,
DELETED; WatchingKeys:
/metadata/${databaseName}

Metadata
change listener

org.apac he.sharding sphere.mode .manager.cl
uster.coord inator.regi stry.metada ta.watcher.
MetaDataCha ngedWatcher

Types: ADDED, UPDATED;
WatchingKeys: /props

Property
change listener

org.apac he.sharding sphere.mode .manager.cl
uster.coord inator.regi stry.config .watcher.Pr
opertiesCha ngedWatcher

Types: ADDED, UPDATED,
DELETED; WatchingKeys:
/nodes/storage_nodes

Storage node
state change
listener

org.apache. shardingsph ere.mode.ma
nager.clust er.coordina tor.registr y.status.st
orage.watch er.StorageN odeStateCha nged‐
Watcher

5.2 Configuration

5.2.1 RuleBuilder

Fully-qualified class name

org.apache.shardingsphere.infra.rule.builder.RuleBuilder

5.2. Configuration 322

Apache ShardingSphere document, v5.2.1

Definition

Used to convert user configurations into rule objects

5.2. Configuration 323

Apache ShardingSphere document, v5.2.1

Implementation classes

C onfi gura tion T ype D escription Fully-qualified class name

Au thor ityR uleC
onfi gura tion

Used to convert authority user co
nfiguration into authority rule ob‐
jects

org.apache.shardingsph
ere.authority.rule.builder.AuthorityRuleBuilder

SQ LPar serR uleC
onfi gura tion

Used to convert SQL parser user co
nfiguration into SQL parser rule ob‐
jects

org.apache.sharding
sphere.parser.rule.builder.SQLParserRuleBuilder

Tran sact ionR uleC
onfi gura tion

Used to convert transaction user co
nfiguration into transaction rule ob‐
jects

org.apache.shardingsphere.
transac‐
tion.rule.builder.TransactionRuleBuilder

Sing leTa bleR uleC
onfi gura tion

Used to convert s ingle‐table user co
nfiguration into a s ingle‐table rule
objects

org.apache.shardingsphere. sin‐
gletable.rule.builder.SingleTableRuleBuilder

S hard ingR uleC onfi
gura tion

Used to convert sharding user co
nfiguration into sharding rule ob‐
jects

org.apache.shardings
phere.sharding.rule.builder.ShardingRuleBuilder

Al gori thmP rovi
dedS hard ingR uleC
onfi gura tion

Used to convert algo rithm‐based
sharding user co nfiguration under
SpringContext into sharding rule ob‐
jects

org.apache.shardingsphere.sharding.ru
le.builder.AlgorithmProvidedShardingRuleBuilder

Rea dwri teSp litt
ingR uleC onfi gura
tion

Used to convert read‐write splitting
user co nfiguration into read‐write
splitting rule objects

org.apache.shardingsphere.readwritesplit
ting.rule.builder.ReadwriteSplittingRuleBuilder

Algo rith mPro vide
dRea dwri teSp litt
ingR uleC onfi gura
tion

Used to convert algo rithm‐based
read‐write splitting user co nfigura‐
tion into read‐write splitting rule ob‐
jects

org.apache .sharding‐
sphere.readwritesplitting.rule.builder
.AlgorithmProvidedReadwriteSplit‐
tingRuleBuilder

Da taba seDi scov
eryR uleC onfi gura
tion

Used to convert database discovery
user configuration into database dis‐
covery rule objects

org.apache.shardingsphere.dbdisc
overy.rule.builder.DatabaseDiscoveryRuleBuilder

Alg orit hmPr ovid
edDa taba seDi scov
eryR uleC onfi gura
tion

Used to convert algo rithm‐based
database discovery user co nfigura‐
tion into database discovery rule ob‐
jects

or g.apache.shardingsphere.dbdiscovery.rule.builde
r.AlgorithmProvidedDatabaseDiscoveryRuleBuilder

Encr yptR uleC onfi
gura tion

Used to convert encrypted user co
nfiguration into encryption rule ob‐
jects

org.apache.shardin
gsphere.encrypt.rule.builder.EncryptRuleBuilder

A lgor ithmProv ided
Encr yptR uleC onfi
gura tion

Used to convert algo rithm‐based en‐
cryption user co nfiguration into en‐
cryption rule objects

org.apache.shardingsphere.encrypt.r
ule.builder.AlgorithmProvidedEncryptRuleBuilder

Sha dowR uleC onfi
gura tion

Used to convert shadow database
user co nfiguration into shadow
database rule objects

org.apache.shard ing‐
sphere.shadow.rule.builder.ShadowRuleBuilder

Algo rith mPro vide
dSha dowR uleC onfi
gura tion

Used to convert algo rithm‐based
shadow database user co nfiguration
into shadow database rule objects

org.apache.shardingsphere.shadow.
rule.builder.AlgorithmProvidedShadowRuleBuilder

5.2. Configuration 324

Apache ShardingSphere document, v5.2.1

5.2.2 YamlRuleConfigurationSwapper

Fully-qualified class name

org.apache.shardingsphere.infra.yaml.config.swapper.YamlRuleConfigurationSwapper

Definition

Used to convert YAML configuration to standard user configuration

5.2. Configuration 325

Apache ShardingSphere document, v5.2.1

Implementation classes

Con figur
ation
Type

Description Fully- qualified class name

AUTH
ORITY

Used to convert theYAMLconfiguration
of authority rules into standard config‐
uration of authority rules

org.a pache.sha rdingsphe re.author ity.yaml.
swapper.Y amlAuthor ityRuleCo nfigurati on‐
Swapper

SQL_P
ARSER

Used to convert theYAMLconfiguration
of the SQL parser into the standard con‐
figuration of the SQL parser

or g.apache. shardings phere.par ser.yaml.
swapper.Y amlSQLPar serRuleCo nfigurati
onSwapper

TRANSA
CTION

Used to convert theYAMLconfiguration
of the transaction into the standard con‐
figuration of the transaction

org.apach e.shardin gsphere.t ransactio
n.yaml.sw apper.Yam lTransact ionRuleCo
nfigurati onSwapper

S INGLE Used to convert theYAMLconfiguration
of the single table into the standard con‐
figuration of the single table

org.apa che.shard ingsphere .singleta
ble.yaml. config.sw apper.Yam lSingleTa
bleRuleCo nfigurati onSwapper

SHA RD‐
ING

Used to convert theYAMLconfiguration
of the sharding into the standard config‐
uration of the sharding

org .apache.s hardingsp here.shar ding.yaml
.swapper. YamlShard ingRuleCo nfigurati on‐
Swapper

SHA RD‐
ING

Used to convert algorithm‐based shard‐
ing configuration into sharding stan‐
dard configuration

or g.apache. shardings phere.sha rding.yam
l.swapper .YamlShar dingRuleA lgorithmP
roviderCo nfigurati onSwapper

READ
WRITE
_SPLI
TTING

Used to convert theYAMLconfiguration
of read‐write splitting into the standard
configuration of read‐write splitting

org.a pache.sha rdingsphe re.readwr itesplitt
ing.yaml. swapper.Y amlReadwr iteSplitt in‐
gRuleCo nfigurati onSwapper

READ
WRITE
_SPLI
TTING

Used to convert algorithm‐based read‐
write splitting configuration into read‐
write splitting standard configuration

org. apache.sh ardingsph ere.readw rites‐
plit ting.yaml .swapper. YamlReadw riteSplit
tingRuleA lgorithmP roviderCo nfigurati on‐
Swapper

DB
_DISC
OVERY

Used to convert theYAMLconfiguration
of database discovery into the standard
configuration of database discovery

org.ap ache.shar dingspher e.dbdisco
very.yaml .swapper. YamlDatab aseDis‐
cov eryRuleCo nfigurati onSwapper

DB
_DISC
OVERY

Used to convert algorithm‐based
database discovery configuration into
database discovery standard configura‐
tion

org.a pache.sha rdingsphe re.dbdisc
overy.yam l.swapper .YamlData baseDisco
veryRuleA lgorithmP roviderCo nfigurati
onSwapper

EN
CRYPT

Used to convert encrypted YAML con‐
figuration into encrypted standard con‐
figuration

o rg.apache .sharding sphere.en crypt.yam
l.swapper .YamlEncr yptRuleCo nfigurati on‐
Swapper

EN
CRYPT

Used to convert algorithm‐based en‐
cryption configuration into encryption
standard configuration

org.apach e.shardin gsphere.e ncrypt.ya
ml.swappe r.YamlEnc ryptRuleA lgorithmP
roviderCo nfigurati onSwapper

S
HADOW

Used to convert the YAML configura‐
tion of the shadow database into the
standard configuration of the shadow
database

org.apac he.shardi ngsphere. shadow.ya
ml.swappe r.YamlSha dowRuleCo nfigurati
onSwapper

S
HADOW

Used to convert algorithm‐based
shadow database configuration into
shadow database standard configura‐
tion

org.apa che.shard ingsphere .shadow.y
aml.swapp er.YamlSh adowRuleA lgorithmP
roviderCo nfigurati onSwapper

SQL_
TRANS
LATOR

Used to convert theYAMLconfiguration
of the SQL transformation to the SQL
transformation standard configuration

org. apache.sh ardingsph ere.sqltr anslator.
yaml.swap per.YamlS QLTransla torRuleCo
nfigurati onSwapper

5.2. Configuration 326

Apache ShardingSphere document, v5.2.1

5.2.3 ShardingSphereYamlConstruct

Fully-qualified class name

org.apache.shardingsphere.infra.yaml.engine.constructor.ShardingSphereYamlConstruct

Definition

Used to convert custom objects and YAML to and from each other

Implementation classes

Configuration
Type

Description Full y-qualified class name

YamlN one‐
ShardingStrat
egyConfigura‐
tion

Used to convert non‐sharding
policy objects andYAML to and
from each other

org. apache.shar dingsphere. sharding.ya
ml.engine.c onstruct.No neShardingS trategy‐
Conf igurationYa mlConstruct

5.3 Kernel

5.3.1 SQLRouter

Fully-qualified class name

org.apache.shardingsphere.infra.route.SQLRouter

Definition

Used to process routing results

5.3. Kernel 327

Apache ShardingSphere document, v5.2.1

Implementation classes

Configuration type Description •
Fully-qualified class name*

Single TableRule.class Used to process single‐table
routing results

org. apache.sharding
sphere.singleta ble.route.Singl
eTableSQLRouter

Sha rdingRule.class Used to process sharding rout‐
ing results

org.a pache.shardings
phere.sharding.
route.engine.Sh ardingSQL‐
Router

ReadwriteSpli ttingRule.class Used to process read‐write
splitting routing results

org .apache.shardin
gsphere.readwri tesplit‐
ting.rou te.ReadwriteSpl
ittingSQLRouter

DatabaseDisc overyRule.class Used to process database dis‐
covery routing results

org.apache .sharding‐
sphere .dbdiscovery.ro
ute.DatabaseDis coverySQL‐
Router

S hadowRule.class Used to process shadow
database routing results

org.apach e.shardingspher
e.shadow.route. ShadowSQL‐
Router

5.3.2 SQLRewriteContextDecorator

Fully-qualified class name

org.apache.shardingsphere.infra.rewrite.context.SQLRewriteContextDecorator

Definition

Used to handle SQL rewrite results

Implementation classes

C onfig-
uration
type

Description Fully-qualified class name

Shardi
ngRule.class

Used to process sharding
SQL rewrite results

org.apache.sh ardingsphere.shard ing.rewrite.contex
t.ShardingSQLRewri teContextDecorator

Encry
ptRule.class

Used to process encryption
SQL rewrite results

org.apache. shardingsphere.enc rypt.rewrite.conte
xt.EncryptSQLRewri teContextDecorator

5.3. Kernel 328

Apache ShardingSphere document, v5.2.1

5.3.3 SQLExecutionHook

Fully-qualified class name

org.apache.shardingsphere.infra.executor.sql.hook.SQLExecutionHook

Definition

SQL execution process listener

Implementation classes

Config-
uration
type

Description Fully-qualified class name

Empty Transaction hook of
SQL execution

org.a pache.shardingspher e.transaction.base.
seata.at.Transactio nalSQLExecutionHook

5.3.4 ResultProcessEngine

Fully-qualified class name

org.apache.shardingsphere.infra.merge.engine.ResultProcessEngine

Definition

Used to process result sets

Implementation classes

C onfigura-
tion type

Description Fully-qualified class name

Shardi
ngRule.class

Used to handle sharding result
set merge

org.apache.sh ardingsphere.shard
ing.merge.Sharding ResultMergerEngine

Encry
ptRule.class

Used to handle encrypted re‐
sult set overrides

org.apache.sha rdingsphere.encryp
t.merge.EncryptRes ultDecoratorEngine

5.3. Kernel 329

Apache ShardingSphere document, v5.2.1

5.4 DataSource

5.4.1 DatabaseType

Fully-qualified class name

org.apache.shardingsphere.infra.database.type.DatabaseType

Definition

Supported database types definition

5.4. DataSource 330

Apache ShardingSphere document, v5.2.1

Implementation classes

•
Configuration Type*

Description Fully-qualified class name

SQL92 SQL92 database type org.apache.sha rd‐
ingsphere.infra.d
atabase.type.dialec
t.SQL92DatabaseType

MySQL MySQL database org.apache.sha rd‐
ingsphere.infra.d
atabase.type.dialec
t.MySQLDatabaseType

MariaDB MariaDB database org.apache.shard in‐
gsphere.infra.dat
abase.type.dialect. Mari‐
aDBDatabaseType

PostgreSQL PostgreSQL database org.apache.sharding
sphere.infra.databa
se.type.dialect.Pos tgreSQL‐
DatabaseType

Oracle Oracle database org.apache.shar
dingsphere.infra.da
tabase.type.dialect .Oracle‐
DatabaseType

SQLServer SQLServer database org.apache.shardin
gsphere.infra.datab
ase.type.dialect.SQ LServer‐
DatabaseType

H2 H2 database org.apache. sharding‐
sphere.infr a.database.type.dia
lect.H2DatabaseType

openGauss OpenGauss database org.apache.shardin
gsphere.infra.datab
ase.type.dialect.Op enGauss‐
DatabaseType

5.4. DataSource 331

Apache ShardingSphere document, v5.2.1

5.4.2 DialectSchemaMetaDataLoader

Fully-qualified class name

org.apache.shardingsphere.infra.metadata.database.schema.loader.spi.DialectSchemaMetaDataLoader

Definition

Use SQL dialect to load meta data rapidly

5.4. DataSource 332

Apache ShardingSphere document, v5.2.1

Implementation classes

•
Configuration Type*

Description Fully-qualified class name

MySQL UseMySQL dialect to loadmeta
data

or g.apache.shardingsp
here.infra.metadata
.database.schema.lo
ader.dialect.MySQLS
chemaMetaDataLoader

Oracle Use Oracle dialect to load meta
data

org .apache.shardingsph
ere.infra.metadata.
database.schema.loa
der.dialect.OracleS
chemaMetaDataLoader

PostgreSQL Use PostgreSQL dialect to load
meta data

org.apa che.shardingsphere.
infra.metadata.data
base.schema.loader. di‐
alect.PostgreSQLS chemaMeta‐
DataLoader

SQLServer Use SQLServer dialect to load
meta data

org.ap ache.shardingsphere
.infra.metadata.dat
abase.schema.loader .di‐
alect.SQLServerS chemaMeta‐
DataLoader

H2 UseH2dialect to loadmeta data org.apache.shardin
gsphere.infra.metad
ata.database.schema
.loader.dialect.H2S
chemaMetaDataLoader

openGauss Use OpenGauss dialect to load
meta data

org.ap ache.shardingsphere
.infra.metadata.dat
abase.schema.loader .di‐
alect.OpenGaussS chemaMeta‐
DataLoader

5.4. DataSource 333

Apache ShardingSphere document, v5.2.1

5.4.3 DataSourcePoolMetaData

Fully-qualified class name

org.apache.shardingsphere.infra.datasource.pool.metadata.DataSourcePoolMetaData

Definition

Data source connection pool metadata

Implementation classes

Configuration Type Description Fully -qualified class name

or g.apache.commons.dbcp.BasicDataSource,
org.ap ache.tomcat.dbcp.dbcp2.BasicDataSource

DBCP data
source pool
meta data

org .apache.sh ardingsphe re.infra.d ata‐
source. pool.metad ata.type.d bcp.DBCPDa
taSourcePo olMetaData

com.zaxxer.hikari.HikariDataSource Hikari data
source pool
meta data

org.apa che.shardi ngsphere.i nfra.datas
ource.pool .metadata. type.hikar
i.HikariDa taSourcePo olMetaData

com .mchange.v2.c3p0.ComboPooledDataSourceC3P0 data
source pool
meta data

org .apache.sh ardingsphe re.infra.d ata‐
source. pool.metad ata.type.c 3p0.C3P0Da
taSourcePo olMetaData

5.4.4 DataSourcePoolActiveDetector

Fully-qualified class name

org.apache.shardingsphere.infra.datasource.pool.destroyer.detector.DataSourcePoolActiveDetector

Definition

Data source connection pool active detector

Implementation classes

Configuration Type Description Fully-qualified class name

Default Default data source
pool active detec‐
tor

org.apache. shardingsphere.i nfra.datasource.
pool.destroyer.d etector.type.Def aultDataSourcePo
olActiveDetector

com.zaxxer.hi
kari.HikariDataSource

Hikari data source
pool active detec‐
tor

org.apache .shardingsphere. infra.datasource
.pool.destroyer. detector.type.Hi kariDataSourcePo
olActiveDetector

5.4. DataSource 334

Apache ShardingSphere document, v5.2.1

5.5 SQL Parser

5.5.1 DatabaseTypedSQLParserFacade

Fully-qualified class name

org.apache.shardingsphere.sql.parser.spi.DatabaseTypedSQLParserFacade

Definition

Database typed SQL parser facade service definition

Implementation classes

Configura-
tion Type

Description Fully-qualified class name

MySQL SQLparser entry based on
MySQL

org. apache.shardingsphere .sql.parser.mysql.par
ser.MySQLParserFacade

PostgreSQL SQLparser entry based on
PostgreSQL

org.apache.sha rdingsphere.sql.parse
r.postgresql.parser.P ostgreSQLParserFacade

SQLServer SQLparser entry based on
SQLServer

org.apache.s hardingsphere.sql.par ser.sqlserver.parser.
SQLServerParserFacade

Oracle SQLparser entry based on
Oracle

org.ap ache.shardingsphere.s ql.parser.oracle.pars
er.OracleParserFacade

SQL92 SQLparser entry based on
SQL92

org. apache.shardingsphere .sql.parser.sql92.par
ser.SQL92ParserFacade

openGauss SQLparser entry based on
openGauss

org.apache.s hardingsphere.sql.par
ser.opengauss.parser. OpenGaussParserFacade

5.5.2 SQLVisitorFacade

Fully-qualified class name

org.apache.shardingsphere.sql.parser.spi.SQLVisitorFacade

5.5. SQL Parser 335

Apache ShardingSphere document, v5.2.1

Definition

SQL visitor facade class definition

Implementation classes

•
Configuration Type*

Description Fully-qualified class name

MySQL MySQL syntax tree visitor entry org .apache.shardingsph
ere.sql.parser.mysq
l.visitor.statement .fa‐
cade.MySQLStatem entSQLVis‐
itorFacade

PostgreSQL PostgreSQL syntax tree visitor
entry

org.apache.sh ard‐
ingsphere.sql.pa
rser.postgresql.vis
itor.statement.faca
de.PostgreSQLStatem
entSQLVisitorFacade

SQLServer SQLServer syntax tree visitor
entry

org.apache. sharding‐
sphere.sql. parser.sqlserver.vi
sitor.statement.fac
ade.SQLServerStatem
entSQLVisitorFacade

Oracle Oracle syntax tree visitor entry org.a pache.shardingspher
e.sql.parser.oracle .vis‐
itor.statement. fa‐
cade.OracleStatem entSQLVisi‐
torFacade

SQL92 SQL92 syntax tree visitor entry org .apache.shardingsph
ere.sql.parser.sql9 2.vis‐
itor.statement .fa‐
cade.SQL92Statem entSQLVisi‐
torFacade

openGauss openGauss syntax tree visitor
entry

org.apache. shard‐
ingsphere.sql.
parser.opengauss.vi
sitor.statement.fac
ade.OpenGaussStatem
entSQLVisitorFacade

5.5. SQL Parser 336

Apache ShardingSphere document, v5.2.1

5.6 Proxy

5.6.1 DatabaseProtocolFrontendEngine

Fully-qualified class name

org.apache.shardingsphere.proxy.frontend.spi.DatabaseProtocolFrontendEngine

Definition

Protocols for ShardingSphere‐Proxy to parse and adapt for accessing databases.

Implementation classes

•
C o n f i g u r a t i o n T y p e *

•
Desc ript ion*

Fully-qualified class name

M y S Q L Prot ocol im plem enta tion for
M ySQL

org.apac
he.shardingsphere.proxy.frontend.mysql.MySQLFrontendEngine

P o s t g r e S Q L Prot ocol im plem enta tion for
Po stgr eSQL

org.apache.shardin
gsphere.proxy.frontend.postgresql.PostgreSQLFrontendEngine

o p e n G a u s s Prot ocol im plem enta tion for
o penG auss

org.apache.shard ing‐
sphere.proxy.frontend.opengauss.OpenGaussFrontendEngine

5.6.2 AuthorityProvideAlgorithm

Fully-qualified class name

org.apache.shardingsphere.authority.spi.AuthorityProviderAlgorithm

Definition

Loading logic for user permission.

Implementation classes

•
C o n f i g u r a t i o n T y p e *

De scrip tion Fully-qualified class name

A L L _ P E R M I T T E D Grant all p ermis sions by de
fault (no foren sics)

org.apache.shardingsphere.authorit
y.provider.simple.AllPermittedPrivilegesProviderAlgorithm

D A T A B A S E _ P E R M I T T
E D

P ermis sions confi gured by us
er‐da tabas e‐map pings

org.apache.shardingsphere.authority.provi
der.database.DatabasePermittedPrivilegesProviderAlgorithm

5.6. Proxy 337

Apache ShardingSphere document, v5.2.1

5.7 Data Sharding

5.7.1 ShardingAlgorithm

Fully-qualified class name

org.apache.shardingsphere.sharding.spi.ShardingAlgorithm

Definition

Sharding Algorithm definition

5.7. Data Sharding 338

Apache ShardingSphere document, v5.2.1

Implementation classes

Conf igura-
tion Type

Auto
Create
Tables

Description Full y-qualified class name

MOD Y Modulo sharding algorithm o rg.apache.s hardingsphe re.sharding .algo‐
rithm. sharding.mo d.ModShardi ngAlgo‐
rithm

HASH_MOD Y Hash modulo sharding al‐
gorithm

org.a pache.shard ingsphere.s harding.alg
orithm.shar ding.mod.Ha shModShardi
ngAlgorithm

BOUND
ARY_RANGE

Y Boundary based range
sharding algorithm

org.apa che.shardin gsphere.sha rding.algor
ithm.shardi ng.range.Bo undaryBased
RangeShardi ngAlgorithm

VOL
UME_RANGE

Y Volume based range shard‐
ing algorithm

org.a pache.shard ingsphere.s harding.alg
orithm.shar ding.range. VolumeBased
RangeShardi ngAlgorithm

AUTO _IN‐
TERVAL

Y Mutable interval sharding
algorithm

org. apache.shar dingsphere. sharding.al
gorithm.sha rding.datet ime.AutoInt erval‐
Shardi ngAlgorithm

INTERVAL N Fixed interval sharding al‐
gorithm

org.apache. shardingsph ere.shardin
g.algorithm .sharding.d atetime.Int erval‐
Shardi ngAlgorithm

CL
ASS_BASED

N Class based sharding algo‐
rithm

org. apache.shar dingsphere. sharding.al
gorithm.sha rding.class based.Class Based‐
Shardi ngAlgorithm

INLINE N Inline sharding algorithm org.apa che.shardin gsphere.sha rding.algor
ithm.shardi ng.inline.I nlineShardi ngAlgo‐
rithm

COMPL
EX_INLINE

N Complex inline sharding
algorithm

org. apache.shar dingsphere. sharding.al
gorithm.sha rding.compl ex.ComplexI nline‐
Shardi ngAlgorithm

HI
NT_INLINE

N Hint inline sharding algo‐
rithm

org.apach e.shardings phere.shard
ing.algorit hm.sharding .hint.HintI nli‐
neShardi ngAlgorithm

COSID_MOD N Modulo sharding algorithm
provided by CosId

o rg.apache.s hardingsphe re.sharding
.cosid.algo rithm.shard ing.mod.Cos IdMod‐
Shardi ngAlgorithm

COSID
_INTERVAL

N Fixed interval sharding al‐
gorithm provided by CosId

org.apache. shardingsph ere.shardin
g.cosid.alg orithm.shar ding.interv
al.CosIdInt ervalShardi ngAlgorithm

COSID_
INTERVAL_
SNOWFLAKE

N Snowflake key‐based fixed
interval sharding algo‐
rithm provided by CosId

org.apach e.shardings phere.shard
ing.cosid.a lgorithm.sh arding.inte
rval.CosIdS nowflakeInt ervalShardi ngAlgo‐
rithm

5.7. Data Sharding 339

Apache ShardingSphere document, v5.2.1

5.7.2 KeyGenerateAlgorithm

Fully-qualified class name

org.apache.shardingsphere.sharding.spi.KeyGenerateAlgorithm

Definition

Distributed Key Generating Algorithm definition

Implementation classes

Co nfig-
uration
Type

Description Fully-qualified class name

SNOWFLAKE Snowflake key generate al‐
gorithm

org.apache.sh ardingsphere.shar ding.algorithm.ke
ygen.SnowflakeKey GenerateAlgorithm

UUID UUID key generate algo‐
rithm

org.apac he.shardingsphere .sharding.algorit
hm.keygen.UUIDKey GenerateAlgorithm

NANOID NanoId key generate algo‐
rithm

org.apache.shardi ngsphere.sharding
.nanoid.algorithm .keygen.NanoIdKey GenerateAlgo‐
rithm

COSID CosId key generate algo‐
rithm

org.apache.shar dingsphere.shardi ng.cosid.algorith
m.keygen.CosIdKey GenerateAlgorithm

COSI
D_SNOWFLAKE

Snowflake key generate al‐
gorithm provided by CosId

org.apa che.shardingspher e.sharding.cosid. algo‐
rithm.keygen. CosIdSnowflakeKey GenerateAlgorithm

5.7.3 ShardingAuditAlgorithm

Fully-qualified class name

org.apache.shardingsphere.sharding.spi.ShardingAuditAlgorithm

Definition

Sharding audit algorithm definition

5.7. Data Sharding 340

Apache ShardingSphere document, v5.2.1

Implementation classes

Co nfiguration Type Description •
Fully-qualified class name*

D ML_SHARDING _CONDI‐
TIONS

Prohibit DML auditing algo‐
rithm without sharding condi‐
tions

org. apache.sharding
sphere.sharding .algo‐
rithm.audi t.DMLShardingCo
nditionsShardin gAuditAlgo‐
rithm

5.7.4 DatetimeService

Fully-qualified class name

org.apache.shardingsphere.infra.datetime.DatetimeService

Definition

Obtain the current date for routing definition

Implementation classes

Co nfiguration Type Description •
Fully-qualified class name*

D atabaseDate timeService Get the current time from the
database for routing

org.apache. sharding‐
sphere. agent.metrics.p
rometheus.servi
ce.PrometheusPl uginBoot‐
Service

Sys temDatetime Get the current time from the
application system for routing

org .apache.shardin
gsphere.datetim
e.system.System Datetime‐
Service

5.7. Data Sharding 341

Apache ShardingSphere document, v5.2.1

5.8 Readwrite-splitting

5.8.1 ReadQueryLoadBalanceAlgorithm

Fully-qualified class name

org.apache.shardingsphere.readwritesplitting.spi.ReadQueryLoadBalanceAlgorithm

Definition

Read query load balance algorithm’s definition

5.8. Readwrite-splitting 342

Apache ShardingSphere document, v5.2.1

Implementation classes

C onf igu
rat ion Ty
pe

Description Ful ly-q uali fied c lass n ame

RO UND
_RO BIN

the read database load balancer algorithm based
on polling

or g.ap ache .sha rdin gsph ere.
read writ espl itti ng.a lgor ithm
.loa dbal ance .RoundRobinR eadQ
uery Load Bala nceA lgor ithm

RAN
DOM

the read database load balancer algorithm based
on random

or g.ap ache .sha rdin gsph ere.
readwrit espl itti ng.a lgor ithm .loa
dbal ance .Ran domR eadQ uery
Load Bala nceA lgor ithm

WEI
GHT

the read database load balancer algorithm based
on weight

or g.ap ache .sha rdin gsph ere.
read writ espl itti ng.a lgor ithm
.loa dbal ance .Wei ghtR eadQ uery
Load Bala nceA lgor ithm

TRA NSA
CTI ON_
RAN
DOM

Whether in a transaction or not, read requests are
routed to multiple replicas using a random strat‐
egy

o rg.a pach e.sh ardi ngsp here .rea
dwri tesp litt ing. algo rith m.lo
adba lanc e.Tr ansa ctio nRan domR
eadQueryLoadBala nceA lgor ithm

TR ANS
ACT
ION _RO
UND
_RO BIN

Whether in a transaction or not, read requests are
routed to multiple replicas using a round‐robin
strategy

o rg.a pach e.sh ardi ngsp here .rea
dwri tesp litt ing. algo rith m.lo
adba lanc e.Tr ansa ctio nRou ndRo
binReadQueryLoadBalanceA lgor
ithm

TRA NSA
CTI ON_
WEI
GHT

Whether in a transaction or not, read requests are
routed tomultiple replicas using aweight strategy

o rg.a pach e.sh ardi ngsp here .rea
dwri tesp litt ing. algo rith m.lo
adba lanc e.Tr ansa ctio nWei ghtR
eadQueryLoadBala nceA lgor ithm

FI XED
_RE PLI
CA_ RAN
DOM

Open transaction, and the read request is routed
to a fixed replica using a random strategy; if the
transaction is not opened, each read traffic is
routed to a different replica using the specified al‐
gorithm

or g.ap ache .sha rdin gsph ere.
readwrit espl itti ng.a lgor ithm .loa
dbal ance .Fix edReplic aRandomR
eadQueryLoadBala nceA lgor ithm

F IXE
D_R EPL
ICA _RO
UND
_RO BIN

Open transaction, and the read request is routed
to a fixed replica using a round‐robin strategy; if
the transaction is not opened, each read traffic is
routed to a different replica using the specified al‐
gorithm

or g.ap ache .sha rdin gsph ere.
readwrit espl itti ng.a lgor ithm .loa
dbal ance .Fix edRe plic aRou ndRo
binReadQueryLoadBalanceA lgor
ithm

FI XED
_RE PLI
CA_ WEI
GHT

Open transaction, and the read request is routed
to a fixed replica using a weight strategy; if the
transaction is not opened, each read traffic is
routed to a different replica using the specified al‐
gorithm

or g.ap ache .sha rdin gsph ere.
readwrit espl itti ng.a lgor ithm .loa
dbal ance .Fix edRe plic aWei ghtR
eadQueryLoadBala nceA lgor ithm

