
Apache ShardingSphere document
v5.2.1

Apache ShardingSphere

2022年 10月 18日

Contents

1 概览 1
1.1 什么是 ShardingSphere . 1

1.1.1 介绍 . 1
ShardingSphere‐JDBC . 1
ShardingSphere‐Proxy . 1

1.1.2 产品功能 . 2
1.1.3 产品优势 . 2

1.2 设计哲学 . 3
1.2.1 连接：打造数据库上层标准 . 3
1.2.2 增强：数据库计算增强引擎 . 3
1.2.3 可插拔：构建数据库功能生态 . 4

L1内核层 . 4
L2功能层 . 4
L3生态层 . 5

1.3 部署形态 . 5
1.3.1 ShardingSphere‐JDBC独立部署 . 5
1.3.2 ShardingSphere‐Proxy独立部署 . 6
1.3.3 混合部署架构 . 7

1.4 运行模式 . 8
1.4.1 单机模式 . 8
1.4.2 集群模式 . 8

1.5 线路规划 . 8
1.6 如何参与 . 9

2 快速入门 10
2.1 ShardingSphere‐JDBC . 10

2.1.1 应用场景 . 10
2.1.2 使用限制 . 10
2.1.3 前提条件 . 10
2.1.4 操作步骤 . 10

2.2 ShardingSphere‐Proxy . 12

i

2.2.1 应用场景 . 12
2.2.2 使用限制 . 12
2.2.3 前提条件 . 12
2.2.4 操作步骤 . 13

3 功能 15
3.1 数据分片 . 15

3.1.1 背景 . 15
垂直分片 . 16
水平分片 . 17

3.1.2 挑战 . 17
3.1.3 目标 . 18
3.1.4 应用场景 . 18

海量数据高并发的 OLTP场景 . 18
海量数据实时分析 OLAP场景 . 18

3.1.5 相关参考 . 18
3.1.6 核心概念 . 18

表 . 18
数据节点 . 20
分片 . 21
行表达式 . 22
分布式主键 . 22

3.1.7 使用限制 . 23
稳定支持 . 23
实验性支持 . 24
不支持 . 25

3.1.8 附录 . 26
3.2 分布式事务 . 26

3.2.1 背景 . 26
3.2.2 挑战 . 27
3.2.3 目标 . 27
3.2.4 原理介绍 . 27

LOCAL事务 . 27
XA事务 . 27
BASE事务 . 28

3.2.5 应用场景 . 29
ShardingSphere XA事务使用场景 . 29
ShardingSphere BASE事务使用场景 . 29
ShardingSphere LOCAL事务使用场景 . 29

3.2.6 相关参考 . 29
3.2.7 核心概念 . 30

XA协议 . 30
3.2.8 使用限制 . 30

LOCAL事务 . 30
XA事务 . 30

ii

BASE事务 . 31
3.2.9 附录 . 31

3.3 读写分离 . 31
3.3.1 背景 . 31
3.3.2 挑战 . 32
3.3.3 目标 . 33
3.3.4 应用场景 . 33

复杂的主从数据库架构 . 33
3.3.5 相关参考 . 33
3.3.6 核心概念 . 34

主库 . 34
从库 . 34
主从同步 . 34
负载均衡策略 . 34

3.3.7 使用限制 . 34
3.4 高可用 . 34

3.4.1 背景 . 34
3.4.2 挑战 . 35
3.4.3 目标 . 35
3.4.4 应用场景 . 35
3.4.5 相关参考 . 36
3.4.6 核心概念 . 36

高可用类型 . 36
动态读写分离 . 36

3.4.7 使用限制 . 36
支持项 . 36
不支持项 . 36

3.5 数据库网关 . 36
3.5.1 背景 . 36
3.5.2 挑战 . 37
3.5.3 目标 . 37
3.5.4 应用场景 . 37
3.5.5 核心概念 . 37

SQL方言 . 37
3.5.6 使用限制 . 37

3.6 流量治理 . 37
3.6.1 背景 . 37
3.6.2 挑战 . 38
3.6.3 目标 . 38
3.6.4 应用场景 . 38

计算节点过载保护 . 38
存储节点限流 . 38

3.6.5 核心概念 . 38
熔断 . 38
限流 . 38

iii

3.7 数据迁移 . 39
3.7.1 背景 . 39
3.7.2 挑战 . 39
3.7.3 目标 . 39
3.7.4 应用场景 . 39
3.7.5 相关参考 . 39
3.7.6 核心概念 . 40

节点 . 40
集群 . 40
源端 . 40
目标端 . 40
数据迁移作业 . 40
存量数据 . 40
增量数据 . 40

3.7.7 使用限制 . 40
支持项 . 40
不支持项 . 41

3.8 数据加密 . 41
3.8.1 背景 . 41
3.8.2 挑战 . 41
3.8.3 目标 . 42
3.8.4 应用场景 . 42

新上线业务 . 42
成熟业务 . 42

3.8.5 相关参考 . 42
3.8.6 核心概念 . 42

逻辑列 . 42
密文列 . 42
查询辅助列 . 43
明文列 . 43

3.8.7 使用限制 . 43
3.8.8 附录 . 43

3.9 影子库 . 43
3.9.1 背景 . 43
3.9.2 挑战 . 43
3.9.3 目标 . 44
3.9.4 应用场景 . 44
3.9.5 相关参考 . 44
3.9.6 核心概念 . 44

生产库 . 44
影子库 . 44
影子算法 . 44

3.9.7 使用限制 . 45
基于Hint的影子算法 . 45
基于列的影子算法 . 45

iv

3.10 可观察性 . 45
3.10.1 背景 . 45
3.10.2 挑战 . 47
3.10.3 目标 . 47
3.10.4 应用场景 . 48

监控仪表盘 . 48
应用性能监控 . 48
应用链路追踪 . 48

3.10.5 相关参考 . 48
3.10.6 核心概念 . 48

Agent . 48
APM . 49
Tracing . 49
Metrics . 49
Logging . 49

4 用户手册 50
4.1 ShardingSphere‐JDBC . 50

4.1.1 YAML配置 . 50
简介 . 50
使用步骤 . 51
语法说明 . 52
模式配置 . 52
数据源配置 . 54
规则配置 . 55
算法配置 . 73
JDBC驱动 . 75

4.1.2 Java API . 77
简介 . 77
使用步骤 . 77
模式配置 . 78
数据源配置 . 81
规则配置 . 82
算法配置 . 103

4.1.3 Spring Boot Starter . 105
简介 . 105
使用步骤 . 105
模式配置 . 106
数据源配置 . 107
规则配置 . 109
算法配置 . 125

4.1.4 Spring命名空间 . 127
简介 . 127
使用步骤 . 127
模式配置 . 128

v

数据源配置 . 131
规则配置 . 132
算法配置 . 154

4.1.5 特殊 API . 155
数据分片 . 155
读写分离 . 158
分布式事务 . 160

4.1.6 不支持项 . 171
DataSource接口 . 171
Connection接口 . 171
Statement和 PreparedStatement接口 . 171
ResultSet接口 . 171
JDBC 4.1 . 172

4.2 ShardingSphere‐Proxy . 172
4.2.1 启动手册 . 172

使用二进制发布包 . 172
使用 Docker . 174
构建 GraalVM Native Image(Alpha) . 175
使用Helm . 178
添加依赖 . 185

4.2.2 YAML配置 . 187
权限 . 187
属性配置 . 188
规则配置 . 189

4.2.3 DistSQL . 189
定义 . 189
相关概念 . 190
对系统的影响 . 190
使用限制 . 191
原理介绍 . 191
相关参考 . 192
语法 . 192
使用 . 236

4.2.4 数据迁移 . 243
简介 . 243
运行部署 . 243
使用手册 . 247

4.2.5 可观察性 . 259
源码编译 . 259
agent配置 . 260
ShardingSphere‐Proxy中使用 . 263
Metrics . 264

4.2.6 可选插件 . 265
4.2.7 会话管理 . 267

相关操作 . 267

vi

4.3 通用配置 . 268
4.3.1 属性配置 . 268

背景信息 . 268
参数解释 . 268
操作步骤 . 268
配置示例 . 269

4.3.2 内置算法 . 269
简介 . 269
使用方式 . 269
元数据持久化仓库 . 269
分片算法 . 272
分布式序列算法 . 277
负载均衡算法 . 280
加密算法 . 283
影子算法 . 285
SQL翻译 . 287
分片审计算法 . 288

4.4 错误码 . 288
4.4.1 SQL错误码 . 288

内核异常 . 289
功能异常 . 292
其他异常 . 294

4.4.2 服务器错误码 . 294

5 开发者手册 296
5.1 运行模式 . 296

5.1.1 StandalonePersistRepository . 296
全限定类名 . 296
定义 . 296
已知实现 . 296

5.1.2 ClusterPersistRepository . 297
全限定类名 . 297
定义 . 297
已知实现 . 297

5.1.3 GovernanceWatcher . 297
全限定类名 . 297
定义 . 297
已知实现 . 298

5.2 配置 . 299
5.2.1 RuleBuilder . 299

全限定类名 . 299
定义 . 299
已知实现 . 300

5.2.2 YamlRuleConfigurationSwapper . 301
全限定类名 . 301

vii

定义 . 301
已知实现 . 302

5.2.3 ShardingSphereYamlConstruct . 303
全限定类名 . 303
定义 . 303
已知实现 . 303

5.3 内核 . 303
5.3.1 SQLRouter . 303

全限定类名 . 303
定义 . 303
已知实现 . 304

5.3.2 SQLRewriteContextDecorator . 304
全限定类名 . 304
定义 . 304
已知实现 . 304

5.3.3 SQLExecutionHook . 304
全限定类名 . 304
定义 . 305
已知实现 . 305

5.3.4 ResultProcessEngine . 305
全限定类名 . 305
定义 . 305
已知实现 . 305

5.4 数据源 . 305
5.4.1 DatabaseType . 305

全限定类名 . 305
定义 . 306
已知实现 . 306

5.4.2 DialectSchemaMetaDataLoader . 306
全限定类名 . 306
定义 . 306
已知实现 . 307

5.4.3 DataSourcePoolMetaData . 307
全限定类名 . 307
定义 . 307
已知实现 . 307

5.4.4 DataSourcePoolActiveDetector . 308
全限定类名 . 308
定义 . 308
已知实现 . 308

5.5 SQL解析 . 308
5.5.1 DatabaseTypedSQLParserFacade . 308

全限定类名 . 308
定义 . 308
已知实现 . 309

viii

5.5.2 SQLVisitorFacade . 309
全限定类名 . 309
定义 . 309
已知实现 . 310

5.6 代理端 . 310
5.6.1 DatabaseProtocolFrontendEngine . 310

全限定类名 . 310
定义 . 310
已知实现 . 310

5.6.2 AuthorityProvideAlgorithm . 311
全限定类名 . 311
定义 . 311
已知实现 . 311

5.7 数据分片 . 311
5.7.1 ShardingAlgorithm . 311

全限定类名 . 311
定义 . 311
已知实现 . 312

5.7.2 KeyGenerateAlgorithm . 313
全限定类名 . 313
定义 . 313
已知实现 . 313

5.7.3 ShardingAuditAlgorithm . 313
全限定类名 . 313
定义 . 313
已知实现 . 313

5.7.4 DatetimeService . 314
全限定类名 . 314
定义 . 314
已知实现 . 314

5.8 读写分离 . 314
5.8.1 ReadQueryLoadBalanceAlgorithm . 314

全限定类名 . 314
定义 . 314
已知实现 . 315

5.9 高可用 . 316
5.9.1 DatabaseDiscoveryProviderAlgorithm . 316

全限定类名 . 316
定义 . 316
已知实现 . 316

5.10 分布式事务 . 316
5.10.1 ShardingSphereTransactionManager . 316

全限定类名 . 316
定义 . 316
已知实现 . 317

ix

5.10.2 XATransactionManagerProvider . 317
全限定类名 . 317
定义 . 317
已知实现 . 317

5.10.3 XADataSourceDefinition . 318
全限定类名 . 318
定义 . 318
已知实现 . 318

5.10.4 DataSourcePropertyProvider . 318
全限定类名 . 318
定义 . 319
已知实现 . 319

5.11 SQL检查 . 319
5.11.1 全限定类名 . 319
5.11.2 定义 . 319
5.11.3 已知实现 . 319

5.12 数据加密 . 319
5.12.1 EncryptAlgorithm . 319

全限定类名 . 319
定义 . 320
已知实现 . 320

5.13 影子库 . 320
5.13.1 ShadowAlgorithm . 320

全限定类名 . 320
定义 . 320
已知实现 . 321

5.14 可观察性 . 321
5.14.1 PluginBootService . 321

全限定类名 . 321
定义 . 321
已知实现 . 321

5.14.2 PluginDefinitionService . 322
全限定类名 . 322
定义 . 322
已知实现 . 322

6 测试手册 323
6.1 整合测试 . 323
6.2 模块测试 . 323
6.3 性能测试 . 323
6.4 集成测试 . 323

6.4.1 设计 . 323
测试用例 . 324
测试环境 . 324
测试引擎 . 324

x

6.4.2 使用指南 . 325
测试用例配置 . 325
环境配置 . 326
运行测试引擎 . 326

6.5 性能测试 . 328
6.5.1 Sysbench ShardingSphere Proxy空 Rules性能测试 328

测试目的 . 328
测试环境搭建 . 328
测试阶段 . 330

6.5.2 BenchmarkSQL ShardingSphere Proxy分片性能测试 331
测试目的 . 331
测试方法 . 331
测试工具微调 . 332
压测环境或参数建议 . 332
附录 . 334
BenchmarkSQL 5.0 PostgreSQL语句列表 . 336

6.6 模块测试 . 345
6.6.1 SQL解析测试 . 345

数据准备 . 345
6.6.2 SQL改写测试 . 346

目标 . 346
6.7 Scaling集成测试 . 348

6.7.1 测试目的 . 348
6.7.2 测试环境 . 348
6.7.3 使用指南 . 348

环境配置 . 348
测试用例 . 348
运行测试用例 . 349

7 技术参考 350
7.1 数据兼容性 . 350
7.2 数据库网关 . 351
7.3 管控 . 351

7.3.1 注册中心数据结构 . 351
/rules . 352
/props . 353
/metadata/databaseName/versions/{versionNumber}/dataSources 353
/metadata/databaseName/versions/{versionNumber}/rules 354
/metadata/databaseName/schemas/{schemaName}/tables 354
/nodes/compute_nodes . 354
/nodes/storage_nodes . 355

7.4 数据分片 . 355
7.4.1 SQL解析 . 356
7.4.2 SQL路由 . 356
7.4.3 SQL改写 . 356

xi

7.4.4 SQL执行 . 356
7.4.5 结果归并 . 356
7.4.6 查询优化 . 356
7.4.7 解析引擎 . 356

抽象语法树 . 356
SQL解析引擎 . 357

7.4.8 路由引擎 . 361
分片路由 . 361
广播路由 . 363

7.4.9 改写引擎 . 365
正确性改写 . 365
优化改写 . 370

7.4.10 执行引擎 . 371
连接模式 . 371
自动化执行引擎 . 372

7.4.11 归并引擎 . 375
遍历归并 . 376
排序归并 . 376
分组归并 . 377
聚合归并 . 380
分页归并 . 380

7.5 分布式事务 . 381
7.5.1 导览 . 381
7.5.2 XA事务 . 381

开启全局事务 . 382
执行真实分片 SQL . 382
提交或回滚事务 . 383

7.5.3 Seata柔性事务 . 383
引擎初始化 . 384
开启全局事务 . 384
执行真实分片 SQL . 384
提交或回滚事务 . 385

7.6 数据迁移 . 385
7.6.1 原理说明 . 385
7.6.2 执行阶段说明 . 386

准备阶段 . 386
存量数据迁移阶段 . 386
增量数据同步阶段 . 386
流量切换阶段 . 386

7.6.3 相关参考 . 386
7.7 数据加密 . 386

7.7.1 处理流程详解 . 386
整体架构 . 387
加密规则 . 387
加密处理过程 . 389

xii

7.7.2 解决方案详解 . 391
新上线业务 . 391
已上线业务改造 . 392

7.7.3 中间件加密服务优势 . 395
7.7.4 加密算法解析 . 396

EncryptAlgorithm . 396
7.8 影子库 . 396

7.8.1 原理介绍 . 396
DML语句 . 397
DDL语句 . 397

7.8.2 相关参考 . 398
7.9 可观察性 . 398

7.9.1 原理说明 . 398
7.10 DistSQL . 399

7.10.1 语法 . 399
RDL语法 . 399
RQL语法 . 437
RAL语法 . 452
保留字 . 452

7.11 基础架构 . 454

8 FAQ 456
8.1 JDBC . 456

8.1.1 JDBC 为什么配置了某个数据连接池的 spring‐boot‐starter（比如 druid）和
shardingsphere‐jdbc‐spring‐boot‐starter时，系统启动会报错？ 456

8.1.2 JDBC使用 Spring命名空间时找不到 xsd? . 456
8.1.3 JDBC引入 shardingsphere-transaction-xa-core后，如何避免 spring‐

boot自动加载默认的 JtaTransactionManager？ 456
8.2 Proxy . 457

8.2.1 Proxy Windows 环境下，运行 ShardingSphere‐Proxy，找不到或无法加载主类
org.apache.shardingsphere.proxy.Bootstrap，如何解决？ 457

8.2.2 Proxy在使用 ShardingSphere‐Proxy的时候，如何动态在添加新的逻辑库？ . . 457
8.2.3 Proxy 在使用 ShardingSphere‐Proxy 时，怎么使用合适的工具连接到

ShardingSphere‐Proxy？ . 458
8.2.4 Proxy 使用 Navicat 等第三方数据库工具连接 ShardingSphere‐Proxy 时，如果

ShardingSphere‐Proxy 没有创建 Database 或者没有添加 Resource，连接失败？
. 458

8.3 分片 . 458
8.3.1 分片 Cloud not resolve placeholder⋯in string value⋯异常的解决方法? 458
8.3.2 分片 inline表达式返回结果为何出现浮点数？ 459
8.3.3 分片如果只有部分数据库分库分表，是否需要将不分库分表的表也配置在分片规

则中？ . 459
8.3.4 分片指定了泛型为 Long 的 SingleKeyTableShardingAlgorithm，遇到

ClassCastException: Integer can not cast to Long? 459

xiii

8.3.5 [分片、PROXY] 实现 StandardShardingAlgorithm 自定义算法时，指定
了 Comparable 的具体类型为 Long, 且数据库表中字段类型为 bigint，出现
ClassCastException: Integer can not cast to Long异常。 459

8.3.6 分片 ShardingSphere提供的默认分布式自增主键策略为什么是不连续的，且尾数
大多为偶数？ . 459

8.3.7 分片如何在 inline分表策略时，允许执行范围查询操作（BETWEEN AND、>、<、
>=、<=）？ . 460

8.3.8 分片为什么我实现了 KeyGenerateAlgorithm接口，也配置了 Type，但是自
定义的分布式主键依然不生效？ . 460

8.3.9 分片 ShardingSphere除了支持自带的分布式自增主键之外，还能否支持原生的自
增主键？ . 460

8.4 数据加密 . 460
8.4.1 数据加密 JPA和数据加密无法一起使用，如何解决？ 460

8.5 DistSQL . 461
8.5.1 DistSQL使用DistSQL添加数据源时，如何设置自定义的 JDBC连接参数或连接池

属性？ . 461
8.5.2 DistSQL使用 DistSQL删除资源时，出现 Resource [xxx] is still used

by [SingleTableRule]。 . 461
8.5.3 DistSQL使用DistSQL添加资源时，出现Failed to get driver instance

for jdbcURL=xxx。 . 461
8.6 其他 . 461

8.6.1 其他如果 SQL在 ShardingSphere中执行不正确，该如何调试？ 461
8.6.2 其他阅读源码时为什么会出现编译错误? IDEA不索引生成的代码？ 462
8.6.3 其他使用 SQLSever和 PostgreSQL时，聚合列不加别名会抛异常？ 462
8.6.4 其他 Oracle数据库使用 Timestamp类型的 Order By语句抛出异常提示“Order

by value must implements Comparable”? . 462
8.6.5 其他Windows环境下，通过 Git克隆 ShardingSphere源码时为什么提示文件名

过长，如何解决？ . 463
8.6.6 其他 Type is required异常的解决方法? . 464
8.6.7 其他服务启动时如何加快 metadata加载速度？ 464
8.6.8 其他 ANTLR插件在 src同级目录下生成代码，容易误提交，如何避免？ 464
8.6.9 其他使用 Proxool时分库结果不正确？ . 465
8.6.10 其他使用 Spring Boot 2.x集成 ShardingSphere时，配置文件中的属性设置不生

效？ . 465

9 下载 468
9.1 最新版本 . 468

9.1.1 Apache ShardingSphere ‐版本: 5.2.1 (发布日期: Oct 18th, 2022) 468
9.2 全部版本 . 468
9.3 校验版本 . 468

xiv

1
概览

1.1 什么是 ShardingSphere

1.1.1 介绍

Apache ShardingSphere是一款分布式的数据库生态系统，可以将任意数据库转换为分布式数据库，并
通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。
Apache ShardingSphere设计哲学为 Database Plus，旨在构建异构数据库上层的标准和生态。它关注如
何充分合理地利用数据库的计算和存储能力，而并非实现一个全新的数据库。它站在数据库的上层视角，
关注它们之间的协作多于数据库自身。

ShardingSphere-JDBC

ShardingSphere‐JDBC定位为轻量级 Java框架，在 Java的 JDBC层提供的额外服务。

ShardingSphere-Proxy

ShardingSphere‐Proxy定位为透明化的数据库代理端，通过实现数据库二进制协议，对异构语言提供支
持。

1

Apache ShardingSphere document, v5.2.1

1.1.2 产品功能

特性 定义
数 据
分片

数据分片，是应对海量数据存储与计算的有效手段。ShardingSphere基于底层数据库提供分
布式数据库解决方案，可以水平扩展计算和存储。

分 布
式 事
务

事务能力，是保障数据库完整、安全的关键技术，也是数据库的核心技术。基于 XA和 BASE
的混合事务引擎，ShardingSphere提供在独立数据库上的分布式事务功能，保证跨数据源的
数据安全。

读 写
分离

读写分离，是应对高压力业务访问的手段。基于对 SQL语义理解及对底层数据库拓扑感知能
力，ShardingSphere提供灵活的读写流量拆分和读流量负载均衡。

高 可
用

高可用，是对数据存储计算平台的基本要求。ShardingSphere提供基于原生或 Kubernetes环
境下数据库集群的分布式高可用能力。

数 据
迁移

数据迁移，是打通数据生态的关键能力。ShardingSphere提供跨数据源的数据迁移能力，并
可支持重分片扩展。

联 邦
查询

联邦查询，是面对复杂数据环境下利用数据的有效手段。ShardingSphere提供跨数据源的复
杂查询分析能力，实现跨源的数据关联与聚合。

数 据
加密

数据加密，是保证数据安全的基本手段。ShardingSphere提供完整、透明、安全、低成本的
数据加密解决方案。

影 子
库

在全链路压测场景下，ShardingSphere支持不同工作负载下的数据隔离，避免测试数据污染
生产环境。

1.1.3 产品优势

• 极致性能
驱动程序端历经长年打磨，效率接近原生 JDBC，性能极致。

• 生态兼容
代理端支持任何通过 MySQL/PostgreSQL协议的应用访问，驱动程序端可对接任意实现 JDBC规范的数
据库。

• 业务零侵入
面对数据库替换场景，ShardingSphere可满足业务无需改造，实现平滑业务迁移。

• 运维低成本
在保留原技术栈不变前提下，对 DBA学习、管理成本低，交互友好。

• 安全稳定
基于成熟数据库底座之上提供增量能力，兼顾安全性及稳定性。

• 弹性扩展
具备计算、存储平滑在线扩展能力，可满足业务多变的需求。

• 开放生态
通过多层次（内核、功能、生态）插件化能力，为用户提供可定制满足自身特殊需求的独有系统。

1.1. 什么是 ShardingSphere 2

Apache ShardingSphere document, v5.2.1

1.2 设计哲学

ShardingSphere采用 Database Plus设计哲学，该理念致力于构建数据库上层的标准和生态，在生态中
补充数据库所缺失的能力。

1.2.1 连接：打造数据库上层标准

通过对数据库协议、SQL方言以及数据库存储的灵活适配，快速构建多模异构数据库上层的标准，同时
通过内置 DistSQL为应用提供标准化的连接方式。

1.2.2 增强：数据库计算增强引擎

在原生数据库基础能力之上，提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储
上的瓶颈，后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。

1.2. 设计哲学 3

Apache ShardingSphere document, v5.2.1

1.2.3 可插拔：构建数据库功能生态

Apache ShardingSphere的可插拔架构划分为 3层，它们是：L1内核层、L2功能层、L3生态层。

L1内核层

是数据库基本能力的抽象，其所有组件均必须存在，但具体实现方式可通过可插拔的方式更换。主要包
括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。

L2功能层

用于提供增量能力，其所有组件均是可选的，可以包含零至多个组件。组件之间完全隔离，互无感知，多
组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据库高可用、数据加密、影子库
等。用户自定义功能可完全面向 Apache ShardingSphere定义的顶层接口进行定制化扩展，而无需改动
内核代码。

1.2. 设计哲学 4

Apache ShardingSphere document, v5.2.1

L3生态层

用于对接和融入现有数据库生态，包括数据库协议、SQL解析器和存储适配器，分别对应于Apache Shard‐
ingSphere以数据库协议提供服务的方式、SQL方言操作数据的方式以及对接存储节点的数据库类型。

1.3 部署形态

Apache ShardingSphere由 ShardingSphere‐JDBC和 ShardingSphere‐Proxy这 2款既能够独立部署，又
支持混合部署配合使用的产品组成。它们均提供标准化的基于数据库作为存储节点的增量功能，可适用
于如 Java同构、异构语言、云原生等各种多样化的应用场景。

1.3.1 ShardingSphere-JDBC独立部署

ShardingSphere‐JDBC定位为轻量级 Java框架，在 Java的 JDBC层提供的额外服务。它使用客户端直连
数据库，以 jar包形式提供服务，无需额外部署和依赖，可理解为增强版的 JDBC驱动，完全兼容 JDBC
和各种 ORM框架。

• 适用于任何基于 JDBC的 ORM框架，如：JPA, Hibernate, Mybatis, Spring JDBC Template或直接
使用 JDBC；

• 支持任何第三方的数据库连接池，如：DBCP, C3P0, BoneCP, HikariCP等；
• 支持任意实现 JDBC规范的数据库，目前支持MySQL，PostgreSQL，Oracle，SQLServer以及任何
可使用 JDBC访问的数据库。

1.3. 部署形态 5

Apache ShardingSphere document, v5.2.1

ShardingSphere-JDBC ShardingSphere-Proxy

数据库 任意 MySQL/PostgreSQL
连接消耗数 高 低
异构语言 仅 Java 任意
性能 损耗低 损耗略高
无中心化 是 否
静态入口 无 有

1.3.2 ShardingSphere-Proxy独立部署

ShardingSphere‐Proxy定位为透明化的数据库代理端，通过实现数据库二进制协议，对异构语言提供支
持。目前提供MySQL和 PostgreSQL协议，透明化数据库操作，对 DBA更加友好。

• 向应用程序完全透明，可直接当做MySQL/PostgreSQL使用；
• 兼容MariaDB等基于MySQL协议的数据库，以及 openGauss等基于 PostgreSQL协议的数据库；
• 适用于任何兼容MySQL/PostgreSQL协议的的客户端，如：MySQL Command Client, MySQLWork‐
bench, Navicat等。

1.3. 部署形态 6

Apache ShardingSphere document, v5.2.1

ShardingSphere-JDBC ShardingSphere-Proxy

数据库 任意 MySQL/PostgreSQL
连接消耗数 高 低
异构语言 仅 Java 任意
性能 损耗低 损耗略高
无中心化 是 否
静态入口 无 有

1.3.3 混合部署架构

ShardingSphere‐JDBC 采用无中心化架构，与应用程序共享资源，适用于 Java 开发的高性能的轻量级
OLTP应用；ShardingSphere‐Proxy提供静态入口以及异构语言的支持，独立于应用程序部署，适用于
OLAP应用以及对分片数据库进行管理和运维的场景。
Apache ShardingSphere 是多接入端共同组成的生态圈。通过混合使用 ShardingSphere‐JDBC 和
ShardingSphere‐Proxy，并采用同一注册中心统一配置分片策略，能够灵活的搭建适用于各种场景的应
用系统，使得架构师更加自由地调整适合于当前业务的最佳系统架构。

1.3. 部署形态 7

Apache ShardingSphere document, v5.2.1

1.4 运行模式

Apache ShardingSphere提供了两种运行模式，分别是单机模式和集群模式。

1.4.1 单机模式

能够将数据源和规则等元数据信息持久化，但无法将元数据同步至多个Apache ShardingSphere实例，无
法在集群环境中相互感知。通过某一实例更新元数据之后，会导致其他实例由于获取不到最新的元数据
而产生不一致的错误。
适用于工程师在本地搭建 Apache ShardingSphere环境。

1.4.2 集群模式

提供了多个 Apache ShardingSphere实例之间的元数据共享和分布式场景下状态协调的能力。它能够提
供计算能力水平扩展和高可用等分布式系统必备的能力，集群环境需要通过独立部署的注册中心来存储
元数据和协调节点状态。
在生产环境建议使用集群模式。

1.5 线路规划

1.4. 运行模式 8

Apache ShardingSphere document, v5.2.1

1.6 如何参与

ShardingSphere已于 2020年 4月 16日成为 Apache软件基金会的顶级项目。欢迎通过邮件列表参与讨
论。

1.6. 如何参与 9

https://apache.org/index.html#projects-list
mailto:dev@shardingsphere.apache.org

2
快速入门

本章节以尽量短的时间，为使用者提供最简单的 Apache ShardingSphere的快速入门。
示例代码：https://github.com/apache/shardingsphere/tree/master/examples

2.1 ShardingSphere-JDBC

2.1.1 应用场景

Apache ShardingSphere‐JDBC可以通过 Java，YAML，Spring 命名空间和 Spring Boot Starter
这 4种方式进行配置，开发者可根据场景选择适合的配置方式。

2.1.2 使用限制

目前仅支持 JAVA语言

2.1.3 前提条件

开发环境需要具备 Java JRE 8或更高版本。

2.1.4 操作步骤

1. 规则配置。
详情请参见用户手册。

2. 引入maven依赖。

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${latest.release.version}</version>

</dependency>

10

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/

Apache ShardingSphere document, v5.2.1

注意：请将 ${latest.release.version}更改为实际的版本号。
3. 编辑 application.yml。

spring:
shardingsphere:

datasource:
names: ds_0, ds_1
ds_0:
type: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&

useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password:

ds_1:
type: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&

useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
sharding:

tables:
...

2.1. ShardingSphere-JDBC 11

Apache ShardingSphere document, v5.2.1

2.2 ShardingSphere-Proxy

2.2.1 应用场景

ShardingSphere‐Proxy的定位为透明化的数据库代理，理论上支持任何使用MySQL、PostgreSQL、open‐
Gauss协议的客户端操作数据，对异构语言、运维场景更友好。

2.2.2 使用限制

ShardingSphere‐Proxy对系统库/表（如 information_schema、pg_catalog）支持有限，通过部分图形化
数据库客户端连接 Proxy时，可能客户端或 Proxy会有错误提示。可以使用命令行客户端（mysql、psql、
gsql等）连接 Proxy验证功能。

2.2.3 前提条件

使用 Docker启动 ShardingSphere‐Proxy无须额外依赖。使用二进制分发包启动 Proxy，需要环境具备
Java JRE 8或更高版本。

2.2. ShardingSphere-Proxy 12

Apache ShardingSphere document, v5.2.1

2.2.4 操作步骤

1. 获取 ShardingSphere‐Proxy

目前 ShardingSphere‐Proxy可以通过以下方式：‐二进制发布包 ‐ Docker ‐ Helm

2. 规则配置
编辑 %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml。
编辑 %SHARDINGSPHERE_PROXY_HOME%/conf/config-xxx.yaml。

%SHARDINGSPHERE_PROXY_HOME% 为 Proxy 解 压 后 的 路 径， 例：/opt/
shardingsphere-proxy-bin/

详情请参见配置手册。
3. 引入依赖

如果后端连接 PostgreSQL或 openGauss数据库，不需要引入额外依赖。
如果后端连接 MySQL 数据库，请下载 mysql‐connector‐java‐5.1.47.jar 或者 mysql‐connector‐java‐
8.0.11.jar，并将其放入 %SHARDINGSPHERE_PROXY_HOME%/ext-lib目录。

4. 启动服务
• 使用默认配置项

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

默认启动端口为 3307，默认配置文件目录为：%SHARDINGSPHERE_PROXY_HOME%/conf/。
• 自定义端口和配置文件目录

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${proxy_port} ${proxy_conf_directory}

• 强制启动

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh -f

使用 -f参数强制启动 Proxy，该参数会忽略启动期间异常的数据源，强行启动 Proxy，用户可以在 Proxy
启动完成后，通过 DistSQL移除异常数据源。

5. 使用 ShardingSphere‐Proxy

执行MySQL / PostgreSQL / openGauss的客户端命令直接操作 ShardingSphere‐Proxy即可。
使用MySQL客户端连接 ShardingSphere‐Proxy：

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}

使用 PostgreSQL客户端连接 ShardingSphere‐Proxy：

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

使用 openGauss客户端连接 ShardingSphere‐Proxy：

2.2. ShardingSphere-Proxy 13

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/docker/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/helm/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document, v5.2.1

gsql -r -h ${proxy_host} -p ${proxy_port} -U ${proxy_username} -W ${proxy_password}

2.2. ShardingSphere-Proxy 14

3
功能

Apache ShardingSphere提供了多样化的功能，涵盖范围从数据库内核、数据库分布式到贴近数据库上
层的应用，为用户提供了大量的功能池。
功能并无边界，只要满足数据库服务和生态的共性需求即可，期待更多的开源工程师参与 Apache Shard‐
ingSphere社区，提供新颖思路和令人兴奋的功能。

3.1 数据分片

3.1.1 背景

传统的将数据集中存储至单一节点的解决方案，在性能、可用性和运维成本这三方面已经难于满足海量
数据的场景。
从性能方面来说，由于关系型数据库大多采用 B+树类型的索引，在数据量超过阈值的情况下，索引深度
的增加也将使得磁盘访问的 IO次数增加，进而导致查询性能的下降；同时，高并发访问请求也使得集中
式数据库成为系统的最大瓶颈。
从可用性的方面来讲，服务化的无状态性，能够达到较小成本的随意扩容，这必然导致系统的最终压力
都落在数据库之上。而单一的数据节点，或者简单的主从架构，已经越来越难以承担。数据库的可用性，
已成为整个系统的关键。
从运维成本方面考虑，当一个数据库实例中的数据达到阈值以上，对于 DBA的运维压力就会增大。数据
备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲，单一数据库实例的数据的阈值
在 1TB之内，是比较合理的范围。
在传统的关系型数据库无法满足互联网场景需要的情况下，将数据存储至原生支持分布式的NoSQL的尝
试越来越多。但NoSQL对 SQL的不兼容性以及生态圈的不完善，使得它们在与关系型数据库的博弈中始
终无法完成致命一击，而关系型数据库的地位却依然不可撼动。
数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能
瓶颈以及可用性的效果。数据分片的有效手段是对关系型数据库进行分库和分表。分库和分表均可以有
效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外，分库还能够用于有效的分散对数据库
单点的访问量；分表虽然无法缓解数据库压力，但却能够提供尽量将分布式事务转化为本地事务的可能，

15

Apache ShardingSphere document, v5.2.1

一旦涉及到跨库的更新操作，分布式事务往往会使问题变得复杂。使用多主多从的分片方式，可以有效
的避免数据单点，从而提升数据架构的可用性。
通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下，以及对流量进行疏导应对高访
问量，是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。

垂直分片

按照业务拆分的方式称为垂直分片，又称为纵向拆分，它的核心理念是专库专用。在拆分之前，一个数
据库由多个数据表构成，每个表对应着不同的业务。而拆分之后，则是按照业务将表进行归类，分布到
不同的数据库中，从而将压力分散至不同的数据库。下图展示了根据业务需要，将用户表和订单表垂直
分片到不同的数据库的方案。

垂直分片往往需要对架构和设计进行调整。通常来讲，是来不及应对互联网业务需求快速变化的；而且，
它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题，但无法根治。如果垂
直拆分之后，表中的数据量依然超过单节点所能承载的阈值，则需要水平分片来进一步处理。

3.1. 数据分片 16

Apache ShardingSphere document, v5.2.1

水平分片

水平分片又称为横向拆分。相对于垂直分片，它不再将数据根据业务逻辑分类，而是通过某个字段（或
某几个字段），根据某种规则将数据分散至多个库或表中，每个分片仅包含数据的一部分。例如：根据主
键分片，偶数主键的记录放入 0库（或表），奇数主键的记录放入 1库（或表），如下图所示。

水平分片从理论上突破了单机数据量处理的瓶颈，并且扩展相对自由，是数据分片的标准解决方案。

3.1.2 挑战

虽然数据分片解决了性能、可用性以及单点备份恢复等问题，但分布式的架构在获得了收益的同时，也
引入了新的问题。
面对如此散乱的分片之后的数据，应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其
中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
另一个挑战则是，能够正确的运行在单节点数据库中的 SQL，在分片之后的数据库中并不一定能够正确
运行。例如，分表导致表名称的修改，或者分页、排序、聚合分组等操作的不正确处理。
跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表，可以在降低单表数据量的情况下，
尽量使用本地事务，善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场
景，有些业务仍然需要保持事务的一致性。而基于 XA的分布式事务由于在并发度高的场景中性能无法满
足需要，并未被互联网巨头大规模使用，他们大多采用最终一致性的柔性事务代替强一致事务。