F IXE
D_P RIM
ARY

All read traffic is routed to the primary org. apac he.s hard ings pher e.re
adwr ites plit ting .alg orit hm.l
oadb alan ce.F ixed Prim aryR eadQ
uery Load Bala nceA lgor ithm

5.8. Readwrite-splitting 343

Apache ShardingSphere document, v5.2.1

5.9 HA

5.9.1 DatabaseDiscoveryProviderAlgorithm

Fully-qualified class name

org.apache.shardingsphere.dbdiscovery.spi.DatabaseDiscoveryProviderAlgorithm

Definition

Database discovery provider algorithm’s definition

Implementation classes

•
Configuration Type*

Description Fu lly-qualified class name

MySQL.MGR MySQL MGR‐based database
discovery provider algorithm

org.apache.sh ardingsphere.
dbdiscovery.m ysql.type.MGR
MySQLDatabase Discov‐
eryProv iderAlgorithm

MySQL.NORMA
L_REPLICATION

Database discovery provider al‐
gorithmofMySQL’s replication

o rg.apache.sha rdingsphere.d
bdiscovery.my sql.type.MySQ
LNormalReplic ationDatabase
DiscoveryProv iderAlgorithm

op enGauss.NORMA
L_REPLICATION

Database discovery provider al‐
gorithm of openGauss’s repli‐
cation

org. apache.shardi ng‐
sphere.dbdi scovery.openg
auss.OpenGaus sNormalReplic
ationDatabase DiscoveryProv
iderAlgorithm

5.10 Distributed Transaction

5.10.1 ShardingSphereTransactionManager

Fully-qualified class name

org.apache.shardingsphere.transaction.spi.ShardingSphereTransactionManager

5.9. HA 344

Apache ShardingSphere document, v5.2.1

Definition

ShardingSphere transaction manager service definition

Implementation classes

•
Configuration Type*

Description Fully-qualified class name

XA XA distributed transaction
manager

org.apache.shar ding‐
sphere.transacti
on.xa.XAShardingSphe re‐
TransactionManager

BASE Seata distributed transaction
manager

org.apache. shard‐
ingsphere.trans ac‐
tion.base.seata.at .SeataAT‐
ShardingSphe reTransaction‐
Manager

5.10.2 XATransactionManagerProvider

Fully-qualified class name

org.apache.shardingsphere.transaction.xa.spi.XATransactionManagerProvider

Definition

XA transaction manager provider definition

Implementation classes

Co nfig-
uration
Type

Description Fully-qualified class name

Atom‐
ikos

XA distributed transaction
manager based on Atomikos

org.apa che.shardingspher e.transaction.xa. atom‐
ikos.manager. AtomikosTransacti onManagerProvider

Narayana XA distributed transaction
manager based on Narayana

org.apach e.shardingsphere. transaction.xa.na
rayana.manager.Na rayanaXATransacti onManager‐
Provider

Bitronix XA distributed transaction
manager based on Bitronix

org.apach e.shardingsphere. transaction.xa.bi
tronix.manager.Bi tronixXATransacti onManager‐
Provider

5.10. Distributed Transaction 345

Apache ShardingSphere document, v5.2.1

5.10.3 XADataSourceDefinition

Fully-qualified class name

org.apache.shardingsphere.transaction.xa.jta.datasource.properties.XADataSourceDefinition

Definition

XA Data source definition

Implementation classes

Conf ig-
uration
Type

Description Fu lly-qualified class name

MySQL Auto convert Non XA MySQL data
source to XA MySQL data source

org.apache. shardingspher e.transaction
.xa.jta.datas ource.propert ies.dialect.M ySQLX‐
ADataSou rceDefinition

Mari‐
aDB

Auto convert Non XA MariaDB
data source to XA MariaDB data
source

org.apache.sh ardingsphere. transaction.x
a.jta.datasou rce.propertie s.dialect.Mar iaDBX‐
ADataSou rceDefinition

P ost‐
greSQL

Auto convert Non XA PostgreSQL
data source toXAPostgreSQLdata
source

org .apache.shard ingsphere.tra nsaction.xa.j
ta.datasource .properties.d ialect.Postgr eSQLXA‐
DataSou rceDefinition

Oracle Auto convert Non XA Oracle data
source to XA Oracle data source

org.apache.s hardingsphere .transaction.
xa.jta.dataso urce.properti es.dialect.Or acleXA‐
DataSou rceDefinition

SQLServerAuto convert Non XA SQLServer
data source to XA SQLServer data
source

or g.apache.shar dingsphere.tr ansaction.xa.
jta.datasourc e.properties. dialect.SQLSe rverXA‐
DataSou rceDefinition

H2 Auto convert Non XA H2 data
source to XA H2 data source

org.apac he.shardingsp here.transact ion.xa.jta.da
tasource.prop erties.dialec t.H2XADataSou rceDefi‐
nition

5.10.4 DataSourcePropertyProvider

Fully-qualified class name

org.apache.shardingsphere.transaction.xa.jta.datasource.swapper.DataSourcePropertyProvider

5.10. Distributed Transaction 346

Apache ShardingSphere document, v5.2.1

Definition

Data source property provider service definition

Implementation classes

Configuration Type Description Fully-qualified class name

com.zaxxer.hik
ari.HikariDataSource

Used to get standard
properties ofHikariCP

org.apache.sh ardingsphere.tra nsaction.xa.jta.
datasource.swapp er.impl.HikariCP Proper‐
tyProvider

5.11 SQL Checker

5.11.1 SQLChecker

Fully-qualified class name

org.apache.shardingsphere.infra.executor.check.SQLChecker

Definition

SQL checker class definition

Implementation classes

Configuration
Type

Description Fully-qualified class name

Au thori‐
tyRule.class

Authority checker org.apache .shardingsphere.authority
.checker.AuthorityChecker

S hard‐
ingRule.class

Sharding audit
checker

org.apache.sharding sphere.sharding.checker.a
udit.ShardingAuditChecker

5.12 Encryption

5.12.1 EncryptAlgorithm

Fully-qualified class name

org.apache.shardingsphere.encrypt.spi.EncryptAlgorithm

5.11. SQL Checker 347

Apache ShardingSphere document, v5.2.1

Definition

Data encrypt algorithm definition

Implementation classes

Configuration
Type

Description Fully-qualified class name

MD5 MD5 data encrypt algo‐
rithm

org.apach e.shardingsphere.encrypt
ion.algorithm.MD5Encrypt

AES AES data encrypt algo‐
rithm

org.apach e.shardingsphere.encrypt
ion.algorithm.AESEncrypt

RC4 RC4 data encrypt algo‐
rithm

org.apach e.shardingsphere.encrypt
ion.algorithm.RC4Encrypt

SM3 SM3 data encrypt algo‐
rithm

org.apach e.shardingsphere.encrypt
ion.algorithm.SM3Encrypt

SM4 SM4 data encrypt algo‐
rithm

org.apach e.shardingsphere.encrypt
ion.algorithm.SM4Encrypt

5.13 Shadow DB

5.13.1 ShadowAlgorithm

Fully-qualified class name

org.apache.shardingsphere.shadow.spi.ShadowAlgorithm

Definition

Shadow algorithm’s definition

5.13. Shadow DB 348

Apache ShardingSphere document, v5.2.1

Implementation classes

Co nfig-
uration
Type

Description Fully-qualified class name

VALUE_MATCHMatch shadow algorithms
based on field values

org.apache .shardingsphere. shadow.algorithm
.shadow.column.C olumnValueMatche dShadowAlgo‐
rithm

REGEX_MATCHRegular matching shadow al‐
gorithm based on field value

org.apache .shardingsphere. shadow.algorithm
.shadow.column.C olumnRegexMatche dShadowAlgo‐
rithm

SIM‐
PLE_HINT

Simple match shadow algo‐
rithm based on Hint

org.apache.shard ingsphere.shadow .algorithm.shado
w.hint.SimpleHin tShadowAlgorithm

5.14 Observability

5.14.1 PluginBootService

Fully-qualified class name

org.apache.shardingsphere.agent.spi.boot.PluginBootService

Definition

Plugin startup service definition

5.14. Observability 349

Apache ShardingSphere document, v5.2.1

Implementation classes

•
Configuration Type*

Description Fully-qualified class name

Prometheus Prometheus plugin startup
class

org.apache .shard‐
ingsphere.age
nt.metrics.promethe
us.service.Promethe usPlugin‐
BootService

Logging Logging plugin startup class org.apache.s hard‐
ingsphere.agent
.plugin.logging.bas
e.service.BaseLoggi ngPlugin‐
BootService

Jaeger Jaeger plugin startup class org.apache.shard in‐
gsphere.agent.plu
gin.tracing.jaeger. ser‐
vice.JaegerTraci ngPlugin‐
BootService

OpenTelemetry OpenTelemetryTracing plugin
startup class

org.apache. shard‐
ingsphere.agen
t.plugin.tracing.op enteleme‐
try.service .OpenTelemetry‐
Traci ngPluginBootService

OpenTracing OpenTracing plugin startup
class

org.apache.sharding
sphere.agent.plugin
.tracing.opentracin
g.service.OpenTraci ngPlugin‐
BootService

Zipkin Zipkin plugin startup class org.apache.shard in‐
gsphere.agent.plu
gin.tracing.zipkin. ser‐
vice.ZipkinTraci ngPlugin‐
BootService

5.14. Observability 350

Apache ShardingSphere document, v5.2.1

5.14.2 PluginDefinitionService

Fully-qualified class name

org.apache.shardingsphere.agent.spi.definition.PluginDefinitionService

Definition

Agent plugin definition

5.14. Observability 351

Apache ShardingSphere document, v5.2.1

Implementation classes

•
Configuration Type*

Description Fully-qualified class name

Prometheus Prometheus plugin definition org.apache.shar ding‐
sphere.agent.met
rics.prometheus.defi ni‐
tion.PrometheusPlu gin‐
DefinitionService

Logging Logging plugin definition org.apache.shardi ng‐
sphere.agent.plugi
n.logging.base.defin
ition.BaseLoggingPlu gin‐
DefinitionService

Jaeger Jaeger plugin definition org.apache.sha rd‐
ingsphere.agent.pl
ugin.tracing.jaeger. defini‐
tion.JaegerPlu ginDefinition‐
Service

OpenTelemetry OpenTelemetryTracing plugin
definition

org.apache.shar ding‐
sphere.agent.plu
gin.tracing.opentele me‐
try.definition.Ope nTelemetry‐
TracingPlu ginDefinitionSer‐
vice

OpenTracing OpenTracing plugin definition org. apache.shardingspher
e.agent.plugin.traci
ng.opentracing.defin
ition.OpenTracingPlu gin‐
DefinitionService

Zipkin Zipkin plugin definition org.apache.sha rd‐
ingsphere.agent.pl
ugin.tracing.zipkin. defini‐
tion.ZipkinPlu ginDefinition‐
Service

5.14. Observability 352

6
Test Manual

Apache ShardingSphere provides test engines for integration, module and performance.

6.1 Integration Test

Provide point to point test which connect real ShardingSphere and database instances.

They define SQLs in XML files, engine run for each database independently. All test engines designed
to modify the configuration files to execute all assertions without any Java code modification. It does
not depend on any third‐party environment, ShardingSphere‐Proxy and database used for testing are
provided by docker image.

6.2 Module Test

Provide module test engine for complex modules.

They define SQLs in XML files, engine run for each database independently too It includes SQL parser
and SQL rewriter modules.

6.3 Performance Test

Provide multiple performance test methods, includes Sysbench, JMH or TPCC and so on.

353

Apache ShardingSphere document, v5.2.1

6.4 Sysbench Test

6.5 Integration Test

6.5.1 Design

The integration testing consists of three modules: test case, test environment and test engine.

Test case

It is used to define the SQL to be tested and the assertion data of the test results.

Each case defines one SQL, which can define multiple database execution types.

Test environment

It is used to set up the database and ShardingSphere‐Proxy environment for running test cases. The
environment is classified into environment preparation mode, database type, and scenario.

Environment preparation mode is divided into Native and Docker, and Embed type will be supported
in the future. ‐ Native environment is used for test cases to run directly in the test environment pro‐
vided by the developer, suitable for debugging scenarios; ‐ Docker environment is directly built when
Maven runs the Docker‐Compose plug‐in. It is suitable for cloud compilation environment and testing
ShardingSphere‐Proxy, such as GitHub Action; ‐ Embed environment is built when the test framework
automatically builds embeddedMySQL. It is suitable for the local environment test of ShardingSphere‐
JDBC.

Currently, the Native environment is adopted by default, and ShardingSphere‐JDBC + H2 database is
used to run test cases. Maven’s-pit. Env.docker parameter specifies how theDocker environment
is run. In the future, ShardingSphere‐JDBC + MySQL of the Embed environment will be adopted to
replace the default environment type used when Native executes test cases.

Database types currently support MySQL, PostgreSQL, SQLServer, and Oracle, and test cases can be
executed using ShardingSphere‐JDBC or ShardingSphere‐Proxy.

Scenarios are used to test the supporting rules of ShardingSphere. Currently, data sharding and
read/write splitting and other related scenarios are supported, and the combination of scenarios will
be improved continuously in the future.

6.4. Sysbench Test 354

Apache ShardingSphere document, v5.2.1

Test engine

It is used to read test cases in batches and execute and assert test results line by line.

The test engine arranges test cases and environments to test as many scenarios as possible with the
fewest test cases.

Each SQL generates a test report in the combination of database type * access port type *
SQL execution mode * JDBC execution mode * Scenario. Currently, each dimension is
supported as follows:

• Database types: H2, MySQL, PostgreSQL, SQLServer, and Oracle;

• Access port types: ShardingSphere‐JDBC and ShardingSphere‐Proxy;

• SQL execution modes: Statement and PreparedStatement;

• JDBC execution modes: execute and executeQuery/executeUpdate;

• Scenarios: database shards, table shards, read/write splitting and sharding + read/write splitting

Therefore, one SQLwill drive Database type (5) * Access port type (2) * SQL execution
mode (2) * JDBC execution mode (2) * Scenario (4) = 160 test cases to be run to achieve
the pursuit of high quality.

6.5.2 User Guide

Module path：shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-suite

Test case configuration

SQL test case is inresources/cases/${SQL-TYPE}/${SQL-TYPE}-integration-test-cases.
xml.

The case file format is as follows:

<integration-test-cases>
<test-case sql="${SQL}">

<assertion parameters="${value_1}:${type_1}, ${value_2}:${type_2}"
expected-data-file="${dataset_file_1}.xml" />

<!-- ... more assertions -->
<assertion parameters="${value_3}:${type_3}, ${value_4}:${type_4}"

expected-data-file="${dataset_file_2}.xml" />
</test-case>

<!-- ... more test cases -->
</integration-test-cases>

The lookup rule of expected-data-fileis as follows: 1. Find the file dataset\
${SCENARIO_NAME}\${DATABASE_TYPE}\${dataset_file}.xml in the same level directory; 2.

6.5. Integration Test 355

Apache ShardingSphere document, v5.2.1

Find the file dataset\${SCENARIO_NAME}\${dataset_file}.xml in the same level directory;
3. Find the file dataset\${dataset_file}.xml in the same level directory; 4. Report an error if
none of them are found.

The assertion file format is as follows:

<dataset>
<metadata>

<column name="column_1" />
<!-- ... more columns -->
<column name="column_n" />

</metadata>
<row values="value_01, value_02" />
<!-- ... more rows -->
<row values="value_n1, value_n2" />

</dataset>

Environment configuration

${SCENARIO-TYPE} Refers to the scenario name used to identify a unique scenario during the test
engine run. ${DATABASE-TYPE} refers to the database types.

Native environment configuration

Directory: src/test/resources/env/${SCENARIO-TYPE}

• scenario-env.properties: data source configuration；
• rules.yaml: rule configuration；
• databases.xml: name of the real database；
• dataset.xml: initialize the data；
• init-sql\${DATABASE-TYPE}\init.sql: initialize the database and table structure；
• authority.xml: to be supplemented.

Docker environment configuration

Directory: src/test/resources/docker/${SCENARIO-TYPE}

• docker-compose.yml: Docker‐Compose config files, used for Docker environment startup；
• proxy/conf/config-${SCENARIO-TYPE}.yaml: rule configuration。

The Docker environment configuration provides a remote debugging port for ShardingSphere‐
Proxy. You can find the second exposed port for remote debugging in ˋˋshardingsphere‐proxyˋˋ of
the ˋˋdocker‐comemage. ymlˋˋ file.

6.5. Integration Test 356

Apache ShardingSphere document, v5.2.1

Run the test engine

Configure the running environment of the test engine

Control the test engine by configuring src/test/resources/env/engine-env.properties.

All attribute values can be dynamically injected via Maven command line -D.

Scenario type. Multiple values can be separated by commas. Optional values: db,
tbl, dbtbl_with_replica_query, replica_query
it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

Whether to run additional test cases
it.run.additional.cases=false

Configure the environment type. Only one value is supported. Optional value:
docker or null. The default value: null.
it.cluster.env.type=${it.env}
Access port types to be tested. Multiple values can be separated by commas.
Optional value: jdbc, proxy. The default value: jdbc
it.cluster.adapters=jdbc

Scenario type. Multiple values can be separated by commas. Optional value: H2,
MySQL, Oracle, SQLServer, PostgreSQL
it.cluster.databases=H2,MySQL,Oracle,SQLServer,PostgreSQL

Run debuggingmode

• Standard test engine Run org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.General${SQL-TYPE}IT to start the test engines of different SQL types.

• Batch test engine Run org.apache.shardingsphere.test.integration.engine.dml.
BatchDMLIT to start the batch test engine for the testaddBatch()provided forDML statements.

• Additional test engine Run org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.Additional${SQL-TYPE}IT to start the test engine with more JDBC method
calls. Additional test engines need to be enabled by settingit.run.additional.cases=true.

Run Docker mode

./mvnw -B clean install -f shardingsphere-test/shardingsphere-integration-test/pom.
xml -Pit.env.docker -Dit.cluster.adapters=proxy,jdbc -Dit.scenarios=${scenario_
name_1,scenario_name_2,scenario_name_n} -Dit.cluster.databases=MySQL

Run the above command to build aDockermirrorapache/shardingsphere-proxy-test:latest
used for integration testing. If you only modify the test code, you can reuse the existing test mirror

6.5. Integration Test 357

Apache ShardingSphere document, v5.2.1

without rebuilding it. Skip themirrorbuilding and run the integration testingdirectlywith the following
command:

./mvnw -B clean install -f shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-suite/pom.xml -Pit.env.docker -Dit.cluster.
adapters=proxy,jdbc -Dit.scenarios=${scenario_name_1,scenario_name_2,scenario_name_
n} -Dit.cluster.databases=MySQL

Notice

1. To test Oracle, add an Oracle driver dependency to pom.xml.

2. In order to ensure the integrity and legibility of the test data, 10 database shards and 10 table
shards are used in the sharding of the integration testing, which takes a long time to run the test
cases completely.

6.6 Performance Test

Provides result for each performance test tools.

6.6.1 SysBench ShardingSphere-Proxy Empty Rule Performance Test

Objectives

Compare the performance of ShardingSphere‐Proxy and MySQL 1. Sysbench directly carries out stress
testing on theperformance ofMySQL. 1. Sysbenchdirectly carries out stress testing on ShardingSphere‐
Proxy (directly connect MySQL).

Based on the above two groups of experiments, we can figure out the loss of MySQL when using
ShardingSphere‐Proxy.

Set up the test environment

Server information

1. Db‐related configuration: it is recommended that the memory is larger than the amount of data
to be tested, so that the data is stored in the memory hot block, and the rest can be adjusted.

2. ShardingSphere‐Proxy‐related configuration: it is recommended to use a high‐performance,
multi‐core CPU, and other configurations can be customized.

3. Disable swap partitions on all servers involved in the stress testing.

6.6. Performance Test 358

Apache ShardingSphere document, v5.2.1

Database

[mysqld]
innodb_buffer_pool_size=${MORE_THAN_DATA_SIZE}
innodb-log-file-size=3000000000
innodb-log-files-in-group=5
innodb-flush-log-at-trx-commit=0
innodb-change-buffer-max-size=40
back_log=900
innodb_max_dirty_pages_pct=75
innodb_open_files=20480
innodb_buffer_pool_instances=8
innodb_page_cleaners=8
innodb_purge_threads=2
innodb_read_io_threads=8
innodb_write_io_threads=8
table_open_cache=102400
log_timestamps=system
thread_cache_size=16384
transaction_isolation=READ-COMMITTED

Appropriate tuning can be considered to magnify the underlying DB performance, so
that the experiment doesn't subject to DB performance bottleneck.

Stress testing tool

Refer to sysbench’s GitHub

ShardingSphere-Proxy

bin/start.sh

-Xmx16g -Xms16g -Xmn8g # Adjust JVM parameters

config.yaml

databaseName: sharding_db

dataSources:
ds_0:

url: jdbc:mysql://***.***.***.***:****/test?serverTimezone=UTC&useSSL=false #
Parameters can be adjusted appropriately

username: test
password:

6.6. Performance Test 359

https://github.com/akopytov/sysbench

Apache ShardingSphere document, v5.2.1

connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200 # The maximum ConnPool is set to ${the number of concurrencies

in stress testing}, which is consistent with the number of concurrencies in stress
testing to shield the impact of additional connections in the process of stress
testing.

minPoolSize: 200 # The minimum ConnPool is set to ${the number of concurrencies
in stress testing}, which is consistent with the number of concurrencies in stress
testing to shield the impact of connections initialization in the process of stress
testing.

rules: []

Test phase

Environment setup

sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-
user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-
size=1000000 --report-interval=10 --time=100 --threads=200 cleanup
sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-
user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-
size=1000000 --report-interval=10 --time=100 --threads=200 prepare

Stress testing command

sysbench oltp_read_write --mysql-host=${DB/PROXY_IP} --mysql-port=${DB/PROXY_PORT}
--mysql-user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --
table-size=1000000 --report-interval=10 --time=100 --threads=200 run

Stress testing report analysis

sysbench 1.0.20 (using bundled LuaJIT 2.1.0-beta2)
Running the test with following options:
Number of threads: 200
Report intermediate results every 10 second(s)
Initializing random number generator from current time
Initializing worker threads...
Threads started!
Report test results every 10 seconds, and the number of tps, reads per second,
writes per second, and the total response time of more than 95th percentile.
[10s] thds: 200 tps: 11161.70 qps: 223453.06 (r/w/o: 156451.76/44658.51/22342.80)

6.6. Performance Test 360

Apache ShardingSphere document, v5.2.1

lat (ms,95%): 27.17 err/s: 0.00 reconn/s: 0.00
...
[120s] thds: 200 tps: 11731.00 qps: 234638.36 (r/w/o: 164251.67/46924.69/23462.
00) lat (ms,95%): 24.38 err/s: 0.00 reconn/s: 0.00
SQL statistics:

queries performed:
read: 19560590 # number of

reads
write: 5588740 # number of

writes
other: 27943700 # number of

other operations (COMMIT etc.)
total: 27943700 # the total

number
transactions: 1397185 (11638.59 per sec.) # number of

transactions (per second)
queries: 27943700 (232771.76 per sec.) # number of

statements executed (per second)
ignored errors: 0 (0.00 per sec.) # number of

ignored errors (per second)
reconnects: 0 (0.00 per sec.) # number of

reconnections (per second)

General statistics:
total time: 120.0463s # total

time
total number of events: 1397185 # toal

number of transactions

Latency (ms):
min: 5.37 # minimum

latency
avg: 17.13 # average

latency
max: 109.75 # maximum

latency
95th percentile: 24.83 # average

response time of over 95th percentile.
sum: 23999546.19

Threads fairness:
events (avg/stddev): 6985.9250/34.74 # On

average, 6985.9250 events were completed per thread, and the standard deviation is
34.74

execution time (avg/stddev): 119.9977/0.01 # The
average time of each thread is 119.9977 seconds, and the standard deviation is 0.01

6.6. Performance Test 361

Apache ShardingSphere document, v5.2.1

Noticeable features

1. CPU utilization ratio of the server where ShardingSphere‐Proxy resides. It is better to make full
use of CPU.

2. I/O of the server disk where the DB resides. The lower the physical read value is, the better.

3. Network IO of the server involved in the stress testing.

6.6.2 BenchmarkSQL ShardingSphere-Proxy Sharding Performance Test

Objective

BenchmarkSQL tool is used to test the sharding performance of ShardingSphere‐Proxy.

Method

ShardingSphere‐Proxy supports the TPC‐C test through BenchmarkSQL 5.0. In addition to the con‐
tent described in this document, BenchmarkSQL is operated according to the original document
HOW-TO-RUN.txt.

Fine tuning to test tools

Unlike stand‐alone database stress testing, distributed database solutions inevitably face trade‐offs in
functions. It is recommended to make the following adjustments when using BenchmarkSQL to carry
out stress testing on ShardingSphere‐Proxy.

Remove the foreign key and extraHistID

Modify run/runDatabaseBuild.sh in the BenchmarkSQL directory at line 17.

Before modification:

AFTER_LOAD="indexCreates foreignKeys extraHistID buildFinish"

After modification:

AFTER_LOAD="indexCreates buildFinish"

6.6. Performance Test 362

https://sourceforge.net/projects/benchmarksql/

Apache ShardingSphere document, v5.2.1

Stress testing environment or parameter recommendations

Note: None of the parametersmentioned in this section are absolute values and need to be adjusted
based on actual test results.

It is recommended to run ShardingSphere using Java 17

ShardingSphere can be compiled using Java 8.

When using Java 17, maximize the ShardingSphere performance by default.

ShardingSphere data sharding recommendations

The data sharding of BenchmarkSQL can use the warehouse id in each table as the sharding key.

One of the tables bmsql_item has no warehouse id and has a fixed data volume of 100,000 rows: ‐
You can take i_id as a sharding key. However, the same Proxy connection may hold connections to
multiple different data sources at the same time. ‐ Or you can give up sharding and store it in a single
data source. But a data sourcemay be under great pressure. ‐ Or youmay choose range‐based sharding
for i_id, such as 1‐50000 for data source 0 and 50001‐100000 for data source 1.

BenchmarkSQL has the following SQL involving multiple tables:

SELECT c_discount, c_last, c_credit, w_tax
FROM bmsql_customer

JOIN bmsql_warehouse ON (w_id = c_w_id)
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (

SELECT max(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
)

If the warehouse id is used as the sharding key, the tables involved in the above SQL can be configured
as bindingTable:

rules:
- !SHARDING

bindingTables:
- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_line

For the data sharding configuration with warehouse id as the sharding key, refer to the appendix of this
document.

6.6. Performance Test 363

Apache ShardingSphere document, v5.2.1

PostgreSQL JDBC URL parameter recommendations

Adjust the JDBCURL in the configurationfile used byBenchmarkSQL, that is, the value of the parameter
name conn: ‐ Adding the parameter defaultRowFetchSize=50may reduce the number of fetch for
multi‐row result sets. You need to increase or decrease the number according to actual test results. ‐
Adding the parameter reWriteBatchedInserts=true may reduce the time spent on bulk inserts,
such as preparing data or bulk inserts for the New Order business. Whether to enable the operation
depends on actual test results.

props.pg file excerpt. It is suggested to change the parameter value of conn in line 3.

db=postgres
driver=org.postgresql.Driver
conn=jdbc:postgresql://localhost:5432/postgres?defaultRowFetchSize=50&
reWriteBatchedInserts=true
user=benchmarksql
password=PWbmsql

ShardingSphere-Proxy server.yaml parameter recommendations

The default value of proxy-backend-query-fetch-size is ‐1. Changing it to about 50 can mini‐
mize the number of fetch for multi‐row result sets.