3.1. 数据分片 17

Apache ShardingSphere document, v5.2.1

3.1.3 目标

尽量透明化分库分表所带来的影响，让使用方尽量像使用一个数据库一样使用水平分片之后的数据库集
群，是 Apache ShardingSphere数据分片模块的主要设计目标。

3.1.4 应用场景

海量数据高并发的OLTP场景

由于关系型数据库大多采用 B+树类型的索引，在数据量超过阈值的情况下，索引深度的增加也将使得
磁盘访问的 IO次数增加，进而导致查询性能的下降。通过 ShardingSphere数据分片，按照某个业务维
度，将存放在单一数据库中的数据分散地存放至多个数据库或表中，可以达到提升性能的效果。通过使
用 ShardingSphere‐JDBC接入端，可以满足高并发的 OLTP场景下的性能要求。

海量数据实时分析OLAP场景

在传统的数据库架构中，如果用户想要进行数据分析，需要先使用 ETL工具，将数据同步至数据平台中，
然后再进行数据分析，使用 ETL工具会导致数据分析的实效性大打折扣。ShardingSphere‐Proxy提供静
态入口以及异构语言的支持，独立于应用程序部署，适用于实时分析的 OLAP场景。

3.1.5 相关参考

• 数据分片的配置
• 数据分片的开发者指南

3.1.6 核心概念

表

表是透明化数据分片的关键概念。Apache ShardingSphere通过提供多样化的表类型，适配不同场景下
的数据分片需求。

逻辑表

相同结构的水平拆分数据库（表）的逻辑名称，是 SQL中表的逻辑标识。例：订单数据根据主键尾数拆
分为 10张表，分别是 t_order_0到 t_order_9，他们的逻辑表名为 t_order。

3.1. 数据分片 18

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

真实表

在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0到 t_order_9。

绑定表

指分片规则一致的一组分片表。使用绑定表进行多表关联查询时，必须使用分片键进行关联，否则会出现笛
卡尔积关联或跨库关联，从而影响查询效率。例如：t_order表和 t_order_item表，均按照 order_id
分片，并且使用 order_id进行关联，则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
现笛卡尔积关联，关联查询效率将大大提升。举例说明，如果 SQL为：

SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

在不配置绑定表关系时，假设分片键 order_id将数值 10路由至第 0片，将数值 11路由至第 1片，那么
路由后的 SQL应该为 4条，它们呈现为笛卡尔积：

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

在配置绑定表关系，并且使用 order_id进行关联后，路由的 SQL应该为 2条：

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

其中 t_order表由于指定了分片条件，ShardingSphere将会以它作为整个绑定表的主表。所有路由计
算将会只使用主表的策略，那么 t_order_item表的分片计算将会使用 t_order的条件。

3.1. 数据分片 19

Apache ShardingSphere document, v5.2.1

广播表

指所有的分片数据源中都存在的表，表结构及其数据在每个数据库中均完全一致。适用于数据量不大且
需要与海量数据的表进行关联查询的场景，例如：字典表。

单表

指所有的分片数据源中仅唯一存在的表。适用于数据量不大且无需分片的表。

数据节点

数据分片的最小单元，由数据源名称和真实表组成。例：ds_0.t_order_0。逻辑表与真实表的映射关系，可
分为均匀分布和自定义分布两种形式。

均匀分布

指数据表在每个数据源内呈现均匀分布的态势，例如：

db0
├── t_order0
└── t_order1

db1
├── t_order0
└── t_order1

数据节点的配置如下：

db0.t_order0, db0.t_order1, db1.t_order0, db1.t_order1

自定义分布

指数据表呈现有特定规则的分布，例如：

db0
├── t_order0
└── t_order1

db1
├── t_order2
├── t_order3
└── t_order4

数据节点的配置如下：

db0.t_order0, db0.t_order1, db1.t_order2, db1.t_order3, db1.t_order4

3.1. 数据分片 20

Apache ShardingSphere document, v5.2.1

分片

分片键

用于将数据库（表）水平拆分的数据库字段。例：将订单表中的订单主键的尾数取模分片，则订单主键
为分片字段。SQL 中如果无分片字段，将执行全路由，性能较差。除了对单分片字段的支持，Apache
ShardingSphere也支持根据多个字段进行分片。

分片算法

用于将数据分片的算法，支持 =、>=、<=、>、<、BETWEEN和 IN进行分片。分片算法可由开发者自行
实现，也可使用 Apache ShardingSphere内置的分片算法语法糖，灵活度非常高。

自动化分片算法

分片算法语法糖，用于便捷的托管所有数据节点，使用者无需关注真实表的物理分布。包括取模、哈希、
范围、时间等常用分片算法的实现。

自定义分片算法

提供接口让应用开发者自行实现与业务实现紧密相关的分片算法，并允许使用者自行管理真实表的物理
分布。自定义分片算法又分为：

• 标准分片算法
用于处理使用单一键作为分片键的 =、IN、BETWEEN AND、>、<、>=、<=进行分片的场景。

• 复合分片算法
用于处理使用多键作为分片键进行分片的场景，包含多个分片键的逻辑较复杂，需要应用开发者自行处
理其中的复杂度。

• Hint分片算法
用于处理使用 Hint行分片的场景。

分片策略

包含分片键和分片算法，由于分片算法的独立性，将其独立抽离。真正可用于分片操作的是分片键 +分
片算法，也就是分片策略。

3.1. 数据分片 21

Apache ShardingSphere document, v5.2.1

强制分片路由

对于分片字段并非由 SQL而是其他外置条件决定的场景，可使用 SQL Hint注入分片值。例：按照员工登
录主键分库，而数据库中并无此字段。SQL Hint支持通过 Java API和 SQL注释两种方式使用。详情请参
见强制分片路由。

行表达式

行表达式是为了解决配置的简化与一体化这两个主要问题。在繁琐的数据分片规则配置中，随着数据节
点的增多，大量的重复配置使得配置本身不易被维护。通过行表达式可以有效地简化数据节点配置工作
量。
对于常见的分片算法，使用 Java代码实现并不有助于配置的统一管理。通过行表达式书写分片算法，可
以有效地将规则配置一同存放，更加易于浏览与存储。
行表达式的使用非常直观，只需要在配置中使用 ${ expression }或 $->{ expression }标识行
表达式即可。目前支持数据节点和分片算法这两个部分的配置。行表达式的内容使用的是Groovy的语法，
Groovy能够支持的所有操作，行表达式均能够支持。例如：
${begin..end}表示范围区间 ${[unit1, unit2, unit_x]}表示枚举值
行表达式中如果出现连续多个 ${ expression }或 $->{ expression }表达式，整个表达式最终
的结果将会根据每个子表达式的结果进行笛卡尔组合。
例如，以下行表达式：

${['online', 'offline']}_table${1..3}

最终会解析为：

online_table1, online_table2, online_table3, offline_table1, offline_table2,
offline_table3

分布式主键

传统数据库软件开发中，主键自动生成技术是基本需求。而各个数据库对于该需求也提供了相应的支持，
比如MySQL的自增键，Oracle的自增序列等。数据分片后，不同数据节点生成全局唯一主键是非常棘手
的问题。同一个逻辑表内的不同实际表之间的自增键由于无法互相感知而产生重复主键。虽然可通过约
束自增主键初始值和步长的方式避免碰撞，但需引入额外的运维规则，使解决方案缺乏完整性和可扩展
性。
目前有许多第三方解决方案可以完美解决这个问题，如UUID等依靠特定算法自生成不重复键，或者通过
引入主键生成服务等。为了方便用户使用、满足不同用户不同使用场景的需求，Apache ShardingSphere
不仅提供了内置的分布式主键生成器，例如 UUID、SNOWFLAKE，还抽离出分布式主键生成器的接口，
方便用户自行实现自定义的自增主键生成器。

3.1. 数据分片 22

Apache ShardingSphere document, v5.2.1

3.1.7 使用限制

兼容全部常用的路由至单数据节点的 SQL；路由至多数据节点的 SQL由于场景复杂，分为稳定支持、实
验性支持和不支持这三种情况。

稳定支持

全面支持 DML、DDL、DCL、TCL和常用 DAL。支持分页、去重、排序、分组、聚合、表关联等复杂查
询。支持 PostgreSQL和 openGauss数据库 SCHEMA DDL和 DML语句。

常规查询

• SELECT主语句

SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE predicates]
[GROUP BY {col_name | position} [ASC | DESC], ...]
[ORDER BY {col_name | position} [ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

• select_expr

* |
[DISTINCT] COLUMN_NAME [AS] [alias] |
(MAX | MIN | SUM | AVG)(COLUMN_NAME | alias) [AS] [alias] |
COUNT(* | COLUMN_NAME | alias) [AS] [alias]

• table_reference

tbl_name [AS] alias] [index_hint_list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON
conditional_expr | USING (column_list)]

子查询

子查询和外层查询同时指定分片键，且分片键的值保持一致时，由内核提供稳定支持。
例如：

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 1;

用于分页的子查询，由内核提供稳定支持。
例如：

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT * FROM t_order) row_
WHERE rownum <= ?) WHERE rownum > ?;

3.1. 数据分片 23

https://shardingsphere.apache.org/document/current/cn/features/sharding/use-norms/pagination

Apache ShardingSphere document, v5.2.1

分页查询

完全支持MySQL、PostgreSQL、openGauss，Oracle和 SQLServer由于分页查询较为复杂，仅部分支持。
Oracle和 SQLServer的分页都需要通过子查询来处理，ShardingSphere支持分页相关的子查询。

• Oracle

支持使用 rownum进行分页：

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id
FROM t_order o JOIN t_order_item i ON o.order_id = i.order_id) row_ WHERE rownum <=
?) WHERE rownum > ?

• SQLServer

支持使用 TOP + ROW_NUMBER() OVER配合进行分页：

SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS
rownum, * FROM t_order o) AS temp WHERE temp.rownum > ? ORDER BY temp.order_id

支持 SQLServer 2012之后的 OFFSET FETCH的分页方式：

SELECT * FROM t_order o ORDER BY id OFFSET ? ROW FETCH NEXT ? ROWS ONLY

• MySQL, PostgreSQL和 openGauss

MySQL、PostgreSQL和 openGauss都支持 LIMIT分页，无需子查询：

SELECT * FROM t_order o ORDER BY id LIMIT ? OFFSET ?

运算表达式中包含分片键

当分片键处于运算表达式中时，无法通过 SQL 字面提取用于分片的值，将导致全路由。例如，假设
create_time为分片键：

SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01';

实验性支持

实验性支持特指使用 Federation执行引擎提供支持。该引擎处于快速开发中，用户虽基本可用，但仍需
大量优化，是实验性产品。

3.1. 数据分片 24

Apache ShardingSphere document, v5.2.1

子查询

子查询和外层查询未同时指定分片键，或分片键的值不一致时，由 Federation执行引擎提供支持。
例如：

SELECT * FROM (SELECT * FROM t_order) o;

SELECT * FROM (SELECT * FROM t_order) o WHERE o.order_id = 1;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 2;

跨库关联查询

当关联查询中的多个表分布在不同的数据库实例上时，由 Federation执行引擎提供支持。假设 t_order
和 t_order_item是多数据节点的分片表，并且未配置绑定表规则，t_user和 t_user_role是分布
在不同的数据库实例上的单表，那么 Federation执行引擎能够支持如下常用的关联查询：

SELECT * FROM t_order o INNER JOIN t_order_item i ON o.order_id = i.order_id WHERE
o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user u ON o.user_id = u.user_id WHERE o.user_
id = 1;

SELECT * FROM t_order o LEFT JOIN t_user_role r ON o.user_id = r.user_id WHERE o.
user_id = 1;

SELECT * FROM t_order_item i LEFT JOIN t_user u ON i.user_id = u.user_id WHERE i.
user_id = 1;

SELECT * FROM t_order_item i RIGHT JOIN t_user_role r ON i.user_id = r.user_id
WHERE i.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role r ON u.user_id = r.user_id WHERE u.
user_id = 1;

不支持

CASEWHEN

以下 CASEWHEN语句不支持：
• CASE WHEN中包含子查询
• CASE WHEN中使用逻辑表名（请使用表别名）

3.1. 数据分片 25

Apache ShardingSphere document, v5.2.1

分页查询

Oracle和 SQLServer由于分页查询较为复杂，目前有部分分页查询不支持，具体如下：
• Oracle

目前不支持 rownum + BETWEEN的分页方式。
• SQLServer

目前不支持使用WITH xxx AS (SELECT⋯)的方式进行分页。由于 Hibernate自动生成的 SQLServer分
页语句使用了WITH语句，因此目前并不支持基于Hibernate的 SQLServer分页。目前也不支持使用两
个 TOP +子查询的方式实现分页。

3.1.8 附录

不支持的 SQL：
• CASE WHEN中包含子查询
• CASE WHEN中使用逻辑表名（请使用表别名）
• INSERT INTO tbl_name (col1, col2,⋯) SELECT * FROM tbl_nameWHERE col3 = ?（SELECT子句
不支持 *和内置分布式主键生成器）

• REPLACE INTO tbl_name (col1, col2,⋯) SELECT * FROM tbl_nameWHERE col3 = ?（SELECT子
句不支持 *和内置分布式主键生成器）

• SELECT MAX(tbl_name.col1) FROM tbl_name（查询列是函数表达式时，查询列前不能使用表名，
可以使用表别名）

3.2 分布式事务

3.2.1 背景

数据库事务需要满足 ACID（原子性、一致性、隔离性、持久性）四个特性。
• 原子性（Atomicity）指事务作为整体来执行，要么全部执行，要么全不执行；
• 一致性（Consistency）指事务应确保数据从一个一致的状态转变为另一个一致的状态；
• 隔离性（Isolation）指多个事务并发执行时，一个事务的执行不应影响其他事务的执行；
• 持久性（Durability）指已提交的事务修改数据会被持久保存。

在单一数据节点中，事务仅限于对单一数据库资源的访问控制，称之为本地事务。几乎所有的成熟的关系
型数据库都提供了对本地事务的原生支持。但是在基于微服务的分布式应用环境下，越来越多的应用场
景要求对多个服务的访问及其相对应的多个数据库资源能纳入到同一个事务当中，分布式事务应运而生。
关系型数据库虽然对本地事务提供了完美的 ACID原生支持。但在分布式的场景下，它却成为系统性能的
桎梏。如何让数据库在分布式场景下满足 ACID的特性或找寻相应的替代方案，是分布式事务的重点工
作。

3.2. 分布式事务 26

Apache ShardingSphere document, v5.2.1

3.2.2 挑战

由于应用的场景不同，需要开发者能够合理的在性能与功能之间权衡各种分布式事务。
强一致的事务与柔性事务的 API和功能并不完全相同，在它们之间并不能做到自由的透明切换。在开发
决策阶段，就不得不在强一致的事务和柔性事务之间抉择，使得设计和开发成本被大幅增加。
基于 XA的强一致事务使用相对简单，但是无法很好的应对互联网的高并发或复杂系统的长事务场景；柔
性事务则需要开发者对应用进行改造，接入成本非常高，并且需要开发者自行实现资源锁定和反向补偿。

3.2.3 目标

整合现有的成熟事务方案，为本地事务、两阶段事务和柔性事务提供统一的分布式事务接口，并弥补当
前方案的不足，提供一站式的分布式事务解决方案是 Apache ShardingSphere分布式事务模块的主要设
计目标。

3.2.4 原理介绍

ShardingSphere对外提供 begin/commit/rollback传统事务接口，通过 LOCAL，XA，BASE三种模式提
供了分布式事务的能力，

LOCAL事务

LOCAL模式基于 ShardingSphere代理的数据库 begin/commit/rolllback的接口实现，对于一条逻
辑 SQL，ShardingSphere通过 begin指令在每个被代理的数据库开启事务，并执行实际 SQL，并执行
commit/rollback。由于每个数据节点各自管理自己的事务，它们之间没有协调以及通信的能力，也
并不互相知晓其他数据节点事务的成功与否。在性能方面无任何损耗，但在强一致性以及最终一致性方
面不能够保证。

XA事务

XA事务采用的是 X/OPEN组织所定义的 DTP模型所抽象的 AP（应用程序）, TM（事务管理器）和 RM
（资源管理器）概念来保证分布式事务的强一致性。其中 TM与 RM间采用 XA的协议进行双向通信，通
过两阶段提交实现。与传统的本地事务相比，XA事务增加了准备阶段，数据库除了被动接受提交指令外，
还可以反向通知调用方事务是否可以被提交。TM可以收集所有分支事务的准备结果，并于最后进行原子
提交，以保证事务的强一致性。

3.2. 分布式事务 27

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Apache ShardingSphere document, v5.2.1

XA事务建立在 ShardingSphere代理的数据库 xa start/end/prepare/commit/rollback/recover的接口上。
对于一条逻辑 SQL，ShardingSphere通过 xa begin指令在每个被代理的数据库开启事务，内部集成
TM，用于协调各分支事务，并执行 xa commit/rollback。
基于 XA协议实现的分布式事务，由于在执行的过程中需要对所需资源进行锁定，它更加适用于执行时间
确定的短事务。对于长事务来说，整个事务进行期间对数据的独占，将会对并发场景下的性能产生一定
的影响。

BASE事务

如果将实现了 ACID的事务要素的事务称为刚性事务的话，那么基于 BASE事务要素的事务则称为柔性事
务。BASE是基本可用、柔性状态和最终一致性这三个要素的缩写。

• 基本可用（Basically Available）保证分布式事务参与方不一定同时在线；
• 柔性状态（Soft state）则允许系统状态更新有一定的延时，这个延时对客户来说不一定能够察觉；
• 最终一致性（Eventually consistent）通常是通过消息传递的方式保证系统的最终一致性。

在 ACID事务中对隔离性的要求很高，在事务执行过程中，必须将所有的资源锁定。柔性事务的理念则是
通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求，来换取系统吞吐量
的提升。
基于 ACID的强一致性事务和基于 BASE的最终一致性事务都不是银弹，只有在最适合的场景中才能发挥
它们的最大长处。Apache ShardingSphere集成了 SEATA作为柔性事务的使用方案。可通过下表详细对
比它们之间的区别，以帮助开发者进行技术选型。

3.2. 分布式事务 28

Apache ShardingSphere document, v5.2.1

LOCAL XA BASE

业务改造 无 无 需要 seata server
一致性 不支持 支持 最终一致
隔离性 不支持 支持 业务方保证
并发性能 无影响 严重衰退 略微衰退
适合场景 业务方处理不一致 短事务 &低并发 长事务 &高并发

3.2.5 应用场景

在单机应用场景中，依赖数据库提供的事务即可满足业务上对事务 ACID的需求。但是在分布式场景下，
传统数据库解决方案缺乏对全局事务的管控能力，用户在使用过程中可能遇到多个数据库节点上出现数
据不一致的问题。
ShardingSphere分布式事务，为用户屏蔽了分布式事务处理的复杂性，提供了灵活多样的分布式事务解
决方案，用户可以根据自己的业务场景在 LOCAL，XA，BASE三种模式中，选择适合自己的分布式事务
解决方案。

ShardingSphere XA事务使用场景

对于 XA事务，提供了分布式环境下，对数据强一致性的保证。但是由于存在同步阻塞问题，对性能会有
一定影响。适用于对数据一致性要求非常高且对并发性能要求不是很高的业务场景。

ShardingSphere BASE事务使用场景

对于 BASE事务，提供了分布式环境下，对数据最终一致性的保证。由于在整个事务过程中，不会像 XA
事务那样全程锁定资源，所以性能较好。适用于对并发性能要求很高并且允许出现短暂数据不一致的业
务场景。

ShardingSphere LOCAL事务使用场景

对于 LOCAL事务，在分布式环境下，不保证各个数据库节点之间数据的一致性和隔离性，需要业务方自
行处理可能出现的不一致问题。适用于用户希望自行处理分布式环境下数据一致性问题的业务场景。

3.2.6 相关参考

• 分布式事务的 YAML配置

3.2. 分布式事务 29

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/

Apache ShardingSphere document, v5.2.1

3.2.7 核心概念

XA协议

XA协议最早的分布式事务模型是由 X/Open国际联盟提出的 X/Open Distributed Transaction
Processing (DTP)模型，简称 XA协议。

3.2.8 使用限制

虽然Apache ShardingSphere希望能够完全兼容所有的分布式事务场景，并在性能上达到最优，但在 CAP
定理所指导下，分布式事务必然有所取舍。Apache ShardingSphere希望能够将分布式事务的选择权交
给使用者，在不同的场景用使用最适合的分布式事务解决方案。

LOCAL事务

支持项

• 完全支持非跨库事务，例如：仅分表，或分库但是路由的结果在单库中；
• 完全支持因逻辑异常导致的跨库事务。例如：同一事务中，跨两个库更新。更新完毕后，抛出空指
针，则两个库的内容都能够回滚。

不支持项

• 不支持因网络、硬件异常导致的跨库事务。例如：同一事务中，跨两个库更新，更新完毕后、未提
交之前，第一个库宕机，则只有第二个库数据提交，且无法回滚。

XA事务

支持项

• 支持 Savepoint嵌套事务；
• PostgreSQL/OpenGauss事务块内，SQL执行出现异常，执行 Commit，事务自动回滚；
• 支持数据分片后的跨库事务；
• 两阶段提交保证操作的原子性和数据的强一致性；
• 服务宕机重启后，提交/回滚中的事务可自动恢复；
• 支持同时使用 XA和非 XA的连接池；
• 支持跨多个逻辑库的事务。

3.2. 分布式事务 30

Apache ShardingSphere document, v5.2.1

不支持项

• 服务宕机后，在其它机器上恢复提交/回滚中的数据；
• MySQL事务块内，SQL执行出现异常，执行 Commit，数据保持一致。

BASE事务

支持项

• 支持数据分片后的跨库事务；
• 通过 undo快照进行事务回滚；
• 支持服务宕机后的，自动恢复提交中的事务。

不支持项

• 不支持隔离级别。

3.2.9 附录

不支持的 SQL：
• 事务中使用 DistSQL里的 RAL、RDL操作；
• XA事务中使用 DDL语句。

3.3 读写分离

3.3.1 背景

面对日益增加的系统访问量，数据库的吞吐量面临着巨大瓶颈。对于同一时刻有大量并发读操作和较少
写操作类型的应用系统来说，将数据库拆分为主库和从库，主库负责处理事务性的增删改操作，从库负
责处理查询操作，能够有效的避免由数据更新导致的行锁，使得整个系统的查询性能得到极大的改善。
通过一主多从的配置方式，可以将查询请求均匀的分散到多个数据副本，能够进一步的提升系统的处理
能力。使用多主多从的方式，不但能够提升系统的吞吐量，还能够提升系统的可用性，可以达到在任何
一个数据库宕机，甚至磁盘物理损坏的情况下仍然不影响系统的正常运行。
与将数据根据分片键打散至各个数据节点的水平分片不同，读写分离则是根据 SQL语义的分析，将读操
作和写操作分别路由至主库与从库。

3.3. 读写分离 31

Apache ShardingSphere document, v5.2.1

读写分离的数据节点中的数据内容是一致的，而水平分片的每个数据节点的数据内容却并不相同。将水
平分片和读写分离联合使用，能够更加有效的提升系统性能。

3.3.2 挑战

读写分离虽然可以提升系统的吞吐量和可用性，但同时也带来了数据不一致的问题。这包括多个主库之
间的数据一致性，以及主库与从库之间的数据一致性的问题。并且，读写分离也带来了与数据分片同样
的问题，它同样会使得应用开发和运维人员对数据库的操作和运维变得更加复杂。下图展现了将数据分
片与读写分离一同使用时，应用程序与数据库集群之间的复杂拓扑关系。

3.3. 读写分离 32

Apache ShardingSphere document, v5.2.1

3.3.3 目标

透明化读写分离所带来的影响，让使用方尽量像使用一个数据库一样使用主从数据库集群，是 Apache
ShardingSphere读写分离模块的主要设计目标。

3.3.4 应用场景

复杂的主从数据库架构

许多系统通过采用主从数据库架构的配置来提高整个系统的吞吐量，但是主从的配置也给业务的使用带
来了一定的复杂性。接入 ShardingSphere，可以利用读写分离功能管理主从数据库，实现透明化的读写
分离功能，让用户像使用一个数据库一样使用主从架构的数据库。

3.3.5 相关参考

Java API

YAML配置
Spring Boot Starter

Spring命名空间

3.3. 读写分离 33

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting

Apache ShardingSphere document, v5.2.1

3.3.6 核心概念

主库

添加、更新以及删除数据操作所使用的数据库，目前仅支持单主库。

从库

查询数据操作所使用的数据库，可支持多从库。

主从同步

将主库的数据异步的同步到从库的操作。由于主从同步的异步性，从库与主库的数据会短时间内不一致。

负载均衡策略

通过负载均衡策略将查询请求疏导至不同从库。

3.3.7 使用限制

• 不处理主库和从库的数据同步
• 不处理主库和从库的数据同步延迟导致的数据不一致
• 不支持主库多写
• 不处理主从库间的事务一致性。主从模型中，事务中的数据读写均用主库。

3.4 高可用

3.4.1 背景

高可用是现代系统的最基本诉求，作为系统基石的数据库，对于高可用的要求也是必不可少的。
在存算分离的分布式数据库体系中，存储节点和计算节点的高可用方案是不同的。对于有状态的存储节
点来说，需要其自身具备数据一致性同步、探活、主节点选举等能力；对于无状态的计算节点来说，需要
感知存储节点的变化的同时，还需要独立架设负载均衡器，并具备服务发现和请求分发的能力。
Apache ShardingSphere自身提供计算节点，并通过数据库作为存储节点。因此，它采用的高可用方案是
利用数据库自身的高可用方案做存储节点高可用，并自动识别其变化。

3.4. 高可用 34

Apache ShardingSphere document, v5.2.1

3.4.2 挑战

Apache ShardingSphere需要自动感知多样化的存储节点高可用方案的同时，也能够动态集成对读写分
离方案，是实现的主要挑战。

3.4.3 目标

尽可能的保证 7*24小时不间断的数据库服务，是 Apache ShardingSphere高可用模块的主要设计目标。

3.4.4 应用场景

在大多数情况下，高可用搭配读写分离功能一起使用。当用户写库或读库关系发生变化时，Sharding‐
Sphere可动态的感知并纠正内部的主从关系，进而保证读流量和写流量的正确路由。同时当从库宕机时，
ShardingSphere也可动态纠正存储节点的状态，保证读流量分发正确。

3.4. 高可用 35

Apache ShardingSphere document, v5.2.1

3.4.5 相关参考

Java API

YAML配置
Spring Boot Starter

Spring命名空间

3.4.6 核心概念

高可用类型

Apache ShardingSphere不提供数据库高可用的能力，它通过第三方提供的高可用方案感知数据库主从
关系的切换。确切来说，Apache ShardingSphere提供数据库发现的能力，自动感知数据库主从关系，并
修正计算节点对数据库的连接。

动态读写分离

高可用和读写分离一起使用时，读写分离无需配置具体的主库和从库。高可用的数据源会动态的修正读
写分离的主从关系，并正确地疏导读写流量。

3.4.7 使用限制

支持项

• MySQL MGR单主模式。
• MySQL主从复制模式。
• openGauss主从复制模式。

不支持项

• MySQL MGR多主模式。

3.5 数据库网关

3.5.1 背景

随着数据库碎片化趋势的不可逆转，多种类型数据库的共存已渐成常态。使用一种 SQL方言访问异构数
据库的场景在不断增加。

3.5. 数据库网关 36

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/ha
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/ha
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha

Apache ShardingSphere document, v5.2.1

3.5.2 挑战

多样化的数据库的存在，使访问数据库的 SQL方言难于标准化，工程师需要针对不同种类的数据库使用
不同的方言，缺乏统一化的查询平台。
将不同类型的数据库方言自动翻译为后端数据库所使用的方言，让工程师可以使用任意一种数据库方言
访问所有的后端异构数据库，可以极大的降低开发和维护成本。

3.5.3 目标

SQL方言的自动翻译，是 Apache ShardingSphere数据库网关希望达成的主要目标。

3.5.4 应用场景

随着业务场景的多元化，企业内部的数据库产品也呈现多元化的趋势，业务应用与不同数据库产品的对
接也变得异常复杂，ShardingSphere数据库网关可以屏蔽业务应用与底层多元化数据库之间连接，同时
为不同的业务场景提供统一的访问协议和语法体系，能够帮助企业快速打造统一的数据访问平台。

3.5.5 核心概念

SQL方言

SQL方言也就是数据库方言，指的是某些数据库产品除了支持 SQL之外，还会有一些自己独有的语法，这
就称之为方言，不同的数据库产品，也可能会有不同的 SQL方言。

3.5.6 使用限制

Apache ShardingSphere的 SQL方言翻译处于实验阶段。
目前仅支持MySQL/PostgreSQL的方言自动翻译，工程师可以使用MySQL的方言和协议，访问PostgreSQL
数据库，反之亦然。

3.6 流量治理

3.6.1 背景

随着数据规模的不断膨胀，使用多节点集群的分布式方式逐渐成为趋势。对集群整体视角的统一管理能
力，和针对单独组件细粒度的控制能力，是基于存算分离的现代数据库体系中不可或缺的功能。

3.6. 流量治理 37

Apache ShardingSphere document, v5.2.1

3.6.2 挑战

管控的挑战，在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。
集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理，并且能够实时的探
测到分布式环境下最新的变动情况，进一步为集群的控制和调度提供依据。
面对超负荷的流量下，针对某一节点进行熔断和限流，以保证整个数据库集群得以继续运行，是分布式
系统下对单一节点控制能力的挑战。

3.6.3 目标

实现从数据库到计算节点打通的一体化管理能力，在故障中为组件提供细粒度的控制能力，并尽可能的
提供自愈的可能，是 Apache ShardingSphere管控模块的主要设计目标。

3.6.4 应用场景

计算节点过载保护

当 ShardingSphere集群内某个计算节点超过负载后，通过熔断功能，阻断应用到该计算节点的流量，保
证整个集群继续提供稳定服务。

存储节点限流

在读写分离的场景下，当 ShardingSphere集群内某个负责读流量的存储节点承接超负荷的请求时，通过
限流功能，阻断集群内计算节点到该存储节点的流量，以保证存储节点集群正常响应。

3.6.5 核心概念

熔断

阻断 Apache ShardingSphere和数据库的连接。当某个 Apache ShardingSphere节点超过负载后，停止
该节点对数据库的访问，使数据库能够保证足够的资源为其他节点提供服务。

限流

面对超负荷的请求开启限流，以保护部分请求可以得以高质量的响应。

3.6. 流量治理 38

Apache ShardingSphere document, v5.2.1

3.7 数据迁移

3.7.1 背景

当业务持续发展，数据量和并发量达到一定程度，传统单体数据库可能面临性能、可扩展性、可用性等
问题；
业界曾提出 NoSQL解决方案，通过数据分片和水平扩容解决以上问题，但是 NoSQL数据库通常不支持
事务和 SQL；
ShardingSphere也支持数据分片和水平扩容，可以解决以上问题，同时还支持分布式事务和 SQL；
ShardingSphere提供的数据迁移方案可以助力传统单体数据库平滑切换到 ShardingSphere。

3.7.2 挑战

在迁移过程中，不应该对正在运行的业务造成影响。尽可能减少迁移时数据不可用的时间窗口，是数据
迁移的第一个挑战；
其次，数据迁移不应该对现有的数据造成影响，如何保证数据的正确性，是数据迁移的第二个挑战。

3.7.3 目标

减少数据迁移时的业务影响，提供一站式的通用数据迁移解决方案，是 Apache ShardingSphere数据迁
移的主要设计目标。

3.7.4 应用场景

假如一个应用系统在使用传统单体数据库，单表数据量达到了 1亿并且还在快速增长，单体数据库负载
持续在高位，成为系统瓶颈。一旦数据库成为瓶颈，对应用服务器扩容是无效的，需要对数据库进行扩
容。

3.7.5 相关参考

• 数据迁移的配置
• 数据迁移的实现原理

3.7. 数据迁移 39

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/migration/
https://shardingsphere.apache.org/document/current/cn/reference/migration/

Apache ShardingSphere document, v5.2.1

3.7.6 核心概念

节点

运行计算层或存储层组件进程的实例，可以是物理机、虚拟机、容器等。

集群

为了提供特定服务而集合在一起的多个节点。

源端

原始数据所在的存储集群。

目标端

原始数据将要迁移的目标存储集群。

数据迁移作业

把数据从某一个存储集群复制到另一个存储集群的完整流程。

存量数据

在数据迁移作业开始前，数据节点中已有的数据。

增量数据

在数据迁移作业执行过程中，业务系统所产生的新数据。

3.7.7 使用限制

支持项

• 将外围数据迁移至 Apache ShardingSphere所管理的数据库；
• 迁移含整型唯一键或字符串唯一键的表；
• 迁移含整型主键或字符串主键的表。

3.7. 数据迁移 40

Apache ShardingSphere document, v5.2.1

不支持项

• 迁移无主键且无唯一键的表；
• 迁移复合主键或复合唯一键的表；
• 不支持在当前存储节点之上做迁移，需要准备一个全新的数据库集群作为迁移目标库。

3.8 数据加密

3.8.1 背景

安全控制一直是治理的重要环节，数据加密属于安全控制的范畴。无论对互联网公司还是传统行业来说，
数据安全一直是极为重视和敏感的话题。数据加密是指对某些敏感信息通过加密规则进行数据的变形，实
现敏感隐私数据的可靠保护。涉及客户安全数据或者一些商业性敏感数据，如身份证号、手机号、卡号、
客户号等个人信息按照相关部门规定，都需要进行数据加密。
对于数据加密的需求，在现实的业务场景中一般分为两种情况：

1. 新业务上线，安全部门规定需将涉及用户敏感信息，例如银行、手机号码等进行加密后存储到数据
库，在使用的时候再进行解密处理。因为是全新系统，因而没有存量数据清洗问题，所以实现相对
简单。

2. 已上线业务，之前一直将明文存储在数据库中。相关部门突然需要对已上线业务进行加密整改。这
种场景一般需要处理 3个问题：

• 历史数据需要如何进行加密处理，即洗数。
• 如何能在不改动业务 SQL和逻辑情况下，将新增数据进行加密处理，并存储到数据库；在使用时，
再进行解密取出。

• 如何较为安全、无缝、透明化地实现业务系统在明文与密文数据间的迁移。

3.8.2 挑战

在真实业务场景中，相关业务开发团队则往往需要针对公司安全部门需求，自行实行并维护一套加解密
系统。而当加密场景发生改变时，自行维护的加密系统往往又面临着重构或修改风险。此外，对于已经
上线的业务，在不修改业务逻辑和 SQL的情况下，透明化、安全低风险地实现无缝进行加密改造也相对
复杂。

3.8. 数据加密 41

Apache ShardingSphere document, v5.2.1

3.8.3 目标

根据业界对加密的需求及业务改造痛点，提供了一套完整、安全、透明化、低改造成本的数据加密整合
解决方案，是 Apache ShardingSphere数据加密模块的主要设计目标。

3.8.4 应用场景

新上线业务

对于想要快速上线新业务，同时又需要完成安全部门的加密规定的场景，接入 ShardingSphere encrypt功
能，可以快速完成数据的合规化加密，客户无需自行开发复杂的加密系统，同时 ShardingSphere encrypt
的灵活性，也能够帮助客户避免加密场景变更带来的复杂重构和修改风险。

成熟业务

对于已经上线的成熟业务，用户不仅需要考虑历史数据的清洗，还需要考虑新旧功能的切换。接入 Shard‐
ingSphere encrypt,用户就可以方便地完成系统的加密改造，它还能够帮助用户安全快速地切换新旧功
能。用户无需改动任何业务逻辑和 SQL就能够透明化地使用加解密功能。

3.8.5 相关参考

• 配置：数据加密
• 开发者指南：数据加密

3.8.6 核心概念

逻辑列

用于计算加解密列的逻辑名称，是 SQL中列的逻辑标识。逻辑列包含密文列（必须）、查询辅助列（可选）
和明文列（可选）。

密文列

加密后的数据列。

3.8. 数据加密 42

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/encrypt/
https://shardingsphere.apache.org/document/current/cn/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

查询辅助列

用于查询的辅助列。对于一些安全级别更高的非幂等加密算法，提供不可逆的幂等列用于查询。

明文列

存储明文的列，用于在加密数据迁移过程中仍旧提供服务。在洗数结束后可以删除。

3.8.7 使用限制

• 需自行处理数据库中原始的存量数据；
• 加密字段无法支持查询不区分大小写功能；
• 加密字段无法支持比较操作，如：大于、小于、ORDER BY、BETWEEN、LIKE等；
• 加密字段无法支持计算操作，如：AVG、SUM以及计算表达式。

3.8.8 附录

不支持的 SQL：
• 加密字段无法支持查询不区分大小写功能；
• 加密字段无法支持比较操作，如：大于、小于、ORDER BY、BETWEEN、LIKE等；
• 加密字段无法支持计算操作，如：AVG、SUM以及计算表达式。

3.9 影子库

3.9.1 背景

在基于微服务的分布式应用架构下，业务需要多个服务是通过一系列的服务、中间件的调用来完成，所
以单个服务的压力测试已无法代表真实场景。在测试环境中，如果重新搭建一整套与生产环境类似的压
测环境，成本过高，并且往往无法模拟线上环境的复杂度以及流量。因此，业内通常选择全链路压测的
方式，即在生产环境进行压测，这样所获得的测试结果能够准确地反应系统真实容量和性能水平。

3.9.2 挑战

全链路压测是一项复杂而庞大的工作。需要各个微服务、中间件之间配合与调整，以应对不同流量以及压
测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离，为
了保证生产数据的可靠性与完整性，需要将压测产生的数据路由到压测环境数据库，防止压测数据对生
产数据库中真实数据造成污染。这就要求业务应用在执行 SQL前，能够根据透传的压测标识，做好数据
分类，将相应的 SQL路由到与之对应的数据源。

3.9. 影子库 43

Apache ShardingSphere document, v5.2.1

3.9.3 目标

Apache ShardingSphere关注于全链路压测场景下，数据库层面的解决方案。将压测数据自动路由至用
户指定的数据库，是 Apache ShardingSphere影子库模块的主要设计目标。

3.9.4 应用场景

在基于微服务的分布式应用架构下，为了提升系统压力测试的准确性，降低测试成本。通常选择在生产
环境进行压力测试。测试中风险也会大大提高。通过 ShardingSphere影子库功能，结合影子算法灵活的
配置。可以解决数据污染，数据库性能等问题，满足复杂业务场景的在线压力测试需求。

3.9.5 相关参考

• Java API：影子库
• YAML配置：影子库
• Spring Boot Starter：影子库
• Spring命名空间：影子库

3.9.6 核心概念

生产库

生产环境使用的数据库。

影子库

压测数据隔离的影子数据库，与生产数据库应当使用相同的配置。

影子算法

影子算法和业务实现紧密相关，目前提供 2种类型影子算法。
• 基于列的影子算法通过识别 SQL中的数据，匹配路由至影子库的场景。适用于由压测数据名单驱动
的压测场景。

• 基于 Hint的影子算法通过识别 SQL中的注释，匹配路由至影子库的场景。适用于由上游系统透传
标识驱动的压测场景。

3.9. 影子库 44

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/

Apache ShardingSphere document, v5.2.1

3.9.7 使用限制

基于Hint的影子算法

• 无。

基于列的影子算法

• 不支持 DDL；
• 不支持范围、分组和子查询，如：BETWEEN、GROUP BY⋯HAVING等。SQL支持列表：

– INSERT

SQL 是 否 支
持

INSERT INTO table (column,⋯) VALUES (value,⋯) 支持
INSERT INTO table (column,⋯) VALUES (value,⋯),(value,⋯),⋯ 支持
INSERT INTO table (column,⋯) SELECT column1 from table1 where column1 =
value1

不支持

– SELECT/UPDATE/DELETE

条件类型 SQL 是 否
支持

= SELECT/UPDATE/DELETE⋯WHERE column = value 支持
LIKE/NOTLIKE SELECT/UPDATE/DELETE ⋯WHERE column LIKE/NOT LIKE

value
支持

IN/NOT IN SELECT/UPDATE/DELETE ⋯WHERE column IN/NOT IN
(value1,value2,⋯)

支持

BETWEEN SELECT/UPDATE/DELETE ⋯WHERE column BETWEEN value1
AND value2

不 支
持

GROUP BY ⋯
HAVING⋯

SELECT/UPDATE/DELETE ⋯WHERE ⋯GROUP BY column HAV‐
ING column > value

不 支
持

子查询 SELECT/UPDATE/DELETE ⋯WHERE column = (SELECT column
FROM table WHERE column = value)

不 支
持

3.10 可观察性

3.10.1 背景

如何观测集群的运行状态，使运维人员可以快速掌握当前系统现状，并进行进一步的维护工作，是分布式
系统的全新挑战。登录到具体服务器的点对点运维方式，无法适用于面向大量分布式服务器的场景。通

3.10. 可观察性 45

Apache ShardingSphere document, v5.2.1

过对可系统观察性数据的遥测是分布式系统推荐的运维方式。Tracing（链路跟踪）、Metrics（指标监控）
和 Logging（日志）是系统运行状况的可观察性数据重要的获取手段。
APM（应用性能监控）是通过对系统可观察性数据进行采集、存储和分析，进行系统的性能监控与诊断，
主要功能包括性能指标监控、调用链分析，应用拓扑图等。
Apache ShardingSphere并不负责如何采集、存储以及展示应用性能监控的相关数据，而是为应用监控
系统提供必要的指标数据。换句话说，Apache ShardingSphere仅负责产生具有价值的数据，并通过标准
协议或插件化的方式递交给相关系统。
Tracing用于获取 SQL解析与 SQL执行的链路跟踪信息。Apache ShardingSphere默认提供了对 SkyWalk‐
ing，Zipkin，Jaeger和 OpenTelemetry的支持，也支持用户通过插件化的方式开发自定义的 Tracing组
件。

• 使用 Zipkin和 Jaeger通过在 agent配置文件中开启对应的插件，并配置好 Zipkin或者 Jaeger服务
器信息即可。

• 使用OpenTelemetry OpenTelemetry在 2019年由OpenTracing和OpenCencus合并而来。使用这
种方式，只需要在 agent配置文件中，根据 OpenTelemetry SDK自动配置说明，填写合适的配置即
可。

• 使用 SkyWalking需要在 agent配置中配置启用对应插件，并且需要同时配置使用 SkyWalking的
apm‐toolkit工具。

• 使用 SkyWalking的内置自动探针 Apache ShardingSphere团队与 Apache SkyWalking团队共同合
作，在 SkyWalking中实现了 Apache ShardingSphere自动探针，可以将相关的应用性能数据自动
发送到 SkyWalking中。注意这种方式的自动探针不能与 Apache ShardingSphere插件探针同时使
用。

Metrics则用于收集和展示整个集群的统计指标。Apache ShardingSphere默认提供了对 Prometheus的
支持。

3.10. 可观察性 46

Apache ShardingSphere document, v5.2.1

3.10.2 挑战

Tracing和Metrics需要通过埋点来收集系统信息。大量的埋点使项目核心代码支离破碎，难于维护，且
不易定制化统计指标。

3.10.3 目标

提供尽量多的性能和统计指标，并隔离核心代码和埋点代码，是 Apache ShardingSphere可观察性模块
的设计目标。

3.10. 可观察性 47

Apache ShardingSphere document, v5.2.1

3.10.4 应用场景

ShardingSphere通过 Agent模块为应用提供可观察性的能力，可适用于以下场景：

监控仪表盘

将系统静态信息（如应用版本）和动态信息（如线程数、SQL处理信息）等Metrics指标，使用标准接口
方式暴露给第三方应用（如 Prometheus），管理员能够通过可视化的方式监控系统实时状态。

应用性能监控

在 ShardingSphere中，一条 SQL语句要经历解析、路由、改写、执行、结果归并等流程才能最终执行完
成，并输出响应。如果 SQL语句复杂，整体执行耗时过长，如何知道哪一步存在优化空间呢？
通过 Agent + Tracing，管理员可以了解 SQL执行过程中每一步的耗时情况，轻松定位性能风险，从而能
够有针对性的制定 SQL优化方案。

应用链路追踪

在分布式应用 +数据分片的场景下，SQL语句是哪个节点发出的，最终在哪些数据源执行？这是一个非
常棘手的问题。如果 SQL执行过程中发生异常，如何定位发生异常的节点呢？
Agent + Tracing，能够帮助用户解决以上问题。
通过对 SQL执行过程的完整链路追踪，用户可以得到“SQL从哪里来，发到哪里去”这样的完整信息，还
能够通过生成的拓扑图来直观的观察 SQL路由情况，运筹帷幄，同时获得快速定位问题根源的能力。

3.10.5 相关参考

• 可观察性的使用
• 开发者指南：可观察性
• 实现原理

3.10.6 核心概念

Agent

基于字节码增强和插件化设计，以提供 Tracing和Metrics埋点，以及日志输出功能。需要开启 Agent的
插件功能后，才能将监控指标数据输出至第三方 APM中展示。

3.10. 可观察性 48

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/observability/
https://shardingsphere.apache.org/document/current/cn/dev-manual/agent/
https://shardingsphere.apache.org/document/current/cn/reference/observability/

Apache ShardingSphere document, v5.2.1

APM

APM是应用性能监控的缩写。着眼于分布式系统的性能诊断，其主要功能包括调用链展示，应用拓扑分
析等。

Tracing

链路跟踪，通过探针收集调用链数据，并发送到第三方 APM系统。

Metrics

系统统计指标，通过探针收集，并且写入到时序数据库，供第三方应用展示。

Logging

日志，通过 Agent能够方便的扩展日志内容，为分析系统运行状态提供更多信息。

3.10. 可观察性 49

4
用户手册

本章节面向 Apache ShardingSphere的用户，详细阐述项目的使用说明。

4.1 ShardingSphere-JDBC

配置是 ShardingSphere‐JDBC 中唯一与应用开发者交互的模块，通过它可以快速清晰的理解
ShardingSphere‐JDBC所提供的功能。
本章节是 ShardingSphere‐JDBC的配置参考手册，需要时可当做字典查阅。
ShardingSphere‐JDBC提供了 4种配置方式，用于不同的使用场景。通过配置，应用开发者可以灵活的使
用数据分片、读写分离、数据加密、影子库等功能，并且能够叠加使用。
混合规则配置与单一规则配置一脉相承，只是从配置单一的规则项到配置多个规则项的异同。
需要注意的是，规则项之间的叠加使用是通过数据源名称和表名称关联的。如果前一个规则是面向数据
源聚合的，下一个规则在配置数据源时，则需要使用前一个规则配置的聚合后的逻辑数据源名称；同理，
如果前一个规则是面向表聚合的，下一个规则在配置表时，则需要使用前一个规则配置的聚合后的逻辑
表名称。
更多使用细节请参见使用示例。

4.1.1 YAML配置

简介

YAML提供通过配置文件的方式与 ShardingSphere‐JDBC交互。配合治理模块一同使用时，持久化在配
置中心的配置均为 YAML格式。

YAML配置是最常见的配置方式，可以省略编程的复杂度，简化用户配置。

50

说明： YAML 配置文件支持配置内容超过 3MB。

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example

Apache ShardingSphere document, v5.2.1

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

配置 YAML

ShardingSphere‐JDBC的 YAML配置文件通过 Database名称、运行模式、数据源集合、规则集合以及属
性配置组成。

JDBC 逻辑库名称。在集群模式中，使用该参数来联通 ShardingSphere-JDBC 与 ShardingSphere-
Proxy。
默认值：logic_db
databaseName (?):

mode:

dataSources:

rules:
- !FOO_XXX

...
- !BAR_XXX

...

props:
key_1: value_1
key_2: value_2

模式详情请参见模式配置。
数据源详情请参见数据源配置。
规则详情请参见规则配置。

4.1. ShardingSphere-JDBC 51

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/mode
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/data-source
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules

Apache ShardingSphere document, v5.2.1

构建数据源

通过 YamlShardingSphereDataSourceFactory 工厂创建的 ShardingSphereDataSource 实现自 JDBC 的
标准接口 DataSource。

File yamlFile = // 指定 YAML 文件路径
DataSource dataSource = YamlShardingSphereDataSourceFactory.
createDataSource(yamlFile);

使用数据源

使用方式同 Java API。

语法说明

!!表示实例化该类
!表示自定义别名
-表示可以包含一个或多个
[]表示数组，可以与减号相互替换使用

模式配置

参数解释

mode (?): # 不配置则默认单机模式
type: # 运行模式类型。可选配置：Standalone、Cluster
repository (?): # 久化仓库配置

单机模式

mode:
type: Standalone
repository:

type: # 持久化仓库类型
props: # 持久化仓库所需属性
foo_key: foo_value
bar_key: bar_value

4.1. ShardingSphere-JDBC 52

Apache ShardingSphere document, v5.2.1

集群模式 (推荐)

mode:
type: Cluster
repository:

type: # 持久化仓库类型
props: # 持久化仓库所需属性
namespace: # 注册中心命名空间
server-lists: # 注册中心连接地址
foo_key: foo_value
bar_key: bar_value

注意事项

1. 生产环境建议使用集群模式部署。
2. 集群模式部署推荐使用 ZooKeeper注册中心。
3. ZooKeeper存在配置信息时，则以 ZooKeeper中的配置为准。

配置示例

单机模式

mode:
type: Standalone
repository:

type: JDBC

集群模式 (推荐)

mode:
type: Cluster
repository:

type: ZooKeeper
props:
namespace: governance
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60

4.1. ShardingSphere-JDBC 53

Apache ShardingSphere document, v5.2.1

相关参考

• ZooKeeper注册中心安装与使用
• 持久化仓库类型的详情，请参见内置持久化仓库类型列表。

数据源配置

背景信息

ShardingSphere‐JDBC支持所有的数据库 JDBC驱动和连接池。
示例的数据库驱动为 MySQL，连接池为 HikariCP，可以更换为其他数据库驱动和连接池。当使
用 ShardingSphere‐JDBC 时，JDBC 池的属性名取决于各自 JDBC 池自己的定义，并不由 Shard‐
ingSphere硬定义，相关的处理可以参考类 org.apache.shardingsphere.infra.datasource.
pool.creator.DataSourcePoolCreator。例如对于 Alibaba Druid 1.2.9而言，使用 url代替如下
示例中的 jdbcUrl是预期行为。

参数解释

dataSources: # 数据源配置，可配置多个 <data-source-name>
<data-source-name>: # 数据源名称

dataSourceClassName: # 数据源完整类名
driverClassName: # 数据库驱动类名，以数据库连接池自身配置为准
jdbcUrl: # 数据库 URL 连接，以数据库连接池自身配置为准
username: # 数据库用户名，以数据库连接池自身配置为准
password: # 数据库密码，以数据库连接池自身配置为准
... 数据库连接池的其它属性

配置示例

dataSources:
ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:

ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root
password:

配置其他数据源

4.1. ShardingSphere-JDBC 54

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.2.1

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 YAML规则配
置参考手册。

数据分片

背景信息

数据分片 YAML配置方式具有非凡的可读性，通过 YAML格式，能够快速地理解分片规则之间的依赖关
系，ShardingSphere会根据 YAML配置，自动完成 ShardingSphereDataSource对象的创建，减少用户
不必要的编码工作。

参数解释

rules:
- !SHARDING
tables: # 数据分片规则配置

<logic-table-name> (+): # 逻辑表名称
actualDataNodes (?): # 由数据源名 + 表名组成（参考 Inline 语法规则）
databaseStrategy (?): # 分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一
standard: # 用于单分片键的标准分片场景

shardingColumn: # 分片列名称
shardingAlgorithmName: # 分片算法名称

complex: # 用于多分片键的复合分片场景
shardingColumns: # 分片列名称，多个列以逗号分隔
shardingAlgorithmName: # 分片算法名称

hint: # Hint 分片策略
shardingAlgorithmName: # 分片算法名称

none: # 不分片
tableStrategy: # 分表策略，同分库策略
keyGenerateStrategy: # 分布式序列策略
column: # 自增列名称，缺省表示不使用自增主键生成器
keyGeneratorName: # 分布式序列算法名称

auditStrategy: # 分片审计策略
auditorNames: # 分片审计算法名称

- <auditor-name>
- <auditor-name>

allowHintDisable: true # 是否禁用分片审计 hint
autoTables: # 自动分片表规则配置

t_order_auto: # 逻辑表名称
actualDataSources (?): # 数据源名称
shardingStrategy: # 切分策略
standard: # 用于单分片键的标准分片场景

4.1. ShardingSphere-JDBC 55

Apache ShardingSphere document, v5.2.1

shardingColumn: # 分片列名称
shardingAlgorithmName: # 自动分片算法名称

bindingTables (+): # 绑定表规则列表
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>

broadcastTables (+): # 广播表规则列表
- <table-name>
- <table-name>

defaultDatabaseStrategy: # 默认数据库分片策略
defaultTableStrategy: # 默认表分片策略
defaultKeyGenerateStrategy: # 默认的分布式序列策略
defaultShardingColumn: # 默认分片列名称

分片算法配置
shardingAlgorithms:

<sharding-algorithm-name> (+): # 分片算法名称
type: # 分片算法类型
props: # 分片算法属性配置
...

分布式序列算法配置
keyGenerators:

<key-generate-algorithm-name> (+): # 分布式序列算法名称
type: # 分布式序列算法类型
props: # 分布式序列算法属性配置
...

分片审计算法配置
auditors:

<sharding-audit-algorithm-name> (+): # 分片审计算法名称
type: # 分片审计算法类型
props: # 分片审计算法属性配置
...

操作步骤

1. 在 YAML文件中配置数据分片规则，包含数据源、分片规则、全局属性等配置项；
2. 调用 YamlShardingSphereDataSourceFactory对象的 createDataSource方法，根据 YAML文件中
的配置信息创建 ShardingSphereDataSource。

4.1. ShardingSphere-JDBC 56

Apache ShardingSphere document, v5.2.1

配置示例

数据分片 YAML配置示例如下：

dataSources:
ds_0:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_0?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

ds_1:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds_1?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !SHARDING
tables:

t_order:
actualDataNodes: ds_${0..1}.t_order_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: t-order-inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

auditStrategy:
auditorNames:

- sharding_key_required_auditor
allowHintDisable: true

t_order_item:
actualDataNodes: ds_${0..1}.t_order_item_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: t_order-item-inline

keyGenerateStrategy:
column: order_item_id
keyGeneratorName: snowflake

t_account:
actualDataNodes: ds_${0..1}.t_account_${0..1}
tableStrategy:
standard:

4.1. ShardingSphere-JDBC 57

Apache ShardingSphere document, v5.2.1

shardingAlgorithmName: t-account-inline
keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

defaultShardingColumn: account_id
bindingTables:

- t_order,t_order_item
broadcastTables:

- t_address
defaultDatabaseStrategy:

standard:
shardingColumn: user_id
shardingAlgorithmName: database-inline

defaultTableStrategy:
none:

shardingAlgorithms:
database-inline:
type: INLINE
props:
algorithm-expression: ds_${user_id % 2}

t-order-inline:
type: INLINE
props:
algorithm-expression: t_order_${order_id % 2}

t_order-item-inline:
type: INLINE
props:
algorithm-expression: t_order_item_${order_id % 2}

t-account-inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

auditors:
sharding_key_required_auditor:
type: DML_SHARDING_CONDITIONS

props:
sql-show: false

通过 YamlShardingSphereDataSourceFactory的 createDataSource方法，读取 YAML配置完成数据源的
创建。

YamlShardingSphereDataSourceFactory.createDataSource(getFile("/META-INF/sharding-
databases-tables.yaml"));

4.1. ShardingSphere-JDBC 58

Apache ShardingSphere document, v5.2.1

相关参考

• 核心特性：数据分片
• 开发者指南：数据分片

读写分离

背景信息

读写分离 YAML配置方式可读性高，通过 YAML格式，能够快速地理解读写分片规则之间的依赖关系，
ShardingSphere会根据 YAML配置，自动完成 ShardingSphereDataSource对象的创建，减少用户不必
要的编码工作。

参数解释

静态读写分离

rules:
- !READWRITE_SPLITTING
dataSources:

<data-source-name> (+): # 读写分离逻辑数据源名称
static-strategy: # 读写分离类型

write-data-source-name: # 写库数据源名称
read-data-source-names: # 读库数据源名称，多个从数据源用逗号分隔

loadBalancerName: # 负载均衡算法名称

负载均衡算法配置
loadBalancers:

<load-balancer-name> (+): # 负载均衡算法名称
type: # 负载均衡算法类型
props: # 负载均衡算法属性配置
...

动态读写分离

rules:
- !READWRITE_SPLITTING
dataSources:

<data-source-name> (+): # 读写分离逻辑数据源名称
dynamic-strategy: # 读写分离类型

auto-aware-data-source-name: # 数据库发现逻辑数据源名称
write-data-source-query-enabled: # 从库全部下线，主库是否承担读流量

loadBalancerName: # 负载均衡算法名称

4.1. ShardingSphere-JDBC 59

https://shardingsphere.apache.org/document/current/cn/features/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

负载均衡算法配置
loadBalancers:

<load-balancer-name> (+): # 负载均衡算法名称
type: # 负载均衡算法类型
props: # 负载均衡算法属性配置
...

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见核心特性：读写分离。

操作步骤

1. 添加读写分离数据源
2. 设置负载均衡算法
3. 使用读写分离数据源

配置示例

rules:
- !READWRITE_SPLITTING
dataSources:

readwrite_ds:
staticStrategy:
writeDataSourceName: write_ds
readDataSourceNames:

- read_ds_0
- read_ds_1

loadBalancerName: random
loadBalancers:

random:
type: RANDOM

相关参考

• 核心特性：读写分离
• Java API：读写分离
• Spring Boot Starter：读写分离
• Spring命名空间：读写分离

4.1. ShardingSphere-JDBC 60

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

分布式事务

背景信息

ShardingSphere提供了三种模式的分布式事务 LOCAL, XA, BASE。

参数解释

rules:
- !TRANSACTION

defaultType: # 事务模式，可选值 LOCAL/XA/BASE
providerType: # 指定模式下的具体实现

操作步骤

使用 LOCAL模式

server.yaml配置文件内容如下：

rules:
- !TRANSACTION

defaultType: LOCAL

使用 XA模式

server.yaml配置文件内容如下：

rules:
- !TRANSACTION

defaultType: XA
providerType: Narayana/Atomikos

手动添加 Narayana相关依赖：

jta-5.12.4.Final.jar
arjuna-5.12.4.Final.jar
common-5.12.4.Final.jar
jboss-connector-api_1.7_spec-1.0.0.Final.jar
jboss-logging-3.2.1.Final.jar
jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
jboss-transaction-spi-7.6.0.Final.jar
narayana-jts-integration-5.12.4.Final.jar
shardingsphere-transaction-xa-narayana-x.x.x-SNAPSHOT.jar

4.1. ShardingSphere-JDBC 61

Apache ShardingSphere document, v5.2.1

使用 BASE模式

server.yaml配置文件内容如下：

rules:
- !TRANSACTION

defaultType: BASE
providerType: Seata

搭建 Seata Server，添加相关配置文件，和 Seata依赖，具体步骤参考 ShardingSphere集成 Seata柔性事
务

高可用

背景信息

通过 YAML格式，ShardingSphere会根据 YAML配置，自动完成 ShardingSphereDataSource对象
的创建，减少用户不必要的编码工作。

参数解释

rules:
- !READWRITE_SPLITTING
dataSources:

replica_ds:
dynamicStrategy: Dynamic # 动态读写分离
autoAwareDataSourceName: # 高可用规则逻辑数据源名称

- !DB_DISCOVERY
dataSources:

<data-source-name> (+): # 逻辑数据源名称
dataSourceNames: # 数据源名称列表
- <data-source>
- <data-source>

discoveryHeartbeatName: # 检测心跳名称
discoveryTypeName: # 数据库发现类型名称

心跳检测配置
discoveryHeartbeats:

<discovery-heartbeat-name> (+): # 心跳名称
props:
keep-alive-cron: # cron 表达式，如：'0/5 * * * * ?'

数据库发现类型配置
discoveryTypes:

<discovery-type-name> (+): # 数据库发现类型名称

4.1. ShardingSphere-JDBC 62

https://community.sphere-ex.com/t/topic/404
https://community.sphere-ex.com/t/topic/404

Apache ShardingSphere document, v5.2.1

type: # 数据库发现类型，如：MySQL.MGR
props (?):
group-name: 92504d5b-6dec-11e8-91ea-246e9612aaf1 # 数据库发现类型必要参数，如

MGR 的 group-name

配置示例

databaseName: database_discovery_db

dataSources:
ds_0:

url: jdbc:mysql://127.0.0.1:33306/primary_demo_ds?serverTimezone=UTC&
useSSL=false

username: root
password:
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

ds_1:
url: jdbc:mysql://127.0.0.1:33307/primary_demo_ds?serverTimezone=UTC&

useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

ds_2:
url: jdbc:mysql://127.0.0.1:33308/primary_demo_ds?serverTimezone=UTC&

useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

rules:
- !READWRITE_SPLITTING
dataSources:
replica_ds:
dynamicStrategy:

4.1. ShardingSphere-JDBC 63

Apache ShardingSphere document, v5.2.1

autoAwareDataSourceName: readwrite_ds

- !DB_DISCOVERY
dataSources:
readwrite_ds:
dataSourceNames:

- ds_0
- ds_1
- ds_2

discoveryHeartbeatName: mgr-heartbeat
discoveryTypeName: mgr

discoveryHeartbeats:
mgr-heartbeat:
props:

keep-alive-cron: '0/5 * * * * ?'
discoveryTypes:
mgr:
type: MySQL.MGR
props:

group-name: 558edd3c-02ec-11ea-9bb3-080027e39bd2

相关参考

• 高可用核心特性
• JAVA API：高可用配置
• Spring Boot Starter：高可用配置
• Spring命名空间：高可用配置

数据加密

背景信息

数据加密 YAML配置方式具有非凡的可读性，通过 YAML格式，能够快速地理解加密规则之间的依赖关
系，ShardingSphere会根据 YAML配置，自动完成 ShardingSphereDataSource对象的创建，减少用户
不必要的编码工作。

4.1. ShardingSphere-JDBC 64

https://shardingsphere.apache.org/document/current/cn/features/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha/

Apache ShardingSphere document, v5.2.1

参数解释

rules:
- !ENCRYPT
tables:

<table-name> (+): # 加密表名称
columns:
<column-name> (+): # 加密列名称

cipherColumn: # 密文列名称
assistedQueryColumn (?): # 查询辅助列名称
plainColumn (?): # 原文列名称
encryptorName: # 加密算法名称

queryWithCipherColumn(?): # 该表是否使用加密列进行查询

加密算法配置
encryptors:

<encrypt-algorithm-name> (+): # 加解密算法名称
type: # 加解密算法类型
props: # 加解密算法属性配置
...

queryWithCipherColumn: # 是否使用加密列进行查询。在有原文列的情况下，可以使用原文列进行查询

算法类型的详情，请参见内置加密算法列表。

操作步骤

1. 在 YAML文件中配置数据加密规则，包含数据源、加密规则、全局属性等配置项；
2. 调用 YamlShardingSphereDataSourceFactory对象的 createDataSource方法，根据 YAML文件中
的配置信息创建 ShardingSphereDataSource。

配置示例

数据加密 YAML配置如下：

dataSources:
unique_ds:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/demo_ds?serverTimezone=UTC&useSSL=false&

useUnicode=true&characterEncoding=UTF-8
username: root
password:

rules:
- !ENCRYPT

4.1. ShardingSphere-JDBC 65

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

tables:
t_user:
columns:
username:

plainColumn: username_plain
cipherColumn: username
encryptorName: name-encryptor

pwd:
cipherColumn: pwd
assistedQueryColumn: assisted_query_pwd
encryptorName: pwd_encryptor

encryptors:
name-encryptor:
type: AES
props:
aes-key-value: 123456abc

pwd_encryptor:
type: assistedTest

然后通过 YamlShardingSphereDataSourceFactory的 createDataSource方法创建数据源。

YamlShardingSphereDataSourceFactory.createDataSource(getFile());

相关参考

• 核心特性：数据加密
• 开发者指南：数据加密

影子库

背景信息

如果您想在 ShardingSphere‐Proxy中使用 ShardingSphere影子库功能请参考以下配置。

参数解释

rules:
- !SHADOW
dataSources:

shadowDataSource:
productionDataSourceName: # 生产数据源名称
shadowDataSourceName: # 影子数据源名称

tables:
<table-name>:

4.1. ShardingSphere-JDBC 66

https://shardingsphere.apache.org/document/current/cn/features/encrypt/
https://shardingsphere.apache.org/document/current/cn/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

dataSourceNames: # 影子表关联影子数据源名称列表
- <shadow-data-source>

shadowAlgorithmNames: # 影子表关联影子算法名称列表
- <shadow-algorithm-name>

defaultShadowAlgorithmName: # 默认影子算法名称（选配项）
shadowAlgorithms:

<shadow-algorithm-name> (+): # 影子算法名称
type: # 影子算法类型
props: # 影子算法属性配置

详情请参见内置影子算法列表

操作步骤

1. 在 YAML文件中配置影子库规则，包含数据源、影子库规则、全局属性等配置项；
2. 调用 YamlShardingSphereDataSourceFactory对象的 createDataSource方法，根据 YAML文件中
的配置信息创建 ShardingSphereDataSource。

配置示例

dataSources:
ds:

url: jdbc:mysql://127.0.0.1:3306/ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

shadow_ds:
url: jdbc:mysql://127.0.0.1:3306/shadow_ds?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

rules:
- !SHADOW
dataSources:

shadowDataSource:
productionDataSourceName: ds
shadowDataSourceName: shadow_ds

4.1. ShardingSphere-JDBC 67

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document, v5.2.1

tables:
t_order:
dataSourceNames:
- shadowDataSource

shadowAlgorithmNames:
- user-id-insert-match-algorithm
- simple-hint-algorithm

shadowAlgorithms:
user-id-insert-match-algorithm:
type: REGEX_MATCH
props:
operation: insert
column: user_id
regex: "[1]"

simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

相关参考

• 影子库的核心特性
• JAVA API：影子库配置
• Spring Boot Starter：影子库配置
• Spring命名空间：影子库配置

SQL解析

背景信息

SQL解析 YAML配置方式具有可读性高，使用简单的特点。通过 YAML文件的方式，用户可以将代码与
配置分离，并且根据需要方便地修改配置文件。

参数解释

rules:
- !SQL_PARSER
sqlCommentParseEnabled: # 是否解析 SQL 注释
sqlStatementCache: # SQL 语句本地缓存配置项

initialCapacity: # 本地缓存初始容量
maximumSize: # 本地缓存最大容量

parseTreeCache: # 解析树本地缓存配置项

4.1. ShardingSphere-JDBC 68

https://shardingsphere.apache.org/document/current/cn/features/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/

Apache ShardingSphere document, v5.2.1

initialCapacity: # 本地缓存初始容量
maximumSize: # 本地缓存最大容量

操作步骤

1. 设置本地缓存配置
2. 设置解析配置
3. 使用解析引擎解析 SQL

配置示例

rules:
- !SQL_PARSER

sqlCommentParseEnabled: true
sqlStatementCache:
initialCapacity: 2000
maximumSize: 65535

parseTreeCache:
initialCapacity: 128
maximumSize: 1024

相关参考

• JAVA API：SQL解析
• Spring Boot Starter：SQL解析
• Spring命名空间：SQl解析

SQL翻译

配置项说明

rules:
- !SQL_TRANSLATOR
type: # SQL 翻译器类型
useOriginalSQLWhenTranslatingFailed: # SQL 翻译失败是否使用原始 SQL 继续执行

4.1. ShardingSphere-JDBC 69

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

混合规则

背景信息

ShardingSphere涵盖了很多功能，例如，分库分片、读写分离、高可用、数据脱敏等。这些功能用户可
以单独进行使用，也可以配合一起使用，下面是基于 YAML的参数解释和配置示例。

参数解释

rules:
- !SHARDING

tables:
<logic-table-name>: # 逻辑表名称:
actualDataNodes: # 由逻辑数据源名 + 表名组成（参考 Inline 语法规则）
tableStrategy: # 分表策略，同分库策略

standard:
shardingColumn: # 分片列名称
shardingAlgorithmName: # 分片算法名称

keyGenerateStrategy:
column: # 自增列名称，缺省表示不使用自增主键生成器
keyGeneratorName: # 分布式序列算法名称

defaultDatabaseStrategy:
standard:
shardingColumn: # 分片列名称
shardingAlgorithmName: # 分片算法名称

shardingAlgorithms:
<sharding-algorithm-name>: # 分片算法名称
type: INLINE
props:

algorithm-expression: # INLINE 表达式
t_order_inline:
type: INLINE
props:

algorithm-expression: # INLINE 表达式
keyGenerators:
<key-generate-algorithm-name> (+): # 分布式序列算法名称
type: # 分布式序列算法类型
props: # 分布式序列算法属性配置

- !READWRITE_SPLITTING
dataSources:
<data-source-name>: # 读写分离逻辑数据源名称
dynamicStrategy: # 读写分离类型

autoAwareDataSourceName: # 数据库发现逻辑数据源名称
<data-source-name>: # 读写分离逻辑数据源名称
dynamicStrategy: # 读写分离类型

autoAwareDataSourceName: # 数据库发现逻辑数据源名称
- !DB_DISCOVERY

4.1. ShardingSphere-JDBC 70

Apache ShardingSphere document, v5.2.1

dataSources:
<data-source-name>:
dataSourceNames: # 数据源名称列表

- ds_0
- ds_1
- ds_2

discoveryHeartbeatName: # 检测心跳名称
discoveryTypeName: # 数据库发现类型名称

<data-source-name>:
dataSourceNames: # 数据源名称列表

- ds_3
- ds_4
- ds_5

discoveryHeartbeatName: # 检测心跳名称
discoveryTypeName: # 数据库发现类型名称

discoveryHeartbeats:
<discovery-heartbeat-name>: # 心跳名称
props:

keep-alive-cron: # cron 表达式，如：'0/5 * * * * ?'
discoveryTypes:
<discovery-type-name>: # 数据库发现类型名称
type: # 数据库发现类型，如：MySQL.MGR
props:

group-name: # 数据库发现类型必要参数，如 MGR 的 group-name
- !ENCRYPT

encryptors:
<encrypt-algorithm-name> (+): # 加解密算法名称
type: # 加解密算法类型
props: # 加解密算法属性配置

<encrypt-algorithm-name> (+): # 加解密算法名称
type: # 加解密算法类型

tables:
<table-name>: # 加密表名称
columns:

<column-name>: # 加密列名称
plainColumn: # 原文列名称
cipherColumn: # 密文列名称
encryptorName: # 加密算法名称

<column-name>: # 加密列名称
cipherColumn: # 密文列名称
encryptorName: # 加密算法名称

4.1. ShardingSphere-JDBC 71

Apache ShardingSphere document, v5.2.1

配置示例

rules:
- !SHARDING

tables:
t_order:
actualDataNodes: replica_ds_${0..1}.t_order_${0..1}
tableStrategy:

standard:
shardingColumn: order_id
shardingAlgorithmName: t_order_inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:

shardingColumn: user_id
shardingAlgorithmName: database_inline

shardingAlgorithms:
database_inline:

type: INLINE
props:

algorithm-expression: replica_ds_${user_id % 2}
t_order_inline:

type: INLINE
props:

algorithm-expression: t_order_${order_id % 2}
t_order_item_inline:

type: INLINE
props:

algorithm-expression: t_order_item_${order_id % 2}
keyGenerators:
snowflake:

type: SNOWFLAKE
- !READWRITE_SPLITTING
dataSources:
replica_ds_0:
dynamicStrategy:

autoAwareDataSourceName: readwrite_ds_0
replica_ds_1:
dynamicStrategy:

autoAwareDataSourceName: readwrite_ds_1
- !DB_DISCOVERY

dataSources:
readwrite_ds_0:
dataSourceNames:

- ds_0
- ds_1

4.1. ShardingSphere-JDBC 72

Apache ShardingSphere document, v5.2.1

- ds_2
discoveryHeartbeatName: mgr-heartbeat
discoveryTypeName: mgr

readwrite_ds_1:
dataSourceNames:

- ds_3
- ds_4
- ds_5

discoveryHeartbeatName: mgr-heartbeat
discoveryTypeName: mgr

discoveryHeartbeats:
mgr-heartbeat:
props:

keep-alive-cron: '0/5 * * * * ?'
discoveryTypes:
mgr:
type: MySQL.MGR
props:

group-name: 558edd3c-02ec-11ea-9bb3-080027e39bd2
- !ENCRYPT

encryptors:
aes_encryptor:
type: AES
props:

aes-key-value: 123456abc
md5_encryptor:
type: MD5

tables:
t_encrypt:
columns:

user_id:
plainColumn: user_plain
cipherColumn: user_cipher
encryptorName: aes_encryptor

order_id:
cipherColumn: order_cipher
encryptorName: md5_encryptor

算法配置

分片算法

shardingAlgorithms:
algorithmName 由用户指定，需要和分片策略中的 shardingAlgorithmName 属性一致
<algorithmName>:

type 和 props，请参考分片内置算法：https://shardingsphere.apache.org/document/

4.1. ShardingSphere-JDBC 73

Apache ShardingSphere document, v5.2.1

current/cn/user-manual/common-config/builtin-algorithm/sharding/
type: xxx
props:
xxx: xxx

加密算法

encryptors:
encryptorName 由用户指定，需要和加密规则中的 encryptorName 属性一致
<encryptorName>:

type 和 props，请参考加密内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/encrypt/

type: xxx
props:
xxx: xxx

读写分离负载均衡算法

loadBalancers:
loadBalancerName 由用户指定，需要和读写分离规则中的 loadBalancerName 属性一致
<loadBalancerName>:

type 和 props，请参考读写分离负载均衡内置算法：https://shardingsphere.apache.org/
document/current/cn/user-manual/common-config/builtin-algorithm/load-balance/

type: xxx
props:
xxx: xxx

影子算法

loadBalancers:
shadowAlgorithmName 由用户指定，需要和影子库规则中的 shadowAlgorithmNames 属性一致
<shadowAlgorithmName>:

type 和 props，请参考影子库内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/shadow/

type: xxx
props:
xxx: xxx

4.1. ShardingSphere-JDBC 74

Apache ShardingSphere document, v5.2.1

高可用

discoveryTypes:
discoveryTypeName 由用户指定，需要和数据库发现规则中的 discoveryTypeName 属性一致
<discoveryTypeName>:

type: xxx
props:
xxx: xxx

JDBC驱动

背景信息

ShardingSphere‐JDBC提供了 JDBC驱动，可以仅通过配置变更即可使用，无需改写代码。

参数解释

驱动类名称

org.apache.shardingsphere.driver.ShardingSphereDriver

URL配置

• 以 jdbc:shardingsphere: 为前缀
• 配置文件：xxx.yaml，配置文件格式与 YAML配置一致
• 配置文件加载规则：

– 无前缀表示从绝对路径加载配置文件
– classpath: 前缀表示从类路径中加载配置文件

操作步骤

1. 引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

2. 使用驱动
• 使用原生驱动：

4.1. ShardingSphere-JDBC 75

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/

Apache ShardingSphere document, v5.2.1

Class.forName("org.apache.shardingsphere.driver.ShardingSphereDriver");
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = DriverManager.getConnection(jdbcUrl);
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

• 使用数据库连接池

String driverClassName = "org.apache.shardingsphere.driver.ShardingSphereDriver";
String jdbcUrl = "jdbc:shardingsphere:classpath:config.yaml";

// 以 HikariCP 为例
HikariDataSource dataSource = new HikariDataSource();
dataSource.setDriverClassName(driverClassName);
dataSource.setJdbcUrl(jdbcUrl);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

4.1. ShardingSphere-JDBC 76

Apache ShardingSphere document, v5.2.1

配置示例

加载 classpath中 config.yaml配置文件的 JDBC URL：

jdbc:shardingsphere:classpath:config.yaml

加载绝对路径中 config.yaml配置文件的 JDBC URL：

jdbc:shardingsphere:/path/to/config.yaml

4.1.2 Java API

简介

Java API是 ShardingSphere‐JDBC中所有配置方式的基础，其他配置最终都将转化成为 Java API的配置
方式。
Java API是最繁琐也是最灵活的配置方式，适合需要通过编程进行动态配置的场景下使用。

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

构建数据源

ShardingSphere‐JDBC的 Java API由 Database名称、运行模式、数据源集合、规则集合以及属性配置组
成。
通过 ShardingSphereDataSourceFactory工厂创建的 ShardingSphereDataSource实现自 JDBC的标准接
口 DataSource。

String databaseName = "foo_schema"; // 指定逻辑 Database 名称
ModeConfiguration modeConfig = ... // 构建运行模式
Map<String, DataSource> dataSourceMap = ... // 构建真实数据源
Collection<RuleConfiguration> ruleConfigs = ... // 构建具体规则
Properties props = ... // 构建属性配置
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

4.1. ShardingSphere-JDBC 77

Apache ShardingSphere document, v5.2.1

模式详情请参见模式配置。
数据源详情请参见数据源配置。
规则详情请参见规则配置。

使用数据源

可通过 DataSource选择使用原生 JDBC，或 JPA、Hibernate、MyBatis等 ORM框架。
以原生 JDBC使用方式为例：

// 创建 ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

模式配置

背景信息

通过 Java API方式构建运行模式。

参数解释

类名称：org.apache.shardingsphere.infra.config.mode.ModeConfiguration

可配置属性：

4.1. ShardingSphere-JDBC 78

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/mode
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/data-source
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules

Apache ShardingSphere document, v5.2.1

Standalone持久化配置

类名称：org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepositoryConfiguration

可配置属性：

名称 数据类型 说明
type String 持久化仓库类型
props Properties 持久化仓库所需属性

Cluster持久化配置

类名称：org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration

可配置属性：

名称 数据类型 说明
type String 持久化仓库类型
namespace String 注册中心命名空间
server‐lists String 注册中心连接地址
props Properties 持久化仓库所需属性

注意事项

1. 生产环境建议使用集群模式部署。
2. 集群模式部署推荐使用 ZooKeeper注册中心。
3. ZooKeeper存在配置信息时，则以 ZooKeeper中的配置为准。

操作步骤

引入Maven依赖。

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

4.1. ShardingSphere-JDBC 79

Apache ShardingSphere document, v5.2.1

配置示例

Standalone运行模式

ModeConfiguration modeConfig = createModeConfiguration();
Map<String, DataSource> dataSourceMap = ... // 构建真实数据源
Collection<RuleConfiguration> ruleConfigs = ... // 构建具体规则
Properties props = ... // 构建属性配置
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private ModeConfiguration createModeConfiguration() {
return new ModeConfiguration("Standalone", new

StandalonePersistRepositoryConfiguration("JDBC", new Properties()));
}

Cluster运行模式 (推荐)

ModeConfiguration modeConfig = createModeConfiguration();
Map<String, DataSource> dataSourceMap = ... // 构建真实数据源
Collection<RuleConfiguration> ruleConfigs = ... // 构建具体规则
Properties props = ... // 构建属性配置
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private ModeConfiguration createModeConfiguration() {
return new ModeConfiguration("Cluster", new

ClusterPersistRepositoryConfiguration("ZooKeeper", "governance-sharding-db",
"localhost:2181", new Properties()));
}

相关参考

• ZooKeeper注册中心安装与使用
• 持久化仓库类型的详情，请参见内置持久化仓库类型列表。

4.1. ShardingSphere-JDBC 80

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.2.1

数据源配置

背景信息

ShardingSphere‐JDBC支持所有的数据库 JDBC驱动和连接池。
本节将介绍，通过 JAVA API的方式配置数据源。

操作步骤

1.引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

配置示例

ModeConfiguration modeConfig = // 构建运行模式
Map<String, DataSource> dataSourceMap = createDataSources();
Collection<RuleConfiguration> ruleConfigs = ... // 构建具体规则
Properties props = ... // 构建属性配置
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(databaseName, modeConfig, dataSourceMap, ruleConfigs, props);

private Map<String, DataSource> createDataSources() {
Map<String, DataSource> dataSourceMap = new HashMap<>();
// 配置第 1 个数据源
HikariDataSource dataSource1 = new HikariDataSource();
dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
dataSource1.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSource1.setUsername("root");
dataSource1.setPassword("");
dataSourceMap.put("ds_1", dataSource1);

// 配置第 2 个数据源
HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");

4.1. ShardingSphere-JDBC 81

Apache ShardingSphere document, v5.2.1

dataSourceMap.put("ds_2", dataSource2);
}

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 Java规则配置
参考手册。

数据分片

背景信息

数据分片 Java API规则配置允许用户直接通过编写 Java代码的方式，完成 ShardingSphereDataSource
对象的创建，Java API的配置方式非常灵活，不需要依赖额外的 jar包就能够集成各种类型的业务系统。

参数解释

配置入口

类名称：org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

可配置属性：

分片表配置

类名称：org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

可配置属性：

4.1. ShardingSphere-JDBC 82

Apache ShardingSphere document, v5.2.1

名称 数据类型 说明 默认值
logicTable String 分片逻辑表名称 •

actua lDataNodes (?) String 由数据源名+表名组成，
以小数点分隔。多个表
以逗号分隔，支持行表
达式

使用已知数据源与逻辑
表名称生成数据节点，
用于广播表或只分库不
分表且所有库的表结构
完全一致的情况

data baseShardi
ngStrategy (?)