The default value of proxy-frontend-executor-size is CPU * 2 and can be reduced to about CPU
* 0.5 based on actual test results. If NUMA is involved, set this parameter to the number of physical
cores per CPU based on actual test results.

server.yaml file excerpt:

props:
proxy-backend-query-fetch-size: 50
proxy-frontend-executor-size: 32 # 4*32C aarch64
proxy-frontend-executor-size: 12 # 2*12C24T x86

Appendix

BenchmarkSQL data sharding reference configuration

Adjust pool size according to the actual stress testing process.

databaseName: bmsql_sharding
dataSources:
ds_0:

url: jdbc:postgresql://db0.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000

6.6. Performance Test 364

Apache ShardingSphere document, v5.2.1

idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_1:
url: jdbc:postgresql://db1.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_2:
url: jdbc:postgresql://db2.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_3:
url: jdbc:postgresql://db3.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

rules:
- !SHARDING

bindingTables:
- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_line

defaultDatabaseStrategy:
none:

defaultTableStrategy:
none:

keyGenerators:
snowflake:
type: SNOWFLAKE

tables:
bmsql_config:
actualDataNodes: ds_0.bmsql_config

6.6. Performance Test 365

Apache ShardingSphere document, v5.2.1

bmsql_warehouse:
actualDataNodes: ds_${0..3}.bmsql_warehouse
databaseStrategy:

standard:
shardingColumn: w_id
shardingAlgorithmName: mod_4

bmsql_district:
actualDataNodes: ds_${0..3}.bmsql_district
databaseStrategy:

standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_4

bmsql_customer:
actualDataNodes: ds_${0..3}.bmsql_customer
databaseStrategy:

standard:
shardingColumn: c_w_id
shardingAlgorithmName: mod_4

bmsql_item:
actualDataNodes: ds_${0..3}.bmsql_item
databaseStrategy:

standard:
shardingColumn: i_id
shardingAlgorithmName: mod_4

bmsql_history:
actualDataNodes: ds_${0..3}.bmsql_history
databaseStrategy:

standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_4

bmsql_oorder:
actualDataNodes: ds_${0..3}.bmsql_oorder
databaseStrategy:

standard:
shardingColumn: o_w_id
shardingAlgorithmName: mod_4

bmsql_stock:
actualDataNodes: ds_${0..3}.bmsql_stock
databaseStrategy:

standard:
shardingColumn: s_w_id
shardingAlgorithmName: mod_4

6.6. Performance Test 366

Apache ShardingSphere document, v5.2.1

bmsql_new_order:
actualDataNodes: ds_${0..3}.bmsql_new_order
databaseStrategy:

standard:
shardingColumn: no_w_id
shardingAlgorithmName: mod_4

bmsql_order_line:
actualDataNodes: ds_${0..3}.bmsql_order_line
databaseStrategy:

standard:
shardingColumn: ol_w_id
shardingAlgorithmName: mod_4

shardingAlgorithms:
mod_4:

type: MOD
props:

sharding-count: 4

BenchmarkSQL 5.0 PostgreSQL statement list

Create tables

create table bmsql_config (
cfg_name varchar(30) primary key,
cfg_value varchar(50)

);

create table bmsql_warehouse (
w_id integer not null,
w_ytd decimal(12,2),
w_tax decimal(4,4),
w_name varchar(10),
w_street_1 varchar(20),
w_street_2 varchar(20),
w_city varchar(20),
w_state char(2),
w_zip char(9)

);

create table bmsql_district (
d_w_id integer not null,
d_id integer not null,
d_ytd decimal(12,2),

6.6. Performance Test 367

Apache ShardingSphere document, v5.2.1

d_tax decimal(4,4),
d_next_o_id integer,
d_name varchar(10),
d_street_1 varchar(20),
d_street_2 varchar(20),
d_city varchar(20),
d_state char(2),
d_zip char(9)

);

create table bmsql_customer (
c_w_id integer not null,
c_d_id integer not null,
c_id integer not null,
c_discount decimal(4,4),
c_credit char(2),
c_last varchar(16),
c_first varchar(16),
c_credit_lim decimal(12,2),
c_balance decimal(12,2),
c_ytd_payment decimal(12,2),
c_payment_cnt integer,
c_delivery_cnt integer,
c_street_1 varchar(20),
c_street_2 varchar(20),
c_city varchar(20),
c_state char(2),
c_zip char(9),
c_phone char(16),
c_since timestamp,
c_middle char(2),
c_data varchar(500)

);

create sequence bmsql_hist_id_seq;

create table bmsql_history (
hist_id integer,
h_c_id integer,
h_c_d_id integer,
h_c_w_id integer,
h_d_id integer,
h_w_id integer,
h_date timestamp,
h_amount decimal(6,2),
h_data varchar(24)

);

6.6. Performance Test 368

Apache ShardingSphere document, v5.2.1

create table bmsql_new_order (
no_w_id integer not null,
no_d_id integer not null,
no_o_id integer not null

);

create table bmsql_oorder (
o_w_id integer not null,
o_d_id integer not null,
o_id integer not null,
o_c_id integer,
o_carrier_id integer,
o_ol_cnt integer,
o_all_local integer,
o_entry_d timestamp

);

create table bmsql_order_line (
ol_w_id integer not null,
ol_d_id integer not null,
ol_o_id integer not null,
ol_number integer not null,
ol_i_id integer not null,
ol_delivery_d timestamp,
ol_amount decimal(6,2),
ol_supply_w_id integer,
ol_quantity integer,
ol_dist_info char(24)

);

create table bmsql_item (
i_id integer not null,
i_name varchar(24),
i_price decimal(5,2),
i_data varchar(50),
i_im_id integer

);

create table bmsql_stock (
s_w_id integer not null,
s_i_id integer not null,
s_quantity integer,
s_ytd integer,
s_order_cnt integer,
s_remote_cnt integer,
s_data varchar(50),
s_dist_01 char(24),
s_dist_02 char(24),

6.6. Performance Test 369

Apache ShardingSphere document, v5.2.1

s_dist_03 char(24),
s_dist_04 char(24),
s_dist_05 char(24),
s_dist_06 char(24),
s_dist_07 char(24),
s_dist_08 char(24),
s_dist_09 char(24),
s_dist_10 char(24)

);

Create indexes

alter table bmsql_warehouse add constraint bmsql_warehouse_pkey
primary key (w_id);

alter table bmsql_district add constraint bmsql_district_pkey
primary key (d_w_id, d_id);

alter table bmsql_customer add constraint bmsql_customer_pkey
primary key (c_w_id, c_d_id, c_id);

create index bmsql_customer_idx1
on bmsql_customer (c_w_id, c_d_id, c_last, c_first);

alter table bmsql_oorder add constraint bmsql_oorder_pkey
primary key (o_w_id, o_d_id, o_id);

create unique index bmsql_oorder_idx1
on bmsql_oorder (o_w_id, o_d_id, o_carrier_id, o_id);

alter table bmsql_new_order add constraint bmsql_new_order_pkey
primary key (no_w_id, no_d_id, no_o_id);

alter table bmsql_order_line add constraint bmsql_order_line_pkey
primary key (ol_w_id, ol_d_id, ol_o_id, ol_number);

alter table bmsql_stock add constraint bmsql_stock_pkey
primary key (s_w_id, s_i_id);

alter table bmsql_item add constraint bmsql_item_pkey
primary key (i_id);

6.6. Performance Test 370

Apache ShardingSphere document, v5.2.1

NewOrder business

stmtNewOrderSelectWhseCust

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderSelectDist

SELECT d_tax, d_next_o_id
FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?
FOR UPDATE

stmtNewOrderUpdateDist

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderInsertOrder

INSERT INTO bmsql_oorder (
o_id, o_d_id, o_w_id, o_c_id, o_entry_d,
o_ol_cnt, o_all_local)

VALUES (?, ?, ?, ?, ?, ?, ?)

stmtNewOrderInsertNewOrder

INSERT INTO bmsql_new_order (
no_o_id, no_d_id, no_w_id)

VALUES (?, ?, ?)

stmtNewOrderSelectStock

SELECT s_quantity, s_data,
s_dist_01, s_dist_02, s_dist_03, s_dist_04,
s_dist_05, s_dist_06, s_dist_07, s_dist_08,
s_dist_09, s_dist_10

FROM bmsql_stock
WHERE s_w_id = ? AND s_i_id = ?
FOR UPDATE

stmtNewOrderSelectItem

SELECT i_price, i_name, i_data
FROM bmsql_item
WHERE i_id = ?

6.6. Performance Test 371

Apache ShardingSphere document, v5.2.1

stmtNewOrderUpdateStock

UPDATE bmsql_stock
SET s_quantity = ?, s_ytd = s_ytd + ?,

s_order_cnt = s_order_cnt + 1,
s_remote_cnt = s_remote_cnt + ?

WHERE s_w_id = ? AND s_i_id = ?

stmtNewOrderInsertOrderLine

INSERT INTO bmsql_order_line (
ol_o_id, ol_d_id, ol_w_id, ol_number,
ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_dist_info)

VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)

Payment business

stmtPaymentSelectWarehouse

SELECT w_name, w_street_1, w_street_2, w_city,
w_state, w_zip

FROM bmsql_warehouse
WHERE w_id = ?

stmtPaymentSelectDistrict

SELECT d_name, d_street_1, d_street_2, d_city,
d_state, d_zip

FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?

stmtPaymentSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtPaymentSelectCustomer

SELECT c_first, c_middle, c_last, c_street_1, c_street_2,
c_city, c_state, c_zip, c_phone, c_since, c_credit,
c_credit_lim, c_discount, c_balance

FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?
FOR UPDATE

stmtPaymentSelectCustomerData

6.6. Performance Test 372

Apache ShardingSphere document, v5.2.1

SELECT c_data
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateWarehouse

UPDATE bmsql_warehouse
SET w_ytd = w_ytd + ?
WHERE w_id = ?

stmtPaymentUpdateDistrict

UPDATE bmsql_district
SET d_ytd = d_ytd + ?
WHERE d_w_id = ? AND d_id = ?

stmtPaymentUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateCustomerWithData

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1,
c_data = ?

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentInsertHistory

INSERT INTO bmsql_history (
h_c_id, h_c_d_id, h_c_w_id, h_d_id, h_w_id,
h_date, h_amount, h_data)

VALUES (?, ?, ?, ?, ?, ?, ?, ?)

6.6. Performance Test 373

Apache ShardingSphere document, v5.2.1

Order Status business

stmtOrderStatusSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtOrderStatusSelectCustomer

SELECT c_first, c_middle, c_last, c_balance
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtOrderStatusSelectLastOrder

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (

SELECT max(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

)

stmtOrderStatusSelectOrderLine

SELECT ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_delivery_d

FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?
ORDER BY ol_w_id, ol_d_id, ol_o_id, ol_number

Stock level business

stmtStockLevelSelectLow

SELECT count(*) AS low_stock FROM (
SELECT s_w_id, s_i_id, s_quantity

FROM bmsql_stock
WHERE s_w_id = ? AND s_quantity < ? AND s_i_id IN (

SELECT ol_i_id
FROM bmsql_district
JOIN bmsql_order_line ON ol_w_id = d_w_id
AND ol_d_id = d_id
AND ol_o_id >= d_next_o_id - 20
AND ol_o_id < d_next_o_id

6.6. Performance Test 374

Apache ShardingSphere document, v5.2.1

WHERE d_w_id = ? AND d_id = ?
)

) AS L

Delivery BG business

stmtDeliveryBGSelectOldestNewOrder

SELECT no_o_id
FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ?
ORDER BY no_o_id ASC

stmtDeliveryBGDeleteOldestNewOrder

DELETE FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ? AND no_o_id = ?

stmtDeliveryBGSelectOrder

SELECT o_c_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGUpdateOrder

UPDATE bmsql_oorder
SET o_carrier_id = ?
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGSelectSumOLAmount

SELECT sum(ol_amount) AS sum_ol_amount
FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateOrderLine

UPDATE bmsql_order_line
SET ol_delivery_d = ?
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance + ?,

c_delivery_cnt = c_delivery_cnt + 1
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

6.6. Performance Test 375

Apache ShardingSphere document, v5.2.1

6.7 Module Test

Provides test engine with each complex modules.

6.7.1 SQL Parser Test

Prepare Data

Not like Integration test, SQL parse test does not need a specific database environment, just define the
sql to parse, and the assert data:

SQL Data

As mentioned sql-case-id in Integration test, test‐case‐id could be shared in different module
to test, and the file is at shardingsphere-sql-parser/shardingsphere-sql-parser-test/
src/main/resources/sql/supported/${SQL-TYPE}/*.xml

Assert Data

The assert data is atshardingsphere-sql-parser/shardingsphere-sql-parser-test/src/
main/resources/case/${SQL-TYPE}/*.xml in that xml file, it could assert against the table
name, token or sql condition and so on. For example:

<parser-result-sets>
<parser-result sql-case-id="insert_with_multiple_values">

<tables>
<table name="t_order" />

</tables>
<tokens>

<table-token start-index="12" table-name="t_order" length="7" />
</tokens>
<sharding-conditions>

<and-condition>
<condition column-name="order_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
</and-condition>
<and-condition>

<condition column-name="order_id" table-name="t_order" operator=
"EQUAL">

6.7. Module Test 376

Apache ShardingSphere document, v5.2.1

<value literal="2" type="int" />
</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="2" type="int" />

</condition>
</and-condition>

</sharding-conditions>
</parser-result>

</parser-result-sets>

When these configs are ready, launch the test engine in shardingsphere-sql-parser/
shardingsphere-sql-parser-test to test SQL parse.

6.7.2 SQL Rewrite Test

Target

Facing logic databases and tables cannot be executed directly in actual databases. SQL rewrite is used
to rewrite logic SQL into rightly executable ones in actual databases, including two parts, correctness
rewrite and optimization rewrite. rewrite tests are for these targets.

Test

The rewrite tests are in the test folder under sharding-core/sharding-core-rewrite . Follow‐
ings are the main part for rewrite tests:

• test engine

• environment configuration

• assert data

Test engine is the entrance of rewrite tests, just like other test engines, through Junit Parameterized,
read every and each data in the xml file under the target test type in test\resources, and then assert
by the engine one by one

Environment configuration is the yaml file under test type under test\resources\yaml. The con‐
figuration file contains dataSources, shardingRule, encryptRule and other info. for example:

dataSources:
db: !!com.zaxxer.hikari.HikariDataSource

driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:db;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:

sharding Rules

6.7. Module Test 377

https://github.com/junit-team/junit4/wiki/Parameterized-tests

Apache ShardingSphere document, v5.2.1

rules:
- !SHARDING
tables:

t_account:
actualDataNodes: db.t_account_${0..1}
tableStrategy:
standard:

shardingColumn: account_id
shardingAlgorithmName: account_table_inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

t_account_detail:
actualDataNodes: db.t_account_detail_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: account_detail_table_inline

bindingTables:
- t_account, t_account_detail

shardingAlgorithms:
account_table_inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

account_detail_table_inline:
type: INLINE
props:
algorithm-expression: t_account_detail_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

Assert data are in the xml under test type in test\resources. In the xml file, yaml-rulemeans the
environment configuration file path, input contains the target SQL and parameters, output contains
the expected SQL and parameters. The db-type described the type for SQL parse, default is SQL92.
For example:

<rewrite-assertions yaml-rule="yaml/sharding/sharding-rule.yaml">
<!-- to change SQL parse type, change db-type -->
<rewrite-assertion id="create_index_for_mysql" db-type="MySQL">

<input sql="CREATE INDEX index_name ON t_account ('status')" />
<output sql="CREATE INDEX index_name ON t_account_0 ('status')" />
<output sql="CREATE INDEX index_name ON t_account_1 ('status')" />

</rewrite-assertion>
</rewrite-assertions>

After set up the assert data and environment configuration, rewrite test engine will assert the corre‐

6.7. Module Test 378

Apache ShardingSphere document, v5.2.1

sponding SQL without any Java code modification.

6.8 Scaling Integration Test

6.8.1 Objectives

Verify the functional correctness of data migration and dependency modules.

6.8.2 Test environment

Currently, Native and Docker environments are supported. 1. The Native environment runs directly in
the test environment provided by the developer, and users need to start ShardingSphere‐Proxy and
the corresponding database instance by themselves, which is suitable for debugging scenarios. 2.
The Docker environment is run by Maven, which is suitable for cloud compilation environment and
ShardingSphere‐Proxy testing scenarios, such as GitHub Action.

Currently, you can use MySQL, PostgreSQL and openGuass databases.

6.8.3 User guide

Module path: shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-scaling.

Environment setup

${DOCKER-IMAGE} refers to the name of a Docker mirror, such as mysql:8. ${DATABASE-TYPE}
refers to database types. Directory: src/test/resources/env ‐ it-env.properties: the startup
parameters of integration testing. ‐ ${DATABASE-TYPE}/server.yaml: ShardingSphere‐Proxy con‐
figuration file corresponding to the database. ‐ ${DATABASE-TYPE}/initdb.sql: The database ini‐
tializes SQL. ‐${DATABASE-TYPE}/*.cnf,*.conf: Files endingwith cnf or conf aredatabase config‐
uration files for Docker mount. ‐ common/command.xml: The DistSQL used in the test. ‐ scenario/:
Store SQL in the test scenarios.

Test case

Currently, all the test cases are directly inherited from BaseExtraSQLITCase and indirectly inherited
from BaseITCase. ‐ BaseITCase: Provide generic methods for sub‐class. ‐ BaseExtraSQLITCase:
Provide table creation and CRUD statement execution methods.

Test case example: MySQLGeneralScalingIT. Functions included: ‐ Database‐levelmigration (all tables).
‐ Table‐level migration (any number). ‐ Verify migration data consistency. ‐ Stop writing is supported
during data migration. ‐ Support restart during data migration. ‐ Support integer primary keys during
data migration. ‐ Support string primary keys during data migration. ‐ A non‐administrator account
can be used to migrate data.

6.8. Scaling Integration Test 379

Apache ShardingSphere document, v5.2.1

Running the test case

All property values of it-env.properties can be introduced by the Maven command line -D, and
its priority is higher than that of the configuration file.

Native environment setup

The user starts ShardingSphere‐Proxy locally in advance, along with dependent configuration centers
(such as ZooKeeper) and databases. The port required for ShardingSphere‐Proxy is 3307. Take MySQL
as an example, it-env.properties can be configured as follows:

scaling.it.env.type=NATIVE
scaling.it.native.database=mysql
scaling.it.native.mysql.username=root
scaling.it.native.mysql.password=root
scaling.it.native.mysql.port=3306

Find the appropriate test case and start it with Junit under the IDE.

Docker environment setup

Step 1: Package mirror.

./mvnw -B clean install -am -pl shardingsphere-test/shardingsphere-integration-
test/shardingsphere-integration-test-scaling -Pit.env.docker -DskipTests

Running the above command will build a Docker mirror apache/shardingsphere‐proxy‐test:latest used
for integration testing. The mirror sets the port for remote debugging and the default port is 3308. If
only the test code is modified, you can reuse the existing test mirror without rebuilding it.

If you need to adjust Docker mirror startup parameters, you canmodify the configuration of the Shard‐
ingSphereProxyDockerContainer file.

The output log of ShardingSphere‐Proxy has the prefix Scaling‐Proxy.

Use Maven to run the test cases. Take MySQL as an example:

./mvnw -nsu -B install -f shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-scaling/pom.xml -Dscaling.it.env.type=DOCKER -
Dscaling.it.docker.mysql.version=${image-name}

You can also use IDE to run test cases. it-env.properties can be configured as follows:

scaling.it.env.type=DOCKER
scaling.it.docker.mysql.version=mysql:5.7

6.8. Scaling Integration Test 380

7
Reference

This chapter contains a section of technical implementation with Apache ShardingSphere, which pro‐
vide the reference with users and developers.

7.1 Database Compatibility

• SQL compatibility

SQL is the standard language for users to communicate with databases. The SQL parsing engine is
responsible for parsing SQL strings into abstract syntax trees so that Apache ShardingSphere can un‐
derstand and implement its incremental function. ShardingSphere currently supports MySQL, Post‐
greSQL, SQLServer, Oracle, openGauss, and SQL dialects conforming to the SQL92 standard. Due to
the complexity of SQL syntax, a few SQL are not supported for now.

381

Apache ShardingSphere document, v5.2.1

• Database protocol compatibility

Apache ShardingSphere currently implements MySQL and PostgreSQL protocols according to different
data protocols.

• Supported features

Apache ShardingSphere provides distributed collaboration capabilities for databases. At the same time,
it abstracts some database features to the upper layer for unified management, so as to facilitate users.

Therefore, native SQL will not deliver the features provided uniformly to the database, and a message
will be displayed indicating that the operation is not supported. Users can replace it with methods
provided by ShardingSphere.

7.2 Database Gateway

Apache ShardingSphere provides the ability for SQL dialect translation to achieve automatic conversion
between database dialects. For example, users can use MySQL client to connect ShardingSphere and
send SQLbased onMySQLdialect. ShardingSphere can automatically identify user protocol and storage
node type, automatically complete SQL dialect conversion, and access heterogeneous storage nodes
such as PostgreSQL.

7.3 Management

7.3.1 Data Structure in Registry Center

Under defined namespace, rules, props and metadata nodes persist in YAML,modifying nodes can
dynamically refresh configurations. nodes node persist the runtime node of database access object, to
distinguish different database access instances.

namespace
├──rules # Global rule configuration
├──props # Properties configuration
├──metadata # Metadata configuration
├ ├──${databaseName} # Logic database name

7.2. Database Gateway 382

Apache ShardingSphere document, v5.2.1

├ ├ ├──schemas # Schema list
├ ├ ├ ├──${schemaName} # Logic schema name
├ ├ ├ ├ ├──tables # Table configuration
├ ├ ├ ├ ├ ├──${tableName}
├ ├ ├ ├ ├ ├──...

├ ├ ├ ├──...
├ ├ ├──versions # Metadata version list
├ ├ ├ ├──${versionNumber} # Metadata version
├ ├ ├ ├ ├──dataSources # Data source configuration
├ ├ ├ ├ ├──rules # Rule configuration
├ ├ ├ ├──...
├ ├ ├──active_version # Active metadata version
├ ├──...
├──nodes
├ ├──compute_nodes
├ ├ ├──online
├ ├ ├ ├──proxy
├ ├ ├ ├ ├──UUID # Proxy instance identifier
├ ├ ├ ├ ├──....
├ ├ ├ ├──jdbc
├ ├ ├ ├ ├──UUID # JDBC instance identifier
├ ├ ├ ├ ├──....
├ ├ ├──status
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──worker_id
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──process_trigger
├ ├ ├ ├──process_list_id:UUID
├ ├ ├ ├──....
├ ├ ├──labels
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├──storage_nodes
├ ├ ├──${databaseName.groupName.ds}
├ ├ ├──${databaseName.groupName.ds}

/rules

global rule configurations, including configure the username and password for ShardingSphere‐Proxy.

- !AUTHORITY
users:
- root@%:root
- sharding@127.0.0.1:sharding

provider:

7.3. Management 383

├ ├ ├ ├ ├──views # View configuration
├ ├ ├ ├ ├ ├──${viewName}
├ ├ ├ ├ ├ ├──...

Apache ShardingSphere document, v5.2.1

type: ALL_PERMITTED

/props

Properties configuration. Please refer to Configuration Manual for more details.

kernel-executor-size: 20
sql-show: true

/metadata/databaseName/versions/{versionNumber}/dataSources

A collection of multiple database connection pools, whose properties (e.g. DBCP, C3P0, Druid and
HikariCP) are configured by users themselves.

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-1

ds_1:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_1?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-2

7.3. Management 384

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/props/

Apache ShardingSphere document, v5.2.1

/metadata/databaseName/versions/{versionNumber}/rules

Rule configurations, including sharding, readwrite‐splitting, data encryption, shadow DB configura‐
tions.

- !SHARDING
xxx

- !READWRITE_SPLITTING
xxx

- !ENCRYPT
xxx

/metadata/databaseName/schemas/{schemaName}/tables

Use separate node storage for each table, dynamic modification of metadata content is not supported
currently.

name: t_order # Table name
columns: # Columns
id: # Column name

caseSensitive: false
dataType: 0
generated: false
name: id
primaryKey: trues

order_id:
caseSensitive: false
dataType: 0
generated: false
name: order_id
primaryKey: false

indexs: # Index
t_user_order_id_index: # Index name

name: t_user_order_id_index

/nodes/compute_nodes

It includes running instance information of database access object, with sub‐nodes as the identifiers
of currently running instance, which is automatically generated at each startup using UUID. Those
identifiers are temporary nodes, which are registered when instances are on‐line and cleared when
instances are off‐line. The registry center monitors the change of those nodes to govern the database
access of running instances and other things.

7.3. Management 385

Apache ShardingSphere document, v5.2.1

/nodes/storage_nodes

It is able to orchestrate replica database, delete or disable data dynamically.

7.4 Sharding

The figure below shows how shardingworks. According towhether query and optimization are needed,
it can be divided into the Simple Push Down process and SQL Federation execution engine process.
Simple Push Down process consists of SQL parser => SQL binder => SQL router => SQL
rewriter => SQL executor => result merger, mainly used to deal with SQL execution in
standard sharding scenarios. SQL Federation execution engine consists of SQL parser => SQL
binder => logical optimization => physical optimization => data fetcher
=> operator calculation. This process performs logical optimization and physical optimization
internally, during which the standard kernel procedure is adopted to route, rewrite, execute andmerge
the optimized logical SQL.

7.4. Sharding 386

Apache ShardingSphere document, v5.2.1

7.4.1 SQL Parser

It is divided into the lexical parser and syntactic parser. SQL is first split into indivisible words through
a lexical parser.

The syntactic parser is then used to analyze SQL and ultimately extract the parsing context, which can
include tables, options, ordering items, grouping items, aggregation functions, pagination information,
query conditions, and placeholders that may be modified.

7.4.2 SQL Route

The sharding strategy configured by the user is matched according to the parsing context and the rout‐
ing path is generated. Currently, sharding router and broadcast router are supported.

7.4.3 SQL Rewrite

Rewrite SQL into statements that can be executed correctly in a real database. SQL rewriting is divided
into rewriting for correctness and rewriting for optimization.

7.4.4 SQL Execution

It executes asynchronously through a multithreaded executor.

7.4.5 Result Merger

Itmergesmultiple execution result sets to achieve output through the unified JDBC interface. The result
merger includes the streammerger, memory merger and appended merger using decorator mode.

7.4.6 Query Optimization

Supported by the experimental Federation Execution Engine, it optimizes complex queries such as as‐
sociated queries and sub‐queries and supports distributed queries across multiple database instances.
It internally optimizes query plans using relational algebra to query results through optimal plans.

7.4.7 Parse Engine

SQL is relatively simple comparedwith other programming languages, but it’s still a complete program‐
ming language. Therefore, there’s no essential difference between parsing SQL syntax and parsing
other languages (such as Java, C and Go, etc.).

7.4. Sharding 387

Apache ShardingSphere document, v5.2.1

Abstract Syntax Tree

The parsing process is divided into lexical parsing and syntactic parsing. The lexical parser is used to
split SQL into indivisible atomic symbols called Tokens.

Tokens are classified into keywords, expressions, literals, and operators based on the dictionaries pro‐
vided by different database dialects. The syntactic parser is then used to convert the output of the
lexical parser into an abstract syntax tree.

For example:

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

After the above SQL is parsed, its AST (Abstract Syntax Tree) is as follows:

The tokens for keywords in the AST are green, while the tokens for variables are red, and gray ones
indicate that further splitting is required.

Finally, the domain model is traversed through the abstract syntax tree by visitor; the context required
for sharding is extracted through the domainmodel (SQLStatement); and then,mark locations thatmay
need rewriting.

The parsing context for sharding includes select items, table, sharding condition, auto‐increment pri‐
mary key, and Order By, Group By, and pagination information (Limit, Rownum, Top). The SQL parsing
process is irreversible.

Each Token is parsed in the original SQL order, providing high performance. Taking the similarities
and differences of SQL dialects of various databases into consideration, the SQL dialect dictionary of

7.4. Sharding 388

Apache ShardingSphere document, v5.2.1

various databases is provided in the parsing module.

SQL Parser Engine

Iteration

SQL parsing is the core of sharding solutions, and its performance and compatibility are the most im‐
portant indicators. ShardingSphere’s SQL parser has undergone three iterations and upgrades.

To achieve high performance and fast implementation, the first generation of SQL parsers used Druid
prior to V1.4.x. In practical tests, its performance far exceeds that of other parsers.

The second generation of SQL parsers started from V1.5.x. ShardingSphere uses a completely self‐
developed SQL parsing engine. Owing to different purposes, ShardingSphere does not need to convert
SQL into a complete abstract syntax tree, nor does it require a second traversal through the accessor
pattern. It uses a half‐parsingmethod to extract only the context requiredbydata sharding, thus further
improving the performance and compatibility of SQL parsing.

The third generation of SQL parsers, starting with V3.0.x, attempts to use ANTLR as a generator of SQL
parsing engines and uses Visit to obtain SQL statements from the AST. Since V5.0.x, the architecture
of the parsing engine has been restructured and adjusted. Moreover, the AST obtained from the first
parsing is stored in the cache so that the parsing results of the same SQL can be directly obtained next
time to improve parsing efficiency. Therefore, it is recommended that you use PreparedStatement, a
SQL‐precompiled method, to improve performance.

Features

• Independent SQL parsing engine

• The syntax rules can be easily expanded and modified (using ANTLR)

• Support multiple dialects

Database Status

MySQL perfect supported
PostgreSQL perfect supported
SQLServer supported
Oracle supported
SQL92 supported
openGauss supported

7.4. Sharding 389

Apache ShardingSphere document, v5.2.1

API Usage

• Introducing Maven dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-engine</artifactId>
<version>${project.version}</version>

</dependency>
<!-- According to the needs, introduce the parsing module of the specified dialect
(take MySQL as an example), you can add all the supported dialects, or just what
you need -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-mysql</artifactId>
<version>${project.version}</version>

</dependency>

• Obtain AST

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine(sql, cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);

• Obtain SQLStatement

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine(sql, cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(sql, "STATEMENT",
useCache, new Properties());
SQLStatement sqlStatement = sqlVisitorEngine.visit(parseASTNode);

• SQL Formatting

ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(sql, "FORMAT", useCache,
new Properties());
String result = sqlVisitorEngine.visit(parseASTNode);

Example：

7.4. Sharding 390

Apache ShardingSphere document, v5.2.1

Original SQL Formatted SQL

select a+1 as b, namen from table1 join table2
where id=1 and name=‘lu’;

SELECT a + 1 AS b, name nFROM table1 JOIN ta‐
ble2WHERE id = 1 and name =‘lu’
;

select id, name, age, sex, ss, yy from table1
where id=1;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1;

select id, name, age, count(*) as n, (select id,
name, age, sex from table2where id=2) as sid,
yyyy from table1 where id=1;

SELECT id , name , age , COUNT(*)
AS n, (SELECT id
, name , age , sex
 FROM ta‐
ble2 WHERE
 id = 2) AS
sid, yyyy FROM table1WHERE id = 1;

select id, name, age, sex, ss, yy from table1
where id=1 and name=1 and a=1 and b=2 and
c=4 and d=3;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1 and name =
1 and a = 1 and b = 2 and c
= 4 and d = 3;

ALTER TABLE t_order ADD column4
DATE, ADD column5 DATETIME, engine
ss max_rows 10,min_rows 2, ADD column6
TIMESTAMP, ADD column7 TIME;

ALTER TABLE t_order ADD col‐
umn4 DATE, ADD column5 DATE‐
TIME, ENGINE ss MAX_ROWS
10, MIN_ROWS 2, ADD column6
TIMESTAMP, ADD column7 TIME

CREATE TABLE IF NOT EXISTS
runoob_tbl(runoob_id INT UNSIGNED
AUTO_INCREMENT,runoob_title VAR‐
CHAR(100) NOT NULL,runoob_author
VARCHAR(40) NOT NULL,runoob_test
NATIONAL CHAR(40),submission_date
DATE,PRIMARY KEY
(runoob_id))ENGINE=InnoDB DEFAULT
CHARSET=utf8;

CREATE TABLE IF NOT EXISTS runoob_tbl
(runoob_id INT UNSIGNED
AUTO_INCREMENT, runoob_title VAR‐
CHAR(100) NOT NULL, runoob_author
VARCHAR(40) NOT NULL , runoob_test
NATIONAL CHAR(40), submission_date
DATE, PRIMARY KEY (runoob_id)) EN‐
GINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO t_order_item(order_id,
user_id, status, creation_date) values (1,
1,‘insert’,‘2017‐08‐08’), (2, 2,‘insert’,
‘2017‐08‐08’) ON DUPLICATE KEY UPDATE
status =‘init’;

INSERT INTO t_order_item (order_id , user_id , sta‐
tus , creatio n_date)VALUES (1, 1,‘insert’,
‘2017‐08‐08’), (2, 2,‘insert’,‘2017‐08‐08’
)ON DUPLICATE KEY UPDATE status =‘init’;

INSERT INTO t_order SET order_id
= 1, user_id = 1, status = con‐
vert(to_base64(aes_encrypt(1, ‘key’))
USING utf8) ON DUPLICATE KEY UPDATE
status = VALUES(status);

INSERT INTO t_order SET order_id =
1, user_id = 1, status = CON‐
VERT(to_ base64(aes_encrypt(1 , ‘key’)) USING
utf8)ON DUPLICATE KEY UPDATE status = VAL‐
UES(status);

INSERT INTO t_order (order_id, user_id, sta‐
tus) SELECT order_id, user_id, status FROM
t_order WHERE order_id = 1;

INSERT INTO t_order (order_id , user_id , sta‐
tus) SELECT order_id , user_id , status FROM
t_orderWHERE order_id = 1;

7.4. Sharding 391

Apache ShardingSphere document, v5.2.1

7.4.8 Route Engine

Sharding strategies for databases and tables are matched based on the parsing context, and routing
paths are generated. SQL with shard keys can be divided into the single‐shard router (the shard key
operator is equal), multi‐shard router (the shard key operator is IN), and range router (the shard key
operator is BETWEEN). SQL that does not carry shard keys adopts broadcast routing.

Sharding strategies can usually be configured either by the built‐in database or by the user. The built‐
in database scheme is relatively simple, and the built‐in sharding strategy can be roughly divided into
mantissa modulo, hash, range, label, time, etc.

The sharding strategies configured by the user are more flexible. You can customize the compound
sharding strategy based on the user’s requirements. If it is used with automatic data migration, users
do not need to work on the sharding strategies.

Sharding and data balancing can be automatically achieved by the middle layer of the database, and
distributed databases can achieve elastic scalability. In the planning of ShardingSphere, the elastic
scaling function will be available at V4.x.

Sharding Route

The scenario that is routed based on shard keys is divided into three types: direct route, standard route,
and Cartesian route.