Sha rdingStrategy Con‐
figuration

分库策略 使用默认分库策略

t ableShardi ngStrat‐
egy (?)

Sha rdingStrategy Con‐
figuration

分表策略 使用默认分表策略

keyGenera teStrategy
(?)

KeyGenerator Config‐
uration

自增列生成器 使用默认自增主键生成
器

aud itStrategy (?) Sharding AuditStrat‐
egy Configuration

分片审计策略 使用默认分片审计策略

自动分片表配置

类名称：org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

可配置属性：

名称 数据类型 说明 默认值
logicTable String 分片逻辑表名称 •

act ualDataSources (?) String 数据源名称，多个数据
源以逗号分隔

使用全部配置的数据源

sh ardingStrategy (?) S hardingStrateg yCon‐
figuration

分片策略 使用默认分片策略

keyGe nerateStrategy
(?)

KeyGenerato rConfig‐
uration

自增列生成器 使用默认自增主键生成
器

auditStrategy (?) Shardi ngAuditStrateg
yConfiguration

分片审计策略 使用默认分片审计策略

4.1. ShardingSphere-JDBC 83

Apache ShardingSphere document, v5.2.1

分片策略配置

标准分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration
可配置属性：

名称 数据类型 说明
shardingColumn String 分片列名称
shardingAlgorithmName String 分片算法名称

复合分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

可配置属性：

名称 数据类型 说明
shardingColumns String 分片列名称，多个列以逗号分隔
shardingAlgorithmName String 分片算法名称

Hint分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration

可配置属性：

名称 数据类型 说明
shardingAlgorithmName String 分片算法名称

不分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration
可配置属性：无
算法类型的详情，请参见内置分片算法列表。

4.1. ShardingSphere-JDBC 84

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding

Apache ShardingSphere document, v5.2.1

分布式序列策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration
可配置属性：

名称 数据类型 说明
column String 分布式序列列名称
keyGeneratorName String 分布式序列算法名称

算法类型的详情，请参见内置分布式序列算法列表。

分片审计策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.audit.ShardingAuditStrategyConfiguration
可配置属性：

名称 数据类型 说明
auditorNames Collection<String> 分片审计算法名称
allowHintDisable Boolean 是否禁用分片审计 hint

算法类型的详情，请参见内置分片审计列算法列表。

操作步骤

1. 创建真实数据源映射关系，key为数据源逻辑名称，value为 DataSource对象；
2. 创建分片规则对象 ShardingRuleConfiguration，并初始化对象中的分片表对象 ShardingTableRule‐

Configuration、绑定表集合、广播表集合，以及数据分片所依赖的分库策略和分表策略等参数；
3. 调用 ShardingSphereDataSourceFactory 对象的 createDataSource 方法，创建 ShardingSphere‐

DataSource。

配置示例

public final class ShardingDatabasesAndTablesConfigurationPrecise implements
ExampleConfiguration {

@Override
public DataSource getDataSource() throws SQLException {

return ShardingSphereDataSourceFactory.
createDataSource(createDataSourceMap(), Collections.
singleton(createShardingRuleConfiguration()), new Properties());

}

4.1. ShardingSphere-JDBC 85

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit

Apache ShardingSphere document, v5.2.1

private ShardingRuleConfiguration createShardingRuleConfiguration() {
ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables().add(getOrderTableRuleConfiguration());
result.getTables().add(getOrderItemTableRuleConfiguration());
result.getBindingTableGroups().add("t_order, t_order_item");
result.getBroadcastTables().add("t_address");
result.setDefaultDatabaseShardingStrategy(new

StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy(new

StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", "demo_ds_${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration(

"INLINE", props));
result.getShardingAlgorithms().put("standard_test_tbl", new

AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration(

"SNOWFLAKE", new Properties()));
result.getAuditors().put("sharding_key_required_auditor", new

AlgorithmConfiguration("DML_SHARDING_CONDITIONS", new Properties()));
return result;

}

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(

"t_order", "demo_ds_${0..1}.t_order_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_

id", "snowflake"));
result.setAuditStrategy(new ShardingAuditStrategyConfiguration(Collections.

singleton("sharding_key_required_auditor"), true));
return result;

}

private ShardingTableRuleConfiguration getOrderItemTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration(

"t_order_item", "demo_ds_${0..1}.t_order_item_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_

item_id", "snowflake"));
return result;

}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>();
result.put("demo_ds_0", DataSourceUtil.createDataSource("demo_ds_0"));
result.put("demo_ds_1", DataSourceUtil.createDataSource("demo_ds_1"));
return result;

}
}

4.1. ShardingSphere-JDBC 86

Apache ShardingSphere document, v5.2.1

相关参考

• 核心特性：数据分片
• 开发者指南：数据分片

读写分离

背景信息

Java API形式配置的读写分离可以方便的适用于各种场景，不依赖额外的 jar包，用户只需要通过 java代
码构造读写分离数据源便可以使用读写分离功能。

参数解释

配置入口

类名称：org.apache.shardingsphere.readwritesplitting.api.ReadwriteSplittingRuleConfiguration

可配置属性：

名称 数据类型 说明
d ataSources (+) Collection<Rea dwriteSplittingDataSourceRuleConfigu‐

ration>
读写数据源配置

loa dBalancers
(*)

Map<String, AlgorithmConfiguration> 从库负载均衡算法配
置

主从数据源配置

类名称：org.apache.shardingsphere.readwritesplitting.api.rule.ReadwriteSplittingDataSourceRuleConfiguration
可配置属性：

名称 数据类型 说明 默认值
name String 读写分离数据源名称 •

staticStrategy Sta ticReadwriteSp
littingStrateg yConfig‐
uration

静态读写分离配置 •

d ynamicStrategy Dyna micReadwriteSp
littingStrateg yConfig‐
uration

动态读写分离配置 •

lo adBalancerName (?) String 读库负载均衡算法名称 轮询负载均衡算法

4.1. ShardingSphere-JDBC 87

https://shardingsphere.apache.org/document/current/cn/features/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

类名称：org.apache.shardingsphere.readwritesplitting.api.strategy.StaticReadwriteSplittingStrategyConfiguration
可配置属性：

名称 数据类型 说明
writeDataSourceName String 写库数据源名称
readDataSourceNames List<String> 读库数据源列表

类名称：org.apache.shardingsphere.readwritesplitting.api.strategy.DynamicReadwriteSplittingStrategyConfiguration

可配置属性：

名称 数据类型 说明 默认值
auto AwareData‐
SourceName

String 数据库发现的逻辑数据
源名称

•

writeDat aSource‐
QueryEnabled (?)

String 读库全部下线，主库是
否承担读流量

true

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见核心特性：读写分离。

操作步骤

1. 添加读写分离数据源
2. 设置负载均衡算法
3. 使用读写分离数据源

配置示例

public DataSource getDataSource() throws SQLException {
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfig = new

ReadwriteSplittingDataSourceRuleConfiguration(
"demo_read_query_ds", new

StaticReadwriteSplittingStrategyConfiguration("demo_write_ds",
Arrays.asList("demo_read_ds_0", "demo_read_ds_1")), null,"demo_

weight_lb");
Properties algorithmProps = new Properties();
algorithmProps.setProperty("demo_read_ds_0", "2");
algorithmProps.setProperty("demo_read_ds_1", "1");
Map<String, AlgorithmConfiguration> algorithmConfigMap = new HashMap<>(1);
algorithmConfigMap.put("demo_weight_lb", new AlgorithmConfiguration("WEIGHT

", algorithmProps));
ReadwriteSplittingRuleConfiguration ruleConfig = new

ReadwriteSplittingRuleConfiguration(Collections.singleton(dataSourceConfig),
algorithmConfigMap);

Properties props = new Properties();

4.1. ShardingSphere-JDBC 88

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

props.setProperty("sql-show", Boolean.TRUE.toString());
return ShardingSphereDataSourceFactory.

createDataSource(createDataSourceMap(), Collections.singleton(ruleConfig), props);
}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>(3, 1);
result.put("demo_write_ds", DataSourceUtil.createDataSource("demo_write_ds

"));
result.put("demo_read_ds_0", DataSourceUtil.createDataSource("demo_read_ds_

0"));
result.put("demo_read_ds_1", DataSourceUtil.createDataSource("demo_read_ds_

1"));
return result;

}

相关参考

• 核心特性：读写分离
• YAML配置：读写分离
• Spring Boot Starter：读写分离
• Spring命名空间：读写分离

分布式事务

配置入口

org.apache.shardingsphere.transaction.config.TransactionRuleConfiguration

可配置属性：

名称 数据类型 说明
defaultType String 默认事务类型
providerType (?) String 事务提供者类型
props (?) Properties 事务属性配置

4.1. ShardingSphere-JDBC 89

https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

高可用

背景信息

通过 Java API方式构建高可用规则配置。

参数解释

配置入口

类名称：org.apache.shardingsphere.dbdiscovery.api.config.DatabaseDiscoveryRuleConfiguration可配
置属性：

名称 数据类型 说明
dataSources (+) Collection<Datab aseDiscoveryDataSourceRuleConfig‐

uration>
数据源配置

disco veryHeartbeats
(+)

Map<String, DatabaseDiscoveryHeartBeatConfigura‐
tion>

监听心跳配置

discoveryTypes (+) Map<String, AlgorithmConfiguration> 数据库发现类型
配置

数据源配置

类名称：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryDataSourceRuleConfiguration
可配置属性：

名称 数据类型 说明
groupName (+) String 数据库发现组名称
dataSourceNames (+) Collec‐

tion<String>
数据源名称，多个数据源用逗号分隔如：ds_0, ds_1

d iscoveryHeartbeatName
(+)

String 监听心跳名称

discoveryTypeName (+) String 数据库发现类型名称

监听心跳配置

类名称：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryHeartBeatConfiguration

可配置属性：

4.1. ShardingSphere-JDBC 90

Apache ShardingSphere document, v5.2.1

名称 数据类型 说明 •
默认值 *

pr ops (+) Pr oper ties 监听心跳属性配置，
keep‐alive‐cron 属
性配置 cron 表达式，
如：‘0/5 * * * * ?’

•

数据库发现类型配置

类名称：org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

名称 数据类型 说明
type (+) String 数据库发现类型，如：MySQL.MGR
props (?) Properties 数据库发现类型配置，如MGR的 group‐name属性配置

操作步骤

1. 引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

配置示例

// 构建数据源 ds_0，ds_1，ds_2
Map<String, DataSource> dataSourceMap = new HashMap<>(3, 1);
dataSourceMap.put("ds_0", createDataSource1("primary_demo_ds"));
dataSourceMap.put("ds_1", createDataSource2("primary_demo_ds"));
dataSourceMap.put("ds_2", createDataSource3("primary_demo_ds"));

DataSource dataSource = ShardingSphereDataSourceFactory.createDataSource("database_
discovery_db", dataSourceMap, Arrays.asList(createDatabaseDiscoveryConfiguration(),
createReadwriteSplittingConfiguration()), null);

private static DatabaseDiscoveryRuleConfiguration
createDatabaseDiscoveryConfiguration() {

DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration = new
DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds", Arrays.asList("ds_0,
ds_1, ds_2"), "mgr-heartbeat", "mgr");

4.1. ShardingSphere-JDBC 91

Apache ShardingSphere document, v5.2.1

return new DatabaseDiscoveryRuleConfiguration(Collections.
singleton(dataSourceRuleConfiguration), createDiscoveryHeartbeats(),
createDiscoveryTypes());
}

private static ReadwriteSplittingRuleConfiguration
createReadwriteSplittingConfiguration() {

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds", new
DynamicReadwriteSplittingStrategyConfiguration("readwrite_ds", true), "");

return new ReadwriteSplittingRuleConfiguration(Arrays.
asList(dataSourceConfiguration1), Collections.emptyMap());
}

private static Map<String, AlgorithmConfiguration> createDiscoveryTypes() {
Map<String, AlgorithmConfiguration> discoveryTypes = new HashMap<>(1， 1);
Properties props = new Properties();
props.put("group-name", "558edd3c-02ec-11ea-9bb3-080027e39bd2");
discoveryTypes.put("mgr", new AlgorithmConfiguration("MGR", props));
return discoveryTypes;

}

private static Map<String, DatabaseDiscoveryHeartBeatConfiguration>
createDiscoveryHeartbeats() {

Map<String, DatabaseDiscoveryHeartBeatConfiguration>
discoveryHeartBeatConfiguration = new HashMap<>(1， 1);

Properties props = new Properties();
props.put("keep-alive-cron", "0/5 * * * * ?");
discoveryHeartBeatConfiguration.put("mgr-heartbeat", new

DatabaseDiscoveryHeartBeatConfiguration(props));
return discoveryHeartBeatConfiguration;

}

相关参考

• 高可用核心特性
• YAML配置：高可用配置
• Spring Boot Starter：高可用配置
• Spring命名空间：高可用配置

4.1. ShardingSphere-JDBC 92

https://shardingsphere.apache.org/document/current/cn/features/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha/

Apache ShardingSphere document, v5.2.1

数据加密

背景信息

数据加密 Java API规则配置允许用户直接通过编写 Java代码的方式，完成 ShardingSphereDataSource
对象的创建，Java API的配置方式非常灵活，不需要依赖额外的 jar包就能够集成各种类型的业务系统。

参数解释

配置入口

类名称：org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

可配置属性：

名称 数据类型 说明 默
认
值

tables (+) Collectio
n<EncryptTableRu leCon‐
figuration>

加密表规则配置

encryptors (+) Map<String, Algorit hm‐
Configuration>

加解密算法名称和配置

query WithCi‐
pherColumn
(?)

boolean 是否使用加密列进行查询。在有原文列的情
况下，可以使用原文列进行查询

true

加密表规则配置

类名称：org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

可配置属性：

名称 数据类型 说明
name String 表名称
columns (+) Co llection<EncryptColu mnRuleConfigu‐

ration>
加密列规则配置列表

q ueryWithCipherCol‐
umn (?)

boolean 该表是否使用加密列进行
查询

4.1. ShardingSphere-JDBC 93

Apache ShardingSphere document, v5.2.1

加密列规则配置

类名称：org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

可配置属性：

名称 数据类型 说明
logicColumn String 逻辑列名称
cipherColumn String 密文列名称
assistedQueryColumn (?) String 查询辅助列名称
plainColumn (?) String 原文列名称
encryptorName String 密文列加密算法名称
assistedQueryEncryptorName String 查询辅助列加密算法名称
queryWithCipherColumn (?) boolean 该列是否使用加密列进行查询

加解密算法配置

类名称：org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

可配置属性：

名称 数据类型 说明
name String 加解密算法名称
type String 加解密算法类型
properties Properties 加解密算法属性配置

算法类型的详情，请参见内置加密算法列表。

操作步骤

1. 创建真实数据源映射关系，key为数据源逻辑名称，value为 DataSource对象；
2. 创建加密规则对象 EncryptRuleConfiguration，并初始化对象中的加密表对象 EncryptTableRule‐

Configuration、加密算法等参数；
3. 调用 ShardingSphereDataSourceFactory 对象的 createDataSource 方法，创建 ShardingSphere‐

DataSource。

4.1. ShardingSphere-JDBC 94

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

配置示例

public final class EncryptDatabasesConfiguration implements ExampleConfiguration {

@Override
public DataSource getDataSource() {

Properties props = new Properties();
props.setProperty("aes-key-value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new

EncryptColumnRuleConfiguration("username", "username", "", "username_plain", "name_
encryptor", null);

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_pwd", "", "pwd_
encryptor", null);

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest), null);

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new
LinkedHashMap<>(2, 1);

encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration(
"AES", props));

encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(
"assistedTest", props));

EncryptRuleConfiguration encryptRuleConfig = new
EncryptRuleConfiguration(Collections.singleton(encryptTableRuleConfig),
encryptAlgorithmConfigs);

try {
return ShardingSphereDataSourceFactory.createDataSource(DataSourceUtil.

createDataSource("demo_ds"), Collections.singleton(encryptRuleConfig), props);
} catch (final SQLException ex) {

ex.printStackTrace();
return null;

}
}

}

相关参考

• 数据加密的核心特性
• 数据加密的开发者指南

4.1. ShardingSphere-JDBC 95

https://shardingsphere.apache.org/document/current/cn/features/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/encryption/

Apache ShardingSphere document, v5.2.1

影子库

背景信息

如果您只想使用 Java API方式配置使用 ShardingSphere影子库功能请参考以下配置。

参数解释

配置入口

类名称：org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

可配置属性：

名称 数据类型 说明
dataSources Map<String, ShadowData SourceConfigu‐

ration>
影子数据源映射名称和
配置

tables Map<String, Shado wTableConfiguration> 影子表名称和配置
shadowAlgorithms Map<String, Alg orithmConfiguration> 影子算法名称和配置
defaul tShadowAlgorithm‐
Name

String 默认影子算法名称

影子数据源配置

类名称：org.apache.shardingsphere.shadow.api.config.datasource.ShadowDataSourceConfiguration

可配置属性：

名称 数据类型 说明
productionDataSourceName String 生产数据源名称
shadowDataSourceName String 影子数据源名称

影子表配置

类名称：org.apache.shardingsphere.shadow.api.config.table.ShadowTableConfiguration

可配置属性：

名称 数据类型 说明
dataSourceNames Collection<String> 影子表关联影子数据源映射名称列表
shadowAlgorithmNames Collection<String> 影子表关联影子算法名称列表

4.1. ShardingSphere-JDBC 96

Apache ShardingSphere document, v5.2.1

影子算法配置

类名称：org.apache.shardingsphere.infra.config.algorithm.AlgorithmConfiguration

可配置属性：

名称 数据类型 说明
type String 影子算法类型
props Properties 影子算法配置

算法类型的详情，请参见内置影子算法列表。

操作步骤

1. 创建生产和影子数据源。
2. 配置影子规则
• 配置影子数据源
• 配置影子表
• 配置影子算法

配置示例

public final class ShadowConfiguration {

@Override
public DataSource getDataSource() throws SQLException {

Map<String, DataSource> dataSourceMap = createDataSourceMap();
return ShardingSphereDataSourceFactory.createDataSource(dataSourceMap,

createRuleConfigurations(), createShardingSphereProps());
}

private Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new LinkedHashMap<>();
result.put("ds", DataSourceUtil.createDataSource("demo_ds"));
result.put("ds_shadow", DataSourceUtil.createDataSource("shadow_demo_ds"));
return result;

}

private Collection<RuleConfiguration> createRuleConfigurations() {
Collection<RuleConfiguration> result = new LinkedList<>();
ShadowRuleConfiguration shadowRule = new ShadowRuleConfiguration();
shadowRule.setDataSources(createShadowDataSources());
shadowRule.setTables(createShadowTables());
shadowRule.setShadowAlgorithms(createShadowAlgorithmConfigurations());

4.1. ShardingSphere-JDBC 97

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document, v5.2.1

result.add(shadowRule);
return result;

}

private Map<String, ShadowDataSourceConfiguration> createShadowDataSources() {
Map<String, ShadowDataSourceConfiguration> result = new LinkedHashMap<>();
result.put("shadow-data-source", new ShadowDataSourceConfiguration("ds",

"ds_shadow"));
return result;

}

private Map<String, ShadowTableConfiguration> createShadowTables() {
Map<String, ShadowTableConfiguration> result = new LinkedHashMap<>();
result.put("t_user", new ShadowTableConfiguration(Collections.

singletonList("shadow-data-source"), createShadowAlgorithmNames()));
return result;

}

private Collection<String> createShadowAlgorithmNames() {
Collection<String> result = new LinkedList<>();
result.add("user-id-insert-match-algorithm");
result.add("simple-hint-algorithm");
return result;

}

private Map<String, AlgorithmConfiguration>
createShadowAlgorithmConfigurations() {

Map<String, AlgorithmConfiguration> result = new LinkedHashMap<>();
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_type");
userIdInsertProps.setProperty("value", "1");
result.put("user-id-insert-match-algorithm", new AlgorithmConfiguration(

"VALUE_MATCH", userIdInsertProps));
return result;

}
}

4.1. ShardingSphere-JDBC 98

Apache ShardingSphere document, v5.2.1

相关参考

影子库的特性描述

SQL解析

背景信息

SQL是使用者与数据库交流的标准语言。SQL解析引擎负责将 SQL字符串解析为抽象语法树，供 Apache
ShardingSphere理解并实现其增量功能。目前支持MySQL, PostgreSQL, SQLServer, Oracle, openGauss
以及符合 SQL92规范的 SQL方言。由于 SQL语法的复杂性，目前仍然存在少量不支持的 SQL。通过 Java
API形式使用 SQL解析，可以方便得集成进入各种系统，灵活定制用户需求。

参数解释

类名称：org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration

可配置属性：

名称 数据类型 说明
sqlCommentParseEnabled (?) boolean 是否解析 SQL注释
parseTreeCache (?) CacheOption 解析语法树本地缓存配置
sqlStatementCache (?) CacheOption SQL语句本地缓存配置

本地缓存配置

类名称：org.apache.shardingsphere.sql.parser.api.CacheOption

可配置属性：

名称 数 据 类
型

说明 默认值

initialCapac‐
ity

int 本地缓存初始容
量

语法树本地缓存默认值 128，SQL语句缓存默认值 2000

maximum‐
Size

long 本地缓存最大容
量

语法树本地缓存默认值 1024，SQL 语句缓存默认值
65535

4.1. ShardingSphere-JDBC 99

https://shardingsphere.apache.org/document/current/cn/features/shadow/

Apache ShardingSphere document, v5.2.1

操作步骤

1. 设置本地缓存配置
2. 设置解析配置
3. 使用解析引擎解析 SQL

配置示例

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine("MySQL", cacheOption);
ParseASTNode parseASTNode = parserEngine.parse("SELECT t.id, t.name, t.age FROM
table1 AS t ORDER BY t.id DESC;", false);
SQLVisitorEngine visitorEngine = new SQLVisitorEngine("MySQL", "STATEMENT", false,
new Properties());
MySQLStatement sqlStatement = visitorEngine.visit(parseASTNode);
System.out.println(sqlStatement.toString());

相关参考

• YAML配置：SQL解析
• Spring Boot Starter：SQL解析
• Spring命名空间：SQl解析

SQL翻译

配置入口

类名称：org.apache.shardingsphere.sqltranslator.api.config.SQLTranslatorRuleConfiguration

可配置属性：

名称 数据类型 说明
type String SQL翻译器类型
useOrigina lSQLWhenTranslatingFailed (?) boolean SQL翻译失败是否使用原始 SQL继续执行

4.1. ShardingSphere-JDBC 100

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

混合规则

背景信息

ShardingSphere涵盖了很多功能，例如，分库分片、读写分离、高可用、数据脱敏等。这些功能用户可
以单独进行使用，也可以配合一起使用，下面是基于 JAVA API的配置示例。

配置示例

// 分片配置
private ShardingRuleConfiguration createShardingRuleConfiguration() {

ShardingRuleConfiguration result = new ShardingRuleConfiguration();
result.getTables().add(getOrderTableRuleConfiguration());
result.setDefaultDatabaseShardingStrategy(new

StandardShardingStrategyConfiguration("user_id", "inline"));
result.setDefaultTableShardingStrategy(new

StandardShardingStrategyConfiguration("order_id", "standard_test_tbl"));
Properties props = new Properties();
props.setProperty("algorithm-expression", "demo_ds_${user_id % 2}");
result.getShardingAlgorithms().put("inline", new AlgorithmConfiguration("INLINE

", props));
result.getShardingAlgorithms().put("standard_test_tbl", new

AlgorithmConfiguration("STANDARD_TEST_TBL", new Properties()));
result.getKeyGenerators().put("snowflake", new AlgorithmConfiguration(

"SNOWFLAKE", new Properties()));
return result;

}

private ShardingTableRuleConfiguration getOrderTableRuleConfiguration() {
ShardingTableRuleConfiguration result = new ShardingTableRuleConfiguration("t_

order", "demo_ds_${0..1}.t_order_${[0, 1]}");
result.setKeyGenerateStrategy(new KeyGenerateStrategyConfiguration("order_id",

"snowflake"));
return result;

}

// 动态读写分离配置
private static ReadwriteSplittingRuleConfiguration
createReadwriteSplittingConfiguration() {

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_0", new
DynamicReadwriteSplittingStrategyConfiguration("readwrite_ds_0", true), "");

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("replica_ds_1", new
DynamicReadwriteSplittingStrategyConfiguration("readwrite_ds_1", true), "");

Collection<ReadwriteSplittingDataSourceRuleConfiguration> dataSources = new
LinkedList<>();

4.1. ShardingSphere-JDBC 101

Apache ShardingSphere document, v5.2.1

dataSources.add(dataSourceRuleConfiguration1);
dataSources.add(dataSourceRuleConfiguration2);
return new ReadwriteSplittingRuleConfiguration(dataSources, Collections.

emptyMap());
}

// 数据库发现配置
private static DatabaseDiscoveryRuleConfiguration
createDatabaseDiscoveryConfiguration() {

DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration1 = new
DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds_0", Arrays.asList("ds_0,
ds_1, ds_2"), "mgr-heartbeat", "mgr");

DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration2 = new
DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds_1", Arrays.asList("ds_3,
ds_4, ds_5"), "mgr-heartbeat", "mgr");

Collection<DatabaseDiscoveryDataSourceRuleConfiguration> dataSources = new
LinkedList<>();

dataSources.add(dataSourceRuleConfiguration1);
dataSources.add(dataSourceRuleConfiguration2);
return new DatabaseDiscoveryRuleConfiguration(configs,

createDiscoveryHeartbeats(), createDiscoveryTypes());
}

private static DatabaseDiscoveryRuleConfiguration
createDatabaseDiscoveryConfiguration() {

DatabaseDiscoveryDataSourceRuleConfiguration dataSourceRuleConfiguration = new
DatabaseDiscoveryDataSourceRuleConfiguration("readwrite_ds_1", Arrays.asList("ds_3,
ds_4, ds_5"), "mgr-heartbeat", "mgr");

return new DatabaseDiscoveryRuleConfiguration(Collections.
singleton(dataSourceRuleConfiguration), createDiscoveryHeartbeats(),
createDiscoveryTypes());
}

private static Map<String, AlgorithmConfiguration> createDiscoveryTypes() {
Map<String, AlgorithmConfiguration> result = new HashMap<>(1， 1);
Properties props = new Properties();
props.put("group-name", "558edd3c-02ec-11ea-9bb3-080027e39bd2");
discoveryTypes.put("mgr", new AlgorithmConfiguration("MGR", props));
return result;

}

private static Map<String, DatabaseDiscoveryHeartBeatConfiguration>
createDiscoveryHeartbeats() {

Map<String, DatabaseDiscoveryHeartBeatConfiguration> result = new HashMap<>(1，
1);

Properties props = new Properties();
props.put("keep-alive-cron", "0/5 * * * * ?");
discoveryHeartBeatConfiguration.put("mgr-heartbeat", new

4.1. ShardingSphere-JDBC 102

Apache ShardingSphere document, v5.2.1

DatabaseDiscoveryHeartBeatConfiguration(props));
return result;

}

// 数据脱敏配置
public EncryptRuleConfiguration createEncryptRuleConfiguration() {

Properties props = new Properties();
props.setProperty("aes-key-value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new

EncryptColumnRuleConfiguration("username", "username", "", "username_plain", "name_
encryptor", null);

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_pwd", "", "pwd_
encryptor", null);

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest), null);

Map<String, AlgorithmConfiguration> encryptAlgorithmConfigs = new LinkedHashMap
<>(2, 1);

encryptAlgorithmConfigs.put("name_encryptor", new AlgorithmConfiguration("AES",
props));

encryptAlgorithmConfigs.put("pwd_encryptor", new AlgorithmConfiguration(
"assistedTest", props));

EncryptRuleConfiguration result = new EncryptRuleConfiguration(Collections.
singleton(encryptTableRuleConfig), encryptAlgorithmConfigs);

return result;
}

算法配置

分片算法

ShardingRuleConfiguration ruleConfiguration = new ShardingRuleConfiguration();
// algorithmName 由用户指定，需要和分片策略中的分片算法一致
// type 和 props，请参考分片内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/sharding/
ruleConfiguration.getShardingAlgorithms().put("algorithmName", new
AlgorithmConfiguration("xxx", new Properties()));

4.1. ShardingSphere-JDBC 103

Apache ShardingSphere document, v5.2.1

加密算法

// encryptorName 由用户指定，需要和加密规则中的 encryptorName 属性一致
// type 和 props，请参考加密内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/encrypt/
Map<String, AlgorithmConfiguration> algorithmConfigs = new LinkedHashMap<>(1, 1);
algorithmConfigs.put("encryptorName", new AlgorithmConfiguration("xxx", new
Properties()));

读写分离负载均衡算法

// loadBalancerName 由用户指定，需要和读写分离规则中的 loadBalancerName 属性一致
// type 和 props，请参考读写分离负载均衡内置算法：https://shardingsphere.apache.org/
document/current/cn/user-manual/common-config/builtin-algorithm/load-balance/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>(1, 1);
algorithmConfigs.put("loadBalancerName", new AlgorithmConfiguration("xxx", new
Properties()));

影子算法

// shadowAlgorithmName 由用户指定，需要和影子库规则中的 shadowAlgorithmNames 属性一致
// type 和 props，请参考影子库内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/shadow/
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>(1, 1);
algorithmConfigs.put("shadowAlgorithmName", new AlgorithmConfiguration("xxx", new
Properties()));

高可用

// discoveryTypeName 由用户指定，需要和数据库发现规则中的 discoveryTypeName 属性一致
Map<String, AlgorithmConfiguration> algorithmConfigs = new HashMap<>(1, 1);
algorithmConfigs.put("discoveryTypeName", new AlgorithmConfiguration("xxx", new
Properties()));

4.1. ShardingSphere-JDBC 104

Apache ShardingSphere document, v5.2.1

4.1.3 Spring Boot Starter

简介

ShardingSphere‐JDBC提供官方的 Spring Boot Starter，使开发者可以非常便捷的整合 ShardingSphere‐
JDBC和 Spring Boot。

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

配置 Spring Boot属性

ShardingSphere‐JDBC的 Spring Boot属性配置由 Database名称、运行模式、数据源集合、规则集合以
及属性配置组成。

JDBC 逻辑库名称。在集群模式中，使用该参数来联通 ShardingSphere-JDBC 与 ShardingSphere-
Proxy。
spring.shardingsphere.database.name= # 逻辑库名称，默认值：logic_db
spring.shardingsphere.mode.xxx= # 运行模式
spring.shardingsphere.dataSource.xxx= # 数据源集合
spring.shardingsphere.rules.xxx= # 规则集合
spring.shardingsphere.props= # 属性配置

模式详情请参见模式配置。
数据源详情请参见数据源配置。
规则详情请参见规则配置。

使用数据源

直接通过注入的方式即可使用 ShardingSphereDataSource；或者将 ShardingSphereDataSource配置在
JPA、Hibernate、MyBatis等 ORM框架中配合使用。

@Resource
private DataSource dataSource;

4.1. ShardingSphere-JDBC 105

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/mode
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/data-source
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules

Apache ShardingSphere document, v5.2.1

模式配置

参数解释

spring.shardingsphere.mode.type= # 运行模式类型。可选配置：Standalone、Cluster
spring.shardingsphere.mode.repository= # 持久化仓库配置。

单机模式

spring.shardingsphere.mode.type=Standalone
spring.shardingsphere.mode.repository.type= # 持久化仓库类型
spring.shardingsphere.mode.repository.props.<key>= # 持久化仓库所需属性

集群模式 (推荐)

spring.shardingsphere.mode.type=Cluster
spring.shardingsphere.mode.repository.type= # 持久化仓库类型
spring.shardingsphere.mode.repository.props.namespace= # 注册中心命名空间
spring.shardingsphere.mode.repository.props.server-lists= # 注册中心连接地址
spring.shardingsphere.mode.repository.props.<key>= # 持久化仓库所需属性

注意事项

1. 生产环境建议使用集群模式部署。
2. 集群模式部署推荐使用 ZooKeeper注册中心。
3. ZooKeeper存在配置信息时，则以 ZooKeeper中的配置为准。

操作步骤

1. 引入MAVEN依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

4.1. ShardingSphere-JDBC 106

Apache ShardingSphere document, v5.2.1

配置示例

单机模式

spring.shardingsphere.mode.type=Standalone
spring.shardingsphere.mode.repository.type=JDBC