Direct Route

The requirement for direct route is relatively harsh. It needs to be sharded by Hint (using HintAPI to
specify routes to databases and tables), and it can avoid SQL parsing and subsequent result merge on
the premise of having database shards but not table shards.

Therefore, it is the most compatible one and can execute any SQL in complex scenarios including sub‐
queries and custom functions. The direct route can also be used when shard keys are not in SQL. For
example, set the key for database sharding to 3,

hintManager.setDatabaseShardingValue(3);

If the routing algorithm is value % 2, when a logical database t_order corresponds to two physical
databasest_order_0 and t_order_1, the SQL will be executed on t_order_1 after routing. The
following is a sample code using the API.

String sql = "SELECT * FROM t_order";
try (

HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {

while (rs.next()) {

7.4. Sharding 392

Apache ShardingSphere document, v5.2.1

//...
}

}
}

Standard Route

The standard route is the most recommended sharding method, and it is applicable to SQL that does
not contain an associated query or only contains the associated query between binding tables.

When the sharding operator is equal, the routing result will fall into a single database (table). When the
sharding operator is BETWEEN or IN, the routing result will not necessarily fall into a unique database
(table).

Therefore, logical SQL may eventually be split into multiple real SQL to be executed. For example, if
the data sharding is carried out according to the odd and even numbers of order_id, the SQL for a single
table query is as follows:

SELECT * FROM t_order WHERE order_id IN (1, 2);

Then the routing result should be:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

An associated query for a binding table is as complex as a single table query and they have the same
performance. For example, if the SQL of an associated query that contains binding tables is as follows:

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_
id IN (1, 2);

Then the routing result should be:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

As you can see, the number of SQL splits is consistent with that of a single table.

7.4. Sharding 393

Apache ShardingSphere document, v5.2.1

Cartesian Route

The Cartesian route is the most complex one because it cannot locate sharding rules according to the
relationship between binding tables, so associated queries between unbound tables need to be disas‐
sembled and executed as cartesian product combinations. If the SQL in the previous example was not
configured with binding table relationships, the routing result would be:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

The Cartesian route query has low performance, so think carefully when you use it.

Broadcast Route

For SQL that does not carry shard keys, broadcast routes are used. According to the SQL type, it can
be further divided into five types: full database and table route, full database route, full instance route,
unicast route, and block route.

Full database and table route

The full database table route is used to handle operations on all real tables related to its logical tables
in the database, including DQL and DML without shard keys, as well as DDL, etc. For example:

SELECT * FROM t_order WHERE good_prority IN (1, 10);

All tables in all databases will be traversed, matching logical tables and real table names one by one.
The table that can be matched will be executed. The routing result would be:

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

7.4. Sharding 394

Apache ShardingSphere document, v5.2.1

Full database route

The full database route is used to handle operations on the database, including database management
commands of type SET for database settings and transaction control statements such as TCL.

In this case, all real database matching names are traversed based on the logical database name, and
the command is executed in the real database. For example:

SET autocommit=0;

If the command is executed in t_order, t_orderwhich has two real databases, it is actually executed
on both t_order_0 and t_order_1.

Full instance route

Full instance route is used for DCL operations, and authorized statements are used for database in‐
stances.

No matter how many schemas are contained in an instance, each database instance is executed only
once. For example:

CREATE USER customer@127.0.0.1 identified BY '123';

This command will be executed on all real database instances to ensure that users can access each
instance.

Unicast Route

The unicast route is used to obtain the information of a real table. It only needs to obtain data from any
real table in any database. For example:

DESCRIBE t_order;

t_order_0 and t_order_1, the two real tables of t_order, have the same description structure, so
this command is executed only once on any real table.

Block Route

Block route is used to block SQL operations on the database, for example:

USE order_db;

This commandwill not be executed in a real database because ShardingSphere uses the logical Schema
and there is no need to send the Schema shift command to the database.

The overall structure of the routing engine is as follows.

7.4. Sharding 395

Apache ShardingSphere document, v5.2.1

7.4.9 Rewrite Engine

SQLwritten by engineers for logical databases and tables cannot be directly executed in real databases.

SQL rewriting is used to rewrite logical SQL into SQL that can be executed correctly in real databases.
It includes rewriting for correctness and rewriting for optimization.

Rewriting for Correctness

In a scenario with table shards, you need to rewrite the logical table name in the table shards configu‐
ration to the real table name obtained after routing.

Only database shards donot require rewriting table names. Additionally, it also includes columnderiva‐
tion and pagination information correction.

Identifier Rewriting

The identifiers that need to be overwritten include table names, index names, and Schema names.

Rewriting table names is the process of finding the location of the logical table in the original SQL and
rewriting it into a real table.

Table name rewriting is a typical scenario that requires SQL parsing. For example, if logical SQL is:

7.4. Sharding 396

Apache ShardingSphere document, v5.2.1

SELECT order_id FROM t_order WHERE order_id=1;

Assume that the SQL is configured with the shard key order_id and order_id=1, it will be routed to
shard table 1. Then the rewritten SQL should be:

SELECT order_id FROM t_order_1 WHERE order_id=1;

In the simplest SQL scenario, it doesn’t seem tomatterwhether or not the SQL is parsed into an abstract
syntax tree.

SQL can be rewritten correctly only by finding and replacing strings. However, it is impossible to
achieve the same effect in the following scenarios.

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

The correct rewritten SQL would be:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

Instead of:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

Because theremay be characters similar to the table name, you cannot rewrite SQL simply by replacing
strings.

Let’s look at a more complex scenario:

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order
xxx';

The above SQL uses the table name as an identifier of the field, so it needs to be modified when SQL is
rewritten:

SELECT t_order_1.order_id FROM t_order_1 WHERE t_order_1.order_id=1 AND remarks='
t_order xxx';

If a table alias is defined in SQL, the alias does not need to bemodified, even if it is the same as the table
name. For example:

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

Rewriting the table name is enough for SQL rewriting.

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

The index name is another identifier that can be rewritten. In some databases (such as MySQL and
SQLServer), indexes are created in the dimension of tables.

7.4. Sharding 397

Apache ShardingSphere document, v5.2.1

Indexes in different tables canhave the samename. In other databases (such as PostgreSQLandOracle),
indexes are created in the dimension of databases, and even indexes on different tables should have
unique names.

In ShardingSphere, schemas aremanaged in the sameway as tables. Logical Schemas are used toman‐
age a set of data sources.

Therefore, ShardingSphere needs to replace the logical Schemawritten by the user in SQLwith the real
database Schema.

Currently, ShardingSphere does not support the use of Schema in DQL and DML statements. It only
supports the use of Schema in database management statements. For example:

SHOW COLUMNS FROM t_order FROM order_ds;

Schema rewriting refers to the rewriting of a logical Schema using unicast routing to a correct and real
Schema that is randomly found.

Column Derivation

There are two cases that need to complement columns in a query statement. In the first case, Shard‐
ingSphere needs to get the data during the result merge, but the data is not returned by the queried
SQL.

In this case, it mainly applies to GROUP BY and ORDER BY. When merging the results, you need to
group and order the field items according to GROUP BY and ORDER BY, but if the original SQL does not
contain grouping or ordering items in the selections, you need to rewrite the original SQL. Let’s look
at a scenario where the original SQL has the required information for result merge.

SELECT order_id, user_id FROM t_order ORDER BY user_id;

Since user_id is used for sorting, the data of user_id needs to be retrieved in the result merge. And
the above SQL can obtain the data of user_id, so there is no need to add columns.

If the selection does not contain the columns required tomerge the results, you need to fill the columns,
as in the following SQL:

SELECT order_id FROM t_order ORDER BY user_id;

Since the original SQL does not contain the user_id required in the result merge, you need to fill in
and rewrite the SQL. Then SQL would be:

SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_order ORDER BY user_id;

It should be noted that only missing columns are complemented instead of all columns. And SQL that
contains * in the SELECT statement will also selectively complement columns based on the metadata
information of the table. Here is a relatively complex column derivation scenario of SQL:

SELECT o.* FROM t_order o, t_order_item i WHERE o.order_id=i.order_id ORDER BY
user_id, order_item_id;

7.4. Sharding 398

Apache ShardingSphere document, v5.2.1

We assume that only the table t_order_item contains the column order_item_id. According to
the metadata information of the table, when the result is merged, the user_id in the ordering items
exists on the table t_order, so there is no need to add columns. order_item_id is not in t_order,
so column derivation is required. Then SQL would become:

SELECT o.*, order_item_id AS ORDER_BY_DERIVED_0 FROM t_order o, t_order_item i
WHERE o.order_id=i.order_id ORDER BY user_id, order_item_id;

The second case of column derivation is the use of AVG aggregate functions. In distributed scenarios,
using (avg1 + avg2 + avg3)/3 to calculate the average is incorrect and should be rewritten as (sum1 +
sum2 + sum3) /(count1 + count2 + count3). In this case, rewriting the SQL containing AVG to SUM and
COUNT is required, and recalculating the average when the results are merged. For example:

SELECT AVG(price) FROM t_order WHERE user_id=1;

The above SQL should be rewritten as:

SELECT COUNT(price) AS AVG_DERIVED_COUNT_0, SUM(price) AS AVG_DERIVED_SUM_0 FROM t_
order WHERE user_id=1;

Then you can calculate the average correctly by merging the results.

The last type of column derivation is the one that does not need to write the primary key field if the
database auto‐increment primary key is used during executing an INSERT SQL statement. However,
the auto‐increment primary key of the database cannotmeet the unique primary key in distributed sce‐
narios. Therefore, ShardingSphere provides the generation strategy of the distributed auto‐increment
primary key. Users can replace the existing auto‐increment primary key transparently with the dis‐
tributed auto‐increment primary key without changing the existing code through column derivation.
The generation strategy for distributed auto‐increment primary keys is described below, and here only
SQL rewriting is illustrated. For example, if the primary key of tablet_order isorder_id, the original
SQL would be:

INSERT INTO t_order (`field1`, `field2`) VALUES (10, 1);

As you can see, the above SQL does not contain the auto‐increment primary key, which requires the
database itself to fill. After ShardingSphere is configured with the auto‐increment primary key, SQL
will be rewritten as:

INSERT INTO t_order (`field1`, `field2`, order_id) VALUES (10, 1, xxxxx);

The rewritten SQL will add column names of the primary key and auto‐increment primary key values
generated automatically at the end of the INSERT FIELD and INSERT VALUE. The xxxxx in the above
SQL represents the auto‐increment primary key value generated automatically.

If the INSERT SQL does not contain the column name of the table, ShardingSphere can also compare
the number of parameters and the number of columns in the tablemeta information and automatically
generate auto‐increment primary keys. For example, the original SQL is:

7.4. Sharding 399

Apache ShardingSphere document, v5.2.1

INSERT INTO t_order VALUES (10, 1);

The rewritten SQL will simply add the auto‐increment primary key in the column order in which the
primary key locates:

INSERT INTO t_order VALUES (xxxxx, 10, 1);

If you use placeholders to write SQL, you only need to rewrite the parameter list, not the SQL itself.

Pagination Correction

The scenario of acquiring pagination data from multiple databases is different from that of one single
database. If every 10 pieces of data are taken as one page, the userwants to take the second page of data.
It is not correct to acquire LIMIT 10, 10 under sharding situations, or take out the first 10 pieces of
data according to sorting conditions after merging. For example, if SQL is:

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

The following picture shows the pagination execution results without SQL rewriting.

As shown in the picture, if you want to acquire the second and the third piece of data sorted by score in
both tables, and they are supposed to be 95 and 90.

Since executed SQL can only acquire the second and the third piece of data from each table, i.e., 90 and
80 from t_score_0, 85 and 75 from t_score_1. When merging results, it can only merge from 90,

7.4. Sharding 400

Apache ShardingSphere document, v5.2.1

80, 85 and 75 already acquired, so the right result cannot be acquired anyway.

The right way is to rewrite pagination conditions as LIMIT 0, 3, take out all the data from the first
two pages and calculate the right data based on sorting conditions. The following picture shows the
execution results of pagination after SQL rewrite.

The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are
many ways to avoid using LIMIT as pagination method, such as constructing a secondary index to the
number of line records and line offsets or using the end ID of the last pagination data as a condition for
the next query.

When revising pagination information, if the users use the placeholder to write SQL, they only need to
rewrite the parameter list rather than SQL itself.

Batch Split

When using bulk inserted SQL, if the inserted data crosses shards, the SQL needs to be rewritten to
prevent excess data from being written to the database.

The insertion operation differs from the query operation in that the query statement does not affect
the data even if it uses the shard key that does not exist in the current shard. In contrast, insertion
operations must remove excess shard keys. For example, see the following SQL:

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, 'xxx');

If the database is still divided into two parts according to the odd and even number of order_id, this

7.4. Sharding 401

Apache ShardingSphere document, v5.2.1

SQL will be executed after its table name is revised. Then, both shards will be written with the same
record.

Though only the data that satisfies sharding conditions can be retrieved from the query statement, it is
not reasonable for the schema to have excessive data. So SQL should be rewritten as:

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

IN query is similar to batch insertion, but IN operationwill not lead towrong data query result. Through
rewriting IN query, the query performance can be further improved. See the following SQL:

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

The SQL is rewritten as：

SELECT * FROM t_order_0 WHERE order_id IN (2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 3);

Thequeryperformancewill be further improved. Fornow, ShardingSpherehasnot realized this rewrite
strategy, so the current rewrite result is:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

Though the execution result of SQL is right, it did not achieve the highest query efficiency.

Rewriting for Optimization

Its purpose is to effectively improve performance without influencing the correctness of the query. It
can be divided into single node optimization and streammerger optimization.

Single Node Optimization

It refers to the optimization that stops the SQL rewrite from the route to the single node. After acquiring
one route result, if it is routed to a single data node, there is no need to involve result merger, as well as
rewrites such as column derivation and pagination information correction.

In particular, there is no need to read from the first piece of information, which reduces the pressure
on the database to a large extent and saves meaningless consumption of the network bandwidth.

7.4. Sharding 402

Apache ShardingSphere document, v5.2.1

StreamMerger Optimization

It only adds ORDER BY and ordering items and sorting orders identical with grouping items to SQL that
contains GROUP BY. And it is used to transfer memory merger to stream merger. Stream merger and
memory merger will be explained in detail in the result merger section.

The overall structure of the rewrite engine is shown in the following picture.

7.4.10 Execute Engine

ShardingSphere uses an automated execution engine to safely and efficiently send the real SQL, which
has been routed and rewritten, to the underlying data source for execution.

It doesnot simply sendSQLdirectly to thedata source for execution via JDBC,nor are execution requests
placed directly into a thread pool for concurrent execution.

It focuses more on the creation of a balanced data source connection, the consumption generated by
the memory usage, and the maximum utilization of the concurrency. The objective of the execution
engine is to automatically balance resource control with execution efficiency.

7.4. Sharding 403

Apache ShardingSphere document, v5.2.1

Connection Mode

From the perspective of resource control, the connection number a business can make to the database
should be limited. It can effectively prevent certain business operations from occupying excessive re‐
sources, exhausting database connection resources, and influencing the normal access of other busi‐
nesses.

Especially when one database instance contains many sub‐tables, a logical SQL that does not contain
any shard key will produce a large number of real SQLs that fall into different tables in one database. If
each real SQL takes an independent connection, a query will undoubtedly take up excessive resources.

From theperspective of execution efficiency,maintaining an independent database connection for each
shard query can make more effective use of multi‐thread to improve execution efficiency.

Creating a separate thread for each database connection allows I/O consumption to be processed in
parallel. Maintaining a separate database connection for each shard also prevents premature loading
of query result data into memory.

It is enough for independent database connections tomaintain result set quotation and cursor position,
and move the cursor when acquiring corresponding data.

Merging the result set bymoving down its cursor is called the streammerger. It does not need to load all
the query results into thememory, which can effectively savememory resources effectively and reduce
the frequency of garbage collection.

If each shard query cannot be guaranteed to have an independent database connection, the current
query result set needs to be loaded into memory before reusing the database connection to obtain the
query result set of the next shard table. Therefore, though the stream merger can be used, it will also
degenerate into the memory merger in this scenario.

On the one hand, we need to control and protect database connection resources; on the other hand, it
is important to save middleware memory resources by adopting a better merging mode. How to deal
with the relationship between the two is a problem that the ShardingSphere execution engine needs to
solve. Specifically, if an SQL is sharded through the ShardingSphere, it needs to operate on 200 tables
under a database instance. So, should we choose to create 200 connections in parallel, or one connec‐
tion in sequence? How to choose between efficiency and resource control? For the above scenario,
ShardingSphere provides a solution. It introduces the concept of Connection Mode, which is divided
into MEMORY_STRICTLY and CONNECTION_STRICTLY.

MEMORY_STRICTLY Mode

The prerequisite to using this mode is that ShardingSphere does not restrict the connection number of
one operation. If the actual executed SQL needs to operate 200 tables in some database instance, it will
create a new database connection for each table and deal with them concurrently throughmulti‐thread
to maximize the execution efficiency. When SQL meets the conditions, stream merger is preferred to
avoid memory overflow or frequent garbage recycling.

7.4. Sharding 404

Apache ShardingSphere document, v5.2.1

CONNECTION_STRICTLY Mode

The prerequisite to using this mode is that ShardingSphere strictly restricts the connection consump‐
tion number of one operation. If the SQL to be executed needs to operate 200 tables in a database
instance, it will create one database connection and operate them serially. If shards exist in different
databases, it will still adopt multi‐thread operations for different databases, but with only one database
connection being created for each operation in each database. It prevents the problem of consuming
too many database connections for one request. The mode chooses memory merger all the time.

The MEMORY_STRICTLY mode applies to OLAP operation and can increase the system throughput by
removing database connection restrictions. It is also applicable to OLTP operation, which usually has
shard keys and can be routed to a single shard. So it is a wise choice to control database connections
strictly to make sure that database resources in an online system can be used by more applications.

Automatic Execution Engine

ShardingSphere initially leaves the decision of which mode to use up to the users and they can choose
to useMEMORY_STRICTLYmode or CONNECTION_STRICTLYmode according to their actual business
scenarios.

This solution gives users the right to choose, whomust understand the pros and cons of the twomodes
and make a choice based on the requirements of the business scenarios. No doubt, it is not the best
solution as it increases users’learning and use costs.

This dichotomy solution, which leaves the switching of the twomodes to static initialization, lacks flex‐
ibility. In practical scenarios, the routing result varies with SQL and placeholder indexes. This means
that some operations may need to use memory merger, while others may prefer stream merger. Con‐
nectionmodes should not be set by the user before ShardingSphere is started, but should be determined
dynamically based on the SQL and placeholder indexes scenarios.

In order to reduce the usage cost for users and achieve a dynamic connection mode, ShardingSphere
has extracted the concept of the automatic execution engine to eliminate the connection mode con‐
cept internally. The user does not need to know what the MEMORY_STRICTLY mode and CONNEC‐
TION_STRICTLY mode are, but the execution engine automatically selects the best execution scheme
according to the current scenario.

The automatic execution engine chooses the connection mode based on each SQL operation. For each
SQL request, the automatic execution engine will do real‐time calculations and evaluations according
to its route result and execute the appropriate connection mode automatically to strike the optimal
balance between resource control and efficiency. For the automatic execution engine, users only need
to configure maxConnectionSizePerQuery, which represents the maximum connection number
allowed by each database for one query.

The execution engine is divided into two phases: preparation and execution.

7.4. Sharding 405

Apache ShardingSphere document, v5.2.1

Preparation Phrase

As indicated by its name, this phrase is used to prepare the data to be executed. It can be divided into
two steps: result set grouping and unit creation.

Result set grouping is the key to realizing the internal connectionmodel concept. According to the con‐
figuration items of maxConnectionSizePerQuery, the execution engine will choose an appropriate
connection mode based on the current route result.

Detailed steps are as follow:

1. Group SQL route results according to data source names.

2. As we can see in the following formula, users can acquire the SQL route result set to be executed
by each database instancewithin themaxConnectionSizePerQuerypermission range and cal‐
culate the optimal connection mode of this request.

Within the scope of the maxConnectionSizePerQuery allowed, when the request number that one con‐
nection needs to execute is more than 1, the current database connection cannot hold the correspond‐
ing data result set, so it must use memory merger. On the contrary, when the number equals 1, the
current database connection can hold the corresponding data result set, and it can use streammerger.

Each connection mode selection is specific to each physical database. That is, if you route to more
than one database in the same query, the connection mode of each database may not be the same,
and they may be mixed. Users can use the route grouping result acquired from the last step to create
the execution unit. When the data source uses technologies, such as the database connection pool, to
control database connection numbers, there is a chance that a deadlock will occur if concurrency is

7.4. Sharding 406

Apache ShardingSphere document, v5.2.1

not handled properly while retrieving database connections. As multiple requests wait for each other
to release database connection resources, starvation occurs, causing the crossing deadlock.

For example, suppose that a query requires obtaining two database connections at a data source and
routing queries to two sub‐tables of the same database. It is possible that query A has obtained one
database connection from this data source and is waiting to obtain another database connection.

Query B has also acquired a database connection at the data source and is also waiting for another
database connection to be acquired. If the maximum number of connections allowed in the database
connection pool is 2, then the two query requests will wait forever. The following diagram depicts a
deadlock situation.

ShardingSphere synchronizes database connections to avoid deadlocks. When it creates the execution
unit, it atomically obtains all the database connections required by the SQL request at one time, elimi‐
nating the possibility of obtaining partial resources in each query request.

Because the operation on the database is very frequent, locking a database connection each time when
acquiring it will reduce the concurrency of ShardingSphere. Therefore, ShardingSphere has improved
two aspects here:

1. Locking can be avoided and only one database connection needs to be obtained each time. Be‐
cause under this circumstance, two requests waiting for each other will not happen, so there is no
need for locking. Most OLTP operations use shard keys to route to the unique data node, which
makes the system completely unlocked and further improves the concurrency efficiency. In ad‐
dition to routing to a single shard, read/write‐splitting also belongs to this category.

2. Locking resources only happens in MEMORY_STRICTLY mode. When using CONNEC‐

7.4. Sharding 407

Apache ShardingSphere document, v5.2.1

TION_STRICTLY mode, all the query result sets will release database connection resources after
loading them to the memory, so deadlock wait will not appear.

Execution Phrase

This stage is used to actually execute SQL and is divided into two steps: group execution and merger
result generation.

Group execution can distribute execution unit groups generated in the preparation phase to the un‐
derlying concurrency engine and send events for each key step during the execution process, such as
starting, successful and failed execution events. The execution engine only focuses on sending events
rather than subscribers to the event. Other ShardingSphere modules, such as distributed transactions,
call linked tracing and so on, will subscribe to the events of interest and process them accordingly.

ShardingSphere generates memory merger result sets or stream merger result sets through the con‐
nection mode acquired in the preparation phase. And then it passes the result set to the result merger
engine for the next step.

The overall structure of the execution engine is divided as shown below.

7.4. Sharding 408

Apache ShardingSphere document, v5.2.1

7.4.11 Merger Engine

Result merger refers tomergingmulti‐data result sets acquired from all the data nodes as one result set
and returning it to the requesting client correctly.

The result merger supported by ShardingSphere can be divided into five functional types: traversal,
order‐by, group‐by, pagination and aggregation, which are combined rather than mutually exclusive.
From the perspective of structure, it can be divided into stream merger, memory merger and decora‐
tor merger, among which stream merger and memory merger are mutually exclusive, and decorator
merger can be further processed based on streammerger and memory merger.

Since the result set is returned from the database one by one instead of being loaded to the memory all
at a time, themethod ofmerging the result sets returned from the database can greatly reducememory
consumption and is the preferred method of merging.

Streammergermeans that each time the data is obtained from the result set is able to return the correct
single piece of data line by line. It is the best fit with the native method of returning the result set of the
database. Traversal, order‐by, and stream group‐by are all examples of the streammerger.

Memory merger needs to traverse all the data in the result set and store it in the memory first. After
unified grouping, ordering, aggregation and other calculations, the data is packaged into the data result
set accessed one by one and returned.

Decorator merger merges and reinforces all the result sets function uniformly. Currently, decorator
merger has two types: pagination merger and aggregation merger.

Traversal Merger

As the simplest mergermethod, traversal merger only requires the combination of multiple data result
sets into a one‐way linked table. After traversing current data result sets in the linked table, it only needs
to move the elements of the linked table back one bit and continue traversing the next data result set.

Order-by Merger

Because there is an ORDER BY statement in SQL, each data result has its own order. So it only needs to
sort data value that the result set cursor currently points to, which is equal to sorting multiple ordered
arrays. Therefore, order‐by merger is the most suitable sorting algorithm in this scenario.

When merging ordered queries, ShardingSphere will compare current data values in each result set
(which is realized by the Java Comparable interface) and put them into the priority queue. Each time
when acquiring the next piece of data, it only needs to move down the result set cursor at the top of the
queue, reenter the priority order according to the new cursor and relocate its own position.

Here is an instance to explain ShardingSphere’s order‐by merger. The following picture is an illus‐
tration of ordering by the score. Data result sets returned by 3 tables are shown in the example and
each of them has already been ordered according to the score, but there is no order between the 3 data
result sets. Order the data value that the result set cursor currently points to in these 3 result sets. Then
put them into the priority queue. The first data value of t_score_0 is the biggest, followed by that

7.4. Sharding 409

Apache ShardingSphere document, v5.2.1

of t_score_2 and t_score_1 in sequence. Thus, the priority queue is ordered by the sequence of
t_score_0, t_score_2 and t_score_1.

The following diagram illustrates how the order‐by merger works when using next call. We can see
from the diagram that when using the next call, t_score_0 at the first of the queue will be popped
out. After returning the data value currently pointed by the cursor (i.e., 100) to the requesting client,
the cursor will be moved down and t_score_0 will be put back into the queue.

While the priority queue will also be ordered according to the t_score_0 data value (90 here) pointed
by the cursor of the current data result set. According to the current value, t_score_0 is at the end of
the queue, and the data result set of t_score_2, originally in the second place of the queue, automat‐
ically moves to the first place of the queue.

In the second next call, t_score_2 in the first place is popped out. Its value pointed by the cursor of
the data result set is returned to the client end, with its cursor moved down to rejoin the queue, and the
following will be the same way. If there is no data in the result set, it will not rejoin the queue.

7.4. Sharding 410

Apache ShardingSphere document, v5.2.1

It can be seen thatwhen data in each result set is ordered, butmultiple result sets are disordered, Shard‐
ingSphere can still order themwith no need to upload all the data to thememory. In the streammerger
method, each next operation only acquires the right piece of data each time, which saves memory
consumption to a large extent.

On the other hand, the order‐by merger has maintained the orderliness on the horizontal axis and
vertical axis of the data result set. Naturally ordered, the vertical axis refers to each data result set
itself, which is acquired by SQL with ORDER BY. The horizontal axis refers to the current value pointed
by each data result set, and its order needs to be maintained by the priority queue. Each time when the
current cursor moves down, it requires putting the result set in the priority order again, which means
only the cursor of the first data result set can be moved down.

Group-by Merger

Group‐bymerger is themost complex one and canbe divided into streamgroup‐bymerger andmemory
group‐by merger. Stream group‐by merger requires that the SQL’s ordering items must be consistent
with the field and ordering types (ASC or DESC) of the group‐by item; otherwise, data correctness can
only be guaranteed by memory merger.

For instance, if it is sharded based on subject, the table structure contains the examinees’name (to sim‐
plify, name repetition is not taken into consideration) and score. The following SQL is used to acquire
each examinee’s total score:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

7.4. Sharding 411

Apache ShardingSphere document, v5.2.1

When order‐by item and group‐by item are totally consistent, the data obtained is continuous. The data
required by group‐by is all stored in the data value that the data result set cursor currently points to.
Thus, stream group‐by merger can be used, as illustrated by the diagram:

The merging logic is similar to that of order‐by merger. The following picture shows how the stream
group‐by merger works in the next call.

7.4. Sharding 412

Apache ShardingSphere document, v5.2.1

We can see from the picture that, in the first next call, t_score_java in the first place will be popped
out of the queue, along with other result set data having the same grouping value of“Jerry”. After
acquiring all the students’scores with the name of“Jerry”, the accumulation operation will proceed.
Hence, after the first next call is finished, the result set acquired is the sum of Jerry’s scores. At the
same time, all the cursors in data result sets will bemoved down to a different data value next to“Jerry”
and reordered according to the current result set value. Thus, the data that contains the second name
“John”will be put at the beginning of the queue.

Stream group‐by merger is different from order‐by merger only in two aspects:

1. It will take out all the data with the same group item frommultiple data result sets at once.

2. It carried out the aggregation calculation according to the aggregation function type.

For the inconsistency between the grouping item and ordering item, it requires uploading all the data to
thememory to group and aggregate, since the relevant data value needed to acquire group information
is not continuous, and stream merger is not available. For example, acquire each examinee’s total
score through the following SQL and order them from the highest to the lowest:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

Then, stream merger is not able to use, for the data taken out from each result set is the same as the
original data of the order‐by merger diagram in the upper half part structure.

When SQL only contains the group‐by statement, according to different database implementations, its
sorting order may not be the same as the group order. The lack of an ordering statement indicates
the order is not important in this SQL. Therefore, through the optimization of SQL rewriting, Sharding‐

7.4. Sharding 413

Apache ShardingSphere document, v5.2.1

Sphere can automatically add the ordering item the same as the grouping item, converting it from the
memory merger that consumes memory to the streammerger.

Aggregation Merger

Whether it is stream group‐by merger or memory group‐by merger, they process the aggregation func‐
tion in the same way. In addition to grouped SQL, ungrouped SQL can also use aggregate functions.
Therefore, aggregation merger is an additional merging ability based on what has been introduced
above, i.e., the decorator mode. The aggregation function can be categorized into three types: compar‐
ison, sum and average.

The comparison aggregation function refers to MAX and MIN. They need to compare all the result set
data of each group and simply return the maximum or minimum value.

The sum aggregation function refers to SUM and COUNT. They need to sum up all the result set data of
each group.

The average aggregation function refers only to AVG. It must be calculated through SUM and COUNT
rewritten by SQL, which has been mentioned in the SQL rewriting section.

Pagination Merger

All themerger types above can be paginated. Pagination is the decorator added to other kinds of merg‐
ers. ShardingSphere strengthens its ability to paginate the data result set through decorator mode. The
pagination merger is responsible for filtering unnecessary data.

ShardingSphere’s pagination function can be misleading to users in that they may think it will take
a large amount of memory. In distributed scenarios, it can only guarantee the data correctness by
rewriting LIMIT 10000000, 10 to LIMIT 0, 10000010. Users can easily misunderstand that
ShardingSphere uploads a large amount ofmeaningless data to thememory and has the risk ofmemory
overflow. Actually, it can be known from the principle of stream merger that only memory group‐by
merger will upload all the data to the memory. Generally speaking, SQL used for OLAP grouping, is
often applied tomassive calculations or small result generation, and it won’t generate vast result data.
Except for memory group‐by merger, other scenarios all use stream merger to acquire data result set.
So ShardingSphere would skip unnecessary data through the next call method in the result set, rather
than storing it in the memory.