集群模式 (推荐)

spring.shardingsphere.mode.type=Cluster
spring.shardingsphere.mode.repository.type=ZooKeeper
spring.shardingsphere.mode.repository.props.namespace=governance
spring.shardingsphere.mode.repository.props.server-lists=localhost:2181
spring.shardingsphere.mode.repository.props.retryIntervalMilliseconds=500
spring.shardingsphere.mode.repository.props.timeToLiveSeconds=60

相关参考

• ZooKeeper注册中心安装与使用
• – 持久化仓库类型的详情，请参见内置持久化仓库类型列表。

数据源配置

背景信息

使用本地数据源

示例的数据库驱动为 MySQL，连接池为 HikariCP，可以更换为其他数据库驱动和连接池。当使
用 ShardingSphere JDBC 时，JDBC 池的属性名取决于各自 JDBC 池自己的定义，并不由 Shard‐
ingSphere硬定义，相关的处理可以参考类 org.apache.shardingsphere.infra.datasource.
pool.creator.DataSourcePoolCreator。例如对于 Alibaba Druid 1.2.9而言，使用 url代替如
下示例中的 jdbc-url是预期行为。

使用 JNDI数据源

如果计划使用 JNDI 配置数据库，在应用容器（如 Tomcat）中使用 ShardingSphere‐JDBC 时，可使
用 spring.shardingsphere.datasource.${datasourceName}.jndiName 来代替数据源的一
系列配置。

4.1. ShardingSphere-JDBC 107

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.2.1

参数解释

使用本地数据源

spring.shardingsphere.datasource.names= # 真实数据源名称，多个数据源用逗号区分

<actual-data-source-name> 表示真实数据源名称
spring.shardingsphere.datasource.<actual-data-source-name>.type= # 数据库连接池全类名
spring.shardingsphere.datasource.<actual-data-source-name>.driver-class-name= # 数据
库驱动类名，以数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.jdbc-url= # 数据库 URL 连
接，以数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.username= # 数据库用户名，
以数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.password= # 数据库密码，以
数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.<xxx>= # ... 数据库连接池的
其它属性

使用 JNDI数据源

spring.shardingsphere.datasource.names= # 真实数据源名称，多个数据源用逗号区分
<actual-data-source-name> 表示真实数据源名称
spring.shardingsphere.datasource.<actual-data-source-name>.jndi-name= # 数据源 JNDI

操作步骤

1.引入MAVEN依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

4.1. ShardingSphere-JDBC 108

Apache ShardingSphere document, v5.2.1

配置示例

使用本地数据源

配置真实数据源
spring.shardingsphere.datasource.names=ds1,ds2

配置第 1 个数据源
spring.shardingsphere.datasource.ds1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds1.jdbc-url=jdbc:mysql://localhost:3306/ds1
spring.shardingsphere.datasource.ds1.username=root
spring.shardingsphere.datasource.ds1.password=

配置第 2 个数据源
spring.shardingsphere.datasource.ds2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds2.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds2.jdbc-url=jdbc:mysql://localhost:3306/ds2
spring.shardingsphere.datasource.ds2.username=root
spring.shardingsphere.datasource.ds2.password=

使用 JNDI数据源

配置真实数据源
spring.shardingsphere.datasource.names=ds1,ds2
配置第 1 个数据源
spring.shardingsphere.datasource.ds1.jndi-name=java:comp/env/jdbc/ds1
配置第 2 个数据源
spring.shardingsphere.datasource.ds2.jndi-name=java:comp/env/jdbc/ds2

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 Spring Boot
Starter规则配置参考手册。

数据分片

背景信息

数据分片 Spring Boot Starter配置方式适用于使用 SpringBoot的业务场景，能够最大程度地利用 Sring‐
Boot配置初始化及 Bean管理的能力，完成 ShardingSphereDataSource对象的创建，减少不必要的编码
工作。

4.1. ShardingSphere-JDBC 109

Apache ShardingSphere document, v5.2.1

参数解释

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

标准分片表配置
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= # 由数据
源名 + 表名组成，以小数点分隔。多个表以逗号分隔，支持 inline 表达式。缺省表示使用已知数据源与逻辑表
名称生成数据节点，用于广播表（即每个库中都需要一个同样的表用于关联查询，多为字典表）或只分库不分表且
所有库的表结构完全一致的情况

分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一

用于单分片键的标准分片场景
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-column= # 分片列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-algorithm-name= # 分片算法名称

用于多分片键的复合分片场景
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-columns= # 分片列名称，多个列以逗号分隔
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-algorithm-name= # 分片算法名称

用于 Hint 的分片策略
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.hint.
sharding-algorithm-name= # 分片算法名称

分表策略，同分库策略
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= # 省略

自动分片表配置
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.actual-data-
sources= # 数据源名

spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-column= # 分片列名称
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-algorithm-name= # 自动分片算法名称

分布式序列策略配置
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # 分布式序列列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # 分布式序列算法名称

分片审计策略配置
spring.shardingsphere.rules.sharding.tables.<table-name>.audit-strategy.auditor-

4.1. ShardingSphere-JDBC 110

Apache ShardingSphere document, v5.2.1

names= # 分片审计算法名称
spring.shardingsphere.rules.sharding.tables.<table-name>.audit-strategy.allow-hint-
disable= # 是否禁用分片审计 hint

spring.shardingsphere.rules.sharding.binding-tables[0]= # 绑定表规则列表
spring.shardingsphere.rules.sharding.binding-tables[1]= # 绑定表规则列表
spring.shardingsphere.rules.sharding.binding-tables[x]= # 绑定表规则列表

spring.shardingsphere.rules.sharding.broadcast-tables[0]= # 广播表规则列表
spring.shardingsphere.rules.sharding.broadcast-tables[1]= # 广播表规则列表
spring.shardingsphere.rules.sharding.broadcast-tables[x]= # 广播表规则列表

spring.shardingsphere.rules.sharding.default-database-strategy.xxx= # 默认数据库分片策
略
spring.shardingsphere.rules.sharding.default-table-strategy.xxx= # 默认表分片策略
spring.shardingsphere.rules.sharding.default-key-generate-strategy.xxx= # 默认分布式
序列策略
spring.shardingsphere.rules.sharding.default-sharding-column= # 默认分片列名称

分片算法配置
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # 分片算法类型
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx= # 分片算法属性配置

分布式序列算法配置
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # 分布式序列算法类型
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # 分布式序列算法属性配置

分片审计算法配置
spring.shardingsphere.rules.sharding.auditors.<sharding-audit-algorithm-name>.type=
分片审计算法类型
spring.shardingsphere.rules.sharding.auditors.<sharding-audit-algorithm-name>.
props.xxx= # 分片审计算法属性配置

算法类型的详情，请参见内置分片算法列表和内置分布式序列算法列表。
注意事项：行表达式标识符可以使用 ${...}或 $->{...}，但前者与 Spring本身的属性文
件占位符冲突，因此在 Spring环境中使用行表达式标识符建议使用 $->{...}。

4.1. ShardingSphere-JDBC 111

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen

Apache ShardingSphere document, v5.2.1

操作步骤

1. 在 SpringBoot文件中配置数据分片规则，包含数据源、分片规则、全局属性等配置项；
2. 启动 SpringBoot程序，会自动加载配置，并初始化 ShardingSphereDataSource。

配置示例

spring.shardingsphere.mode.type=Standalone
spring.shardingsphere.mode.repository.type=JDBC

spring.shardingsphere.datasource.names=ds-0,ds-1

spring.shardingsphere.datasource.ds-0.jdbc-url=jdbc:mysql://localhost:3306/demo_ds_
0?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds-0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds-0.username=root
spring.shardingsphere.datasource.ds-0.password=

spring.shardingsphere.datasource.ds-1.jdbc-url=jdbc:mysql://localhost:3306/demo_ds_
1?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds-1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds-1.username=root
spring.shardingsphere.datasource.ds-1.password=

spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
column=user_id
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
algorithm-name=database-inline
spring.shardingsphere.rules.sharding.binding-tables[0]=t_order,t_order_item
spring.shardingsphere.rules.sharding.broadcast-tables=t_address

spring.shardingsphere.rules.sharding.tables.t_order.actual-data-nodes=ds-$->{0..1}.
t_order_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-algorithm-name=t-order-inline

spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.
column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.key-
generator-name=snowflake
spring.shardingsphere.rules.sharding.tables.t_order.audit-strategy.auditor-
names=shardingKeyAudit
spring.shardingsphere.rules.sharding.tables.t_order.audit-strategy.allow-hint-

4.1. ShardingSphere-JDBC 112

Apache ShardingSphere document, v5.2.1

disable=true

spring.shardingsphere.rules.sharding.tables.t_order_item.actual-data-nodes=ds-$->
{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order_item.table-strategy.standard.
sharding-column=order_id
spring.shardingsphere.rules.sharding.tables.t_order_item.table-strategy.standard.
sharding-algorithm-name=t-order-item-inline

spring.shardingsphere.rules.sharding.tables.t_order_item.key-generate-strategy.
column=order_item_id
spring.shardingsphere.rules.sharding.tables.t_order_item.key-generate-strategy.key-
generator-name=snowflake

spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.props.
algorithm-expression=ds-$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.props.
algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-item-inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-item-inline.props.
algorithm-expression=t_order_item_$->{order_id % 2}

spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE
spring.shardingsphere.rules.sharding.auditors.shardingKeyAudit.type=DML_SHARDING_
CONDITIONS

相关参考

• 核心特性：数据分片
• 开发者指南：数据分片

读写分离

背景信息

读写分离 Spring Boot Starter配置方式适用于使用 SpringBoot的业务场景，能够最大程度地利用 Sring‐
Boot配置初始化及 Bean管理的能力，完成 ShardingSphereDataSource对象的创建，减少不必要的编码
工作。

4.1. ShardingSphere-JDBC 113

https://shardingsphere.apache.org/document/current/cn/features/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

参数解释

静态读写分离

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.static-strategy.write-data-source-name= # 写库数据源名称
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.static-strategy.read-data-source-names= # 读库数据源列表，多个从数据源
用逗号分隔
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # 负载均衡算法名称

负载均衡算法配置
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # 负载均衡算法类型
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx= # 负载均衡算法属性配置

动态读写分离

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.auto-aware-data-source-name= # 数据库发现逻辑数据源
名称
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.write-data-source-query-enabled= # 读库全部下线，主
库是否承担读流量
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # 负载均衡算法名称

负载均衡算法配置
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # 负载均衡算法类型
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx= # 负载均衡算法属性配置

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见核心特性：读写分离。

4.1. ShardingSphere-JDBC 114

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

操作步骤

1. 添加读写分离数据源
2. 设置负载均衡算法
3. 使用读写分离数据源

配置示例

spring.shardingsphere.rules.readwrite-splitting.data-sources.readwrite_ds.static-
strategy.write-data-source-name=write-ds
spring.shardingsphere.rules.readwrite-splitting.data-sources.readwrite_ds.static-
strategy.read-data-source-names=read-ds-0,read-ds-1
spring.shardingsphere.rules.readwrite-splitting.data-sources.readwrite_ds.load-
balancer-name=round_robin
spring.shardingsphere.rules.readwrite-splitting.load-balancers.round_robin.
type=ROUND_ROBIN

相关参考

• 核心特性：读写分离
• Java API：读写分离
• YAML配置：读写分离
• Spring命名空间：读写分离

高可用

背景信息

Spring Boot Starter配置方式适用于使用 SpringBoot的业务场景，能够最大程度地利用 SpringBoot
配置初始化及 Bean管理的能力，自动完成 ShardingSphereDataSource对象的创建。

参数解释

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.auto-aware-data-source-name= # 数据库发现的逻辑数据
源名称

spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.data-source-names= # 数据源名称，多个数据源用逗号分隔 如：ds_0, ds_1

4.1. ShardingSphere-JDBC 115

https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-heartbeat-name= # 检测心跳名称
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-type-name= # 数据库发现类型名称
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.<discovery-
heartbeat-name>.props.keep-alive-cron= # cron 表达式，如：'0/5 * * * * ?'
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type= # 数据库发现类型，如：MySQL.MGR
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.group-name= # 数据库发现类型必要参数，如 MGR 的 group-name

操作步骤

1. 引入MAVEN依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

配置示例

spring.shardingsphere.datasource.names=ds-0,ds-1,ds-2
spring.shardingsphere.datasource.ds-0.jdbc-url = jdbc:mysql://127.0.0.1:13306/
primary_demo_ds?serverTimezone=UTC&useSSL=false
spring.shardingsphere.datasource.ds-0.username=root
spring.shardingsphere.datasource.ds-0.password=
spring.shardingsphere.datasource.ds-0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-0.driver-class-name=com.mysql.cj.jdbc.Driver

spring.shardingsphere.datasource.ds-1.jdbc-url = jdbc:mysql://127.0.0.1:13307/
primary_demo_ds?serverTimezone=UTC&useSSL=false
spring.shardingsphere.datasource.ds-1.username=root
spring.shardingsphere.datasource.ds-1.password=
spring.shardingsphere.datasource.ds-1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-1.driver-class-name=com.mysql.cj.jdbc.Driver

spring.shardingsphere.datasource.ds-2.jdbc-url = jdbc:mysql://127.0.0.1:13308/
primary_demo_ds?serverTimezone=UTC&useSSL=false
spring.shardingsphere.datasource.ds-2.username=root
spring.shardingsphere.datasource.ds-2.password=
spring.shardingsphere.datasource.ds-2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds-2.driver-class-name=com.mysql.cj.jdbc.Driver

4.1. ShardingSphere-JDBC 116

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.readwrite-splitting.data-sources.replica_ds.dynamic-
strategy.auto-aware-data-source-name=readwrite_ds

spring.shardingsphere.rules.database-discovery.data-sources.readwrite_ds.data-
source-names=ds-0, ds-1, ds-2
spring.shardingsphere.rules.database-discovery.data-sources.readwrite_ds.discovery-
heartbeat-name=mgr-heartbeat
spring.shardingsphere.rules.database-discovery.data-sources.readwrite_ds.discovery-
type-name=mgr
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.mgr-heartbeat.
props.keep-alive-cron=0/5 * * * * ?
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.type=MGR
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.props.
groupName=b13df29e-90b6-11e8-8d1b-525400fc3996

相关参考

• 高可用核心特性
• JAVA API：高可用配置
• YAML配置：高可用配置
• Spring命名空间：高可用配置

数据加密

背景信息

数据加密 Spring Boot Starter配置方式适用于使用 SpringBoot的业务场景，能够最大程度地利用 Sring‐
Boot配置初始化及 Bean管理的能力，完成 ShardingSphereDataSource对象的创建，减少不必要的编码
工作。

参数解释

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.encrypt.tables.<table-name>.query-with-cipher-column= #
该表是否使用加密列进行查询
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
cipher-column= # 加密列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # 查询列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # 原文列名称

4.1. ShardingSphere-JDBC 117

https://shardingsphere.apache.org/document/current/cn/features/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/ha/

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # 加密算法名称

加密算法配置
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= # 加密
算法类型
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
加密算法属性配置

spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # 是否使用加密列进行查询。在
有原文列的情况下，可以使用原文列进行查询

算法类型的详情，请参见内置加密算法列表。

操作步骤

1. 在 SpringBoot文件中配置数据加密规则，包含数据源、加密规则、全局属性等配置项；
2. 启动 SpringBoot程序，会自动加载配置，并初始化 ShardingSphereDataSource。

配置示例

spring.shardingsphere.datasource.names=ds

spring.shardingsphere.datasource.ds.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds.jdbc-url=jdbc:mysql://localhost:3306/demo_ds?
serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds.username=root
spring.shardingsphere.datasource.ds.password=

spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc

spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor

4.1. ShardingSphere-JDBC 118

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.props.query-with-cipher-column=true
spring.shardingsphere.props.sql-show=true

相关参考

• 核心特性：数据加密
• 开发者指南：数据加密

影子库

背景信息

如果您想在 Spring Boot环境中使用 ShardingSphere影子库功能请参考以下配置。

参数解释

spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.production-data-
source-name= # 生产数据源名称
spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.shadow-data-
source-name= # 影子数据源名称

spring.shardingsphere.rules.shadow.tables.<table-name>.data-source-names= # 影子表关
联影子数据源名称列表（多个值用"," 隔开）
spring.shardingsphere.rules.shadow.tables.<table-name>.shadow-algorithm-names= # 影
子表关联影子算法名称列表（多个值用"," 隔开）

spring.shardingsphere.rules.shadow.defaultShadowAlgorithmName= # 默认影子算法名称，选配
项

spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.type=
影子算法类型
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.props.
xxx= # 影子算法属性配置

详情请参见内置影子算法列表

4.1. ShardingSphere-JDBC 119

https://shardingsphere.apache.org/document/current/cn/features/encrypt/
https://shardingsphere.apache.org/document/current/cn/dev-manual/encrypt/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document, v5.2.1

操作步骤

1. 在 SpringBoot文件中配置影子库规则，包含数据源、影子规则、全局属性等配置项。
2. 启动 SpringBoot程序，会自动加载配置，并初始化 ShardingSphereDataSource。

配置示例

spring.shardingsphere.datasource.names=ds,shadow-ds

spring.shardingsphere.datasource.ds.jdbc-url=jdbc:mysql://localhost:3306/ds?
serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.ds.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds.username=root
spring.shardingsphere.datasource.ds.password=

spring.shardingsphere.datasource.shadow-ds.jdbc-url=jdbc:mysql://localhost:3306/
shadow_ds?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
spring.shardingsphere.datasource.shadow-ds.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.shadow-ds.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.shadow-ds.username=root
spring.shardingsphere.datasource.shadow-ds.password=

spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.production-data-
source-name=ds
spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.shadow-data-
source-name=shadow-ds

spring.shardingsphere.rules.shadow.tables.t_user.data-source-names=shadow-data-
source
spring.shardingsphere.rules.shadow.tables.t_user.shadow-algorithm-names=user-id-
insert-match-algorithm,simple-hint-algorithm

spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.type=VALUE_MATCH
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.props.operation=insert
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.props.column=user_id
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-match-
algorithm.props.value=1

spring.shardingsphere.rules.shadow.shadow-algorithms.simple-hint-algorithm.
type=SIMPLE_HINT
spring.shardingsphere.rules.shadow.shadow-algorithms.simple-hint-algorithm.props.
shadow=true
spring.shardingsphere.rules.shadow.shadow-algorithms.simple-hint-algorithm.props.

4.1. ShardingSphere-JDBC 120

Apache ShardingSphere document, v5.2.1

foo=bar

相关参考

• 影子库的特性描述
• JAVA API：影子库的配置
• YAML配置：影子库的配置
• Spring命名空间：影子库的配置
• 开发者指南：影子库的接口和示例

SQL解析

背景信息

Spring Boot Starter的配置方式适用于使用 SpringBoot的业务场景。使用这种方式，能够最大程度地利
用 SpringBoot配置初始化以及 Bean管理的能力，从而达到简化代码开发的目的。

参数解释

spring.shardingsphere.rules.sql-parser.sql-comment-parse-enabled= # 是否解析 SQL 注释

spring.shardingsphere.rules.sql-parser.sql-statement-cache.initial-capacity= # SQL
语句本地缓存初始容量
spring.shardingsphere.rules.sql-parser.sql-statement-cache.maximum-size= # SQL 语句
本地缓存最大容量

spring.shardingsphere.rules.sql-parser.parse-tree-cache.initial-capacity= # 解析树本
地缓存初始容量
spring.shardingsphere.rules.sql-parser.parse-tree-cache.maximum-size= # 解析树本地缓存
最大容量

操作步骤

1. 设置本地缓存配置
2. 设置解析配置
3. 使用解析引擎解析 SQL

4.1. ShardingSphere-JDBC 121

https://shardingsphere.apache.org/document/current/cn/features/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/dev-manual/shadow/

Apache ShardingSphere document, v5.2.1

配置示例

spring.shardingsphere.rules.sql-parser.sql-comment-parse-enabled=true

spring.shardingsphere.rules.sql-parser.sql-statement-cache.initial-capacity=2000
spring.shardingsphere.rules.sql-parser.sql-statement-cache.maximum-size=65535

spring.shardingsphere.rules.sql-parser.parse-tree-cache.initial-capacity=128
spring.shardingsphere.rules.sql-parser.parse-tree-cache.maximum-size=1024

相关参考

• JAVA API：SQL解析
• YAML配置：SQL解析
• Spring命名空间：SQl解析

混合规则

背景信息

ShardingSphere涵盖了很多功能，例如，分库分片、读写分离、高可用、数据脱敏等。这些功能用户可
以单独进行使用，也可以配合一起使用，下面是基于 SpringBoot Starter的参数解释和配置示例。

参数解释

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册
标准分片表配置
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= # 由数据
源名 + 表名组成，以小数点分隔。多个表以逗号分隔，支持 inline 表达式。缺省表示使用已知数据源与逻辑表
名称生成数据节点，用于广播表（即每个库中都需要一个同样的表用于关联查询，多为字典表）或只分库不分表且
所有库的表结构完全一致的情况
用于单分片键的标准分片场景
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-column= # 分片列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-algorithm-name= # 分片算法名称
分表策略，同分库策略
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= # 省略
分布式序列策略配置
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # 分布式序列列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # 分布式序列算法名称
分片算法配置

4.1. ShardingSphere-JDBC 122

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # 分片算法类型
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx= # 分片算法属性配置
分布式序列算法配置
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # 分布式序列算法类型
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # 分布式序列算法属性配置
动态读写分离配置
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.auto-aware-data-source-name= # 数据库发现逻辑数据源
名称
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.dynamic-strategy.write-data-source-query-enabled= # 读库全部下线，主
库是否承担读流量
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # 负载均衡算法名称
数据库发现配置
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.data-source-names= # 数据源名称，多个数据源用逗号分隔 如：ds_0, ds_1
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-heartbeat-name= # 检测心跳名称
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-type-name= # 数据库发现类型名称
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.<discovery-
heartbeat-name>.props.keep-alive-cron= # cron 表达式，如：'0/5 * * * * ?'
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type= # 数据库发现类型，如：MySQL.MGR
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.group-name= # 数据库发现类型必要参数，如 MGR 的 group-name
数据脱敏配置
spring.shardingsphere.rules.encrypt.tables.<table-name>.query-with-cipher-column= #
该表是否使用加密列进行查询
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
cipher-column= # 加密列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # 查询列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # 原文列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # 加密算法名称
加密算法配置
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= # 加密
算法类型
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
加密算法属性配置
spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # 是否使用加密列进行查询。在

4.1. ShardingSphere-JDBC 123

Apache ShardingSphere document, v5.2.1

有原文列的情况下，可以使用原文列进行查询

配置示例

分片配置
spring.shardingsphere.rules.sharding.tables.t_order.actual-data-nodes=replica-ds-$-
>{0..1}.t_order_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.table-strategy.standard.
sharding-algorithm-name=t-order-inline
spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.
column=order_id
spring.shardingsphere.rules.sharding.tables.t_order.key-generate-strategy.key-
generator-name=snowflake
spring.shardingsphere.rules.sharding.tables.t_order_item.actual-data-nodes=replica-
ds-$->{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_order_item.table-strategy.standard.
sharding-column=order_id
spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database-inline.props.
algorithm-expression=replica_ds-$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.t-order-inline.props.
algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE
动态读写分离配置
spring.shardingsphere.rules.readwrite-splitting.data-sources.replica-ds-0.dynamic-
strategy.auto-aware-data-source-name=readwrite-ds-0
spring.shardingsphere.rules.readwrite-splitting.data-sources.replica-ds-1.dynamic-
strategy.auto-aware-data-source-name=readwrite-ds-1
数据库发现配置
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-0.data-
source-names=ds-0, ds-1, ds-2
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-0.
discovery-heartbeat-name=mgr-heartbeat
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-0.
discovery-type-name=mgr
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-1.data-
source-names=ds-3, ds-4, ds-5
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-1.
discovery-heartbeat-name=mgr-heartbeat
spring.shardingsphere.rules.database-discovery.data-sources.readwrite-ds-1.
discovery-type-name=mgr
spring.shardingsphere.rules.database-discovery.discovery-heartbeats.mgr-heartbeat.

4.1. ShardingSphere-JDBC 124

Apache ShardingSphere document, v5.2.1

props.keep-alive-cron=0/5 * * * * ?
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.type=MGR
spring.shardingsphere.rules.database-discovery.discovery-types.mgr.props.
groupName=b13df29e-90b6-11e8-8d1b-525400fc3996
数据脱敏配置
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor
spring.shardingsphere.props.query-with-cipher-column=true
spring.shardingsphere.props.sql-show=true

算法配置

分片算法

sharding-algorithm-name 由用户指定，需要和分片策略中的 sharding-algorithm-name 属性一致
type 和 props，请参考分片内置算法：https://shardingsphere.apache.org/document/current/
cn/user-manual/common-config/builtin-algorithm/sharding/
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type=xxx
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx=xxx

加密算法

encrypt-algorithm-name 由用户指定，需要和加密规则中的 encryptor-name 属性一致
type 和 props，请参考加密内置算法：https://shardingsphere.apache.org/document/current/
cn/user-manual/common-config/builtin-algorithm/encrypt/
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type=xxx
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.
xxx=xxx

4.1. ShardingSphere-JDBC 125

Apache ShardingSphere document, v5.2.1

读写分离负载均衡算法

load-balance-algorithm-name 由用户指定，需要和读写分离规则中的 load-balancer-name 属性一
致
type 和 props，请参考读写分离负载均衡内置算法：https://shardingsphere.apache.org/
document/current/cn/user-manual/common-config/builtin-algorithm/load-balance/
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type=xxx
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx=xxx

影子算法

shadow-algorithm-name 由用户指定，需要和影子库规则中的 shadow-algorithm-names 属性一致
type 和 props，请参考影子库内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/shadow/
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.
type=xxx
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.props.
xxx=xxx

高可用

discovery-type-name 由用户指定，需要和数据库发现规则中的 discovery-type-name 属性一致
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type=xxx
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.xxx=xxx

4.1. ShardingSphere-JDBC 126

Apache ShardingSphere document, v5.2.1

4.1.4 Spring命名空间

简介

ShardingSphere‐JDBC 提供官方的 Spring 命名空间，使开发者可以非常便捷的整合 ShardingSphere‐
JDBC和 Spring。

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

配置 Spring Bean

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‐5.2.1.xs
d

<shardingsphere:data‐source />

名称 类型 说明
id 属性 Spring Bean Id
database‐name (?) 属性 JDBC数据源别名
data‐source‐names 标签 数据源名称，多个数据源以逗号分隔
rule‐refs 标签 规则名称，多个规则以逗号分隔
mode (?) 标签 运行模式配置
props (?) 标签 属性配置，详情请参见属性配置

配置示例

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/

4.1. ShardingSphere-JDBC 127

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.2.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.2.1.xsd
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/props

Apache ShardingSphere document, v5.2.1

datasource
http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd
">

<shardingsphere:data-source id="ds" database-name="foo_schema" data-source-
names="..." rule-refs="...">

<shardingsphere:mode type="..." />
<props>

<prop key="xxx.xxx">${xxx.xxx}</prop>
</props>

</shardingsphere:data-source>
</beans>

使用数据源

使用方式同 Spring Boot Starter。

模式配置

背景信息

缺省配置为使用单机模式。

参数解释

单机模式

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/mode‐repository/standalone/r
epository‐5.1.1.xsd

名称 类型 说明
id 属性 持久化仓库 Bean名称
type 属性 持久化仓库类型
props (?) 标签 持久化仓库所需属性

4.1. ShardingSphere-JDBC 128

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.1.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.1.1.xsd

Apache ShardingSphere document, v5.2.1

集群模式 (推荐)

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/mode‐repository/cluster/repo
sitory‐5.1.1.xsd

名称 类型 说明
id 属性 持久化仓库 Bean名称
type 属性 持久化仓库类型
namespace 属性 注册中心命名空间
server‐lists 属性 注册中心连接地址
props (?) 标签 持久化仓库所需属性

注意事项

1. 生产环境建议使用集群模式部署。
2. 集群模式部署推荐使用 ZooKeeper注册中心。
3. ZooKeeper存在配置信息时，则以 ZooKeeper中的配置为准。

操作步骤

引入MAVEN依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

配置示例

单机模式

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:standalone="http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-

4.1. ShardingSphere-JDBC 129

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.1.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.1.1.xsd

Apache ShardingSphere document, v5.2.1

beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

datasource
http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone
http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone/repository.xsd">
<standalone:repository id="standaloneRepository" type="JDBC">
</standalone:repository>

<shardingsphere:data-source id="ds" database-name="foo_db" data-source-names=".
.." rule-refs="..." >

<shardingsphere:mode type="Standalone" repository-ref="standaloneRepository
" />

</shardingsphere:data-source>
</beans>

集群模式

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode-

repository/cluster"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster/repository.xsd">

<cluster:repository id="clusterRepository" type="Zookeeper" namespace=
"regCenter" server-lists="localhost:3182">

<props>
<prop key="max-retries">3</prop>
<prop key="operation-timeout-milliseconds">1000</prop>

</props>
</cluster:repository>

4.1. ShardingSphere-JDBC 130

Apache ShardingSphere document, v5.2.1

<shardingsphere:data-source id="ds" database-name="foo_db" data-source-names=".
.." rule-refs="...">

<shardingsphere:mode type="Cluster" repository-ref="clusterRepository" />
</shardingsphere:data-source>

</beans>

相关参考

• ZooKeeper注册中心安装与使用
• 持久化仓库类型的详情，请参见内置持久化仓库类型列表。

数据源配置

背景信息

任何配置成为 Spring Bean的数据源对象即可与 ShardingSphere‐JDBC的 Spring命名空间配合使用。
配置示例的数据库驱动为 MySQL，连接池为 HikariCP，可以更换为其他数据库驱动和连接池。当
使用 ShardingSphere JDBC 时，JDBC 池的属性名取决于各自 JDBC 池自己的定义，并不由 Shard‐
ingSphere硬定义，相关的处理可以参考类 org.apache.shardingsphere.infra.datasource.
pool.creator.DataSourcePoolCreator。例如对于 Alibaba Druid 1.2.9而言，使用 url代替如
下示例中的 jdbcUrl是预期行为。

操作步骤

1.引入MAVEN依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

4.1. ShardingSphere-JDBC 131

https://zookeeper.apache.org/doc/r3.7.1/zookeeperStarted.html
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.2.1

配置示例

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<bean id="ds1" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close

">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="ds2" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close
">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds2" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<shardingsphere:data-source id="ds" database-name="foo_schema" data-source-
names="ds1,ds2" rule-refs="..." />
</beans>

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 Spring命名空
间规则配置参考手册。

4.1. ShardingSphere-JDBC 132

Apache ShardingSphere document, v5.2.1

数据分片

背景信息

数据分片 Spring命名空间的配置方式，适用于传统的 Spring项目，通过命名空间 xml配置文件的方式
配置分片规则和属性，由 Spring完成 ShardingSphereDataSource对象的创建和管理，避免额外的编码
工作。

参数解释

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‐5.2.1.xsd

<sharding:rule />

名称 类型 说明
id 属性 Spring Bean Id
table‐rules (?) 标签 分片表规则配置
auto‐table‐rules (?) 标签 自动分片表规则配置
binding‐table‐rules (?) 标签 绑定表规则配置
broadcast‐table‐rules (?) 标签 广播表规则配置
default‐database‐strategy‐ref (?) 属性 默认分库策略名称
default‐table‐strategy‐ref (?) 属性 默认分表策略名称
default‐key‐generate‐strategy‐ref (?) 属性 默认分布式序列策略名称
default‐audit‐strategy‐ref (?) 属性 默认分片审计策略名称
default‐sharding‐column (?) 属性 默认分片列名称

<sharding:table‐rule />

4.1. ShardingSphere-JDBC 133

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.2.1.xsd

Apache ShardingSphere document, v5.2.1

名称
类型 |说明

lo gic‐table 属性 |逻辑表名称|
actual‐d ata‐nodes

属性 |由数据源名 +表名组成，以小数点分隔。多个表以逗
号分
隔，支持 inline表达式。缺省表示使用已知数据源与逻辑表名称生
成数据节点，用于广播表（即每个库中都需要一个同样的表用于关
联查询，多为字典表）或只分库不分表且所有库的表结构完全一致
的情况

a ctual‐dat a‐sources 属性 |自动分片表数据源名

dat abase‐str ategy‐ref 属性 |标准分片表分库策略名称

table‐str ategy‐ref 属性 |标准分片表分表策略名称
sha rding‐str ategy‐ref 属性 |自动分片表策略名称

key‐gen erate‐str ategy‐ref 属性 |分布式序列策略名称

audit‐str ategy‐ref 属性 |分片审计策略名称性

<sharding:binding‐table‐rules />

名称 类型 说明
binding‐table‐rule (+) 标签 绑定表规则配置

<sharding:binding‐table‐rule />

名称 类型 说明
logic‐tables 属性 绑定表名称，多个表以逗号分隔

<sharding:broadcast‐table‐rules />

名称 类型 说明
broadcast‐table‐rule (+) 标签 广播表规则配置

<sharding:broadcast‐table‐rule />

名称 类型 说明
table 属性 广播表名称

4.1. ShardingSphere-JDBC 134

Apache ShardingSphere document, v5.2.1

<sharding:standard‐strategy />

名称 类型 说明
id 属性 标准分片策略名称
sharding‐column 属性 分片列名称
algorithm‐ref 属性 分片算法名称

<sharding:complex‐strategy />

名称 类型 说明
id 属性 复合分片策略名称
sharding‐columns 属性 分片列名称，多个列以逗号分隔
algorithm‐ref 属性 分片算法名称

<sharding:hint‐strategy />

名称 类型 说明
id 属性 Hint分片策略名称
algorithm‐ref 属性 分片算法名称

<sharding:none‐strategy />

名称 类型 说明
id 属性 分片策略名称

<sharding:key‐generate‐strategy />

名称 类型 说明
id 属性 分布式序列策略名称
column 属性 分布式序列列名称
algorithm‐ref 属性 分布式序列算法名称

<sharding:audit‐strategy />

名称 类型 说明
id 属性 分片审计策略名称
allow‐hint‐disable 属性 是否禁用分片审计 hint
auditors 标签 分片审计算法名称

<sharding:auditors />

名称 类型 说明
auditor 标签 分片审计算法名称

4.1. ShardingSphere-JDBC 135

Apache ShardingSphere document, v5.2.1

<sharding:auditor />

名称 类型 说明
algorithm‐ref 属性 分片审计算法名称

<sharding:sharding‐algorithm />

名称 类型 说明
id 属性 分片算法名称
type 属性 分片算法类型
props (?) 标签 分片算法属性配置

<sharding:key‐generate‐algorithm />

名称 类型 说明
id 属性 分布式序列算法名称
type 属性 分布式序列算法类型
props (?) 标签 分布式序列算法属性配置

<sharding:audit‐algorithm />

名称 类型 说明
id 属性 分片审计算法名称
type 属性 分片审计算法类型
props (?) 标签 分片审计算法属性配置

算法类型的详情，请参见内置分片算法列表，内置分布式序列算法列表和内置分片审计算法列表。
注意事项：行表达式标识符可以使用 ${...}或 $->{...}，但前者与 Spring本身的属性文
件占位符冲突，因此在 Spring环境中使用行表达式标识符建议使用 $->{...}。

操作步骤

1. 在 Spring命名空间配置文件中配置数据分片规则，包含数据源、分片规则、全局属性等配置项；
2. 启动 Spring程序，会自动加载配置，并初始化 ShardingSphereDataSource。

4.1. ShardingSphere-JDBC 136

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit

Apache ShardingSphere document, v5.2.1

配置示例

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:sharding="http://shardingsphere.apache.org/schema/shardingsphere/

sharding"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-

context.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

datasource
http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

sharding
http://shardingsphere.apache.org/schema/shardingsphere/

sharding/sharding.xsd
">

<context:component-scan base-package="org.apache.shardingsphere.example.core.
mybatis" />

<bean id="demo_ds_0" class="com.zaxxer.hikari.HikariDataSource" destroy-method=
"close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/demo_ds_0?

serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
"/>

<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<bean id="demo_ds_1" class="com.zaxxer.hikari.HikariDataSource" destroy-method=
"close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/demo_ds_1?

serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
"/>

<property name="username" value="root"/>
<property name="password" value=""/>

4.1. ShardingSphere-JDBC 137

Apache ShardingSphere document, v5.2.1

</bean>

<sharding:standard-strategy id="databaseStrategy" sharding-column="user_id"
algorithm-ref="inlineStrategyShardingAlgorithm" />

<sharding:sharding-algorithm id="inlineStrategyShardingAlgorithm" type="INLINE
">

<props>
<prop key="algorithm-expression">demo_ds_${user_id % 2}</prop>

</props>
</sharding:sharding-algorithm>

<sharding:key-generate-algorithm id="snowflakeAlgorithm" type="SNOWFLAKE">
</sharding:key-generate-algorithm>

<sharding:audit-algorithm id="auditAlgorithm" type="DML_SHARDING_CONDITIONS" />

<sharding:key-generate-strategy id="orderKeyGenerator" column="order_id"
algorithm-ref="snowflakeAlgorithm" />

<sharding:key-generate-strategy id="itemKeyGenerator" column="order_item_id"
algorithm-ref="snowflakeAlgorithm" />

<sharding:audit-strategy id="defaultAudit" allow-hint-disable="true">
<sharding:auditors>

<sharding:auditor algorithm-ref="auditAlgorithm" />
</sharding:auditors>

</sharding:audit-strategy>
<sharding:audit-strategy id="shardingKeyAudit" allow-hint-disable="true">

<sharding:auditors>
<sharding:auditor algorithm-ref="auditAlgorithm" />

</sharding:auditors>
</sharding:audit-strategy>

<sharding:rule id="shardingRule">
<sharding:table-rules>

<sharding:table-rule logic-table="t_order" database-strategy-ref=
"databaseStrategy" key-generate-strategy-ref="orderKeyGenerator" audit-strategy-
ref="shardingKeyAudit" />

<sharding:table-rule logic-table="t_order_item" database-strategy-ref=
"databaseStrategy" key-generate-strategy-ref="itemKeyGenerator" />

</sharding:table-rules>
<sharding:binding-table-rules>

<sharding:binding-table-rule logic-tables="t_order,t_order_item"/>
</sharding:binding-table-rules>
<sharding:broadcast-table-rules>

<sharding:broadcast-table-rule table="t_address"/>
</sharding:broadcast-table-rules>

</sharding:rule>

4.1. ShardingSphere-JDBC 138

Apache ShardingSphere document, v5.2.1

<shardingsphere:data-source id="shardingDataSource" database-name="sharding-
databases" data-source-names="demo_ds_0, demo_ds_1" rule-refs="shardingRule" />

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<tx:annotation-driven />

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
<property name="dataSource" ref="shardingDataSource"/>
<property name="mapperLocations" value="classpath*:META-INF/mappers/*.xml"/

>
</bean>

<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
<property name="basePackage" value="org.apache.shardingsphere.example.core.

mybatis.repository"/>
<property name="sqlSessionFactoryBeanName" value="sqlSessionFactory"/>

</bean>
</beans>

相关参考

• 核心特性：数据分片
• 开发者指南：数据分片

读写分离

背景信息

读写分离 Spring命名空间的配置方式，适用于传统的 Spring项目，通过命名空间 xml配置文件的方式
配置分片规则和属性，由 Spring完成 ShardingSphereDataSource对象的创建和管理，避免额外的编码
工作。

4.1. ShardingSphere-JDBC 139

https://shardingsphere.apache.org/document/current/cn/features/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

参数解释

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/readwrite‐splitting/readwrite‐
splitting‐5.2.1.xsd

<readwrite‐splitting:rule />

名称 类型 说明
id 属性 Spring Bean Id
data‐source‐rule (+) 标签 读写分离数据源规则配置

<readwrite‐splitting:data‐source‐rule />

名称 类型 说明
id 属性 读写分离数据源规则名称
static‐strategy 标签 静态读写分离类型
dynamic‐strategy 标签 动态读写分离类型
load‐balance‐algorithm‐ref 属性 负载均衡算法名称

<readwrite‐splitting:static‐strategy />

名称 类型 说明
id 属性 静态读写分离名称
write‐data‐source‐name 属性 写库数据源名称
read‐data‐source‐names 属性 读库数据源列表，多个从数据源用逗号分隔
load‐balance‐algorithm‐ref 属性 负载均衡算法名称

<readwrite‐splitting:dynamic‐strategy />

名称 类型 说明
id 属性 动态读写分离名称
auto‐aware‐data‐source‐name 属性 数据库发现逻辑数据源名称
write‐data‐source‐query‐enabled 属性 读库全部下线，主库是否承担读流量
load‐balance‐algorithm‐ref 属性 负载均衡算法名称

<readwrite‐splitting:load‐balance‐algorithm />

名称 类型 说明
id 属性 负载均衡算法名称
type 属性 负载均衡算法类型
props (?) 标签 负载均衡算法属性配置

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见核心特性：读写分离。

4.1. ShardingSphere-JDBC 140

http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.2.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.2.1.xsd
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

操作步骤

1. 添加读写分离数据源
2. 设置负载均衡算法
3. 使用读写分离数据源

配置示例

<readwrite-splitting:load-balance-algorithm id="randomStrategy" type="RANDOM" />

<readwrite-splitting:rule id="readWriteSplittingRule">
<readwrite-splitting:data-source-rule id="demo_ds" load-balance-algorithm-ref=

"randomStrategy">
<readwrite-splitting:static-strategy id="staticStrategy" write-data-source-

name="demo_write_ds" read-data-source-names="demo_read_ds_0, demo_read_ds_1"/>
</readwrite-splitting:data-source-rule>

</readwrite-splitting:rule>

<shardingsphere:data-source id="readWriteSplittingDataSource" data-source-names=
"demo_write_ds, demo_read_ds_0, demo_read_ds_1" rule-refs="readWriteSplittingRule"
/>

相关参考

• 核心特性：读写分离
• Java API：读写分离
• YAML配置：读写分离
• Spring Boot Starter：读写分离

高可用

背景信息

Spring 命名空间的配置方式，适用于传统的 Spring项目，通过命名空间 xml配置文件的方式配置高
可用规则，由 Spring完成 ShardingSphereDataSource对象的创建和管理。

4.1. ShardingSphere-JDBC 141

https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

参数解释

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/database‐discovery/database‐
discovery‐5.1.1.xsd

<database‐discovery:rule />

名称 类型 说明
id 属性 Spring Bean Id
data‐source‐rule (+) 标签 数据源规则配置
discovery‐heartbeat (+) 标签 检测心跳规则配置

<database‐discovery:data‐source‐rule />

名称 类型 说明
id 属性 数据源规则名称
data‐source‐names 属性 数据源名称，多个数据源用逗号分隔如：ds_0, ds_1
discovery‐heartbeat‐name 属性 检测心跳名称
discovery‐type‐name 属性 数据库发现类型名称

<database‐discovery:discovery‐heartbeat />

名称 类型 说明
id 属性 监听心跳名称
props 标签 监听心跳属性配置，keep‐alive‐cron属性配置 cron表达式，如：‘0/5 * * * * ?’