But it should be noted that pagination with LIMIT is not the best practice, because a large amount of
data still needs to be transmitted to ShardingSphere’s memory space for ordering. LIMIT cannot
query data by index, so paginating with ID is a better solution if ID continuity can be guaranteed. For
example:

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id;

Or query the next page through the ID of the last query result, for example:

SELECT * FROM t_order WHERE id > 10000000 LIMIT 10;

7.4. Sharding 414

Apache ShardingSphere document, v5.2.1

The overall structure of the merger engine is shown in the following diagram:

7.5 Transaction

7.5.1 Navigation

This chapter mainly introduces the principles of the distributed transactions:

• 2PC transaction with XA

• BASE transaction with Seata

7.5.2 XA Transaction

XAShardingSphereTransactionManager is XA transaction manager of Apache ShardingSphere.
Itsmain responsibility ismanage and adaptmultiple data sources, and sent corresponding transactions
to concrete XA transaction manager.

7.5. Transaction 415

Apache ShardingSphere document, v5.2.1

Transaction Begin

When receiving set autoCommit=0 from client, XAShardingSphereTransactionManager will
use XA transaction managers to start overall XA transactions, which is marked by XID.

Execute actual sharding SQL

After XAShardingSphereTransactionManager register the corresponding XAResource to the cur‐
rent XA transaction, transactionmanagerwill send XAResource.start command to databases. After
databases received XAResource.end command, all SQL operator will mark as XA transaction.

For example:

XAResource1.start ## execute in the enlist phase
statement.execute("sql1");
statement.execute("sql2");
XAResource1.end ## execute in the commit phase

sql1 and sql2 in example will be marked as XA transaction.

7.5. Transaction 416

Apache ShardingSphere document, v5.2.1

Commit or Rollback

After XAShardingSphereTransactionManager receives the commit command in the access, it will
delegate it to the actual XA manager. It will collect all the registered XAResource in the thread, before
sending XAResource.end to mark the boundary for the XA transaction. Then it will send prepare
command one by one to collect votes from XAResource. If all the XAResource feedback is OK, it will
send commit command to finally finish it; If there is any No XAResource feedback, it will send roll‐
back command to roll back. After sending the commit command, all XAResource exceptions will be
submitted again according to the recovery log to ensure the atomicity and high consistency.

For example:

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResource1.commit
XAResource2.commit

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResource1.rollback
XAResource2.rollback

7.5.3 Seata BASE transaction

When integrating Seata AT transaction, we need to integrate TM, RM and TC component into Shard‐
ingSphere transaction manager. Seata have proxied DataSource interface in order to RPC with TC.
Similarly, Apache ShardingSphere faced to DataSource interface to aggregate data sources too. After
Seata DataSource encapsulation, it is easy to put Seata AT transaction into Apache ShardingSphere
sharding ecosystem.

7.5. Transaction 417

Apache ShardingSphere document, v5.2.1

Init Seata Engine

When an application containing ShardingSphereTransactionBaseSeataAT startup, the user‐
configuredDataSourcewill bewrapped into seata DataSourceProxy throughseata.conf, then reg‐
istered into RM.

Transaction Begin

TM controls the boundaries of global transactions. TM obtains the global transaction ID by sending Be‐
gin instructions to TC. All branch transactions participate in the global transaction through this global
transaction ID. The context of the global transaction ID will be stored in the thread local variable.

Execute actual sharding SQL

Actual SQL in Seata global transaction will be intercepted to generate undo snapshots by RM and sends
participate instructions to TC to join global transaction. Since actual sharding SQLs executed in multi‐
threads, global transaction context should transfer from main thread to child thread, which is exactly
the same as context transfer between services.

7.5. Transaction 418

Apache ShardingSphere document, v5.2.1

Commit or Rollback

When submitting a seata transaction, TM sends TC the commit and rollback instructions of the global
transaction. TC coordinates all branch transactions for commit and rollback according to the global
transaction ID.

7.6 Data Migration

7.6.1 Explanation

The current data migration solution uses a completely new database cluster as the migration target.

This implementation has the following advantages:

1. No impact on the original data during migration.

2. No risk in case of migration failure.

3. Free from sharding policy limitations.

The implementation has the following disadvantages:

1. Redundant servers can exist for a certain period of time.

2. All data needs to be moved.

A single data migration mainly consists of the following phases:

1. Preparation.

2. Stock data migration.

3. The synchronization of incremental data.

4. Traffic switching .

7.6. Data Migration 419

Apache ShardingSphere document, v5.2.1

7.6.2 Execution Stage Explained

Preparation

In the preparation stage, the data migration module verifies data source connectivity and permissions,
counts stock data statistics, records the log and finally shards the tasks according to data volume and
parallelism set by the users.

Stock datamigration

Execute the stock data migration tasks that have been sharded during preparation stage. The stock
migration stage uses JDBC queries to read data directly from the source and write into the target based
on the sharding rules and other configurations.

The Synchronization of incremental data

Since the duration of stock data migration depends on factors such as data volume and parallelism,
it is necessary to synchronize the data added to the business operations during this period. Different
databases differ in technical details, but in general they are all based on replication protocols or WAL
logs to achieve the capture of changed data.

• MySQL: subscribe and parse binlog

• PostgreSQL: uses official logical replication test_decoding.

These incremental data captured are also written into the new data nodes by the data migration mod‐
ules. When synchronization of incremental data is basically completed (the incremental data flow is
not interrupted since the business system is still in function), you can thenmove to the traffic switching
stage.

Traffic Switching

During this stage, there may be a read‐only period of time, where data in the source data nodes is al‐
lowed to be in static mode for a short period of time to ensure that the incremental synchronization
can be fully completed. Users can set this by shifting the database to read‐only status or by controlling
the traffic flow generated from the source.

The length of this read‐only window depends on whether users need to perform consistency checks on
the data and the exact amount of data in this scenario. Once confirmed, the datamigration is complete.

Users can then switch the read traffic or write traffic to Apache ShardingSphere.

7.6. Data Migration 420

https://www.postgresql.org/docs/9.4/test-decoding.html

Apache ShardingSphere document, v5.2.1

7.6.3 References

Configurations of data migration

7.7 Encryption

Apache ShardingSphere parses the SQL entered by users and rewrites the SQL according to the en‐
cryption rules provided by users, to encrypt the source data and store the source data (optional) and
ciphertext data in the underlying database.

When a user queries data, it only retrieves ciphertext data from the database, decrypts it, and finally
returns the decrypted source data to the user. Apache ShardingSphere achieves a transparent and au‐
tomatic data encryption process. Users can use encrypted data as normal data without paying attention
to the implementation details of data encryption.

7.7.1 Overall Architecture

The encryptedmodule intercepts the SQL initiated by the user and parses and understands the SQL be‐
havior through the SQL syntactic parser. Then it finds out the fields to be encrypted and the encryption
and decryption algorithm according to the encryption rules introduced by the user and interacts with
the underlying database.

Apache ShardingSphere will encrypt the plaintext requested by users and store it in the underlying

7.7. Encryption 421

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/migration/

Apache ShardingSphere document, v5.2.1

database. When the user queries, the ciphertext is extracted from the database, decrypted, and re‐
turned to the terminal user. By shielding the data encryption process, users do not need to operate the
SQL parsing process, data encryption, and data decryption.

7.7.2 Encryption Rules

Before explaining the whole process, we need to understand the encryption rules and configuration.
Encryption configuration is mainly divided into four parts: data source configuration, encryptor con‐
figuration, encryption table configuration, and query attribute configuration, as shown in the figure
below:

Data source configuration: the configuration of the data source.

Encryptor configuration: refers to the encryption algorithm used for encryption and decryption. Cur‐
rently, ShardingSphere has five built‐in encryption and decryption algorithms: AES, MD5, RC4, SM3,
and SM4. Users can also implement a set of encryption and decryption algorithms by implementing
the interfaces provided by ShardingSphere.

Encryption table configuration: it is used to tell ShardingSphere which column in the data table is used
to store ciphertext data (cipherColumn), which column is used to store plaintext data (plainColumn),
and which column the user would like to use for SQL writing (logicColumn).

What does it mean by“which column the user would like to use for SQL writing (logicCol‐
umn)”? We have to know first why the encrypted module exists. The goal of the encrypted
module is to shield the underlying data encryption process, which means we don’t want
users to know how data is encrypted and decrypted, and how to store plaintext data into

7.7. Encryption 422

Apache ShardingSphere document, v5.2.1

plainColumn and ciphertext data into cipherColumn. In other words, we don’t want
users to know there is a plainColumn and cipherColumn or how they are used. There‐
fore, we need to provide the user with a conceptual column that can be separated from the
real column in the underlying database. It may or may not be a real column in the database
table so that users can change the column names of plainColumn and cipherColumn of
the underlying database at will. Or we can delete plainColumn and never store plaintext,
only ciphertext. The only thing we have to ensure is that the user’s SQL is written towards
the logical column, and the correct mapping relation between logicColumn, plainCol-
umn, and cipherColumn can be seen in the encryption rules.

Query attribute configuration: if both plaintext and ciphertext data are stored in the underlying
database table, this attribute can be used to determine whether to query the plaintext data in the
database table and return it directly, or query the ciphertext data and return it after decryption through
Apache ShardingSphere. This attribute can be configured at the table level and the entire rule level. The
table‐level has the highest priority.

7.7.3 Encryption Process

For example, if there is a table named t_user in the database, and they’re two fields in the table:
pwd_plain for storing plaintext data and pwd_cipher for storing ciphertext data, and logicColumn
is defined as pwd, then users should write SQL for logicColumn, that is INSERT INTO t_user SET
pwd = '123'. Apache ShardingSphere receives the SQL and finds that the pwd is the logicColumn
based on the encryption configuration provided by the user. Therefore, it encrypts the logical column
and its corresponding plaintext data.

Apache ShardingSphere transforms the column names and data encryption mapping between the log‐
ical columns facing users and the plain and cipher columns facing the underlying database. As shown
in the figure below:

7.7. Encryption 423

Apache ShardingSphere document, v5.2.1

The user’s SQL is separated from the underlying data table structure according to the encryption rules
provided by the user so that the user’s SQLwriting does not depend on the real database table structure.

The connection, mapping, and transformation between the user and the underlying database are han‐
dled by Apache ShardingSphere.

The picture below shows the processing flow and conversion logic when the encryptionmodule is used
to add, delete, change and check, as shown in the figure below.

7.7. Encryption 424

Apache ShardingSphere document, v5.2.1

Detailed Solution

After understanding Apache ShardingSphere’s encryption process, you can combine the encryption
configuration and encryption process according to your scenario. The entire design & development
was conceived to address the pain points encountered in business scenarios. So, how to use Apache
ShardingSphere to meet the business requirements mentioned before?

7.7.4 New Business

Business scenario analysis: the newly launched business is relatively simple because it starts from
scratch and there’s no need to clean up historical data.

Solution description: after selecting the appropriate encryption algorithm, such as AES, you only need
to configure the logical column (write SQL for users) and the ciphertext column (the data table stores
the ciphertext data). The logical columns and ciphertext columns can also be different. The following
configurations are recommended (in YAML format):

-!ENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:

7.7. Encryption 425

Apache ShardingSphere document, v5.2.1

t_user:
columns:
pwd:
cipherColumn: pwd_cipher
encryptorName: aes_encryptor
assistedQueryColumn: pwd_assisted_query
assistedQueryEncryptorName: pwd_assisted_query_cipher
queryWithCipherColumn: true

With the above configuration, Apache ShardingSphere only needs to convert logicColumn, cipher-
Column, and assistedQueryColumn.

The underlying data table does not store plaintext, and only ciphertext is stored, which is also the re‐
quirement of the security audit. If you want to store both plaintext and ciphertext in the database, add
the plainColumn configuration. The overall processing flow is shown in the figure below:

7.7.5 Online Business Transformation

Business scenario analysis: as the business is already running, the database will already have stored a
large amount of plaintext historical data. The current challenges are how to encrypt and clean up the
historical data, how to encrypt and process the incremental data, and how to seamlessly and transpar‐
ently migrate business between the old and new data systems.

Solution Description: before coming up with a solution, let’s brainstorm.

7.7. Encryption 426

Apache ShardingSphere document, v5.2.1

First, since it is an old business that needs to be encrypted and transformed, it must have stored very
important and sensitive information,which is valuable and related to critical businesses. Therefore, it is
impossible to suspend business immediately, prohibit writing newdata, encrypt and clean all historical
data with an encryption algorithm. And then deploy and launch the reconstructed code to encrypt and
decrypt the stock and incremental data online. Such a complex solution will definitely not work.

Another relatively safe solution is to build a set of pre‐released environments exactly the same as the
production environment, and then encrypt the stock original data of the production environment and
store it in the pre‐released environment through migration and data cleansing tools.

The new data is encrypted and stored in the database of the pre‐released environment through tools
such as MySQL primary/secondary replication and self‐developed ones by the business side. The re‐
configurable code that can be encrypted and decrypted is deployed to the pre‐released environment.
This way, the production environment takes plaintext as the core used for queries and modifications.

The pre‐released environment is a ciphertext‐based environment for encrypted and decrypted queries
and modifications. After comparison, the production flow can be transferred to the pre‐released envi‐
ronment by nighttime operation. This method is relatively safe and reliable, but time consuming,labor
and capital intensive, mainly including building a pre‐released environment, modifying production
code, developing auxiliary tools, etc.

The most popular solutions for developers are to reduce the capital cost, not change the business code,
and be able tomigrate the system safely and smoothly. Thus, the encryption functionmodule of Shard‐
ingSphere was created. It can be divided into three steps:

1. Before systemmigration

Assuming that the system needs to encrypt the pwd field of t_user, the business side uses Apache
ShardingSphere to replace the standardized JDBC interface, which basically requires no additional
modification (we also provide Spring Boot Starter, Spring Namespace, YAML and other access methods
tomeet different business requirements). In addition, we would like to demonstrate a set of encryption
configuration rules, as follows:

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd:

plainColumn: pwd
cipherColumn: pwd_cipher
encryptorName: aes_encryptor
assistedQueryColumn: pwd_assisted_query
assistedQueryEncryptorName: pwd_assisted_query_cipher
queryWithCipherColumn: false

7.7. Encryption 427

Apache ShardingSphere document, v5.2.1

According to the above encryption rules, we need to add a field called pwd_cipher, namely cipher-
Column, in the t_user table, which is used to store ciphertext data.

At the same time, we setplainColumn topwd, which is used to store plaintext data, andlogicColumn
is also set to pwd.

Because the previous SQL was written using pwd, the SQL was written for logical columns, and the
business code does not need to be changed. Through Apache ShardingSphere, for the incremental
data, the plaintext will be written to the pwd column and be encrypted and stored in the pwd_cipher
column.

At this time, because queryWithCipherColumn is set to false, for business applications, the plain‐
text column of pwd is still used for query and storage, but the ciphertext data of the new data is addi‐
tionally stored on the underlying database table pwd_cipher. The processing flow is shown below:

When the new data is inserted, it is encrypted as ciphertext data by Apache ShardingSphere and stored
in the cipherColumn. Now you need to deal with the historical plaintext stock data. Apache Shard‐
ingSphere currently does not provide a migration and data cleansing tool, so you need to encrypt the
plaintext data in the pwd and store it in the pwd_cipher.

2. During systemmigration

The new ciphertext data is stored in the cipherColumn and the new plaintext one is stored in the
plainColumn by Apache ShardingSphere. After the historical data is encrypted and cleaned by the
business side, its ciphertext is also stored in the cipherColumn. In other words, the current database
stores both plaintext and ciphertext.

Owing to the configuration item queryWithCipherColumn = false, the ciphertext is never used.

7.7. Encryption 428

Apache ShardingSphere document, v5.2.1

Nowwe need to set queryWithCipherColumn in the encryption configuration to true in order for the
system to query ciphertext data.

After restarting the system,we found that all systembusinesses arenormal, butApache ShardingSphere
has started to take out and decrypt the cipherColumn data from the database and returned those data
to the user. In terms of users’requirements of addition, deletion andmodification, the original data is
still stored in the plainColumn, and the encrypted ciphertext data is stored in the cipherColumn.

Although the business system has taken out the data in the cipherColumn and returned it after de‐
cryption, it will still save a copy of the original data to the plainColumn. Why? The answer is: to
enable system rollback.

Because as long as the ciphertext and plaintext always exist at the same time, we can freely switch the
business query to cipherColumn or plainColumn through the configuration of the switch item.

In other words, if the system is switched to the ciphertext column for query, the system reports an
error and needs to be rolled back. Then we only need to set queryWithCipherColumn = false,
and Apache ShardingSphere will restore and start using plainColumn to query again. The processing
flow is shown in the following figure:

3. After systemmigration

As required by security audit teams, it is generally impossible for the business system to permanently
synchronize the plaintext columnand ciphertext columnof the database, soweneed to delete the plain‐
text column data after the system is stable.

That is, we need to delete plainColumn (i.e.pwd) after system migration. The problem is that now the
business code is written for pwd SQL, and we delete the pwd that stores plaintext in the underlying data

7.7. Encryption 429

Apache ShardingSphere document, v5.2.1

table and use the pwd_cipher to decrypt the original data.

Does thatmean that the business side needs to change all SQL, to not use the pwd column to be deleted?
No. Remember the core concept of Apache ShardingSphere?

That is exactly the core concept of Apache ShardingSphere’s encryptionmodule. According
to the encryption rules provided by the user, the user SQL is separated from the underlying
database table structure, so that the user’s SQL writing no longer depends on the actual
database table structure. The connection, mapping, and conversion between the user and
the underlying database are handled by ShardingSphere.

The existence of the logicColumnmeans that users write SQL for this virtual column. Apache Shard‐
ingSphere can map this logical column and the ciphertext column in the underlying data table. So the
encryption configuration after the migration is:

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd: # pwd and pwd_cipher transformation mapping

cipherColumn: pwd_cipher
encryptorName: aes_encryptor
assistedQueryColumn: pwd_assisted_query
assistedQueryEncryptorName: pwd_assisted_query_cipher
queryWithCipherColumn: true

The processing flow is as follows:

7.7. Encryption 430

Apache ShardingSphere document, v5.2.1

4. Systemmigration completed

As required by security audit teams, the business systemneeds to periodically trigger keymodifications
or through some emergency events. We need to performmigration data cleansing again, which means
using the old key to decrypt and then use the new key to encrypt.

The problem persists. The plaintext column data has been deleted, and the amount of data in the
database table is tens of millions. Additionally, the migration and cleansing take a certain amount
of time, during which the cipher column changes.

Under these circumstances, the system still needs to provide services correctly. What can we do? The
answer lies in the auxiliary query column. Because auxiliary query columns generally use algorithms
such as irreversible MD5 and SM3. Queries based on auxiliary columns are performed correctly by the
system even during the migration and data cleansing process.

So far, the encryption rectification solution for the released business has been completely demon‐
strated. We provide Java, YAML, Spring Boot Starter, and Spring namespace for users to choose and
access to meet different business requirements. This solution has been continuously verified by enter‐
prise users such as JD Technology.

7.7. Encryption 431

Apache ShardingSphere document, v5.2.1

The advantages of Middleware encryption service

1. Automatic and transparent data encryption process. Encryption implementation details are no
longer a concern for users.

2. It provides a variety of built‐in and third‐party (AKS) encryption algorithms, which are available
through simple configurations.

3. It provides an encryption algorithm API interface. Users can implement the interface to use a
custom encryption algorithm for data encryption.

4. It can switch among different encryption algorithms.

5. For businesses already launched, it is possible to store plaintext data and ciphertext data syn‐
chronously. And you can decidewhether to use plaintext or ciphertext columns for query through
configuration. Without changing the business query SQL, the released system can safely and
transparently migrate data before and after encryption.

Solution

Apache ShardingSphere provides an encryption algorithm for data encryption, namely EncryptAl-
gorithm.

On the one hand, Apache ShardingSphere provides users with built‐in implementation classes for en‐
cryption and decryption, which are available through configurations by users.

On the other hand, in order to be applicable to different scenarios, we also opened the encryption and
decryption interfaces, and users can provide specific implementation classes according to these two
types of interfaces.

After simple configuration, Apache ShardingSphere can call user‐defined encryption and decryption
schemes for data encryption.

7.7.6 EncryptAlgorithm

The solution provides two methods, encrypt() and decrypt(), to encrypt or decrypt data. When
users perform INSERT, DELETE and UPDATE operations, ShardingSphere will parse, rewrite and route
SQL according to the configuration.

It will also use encrypt() to encrypt data and store them in the database. When using SELECT, they
will decrypt sensitive data from the database with decrypt() and finally return the original data to
users.

Currently, Apache ShardingSphere provides five types of implementations for this kind of encryption
solution, including MD5 (irreversible), AES (reversible), RC4 (reversible), SM3 (irreversible) and SM4
(reversible), which can be used after configuration.

7.7. Encryption 432

Apache ShardingSphere document, v5.2.1

7.8 Shadow

7.8.1 How it works

Apache ShardingSphere determines the incoming SQL via shadow by parsing the SQL and routing it to
the production or shadow database based on the shadow rules set by the user in the configuration file.

In the example of an INSERT statement, when writing data, Apache ShardingSphere parses the SQL
and then constructs a routing chain based on the rules in the configuration file. In the current version,
the shadow feature is at the last execution unit in the routing chain, i.e. if other rules exist that require
routing, such as sharding, Apache ShardingSphere will first route to a particular database according
to the sharding rules, and then run the shadow routing determination process to determine that the
execution SQL meets the configuration set by shadow rules. Then data is routed to the corresponding
shadow database, while the production data remains unchanged.

DML sentence

Two algorithms are supported. Shadow determination first determines whether the execution SQL‐
related table intersects with the configured shadow table. If the result is positive, the shadow algorithm
within the part of intersection associated with the shadow table will be determined sequentially. If any
of the determination is successful, the SQL statement is routed to the shadow library. If there is no
intersection or the shadow algorithm determination is unsuccessful, the SQL statement is routed to the
production database.

7.8. Shadow 433

Apache ShardingSphere document, v5.2.1

DDL sentence

Only supports shadow algorithm with comments attached. In stress testing scenarios, DDL statements
are generally not required for testing, and are usedmainlywhen initializing ormodifying shadow tables
in the shadow database. The shadow determination will first determine whether the execution SQL
contains comments or not. If the result is a yes, the HINT shadow algorithm configured in the shadow
rules determines them in order. The SQL statement is routed to the shadow database if any of the
determinations are successful. If the execution SQL does not contain comments or the HINT shadow
algorithm determination is unsuccessful, the SQL statements are routed to the production database.

7.8.2 References

JAVA API: shadow database configuration

YAMLconfiguration: shadow database

Spring Boot Starter: shadow database configuration

Spring namespace: shadow database configuration

7.9 Oberservability

7.9.1 How it works

ShardingSphere‐Agent module provides an observable framework for ShardingSphere, which is imple‐
mented based on Java Agent.

Metrics, tracing and logging functions are integrated into the agent through plugins, as shown in the
following figure:

7.9. Oberservability 434

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/shadow/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/

Apache ShardingSphere document, v5.2.1

• TheMetrics plugin is used to collect and display statistical indicators for the entire cluster. Apache
ShardingSphere supports Prometheus by default.

• The tracing plugin is used to obtain the link trace information of SQL parsing and SQL execution.
Apache ShardingSphere provides support for Jaeger, OpenTelemetry, OpenTracing(SkyWalking)
and Zipkin by default. It also supports users developing customized tracing components through
plugin.

• The default logging plugin shows how to record additional logs in ShardingSphere. In practical
applications, users need to explore according to their own needs.

7.10 DistSQL

This chapter will introduce the detailed syntax of DistSQL.

7.10.1 Syntax

This chapter describes the syntax of DistSQL in detail, and introduces use of DistSQL with practical
examples.

7.10. DistSQL 435

https://shardingsphere.apache.org/document/current/en/concepts/distsql/

Apache ShardingSphere document, v5.2.1

RDL Syntax

RDL (Resource & Rule Definition Language) responsible for definition of resources/rules.

Resource Definition

This chapter describes the syntax of resource definition.

ADD RESOURCE

Description

The ADD RESOURCE syntax is used to add resources for the currently selected database.

Syntax

AddResource ::=
'ADD' 'RESOURCE' resourceDefinition (',' resourceDefinition)*

resourceDefinition ::=
resourceName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName |

'URL' '=' url) ',' 'USER' '=' user (',' 'PASSWORD' '=' password)? (','
proerties)?')'

resourceName ::=
identifier

hostname ::=
string

port ::=
int

dbName ::=
string

url ::=
string

user ::=
string

password ::=
string

proerties ::=

7.10. DistSQL 436

Apache ShardingSphere document, v5.2.1

PROPERTIES '(' property (',' property)* ')'

property ::=
key '=' value

key ::=
string

value ::=
string

Supplement

• Before adding resources, please confirm that a database has been created in Proxy, and execute
the use command to successfully select a database;

• Confirm that the added resource can be connected normally, otherwise it will not be added suc‐
cessfully;

• resourceName is case‐sensitive;

• resourceName needs to be unique within the current database;

• resourceName name only allows letters, numbers and _, and must start with a letter;

• poolProperty is used to customize connection pool parameters, keymust be the same as the
connection pool parameter name, value supports int and String types;

• When password contains special characters, it is recommended to use the string form; For ex‐
ample, the string form of password@123 is "password@123".

Example

• Add resource using standard mode

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db_0,
USER=root,
PASSWORD=root

);

• Add resource and set connection pool parameters using standard mode

ADD RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=db_1,

7.10. DistSQL 437

Apache ShardingSphere document, v5.2.1

USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10)

);

• Add resource and set connection pool parameters using URL patterns

ADD RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

Reserved word

ADD, RESOURCE, HOST, PORT, DB, USER, PASSWORD, PROPERTIES, URL

Related links

• Reserved word

ALTER RESOURCE

Description

The ALTER RESOURCE syntax is used to alter resources for the currently selected database.

Syntax

AlterResource ::=
'ALTER' 'RESOURCE' resourceDefinition (',' resourceDefinition)*

resourceDefinition ::=
resourceName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName |

'URL' '=' url) ',' 'USER' '=' user (',' 'PASSWORD' '=' password)? (','
proerties)?')'

resourceName ::=
identifier

hostname ::=
string

7.10. DistSQL 438

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

port ::=
int

dbName ::=
string

url ::=
string

user ::=
string

password ::=
string

proerties ::=
PROPERTIES '(' property (',' property)* ')'

property ::=
key '=' value

key ::=
string

value ::=
string

Supplement

• Before altering the resources, please confirm that a database exists in Proxy, and execute the use
command to successfully select a database;

• ALTER RESOURCE is not allowed to change the real data source associated with this resource;

• ALTER RESOURCE will switch the connection pool. This operation may affect the ongoing busi‐
ness, please use it with caution;

• resourceName is case‐sensitive;

• resourceName needs to be unique within the current database;

• resourceName name only allows letters, numbers and _, and must start with a letter;

• poolProperty is used to customize connection pool parameters, keymust be the same as the
connection pool parameter name, value supports int and String types;

• When password contains special characters, it is recommended to use the string form; for ex‐
ample, the string form of password@123 is "password@123".

7.10. DistSQL 439

Apache ShardingSphere document, v5.2.1

Example

• Alter resource using standard mode

ALTER RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db_0,
USER=root,
PASSWORD=root

);

• Alter resource and set connection pool parameters using standard mode

ALTER RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=db_1,
USER=root,
PASSWORD=root
PROPERTIES("maximumPoolSize"=10)

);

• Alter resource and set connection pool parameters using URL patterns

ALTER RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

Reserved word

ALTER, RESOURCE, HOST, PORT, DB, USER, PASSWORD, PROPERTIES, URL

7.10. DistSQL 440

Apache ShardingSphere document, v5.2.1

Related links

• Reserved word

DROP RESOURCE

Description

The DROP RESOURCE syntax is used to drop resources from the current database

Syntax

DropResource ::=
'DROP' 'RESOURCE' ('IF' 'EXISTS')? resourceName (',' resourceName)* (

'IGNORE' 'SINGLE' 'TABLES')?

resourceName ::=
identifier

Supplement

• DROP RESOURCE will only drop resources in Proxy, the real data source corresponding to the
resource will not be dropped;

• Unable to drop resources already used by rules. Resources are still in used. will be
prompted when removing resources used by rules;

• The resource need to be removed only contains SINGLE TABLE RULE, and when the user con‐
firms that this restriction can be ignored, the IGNORE SINGLE TABLES keyword can be added
to remove the resource.

Example

• Drop a resource

DROP RESOURCE ds_0;

• Drop multiple resources

DROP RESOURCE ds_1, ds_2;

• Ignore single table rule remove resource

DROP RESOURCE ds_1 IGNORE SINGLE TABLES;

7.10. DistSQL 441

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

• Drop the resource if it exists

DROP RESOURCE IF EXISTS ds_2;

Reserved word

DROP, RESOURCE, IF, EXISTS, IGNORE, SINGLE, TABLES

Related links

• Reserved word

Rule Definition

This chapter describes the syntax of rule definition.

Database Discovery

This chapter describes the syntax of database discovery.

CREATE DB_DISCOVERY RULE

Description

The CREATE DB_DISCOVERY RULE syntax is used to create a database discovery rule.

Syntax

CreateDatabaseDiscoveryRule ::=
'CREATE' 'DB_DISCOVERY' 'RULE' (databaseDiscoveryDefinition |

databaseDiscoveryConstruction) (',' (databaseDiscoveryDefinition |
databaseDiscoveryConstruction))*

databaseDiscoveryDefinition ::=
ruleName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ',' 'TYPE'

'(' 'NAME' '=' typeName (',' 'PROPERTIES' 'key' '=' 'value' (',' 'key' '=' 'value
')*)? ',' 'HEARTBEAT' '(' 'key' '=' 'value' (',' 'key' '=' 'value')* ')' ')'

databaseDiscoveryConstruction ::=
ruleName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ',' 'TYPE'

'=' discoveryTypeName ',' 'HEARTBEAT' '=' discoveryHeartbeatName ')'

ruleName ::=

7.10. DistSQL 442

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

identifier

resourceName ::=
identifier

typeName ::=
identifier

discoveryHeartbeatName ::=
identifier

Supplement

• discoveryType specifies the database discovery service type, ShardingSphere has built‐in
support for MySQL.MGR;

• Duplicate ruleName will not be created.

Example

When creating a discoveryRule, create both discoveryType and discoveryHeartbeat

CREATE
DB_DISCOVERY RULE db_discovery_group_0 (

RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))

);

Use the existing discoveryType and discoveryHeartbeat to create a discoveryRule

CREATE
DB_DISCOVERY RULE db_discovery_group_1 (

RESOURCES(ds_0, ds_1, ds_2),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat

);

7.10. DistSQL 443

Apache ShardingSphere document, v5.2.1

Reserved word

CREATE, DB_DISCOVERY, RULE, RESOURCES, TYPE, NAME, PROPERTIES, HEARTBEAT

Related links

• Reserved word

CREATE DB_DISCOVERY TYPE

Description

The CREATE DB_DISCOVERY TYPE syntax is used to create a database discovery type rule.

Syntax

CreateDatabaseDiscoveryType ::=
'CREATE' 'DB_DISCOVERY' 'TYPE' databaseDiscoveryTypeDefinition (','

databaseDiscoveryTypeDefinition)*

databaseDiscoveryTypeDefinition ::=
discoveryTypeName '(' 'TYPE' '(' 'NAME' '=' typeName (',' 'PROPERTIES' '('

'key' '=' 'value' (',' 'key' '=' 'value')* ')')? ')' ')'

discoveryTypeName ::=
identifier

typeName ::=
string

Supplement

• discoveryType specifies the database discovery service type, ShardingSphere has built‐in
support for MySQL.MGR.