<database‐discovery:discovery‐type />

名称 类型 说明
id 属性 数据库发现类型名称
type 属性 数据库发现类型，如：MySQL.MGR
props (?) 标签 数据库发现类型配置，如MGR的 group‐name属性配置

操作步骤

1.引入MAVEN依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${latest.release.version}</version>

</dependency>

4.1. ShardingSphere-JDBC 142

http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.1.xsd
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.1.xsd

Apache ShardingSphere document, v5.2.1

配置示例

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode-

repository/cluster"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:database-discovery="http://shardingsphere.apache.org/schema/

shardingsphere/database-discovery"
xmlns:readwrite-splitting="http://shardingsphere.apache.org/schema/

shardingsphere/readwrite-splitting"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
database-discovery

http://shardingsphere.apache.org/schema/shardingsphere/
database-discovery/database-discovery.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting/readwrite-splitting.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster/repository.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<bean id="ds_0" class="com.zaxxer.hikari.HikariDataSource" destroy-method=

"close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://127.0.0.1:33306/primary_demo_

ds?serverTimezone=UTC&useSSL=false&useUnicode=true&
characterEncoding=UTF-8" />

<property name="username" value="root" />
<property name="password" value="" />

</bean>
<bean id="ds_1" class="com.zaxxer.hikari.HikariDataSource" destroy-method=

"close">
<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://127.0.0.1:33307/primary_demo_

ds?serverTimezone=UTC&useSSL=false&useUnicode=true&
characterEncoding=UTF-8" />

<property name="username" value="root" />

4.1. ShardingSphere-JDBC 143

Apache ShardingSphere document, v5.2.1

<property name="password" value="" />
</bean>
<bean id="ds_2" class="com.zaxxer.hikari.HikariDataSource" destroy-method=

"close">
<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://127.0.0.1:33308/primary_demo_

ds?useSSL=false"/>
<property name="username" value="root"/>
<property name="password" value=""/>

</bean>
<cluster:repository id="clusterRepository" type="ZooKeeper" namespace=

"governance" server-lists="localhost:2181">
<props>

<prop key="max-retries">3</prop>
<prop key="operation-timeout-milliseconds">3000</prop>

</props>
</cluster:repository>
<readwrite-splitting:rule id="readWriteSplittingRule">

<readwrite-splitting:data-source-rule id="replica_ds">
<readwrite-splitting:dynamic-strategy id="dynamicStrategy" auto-aware-

data-source-name="readwrite_ds" />
</readwrite-splitting:data-source-rule>

</readwrite-splitting:rule>
<database-discovery:rule id="mgrDatabaseDiscoveryRule">

<database-discovery:data-source-rule id="readwrite_ds" data-source-names=
"ds_0,ds_1,ds_2" discovery-heartbeat-name="mgr-heartbeat" discovery-type-name="mgr"
/>

<database-discovery:discovery-heartbeat id="mgr-heartbeat">
<props>

<prop key="keep-alive-cron" >0/5 * * * * ?</prop>
</props>

</database-discovery:discovery-heartbeat>
</database-discovery:rule>
<database-discovery:discovery-type id="mgr" type="MySQL.MGR">

<props>
<prop key="group-name">558edd3c-02ec-11ea-9bb3-080027e39bd2</prop>

</props>
</database-discovery:discovery-type>
<shardingsphere:data-source id="databaseDiscoveryDataSource" schema-name=

"database-discovery-db" data-source-names="ds_0, ds_1, ds_2" rule-refs=
"readWriteSplittingRule, mgrDatabaseDiscoveryRule">

<shardingsphere:mode repository-ref="clusterRepository" type="Cluster" />
</shardingsphere:data-source>

</beans>

4.1. ShardingSphere-JDBC 144

Apache ShardingSphere document, v5.2.1

相关参考

• 高可用核心特性
• JAVA API：高可用配置
• YAML配置：高可用配置
• Spring Boot Starter：高可用配置

数据加密

背景信息

数据加密 Spring命名空间的配置方式，适用于传统的 Spring项目，通过命名空间 xml配置文件的方式
配置分片规则和属性，由 Spring完成 ShardingSphereDataSource对象的创建和管理，避免额外的编码
工作。

参数解释

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt‐5.2.1.xsd

<encrypt:rule />

名称 类
型

说明 默 认
值

id 属
性

Spring Bean Id

queryWithCipherCol‐
umn (?)

属
性

是否使用加密列进行查询。在有原文列的情况下，可以使用
原文列进行查询

true

table (+) 标
签

加密表配置

<encrypt:table />

名称 类
型

说明

name 属
性

加密表名称

column (+) 标
签

加密列配置

query‐with‐cipher‐
column(?)

属
性

该表是否使用加密列进行查询。在有原文列的情况下，可以使用原
文列进行查询

<encrypt:column />

4.1. ShardingSphere-JDBC 145

https://shardingsphere.apache.org/document/current/cn/features/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/ha/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/ha/
http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.2.1.xsd

Apache ShardingSphere document, v5.2.1

名称 类型 说明
logic‐column 属性 加密列逻辑名称
cipher‐column 属性 加密列名称
assisted‐query‐column (?) 属性 查询辅助列名称
plain‐column (?) 属性 原文列名称
encrypt‐algorithm‐ref 属性 加密算法名称

<encrypt:encrypt‐algorithm />

名称 类型 说明
id 属性 加密算法名称
type 属性 加密算法类型
props (?) 标签 加密算法属性配置

算法类型的详情，请参见内置加密算法列表。

操作步骤

1. 在 Spring命名空间配置文件中配置数据加密规则，包含数据源、加密规则、全局属性等配置项；
2. 启动 Spring程序，会自动加载配置，并初始化 ShardingSphereDataSource。

配置示例

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:encrypt="http://shardingsphere.apache.org/schema/shardingsphere/

encrypt"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-

context.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

datasource
http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

4.1. ShardingSphere-JDBC 146

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.2.1

encrypt
http://shardingsphere.apache.org/schema/shardingsphere/

encrypt/encrypt.xsd
">

<context:component-scan base-package="org.apache.shardingsphere.example.core.
mybatis" />

<bean id="ds" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close
">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/demo_ds?

serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
"/>

<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<encrypt:encrypt-algorithm id="name_encryptor" type="AES">
<props>

<prop key="aes-key-value">123456</prop>
</props>

</encrypt:encrypt-algorithm>
<encrypt:encrypt-algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user">

<encrypt:column logic-column="username" cipher-column="username" plain-
column="username_plain" encrypt-algorithm-ref="name_encryptor" />

<encrypt:column logic-column="pwd" cipher-column="pwd" assisted-query-
column="assisted_query_pwd" encrypt-algorithm-ref="pwd_encryptor" />

</encrypt:table>
</encrypt:rule>

<shardingsphere:data-source id="encryptDataSource" data-source-names="ds" rule-
refs="encryptRule" />

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="encryptDataSource" />
</bean>
<tx:annotation-driven />

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
<property name="dataSource" ref="encryptDataSource"/>
<property name="mapperLocations" value="classpath*:META-INF/mappers/*.xml"/

>
</bean>

4.1. ShardingSphere-JDBC 147

Apache ShardingSphere document, v5.2.1

<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
<property name="basePackage" value="org.apache.shardingsphere.example.core.

mybatis.repository"/>
<property name="sqlSessionFactoryBeanName" value="sqlSessionFactory"/>

</bean>
</beans>

相关参考

• 核心特性：数据加密
• 开发者指南：数据加密

影子库

背景信息

如果您只想使用 XML配置文件方式配置使用 ShardingSphere影子库功能请参考以下配置。

参数解释

配置入口

<shadow:rule />

可配置属性：

名称 类型 说明
id 属性 Spring Bean Id
data‐source(?) 标签 影子库数据源映射配置
shadow‐table(?) 标签 影子表配置
shadow‐algorithm(?) 标签 影子表配置
default‐shadow‐algorithm‐name(?) 标签 默认影子算法名称

4.1. ShardingSphere-JDBC 148

https://shardingsphere.apache.org/document/current/cn/features/encrypt/
https://shardingsphere.apache.org/document/current/cn/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

影子数据源配置：

<shadow:data-source />

名称 类型 说明
id 属性 Spring Bean Id
production‐data‐source‐name 属性 生产数据源名称
shadow‐data‐source‐name 属性 影子数据源名称

影子表配置：

<shadow:shadow-table />

名称 类型 说明
name 属性 影子表名称
data‐sources 属性 影子表关联影子数据源名称列表（多个值用”,“隔开）
algorithm (?) 标签 影子表关联影子算法配置

<shadow:algorithm />

名称 类型 说明
shadow‐algorithm‐ref 属性 影子表关联影子算法名称

影子算法配置：

<shadow:shadow-algorithm />

名称 类型 说明
id 属性 影子算法名称
type 属性 影子算法类型
props (?) 标签 影子算法属性配置

详情请参见内置影子算法列表

4.1. ShardingSphere-JDBC 149

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/shadow

Apache ShardingSphere document, v5.2.1

操作步骤

1. 创建生产和影子数据源。
2. 配置影子规则

• 配置影子数据源
• 配置影子表
• 配置影子算法

配置示例

<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xmlns:shadow="http://shardingsphere.apache.org/
schema/shardingsphere/shadow" xsi:schemaLocation="http://www.springframework.org/
schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
shadow

http://shardingsphere.apache.org/schema/shardingsphere/
shadow/shadow.xsd

">
<shadow:shadow-algorithm id="user-id-insert-match-algorithm" type="VALUE_MATCH

">
<props>

<prop key="operation">insert</prop>
<prop key="column">user_id</prop>
<prop key="value">1</prop>

</props>
</shadow:shadow-algorithm>

<shadow:rule id="shadowRule">
<shadow:data-source id="shadow-data-source" production-data-source-name="ds

" shadow-data-source-name="ds_shadow"/>
<shadow:shadow-table name="t_user" data-sources="shadow-data-source">
<shadow:algorithm shadow-algorithm-ref="user-id-insert-match-algorithm" />
</shadow:shadow-table>

</shadow:rule>
</beans>

4.1. ShardingSphere-JDBC 150

Apache ShardingSphere document, v5.2.1

相关参考

• 影子库的特性描述
• JAVA API：影子库的配置
• YAML配置：影子库的配置
• Spring命名空间：影子库的配置
• 开发者指南：影子库的接口和示例

SQL解析

背景信息

Spring命名空间的配置方式，适用于传统的 Spring项目，它通过命名空间 xml配置文件的方式配置 SQL
解析规则和属性。

参数解释

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/sql‐parser/sql‐parser‐5.2.1.xsd

<sql‐parser:rule />

名称 类型 说明
id 属性 Spring Bean Id
sql‐comment‐parse‐enable 属性 是否解析 SQL注释
parse‐tree‐cache‐ref 属性 解析树本地缓存名称
sql‐statement‐cache‐ref 属性 SQL语句本地缓存名称

<sql‐parser:cache‐option />

名称 类型 说明
id 属性 本地缓存配置项名称
initial‐capacity 属性 本地缓存初始容量
maximum‐size 属性 本地缓存最大容量

操作步骤

1. 设置本地缓存配置
2. 设置解析配置
3. 使用解析引擎解析 SQL

4.1. ShardingSphere-JDBC 151

https://shardingsphere.apache.org/document/current/cn/features/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/dev-manual/shadow/
http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.2.1.xsd

Apache ShardingSphere document, v5.2.1

配置示例

<sql-parser:rule id="sqlParseRule" sql-comment-parse-enable="true" parse-tree-
cache-ref="parseTreeCache" sql-statement-cache-ref="sqlStatementCache" />
<sql-parser:cache-option id="sqlStatementCache" initial-capacity="1024" maximum-
size="1024"/>
<sql-parser:cache-option id="parseTreeCache" initial-capacity="1024" maximum-size=
"1024"/>

相关参考

• JAVA API：SQL解析
• YAML配置：SQL解析
• Spring Boot Starter：SQL解析

混合规则

背景信息

ShardingSphere涵盖了很多功能，例如，分库分片、读写分离、高可用、数据脱敏等。这些功能用户可
以单独进行使用，也可以配合一起使用，下面是基于 Spring命名空间配置示例。

配置示例

<!-- 分片配置 -->
<sharding:standard-strategy id="databaseStrategy" sharding-column="user_id"
algorithm-ref="inlineStrategyShardingAlgorithm" />
<sharding:sharding-algorithm id="inlineStrategyShardingAlgorithm" type="INLINE">

<props>
<prop key="algorithm-expression">replica_ds_${user_id % 2}</prop>

</props>
</sharding:sharding-algorithm>
<sharding:key-generate-algorithm id="snowflakeAlgorithm" type="SNOWFLAKE">
</sharding:key-generate-algorithm>
<sharding:key-generate-strategy id="orderKeyGenerator" column="order_id" algorithm-
ref="snowflakeAlgorithm" />
<sharding:rule id="shardingRule">

<sharding:table-rules>
<sharding:table-rule logic-table="t_order" database-strategy-ref=

"databaseStrategy" key-generate-strategy-ref="orderKeyGenerator" />
</sharding:table-rules>

</sharding:rule>

<!-- 动态读写分离配置 -->

4.1. ShardingSphere-JDBC 152

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/sql-parser/

Apache ShardingSphere document, v5.2.1

<readwrite-splitting:rule id="readWriteSplittingRule">
<readwrite-splitting:data-source-rule id="replica_ds_0">

<readwrite-splitting:dynamic-strategy id="dynamicStrategy" auto-aware-data-
source-name="readwrite_ds_0" />

</readwrite-splitting:data-source-rule>
<readwrite-splitting:data-source-rule id="replica_ds_1">

<readwrite-splitting:dynamic-strategy id="dynamicStrategy" auto-aware-data-
source-name="readwrite_ds_1" />

</readwrite-splitting:data-source-rule>
</readwrite-splitting:rule>

<!-- 数据库发现配置 -->
<database-discovery:rule id="mgrDatabaseDiscoveryRule">

<database-discovery:data-source-rule id="readwrite_ds_0" data-source-names="ds_
0,ds_1,ds_2" discovery-heartbeat-name="mgr-heartbeat" discovery-type-name="mgr" />

<database-discovery:data-source-rule id="readwrite_ds_1" data-source-names="ds_
3,ds_4,ds_5" discovery-heartbeat-name="mgr-heartbeat" discovery-type-name="mgr" />

<database-discovery:discovery-heartbeat id="mgr-heartbeat">
<props>

<prop key="keep-alive-cron" >0/5 * * * * ?</prop>
</props>

</database-discovery:discovery-heartbeat>
</database-discovery:rule>
<database-discovery:discovery-type id="mgr" type="MySQL.MGR">

<props>
<prop key="group-name">558edd3c-02ec-11ea-9bb3-080027e39bd2</prop>

</props>
</database-discovery:discovery-type>

<!-- 数据脱敏配置 -->
<encrypt:encrypt-algorithm id="name_encryptor" type="AES">

<props>
<prop key="aes-key-value">123456</prop>

</props>
</encrypt:encrypt-algorithm>
<encrypt:encrypt-algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user">

<encrypt:column logic-column="username" cipher-column="username" plain-
column="username_plain" encrypt-algorithm-ref="name_encryptor" />

<encrypt:column logic-column="pwd" cipher-column="pwd" assisted-query-
column="assisted_query_pwd" encrypt-algorithm-ref="pwd_encryptor" />

</encrypt:table>
</encrypt:rule>

4.1. ShardingSphere-JDBC 153

Apache ShardingSphere document, v5.2.1

算法配置

分片算法

<!-- algorithmName 由用户指定，需要和分片策略中的 algorithm-ref 属性一致 -->
<!-- type 和 props，请参考分片内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/sharding/ -->
<sharding:sharding-algorithm id="algorithmName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</sharding:sharding-algorithm>

加密算法

<!-- encryptorName 由用户指定，需要和加密规则中的 encrypt-algorithm-ref 属性一致 -->
<!-- type 和 props，请参考加密内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/encrypt/ -->
<encrypt:encrypt-algorithm id="encryptorName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</encrypt:encrypt-algorithm>

读写分离负载均衡算法

<!-- loadBalancerName 由用户指定，需要和读写分离规则中的 load-balance-algorithm-ref 属性一
致 -->
<!-- type 和 props，请参考读写分离负载均衡内置算法：https://shardingsphere.apache.org/
document/current/cn/user-manual/common-config/builtin-algorithm/load-balance/ -->
<readwrite-splitting:load-balance-algorithm id="loadBalancerName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</readwrite-splitting:load-balance-algorithm>

4.1. ShardingSphere-JDBC 154

Apache ShardingSphere document, v5.2.1

影子算法

<!-- shadowAlgorithmName 由用户指定，需要和影子库则中的 shadow-algorithm-ref 属性一致 -->
<!-- type 和 props，请参考影子库内置算法：https://shardingsphere.apache.org/document/
current/cn/user-manual/common-config/builtin-algorithm/shadow/ -->
<shadow:shadow-algorithm id="shadowAlgorithmName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</shadow:shadow-algorithm>

高可用

<!-- discoveryTypeName 由用户指定，需要和数据库发现规则中的 discovery-type-name 属性一致 --
>
<database-discovery:discovery-type id="discoveryTypeName" type="xxx">

<props>
<prop key="xxx">xxx</prop>

</props>
</database-discovery:discovery-type>

4.1.5 特殊 API

本章节将介绍 ShardingSphere‐JDBC的特殊场景 API。

数据分片

本章节将介绍 ShardingSphere‐JDBC的分片场景 API。

强制路由

背景信息

Apache ShardingSphere 使用 ThreadLocal 管理分片键值进行强制路由。可以通过编程的方式向 Hint‐
Manager中添加分片值，该分片值仅在当前线程内生效。Apache ShardingSphere还可以通过 SQL中增
加注释的方式进行强制路由。
Hint的主要使用场景：‐分片字段不存在 SQL和数据库表结构中，而存在于外部业务逻辑。‐强制在指定
数据库进行某些数据操作。

4.1. ShardingSphere-JDBC 155

Apache ShardingSphere document, v5.2.1

操作步骤

1. 调用HintManager.getInstance()获取HintManager实例；
2. 调用HintManager.addDatabaseShardingValue，HintManager.addTableShardingValue方法设置分
片键值；

3. 执行 SQL语句完成路由和执行；
4. 调用HintManager.close清理 ThreadLocal中的内容。

配置示例

使用Hint分片

规则配置

Hint 分片算法需要用户实现 org.apache.shardingsphere.sharding.api.sharding.hint.
HintShardingAlgorithm接口。Apache ShardingSphere在进行路由时，将会从 HintManager中获
取分片值进行路由操作。
参考配置如下：

rules:
- !SHARDING
tables:

t_order:
actualDataNodes: demo_ds_${0..1}.t_order_${0..1}
databaseStrategy:
hint:

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
tableStrategy:
hint:

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
defaultTableStrategy:

none:
defaultKeyGenerateStrategy:

type: SNOWFLAKE
column: order_id

props:
sql-show: true

4.1. ShardingSphere-JDBC 156

Apache ShardingSphere document, v5.2.1

获取HintManager

HintManager hintManager = HintManager.getInstance();

添加分片键值

• 使用 hintManager.addDatabaseShardingValue来添加数据源分片键值。
• 使用 hintManager.addTableShardingValue来添加表分片键值。
分 库 不 分 表 情 况 下， 强 制 路 由 至 某 一 个 分 库 时， 可 使 用 hintManager.
setDatabaseShardingValue方式添加分片。

清除分片键值

分片键值保存在 ThreadLocal中，所以需要在操作结束时调用 hintManager.close()来清除 Thread‐
Local中的内容。
hintManager实现了 AutoCloseable接口，可推荐使用 try with resource自动关闭。

完整代码示例

// Sharding database and table with using HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

// Sharding database without sharding table and routing to only one database with
using HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

4.1. ShardingSphere-JDBC 157

Apache ShardingSphere document, v5.2.1

}
}

}

使用 SQL注释的方式
使用规范
SQL Hint 功能需要用户提前开启解析注释的配置，设置 sqlCommentParseEnabled 为
true。注释格式暂时只支持 /* */，内容需要以 SHARDINGSPHERE_HINT: 开始，可选的属
性包括：

• {table}.SHARDING_DATABASE_VALUE：用于添加{table}表对应的数据源分片键值，多

个属性使用逗号分隔；

• {table}.SHARDING_TABLE_VALUE：用于添加{table}表对应的表分片键值，多个属性使

用逗号分隔。

完整示例
/* SHARDINGSPHERE_HINT: t_order.SHARDING_DATABASE_VALUE=1, t_order.SHARDING_TABLE_VALU

E=1 */

SELECT*FROMt_order;

相关参考
• 核心特性：数据分片
• 开发者指南：数据分片

读写分离

本章节将介绍 ShardingSphere‐JDBC的读写分离场景 API。

强制路由

背景信息

Apache ShardingSphere 使用 ThreadLocal 管理主库路由标记进行强制路由。可以通过编程的方式向
HintManager中添加主库路由标记，该值仅在当前线程内生效。Apache ShardingSphere还可以通过 SQL
中增加注释的方式进行主库路由。
Hint在读写分离场景下，主要用于强制在主库进行某些数据操作。

4.1. ShardingSphere-JDBC 158

分库不分表情况下，强制路由至某一个分库时，可使用SHARDING_DATABASE_VA

LUE方式设置分片，无需指定{table}。

https://shardingsphere.apache.org/document/current/cn/features/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

操作步骤

1. 调用 HintManager.getInstance()获取HintManager实例；
2. 调用 HintManager.setWriteRouteOnly()方法设置主库路由标记；
3. 执行 SQL语句完成路由和执行；
4. 调用 HintManager.close()清理 ThreadLocal中的内容。

配置示例

使用Hint强制主库路由

使用手动编程的方式

获取HintManager

与基于Hint的数据分片相同。

设置主库路由

使用 hintManager.setWriteRouteOnly设置主库路由。

清除分片键值

与基于Hint的数据分片相同。

完整代码示例

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setWriteRouteOnly();
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ... }

}
}

4.1. ShardingSphere-JDBC 159

Apache ShardingSphere document, v5.2.1

使用 SQL注释的方式

使用规范

SQL Hint功能需要用户提前开启解析注释的配置，设置 sqlCommentParseEnabled为 true。注释格
式暂时只支持 /* */，内容需要以 SHARDINGSPHERE_HINT:开始，属性名为 WRITE_ROUTE_ONLY。

完整示例

/* SHARDINGSPHERE_HINT: WRITE_ROUTE_ONLY=true */
SELECT * FROM t_order;

• 核心特性：读写分离
• 开发者指南：读写分离

分布式事务

通过 Apache ShardingSphere使用分布式事务，与本地事务并无区别。除了透明化分布式事务的使用之
外，Apache ShardingSphere还能够在每次数据库访问时切换分布式事务类型。支持的事务类型包括：本
地事务、XA事务和柔性事务。可在创建数据库连接之前设置，缺省为 Apache ShardingSphere启动时的
默认事务类型。

使用 Java API

背景信息

使用 ShardingSphere‐JDBC时，可以通过 API的方式使用 XA和 BASE模式的事务。

前提条件

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

4.1. ShardingSphere-JDBC 160

https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/dev-manual/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

<!-- 使用 XA 的 Narayana 模式时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${project.version}</version>

</dependency>

<!-- 使用 BASE 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

操作步骤

1. 设置事务类型
2. 执行业务逻辑

配置示例

TransactionTypeHolder.set(TransactionType.XA); // 支持 TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE

try (Connection conn = dataSource.getConnection()) { // 使用
ShardingSphereDataSource

conn.setAutoCommit(false);
PreparedStatement ps = conn.prepareStatement("INSERT INTO t_order (user_id,

status) VALUES (?, ?)");
ps.setObject(1, 1000);
ps.setObject(2, "init");
ps.executeUpdate();
conn.commit();
}

使用 Spring Boot Starter

背景信息

使用 ShardingSphere‐JDBC时，可以通过 spring boot starter的方式使用。##前提条件
引入Maven依赖

4.1. ShardingSphere-JDBC 161

Apache ShardingSphere document, v5.2.1

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 的 Narayana 模式时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${project.version}</version>

</dependency>

<!-- 使用 BASE 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

操作步骤

1. 配置事务类型
2. 使用分布式事务

配置示例

配置事务类型

@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {

@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {

return new DataSourceTransactionManager(dataSource);
}

4.1. ShardingSphere-JDBC 162

Apache ShardingSphere document, v5.2.1

@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {

return new JdbcTemplate(dataSource);
}

}

使用分布式事务

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // 支持 TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();
});
}

使用 Spring命名空间

背景信息

使用 ShardingSphere‐JDBC时，可以通过 spring namespace的方式使用。##前提条件
引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 的 Narayana 模式时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${project.version}</version>

4.1. ShardingSphere-JDBC 163

Apache ShardingSphere document, v5.2.1

</dependency>

<!-- 使用 BASE 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

操作步骤

1. 配置事务管理器
2. 使用分布式事务

配置示例

配置事务管理器

<!-- ShardingDataSource 的相关配置 -->
<!-- ... -->

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<tx:annotation-driven />

<!-- 开启自动扫描 @ShardingSphereTransactionType 注解，使用 Spring 原生的 AOP 在类和方法上
进行增强 -->
<sharding:tx-type-annotation-driven />

使用分布式事务

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // 支持 TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

ps.setObject(1, i);

4.1. ShardingSphere-JDBC 164

Apache ShardingSphere document, v5.2.1

ps.setObject(2, "init");
ps.executeUpdate();
});
}

Atomikos事务

背景信息

Apache ShardingSphere提供 XA事务，默认的 XA事务实现为 Atomikos。##操作步骤
1. 配置事务类型
2. 配置 Atomikos

配置示例

配置事务类型

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Atomikos

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Atomikos

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Atomikos</prop>
</props>

</shardingsphere:data-source>

4.1. ShardingSphere-JDBC 165

Apache ShardingSphere document, v5.2.1

配置 Atomikos

可以通过在项目的 classpath中添加 jta.properties来定制化 Atomikos配置项。
详情请参见 Atomikos官方文档。

数据恢复

在项目的 logs目录中会生成 xa_tx.log,这是 XA崩溃恢复时所需的日志，请勿删除。

Narayana事务

背景信息

Apache ShardingSphere提供 XA事务，集成了 Narayana的实现。

前提条件

引入Maven依赖

<properties>
<narayana.version>5.12.4.Final</narayana.version>
<jboss-transaction-spi.version>7.6.0.Final</jboss-transaction-spi.version>
<jboss-logging.version>3.2.1.Final</jboss-logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${shardingsphere.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jta</groupId>

4.1. ShardingSphere-JDBC 166

https://www.atomikos.com/Documentation/JtaProperties

Apache ShardingSphere document, v5.2.1

<artifactId>jta</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana-jts-integration</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss</groupId>
<artifactId>jboss-transaction-spi</artifactId>
<version>${jboss-transaction-spi.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>${jboss-logging.version}</version>

</dependency>

操作步骤

1. 配置 Narayana

2. 设置 XA事务类型

配置示例

配置 Narayana

可以通过在项目的 classpath中添加 jbossts-properties.xml来定制化 Narayana配置项。
详情请参见 Narayana官方文档。

设置 XA事务类型

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Narayana

SpringBoot:

spring:
shardingsphere:

4.1. ShardingSphere-JDBC 167

https://narayana.io/documentation/index.html

Apache ShardingSphere document, v5.2.1

props:
xa-transaction-manager-type: Narayana

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Narayana</prop>
</props>

</shardingsphere:data-source>

Bitronix事务

背景信息

Apache ShardingSphere提供 XA事务，集成了 Bitronix的实现。

前提条件

引入Maven依赖

<properties>
<btm.version>2.1.3</btm.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-bitronix</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.codehaus.btm</groupId>

4.1. ShardingSphere-JDBC 168

Apache ShardingSphere document, v5.2.1

<artifactId>btm</artifactId>
<version>${btm.version}</version>

</dependency>

操作步骤

1. 配置 XA事务类型
2. 配置 Bitronix

配置示例

配置 XA事务类型

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Bitronix

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Bitronix

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Bitronix</prop>
</props>

</shardingsphere:data-source>

配置 Bitronix（可省略）

详情请参见 Bitronix官方文档。

4.1. ShardingSphere-JDBC 169

https://github.com/bitronix/btm/wiki

Apache ShardingSphere document, v5.2.1

Seata事务

背景信息

Apache ShardingSphere提供 BASE事务，集成了 Seata的实现。

操作步骤

1. 启动 Seata Server

2. 创建日志表
3. 添加 Seata配置

配置示例

启动 Seata Server

按照 seata‐work‐shop中的步骤，下载并启动 Seata服务器。

创建 undo_log表

在每一个分片数据库实例中执创建 undo_log表（以MySQL为例）。

CREATE TABLE IF NOT EXISTS `undo_log`
(
`id` BIGINT(20) NOT NULL AUTO_INCREMENT COMMENT 'increment id',
`branch_id` BIGINT(20) NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(100) NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as

serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME NOT NULL COMMENT 'modify datetime',
PRIMARY KEY (`id`),
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)

) ENGINE = InnoDB
AUTO_INCREMENT = 1
DEFAULT CHARSET = utf8 COMMENT ='AT transaction mode undo table';

4.1. ShardingSphere-JDBC 170

https://github.com/seata/seata-workshop

Apache ShardingSphere document, v5.2.1

修改配置

在 classpath中增加 seata.conf文件。

client {
application.id = example ## 应用唯一主键
transaction.service.group = my_test_tx_group ## 所属事务组

}

根据实际场景修改 Seata的 file.conf和 registry.conf文件。

4.1.6 不支持项

DataSource接口

• 不支持 timeout相关操作。

Connection接口

• 不支持存储过程，函数，游标的操作；
• 不支持执行 native SQL；
• 不支持 savepoint相关操作；
• 不支持 Schema/Catalog的操作；
• 不支持自定义类型映射。

Statement和 PreparedStatement接口

• 不支持返回多结果集的语句（即存储过程，非 SELECT多条数据）；
• 不支持国际化字符的操作。

ResultSet接口

• 不支持对于结果集指针位置判断；
• 不支持通过非 next方法改变结果指针位置；
• 不支持修改结果集内容；
• 不支持获取国际化字符；
• 不支持获取 Array。

4.1. ShardingSphere-JDBC 171

Apache ShardingSphere document, v5.2.1

JDBC 4.1

• 不支持 JDBC 4.1接口新功能。
查询所有未支持方法，请阅读 org.apache.shardingsphere.driver.jdbc.unsupported包。

4.2 ShardingSphere-Proxy

配置是 ShardingSphere‐Proxy中唯一与开发者交互的模块，通过它可以快速清晰的理解 ShardingSphere‐
Proxy所提供的功能。
本章节是 ShardingSphere‐Proxy的配置参考手册，需要时可当做字典查阅。
ShardingSphere‐Proxy提供基于 YAML的配置方式，并使用 DistSQL进行交互。通过配置，应用开发者
可以灵活的使用数据分片、读写分离、数据加密、影子库等功能，并且能够叠加使用。
规则配置部分与 ShardingSphere‐JDBC的 YAML配置完全一致。DistSQL与 YAML配置能够相互取代。
更多使用细节请参见使用示例。

4.2.1 启动手册

本章节将介绍 ShardingSphere‐Proxy相关部署和启动等相关操作。

使用二进制发布包

背景信息

本节主要介绍如何通过二进制发布包启动 ShardingSphere‐Proxy。

前提条件

使用二进制发布包启动 Proxy，需要环境具备 Java JRE 8或更高版本。

操作步骤

1. 获取 ShardingSphere‐Proxy二进制发布包
在下载页面获取。

2. 配置 conf/server.yaml

ShardingSphere‐Proxy运行模式在 server.yaml中配置，配置格式与 ShardingSphere‐JDBC一致，请
参考模式配置。
其他配置项请参考：*权限配置 *属性配置

3. 配置 conf/config-*.yaml

4.2. ShardingSphere-Proxy 172

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://shardingsphere.apache.org/document/current/cn/downloads/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/mode/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/authentication/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/props/

Apache ShardingSphere document, v5.2.1

修改 conf目录下以 config-前缀开头的文件，如：conf/config-sharding.yaml文件，进行分
片规则、读写分离规则配置。配置方式请参考配置手册。config-*.yaml文件的 *部分可以任意命名。
ShardingSphere‐Proxy支持配置多个逻辑数据源，每个以 config-前缀命名的 YAML配置文件，即为
一个逻辑数据源。

4. （可选）引入数据库驱动
如果后端连接 PostgreSQL或 openGauss数据库，不需要引入额外依赖。
如果后端连接 MySQL 数据库，请下载 mysql‐connector‐java‐5.1.47.jar 或者 mysql‐connector‐java‐
8.0.11.jar，并将其放入 ext-lib目录。