Example

Create discoveryType

CREATE DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec'))

);

7.10. DistSQL 444

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Reserved word

CREATE, DB_DISCOVERY, TYPE, NAME, PROPERTIES

Related links

• Reserved word

CREATE DB_DISCOVERY HEARTBEAT

Description

The CREATE DB_DISCOVERY HEARTBEAT syntax is used to create a database discovery heartbeat rule.

Syntax

CreateDatabaseDiscoveryHeartbeat ::=
'CREATE' 'DB_DISCOVERY' 'HEARTBEAT' databaseDiscoveryHeartbaetDefinition (','

databaseDiscoveryHeartbaetDefinition)*

databaseDiscoveryHeartbaetDefinition ::=
discoveryHeartbeatName '(' 'PROPERTIES' '(' 'key' '=' 'value' (',' 'key' '='

'value')* ')' ')'

discoveryHeartbeatName ::=
identifier

Supplement

• Names with - need to use " " when changing.

Example

Create HEARTBEAT

CREATE DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/5 * * * * ?')

);

7.10. DistSQL 445

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Reserved word

CREATE, DB_DISCOVERY, HEARTBEAT

Related links

• Reserved word

Encrypt

This chapter describes the syntax of encrypt.

CREATE ENCRYPT RULE

Description

The CREATE READWRITE_SPLITTING RULE syntax is used to create a readwrite splitting rule.

Syntax

CreateEncryptRule ::=
'CREATE' 'ENCRYPT' 'RULE' encryptDefinition (',' encryptDefinition)*

encryptDefinition ::=
tableName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)* ')' ','

'QUERY_WITH_CIPHER_COLUMN' '=' ('TRUE' | 'FALSE') ')'

columnDefinition ::=
'NAME' '=' columnName ',' ('PLAIN' '=' plainColumnName)? 'CIPHER' '='

cipherColumnName ',' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (',' 'PROPERTIES'
'(' 'key' '=' 'value' (',' 'key' '=' 'value')* ')')? ')'

tableName ::=
identifier

columnName ::=
identifier

plainColumnName ::=
identifier

cipherColumnName ::=
identifier

7.10. DistSQL 446

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

encryptAlgorithmType ::=
string

Supplement

• PLAIN specifies the plain column, CIPHER specifies the cipher column

• encryptAlgorithmType specifies the encryption algorithm type, please refer to Encryption
Algorithm

• Duplicate tableName will not be created

• queryWithCipherColumn support uppercase or lowercase true or false

Example

Create a encrypt rule

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER =order_cipher,TYPE(NAME='MD5'))
),QUERY_WITH_CIPHER_COLUMN=true),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=FALSE);

Reserved word

CREATE, ENCRYPT, RULE, COLUMNS, NAME, CIPHER, PLAIN, QUERY_WITH_CIPHER_COLUMN, TYPE,
TRUE, FALSE

Related links

• Reserved word

7.10. DistSQL 447

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Readwrite-Splitting

This chapter describes the syntax of readwrite splitting.

CREATE READWRITE_SPLITTING RULE

Description

The CREATE READWRITE_SPLITTING RULE syntax is used to create a readwrite splitting rule.

Syntax

CreateReadwriteSplittingRule ::=
'CREATE' 'READWRITE_SPLITTING' 'RULE' readwriteSplittingDefinition (','

readwriteSplittingDefinition)*

readwriteSplittingDefinition ::=
ruleName '(' (staticReadwriteSplittingDefinition |

dynamicReadwriteSplittingDefinition) (',' loadBalancerDefinition)? ')'

staticReadwriteSplittingDefinition ::=
'WRITE_RESOURCE' '=' writeResourceName ',' 'READ_RESOURCES' '(' ruleName (','

ruleName)* ')'

dynamicReadwriteSplittingDefinition ::=
'AUTO_AWARE_RESOURCE' '=' resourceName (',' 'WRITE_DATA_SOURCE_QUERY_ENABLED'

'=' ('TRUE' | 'FALSE'))?

loadBalancerDefinition ::=
'TYPE' '(' 'NAME' '=' loadBalancerType (',' 'PROPERTIES' '(' 'key' '=' 'value'

(',' 'key' '=' 'value')* ')')? ')'

ruleName ::=
identifier

writeResourceName ::=
identifier

resourceName ::=
identifier

loadBalancerType ::=
string

7.10. DistSQL 448

Apache ShardingSphere document, v5.2.1

Supplement

• Support the creation of static readwrite‐splitting rules and dynamic readwrite‐splitting rules;

• Dynamic readwrite‐splitting rules rely on database discovery rules;

• loadBalancerType specifies the load balancing algorithm type, please refer to Load Balance
Algorithm;

• Duplicate ruleName will not be created.

Example

Create a statics readwrite splitting rule

CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1),
TYPE(NAME="random")

);

Create a dynamic readwrite splitting rule

CREATE READWRITE_SPLITTING RULE ms_group_1 (
AUTO_AWARE_RESOURCE=group_0,
WRITE_DATA_SOURCE_QUERY_ENABLED=false,
TYPE(NAME="random",PROPERTIES("read_weight"="2:1"))

);

Reserved word

CREATE, READWRITE_SPLITTING, RULE, WRITE_RESOURCE, READ_RESOURCES,
AUTO_AWARE_RESOURCE , WRITE_DATA_SOURCE_QUERY_ENABLED, TYPE, NAME, PROPERTIES,
TRUE, FALSE

Related links

• Reserved word

7.10. DistSQL 449

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Shadow

This chapter describes the syntax of shadow.

CREATE SHADOWRULE

Description

The CREATE SHADOW RULE syntax is used to create a shadow rule.

Syntax

CreateShadowRule ::=
'CREATE' 'SHADOW' 'RULE' shadowDefinition (',' shadowDefinition)*

shadowDefinition ::=
ruleName '(' resourceMapping shadowTableRule (',' shadowTableRule)* ')'

resourceMapping ::=
'SOURCE' '=' resourceName ',' 'SHADOW' '=' resourceName

shadowTableRule ::=
tableName '(' shadowAlgorithm (',' shadowAlgorithm)* ')'

shadowAlgorithm ::=
(algorithmName ',')? 'TYPE' '(' 'NAME' '=' shadowAlgorithmType ','

'PROPERTIES' '(' 'key' '=' 'value' (',' 'key' '=' 'value') ')'

ruleName ::=
identifier

resourceName ::=
identifier

tableName ::=
identifier

algorithmName ::=
identifier

shadowAlgorithmType ::=
string

7.10. DistSQL 450

Apache ShardingSphere document, v5.2.1

Supplement

• Duplicate ruleName cannot be created;

• resourceMapping specifies the mapping relationship between the source database and the
shadow library. You need to use the resource managed by RDL, please refer to resource;

• shadowAlgorithm can act on multiple shadowTableRule at the same time;

• If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType;

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SIMPLE_HINT.

Example

Create a shadow rule

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"=

"true", "foo"="bar"))),(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert",
"column"="user_id", "regex"='[1]')))),

t_order_item((TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=
"user_id", "value"='1'))))
);

Reserved word

CREATE, SHADOW, RULE, SOURCE, SHADOW, TYPE, NAME, PROPERTIES

Related links

• Reserved word

CREATE SHADOW ALGORITHM

Description

The CREATE SHADOW ALGORITHM syntax is used to create a shadow algorithm.

7.10. DistSQL 451

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/rdl/resource-definition/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Syntax

CreateShadowAlgorithm ::=
'CREATE' 'SHADOW' 'ALGORITHM' shadowAlgorithm (',' shadowAlgorithm)*

shadowAlgorithm ::=
'(' (algorithmName ',')? 'TYPE' '(' 'NAME' '=' shadowAlgorithmType ','

'PROPERTIES' '(' ('key' '=' 'value' (',' 'key' '=' 'value')*) ')' ')'

algorithmName ::=
identifier

shadowAlgorithmType ::=
string

Supplement

• shadowAlgorithm can act on multiple shadowTableRule at the same time;

• If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType;

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SIMPLE_HINT.

Example

Create a shadow algorithm

CREATE SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true", "foo

"="bar"))),
(user_id_match_algorithm, TYPE(NAME="REGEX_MATCH",PROPERTIES("operation"="insert

", "column"="user_id", "regex"='[1]'))
);

Reserved word

CREATE, SHADOW, ALGORITHM, TYPE, NAME, PROPERTIES

7.10. DistSQL 452

Apache ShardingSphere document, v5.2.1

Related links

• Reserved word

CREATE DEFAULT SHADOW ALGORITHM

Description

The CREATE DEFAULT SHADOW ALGORITHM syntax is used to create a default shadow algorithm.

Syntax

CreateDefaultShadowAlgorithm ::=
'CREATE' 'DEFAULT' 'SHADOW' 'ALGORITHM' 'NAME' '=' algorithmName

algorithmName ::=
identifier

Example

Create a shadow algorithm

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

Reserved word

CREATE, DEFAULT, SHADOW, ALGORITHM, NAME

Related links

• Reserved word

Sharding

This chapter describes the syntax of sharding.

7.10. DistSQL 453

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

CREATE SHARDING TABLE RULE

Description

The CREATE SHARDING TABLE RULE syntax is used to add sharding table rule for the currently
selected database

Syntax

CreateShardingTableRule ::=
'CREATE' 'SHARDING' 'TABLE' 'RULE' (tableDefinition | autoTableDefinition) (',

' (tableDefinition | autoTableDefinition))*

tableDefinition ::=
tableName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_

STRATEGY' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '('
strategyDefinition ')')? (',' 'KEY_GENERATE_STRATEGY' '('
keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

autoTableDefinition ::=
tableName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ','

'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_
STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

strategyDefinition ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='

columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
'KEY_GENERATE_STRATEGY' '(' 'COLUMN' '=' columnName ',' ('KEY_GENERATOR' '='

algorihtmName | algorithmDefinition) ')'

algorithmDefinition ::=
('SHARDING_ALGORITHM' '=' algorithmName | 'TYPE' '(' 'NAME' '=' algorithmType (

',' 'PROPERTIES' '(' propertyDefinition ')')?')')

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

tableName ::=
identifier

resourceName ::=
identifier

7.10. DistSQL 454

Apache ShardingSphere document, v5.2.1

columnName ::=
identifier

auditorName ::=
identifier

algorithmName ::=
identifier

algorithmType ::=
string

Supplement

• tableDefinition is defined for standard sharding table rule; autoTableDefinition is de‐
fined for auto sharding table rule. For standard sharding rules and auto sharding rule, refer to
Data Sharding;

• use standard sharding table rule:

– DATANODES can only use resources that have been added to the current database, and can
only use INLINE expressions to specify required resources;

– DATABASE_STRATEGY, TABLE_STRATEGY are the database sharding strategy and the table
sharding strategy, which are optional, and the default strategy is used when not configured;

– The attribute TYPE in strategyDefinition is used to specify the type of Sharding Algo‐
rithm, currently only supports STANDARD, COMPLEX. Using COMPLEX requires specifying
multiple sharding columns with SHARDING_COLUMNS.

• use auto sharding table rule:

– RESOURCES can only use resources that have been added to the current database, and the
required resources can be specified by enumeration or INLINE expression;

– Only auto sharding algorithm can be used, please refer to Auto Sharding Algorithm.

• algorithmType is the sharding algorithm type, please refer to Sharding Algorithm;

• The auto‐generated algorithm naming rule is tableName _ strategyType _ shardingAlgo-
rithmType;

• The auto‐generated primary key strategy naming rule is tableName _ strategyType;

• KEY_GENERATE_STRATEGY is used to specify the primary key generation strategy, which is op‐
tional. For the primary key generation strategy, please refer to Distributed Primary Key.

• AUDIT_STRATEGY is used to specify the sharding audit strategy, which is optional. For the shard‐
ing audit generation strategy, please refer to Sharding Audit.

7.10. DistSQL 455

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#user-defined-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#user-defined-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document, v5.2.1

Example

1.Standard sharding table rule

• Create standard sharding table rule by specifying sharding algorithms

-- create sharding algorithms
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- create a sharding rule by specifying sharding algorithms
CREATE SHARDING TABLE RULE t_order (

DATANODES("ds_${0..1}.t_order_${0..1}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)
);

• Use the default sharding database strategy, create standard sharding table rule by specifying a
sharding algorithm

-- create sharding algorithms
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- create a default sharding database strategy
CREATE DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

-- create a sharding table rule by specifying a sharding algorithm
CREATE SHARDING TABLE RULE t_order (

DATANODES("ds_${0..1}.t_order_${0..1}"),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)

7.10. DistSQL 456

Apache ShardingSphere document, v5.2.1

);

• Use both the default sharding and the default sharding strategy, create standard sharding table
rule

-- create sharding algorithms
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- create a default sharding database strategy
CREATE DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

-- create a default sharding table strategy
CREATE DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=table_inline
);

-- create a sharding table rule
CREATE SHARDING TABLE RULE t_order (

DATANODES("ds_${0..1}.t_order_${0..1}")
);

• Create standard sharding table rule and sharding algorithms at the same time

CREATE SHARDING TABLE RULE t_order (
DATANODES("ds_${0..1}.t_order_${0..1}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${user_id % 2}
")))),

TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_
ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${order_id % 2}
"))))
);

7.10. DistSQL 457

Apache ShardingSphere document, v5.2.1

2.Auto sharding table rule

• create auto sharding table rule

CREATE SHARDING TABLE RULE t_order (
RESOURCES(ds_0, ds_1),
SHARDING_COLUMN=order_id, TYPE(NAME="MOD", PROPERTIES("sharding-count"="4"))

);

Reserved word

CREATE, SHARDING, TABLE, RULE, DATANODES, DATABASE_STRATEGY, TABLE_STRATEGY,
KEY_GENERATE_STRATEGY, RESOURCES, SHARDING_COLUMN, TYPE, SHARDING_COLUMN,
KEY_GENERATOR, SHARDING_ALGORITHM, COLUMN, NAME, PROPERTIES, AUDIT_STRATEGY,
AUDITORS, ALLOW_HINT_DISABLE

Related links

• Reserved word

• CREATE SHARDING ALGORITHM

• CREATE DEFAULT_SHARDING STRATEGY

ALTER SHARDING TABLE RULE

Description

The ALTER SHARDING TABLE RULE syntax is used to alter sharding table rule for the currently
selected database

Syntax

AlterShardingTableRule ::=
'ALTER' 'SHARDING' 'TABLE' 'RULE' (tableDefinition | autoTableDefinition) (','

(tableDefinition | autoTableDefinition))*

tableDefinition ::=
tableName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_

STRATEGY' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '('
strategyDefinition ')')? (',' 'KEY_GENERATE_STRATEGY' '('
keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

7.10. DistSQL 458

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/rdl/rule-definition/create-sharding-algorithm/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/rdl/rule-definition/create-default-sharding-strategy/

Apache ShardingSphere document, v5.2.1

autoTableDefinition ::=
tableName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ','

'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_
STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

strategyDefinition ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='

columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
'KEY_GENERATE_STRATEGY' '(' 'COLUMN' '=' columnName ',' ('KEY_GENERATOR' '='

algorihtmName | algorithmDefinition) ')'

auditStrategyDefinition ::=
'AUDIT_STRATEGY' '(' 'AUDITORS' '=' '[' auditorName ',' auditorName ']' ','

'ALLOW_HINT_DISABLE' '=' 'TRUE | FALSE' ')'
|
'AUDIT_STRATEGY' '(' '[' 'NAME' '=' auditorName ',' algorithmDefinition ']' ','

'[' 'NAME' '=' auditorName ',' algorithmDefinition ']' ')'

algorithmDefinition ::=
('SHARDING_ALGORITHM' '=' algorithmName | 'TYPE' '(' 'NAME' '=' algorithmType (

',' 'PROPERTIES' '(' propertyDefinition ')')?')')

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

tableName ::=
identifier

resourceName ::=
identifier

columnName ::=
identifier

auditorName ::=
identifier

algorithmName ::=
identifier

strategyType ::=
string

7.10. DistSQL 459

Apache ShardingSphere document, v5.2.1

Supplement

• tableDefinition is defined for standard sharding table rule; autoTableDefinition is de‐
fined for auto sharding table rule. For standard sharding rules and auto sharding rule, refer to
Data Sharding;

• use standard sharding table rule:

– DATANODES can only use resources that have been added to the current database, and can
only use INLINE expressions to specify required resources;

– DATABASE_STRATEGY, TABLE_STRATEGY are the database sharding strategy and the table
sharding strategy, which are optional, and the default strategy is used when not configured;

– The attribute TYPE in strategyDefinition is used to specify the type of Sharding Algo‐
rithm, currently only supports STANDARD, COMPLEX. Using COMPLEX requires specifying
multiple sharding columns with SHARDING_COLUMNS.

• use auto sharding table rule:

– RESOURCES can only use resources that have been added to the current database, and the
required resources can be specified by enumeration or INLINE expression;

– Only auto sharding algorithm can be used, please refer to Auto Sharding Algorithm.

• algorithmType is the sharding algorithm type, please refer to Sharding Algorithm;

• The auto‐generated algorithm naming rule is tableName _ strategyType _ shardingAlgo-
rithmType;

• The auto‐generated primary key strategy naming rule is tableName _ strategyType;

• KEY_GENERATE_STRATEGY is used to specify the primary key generation strategy, which is op‐
tional. For the primary key generation strategy, please refer to Distributed Primary Key.

• AUDIT_STRATEGY is used to specify the sharding audit strategy, which is optional. For the shard‐
ing audit generation strategy, please refer to Sharding Audit.

Example

1.Standard sharding table rule

• Alter standard sharding table rule to the specified sharding algorithms being altered

-- alter sharding algorithms
ALTER SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 4}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 4}
"))
);

7.10. DistSQL 460

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#user-defined-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#user-defined-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document, v5.2.1

-- alter a sharding rule to the specified sharding algorithms being altered
ALTER SHARDING TABLE RULE t_order (

DATANODES("resource_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)
);

• Use the altered default sharding database strategy, alter standard sharding table rule to the spec-
ified sharding algorithm being altered

-- alter sharding algorithms
ALTER SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 4}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 4}
"))
);

-- alter a default sharding database strategy
ALTER DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

-- alter a sharding table rule to the specified sharding algorithm being altered
ALTER SHARDING TABLE RULE t_order (

DATANODES("resource_${0..3}.t_order_item${0..3}"),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)
);

• Use both the altered default sharding and the altered default sharding strategy, alter standard
sharding table rule

-- alter sharding algorithms
ALTER SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 4}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 4}
"))
);

7.10. DistSQL 461

Apache ShardingSphere document, v5.2.1

-- alter a default sharding database strategy
ALTER DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

-- alter a default sharding table strategy
ALTER DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=table_inline
);

-- alter a sharding table rule
ALTER SHARDING TABLE RULE t_order (

DATANODES("resource_${0..3}.t_order_item${0..3}")
);

• Alter standard sharding table rule and create sharding algorithms at the same time

ALTER SHARDING TABLE RULE t_order (
DATANODES("ds_${0..1}.t_order_${0..1}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${user_id % 2}
")))),

TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_
ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${order_id % 2}
"))))
);

2.Auto sharding table rule

• alter auto sharding table rule

ALTER SHARDING TABLE RULE t_order (
RESOURCES(ds_0, ds_1),
SHARDING_COLUMN=order_id, TYPE(NAME="MOD", PROPERTIES("sharding-count"="4"))

);

7.10. DistSQL 462

Apache ShardingSphere document, v5.2.1

Reserved word

ALTER, SHARDING, TABLE, RULE, DATANODES, DATABASE_STRATEGY, TABLE_STRATEGY,
KEY_GENERATE_STRATEGY, RESOURCES, SHARDING_COLUMN, TYPE, SHARDING_COLUMN,
KEY_GENERATOR, SHARDING_ALGORITHM, COLUMN, NAME, PROPERTIES, AUDIT_STRATEGY,
AUDITORS, ALLOW_HINT_DISABLE

Related links

• Reserved word

• ALTER SHARDING ALGORITHM

• ALTER DEFAULT_SHARDING STRATEGY

CREATE SHARDING ALGORITHM

Description

The CREATE SHARDING ALGORITHM syntax is used to create a sharding algorithm for the currently
selected database.

Syntax

CreateShardingAlgorithm ::=
'CREATE' 'SHARDING' 'ALGORITHM' shardingAlgorithmName '(' algorithmDefinition ')'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

shardingAlgorithmName ::=
identifier

algorithmType ::=
string

7.10. DistSQL 463

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/rdl/rule-definition/alter-sharding-algorithm/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/rdl/rule-definition/alter-default-sharding-strategy/

Apache ShardingSphere document, v5.2.1

Supplement

• algorithmType is the sharding algorithm type. For detailed sharding algorithm type informa‐
tion, please refer to Sharding Algorithm.

Example

1.Create sharding algorithms

-- create a sharding algorithm of type INLINE
CREATE SHARDING ALGORITHM inline_algorithm (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
);

-- create a sharding algorithm of type AUTO_INTERVAL
CREATE SHARDING ALGORITHM interval_algorithm (

TYPE(NAME="auto_interval", PROPERTIES("datetime-lower"="2022-01-01 00:00:00",
"datetime-upper"="2022-01-03 00:00:00", "sharding-seconds"="86400"))
);

Reserved word

CREATE, SHARDING, ALGORITHM, TYPE, NAME, PROPERTIES

Related links

• Reserved word

CREATE DEFAULT SHARDING STRATEGY

Description

The CREATE DEFAULT SHARDING STRATEGY syntax is used to create a default sharding strategy

7.10. DistSQL 464

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Syntax

CreateDefaultShardingStrategy ::=
'CREATE' 'DEFAULT' 'SHARDING' ('DATABASE' | 'TABLE') 'STRATEGY' '('

shardingStrategy ')'

shardingStrategy ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' '=' columnName | 'SHARDING_

COLUMNS' '=' columnNames) ',' ('SHARDING_ALGORITHM' '=' algorithmName |
algorithmDefinition)

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

columnNames ::=
columnName (',' columnName)+

columnName ::=
identifier

algorithmName ::=
identifier

algorithmType ::=
string

Supplement

• When using the complex sharding algorithm, multiple sharding columns need to be specified
using SHARDING_COLUMNS;

• algorithmType is the sharding algorithm type. For detailed sharding algorithm type informa‐
tion, please refer to Sharding Algorithm.

Example

1.Create a default sharding strategy by using an existing sharding algorithm

-- create a sharding algorithm
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- create a default sharding database strategy

7.10. DistSQL 465

https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/sharding/

Apache ShardingSphere document, v5.2.1

CREATE DEFAULT SHARDING DATABASE STRATEGY (
TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM=database_inline

);

2.Create sharding algorithm and default sharding table strategy at the same time

-- create a default sharding table strategy
CREATE DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE(NAME="inline
", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}")))
);

Reserved word

CREATE, DEFAULT, SHARDING, DATABASE, TABLE, STRATEGY, TYPE, SHARDING_COLUMN, SHARD-
ING_COLUMNS, SHARDING_ALGORITHM, NAME, PROPERTIES

Related links

• Reserved word

• CREATE SHARDING ALGORITHM

CREATE SHARDING BINDING TABLE RULE

Description

TheCREATE SHARDING BINDING TABLE RULE syntax is used to add binding relationships and create
binding table rules for tables with sharding table rules

Syntax

CreateBindingTableRule ::=
'CREATE' 'SHARDING' 'BINDING' 'TABLE' 'RULES' bindingTableDefinition (','

bindingTableDefinition)*

bindingTableDefinition ::=
'(' tableName (',' tableName)* ')'

tableName ::=
identifier

7.10. DistSQL 466

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/rdl/rule-definition/create-sharding-algorithm/

Apache ShardingSphere document, v5.2.1

Supplement

• Creating binding relationships rules can only use sharding tables;

• A sharding table can only have one binding relationships;

• The sharding table for creating binding relationships needs to use the same resources and
the same actual tables. For example ds_${0..1}.t_order_${0..1} 与 ds_${0..1}.
t_order_item_${0..1};

• The sharding table for creating binding relationships needs to use the same sharding al‐
gorithm for the sharding column. For example t_order_{order_id % 2} and
t_order_item_{order_item_id % 2};

• Only onebinding rule can exist, but can containmultiple binding relationships, so cannot execute
CREATE SHARDING BINDING TABLE RULE more than one time. When a binding table rule
already exists but a binding relationship needs to be added, you need to use ALTER SHARDING
BINDING TABLE RULE to modify the binding table.

Example

1.Create a binding table rule

-- Before creating a binding table rule, you need to create sharding table rules t_
order, t_order_item
CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item);

2.Createmultiple binding table rules

-- Before creating binding table rules, you need to create sharding table rules t_
order, t_order_item, t_product, t_product_item
CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item),(t_product,t_product_
item);

Reserved word

CREATE, SHARDING, BINDING, TABLE, RULES

7.10. DistSQL 467

Apache ShardingSphere document, v5.2.1

Related links

• Reserved word

• CREATE SHARDING TABLE RULE

CREATE SHARDING BROADCAST TABLE RULE

Description

The CREATE SHARDING BROADCAST TABLE RULE syntax is used to create broadcast table rules for
tables that need to be broadcast (broadcast tables)

Syntax

CreateBroadcastTableRule ::=
'CREATE' 'SHARDING' 'BROADCAST' 'TABLE' 'RULES' '(' tableName (',' tableName)* ')

'

tableName ::=
identifier

Supplement

• tableName can use an existing table or a table that will be created;

• Only one broadcast rule can exist, but can contain multiple broadcast tables, so can not execute
CREATE SHARDING BROADCAST TABLE RULEmore than one time. When the broadcast table
rule already exists but the broadcast table needs to be added, you need to use ALTER BROADCAST
TABLE RULE to modify the broadcast table rule.

Example

Create sharding broadcast table rule

-- Add t_province, t_city to broadcast table rules
CREATE SHARDING BROADCAST TABLE RULES (t_province, t_city);

7.10. DistSQL 468

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/rdl/rule-definition/create-sharding-table-rule/

Apache ShardingSphere document, v5.2.1

Reserved word

CREATE, SHARDING, BROADCAST, TABLE, RULES

Related links

• Reserved word

CREATE SHARDING AUDITOR

Description

TheCREATE SHARDING AUDITOR syntax is used to adda shardingkey auditor for the currently selected
logic database

Syntax

CreateShardingAlgorithm ::=
'CREATE' 'SHARDING' 'AUDITOR' auditorName '(' algorithmDefinition ')'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

auditorName ::=
identifier

algorithmType ::=
string

Supplement

• algorithmType is the sharding audit algorithm type. For detailed sharding audit algorithm type
information, please refer to SHARDING AUDIT ALGORITHM.

7.10. DistSQL 469

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/en/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document, v5.2.1

Example

Create a sharding auditor

CREATE SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS", PROPERTIES("a"="b"))

);

Reserved word

CREATE, SHARDING, AUDITOR, TYPE, NAME, PROPERTIES

Related links

• Reserved word

CREATE SHARDING KEY GENERATOR

Description

The CREATE SHARDING KEY GENERATOR syntax is used to add a distributed primary key generator
for the currently selected logic database

Syntax

CreateShardingAlgorithm ::=
'CREATE' 'SHARDING' 'KEY' 'GENERATOR' keyGeneratorName '(' algorithmDefinition ')

'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

keyGeneratorName ::=
identifier

algorithmType ::=
string

7.10. DistSQL 470

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Supplement

• algorithmType is the key generate algorithm type. For detailed key generate algorithm type
information, please refer to KEY GENERATE ALGORITHM.

Example

Create a distributed primary key generator

CREATE SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME="SNOWFLAKE", PROPERTIES("max-vibration-offset"="3"))

);

Reserved word

CREATE, SHARDING, KEY, GENERATOR, TYPE, NAME, PROPERTIES

Related links

• Reserved word

Single Table

This chapter describes the syntax of single table.

ALTER DEFAULT SINGLE TABLE RULE

Description

The ALTER DEFAULT SINGLE TABLE RULE syntax is used to alter a default single table rule.

Syntax

AlterDefaultSingleTableRule ::=
'ALTER' 'DEFAULT' 'SINGLE' 'TABLE' 'RULE' singleTableDefinition

singleTableDefinition ::=
'RESOURCE' '=' resourceName

resourceName ::=
identifier

7.10. DistSQL 471

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Supplement

• RESOURCE needs to use data source resource managed by RDL.

Example

Alter a default single table rule

ALTER DEFAULT SINGLE TABLE RULE RESOURCE = ds_0;

Reserved word

ALTER, SHARDING, SINGLE, TABLE, RULE, RESOURCE

Related links

• Reserved word

CREATE DEFAULT SINGLE TABLE RULE

Description

The CREATE DEFAULT SINGLE TABLE RULE syntax is used to create a default single table rule.

Syntax

CreateDefaultSingleTableRule ::=
'CREATE' 'DEFAULT' 'SINGLE' 'TABLE' 'RULE' singleTableDefinition

singleTableDefinition ::=
'RESOURCE' '=' resourceName

resourceName ::=
identifier

7.10. DistSQL 472

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Supplement

• RESOURCE needs to use data source resource managed by RDL.

Example

Create a default single table rule

CREATE DEFAULT SINGLE TABLE RULE RESOURCE = ds_0;

Reserved word

CREATE, SHARDING, SINGLE, TABLE, RULE, RESOURCE

Related links

• Reserved word

DROP DEFAULT SINGLE TABLE RULE

Description

The DROP DEFAULT SINGLE TABLE RULE syntax is used to drop a default single table rule.

Syntax

DropDefaultSingleTableRule ::=
'DROP' 'DEFAULT' 'SINGLE' 'TABLE' 'RULE' ifExists?

ifExists ::=
'IF' 'EXISTS'

Example

drop a default single table rule

DROP DEFAULT SINGLE TABLE RULE;

7.10. DistSQL 473

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Reserved word

DROP, SHARDING, SINGLE, TABLE, RULE

Related links

• Reserved word

RQL Syntax

RQL (Resource & Rule Query Language) responsible for resources/rules query.

Resource Query

This chapter describes the syntax of resource query.

SHOWDATABASE RESOURCES

Description

The SHOW DATABASE RESOURCES syntax is used to query the resources that have been added to the
specified database.

Syntax

ShowResource ::=
'SHOW' 'DATABASE' 'RESOURCES' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE; if DATABASE
is not used, it will prompt No database selected.

7.10. DistSQL 474

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Return Value Description

Column Description

name Data source name
type Data source type
host Data source host
port Data source port
db Database name
attribute Data source attribute

Example

• Query resources for the specified database

SHOW DATABASE RESOURCES FROM sharding_db;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

7.10. DistSQL 475

Apache ShardingSphere document, v5.2.1

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
2 rows in set (0.26 sec)

• Query resources for the current database

SHOW DATABASE RESOURCES;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_

7.10. DistSQL 476

Apache ShardingSphere document, v5.2.1

timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

7.10. DistSQL 477

Apache ShardingSphere document, v5.2.1

---+
2 rows in set (0.26 sec)

SHOWUNUSED RESOURCE

Description

The SHOW UNUSED RESOURCE syntax is used to query resources in the specified database that have
not been referenced by rules.