5. （可选）引入集群模式所需依赖
ShardingSphere‐Proxy默认集成 ZooKeeper Curator客户端，集群模式使用 ZooKeeper无须引入其他依
赖。
如果集群模式使用 Etcd，需要将 Etcd的客户端驱动程序 jetcd‐core 0.5.0复制至目录 ext-lib。

6. （可选）引入分布式事务所需依赖
与 ShardingSphere‐JDBC使用方式相同。具体可参考分布式事务。

7. （可选）引入自定义算法
当用户需要使用自定义的算法类时，可通过以下方式配置使用自定义算法，以分片为例：

1. 实现 `ShardingAlgorithm` 接口定义的算法实现类。
2. 在项目 `resources` 目录下创建 `META-INF/services` 目录。
3. 在 `META-INF/services` 目录下新建文件 `org.apache.shardingsphere.sharding.spi.
ShardingAlgorithm`
4. 将实现类的全限定类名写入至文件 `org.apache.shardingsphere.sharding.spi.
ShardingAlgorithm`
5. 将上述 Java 文件打包成 jar 包。
6. 将上述 jar 包拷贝至 `ext-lib` 目录。
7. 将上述自定义算法实现类的 Java 文件引用配置在 YAML 文件中，具体可参考 [配置规则](https://
shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/
yaml-config/)。

8. 启动 ShardingSphere‐Proxy

Linux/macOS 操作系统请运行 bin/start.sh，Windows 操作系统请运行 bin/start.bat 启动
ShardingSphere‐Proxy。默认监听端口 3307，默认配置目录为 Proxy 内的 conf 目录。启动脚本可以
指定监听端口、配置文件所在目录，命令如下：

bin/start.sh [port] [/path/to/conf]

9. 使用客户端连接 ShardingSphere‐Proxy

执行MySQL / PostgreSQL / openGauss的客户端命令直接操作 ShardingSphere‐Proxy即可。
使用MySQL客户端连接 ShardingSphere‐Proxy：

mysql -h${proxy_host} -P${proxy_port} -u${proxy_username} -p${proxy_password}

4.2. ShardingSphere-Proxy 173

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/io/etcd/jetcd-core/0.5.0/jetcd-core-0.5.0.jar
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/special-api/transaction/

Apache ShardingSphere document, v5.2.1

使用 PostgreSQL客户端连接 ShardingSphere‐Proxy：

psql -h ${proxy_host} -p ${proxy_port} -U ${proxy_username}

使用 openGauss客户端连接 ShardingSphere‐Proxy：

gsql -r -h ${proxy_host} -p ${proxy_port} -U ${proxy_username} -W ${proxy_password}

配置示例

完整配置请参考 ShardingSphere仓库中的示例：https://github.com/apache/shardingsphere/tree/mast
er/examples/shardingsphere‐proxy‐example

使用 Docker

背景信息

本节主要介绍如何通过 Docker启动 ShardingSphere‐Proxy。

注意事项

使用 Docker启动 ShardingSphere‐Proxy无须额外依赖。

操作步骤

1. 获取 Docker镜像
• 方式一（推荐）：从 DockerHub获取

docker pull apache/shardingsphere-proxy

• 方式二：获取master分支最新镜像：https://github.com/apache/shardingsphere/pkgs/containe
r/shardingsphere‐proxy

• 方式三：自行构建镜像

git clone https://github.com/apache/shardingsphere
mvn clean install
cd shardingsphere-distribution/shardingsphere-proxy-distribution
mvn clean package -Prelease,docker

如果遇到以下问题，请确保 Docker daemon进程已经运行。

I/O exception (java.io.IOException) caught when processing request to {}->unix://
localhost:80: Connection refused？

2. 配置 conf/server.yaml和 conf/config-*.yaml

4.2. ShardingSphere-Proxy 174

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy
https://github.com/apache/shardingsphere/pkgs/container/shardingsphere-proxy

Apache ShardingSphere document, v5.2.1

可以从 Docker容器中获取配置文件模板，拷贝到宿主机任意目录中：

docker run -d --name tmp --entrypoint=bash apache/shardingsphere-proxy
docker cp tmp:/opt/shardingsphere-proxy/conf /host/path/to/conf
docker rm tmp

由于容器内的网络环境可能与宿主机的网络环境有差异，如果启动时报无法连接到数据库错误等错误，请
确保 conf/config-*.yaml配置文件中指定的数据库的 IP可以被 Docker容器内部访问到。
具体配置请参考 ShardingSphere‐Proxy启动手册 ‐使用二进制发布包。

3. （可选）引入第三方依赖或自定义算法
如果存在以下任意需求：* ShardingSphere‐Proxy后端使用MySQL数据库；*使用自定义算法；*使用
Etcd作为集群模式的注册中心。
请在宿主机中任意位置创建 ext-lib目录，并参考 ShardingSphere‐Proxy启动手册 ‐使用二进制发布
包中的对应步骤。

4. 启动 ShardingSphere‐Proxy容器
将宿主机中的 conf与 ext-lib目录挂载到容器中，启动容器：

docker run -d \
-v /host/path/to/conf:/opt/shardingsphere-proxy/conf \
-v /host/path/to/ext-lib:/opt/shardingsphere-proxy/ext-lib \
-e PORT=3308 -p13308:3308 apache/shardingsphere-proxy:latest

其中，ext-lib非必需，用户可按需挂载。ShardingSphere‐Proxy默认端口 3307，可以通过环境变量
-e PORT指定。自定义 JVM相关参数可通过环境变量 JVM_OPTS设置。

5. 使用客户端连接 ShardingSphere‐Proxy

请参考 ShardingSphere‐Proxy启动手册 ‐使用二进制发布包。
配置示例
完整配置请参考 ShardingSphere仓库中的示例：https://github.com/apache/shardingsphere/tree/mast

er/examples/shardingsphere‐proxy‐example

构建 GraalVM Native Image(Alpha)

背景信息
本节主要介绍如何通过 GraalVM 的 native-image 组件构建 ShardingSphere‐Proxy 的 Native
Image和对应的 Docker Image。

4.2. ShardingSphere-Proxy 175

说明：

支持设置 CGROUP_MEM_OPTS 环境变量: 用于在容器环境中设置相关内存参数，脚本中的默认值为：

-XX:InitialRAMPercentage=80.0-XX:MaxRAMPercentage=80.0-XX:MinRAMPercentage=80.0

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example

Apache ShardingSphere document, v5.2.1

注意事项

• ShardingSphere Proxy尚未准备好与 GraalVM Native Image集成。其在 https://github.com/apa
che/shardingsphere/actions/存在每日构建的任务用于测试构建。

• 若你发现构建过程存在缺失的 GraalVM Reachability Metadata,应当在 https://github.com/oracle/
graalvm‐reachability‐metadata打开新的 issue，并提交包含 ShardingSphere自身或依赖的第三
方库缺失的 GraalVM Reachability Metadata的 PR。

• ShardingSphere的master分支尚未准备好处理Native Image中的单元测试,需要等待 Junit 5 Plat‐
form的集成，你总是需要在构建GraalVMNative Image的过程中，加上特定于 GraalVM Native
Build Tools的 -DskipNativeTests或 -DskipTests参数跳过Native Image中的单元测试。

• 本节假定处于 Linux（amd64，aarch64），MacOS（amd64）或Windows（amd64）环境。如果你位
于MacOS(aarch64/M1)环境,你需要关注尚未关闭的 https://github.com/oracle/graal/issues/2666
。

前提条件

1. 根据 https://www.graalvm.org/downloads/ 要求安装和配置 JDK 17 对应的 GraalVM CE 或
GraalVM EE。同时可以通过 SDKMAN!安装 JDK 17对应的 GraalVM CE。

2. 通过 GraalVM Updater工具安装 native-image组件。
3. 根据 https://www.graalvm.org/22.2/reference‐manual/native‐image/#prerequisites的要求安装
本地工具链。

4. 如果需要构建 Docker Image，确保 docker-cli在系统环境变量内。

操作步骤

1. 获取 Apache ShardingSphere Git Source

• 在下载页面或 https://github.com/apache/shardingsphere/tree/master获取。
2. 在命令行构建产物,分两种情形。
• 情形一：不需要使用存在 SPI实现的 JAR或第三方依赖的 JAR

• 在 Git Source同级目录下执行如下命令,直接完成 Native Image的构建。

./mvnw -am -pl shardingsphere-distribution/shardingsphere-proxy-native-distribution
-B -Pnative -DskipTests -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -
Dspotless.apply.skip=true -Drat.skip=true clean package

• 情形二：需要使用存在 SPI实现的 JAR或 GPL V2等 LICENSE的第三方依赖的 JAR。
• 在 shardingsphere-distribution/shardingsphere-proxy-native-distribution/
pom.xml的 dependencies加入存在 SPI实现的 JAR或第三方依赖的 JAR。示例如下

4.2. ShardingSphere-Proxy 176

https://github.com/apache/shardingsphere/actions/
https://github.com/apache/shardingsphere/actions/
https://github.com/oracle/graalvm-reachability-metadata
https://github.com/oracle/graalvm-reachability-metadata
https://github.com/oracle/graal/issues/2666
https://www.graalvm.org/downloads/
https://www.graalvm.org/22.2/reference-manual/native-image/#prerequisites
https://shardingsphere.apache.org/document/current/en/downloads/
https://github.com/apache/shardingsphere/tree/master

Apache ShardingSphere document, v5.2.1

<dependencies>
<dependency>

<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.30</version>

</dependency>
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-translator-jooq-provider</artifactId>
<version>5.2.0</version>

</dependency>
</dependencies>

• 通过命令行构建 GraalVM Native Image。

./mvnw -am -pl shardingsphere-distribution/shardingsphere-proxy-native-distribution
-B -Pnative -DskipTests -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -
Dspotless.apply.skip=true -Drat.skip=true clean package

3. 通过命令行启动 Native Image,需要带上两个参数，第一个参数为 ShardingSphere Proxy使用的端
口，第二个参数为你编写的包含 server.yaml的 /conf文件夹，假设已存在文件夹./custom/
conf，示例为

./apache-shardingsphere-proxy 3307 ./custom/conf

4. 如果需要构建 Docker Image,在添加后存在 SPI实现的依赖或第三方依赖后,在命令行执行如下命
令。

./mvnw -am -pl shardingsphere-distribution/shardingsphere-proxy-native-distribution
-B -Pnative,docker.native -DskipTests -Dmaven.javadoc.skip=true -Dcheckstyle.
skip=true -Dspotless.apply.skip=true -Drat.skip=true clean package

• 假设存在包含 server.yaml 的 conf 文件夹为 ./custom/conf，可通过如下的
docker-compose.yml文件启动 GraalVM Native Image对应的 Docker Image。

version: "3.8"

services:
apache-shardingsphere-proxy-native:

image: apache/shardingsphere-proxy-native:latest
volumes:
- ./custom/conf:/conf

ports:
- "3307:3307"

• 如 果 您 使 用 默 认 构 建 配 置， 你 当 然 可 以 为 shardingsphere-distribution/
shardingsphere-proxy-native-distribution/Dockerfile 使用 scratch 作为
base docker image。但如果您主动为 pom.xml 的 native profile 添加 jvmArgs

4.2. ShardingSphere-Proxy 177

Apache ShardingSphere document, v5.2.1

为-H:+StaticExecutableWithDynamicLibC，以静态链接除 glic 之外的所有内容，您
应该切换 base image 到 busybox:glic。参考 https://www.graalvm.org/22.2/reference
‐manual/native‐ image/guides/build‐ static‐ executables/ 。另请注意，某些第三方依赖
将需要更多系统库，例如 libdl。因此请确保根据您的使用情况调整 base docker image 和
shardingsphere-distribution/shardingsphere-proxy-native-distribution 下
的 pom.xml和 Dockerfile的内容。

使用Helm

背景信息

使用Helm在Kubernetes集群中引导 ShardingSphere‐Proxy实例进行安装。关于 ShardingSphereHelm
Charts的更多内容可以参考：ShardingSphere‐on‐Cloud子项目。

前提条件

• kubernetes 1.18+

• kubectl

• helm 3.3.0+

• 可以动态申请 PV(Persistent Volumes)的 StorageClass用于持久化数据。（可选）

操作步骤

在线安装

1. 将 ShardingSphere‐Proxy添加到Helm本地仓库：

helm repo add shardingsphere https://shardingsphere.apache.org/charts

2. 以 ShardingSphere‐Proxy命名安装 charts：

helm install shardingsphere-proxy shardingsphere/shardingsphere-proxy

源码安装

1. 执行下述命令以执行默认配置进行安装。

git clone https://github.com/apache/shardingsphere-on-cloud.git
cd charts/shardingsphere-proxy/charts/governance
helm dependency build
cd ../..
helm dependency build

4.2. ShardingSphere-Proxy 178

https://www.graalvm.org/22.2/reference-manual/native-image/guides/build-static-executables/
https://www.graalvm.org/22.2/reference-manual/native-image/guides/build-static-executables/
https://helm.sh/
https://github.com/apache/shardingsphere-on-cloud

Apache ShardingSphere document, v5.2.1

cd ..
helm install shardingsphere-proxy shardingsphere-proxy

说明：
1. 其他的配置详见下方的配置列表。
2. 执行 helm list获取所有安装的 release。

卸载

1. 默认删除所有发布记录，增加 --keep-history参数保留发布记录。

helm uninstall shardingsphere-proxy

参数解释

治理节点配置项

配置项 描述 值
governance.enabled 用来切换是否使用治理节点的 chart true

4.2. ShardingSphere-Proxy 179

Apache ShardingSphere document, v5.2.1

治理节点 ZooKeeper配置项

配置项 描述 值
governance. zookeeper.
enabled

用来切换是否使用 ZooKeeper的 chart “ true“

governance.zooke eper.
replicaCount

ZooKeeper节点数量 1

gove rnance.zookeeper.
pe rsistence.enabled

标识 ZooKeeper 是否使用持久卷申领 (Persis‐
tentVolumeClaim) 用来申请持久卷（Persis‐
tentVolume）

f alse

governanc e.zookeeper.
persist ence.
storageClass

持久卷（PersistentVolume）的存储类 (Storage‐
Class)

""

governan ce.zookeeper.
persis tence.
accessModes

持久卷（PersistentVolume）的访问模式 ["ReadW
riteOn
ce"]

g overnance.zookeeper
.persistence.size

持久卷（PersistentVolume）大小 ‘ 8Gi‘

g overnance.zookeeper
.resources.limits

ZooKeeper容器的资源限制 {}

governance .zookeeper.
resource s.requests.
memory

ZooKeeper容器申请的内存 2 56Mi

governa nce.zookeeper.
resou rces.requests.cpu

ZooKeeper容器申请的 cpu核数 “ 250m“

4.2. ShardingSphere-Proxy 180

Apache ShardingSphere document, v5.2.1

计算节点 ShardingSphere-Proxy配置项

配置项 描述 值
compu te.image.repository ShardingSphere‐Proxy的镜像名 apache/shar

dingsphere-proxy
compu te.image.pullPolicy ShardingSphere‐Proxy镜像拉取

策略
IfNotPresent

compute.image.tag ShardingSphere‐Proxy镜像标签 5.1.2
compu te.imagePullSecrets 拉取私有仓库的凭证 []
compu te.resources.limits ShardingSphere‐Proxy容器的资

源限制
{}

compute.resour ces.
requests.memory

ShardingSphere‐Proxy容器申请
的内存

2Gi

compute.res ources.
requests.cpu

ShardingSphere‐Proxy容器申请
的 cpu核数

200m

compute.replicas ShardingSphere‐Proxy节点个数 3
c ompute.service.type ShardingSphere‐Proxy网络模式 ClusterIP
c ompute.service.port ShardingSphere‐Proxy暴露端口 3307
compute.mys qlConnector.
version

MySQL驱动版本 5.1.49

compute.startPort ShardingSphere‐Proxy启动端口 3307
c ompute.serverConfig ShardingSphere‐Proxy模式配置

文件
""

配置示例

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

@section Governance-Node parameters

4.2. ShardingSphere-Proxy 181

Apache ShardingSphere document, v5.2.1

@param governance.enabled Switch to enable or disable the governance helm chart
##
governance:
enabled: true
@section Governance-Node ZooKeeper parameters
zookeeper:

@param governance.zookeeper.enabled Switch to enable or disable the
ZooKeeper helm chart

##
enabled: true
@param governance.zookeeper.replicaCount Number of ZooKeeper nodes
##
replicaCount: 1
ZooKeeper Persistence parameters
ref: https://kubernetes.io/docs/user-guide/persistent-volumes/
@param governance.zookeeper.persistence.enabled Enable persistence on

ZooKeeper using PVC(s)
@param governance.zookeeper.persistence.storageClass Persistent Volume

storage class
@param governance.zookeeper.persistence.accessModes Persistent Volume access

modes
@param governance.zookeeper.persistence.size Persistent Volume size
##
persistence:
enabled: false
storageClass: ""
accessModes:

- ReadWriteOnce
size: 8Gi

ZooKeeper's resource requests and limits
ref: https://kubernetes.io/docs/user-guide/compute-resources/
@param governance.zookeeper.resources.limits The resources limits for the

ZooKeeper containers
@param governance.zookeeper.resources.requests.memory The requested memory

for the ZooKeeper containers
@param governance.zookeeper.resources.requests.cpu The requested cpu for the

ZooKeeper containers
##
resources:
limits: {}
requests:

memory: 256Mi
cpu: 250m

@section Compute-Node parameters
##
compute:
@section Compute-Node ShardingSphere-Proxy parameters

4.2. ShardingSphere-Proxy 182

Apache ShardingSphere document, v5.2.1

ref: https://kubernetes.io/docs/concepts/containers/images/
@param compute.image.repository Image name of ShardingSphere-Proxy.
@param compute.image.pullPolicy The policy for pulling ShardingSphere-Proxy

image
@param compute.image.tag ShardingSphere-Proxy image tag
##
image:

repository: "apache/shardingsphere-proxy"
pullPolicy: IfNotPresent
Overrides the image tag whose default is the chart appVersion.
##
tag: "5.1.2"

@param compute.imagePullSecrets Specify docker-registry secret names as an
array
e.g：
imagePullSecrets:
- name: myRegistryKeySecretName
##
imagePullSecrets: []
ShardingSphere-Proxy resource requests and limits
ref: https://kubernetes.io/docs/concepts/configuration/manage-resources-

containers/
@param compute.resources.limits The resources limits for the ShardingSphere-

Proxy containers
@param compute.resources.requests.memory The requested memory for the

ShardingSphere-Proxy containers
@param compute.resources.requests.cpu The requested cpu for the

ShardingSphere-Proxy containers
##
resources:

limits: {}
requests:
memory: 2Gi
cpu: 200m

ShardingSphere-Proxy Deployment Configuration
ref: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
ref: https://kubernetes.io/docs/concepts/services-networking/service/
@param compute.replicas Number of cluster replicas
##
replicas: 3
@param compute.service.type ShardingSphere-Proxy network mode
@param compute.service.port ShardingSphere-Proxy expose port
##
service:

type: ClusterIP
port: 3307

MySQL connector Configuration
ref: https://shardingsphere.apache.org/document/current/en/quick-start/

4.2. ShardingSphere-Proxy 183

Apache ShardingSphere document, v5.2.1

shardingsphere-proxy-quick-start/
@param compute.mysqlConnector.version MySQL connector version
##
mysqlConnector:

version: "5.1.49"
@param compute.startPort ShardingSphere-Proxy start port
ShardingSphere-Proxy start port
ref: https://shardingsphere.apache.org/document/current/en/user-manual/

shardingsphere-proxy/startup/docker/
##
startPort: 3307
@section Compute-Node ShardingSphere-Proxy ServerConfiguration parameters
NOTE: If you use the sub-charts to deploy Zookeeper, the server-lists field

must be "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.Namespace }}",
otherwise please fill in the correct zookeeper address
The server.yaml is auto-generated based on this parameter.
If it is empty, the server.yaml is also empty.
ref: https://shardingsphere.apache.org/document/current/en/user-manual/

shardingsphere-jdbc/yaml-config/mode/
ref: https://shardingsphere.apache.org/document/current/en/user-manual/common-

config/builtin-algorithm/metadata-repository/
##
serverConfig:

@section Compute-Node ShardingSphere-Proxy ServerConfiguration authority
parameters

NOTE: It is used to set up initial user to login compute node, and authority
data of storage node.

ref: https://shardingsphere.apache.org/document/current/en/user-manual/
shardingsphere-proxy/yaml-config/authentication/

@param compute.serverConfig.authority.privilege.type authority provider for
storage node, the default value is ALL_PERMITTED

@param compute.serverConfig.authority.users[0].password Password for compute
node.

@param compute.serverConfig.authority.users[0].user Username,authorized host
for compute node. Format: <username>@<hostname> hostname is % or empty string means
do not care about authorized host

##
authority:
privilege:

type: ALL_PRIVILEGES_PERMITTED
users:
- password: root

user: root@%
@section Compute-Node ShardingSphere-Proxy ServerConfiguration mode

Configuration parameters
@param compute.serverConfig.mode.type Type of mode configuration. Now only

support Cluster mode
@param compute.serverConfig.mode.repository.props.namespace Namespace of

4.2. ShardingSphere-Proxy 184

Apache ShardingSphere document, v5.2.1

registry center
@param compute.serverConfig.mode.repository.props.server-lists Server lists

of registry center
@param compute.serverConfig.mode.repository.props.maxRetries Max retries of

client connection
@param compute.serverConfig.mode.repository.props.

operationTimeoutMilliseconds Milliseconds of operation timeout
@param compute.serverConfig.mode.repository.props.retryIntervalMilliseconds

Milliseconds of retry interval
@param compute.serverConfig.mode.repository.props.timeToLiveSeconds Seconds

of ephemeral data live
@param compute.serverConfig.mode.repository.type Type of persist repository.

Now only support ZooKeeper
@param compute.serverConfig.mode.overwrite Whether overwrite persistent

configuration with local configuration
##
mode:
type: Cluster
repository:

type: ZooKeeper
props:

maxRetries: 3
namespace: governance_ds
operationTimeoutMilliseconds: 5000
retryIntervalMilliseconds: 500
server-lists: "{{ printf \"%s-zookeeper.%s:2181\" .Release.Name .Release.

Namespace }}"
timeToLiveSeconds: 60

overwrite: true

添加依赖

本章主要介绍 ShardingSphere可选依赖的下载方式。

4.2. ShardingSphere-Proxy 185

Apache ShardingSphere document, v5.2.1

添加 Bitronix依赖

添加 Bitronix依赖包

添加 Bitronix依赖需要下载以下 jar文件并将其添加 ext-lib目录下。

jar文件下载地址

• btm‐2.1.3.jar

• shardingsphere‐transaction‐xa‐bitronix.jar

请根据 proxy版本下载对应 shardingsphere-transaction-xa-bitronix.jar文件。

添加 Narayana依赖

添加 Narayana依赖包

添加 Narayana依赖需要下载以下 jar文件并将其添加至 ext-lib下。

jar文件下载地址

• arjuna‐5.12.4.Final.jar

• common‐5.12.4.Final.jar

• javax.activation‐api‐1.2.0.jar

• jaxb‐api‐2.3.0.jar

• jaxb‐core‐2.3.0.jar

• jaxb‐impl‐2.3.0.jar

• jboss‐connector‐api_1.7_spec‐1.0.0.Final.jar

• jboss‐logging‐3.2.1.Final.jar

• jboss‐transaction‐api_1.2_spec‐1.0.0.Alpha3.jar

• jboss‐transaction‐spi‐7.6.0.Final.jar

• jta‐5.12.4.Final.jar

• narayana‐jts‐integration‐5.12.4.Final.jar

• shardingsphere‐transaction‐xa‐narayana.jar

请根据 proxy版本下载对应 shardingsphere-transaction-xa-narayana.jar文件。

4.2. ShardingSphere-Proxy 186

https://repo1.maven.org/maven2/org/codehaus/btm/btm/2.1.3/btm-2.1.3.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-bitronix
https://repo1.maven.org/maven2/org/jboss/narayana/arjunacore/arjuna/5.12.4.Final/arjuna-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/common/5.12.4.Final/common-5.12.4.Final.jar
https://repo1.maven.org/maven2/javax/activation/javax.activation-api/1.2.0/javax.activation-api-1.2.0.jar
https://repo1.maven.org/maven2/javax/xml/bind/jaxb-api/2.3.0/jaxb-api-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-core/2.3.0/jaxb-core-2.3.0.jar
https://repo1.maven.org/maven2/com/sun/xml/bind/jaxb-impl/2.3.0/jaxb-impl-2.3.0.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/resource/jboss-connector-api_1.7_spec/1.0.0.Final/jboss-connector-api_1.7_spec-1.0.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/logging/jboss-logging/3.2.1.Final/jboss-logging-3.2.1.Final.jar
https://repo1.maven.org/maven2/org/jboss/spec/javax/transaction/jboss-transaction-api_1.2_spec/1.0.0.Alpha3/jboss-transaction-api_1.2_spec-1.0.0.Alpha3.jar
https://repo1.maven.org/maven2/org/jboss/jboss-transaction-spi/7.6.0.Final/jboss-transaction-spi-7.6.0.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jta/jta/5.12.4.Final/jta-5.12.4.Final.jar
https://repo1.maven.org/maven2/org/jboss/narayana/jts/narayana-jts-integration/5.12.4.Final/narayana-jts-integration-5.12.4.Final.jar
https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-transaction-xa-narayana

Apache ShardingSphere document, v5.2.1

4.2.2 YAML配置

ShardingSphere‐JDBC 的 YAML 配置是 ShardingSphere‐Proxy 的子集。在 server.yaml 文件中，
ShardingSphere‐Proxy能够额外配置权限功能和更多的 Proxy专有属性。

本章节将介绍 ShardingSphere‐Proxy的 YAML额外配置。
权限

权限配置用于设置能够连接到 ShardingSphere‐Proxy的用户，并可以为他们授予不同的权限。

背景信息

在 ShardingSphere‐Proxy中，通过全局规则 Authority Rule（标识为!AUTHORITY）来配置用户和授权
信息。
得益于 ShardingSphere的可插拔架构，Proxy提供了两种级别的权限提供者，分别是：

• ALL_PERMITTED：授予所有权限，不鉴权；
• DATABASE_PERMITTED：为用户授予指定逻辑库的权限，通过 user‐database‐mappings进行映射。

在配置 Authority Rule时，管理员可根据需要选择使用哪一种权限提供者。

参数解释

rules:
- !AUTHORITY

users:
- # 用于登录计算节点的用户名，授权主机和密码的组合。格式：<username>@<hostname>:

<password>，hostname 为 % 或空字符串表示不限制授权主机
provider:
type: # 存储节点数据授权的权限提供者类型，缺省值为 ALL_PERMITTED

配置示例

ALL_PERMITTED

rules:
- !AUTHORITY

users:
- root@localhost:root
- my_user@:pwd

provider:
type: ALL_PERMITTED

4.2. ShardingSphere-Proxy 187

说明： YAML 配置文件支持配置内容超过 3MB。

Apache ShardingSphere document, v5.2.1

以上配置表示：‐用户 root，仅可从 localhost连接 Proxy，密码为 root；‐用户 my_user，可以从任
意主机连接 Proxy，密码为 pwd；‐ provider类型为 ALL_PERMITTED，表示对用户授予所有权限，不
鉴权。

DATABASE_PERMITTED

rules:
- !AUTHORITY

users:
- root@localhost:root
- my_user@:pwd

provider:
type: DATABASE_PERMITTED
props:
user-database-mappings: root@localhost=sharding_db, root@localhost=test_db,

my_user@=sharding_db

以上配置表示：
• provider类型为 DATABASE_PERMITTED，表示对用户授予库级别权限，需要配置；
• 用户 root仅可从 localhost主机连接，可访问 sharding_db和 test_db；
• 用户 my_user可从任意主机连接，可访问 sharding_db。

相关参考

权限提供者具体实现可以参考权限提供者。

属性配置

背景信息

Apache ShardingSphere提供属性配置的方式配置系统级配置。本节介绍 server.yaml中的配置项。

参数解释

属性配置可以通过 DistSQL#RAL修改。支持动态修改的属性可以立即生效，不支持动态修改的属性需要
重启后生效。

4.2. ShardingSphere-Proxy 188

https://shardingsphere.apache.org/document/current/cn/dev-manual/proxy
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/

Apache ShardingSphere document, v5.2.1

配置示例

完整配置示例请参考 ShardingSphere仓库内的 server.yaml：https://github.com/apache/sharding
sphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere‐proxy/shardingsphere‐p
roxy‐bootstrap/src/main/resources/conf/server.yaml#L71‐L93

规则配置

背景信息

本节介绍如何进行 ShardingSphere‐Proxy的规则配置。

参数解释

ShardingSphere‐Proxy 的规则配置与 ShardingSphere‐JDBC 一致，具体规则请参考 ShardingSphere‐
JDBC规则配置。

注意事项

与 ShardingSphere‐JDBC不同的是，以下规则需要配置在 ShardingSphere‐Proxy的 server.yaml中：
• SQL解析
• 分布式事务
• SQL翻译

4.2.3 DistSQL

本章节将介绍 DistSQL的详细语法。

定义

DistSQL（Distributed SQL）是 Apache ShardingSphere特有的操作语言。它与标准 SQL的使用方式完
全一致，用于提供增量功能的 SQL级别操作能力。
灵活的规则配置和资源管控能力是 Apache ShardingSphere的特点之一。
在使用 4.x及其之前版本时，开发者虽然可以像使用原生数据库一样操作数据，但却需要通过本地文件或
注册中心配置资源和规则。然而，操作习惯变更，对于运维工程师并不友好。
从 5.x版本开始，DistSQL（Distributed SQL）让用户可以像操作数据库一样操作Apache ShardingSphere，
使其从面向开发人员的框架和中间件转变为面向运维人员的数据库产品。

4.2. ShardingSphere-Proxy 189

https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://github.com/apache/shardingsphere/blob/aac0d3026e00575114701be603ec189a02a45747/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf/server.yaml#L71-L93
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/transaction/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-translator/

Apache ShardingSphere document, v5.2.1

相关概念

DistSQL细分为 RDL、RQL、RAL和 RUL四种类型。

RDL

Resource & Rule Definition Language，负责资源和规则的创建、修改和删除。

RQL

Resource & Rule Query Language，负责资源和规则的查询和展现。

RAL

Resource & Rule Administration Language，负责强制路由、熔断、配置导入导出、数据迁移控制等管理
功能。

RUL

Resource & Rule Utility Language，负责 SQL解析、SQL格式化、执行计划预览等功能。

对系统的影响

之前

在拥有 DistSQL以前，用户一边使用 SQL语句操作数据，一边使用 YAML文件来管理 ShardingSphere
的配置，如下图：

4.2. ShardingSphere-Proxy 190

Apache ShardingSphere document, v5.2.1

这时用户不得不面对以下几个问题：‐需要通过不同类型的客户端来操作数据和管理 ShardingSphere规
则；‐ 多个逻辑库需要多个 YAML 文件；‐ 修改 YAML 需要文件的编辑权限；‐ 修改 YAML 后需要重启
ShardingSphere。

之后

随着 DistSQL的出现，对 ShardingSphere的操作方式也得到了改变：

现在，用户的使用体验得到了巨大改善：‐使用相同的客户端来管理数据和 ShardingSphere配置；‐不再
额外创建 YAML文件，通过DistSQL管理逻辑库；‐不再需要文件的编辑权限，通过DistSQL来管理配置；
‐配置的变更实时生效，无需重启 ShardingSphere。

使用限制

DistSQL只能用于 ShardingSphere‐Proxy，ShardingSphere‐JDBC暂不提供。

原理介绍

与标准 SQL一样，DistSQL由 ShardingSphere的解析引擎进行识别，将输入语句转换为抽象语法树，进
而生成各个语法对应的 Statement，最后由合适的 Handler进行业务处理。整体流程如下图所示：

4.2. ShardingSphere-Proxy 191

Apache ShardingSphere document, v5.2.1

相关参考

用户手册：DistSQL

语法

本章节将对 DistSQL的语法进行详细说明，并以实际的列子介绍 DistSQL的使用。

语法规则

在 DistSQL语句中，除关键字外，其余元素的输入格式应符合以下规则。

标识符

1. 标识符代表 SQL语句中的一个对象，包括：
• 数据库名称
• 表名
• 列名
• 索引名称
• 资源名称
• 规则名称
• 算法名称
2. 标识符中允许使用的字符有：[a-z,A-Z,0-9,_]（字母、数字、下划线），且应以字母开头。

4.2. ShardingSphere-Proxy 192

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/

Apache ShardingSphere document, v5.2.1

3. 当标识符中出现关键字或特殊字符时，使用反引号 (‘)。

字面量

字面量包括字符串、整数值和布尔值：
• 字符串：是由单引号 (’)或双引号 (“)括起来的字符序列；
• 整数值：一般为正整数，如 0‐9；

说明：部分 DistSQL语法允许负值，此时可在数字前加负号（‐），如 ‐1。
• 布尔值：TRUE或 FALSE，大小写不敏感。

RDL语法

RDL (Resource & Rule Definition Language)为 Apache ShardingSphere的资源和规则定义语言。

资源定义

语法说明

ADD RESOURCE resourceDefinition [, resourceDefinition] ...

ALTER RESOURCE resourceDefinition [, resourceDefinition] ...

DROP RESOURCE resourceName [, resourceName] ... [ignore single tables]

resourceDefinition:
simpleSource | urlSource

simpleSource:
resourceName(HOST=hostname,PORT=port,DB=dbName,USER=user [,PASSWORD=password]

[,PROPERTIES(property [,property]) ...])

urlSource:
resourceName(URL=url,USER=user [,PASSWORD=password] [,PROPERTIES(property [,

property]) ...])

property:
key=value

4.2. ShardingSphere-Proxy 193

Apache ShardingSphere document, v5.2.1

参数解释

名称 数据类型 说明
resourceName IDENTIFIER 资源名称
hostname STRING 数据源地址
port INT 数据源端口
dbName STRING 物理库名称
url STRING URL地址
user STRING 用户名
password STRING 密码

注意事项

• 添加资源前请确认已经创建分布式数据库，并执行 use命令成功选择一个数据库；
• 确认将要添加或修改的资源是可以正常连接的，否则将不能操作成功；
• 不允许重复的 resourceName；
• PROPERTIES用于自定义连接池参数，key和 value均为 STRING类型；
• ALTER RESOURCE修改资源时不允许改变该资源关联的真实数据源；
• ALTER RESOURCE修改资源时会发生连接池的切换，此操作可能对进行中的业务造成影响，请谨
慎使用；

• DROP RESOURCE只会删除逻辑资源，不会删除真实的数据源；
• 被规则引用的资源将无法被删除；
• 若资源只被 single table rule 引用，且用户确认可以忽略该限制，则可以添加可选参数
ignore single tables进行强制删除。

示例

ADD RESOURCE resource_0 (
HOST="127.0.0.1",
PORT=3306,
DB="db0",
USER="root",
PASSWORD="root"

),resource_1 (
HOST="127.0.0.1",
PORT=3306,
DB="db1",
USER="root"

),resource_2 (
HOST="127.0.0.1",

4.2. ShardingSphere-Proxy 194

Apache ShardingSphere document, v5.2.1

PORT=3306,
DB="db2",
USER="root",
PROPERTIES("maximumPoolSize"="10")

),resource_3 (
URL="jdbc:mysql://127.0.0.1:3306/db3?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"="10","idleTimeout"="30000")

);

ALTER RESOURCE resource_0 (
HOST="127.0.0.1",
PORT=3309,
DB="db0",
USER="root",
PASSWORD="root"

),resource_1 (
URL="jdbc:mysql://127.0.0.1:3309/db1?serverTimezone=UTC&useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("maximumPoolSize"="10","idleTimeout"="30000")

);

DROP RESOURCE resource_0, resource_1;
DROP RESOURCE resource_2, resource_3 ignore single tables;

规则定义

本章节将对规则定义的语法进行详细说明。

数据分片

语法说明

Sharding Table Rule

CREATE SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

ALTER SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

DROP SHARDING TABLE RULE tableName [, tableName] ...

4.2. ShardingSphere-Proxy 195

Apache ShardingSphere document, v5.2.1

CREATE DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

ALTER DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

DROP DEFAULT SHARDING shardingScope STRATEGY;

CREATE SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

ALTER SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

DROP SHARDING ALGORITHM algorithmName [, algorithmName] ...

CREATE SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

ALTER SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

DROP SHARDING KEY GENERATOR [IF EXISTS] keyGeneratorName [, keyGeneratorName] ...

CREATE SHARDING AUDITOR auditorDefinition [, auditorDefinition] ...

ALTER SHARDING AUDITOR auditorDefinition [, auditorDefinition] ...