Syntax

ShowUnusedResource ::=
'SHOW' 'UNUSED' 'DATABASE'? 'RESOURCES' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE; if DATABASE
is not used, it will prompt No database selected.

Return Value Description

Column Description

name Data source name
type Data source type
host Data source host
port Data source port
db Database name
attribute Data source attribute

7.10. DistSQL 478

Apache ShardingSphere document, v5.2.1

Example

• Query resources for the specified database

SHOW UNUSED DATABASE RESOURCES FROM sharding_db;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------

7.10. DistSQL 479

Apache ShardingSphere document, v5.2.1

--------------------+---------------------------+---------------+---------------+--
---------+---

---+
1 rows in set (0.26 sec)

• Query resources for the current database

SHOW UNUSED DATABASE RESOURCES;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",

7.10. DistSQL 480

Apache ShardingSphere document, v5.2.1

"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
1 rows in set (0.26 sec)

SHOWRULES USED RESOURCE

Description

The SHOW RULES USED RESOURCE syntax is used to query the rules that use the specified resource in
the specified database.

Syntax

showRulesUsedResource ::=
'SHOW' 'RULES' 'USED' 'RESOURCES' resourceName ('FROM' databaseName)?

resourceName ::=
IDENTIFIER | STRING

databaseName ::=
IDENTIFIER

7.10. DistSQL 481

Apache ShardingSphere document, v5.2.1

Supplement

• When databaseName is not specified, the default is the currently used DATABASE; if DATABASE
is not used, it will prompt No database selected.

Return Value Description

Column Description

type features
name Data source name

Example

• Query the rules that use the specified resource in the specified database

SHOW RULES USED RESOURCE ds_0 FROM sharding_db;

+----------+--------------+
| type | name |
+----------+--------------+
| sharding | t_order |
| sharding | t_order_item |
+----------+--------------+
2 rows in set (0.00 sec)

• Query the rules that use the specified resource in the current database

SHOW RULES USED RESOURCE ds_0;

+----------+--------------+
| type | name |
+----------+--------------+
| sharding | t_order |
| sharding | t_order_item |
+----------+--------------+
2 rows in set (0.00 sec)

7.10. DistSQL 482

Apache ShardingSphere document, v5.2.1

Rule Query

This chapter describes the syntax of rule query.

Sharding

This chapter describes the syntax of sharding.

SHOW SHARDING TABLE RULE

Description

The SHOW SHARDING TABLE RULE syntax is used to query the sharding table rule in the specified
database.

Syntax

ShowShardingTableRule ::=
'SHOW' 'SHARDING' 'TABLE' ('RULE' tableName | 'RULES') ('FROM' databaseName)?

tableName ::=
identifier

databaseName ::=
identifier

7.10. DistSQL 483

Apache ShardingSphere document, v5.2.1

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

table Logical table name
actual_data_nodes Actual data node
actual_data_sources Actual data source (Displayed when creating rules by RDL)
database_strategy_type Database sharding strategy type
d atabase_sharding_column Database sharding column
database_ sharding_algorithm_type Database sharding algorithm type
database_s harding_algorithm_props Database sharding algorithm properties
table_strategy_type Table sharding strategy type
table_sharding_column Table sharding column
table_ sharding_algorithm_type Table sharding algorithm type
table_s harding_algorithm_props Table sharding algorithm properties
key_generate_column Sharding key generator column
key_generator_type Sharding key generator type
key_generator_props Sharding key generator properties

Example

• Query the sharding table rules of the specified logical database

SHOW SHARDING TABLE RULES FROM sharding_db;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

7.10. DistSQL 484

Apache ShardingSphere document, v5.2.1

| sharding-count=4 | | |
|

| t_order_item | | ds_0,ds_1 | |
| |

| mod | order_id | mod
| sharding-count=4 | | |

|
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
2 rows in set (0.12 sec)

• Query the sharding table rules of the current logic database

SHOW SHARDING TABLE RULES;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

| sharding-count=4 | | |
|

| t_order_item | | ds_0,ds_1 | |
| |

| mod | order_id | mod
| sharding-count=4 | | |

|
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+

7.10. DistSQL 485

Apache ShardingSphere document, v5.2.1

2 rows in set (0.12 sec)

• Query the specified sharding table rule

SHOW SHARDING TABLE RULE t_order;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

| sharding-count=4 | | |
|

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
1 rows in set (0.12 sec)

Reserved word

SHOW, SHARDING, TABLE, RULE, FROM

Related links

• Reserved word

7.10. DistSQL 486

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

SHOW SHARDING ALGORITHMS

Description

The SHOW SHARDING ALGORITHMS syntax is used to query the sharding algorithms in the specified
database.

Syntax

ShowShardingAlgorithms::=
'SHOW' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

Return value description

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Example

• Query the sharding table algorithms of the specified logical database

SHOW SHARDING ALGORITHMS;

mysql> SHOW SHARDING ALGORITHMS;
+-------------------------+--------+---
------+
| name | type | props

|
+-------------------------+--------+---
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|

7.10. DistSQL 487

Apache ShardingSphere document, v5.2.1

| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
2} |
+-------------------------+--------+---
------+
2 row in set (0.01 sec)

Reserved word

SHOW, SHARDING, ALGORITHMS, FROM

Related links

• Reserved word

SHOWUNUSED SHARDING ALGORITHMS

Description

The SHOW UNUSED SHARDING ALGORITHMS syntax is used to query the unused sharding algorithms
in the specified database.

Syntax

ShowShardingAlgorithms::=
'SHOW' 'UNUSED' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

Supplement

• When databaseName is not specified, the default is the currently used DATABASE. If DATABASE
is not used, No database selected will be prompted.

7.10. DistSQL 488

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Return value description

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Example

• Query the unused sharding table algorithms of the specified logical database

SHOW UNUSED SHARDING ALGORITHMS;

mysql> SHOW UNUSED SHARDING ALGORITHMS;
+---------------+--------+---+
| name | type | props |
+---------------+--------+---+
| t1_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
+---------------+--------+---+
1 row in set (0.01 sec)

Reserved word

SHOW, UNUSED, SHARDING, ALGORITHMS, FROM

Related links

• Reserved word

RAL Syntax

RAL (Resource & Rule Administration Language) responsible for the added‐on feature of hint, transac‐
tion type switch, scaling, sharding execute planning and so on.

Reserved word

RDL

Basic ReservedWords

CREATE, ALTER, DROP, TABLE, RULE, TYPE, NAME, PROPERTIES

7.10. DistSQL 489

https://shardingsphere.apache.org/document/current/en/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

Resource Definition

ADD, RESOURCE, IF, EXISTS, HOST, PORT, DB, USER, PASSWORD, URL , IGNORE, SINGLE, TABLES

Rule Definition

SHARDING

DEFAULT, SHARDING, BROADCAST, BINDING, DATABASE, STRATEGY, RULES, ALGORITHM , DATAN-
ODES, DATABASE_STRATEGY, TABLE_STRATEGY, KEY_GENERATE_STRATEGY, RESOURCES, SHARD-
ING_COLUMN, KEY , GENERATOR, SHARDING_COLUMNS, KEY_GENERATOR, SHARDING_ALGORITHM,
COLUMN, AUDIT_STRATEGY , AUDITORS, ALLOW_HINT_DISABLE

Single Table

SHARDING, SINGLE, RESOURCE

Readwrite Splitting

READWRITE_SPLITTING, WRITE_RESOURCE, READ_RESOURCES, AUTO_AWARE_RESOURCE ,
WRITE_DATA_SOURCE_QUERY_ENABLED

Encrypt

ENCRYPT, COLUMNS, CIPHER, PLAIN, QUERY_WITH_CIPHER_COLUMN

Database Discovery

DB_DISCOVERY, RESOURCES, HEARTBEAT

Shadow

SHADOW, DEFAULT, ALGORITHM, SOURCE, SHADOW

RQL

Basic ReservedWords

SHOW, RULE, RULES, TABLE, DATABASE, FROM

7.10. DistSQL 490

Apache ShardingSphere document, v5.2.1

Resource Definition

RESOURCES, UNUSED, USED

Rule Definition

SHARDING

UNUSED, SHARDING, ALGORITHMS

Supplement

• The above reserved words are not case‐sensitive

7.11 Architecture

Apache ShardingSphere’s pluggable architecture is designed to enable developers to customize their
own unique systems by adding the desired features, just like adding building blocks.

A plugin‐oriented architecture has very high requirements for program architecture design. It requires
making each module independent, and using a pluggable kernel to combine various functions in an
overlapping manner. Designing an architecture system that completely isolates the feature develop‐
ment not only fosters an active open source community, but also ensures the quality of the project.

Apache ShardingSphere began to focus on the pluggable architecture since version 5.X, and the func‐
tional components of the project can be flexibly extended in a pluggable manner. Currently, features
such as data sharding, read/write splitting, database high availability, data encryption, shadow DB
stress testing, and support for SQL and protocols such as MySQL, PostgreSQL, SQLServer, Oracle, etc.
are woven into the project through plugins. Apache ShardingSphere has provided dozens of SPIs (ser‐
vice provider interfaces) as extension points of the system, with the total number still increasing.

7.11. Architecture 491

Apache ShardingSphere document, v5.2.1

7.11. Architecture 492

8
FAQ

8.1 JDBC

8.1.1 JDBC Why there may be an error when configure both shardingsphere-jdbc-
spring-boot-starter and a spring-boot-starter of certain datasource pool (such as
druid)?

Answer:

1. Because the spring‐boot‐starter of certain datasource pool (such as druid) will be configured be‐
fore shardingsphere‐jdbc‐spring‐boot‐starter and create a default datasource, causing conflict to
occur when ShardingSphere‐JDBC create datasources.

2. A simple way to solve this issue is removing the spring‐boot‐starter of certain datasource pool,
allowing shardingsphere‐jdbc to create datasources with suitable pools.

8.1.2 JDBCWhy is xsd unable to be foundwhen Spring Namespace is used?

Answer:

The norm of Spring Namespace does not require deploying xsd files to the official website. But consid‐
ering some users’needs, we will deploy them to ShardingSphere’s official website. Actually, META‐
INF:raw‐latex:spring.schemas in the jar package of shardingsphere‐jdbc‐spring‐namespace has been
configured with the position of xsd files: META‐INF:raw‐latex:namespace:raw‐latex:ˋ\shardingˋ.xsd
and META‐INF:raw‐latex:namespace:raw‐latex:ˋ\readwriteˋ‐splitting.xsd, so you only need to make
sure that the file is in the jar package.

493

Apache ShardingSphere document, v5.2.1

8.1.3 JDBC Found a JtaTransactionManager in spring boot project when integrating
with XAtransaction.

Answer:

1. shardingsphere-transaction-xa-core include atomikos, it will trigger auto‐configuration
mechanism in spring‐boot, add @SpringBootApplication(exclude = JtaAutoConfigu-
ration.class) will solve it.

8.1.4 JDBC The tableName and columnName configured in yaml or properties leading
incorrect result when loading Oracle metadata？

Answer：
Note that, in Oracle’smetadata, the tableName and columnName is default UPPERCASE,while double‐
quoted such as CREATE TABLE "TableName"("Id" number) the tableName and columnName is
the actual content double‐quoted, refer to the following SQL for the reality in metadata:

SELECT OWNER, TABLE_NAME, COLUMN_NAME, DATA_TYPE FROM ALL_TAB_COLUMNS WHERE TABLE_
NAME IN ('TableName')

ShardingSphere uses the OracleTableMetaDataLoader to load the metadata, keep the tableName
and columnName in the yaml or properties consistent with the metadata. ShardingSphere assembled
the SQL using the following code:

private String getTableMetaDataSQL(final Collection<String> tables, final
DatabaseMetaData metaData) throws SQLException {

StringBuilder stringBuilder = new StringBuilder(28);
if (versionContainsIdentityColumn(metaData)) {

stringBuilder.append(", IDENTITY_COLUMN");
}
if (versionContainsCollation(metaData)) {

stringBuilder.append(", COLLATION");
}
String collation = stringBuilder.toString();
return tables.isEmpty() ? String.format(TABLE_META_DATA_SQL, collation)

: String.format(TABLE_META_DATA_SQL_IN_TABLES, collation, tables.
stream().map(each -> String.format("'%s'", each)).collect(Collectors.joining(",
")));
}

8.1. JDBC 494

Apache ShardingSphere document, v5.2.1

8.2 Proxy

8.2.1 Proxy In Windows environment, could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how to solve it?

Answer:

Some decompression toolsmay truncate the file namewhen decompressing the ShardingSphere‐Proxy
binary package, resulting in some classes not being found. The solutions: Open cmd.exe and execute
the following command:

tar zxvf apache-shardingsphere-${RELEASE.VERSION}-shardingsphere-proxy-bin.tar.gz

8.2.2 Proxy How to add a new logic database dynamically when use ShardingSphere-
Proxy?

Answer:

Whenusing ShardingSphere‐Proxy, users can dynamically create or drop logic database throughDist-
SQL, the syntax is as follows:

CREATE DATABASE [IF NOT EXISTS] databaseName;
DROP DATABASE [IF EXISTS] databaseName;

Example:

CREATE DATABASE sharding_db;
DROP DATABASE sharding_db;

8.2.3 Proxy How to use suitable database tools connecting ShardingSphere-Proxy?

Answer:

1. ShardingSphere‐Proxy could be considered as a MySQL server, so we recommend using MySQL
command line tool to connect to and operate it.

2. If userswould like to use a third‐party database tool, theremaybe some errors cause of the certain
implementation/options.

3. The currently tested third‐party database tools are as follows:

• Navicat: 11.1.13, 15.0.20.

• DataGrip: 2020.1, 2021.1 (turn on“introspect using jdbc metadata”in idea or datagrip).

• WorkBench: 8.0.25.

8.2. Proxy 495

Apache ShardingSphere document, v5.2.1

8.2.4 Proxy When using a client such as Navicat to connect to ShardingSphere-Proxy,
if ShardingSphere-Proxy does not create a database or does not add a resource,
the client connection will fail?

Answer:

1. Third‐party database tools will send some SQL query metadata when connecting to
ShardingSphere‐Proxy. When ShardingSphere‐Proxy does not create a database or does
not add a resource, ShardingSphere‐Proxy cannot execute SQL.

2. It is recommended to create database and resource first, and then use third‐party database
tools to connect.

3. Please refer to Related introduction the details about resource.

8.3 Sharding

8.3.1 Sharding How to solve Cloud not resolve placeholder ⋯in string
value ⋯ error?

Answer:

${...} or $->{...} can be used in inline expression identifiers, but the former one clashes with
place holders in Spring property files, so $->{...} is recommended to be used in Spring as inline
expression identifiers.

8.3.2 ShardingWhy does float number appear in the return result of inline expression?

Answer:

The division result of Java integers is also integer, but in Groovy syntax of inline expression, the divi‐
sion result of integers is float number. To obtain integer division result, A/B needs to be modified as
A.intdiv(B).

8.3.3 Sharding If shardingdatabase ispartial, should tableswithout shardingdatabase
& table configured in sharding rules?

Answer:

No, ShardingSphere will recognize it automatically.

8.3. Sharding 496

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.2.1

8.3.4 Sharding When generic Long type SingleKeyTableShardingAlgorithm is
used, why does the ClassCastException: Integer can not cast to
Long exception appear?

Answer:

You must make sure the field in the database table is consistent with that in the sharding algorithms.
For example, the field type in database is int(11) and the sharding type corresponds to genetic type is
Integer. If you want to configure Long type, please make sure the field type in the database is bigint.

8.3.5 [Sharding:raw-latex:PROXY] When implementing the StandardShardingAl-
gorithm custom algorithm, the specific type of Comparable is specified as
Long, and the field type in the database table is bigint, a ClassCastExcep-
tion: Integer can not cast to Long exception occurs.

Answer：
When implementing the doSharding method, it is not recommended to specify the specific type
of Comparable in the method declaration, but to convert the type in the implementation of the
doShardingmethod. You can refer to the ModShardingAlgorithm#doShardingmethod.

8.3.6 Sharding Why is the default distributed auto-augment key strategy provided by
ShardingSphere not continuous andmost of them endwith even numbers?

Answer:

ShardingSphere uses snowflake algorithms as the default distributed auto‐augment key strategy to
make sure unrepeated and decentralized auto‐augment sequence is generated under the distributed
situations. Therefore, auto‐augment keys can be incremental but not continuous. But the last four
numbers of snowflake algorithm are incremental value within one millisecond. Thus, if concurrency
degree in one millisecond is not high, the last four numbers are likely to be zero, which explains why
the rate of even end number is higher. In 3.1.0 version, the problem of ending with even numbers has
been totally solved, please refer to: https://github.com/apache/shardingsphere/issues/1617

8.3.7 ShardingHowtoallowrangequerywithusing inline sharding strategy (BETWEEN
AND, >, <, >=, <=)?

Answer:

1. Update to 4.1.0 above.

2. Configure(A tip here: then each range query will be broadcast to every sharding table):

• Version 4.x: allow.range.query.with.inline.sharding totrue (Default value isfalse).

• Version 5.x: allow-range-query-with-inline-sharding to true in InlineShardingStrat‐
egy (Default value is false).

8.3. Sharding 497

https://github.com/apache/shardingsphere/issues/1617

Apache ShardingSphere document, v5.2.1

8.3.8 Sharding Why does my custom distributed primary key do not work after imple-
menting KeyGenerateAlgorithm interface and configuring type property?

Answer:

Service Provider Interface (SPI) is a kind of API for the third party to implement or expand. Except
implementing interface, you also need to create a corresponding file in META-INF/services tomake
the JVM load these SPI implementations. More detail for SPI usage, please search by yourself. Other
ShardingSphere functionality implementation will take effect in the same way.

8.3.9 Sharding In addition to internal distributed primary key, does ShardingSphere
support other native auto-increment keys?

Answer:

Yes. But there is restriction to the use of native auto‐increment keys, whichmeans they cannot be used
as sharding keys at the same time. Since ShardingSphere does not have the database table structure and
native auto‐increment key is not included in original SQL, it cannot parse that field to the sharding field.
If the auto‐increment key is not sharding key, it can be returned normally and is needless to be cared.
But if the auto‐increment key is also used as sharding key, ShardingSphere cannot parse its sharding
value, whichwillmake SQL routed tomultiple tables and influence the rightness of the application. The
premise for returning native auto‐increment key is that INSERT SQL is eventually routed to one table.
Therefore, auto‐increment key will return zero when INSERT SQL returns multiple tables.

8.4 Encryption

8.4.1 Encryption How to solve that data encryption can’t work with JPA?

Answer:

Because DDL for data encryption has not yet finished, JPA Entity cannot meet the DDL and DML at the
same time, when JPA that automatically generates DDL is used with data encryption. The solutions are
as follows: 1. Create JPA Entity with logicColumn which needs to encrypt. 2. Disable JPA auto‐ddl,
For example setting auto‐ddl=none. 3. Create table manually. Table structure should use cipherCol-
umn,plainColumn and assistedQueryColumn to replace the logicColumn.

8.5 DistSQL

8.5.1 DistSQLHow to set custom JDBC connection properties or connection pool prop-
erties when adding a data source using DistSQL?

Answer:

8.4. Encryption 498

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://shardingsphere.apache.org/document/current/en/concepts/pluggable/

Apache ShardingSphere document, v5.2.1

1. If you need to customize JDBC connection properties, please take the urlSource way to define
dataSource.

2. ShardingSphere presets necessary connection pool properties, such as maxPoolSize, idle-
Timeout, etc. If you need to add or overwrite the properties, please specify it with PROPERTIES
in the dataSource.

3. Please refer to Related introduction for above rules.

8.5.2 DistSQL How to solve Resource [xxx] is still used by [Sin-
gleTableRule]. exception when dropping a data source using DistSQL?

Answer：
1. Resources referenced by rules cannot be deleted

2. If the resource is only referenced by single table rule, and the user confirms that the restriction
can be ignored, the optional parameter ignore single tables can be added to perform forced dele‐
tion

DROP RESOURCE dataSourceName [, dataSourceName] ... [ignore single tables]

8.5.3 DistSQL How to solve Failed to get driver instance for jd-
bcURL=xxx. exception when adding a data source using DistSQL?

Answer：
ShardingSphere Proxy do not have jdbc driver during deployment. Some example of this include
mysql-connector. To use it otherwise following syntax can be used:

ADD RESOURCE dataSourceName [..., dataSourceName]

8.6 Other

8.6.1 Other How to debug when SQL can not be executed rightly in ShardingSphere?

Answer:

sql.show configuration is provided in ShardingSphere‐Proxy and post‐1.5.0 version of
ShardingSphere‐JDBC, enabling the context parsing, rewritten SQL and the routed data source
printed to info log. sql.show configuration is off in default, and users can turn it on in configurations.
A Tip: Property sql.show has changed to sql-show in version 5.x.

8.6. Other 499

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.2.1

8.6.2 OtherWhydo somecompiling errors appear? Whydidnot the IDEA index thegen-
erated codes?

Answer:

ShardingSphere uses lombok to enable minimal coding. For more details about using and install‐
ment, please refer to the official website of lombok. The codes under the package org.apache.
shardingsphere.sql.parser.autogen are generated by ANTLR. You may execute the following
command to generate codes:

./mvnw -Dcheckstyle.skip=true -Drat.skip=true -Dmaven.javadoc.skip=true -Djacoco.
skip=true -DskipITs -DskipTests install -T1C

The generated codes such as org.apache.shardingsphere.sql.parser.autogen.
PostgreSQLStatementParsermay be too large to be indexed by the IDEA. You may configure the
IDEA’s property idea.max.intellisense.filesize=10000.

8.6.3 Other In SQLSever and PostgreSQL, why does the aggregation column without
alias throw exception?

Answer:

SQLServer and PostgreSQLwill rename aggregation columns acquiredwithout alias, such as the follow‐
ing SQL:

SELECT SUM(num), SUM(num2) FROM tablexxx;

Columns acquired by SQLServer are empty string and (2); columns acquired by PostgreSQL are empty
sum and sum(2). It will cause error because ShardingSphere is unable to find the corresponding col‐
umn. The right SQL should be written as:

SELECT SUM(num) AS sum_num, SUM(num2) AS sum_num2 FROM tablexxx;

8.6.4 Other Why does Oracle database throw“Order by valuemust implements Com-
parable”exception when using Timestamp Order By?

Answer:

There are two solutions for the above problem: 1. Configure JVM parameter “‐
oracle.jdbc.J2EE13Compliant=true”2. Set System.getProperties().setProperty(“ora‐
cle.jdbc.J2EE13Compliant”,“true”) codes in the initialization of the project. Reasons: org.apache.
shardingsphere.sharding.merge.dql.orderby.OrderByValue#getOrderValues():

private List<Comparable<?>> getOrderValues() throws SQLException {
List<Comparable<?>> result = new ArrayList<>(orderByItems.size());
for (OrderByItem each : orderByItems) {

Object value = queryResult.getValue(each.getIndex(), Object.class);

8.6. Other 500

https://projectlombok.org/download.html

Apache ShardingSphere document, v5.2.1

Preconditions.checkState(null == value || value instanceof Comparable,
"Order by value must implements Comparable");

result.add((Comparable<?>) value);
}
return result;

}

After using resultSet.getObject(int index), for TimeStamp oracle, the system will decide whether
to return java.sql.TimeStamp or define oralce.sql.TIMESTAMP according to the property of ora‐
cle.jdbc.J2EE13Compliant. See oracle.jdbc.driver.TimestampAccessor#getObject(int var1) method in
ojdbc codes for more detail:

Object getObject(int var1) throws SQLException {
Object var2 = null;
if(this.rowSpaceIndicator == null) {

DatabaseError.throwSqlException(21);
}
if(this.rowSpaceIndicator[this.indicatorIndex + var1] != -1) {

if(this.externalType != 0) {
switch(this.externalType) {
case 93:

return this.getTimestamp(var1);
default:

DatabaseError.throwSqlException(4);
return null;

}
}
if(this.statement.connection.j2ee13Compliant) {

var2 = this.getTimestamp(var1);
} else {

var2 = this.getTIMESTAMP(var1);
}

}
return var2;

}

8.6.5 Other In Windows environment,when cloning ShardingSphere source code
through Git, why prompt filename too long and how to solve it?

Answer:

To ensure the readability of source code,the ShardingSphere Coding Specification requires that the
naming of classes,methods and variables be literal and avoid abbreviations,which may result in some
source files have long names. Since the Git version of Windows is compiled using msys,it uses the old
version of Windows Api,limiting the file name to nomore than 260 characters. The solutions are as fol‐
lows: Open cmd.exe (youneed to add git to environment variables) and execute the following command
to allow git supporting log paths:

8.6. Other 501

Apache ShardingSphere document, v5.2.1

git config --global core.longpaths true

Ifweusewindows 10, also need enablewin32 log paths in registry editor or group strategy(need reboot):
> Create the registry keyHKLM\SYSTEM\CurrentControlSet\Control\FileSystem LongPath-
sEnabled (Type: REG_DWORD) in registry editor, and be set to 1. > Or click“setting”button in system
menu, print“Group Policy”to open a new window“Edit Group Policy”, and then click‘Computer
Configuration’>‘Administrative Templates’>‘System’>‘Filesystem’, and then turn on‘Enable
Win32 long paths’option. Reference material: https://docs.microsoft.com/zh‐cn/windows/desktop/F
ileIO/naming‐a‐file https://ourcodeworld.com/articles/read/109/how‐to‐solve‐filename‐too‐long‐erro
r‐in‐git‐powershell‐and‐github‐application‐for‐windows

8.6.6 Other How to solve Type is required error?

Answer:

In Apache ShardingSphere, many functionality implementation are uploaded through SPI, such as Dis‐
tributed Primary Key. These functions load SPI implementation by configuring the type, so the type
must be specified in the configuration file.

8.6.7 Other How to speed up themetadata loading when service starts up?

Answer:

1. Update to 4.0.1 above, which helps speed up the process of loading table metadata.

2. Configure:

• max.connections.size.per.query(Default value is 1) higher referring to connection pool
you adopt(Version >= 3.0.0.M3 & Version < 5.0.0).

• max-connections-size-per-query(Default value is 1) higher referring to connection pool
you adopt(Version >= 5.0.0).

8.6.8 Other The ANTLRplugin generates codes in the same level directory as src, which
is easy to commit bymistake. How to avoid it?

Answer:

Goto Settings ‐> Languages & Frameworks ‐> ANTLR v4 default project settings and
configure the output directory of the generated code as target/gen as shown:

8.6. Other 502

https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://shardingsphere.apache.org/document/current/en/concepts/pluggable/
jetbrains://idea/settings?name=Languages+%26+Frameworks--ANTLR+v4+default+project+settings

Apache ShardingSphere document, v5.2.1

8.6.9 Other Why is the database sharding result not correct when using Proxool?

Answer:

When using Proxool to configure multiple data sources, each one of them should be configured with
alias. It is because Proxool would check whether existing alias is included in the connection pool or
not when acquiring connections, so without alias, each connectionwill be acquired from the same data
source. The followings are core codes from ProxoolDataSource getConnection method in Proxool:

if(!ConnectionPoolManager.getInstance().isPoolExists(this.alias)) {
this.registerPool();

}

For more alias usages, please refer to Proxool official website.

8.6. Other 503

http://proxool.sourceforge.net/configure.html

Apache ShardingSphere document, v5.2.1

8.6.10 Other The property settings in the configuration file do not take effect when in-
tegrating ShardingSphere with Spring Boot 2.x ?

Answer:

Note that the property name in the Spring Boot 2.x environment is constrained to allow only lower‐
case letters, numbers and short transverse lines, [a-z][0-9] and -. Reasons: In the Spring Boot
2.x environment, ShardingSphere binds the properties through Binder, and the unsatisfied property
name (such as camel case or underscore.) can throw a NullPointerException exception when the
property setting does not work to check the property value. Refer to the following error examples:
Underscore case: database_inline

spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.props.
algorithm-expression=ds-$->{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'database_inline': Initialization of bean failed; nested exception
is java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)
at org.apache.shardingsphere.spring.boot.registry.

AbstractAlgorithmProvidedBeanRegistry.
postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)

at org.springframework.beans.factory.support.
AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

Camel case：databaseInline

spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.props.
algorithm-expression=ds-$->{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'databaseInline': Initialization of bean failed; nested exception is
java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

8.6. Other 504

Apache ShardingSphere document, v5.2.1

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)
at org.apache.shardingsphere.spring.boot.registry.

AbstractAlgorithmProvidedBeanRegistry.
postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)

at org.springframework.beans.factory.support.
AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

From the exception stack, the AbstractAlgorithmProvidedBeanRegistry.registerBean
method calls PropertyUtil.containPropertyPrefix (environment, prefix) , and Prop-
ertyUtil.containPropertyPrefix (environment, prefix) determines that the configura‐
tion of the specified prefix does not exist, while themethod uses Binder in an unsatisfied property name
(such as camelcase or underscore) causing property settings does not to take effect.

8.6. Other 505

9
Downloads

9.1 Latest Releases

Apache ShardingSphere is released as source code tarballs with corresponding binary tarballs for con‐
venience. The downloads are distributed via mirror sites and should be checked for tampering using
GPG or SHA‐512.

9.1.1 Apache ShardingSphere - Version: 5.2.1 (Release Date: Oct 18th, 2022)

• Source Codes: SRC (ASC, SHA512)

• ShardingSphere‐JDBC Binary Distribution: TAR (ASC, SHA512)

• ShardingSphere‐Proxy Binary Distribution: TAR (ASC, SHA512)

• ShardingSphere‐Agent Binary Distribution: TAR (ASC, SHA512)

9.2 All Releases

Find all releases in the Archive repository. Find all incubator releases in the Archive incubator reposi‐
tory.

9.3 Verify the Releases

PGP signatures KEYS

It is essential that you verify the integrity of the downloaded files using the PGP or SHA signatures. The
PGP signatures can be verified using GPG or PGP. Please download the KEYS as well as the asc signature
files for relevant distribution. It is recommended to get these files from themain distribution directory
and not from the mirrors.

506

https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-src.zip
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-src.zip.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-src.zip.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-jdbc-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-jdbc-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-jdbc-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-proxy-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-proxy-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-proxy-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-agent-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-agent-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-agent-bin.tar.gz.sha512
https://archive.apache.org/dist/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://downloads.apache.org/shardingsphere/KEYS

Apache ShardingSphere document, v5.2.1

gpg -i KEYS

or

pgpk -a KEYS

or

pgp -ka KEYS

To verify the binaries/sources you can download the relevant asc files for it from main distribution
directory and follow the below guide.

gpg --verify apache-shardingsphere-********.asc apache-shardingsphere-*********

or

pgpv apache-shardingsphere-********.asc

or

pgp apache-shardingsphere-********.asc

9.3. Verify the Releases 507

	Overview
	What is ShardingSphere
	Introduction
	ShardingSphere-JDBC
	ShardingSphere-Proxy

	Product Features
	Advantages

	Design Philosophy
	Connect: Create database upper level standard
	Enhance: Database computing enhancement engine
	Pluggable: Building database function ecology
	L1 Kernel Layer
	L2 Feature Layer
	L3 Ecosystem Layer

	Deployment
	Using ShardingSphere-JDBC
	Using ShardingSphere-Proxy
	Hybrid Architecture

	Running Modes
	Standalone Mode
	Cluster Mode

	Roadmap
	Get Involved

	Quick Start
	ShardingSphere-JDBC
	Scenarios
	Limitations
	Requirements
	Procedure

	ShardingSphere-Proxy
	Scenarios
	Limitations
	Requirements
	Procedure

	Features
	Sharding
	Background
	Vertical Sharding
	Horizontal Sharding

	Challenges
	Goal
	Application Scenarios
	Mass data high concurrency in OLTP scenarios
	Mass data real-time analysis in OLAP scenarios

	Related References
	Core Concept
	Table
	Logic Table
	Actual Table
	Binding Table
	Broadcast data frame
	Single Table

	Data Nodes
	Uniform Distribution
	Customized Distribution

	Sharding
	Sharding key
	Sharding Algorithm
	Automatic Sharding Algorithm
	Customized Sharding Algorithm
	Sharding Strategy
	Mandatory Sharding routing
	Row Value Expressions
	Distributed Primary Key

	Limitations
	Stable Support
	Normal Queries
	Sub-query
	Pagination Query
	Shard keys included in operation expressions

	Experimental Support
	Sub-query
	Cross-database Associated query

	Do not Support
	CASE WHEN
	Pagination Query

	Appendix with SQL operator

	Distributed Transaction
	Background
	Challenge
	Goal
	How it works
	LOCAL Transaction
	XA Transaction
	BASE Transaction

	Application Scenarios
	Application Scenarios for ShardingSphere XA Transactions
	Application Scenarios for ShardingSphere BASE Transaction
	Application Scenarios for ShardingSphere LOCAL Transaction

	Related references
	Core Concept
	XA Protocol

	Limitations
	LOCAL Transaction
	Supported
	Unsupported

	XA Transaction
	Supported
	Unsupported

	BASE Transaction
	Supported
	Unsupported

	Appendix with SQL operator

	Readwrite-splitting
	Background
	Challenges
	Goal
	Application Scenarios
	Complex primary-secondary database architecture

	Related References
	Core Concept
	Primary database
	Secondary database
	Primary-Secondary synchronization
	Load balancer policy

	Limitations

	HA
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	High Availability Type
	Dynamic Read/Write Splitting

	Limitations
	Supported
	Not supported

	DB Gateway
	Background
	Challenges
	Goal
	Application Scenarios
	Core Concept
	SQL Dialect

	Limitations

	Traffic Governance
	Background
	Challenges
	Goal
	Application Scenarios
	Overloaded compute node protection
	Storage node traffic limit

	Core Concept
	Circuit Breaker
	Request Limit

	Data Migration
	Background
	Challenges
	Goal
	Application Scenarios
	Related References
	Core Concept
	Nodes
	Cluster
	Source
	Target
	Data Migration Process
	Stock Data
	Incremental Data

	Limitations
	Procedures Supported
	Procedures not supported

	Encryption
	Background
	Challenges
	Goal
	Application Scenarios
	Newly launched services
	Existing services

	Related References
	Core Concept
	Logic column
	Cipher column
	Query assistant column
	Plain column

	Limitations
	Appendix with SQL operator

	Shadow
	Background
	Challenges
	Goal
	Application Scenario
	Related References
	Core Concept
	Production Database
	Shadow Database
	Shadow Algorithm

	Limitations
	Hint based shadow algorithm
	Column based shadow algorithm

	Observability
	Background
	Challenges
	Goal
	Application Scenarios
	Monitoring panel
	Monitoring application performance
	Tracing application links

	Related References
	Core Concept
	Agent
	APM
	Tracing
	Metrics
	Logging

	User Manual
	ShardingSphere-JDBC
	YAML Configuration
	Overview
	Usage
	Import Maven Dependency
	YAML Format
	Create Data Source
	Use Data Source

	YAML Syntax Explanation
	Mode
	Parameters
	Standalone Mode
	Cluster Mode (recommended)

	Notes
	Sample
	Standalone Mode
	Cluster Mode (recommended)

	Related References

	Data Source
	Background
	Parameters
	Sample

	Rules
	Sharding
	Background
	Parameters
	Procedure
	Sample
	Related References

	Readwrite-splitting
	Background
	Parameters
	Static Readwrite-splitting
	Dynamic Readwrite-splitting
	Procedure
	Sample
	Related References

	Distributed Transaction
	Background
	Parameters
	Procedure
	Use LOCAL Mode
	Use XA Mode
	Use BASE Mode

	HA
	Background
	Parameters
	Sample
	Related References

	Encryption
	Background
	Parameters
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL-parser
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL Translator
	Configuration Item Explanation

	Mixed Rules
	Background
	Parameters
	Samples

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability

	JDBC Driver
	Background
	Parameters
	Driver Class Name
	URL Configuration

	Procedure
	Sample

	Java API
	Overview
	Usage
	Import Maven Dependency
	Create Data Source
	Use Data Source

	Mode
	Background
	Parameters
	Standalone Persist Configuration
	Cluster Persist Configuration

	Notes
	Procedure
	Introduce Maven Dependency

	Sample
	Standalone Mode
	Cluster Mode (Recommended)

	Related References

	Data Source
	Background
	Procedure
	1. Import Maven dependency.

	Sample

	Rules
	Sharding
	Background
	Parameters
	Root Configuration
	Sharding Table Configuration
	Sharding Auto Table Configuration
	Sharding Strategy Configuration
	Standard Sharding Strategy Configuration
	Complex Sharding Strategy Configuration
	Hint Sharding Strategy Configuration
	None Sharding Strategy Configuration
	Distributed Key Strategy Configuration
	Sharding audit Strategy Configuration
	Procedure
	Sample
	Related References

	Readwrite-splitting
	Background
	Parameters Explained
	Entry
	Primary-secondary Data Source Configuration
	Operating Procedures
	Configuration Examples
	References

	Distributed Transaction
	Root Configuration

	HA
	Background
	Parameters
	Root Configuration
	Data Source Configuration
	Detect Heartbeat Configuration
	Database Discovery Type Configuration
	Procedure
	Sample
	Related References

	Encryption
	Background
	Parameters
	Root Configuration
	Encrypt Table Rule Configuration
	Encrypt Column Rule Configuration
	Encrypt Algorithm Configuration
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Root Configuration
	Shadow Data Source Configuration
	Shadow Table Configuration
	Shadow Algorithm Configuration
	Procedure
	Sample
	Related References

	SQL Parser
	Background
	Parameters
	Cache option Configuration
	Procedure
	Sample
	Related References

	SQL Translator
	Root Configuration

	Mixed Rules
	Background
	Samples

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability

	Spring Boot Starter
	Overview
	Usage
	Import Maven Dependency
	Configure Spring Boot Properties
	Use Data Source

	Mode
	Parameters
	Standalone Mode
	Cluster Mode (recommended)

	Notes
	Sample
	Standalone Mode
	Cluster Mode (recommended)

	Related References

	Data Source
	Background information
	Use local datasource
	Use datasource JNDI

	Parameters Explanation
	Using local datasource
	Using JNDI datasource

	Configuration Examples
	Using local datasource
	Using JNDI datasource

	Rules
	Sharding
	Background
	Parameters
	Procedure
	Sample
	Related References

	Readwrite splitting
	Background
	Parameters Explained
	Static Readwrite-splitting
	Dynamic Readwrite-splitting
	Operating Procedure
	Configuration Examples
	References

	HA
	Background
	Parameters
	Procedure
	Sample
	Related References

	Encryption
	Background
	Parameters
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Procedure
	Sample
	Related References

	SQL Parser
	Background
	Parameters
	Procedure
	Sample
	Related References

	Mixed Rules
	Background
	Parameters
	Samples

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability

	Spring Namespace
	Overview
	Usage
	Import Maven Dependency
	Configure Spring Bean
	Configuration Item Explanation
	Example

	Use Data Source

	Mode
	Background
	Parameters Explained
	Standalone Mode
	Cluster Mode(Recommended)

	Tips:
	Operating Procedures
	Configuration Example
	Standalone Mode
	Cluster Mode

	Relevant References

	Data Source
	Background
	Configuration Examples

	Rules
	Sharding
	Background
	Parameters
	Procedure
	Sample
	Related References

	Readwrite-splitting
	Background
	Parameters Explained
	Operating Procedures
	Configuration Example
	Related References

	HA
	Background
	Parameters Explained
	Operating Procedures
	1. Introduce Maven dependency
	Configuration Example
	Related References

	Encryption
	Background
	Parameters
	Procedure
	Sample
	Related References

	Shadow DB
	Background
	Parameters
	Configuration Entry
	Configurable Properties:
	Shadow data source configuration:
	Shadow table configuration:
	Shadow algorithm configuration:
	Procedure
	Sample
	Related References

	SQL Parser
	Background
	Parameters
	Procedure
	Sample
	Related References

	Mixed Rules
	Background
	Samples

	Algorithm
	Sharding
	Encryption
	Read/Write Splitting Load Balancer
	Shadow DB
	High Availability

	Special API
	Sharding
	Hint
	Background
	Procedure
	Sample
	Sharding with Hint
	Hint Configuration
	Get HintManager
	Add Sharding Value
	Clean Hint Values
	Codes:
	Use special SQL comments
	Terms of Use
	Codes:
	Related References

	Readwrite Splitting
	Hint
	Background
	Procedure
	Sample
	Primary Route with Hint
	Use manual programming
	Get HintManager
	Configure Primary Database Route
	Clean Hint Value
	Codes:
	Use special SQL comments
	Terms of Use
	Codes:
	Related References

	Transaction
	Use Java API
	Background
	Prerequisites
	Procedure
	Sample

	Use Spring Boot Starter
	Background
	Procedure
	Sample
	Configure the transaction Type
	Use distributed transactions

	Use Spring Namespace
	Background
	Prerequisites
	Procedure
	Sample
	Configure the transaction manager
	Use distributed transactions

	Atomikos Transaction
	Background
	Procedure
	Sample
	Configure the transaction type
	Configure Atomikos
	Data Recovery

	Bitronix Transaction
	background
	Prerequisites
	Procedure
	Sample
	Configure the XA transaction type
	Configure Bitronix (Deletable)

	Narayana Transaction
	Background
	Prerequisites
	Procedure
	Sample
	Configure Narayana
	Set the XA transaction type

	Seata Transaction
	Background
	Procedure
	Sample
	Start Seata Server
	Create undo_log table
	Modify configuration

	Unsupported Items
	DataSource Interface
	Connection Interface
	Statement and PreparedStatement Interface
	ResultSet Interface
	JDBC 4.1

	ShardingSphere-Proxy
	Startup
	Use Binary Tar
	Background
	Premise
	Steps
	Sample

	Use Docker
	Background
	Notice
	Steps
	Configuration Example

	Build GraalVM Native Image(Alpha)
	Background
	Notice
	Premise
	Steps

	Use Helm
	Background
	Requirements
	Procedure
	Online installation
	Source installation
	Uninstall

	Parameters
	Governance-Node parameters
	Governance-Node ZooKeeper parameters
	Compute-Node ShardingSphere-Proxy parameters

	Sample

	Add dependencies
	Add Bitronix dependencies
	Add Bitronix dependencies
	jar file downloads

	Add Narayana dependencies
	Add Narayana dependencies
	jar file downloads

	Yaml Configuration
	Authorization
	Background
	Parameter
	Sample
	ALL_PERMITTED
	DATABASE_PERMITTED

	Related References

	Properties
	Background
	Parameters
	Sample

	Rules
	Background
	Parameters Explained
	Notice

	DistSQL
	Definition
	Related Concepts
	RDL
	RQL
	RAL
	RUL

	Impact on the System
	Before
	After

	Limitations
	How it works
	Related References
	Syntax
	Syntax Rule
	Identifier
	Literal

	RDL Syntax
	Resource Definition
	Syntax
	Parameters Explained
	Notes
	Example
	Rule Definition
	Sharding
	Syntax
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Example
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Single Table
	Definition
	Example
	Single Table Rule
	Readwrite-Splitting
	Syntax
	Parameters Explained
	Notes
	Example
	DB Discovery
	Syntax
	Parameters Explained
	Notes
	Example
	When creating a discoveryRule, create both discoveryType and discoveryHeartbeat
	Use the existing discoveryType and discoveryHeartbeat to create a discoveryRule
	Encrypt
	Syntax
	Parameters Explained
	Notes
	Example
	Shadow
	Syntax
	Parameters Explained
	Notes
	Example

	RQL Syntax
	Resource Query
	Syntax
	Return Value Description
	Example
	Rule Query
	Sharding
	Syntax
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Table Rule
	Sharding Algorithms
	Unused Sharding Algorithms
	Sharding auditors
	Unused Sharding Auditors
	Sharding key generators
	Unused Sharding Key Generators
	Default Sharding Strategy
	Sharding Table Nodes
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Single Table
	Syntax
	Return Value Description
	Single Table Rule
	Single Table
	Single Table Rule Count
	Example
	Readwrite-Splitting
	Syntax
	Return Value Description
	Example
	DB Discovery
	Syntax
	Return Value Description
	DB Discovery Rule
	DB Discovery Type
	DB Discovery Heartbeat
	Example
	Encrypt
	Syntax
	Return Value Description
	Example
	Shadow
	Syntax
	Return Value Description
	Shadow Rule
	Shadow Table Rule
	Shadow Algorithms
	Shadow Rule status
	Example

	RAL Syntax
	Hint
	Migration
	Circuit Breaker
	Global Rule
	Other
	Notice

	RUL Syntax
	SQL Utility

	Usage
	Pre-work
	Create Logic Database
	Resource Operation
	Rule Operation
	Notice

	Sharding
	Resource Operation
	Rule Operation

	Readwrite_splitting
	Resource Operation
	Rule Operation

	Encrypt
	Resource Operation
	Rule Operation

	DB Discovery
	Resource Operation
	Rule Operation

	Shadow
	Resource Operation
	Rule Operation

	Data Migration
	Introduction
	Build
	Background
	Prerequisites
	Procedure

	Manual
	MySQL user guide
	Environment
	Authority required
	Complete procedure example
	Prerequisite
	Procedure

	PostgreSQL user guide
	Environment
	Authority required
	Complete procedure example
	Prerequisite
	Procedure

	openGauss user guide
	Environment
	Authority required
	Complete procedure example
	Prerequisite
	Procedure

	Observability
	Compile source code
	Agent configuration
	Usage in ShardingSphere-Proxy
	Using via a non-container environment
	Use via container environment

	Metrics

	Optional Plugins
	Session Management
	Usage
	View Session
	Kill Session

	Common Configuration
	Properties Configuration
	Background
	Parameters
	Procedure
	Sample

	Builtin Algorithm
	Introduction
	Usage
	Metadata Repository
	Background
	Parameters
	Database Repository
	ZooKeeper Repository
	Etcd Repository
	Nacos Repository
	Consul Repository

	Procedure
	Sample

	Sharding Algorithm
	Background
	Parameters
	Auto Sharding Algorithm
	Modulo Sharding Algorithm
	Modulo sharding algorithm provided by CosId
	Hash Modulo Sharding Algorithm
	Volume Based Range Sharding Algorithm
	Boundary Based Range Sharding Algorithm
	Auto Interval Sharding Algorithm
	Standard Sharding Algorithm
	Inline Sharding Algorithm
	Interval Sharding Algorithm
	Fixed interval sharding algorithm provided by CosId
	Snowflake key-based fixed interval sharding algorithm provided by CosId
	Complex Sharding Algorithm
	Complex Inline Sharding Algorithm
	Hint Sharding Algorithm
	Hint Inline Sharding Algorithm
	Class Based Sharding Algorithm

	Procedure
	Sample
	Related References

	Key Generate Algorithm
	Background
	Parameters
	Snowflake
	Nano ID
	UUID
	CosId
	CosId-Snowflake

	Procedure
	Sample

	Load Balance Algorithm
	Background
	Parameters
	Round-robin Load Balance Algorithm
	Random Load Balance Algorithm
	Weight Load Balance Algorithm
	Transaction Random Load Balance Algorithm
	Transaction Round-robin Load Balance Algorithm
	Transaction Weight Load Balance Algorithm
	Fixed Replica Random Load Balance Algorithm
	Fixed Replica Round-robin Load Balance Algorithm
	Fixed Replica Weight Load Balance Algorithm
	Fixed Primary Load Balance Algorithm

	Procedure
	Sample
	Related References

	Encryption Algorithm
	Background
	Parameters
	MD5 Encrypt Algorithm
	AES Encrypt Algorithm
	RC4 Encrypt Algorithm
	SM3 Encrypt Algorithm
	SM4 Encrypt Algorithm

	Operating Procedures
	Configuration Examples
	Related References

	Shadow Algorithm
	Background
	Parameters
	Column-based shadow algorithm
	Column value matching shadow algorithm
	Column-based Regex matching algorithm
	Hint-based shadow algorithm
	Simple Hint matching shadow algorithm

	Configuration sample

	SQL Translator
	Native SQL translator
	JooQ SQL translator

	Sharding Audit Algorithm
	Background
	Parameters
	DML_SHARDING_CONDITIONS algorithm

	Procedure
	Sample

	Error Code
	SQL Error Code
	Kernel Exception
	Meta data
	Data
	Syntax
	Connection
	Transaction
	Lock
	Audit
	Cluster
	Migration
	DistSQL

	Feature Exception
	Data Sharding
	Readwrite Splitting
	Database HA
	SQL Dialect Translator
	Traffic Management
	Data Encrypt
	Shadow Database

	Other Exception

	Server Error Code

	Dev Manual
	Mode
	StandalonePersistRepository
	Fully-qualified class name
	Definition
	Implementation classes

	ClusterPersistRepository
	Fully-qualified class name
	Definition
	Implementation classes

	GovernanceWatcher
	Fully-qualified class name
	Definition
	Implementation classes

	Configuration
	RuleBuilder
	Fully-qualified class name
	Definition
	Implementation classes

	YamlRuleConfigurationSwapper
	Fully-qualified class name
	Definition
	Implementation classes

	ShardingSphereYamlConstruct
	Fully-qualified class name
	Definition
	Implementation classes

	Kernel
	SQLRouter
	Fully-qualified class name
	Definition
	Implementation classes

	SQLRewriteContextDecorator
	Fully-qualified class name
	Definition
	Implementation classes

	SQLExecutionHook
	Fully-qualified class name
	Definition
	Implementation classes

	ResultProcessEngine
	Fully-qualified class name
	Definition
	Implementation classes

	DataSource
	DatabaseType
	Fully-qualified class name
	Definition
	Implementation classes

	DialectSchemaMetaDataLoader
	Fully-qualified class name
	Definition
	Implementation classes

	DataSourcePoolMetaData
	Fully-qualified class name
	Definition
	Implementation classes

	DataSourcePoolActiveDetector
	Fully-qualified class name
	Definition
	Implementation classes

	SQL Parser
	DatabaseTypedSQLParserFacade
	Fully-qualified class name
	Definition
	Implementation classes

	SQLVisitorFacade
	Fully-qualified class name
	Definition
	Implementation classes

	Proxy
	DatabaseProtocolFrontendEngine
	Fully-qualified class name
	Definition
	Implementation classes

	AuthorityProvideAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Data Sharding
	ShardingAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	KeyGenerateAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	ShardingAuditAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	DatetimeService
	Fully-qualified class name
	Definition
	Implementation classes

	Readwrite-splitting
	ReadQueryLoadBalanceAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	HA
	DatabaseDiscoveryProviderAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Distributed Transaction
	ShardingSphereTransactionManager
	Fully-qualified class name
	Definition
	Implementation classes

	XATransactionManagerProvider
	Fully-qualified class name
	Definition
	Implementation classes

	XADataSourceDefinition
	Fully-qualified class name
	Definition
	Implementation classes

	DataSourcePropertyProvider
	Fully-qualified class name
	Definition
	Implementation classes

	SQL Checker
	SQLChecker
	Fully-qualified class name
	Definition
	Implementation classes

	Encryption
	EncryptAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Shadow DB
	ShadowAlgorithm
	Fully-qualified class name
	Definition
	Implementation classes

	Observability
	PluginBootService
	Fully-qualified class name
	Definition
	Implementation classes

	PluginDefinitionService
	Fully-qualified class name
	Definition
	Implementation classes

	Test Manual
	Integration Test
	Module Test
	Performance Test
	Sysbench Test
	Integration Test
	Design
	Test case
	Test environment
	Test engine

	User Guide
	Test case configuration
	Environment configuration
	Native environment configuration
	Docker environment configuration

	Run the test engine
	Configure the running environment of the test engine
	Run debugging mode
	Run Docker mode
	Notice

	Performance Test
	SysBench ShardingSphere-Proxy Empty Rule Performance Test
	Objectives
	Set up the test environment
	Server information
	Database
	Stress testing tool
	ShardingSphere-Proxy
	bin/start.sh
	config.yaml

	Test phase
	Environment setup
	Stress testing command
	Stress testing report analysis
	Noticeable features

	BenchmarkSQL ShardingSphere-Proxy Sharding Performance Test
	Objective
	Method
	Fine tuning to test tools
	Remove the foreign key and extraHistID

	Stress testing environment or parameter recommendations
	It is recommended to run ShardingSphere using Java 17
	ShardingSphere data sharding recommendations
	PostgreSQL JDBC URL parameter recommendations
	ShardingSphere-Proxy server.yaml parameter recommendations

	Appendix
	BenchmarkSQL data sharding reference configuration

	BenchmarkSQL 5.0 PostgreSQL statement list
	Create tables
	Create indexes
	New Order business
	Payment business
	Order Status business
	Stock level business
	Delivery BG business

	Module Test
	SQL Parser Test
	Prepare Data
	SQL Data
	Assert Data

	SQL Rewrite Test
	Target
	Test

	Scaling Integration Test
	Objectives
	Test environment
	User guide
	Environment setup
	Test case
	Running the test case
	Native environment setup
	Docker environment setup

	Reference
	Database Compatibility
	Database Gateway
	Management
	Data Structure in Registry Center
	/rules
	/props
	/metadata/databaseName/versions/{versionNumber}/dataSources
	/metadata/databaseName/versions/{versionNumber}/rules
	/metadata/databaseName/schemas/{schemaName}/tables
	/nodes/compute_nodes
	/nodes/storage_nodes

	Sharding
	SQL Parser
	SQL Route
	SQL Rewrite
	SQL Execution
	Result Merger
	Query Optimization
	Parse Engine
	Abstract Syntax Tree
	SQL Parser Engine
	Iteration
	Features
	API Usage

	Route Engine
	Sharding Route
	Direct Route
	Standard Route
	Cartesian Route

	Broadcast Route
	Full database and table route
	Full database route
	Full instance route
	Unicast Route
	Block Route

	Rewrite Engine
	Rewriting for Correctness
	Identifier Rewriting
	Column Derivation
	Pagination Correction
	Batch Split
	Rewriting for Optimization
	Single Node Optimization
	Stream Merger Optimization

	Execute Engine
	Connection Mode
	MEMORY_STRICTLY Mode
	CONNECTION_STRICTLY Mode

	Automatic Execution Engine
	Preparation Phrase
	Execution Phrase

	Merger Engine
	Traversal Merger
	Order-by Merger
	Group-by Merger
	Aggregation Merger
	Pagination Merger

	Transaction
	Navigation
	XA Transaction
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Seata BASE transaction
	Init Seata Engine
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Data Migration
	Explanation
	Execution Stage Explained
	Preparation
	Stock data migration
	The Synchronization of incremental data
	Traffic Switching

	References

	Encryption
	Overall Architecture
	Encryption Rules
	Encryption Process
	Detailed Solution

	New Business
	Online Business Transformation
	The advantages of Middleware encryption service
	Solution

	EncryptAlgorithm

	Shadow
	How it works
	DML sentence
	DDL sentence

	References

	Oberservability
	How it works

	DistSQL
	Syntax
	RDL Syntax
	Resource Definition
	ADD RESOURCE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	ALTER RESOURCE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links
	DROP RESOURCE
	Description
	Syntax
	Supplement
	Example
	Reserved word
	Related links

	Rule Definition
	Database Discovery
	CREATE DB_DISCOVERY RULE
	Description
	Syntax
	Supplement
	Example
	When creating a discoveryRule, create both discoveryType and discoveryHeartbeat
	Use the existing discoveryType and discoveryHeartbeat to create a discoveryRule
	Reserved word
	Related links
	CREATE DB_DISCOVERY TYPE
	Description
	Syntax
	Supplement
	Example
	Create discoveryType
	Reserved word
	Related links
	CREATE DB_DISCOVERY HEARTBEAT
	Description
	Syntax
	Supplement
	Example
	Create HEARTBEAT
	Reserved word
	Related links
	Encrypt
	CREATE ENCRYPT RULE
	Description
	Syntax
	Supplement
	Example
	Create a encrypt rule
	Reserved word
	Related links
	Readwrite-Splitting
	CREATE READWRITE_SPLITTING RULE
	Description
	Syntax
	Supplement
	Example
	Create a statics readwrite splitting rule
	Create a dynamic readwrite splitting rule
	Reserved word
	Related links
	Shadow
	CREATE SHADOW RULE
	Description
	Syntax
	Supplement
	Example
	Create a shadow rule
	Reserved word
	Related links
	CREATE SHADOW ALGORITHM
	Description
	Syntax
	Supplement
	Example
	Create a shadow algorithm
	Reserved word
	Related links
	CREATE DEFAULT SHADOW ALGORITHM
	Description
	Syntax
	Example
	Create a shadow algorithm
	Reserved word
	Related links
	Sharding
	CREATE SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	1.Standard sharding table rule
	2.Auto sharding table rule
	Reserved word
	Related links
	ALTER SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	1.Standard sharding table rule
	2.Auto sharding table rule
	Reserved word
	Related links
	CREATE SHARDING ALGORITHM
	Description
	Syntax
	Supplement
	Example
	1.Create sharding algorithms
	Reserved word
	Related links
	CREATE DEFAULT SHARDING STRATEGY
	Description
	Syntax
	Supplement
	Example
	1.Create a default sharding strategy by using an existing sharding algorithm
	2.Create sharding algorithm and default sharding table strategy at the same time
	Reserved word
	Related links
	CREATE SHARDING BINDING TABLE RULE
	Description
	Syntax
	Supplement
	Example
	1.Create a binding table rule
	2.Create multiple binding table rules
	Reserved word
	Related links
	CREATE SHARDING BROADCAST TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Create sharding broadcast table rule
	Reserved word
	Related links
	CREATE SHARDING AUDITOR
	Description
	Syntax
	Supplement
	Example
	Create a sharding auditor
	Reserved word
	Related links
	CREATE SHARDING KEY GENERATOR
	Description
	Syntax
	Supplement
	Example
	Create a distributed primary key generator
	Reserved word
	Related links
	Single Table
	ALTER DEFAULT SINGLE TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Alter a default single table rule
	Reserved word
	Related links
	CREATE DEFAULT SINGLE TABLE RULE
	Description
	Syntax
	Supplement
	Example
	Create a default single table rule
	Reserved word
	Related links
	DROP DEFAULT SINGLE TABLE RULE
	Description
	Syntax
	Example
	drop a default single table rule
	Reserved word
	Related links

	RQL Syntax
	Resource Query
	SHOW DATABASE RESOURCES
	Description
	Syntax
	Supplement
	Return Value Description
	SHOW UNUSED RESOURCE
	Description
	Syntax
	Supplement
	Return Value Description
	Example
	SHOW RULES USED RESOURCE
	Description
	Syntax
	Supplement
	Return Value Description
	Example

	Rule Query
	Sharding
	SHOW SHARDING TABLE RULE
	Description
	Syntax
	Supplement
	Reserved word
	Related links
	SHOW SHARDING ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links
	SHOW UNUSED SHARDING ALGORITHMS
	Description
	Syntax
	Supplement
	Return value description
	Example
	Reserved word
	Related links

	RAL Syntax
	Reserved word
	RDL
	Basic Reserved Words
	Resource Definition
	Rule Definition
	SHARDING
	Single Table
	Readwrite Splitting
	Encrypt
	Database Discovery
	Shadow

	RQL
	Basic Reserved Words
	Resource Definition
	Rule Definition
	SHARDING

	Supplement

	Architecture

	FAQ
	JDBC
	JDBC Why there may be an error when configure both shardingsphere-jdbc-spring-boot-starter and a spring-boot-starter of certain datasource pool (such as druid)?
	JDBC Why is xsd unable to be found when Spring Namespace is used?
	JDBC Found a JtaTransactionManager in spring boot project when integrating with XAtransaction.
	JDBC The tableName and columnName configured in yaml or properties leading incorrect result when loading Oracle metadata？

	Proxy
	Proxy In Windows environment, could not find or load main class org.apache.shardingsphere.proxy.Bootstrap, how to solve it?
	Proxy How to add a new logic database dynamically when use ShardingSphere-Proxy?
	Proxy How to use suitable database tools connecting ShardingSphere-Proxy?
	Proxy When using a client such as Navicat to connect to ShardingSphere-Proxy, if ShardingSphere-Proxy does not create a database or does not add a resource, the client connection will fail?

	Sharding
	Sharding How to solve Cloud not resolve placeholder … in string value … error?
	Sharding Why does float number appear in the return result of inline expression?
	Sharding If sharding database is partial, should tables without sharding database & table configured in sharding rules?
	Sharding When generic Long type SingleKeyTableShardingAlgorithm is used, why does the ClassCastException: Integer can not cast to Long exception appear?
	[Sharding:raw-latex:PROXY] When implementing the StandardShardingAlgorithm custom algorithm, the specific type of Comparable is specified as Long, and the field type in the database table is bigint, a ClassCastException: Integer can not cast to Long exception occurs.
	Sharding Why is the default distributed auto-augment key strategy provided by ShardingSphere not continuous and most of them end with even numbers?
	Sharding How to allow range query with using inline sharding strategy (BETWEEN AND, >, <, >=, <=)?
	Sharding Why does my custom distributed primary key do not work after implementing KeyGenerateAlgorithm interface and configuring type property?
	Sharding In addition to internal distributed primary key, does ShardingSphere support other native auto-increment keys?

	Encryption
	Encryption How to solve that data encryption can’t work with JPA?

	DistSQL
	DistSQL How to set custom JDBC connection properties or connection pool properties when adding a data source using DistSQL?
	DistSQL How to solve Resource [xxx] is still used by [SingleTableRule]. exception when dropping a data source using DistSQL?
	DistSQL How to solve Failed to get driver instance for jdbcURL=xxx. exception when adding a data source using DistSQL?

	Other
	Other How to debug when SQL can not be executed rightly in ShardingSphere?
	Other Why do some compiling errors appear? Why did not the IDEA index the generated codes?
	Other In SQLSever and PostgreSQL, why does the aggregation column without alias throw exception?
	Other Why does Oracle database throw “Order by value must implements Comparable” exception when using Timestamp Order By?
	Other In Windows environment,when cloning ShardingSphere source code through Git, why prompt filename too long and how to solve it?
	Other How to solve Type is required error?
	Other How to speed up the metadata loading when service starts up?
	Other The ANTLR plugin generates codes in the same level directory as src, which is easy to commit by mistake. How to avoid it?
	Other Why is the database sharding result not correct when using Proxool?
	Other The property settings in the configuration file do not take effect when integrating ShardingSphere with Spring Boot 2.x ?

	Downloads
	Latest Releases
	Apache ShardingSphere - Version: 5.2.1 (Release Date: Oct 18th, 2022)

	All Releases
	Verify the Releases