DROP SHARDING AUDITOR [IF EXISTS] auditorName [, auditorName] ...

shardingTableRuleDefinition:
shardingAutoTableRule | shardingTableRule

shardingAutoTableRule:
tableName(resources, shardingColumn, algorithmDefinition [,

keyGenerateDeclaration] [, auditDeclaration])

shardingTableRule:
tableName(dataNodes [, databaseStrategy] [, tableStrategy] [,

keyGenerateDeclaration] [, auditDeclaration])

resources:
RESOURCES(resource [, resource] ...)

dataNodes:
DATANODES(dataNode [, dataNode] ...)

resource:
resourceName | inlineExpression

dataNode:
dataNodeName | inlineExpression

4.2. ShardingSphere-Proxy 196

Apache ShardingSphere document, v5.2.1

shardingColumn:
SHARDING_COLUMN=columnName

algorithmDefinition:
TYPE(NAME=shardingAlgorithmType [, PROPERTIES([algorithmProperties])])

keyGenerateDeclaration:
keyGenerateDefinition | keyGenerateConstruction

keyGenerateDefinition:
KEY_GENERATE_STRATEGY(COLUMN=columnName, strategyDefinition)

auditDeclaration:
auditDefinition | auditStrategy

auditDefinition:
AUDIT_STRATEGY([(singleAuditDefinition),(singleAuditDefinition)], ALLOW_HINT_

DISABLE=true)

singleAuditDefinition:
NAME=auditor1, algorithmDefinition

auditStrategy:
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2], ALLOW_HINT_DISABLE=true)

shardingScope:
DATABASE | TABLE

databaseStrategy:
DATABASE_STRATEGY(shardingStrategy)

tableStrategy:
TABLE_STRATEGY(shardingStrategy)

keyGenerateConstruction
KEY_GENERATE_STRATEGY(COLUMN=columnName, KEY_

GENERATOR=keyGenerateAlgorithmName)

shardingStrategy:
TYPE=strategyType, shardingColumn, shardingAlgorithm

shardingAlgorithm:
existingAlgorithm | autoCreativeAlgorithm

existingAlgorithm:
SHARDING_ALGORITHM=shardingAlgorithmName

4.2. ShardingSphere-Proxy 197

Apache ShardingSphere document, v5.2.1

autoCreativeAlgorithm:
SHARDING_ALGORITHM(algorithmDefinition)

strategyDefinition:
TYPE(NAME=keyGenerateStrategyType [, PROPERTIES([algorithmProperties])])

shardingAlgorithmDefinition:
shardingAlgorithmName(algorithmDefinition)

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

keyGeneratorDefinition:
keyGeneratorName (algorithmDefinition)

auditorDefinition:
auditorName (auditorAlgorithmDefinition)

auditorAlgorithmDefinition:
TYPE(NAME=auditorAlgorithmType [, PROPERTIES([algorithmProperties])])

• RESOURCES需使用 RDL管理的数据源资源；
• shardingAlgorithmType指定自动分片算法类型，请参考自动分片算法；
• keyGenerateStrategyType指定分布式主键生成策略，请参考分布式主键；
• auditorAlgorithmType指定分片审计策略，请参考分片审计；
• 重复的 tableName将无法被创建；
• shardingAlgorithm 能够被不同的 Sharding Table Rule 复用，因此在执行 DROP
SHARDING TABLE RULE时，对应的 shardingAlgorithm不会被移除；

• 如需移除 shardingAlgorithm，请执行 DROP SHARDING ALGORITHM；
• strategyType指定分片策略，请参考分片策略；
• Sharding Table Rule同时支持 Auto Table和 Table两种类型，两者在语法上有所差异，对
应配置文件请参考数据分片；

• 使用 autoCreativeAlgorithm 方式指定 shardingStrategy 时，将会自动创建新的分
片算法，算法命名规则为 tableName_strategyType_shardingAlgorithmType，如
t_order_database_inline。

4.2. ShardingSphere-Proxy 198

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit/
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/sharding/#%E5%88%86%E7%89%87%E7%AD%96%E7%95%A5
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/

Apache ShardingSphere document, v5.2.1

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

ALTER SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

DROP SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

bindTableRulesDefinition:
(tableName [, tableName] ...)

• ALTER会使用新的配置直接覆盖数据库内的绑定表配置

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

ALTER SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

DROP SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

• ALTER会使用新的配置直接覆盖数据库内的广播表配置

示例

Sharding Table Rule

Key Generator

CREATE SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME="SNOWFLAKE")
);

ALTER SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME="SNOWFLAKE")
);

DROP SHARDING KEY GENERATOR snowflake_key_generator;

Auditor

CREATE SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS")

4.2. ShardingSphere-Proxy 199

Apache ShardingSphere document, v5.2.1

);

ALTER SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS")
);

DROP SHARDING AUDITOR IF EXISTS sharding_key_required_auditor;

Auto Table

CREATE SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

ALTER SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1,resource_2,resource_3),
SHARDING_COLUMN=order_id,TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="16")),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME="snowflake")),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

DROP SHARDING TABLE RULE t_order;

DROP SHARDING ALGORITHM t_order_hash_mod;

Table

CREATE SHARDING ALGORITHM table_inline (
TYPE(NAME="inline",PROPERTIES("algorithm-expression"="t_order_item_${order_id % 2}
"))
);

CREATE SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..1}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE(NAME="inline",PROPERTIES("algorithm-expression"="resource_${user_id
% 2}")))),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

ALTER SHARDING ALGORITHM database_inline (
TYPE(NAME="inline",PROPERTIES("algorithm-expression"="resource_${user_id % 4}"))

4.2. ShardingSphere-Proxy 200

Apache ShardingSphere document, v5.2.1

),table_inline (
TYPE(NAME="inline",PROPERTIES("algorithm-expression"="t_order_item_${order_id % 4}
"))
);

ALTER SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE="standard",SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator),
AUDIT_STRATEGY(AUDITORS=[auditor1,auditor2],ALLOW_HINT_DISABLE=true)
);

DROP SHARDING TABLE RULE t_order_item;

DROP SHARDING ALGORITHM database_inline;

CREATE DEFAULT SHARDING DATABASE STRATEGY (
TYPE="standard",SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=database_inline
);

ALTER DEFAULT SHARDING DATABASE STRATEGY (
TYPE="standard",SHARDING_COLUMN=another_id,SHARDING_ALGORITHM=database_inline
);

DROP DEFAULT SHARDING DATABASE STRATEGY;

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item),(t_1,t_2);

ALTER SHARDING BINDING TABLE RULES (t_order,t_order_item);

DROP SHARDING BINDING TABLE RULES;

DROP SHARDING BINDING TABLE RULES (t_order,t_order_item);

4.2. ShardingSphere-Proxy 201

Apache ShardingSphere document, v5.2.1

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (t_b,t_a);

ALTER SHARDING BROADCAST TABLE RULES (t_b,t_a,t_3);

DROP SHARDING BROADCAST TABLE RULES;

DROP SHARDING BROADCAST TABLE RULES t_b;

单表

定义

CREATE DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

ALTER DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

DROP DEFAULT SINGLE TABLE RULE

singleTableRuleDefinition:
RESOURCE = resourceName

• RESOURCE需使用 RDL管理的数据源资源。

示例

Single Table Rule

CREATE DEFAULT SINGLE TABLE RULE RESOURCE = ds_0

ALTER DEFAULT SINGLE TABLE RULE RESOURCE = ds_1

DROP DEFAULT SINGLE TABLE RULE

读写分离

语法说明

CREATE READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition] ...

ALTER READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,

4.2. ShardingSphere-Proxy 202

Apache ShardingSphere document, v5.2.1

readwriteSplittingRuleDefinition] ...

DROP READWRITE_SPLITTING RULE ruleName [, ruleName] ...

readwriteSplittingRuleDefinition:
ruleName ([staticReadwriteSplittingRuleDefinition |

dynamicReadwriteSplittingRuleDefinition]
[, loadBalancerDefinition])

staticReadwriteSplittingRuleDefinition:
WRITE_RESOURCE=writeResourceName, READ_RESOURCES(readResourceName [,

readResourceName] ...)

dynamicReadwriteSplittingRuleDefinition:
AUTO_AWARE_RESOURCE=autoAwareResourceName [, WRITE_DATA_SOURCE_QUERY_

ENABLED=writeDataSourceQueryEnabled]

loadBalancerDefinition:
TYPE(NAME=loadBalancerType [, PROPERTIES([algorithmProperties])])

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

writeDataSourceQueryEnabled:
TRUE | FALSE

参数解释

名称 数据类型 说明
ruleName IDENTIFIER 规则名称
writeResourceName IDENTIFIER 写库数据源名称
readResourceName IDENTIFIER 读库数据源名称
autoAwareResourceName IDENTIFIER 数据库发现的逻辑数据源名称
writeDataSourceQueryEnabled BOOLEAN 读库全部下线，主库是否承担读流量
loadBalancerType STRING 负载均衡算法类型

4.2. ShardingSphere-Proxy 203

Apache ShardingSphere document, v5.2.1

注意事项

• 支持创建静态读写分离规则和动态读写分离规则；
• 动态读写分离规则依赖于数据库发现规则；
• loadBalancerType指定负载均衡算法类型，请参考负载均衡算法；
• 重复的 ruleName将无法被创建。

示例

// Static
CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1),
TYPE(NAME="random")
);

// Dynamic
CREATE READWRITE_SPLITTING RULE ms_group_1 (
AUTO_AWARE_RESOURCE=group_0,
WRITE_DATA_SOURCE_QUERY_ENABLED=false,
TYPE(NAME="random",PROPERTIES(write_ds=2,read_ds_0=2,read_ds_1=2,read_ds_2=1))
);

ALTER READWRITE_SPLITTING RULE ms_group_1 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1,read_ds_2),
TYPE(NAME="random",PROPERTIES(write_ds=2,read_ds_0=2,read_ds_1=2,read_ds_2=1))
);

DROP READWRITE_SPLITTING RULE ms_group_1;

数据库发现

语法说明

CREATE DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

ALTER DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

DROP DB_DISCOVERY RULE ruleName [, ruleName] ...

CREATE DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

4.2. ShardingSphere-Proxy 204

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/load-balance/

Apache ShardingSphere document, v5.2.1

ALTER DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

DROP DB_DISCOVERY TYPE discoveryTypeName [, discoveryTypeName] ...

CREATE DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

ALTER DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

DROP DB_DISCOVERY HEARTBEAT discoveryHeartbeatName [, discoveryHeartbeatName] ...

ruleDefinition:
(databaseDiscoveryRuleDefinition | databaseDiscoveryRuleConstruction)

databaseDiscoveryRuleDefinition
ruleName (resources, typeDefinition, heartbeatDefinition)

databaseDiscoveryRuleConstruction
ruleName (resources, TYPE = discoveryTypeName, HEARTBEAT =

discoveryHeartbeatName)

databaseDiscoveryTypeDefinition
discoveryTypeName (typeDefinition)

databaseDiscoveryHeartbaetDefinition
discoveryHeartbeatName (PROPERTIES (properties))

resources:
RESOURCES(resourceName [, resourceName] ...)

typeDefinition:
TYPE(NAME=typeName [, PROPERTIES([properties])])

heartbeatDefinition
HEARTBEAT (PROPERTIES (properties))

properties:
property [, property] ...

property:
key=value

4.2. ShardingSphere-Proxy 205

Apache ShardingSphere document, v5.2.1

参数解释

名称 数据类型 说明
discoveryTypeName IDENTIFIER 数据库发现类型名
ruleName IDENTIFIER 规则名称
discoveryHeartbeatName IDENTIFIER 监听心跳名称
typeName STRING 数据库发现类型，如：MySQL.MGR
resourceName IDENTIFIER 资源名称

注意事项

• discoveryType指定数据库发现服务类型，ShardingSphere内置支持 MySQL.MGR；
• 重复的 ruleName将无法被创建；
• 正在被使用的 discoveryType和 discoveryHeartbeat无法被删除；
• 带有 -的命名在改动时需要使用 " "；
• 移除 discoveryRule 时不会移除被该 discoveryRule 使用的 discoveryType 和
discoveryHeartbeat。

示例

创建 discoveryRule时同时创建 discoveryType和 discoveryHeartbeat

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='246e9612-aaf1')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

DROP DB_DISCOVERY RULE db_discovery_group_0;

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

4.2. ShardingSphere-Proxy 206

Apache ShardingSphere document, v5.2.1

使用已有的 discoveryType和 discoveryHeartbeat创建 discoveryRule

CREATE DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec'))

);

CREATE DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/5 * * * * ?')

);

CREATE DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

ALTER DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='246e9612-aaf1'))

);

ALTER DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/10 * * * * ?')

);

ALTER DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

DROP DB_DISCOVERY RULE db_discovery_group_1;

DROP DB_DISCOVERY TYPE db_discovery_group_1_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat;

数据加密

语法说明

CREATE ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

ALTER ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

DROP ENCRYPT RULE tableName [, tableName] ...

4.2. ShardingSphere-Proxy 207

Apache ShardingSphere document, v5.2.1

encryptRuleDefinition:
tableName(COLUMNS(columnDefinition [, columnDefinition] ...), QUERY_WITH_

CIPHER_COLUMN=queryWithCipherColumn)

columnDefinition:
(NAME=columnName [, PLAIN=plainColumnName] , CIPHER=cipherColumnName,

encryptAlgorithm)

encryptAlgorithm:
TYPE(NAME=encryptAlgorithmType [, PROPERTIES([algorithmProperties])])

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

参数解释

名称 数据类型 说明
tableName IDENTIFIER 表名称
columnName IDENTIFIER 逻辑数据列名称
plainColumnName IDENTIFIER 明文数据列名称
cipherColumnName IDENTIFIER 加密数据列名称
encryptAlgorithmType STRING 加密算法类型名称

注意事项

• PLAIN指定明文数据列，CIPHER指定密文数据列；
• encryptAlgorithmType指定加密算法类型，请参考加密算法；
• 重复的 tableName将无法被创建；
• queryWithCipherColumn支持大写或小写的 true或 false。

示例

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER =order_cipher,TYPE(NAME='MD5'))
),QUERY_WITH_CIPHER_COLUMN=true),
t_encrypt_2 (

4.2. ShardingSphere-Proxy 208

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/encrypt/

Apache ShardingSphere document, v5.2.1

COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=FALSE);

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id,CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=TRUE);

DROP ENCRYPT RULE t_encrypt,t_encrypt_2;

影子库压测

语法说明

CREATE SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

ALTER SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

CREATE SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

ALTER SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

DROP SHADOW RULE ruleName [, ruleName] ...

DROP SHADOW ALGORITHM algorithmName [, algorithmName] ...

CREATE DEFAULT SHADOW ALGORITHM NAME = algorithmName

shadowRuleDefinition: ruleName(resourceMapping, shadowTableRule [, shadowTableRule]
...)

resourceMapping: SOURCE=resourceName, SHADOW=resourceName

shadowTableRule: tableName(shadowAlgorithm [, shadowAlgorithm] ...)

shadowAlgorithm: ([algorithmName,] TYPE(NAME=shadowAlgorithmType,
PROPERTIES([algorithmProperties] ...)))

algorithmProperties: algorithmProperty [, algorithmProperty] ...

algorithmProperty: key=value

4.2. ShardingSphere-Proxy 209

Apache ShardingSphere document, v5.2.1

参数解释

名称 数据类型 说明
ruleName IDENTIFIER 规则名称
resourceName IDENTIFIER 数据库名称
tableName IDENTIFIER 影子表名称
algorithmName IDENTIFIER 影子算法名称
shadowAlgorithmType STRING 影子算法类型

注意事项

• 重复的 ruleName无法被创建；
• resourceMapping指定源数据库和影子库的映射关系，需使用 RDL管理的 resource，请参考
数据源资源；

• shadowAlgorithm可同时作用于多个 shadowTableRule；
• algorithmName未指定时会根据 ruleName、tableName和 shadowAlgorithmType自动生
成；

• shadowAlgorithmType目前支持 VALUE_MATCH、REGEX_MATCH和 SIMPLE_HINT；
• shadowTableRule能够被不同的 shadowRuleDefinition复用，因此在执行 DROP SHADOW
RULE时，对应的 shadowTableRule不会被移除；

• shadowAlgorithm能够被不同的 shadowTableRule复用，因此在执行 ALTER SHADOW RULE
时，对应的 shadowAlgorithm不会被移除。

示例

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true
", "foo"="bar"))),(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert","column
"="user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=
"user_id", "value"='1')))));

ALTER SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true
", "foo"="bar"))),(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert","column
"="user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=

4.2. ShardingSphere-Proxy 210

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.2.1

"user_id", "value"='1')))));

CREATE SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true", "foo"=
"bar"))),
(user_id_match_algorithm, TYPE(NAME="REGEX_MATCH",PROPERTIES("operation"="insert",
"column"="user_id", "regex"='[1]')));

ALTER SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="false", "foo
"="bar"))),
(user_id_match_algorithm, TYPE(NAME="VALUE_MATCH",PROPERTIES("operation"="insert",
"column"="user_id", "value"='1')));

DROP SHADOW RULE shadow_rule;

DROP SHADOW ALGORITHM simple_hint_algorithm;

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

RQL语法

RQL (Resource & Rule Query Language)为 Apache ShardingSphere的资源和规则查询语言。

资源查询

语法说明

SHOW DATABASE RESOURCES [FROM databaseName]

返回值说明

列 说明
name 数据源名称
type 数据源类型
host 数据源地址
port 数据源端口
db 数据库名称
attribute 数据源参数

4.2. ShardingSphere-Proxy 211

Apache ShardingSphere document, v5.2.1

示例

mysql> SHOW DATABASE RESOURCES;
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

--+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

--+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":"8192
","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"poolName":"HikariPool-1","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",

4.2. ShardingSphere-Proxy 212

Apache ShardingSphere document, v5.2.1

"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":"8192
","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"netTimeoutForStreamingResults":"0","zeroDateTimeBehavior":"round"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"poolName":"HikariPool-2","registerMbeans":false,
"allowPoolSuspension":false,"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

--+
2 rows in set (0.84 sec)

规则查询

本章节将对规则查询的语法进行详细说明。

数据分片

语法说明

Sharding Table Rule

SHOW SHARDING TABLE tableRule | RULES [FROM databaseName]

SHOW SHARDING ALGORITHMS [FROM databaseName]

SHOW UNUSED SHARDING ALGORITHMS [FROM databaseName]

SHOW SHARDING AUDITORS [FROM databaseName]

SHOW SHARDING TABLE RULES USED ALGORITHM shardingAlgorithmName [FROM databaseName]

SHOW SHARDING KEY GENERATORS [FROM databaseName]

SHOW UNUSED SHARDING KEY GENERATORS [FROM databaseName]

SHOW UNUSED SHARDING AUDITORS [FROM databaseName]

4.2. ShardingSphere-Proxy 213

Apache ShardingSphere document, v5.2.1

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName [FROM databaseName]

SHOW SHARDING TABLE RULES USED AUDITOR auditorName [FROM databaseName]

SHOW DEFAULT SHARDING STRATEGY

SHOW SHARDING TABLE NODES

tableRule:
RULE tableName

• 支持查询所有数据分片规则和指定表查询；
• 支持查询所有分片算法；
• 支持查询所有分片审计算法。

Sharding Binding Table Rule

SHOW SHARDING BINDING TABLE RULES [FROM databaseName]

Sharding Broadcast Table Rule

SHOW SHARDING BROADCAST TABLE RULES [FROM databaseName]

4.2. ShardingSphere-Proxy 214

Apache ShardingSphere document, v5.2.1

Sharding Table Rule

列 说明
table 逻辑表名
actual_data_nodes 实际的数据节点
actual_data_sources 实际的数据源（通过 RDL创建的规则时显示）
database_strategy_type 数据库分片策略类型
database_sharding_column 数据库分片键
database_sharding_algorithm_type 数据库分片算法类型
d atabase_sharding_algorithm_props 数据库分片算法参数
table_strategy_type 表分片策略类型
table_sharding_column 表分片键
table_sharding_algorithm_type 表分片算法类型
table_sharding_algorithm_props 表分片算法参数
key_generate_column 分布式主键生成列
key_generator_type 分布式主键生成器类型
key_generator_props 分布式主键生成器参数
auditor_types 分片审计生成器参数
allow_hint_disable 是否禁用分片审计 hint

Sharding Algorithms

列 说明
name 分片算法名称
type 分片算法类型
props 分片算法参数

Unused Sharding Algorithms

列 说明
name 分片算法名称
type 分片算法类型
props 分片算法参数

4.2. ShardingSphere-Proxy 215

Apache ShardingSphere document, v5.2.1

Sharding Auditors

列 说明
name 分片审计算法名称
type 分片审计算法类型
props 分片审计算法参数

Unused Sharding Auditors

列 说明
name 分片审计算法名称
type 分片审计算法类型
props 分片审计算法参数

Sharding Key Generators

列 说明
name 主键生成器名称
type 主键生成器类型
props 主键生成器参数

Unused Sharding Key Generators

列 说明
name 主键生成器名称
type 主键生成器类型
props 主键生成器参数

Default Sharding Strategy

列 说明
name 策略名称
type 分片策略类型
sharding_column 分片键
sharding_algorithm_name 分片算法名称
sharding_algorithm_type 分片算法类型
sharding_algorithm_props 分片算法参数

4.2. ShardingSphere-Proxy 216

Apache ShardingSphere document, v5.2.1

Sharding Table Nodes

列 说明
name 分片规则名称
nodes 分片节点

Sharding Binding Table Rule

列 说明
sharding_binding_tables 绑定表名称

Sharding Broadcast Table Rule

列 说明
sharding_broadcast_tables 广播表名称

Sharding Table Rule

SHOW SHARDING TABLE RULES

mysql> SHOW SHARDING TABLE RULES;
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_
strategy_type | database_sharding_column | database_sharding_algorithm_type |
database_sharding_algorithm_props | table_strategy_type | table_sharding_
column | table_sharding_algorithm_type | table_sharding_algorithm_props

| key_generate_column | key_generator_type | key_generator_props |
auditor_types | allow_hint_disable |
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE

| user_id | INLINE | algorithm-
expression:ds_${user_id % 2} | INLINE | order_id | INLINE

| algorithm-expression:t_order_${order_id % 2} | order_id
| SNOWFLAKE | | DML_SHARDING_CONDITIONS |true

4.2. ShardingSphere-Proxy 217

Apache ShardingSphere document, v5.2.1

|
| t_order_item | ds_${0..1}.t_order_item_${0..1} | | INLINE

| user_id | INLINE | algorithm-
expression:ds_${user_id % 2} | INLINE | order_id | INLINE

| algorithm-expression:t_order_item_${order_id % 2} | order_item_id
| SNOWFLAKE | | |

|
| t2 | | ds_0,ds_1 |

| | |
| mod | id | mod

| sharding-count:10 | |
| | | |

+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
3 rows in set (0.02 sec)

SHOW SHARDING TABLE RULE tableName

mysql> SHOW SHARDING TABLE RULE t_order;
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_
type | database_sharding_column | database_sharding_algorithm_type | database_
sharding_algorithm_props | table_strategy_type | table_sharding_column |
table_sharding_algorithm_type | table_sharding_algorithm_props |
key_generate_column | key_generator_type | key_generator_props | auditor_types |
allow_hint_disable |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE |
user_id | INLINE | algorithm-expression:ds_$
{user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_${order_id % 2} | order_id | SNOWFLAKE

| | DML_SHARDING_CONDITIONS |true |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+

4.2. ShardingSphere-Proxy 218

Apache ShardingSphere document, v5.2.1

1 row in set (0.01 sec)

SHOW SHARDING ALGORITHMS

mysql> SHOW SHARDING ALGORITHMS;
+-------------------------+--------+---
------+
| name | type | props

|
+-------------------------+--------+---
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
2} |
+-------------------------+--------+---
------+
2 row in set (0.01 sec)

SHOW UNUSED SHARDING ALGORITHMS

mysql> SHOW UNUSED SHARDING ALGORITHMS;
+---------------+--------+---+
| name | type | props |
+---------------+--------+---+
| t1_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
+---------------+--------+---+
1 row in set (0.01 sec)

SHOW SHARDING AUDITORS

mysql> SHOW SHARDING AUDITORS;
+------------+-------------------------+-------+
| name | type | props |
+------------+-------------------------+-------+
| dml_audit | DML_SHARDING_CONDITIONS | |
+------------+-------------------------+-------+
2 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED ALGORITHM shardingAlgorithmName

mysql> SHOW SHARDING TABLE RULES USED ALGORITHM t_order_inline;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |
+-------+---------+
1 row in set (0.01 sec)

4.2. ShardingSphere-Proxy 219

Apache ShardingSphere document, v5.2.1

SHOW SHARDING KEY GENERATORS

mysql> SHOW SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
t_order_snowflake	snowflake	
t_order_item_snowflake	snowflake	
uuid_key_generator	uuid	
+------------------------+-----------+-----------------+
3 row in set (0.01 sec)

SHOW UNUSED SHARDING KEY GENERATORS

mysql> SHOW UNUSED SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
| dml_audit | uuid | |
+------------------------+-----------+-----------------+
1 row in set (0.01 sec)

SHOW UNUSED SHARDING KEY AUDITORS

mysql> SHOW UNUSED SHARDING KEY AUDITORS;
+------------+-------------------------+-------+
| name | type | props |
+------------+-------------------------+-------+
| dml_audit | DML_SHARDING_CONDITIONS | |
+------------+-------------------------+-------+
1 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName

mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR t_order_snowflake;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |
+-------+---------+
1 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED AUDITOR auditorName

mysql> SHOW SHARDING TABLE RULES USED AUDITOR sharding_key_required;
+-------+---------+
| type | name |
+-------+---------+
| table | t_order |

4.2. ShardingSphere-Proxy 220

Apache ShardingSphere document, v5.2.1

+-------+---------+
1 row in set (0.01 sec)

SHOW DEFAULT SHARDING STRATEGY

mysql> SHOW DEFAULT SHARDING STRATEGY ;

+----------+---------+--------------------+-------------------------+--------------
-----------+--+
| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |
+----------+---------+--------------------+-------------------------+--------------
-----------+--+
| TABLE | NONE | | |

| |
| DATABASE | STANDARD| order_id | database_inline | INLINE

| {algorithm-expression=ds_${user_id % 2}} |
+----------+---------+--------------------+-------------------------+--------------
-----------+--+
2 rows in set (0.07 sec)

SHOW SHARDING TABLE NODES

mysql> SHOW SHARDING TABLE NODES;
+---------+--+
| name | nodes |
+---------+--+
| t_order | ds_0.t_order_0, ds_1.t_order_1, ds_0.t_order_2, ds_1.t_order_3 |
+---------+--+
1 row in set (0.02 sec)

Sharding Binding Table Rule

mysql> SHOW SHARDING BINDING TABLE RULES;
+----------------------+
| sharding_binding_tables |
+----------------------+
| t_order,t_order_item |
| t1,t2 |
+----------------------+
2 rows in set (0.00 sec)

4.2. ShardingSphere-Proxy 221

Apache ShardingSphere document, v5.2.1

Sharding Broadcast Table Rule

mysql> SHOW SHARDING BROADCAST TABLE RULES;
+------------------------+
| sharding_broadcast_tables |
+------------------------+
| t_1 |
| t_2 |
+------------------------+
2 rows in set (0.00 sec)

单表

语法说明

SHOW SINGLE TABLE (table | RULES) [FROM databaseName]

SHOW SINGLE TABLES

COUNT SINGLE_TABLE RULE [FROM databaseName]

table:
TABLE tableName

返回值说明

Single Table Rule

列 说明
name 规则名称
resource_name 数据源名称

Single Table

列 说明
table_name 单表名称
resource_name 单表所在的数据源名称

4.2. ShardingSphere-Proxy 222

Apache ShardingSphere document, v5.2.1

Single Table Rule Count

列 说明
rule_name 规则名称
database 单表所在的数据库名称
count 规则个数

示例

SHOW SINGLE TABLES RULES

sql> SHOW SINGLE TABLES RULES;
+---------+---------------+
| name | resource_name |
+---------+---------------+
| default | ds_1 |
+---------+---------------+
1 row in set (0.01 sec)

SHOW SINGLE TABLE tableName

sql> SHOW SINGLE TABLE t_single_0;
+----------------+---------------+
| table_name | resource_name |
+----------------+---------------+
| t_single_0 | ds_0 |
+----------------+---------------+
1 row in set (0.01 sec)

SHOW SINGLE TABLES

mysql> SHOW SINGLE TABLES;
+--------------+---------------+
| table_name | resource_name |
+--------------+---------------+
| t_single_0 | ds_0 |
| t_single_1 | ds_1 |
+--------------+---------------+
2 rows in set (0.02 sec)

COUNT SINGLE_TABLE RULE

mysql> COUNT SINGLE_TABLE RULE;
+--------------+----------+-------+
| rule_name | database | count |
+--------------+----------+-------+
| t_single_0 | ds | 2 |

4.2. ShardingSphere-Proxy 223

Apache ShardingSphere document, v5.2.1

+--------------+----------+-------+
1 row in set (0.02 sec)

读写分离

语法说明

SHOW READWRITE_SPLITTING RULES [FROM databaseName]

返回值说明

列 说明
name 规则名称
auto_aware_data_source_name 自动发现数据源名称（配置动态读写分离规则显示）
write_data_source_query_enabled 读库全部下线，主库是否承担读流量
write_data_source_name 写数据源名称
read_data_source_names 读数据源名称列表
load_balancer_type 负载均衡算法类型
load_balancer_props 负载均衡算法参数

示例

静态读写分离规则

mysql> SHOW READWRITE_SPLITTING RULES;
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| ms_group_0 | | ds_primary | ds_slave_0,
ds_slave_1 | random | |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
1 row in set (0.00 sec)

动态读写分离规则

mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_query_enabled |

4.2. ShardingSphere-Proxy 224

Apache ShardingSphere document, v5.2.1

write_data_source_name | read_data_source_names | load_balancer_type | load_
balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | |

| | random | read_weight=2:1
|

+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.01 sec)

静态读写分离规则和动态读写分离规则

mysql> SHOW READWRITE_SPLITTING RULES FROM readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_query_enabled |
write_data_source_name | read_data_source_names | load_balancer_type | load_
balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | |
write_ds | read_ds_0, read_ds_1 | random | read_
weight=2:1 |
+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.00 sec)

数据库发现

语法说明

SHOW DB_DISCOVERY RULES [FROM databaseName]

SHOW DB_DISCOVERY TYPES [FROM databaseName]

SHOW DB_DISCOVERY HEARTBEATS [FROM databaseName]

4.2. ShardingSphere-Proxy 225

Apache ShardingSphere document, v5.2.1

返回值说明

DB Discovery Rule

列 说明
group_name 规则名称
data_source_names 数据源名称列表
primary_data_source_name 主数据源名称
discovery_type 数据库发现服务类型
discovery_heartbeat 数据库发现服务心跳

DB Discovery Type

列 说明
name 类型名称
type 类型种类
props 类型参数

DB Discovery Heartbeat

列 说明
name 心跳名称
props 心跳参数

示例

DB Discovery Rule

mysql> SHOW DB_DISCOVERY RULES;
+----------------------+-------------------+--------------------------+------------
---+-----------
---+
| group_name | data_source_names | primary_data_source_name | discovery_
type |
discovery_heartbeat |
+----------------------+-------------------+--------------------------+------------
---+-----------
---+
| db_discovery_group_0 | ds_0,ds_1,ds_2 | ds_0 | {name=db_
discovery_group_0_mgr, type=MySQL.MGR, props={group-name=92504d5b-6dec}} |
{name=db_discovery_group_0_heartbeat, props={keep-alive-cron=0/5 * * * * ?}} |

4.2. ShardingSphere-Proxy 226

Apache ShardingSphere document, v5.2.1

+----------------------+-------------------+--------------------------+------------
---+-----------
--+
1 row in set (0.20 sec)

DB Discovery Type

mysql> SHOW DB_DISCOVERY TYPES;
+--------------------------+------------+----------------------------+
| name | type | props |
+--------------------------+------------+----------------------------+
| db_discovery_group_0_mgr | MySQL.MGR | {group-name=92504d5b-6dec} |
+--------------------------+------------+----------------------------+
1 row in set (0.01 sec)

DB Discovery Heartbeat

mysql> SHOW DB_DISCOVERY HEARTBEATS;
+--------------------------------+---------------------------------+
| name | props |
+--------------------------------+---------------------------------+
| db_discovery_group_0_heartbeat | {keep-alive-cron=0/5 * * * * ?} |
+---------------------------------+---------------------------------+
1 row in set (0.01 sec)

数据加密

语法说明

SHOW ENCRYPT RULES [FROM databaseName]

SHOW ENCRYPT TABLE RULE tableName [FROM databaseName]

• 支持查询所有的数据加密规则和指定逻辑表名查询。

4.2. ShardingSphere-Proxy 227

Apache ShardingSphere document, v5.2.1

返回值说明

列 说明
table 逻辑表名
logic_column 逻辑列名
logic_data_type 逻辑列数据类型
cipher_column 密文列名
cipher_data_type 密文列数据类型
plain_column 明文列名
plain_data_type 明文列数据类型
assisted_query_column 辅助查询列名
assisted_query_data_type 辅助查询列数据类型
encryptor_type 加密算法类型
encryptor_props 加密算法参数
query_with_cipher_column 是否使用加密列进行查询

示例

显示加密规则

mysql> SHOW ENCRYPT RULES FROM encrypt_db;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
| t_encrypt_2 | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | false |
| t_encrypt_2 | order_id | | order_cipher | |

| | | |
MD5 | | false |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+

4.2. ShardingSphere-Proxy 228

Apache ShardingSphere document, v5.2.1

4 rows in set (0.78 sec)

显示加密表规则表名

mysql> SHOW ENCRYPT TABLE RULE t_encrypt;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
2 rows in set (0.01 sec)

mysql> SHOW ENCRYPT TABLE RULE t_encrypt FROM encrypt_db;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
2 rows in set (0.01 sec))

4.2. ShardingSphere-Proxy 229

Apache ShardingSphere document, v5.2.1

影子库压测

语法说明

SHOW SHADOW shadowRule | RULES [FROM databaseName]

SHOW SHADOW TABLE RULES [FROM databaseName]

SHOW SHADOW ALGORITHMS [FROM databaseName]

shadowRule:
RULE ruleName

• 支持查询所有影子规则和指定表查询；
• 支持查询所有表规则；
• 支持查询所有影子算法。

返回值说明

Shadow Rule

列 说明
rule_name 规则名称
source_name 源数据库
shadow_name 影子数据库
shadow_table 影子表

Shadow Table Rule

列 说明
shadow_table 影子表
shadow_algorithm_name 影子算法名称

Shadow Algorithms

列 说明
shadow_algorithm_name 影子算法名称
type 算法类型
props 算法参数
is_default 是否默认

4.2. ShardingSphere-Proxy 230

Apache ShardingSphere document, v5.2.1

Shadow Rule status

列 说明
status 是否启用

示例

SHOW SHADOW RULES

mysql> SHOW SHADOW RULES;
+--------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+--------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
| shadow_rule_2 | ds_2 | ds_shadow_2 | t_order_item |
+--------------------+-------------+-------------+--------------+
2 rows in set (0.02 sec)

SHOW SHADOW RULE ruleName

mysql> SHOW SHADOW RULE shadow_rule_1;
+------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
+------------------+-------------+-------------+--------------+
1 rows in set (0.01 sec)

SHOW SHADOW TABLE RULES

mysql> SHOW SHADOW TABLE RULES;
+--------------+---
-------------+
| shadow_table | shadow_algorithm_name

|
+--------------+---
-------------+
| t_order_1 | user_id_match_algorithm,simple_hint_algorithm_1

|
+--------------+---
-------------+
1 rows in set (0.01 sec)

SHOW SHADOW ALGORITHMS

mysql> SHOW SHADOW ALGORITHMS;
+-------------------------+--------------------+-----------------------------------

4.2. ShardingSphere-Proxy 231

Apache ShardingSphere document, v5.2.1

--------+----------------+
| shadow_algorithm_name | type | props

| is_default |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
| user_id_match_algorithm | REGEX_MATCH | operation=insert,column=user_id,
regex=[1] | false |
| simple_hint_algorithm_1 | SIMPLE_HINT | shadow=true,foo=bar

| false |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
2 rows in set (0.01 sec)

RAL语法

RAL (Resource & Rule Administration Language)为 Apache ShardingSphere的管理语言，负责强制路
由、熔断、配置导入导出、数据迁移控制等管理功能。

强制路由

语句 说明 示例
SET READ‐
WRITE_SPLITTING HINT
SOURCE = [auto / write]

针对当前连接，设置读写分离的路由策
略（自动路由或强制到写库）

SET RE AD‐
WRITE_SPLITTING
HINT SOURCE = write

SET SHARDING HINT
DATABASE_VALUE = yy

针对当前连接，设置 hint仅对数据库分
片有效，并添加分片值，yy：数据库分
片值

SET SHARDING HINT
DATABASE_VALUE = 100

ADD SHARDING HINT
DATABASE_VALUE xx = yy

针对当前连接，为表 xx添加分片值 yy，
xx：逻辑表名称，yy：数据库分片值

ADD SHARDING HINT
DATABASE_VALUE
t_order= 100

ADD SHARDING HINT TA‐
BLE_VALUE xx = yy

针对当前连接，为表 xx添加分片值 yy，
xx：逻辑表名称，yy：表分片值

ADD SHARDING HINT
TABLE_VALUE t_order =
100

CLEAR HINT 针对当前连接，清除 hint所有设置 CLEAR HINT
CLEAR [SHARDING HINT
/ READWRITE_SPLITTING
HINT]

针对当前连接，清除 sharding或 read‐
write_splitting的 hint设置

CLEAR RE AD‐
WRITE_SPLITTING
HINT

SHOW [SHARDING / READ‐
WRITE_SPLITTING] HINT
STATUS

针对当前连接，查询 sharding或 read‐
write_splitting的 hint设置

SHOW RE AD‐
WRITE_SPLITTING
HINT STATUS

4.2. ShardingSphere-Proxy 232

Apache ShardingSphere document, v5.2.1

数据迁移

语句 说明 示例
MIGRATE TABLE ds.schema.table
INTO table

从源端迁移到目标端 MIGRATE TABLE
ds_0.public.t_order INTO
t_order

SHOWMIGRATION LIST 查询运行列表 SHOWMIGRATION LIST
SHOWMIGRATION STATUS jobId 查询作业状态 SHOW MIGRATION STATUS

1234
STOP MIGRATION jobId 停止作业 STOP MIGRATION 12345
START MIGRATION jobId 开启停止的作业 START MIGRATION 1234
CHECKMIGRATION jobId 数据一致性校验 CHECKMIGRATION 1234
SHOW MIGRATION CHECK AL‐
GORITHMS

展示可用的一致性校验算法 SHOWMIGRATION CHECK AL‐
GORITHMS

CHECK MIGRA‐
TION jobId (by type
(name=algorithmTypeName)?

数据一致性校验，使用指定的
校验算法

CHECK MIGRATION 1234 by ty
pe(name=“DATA_MATCH”)

ROLLBACKMIGRATION jobId 撤销作业。注意：该语句会清
理目标端表，请谨慎操作

ROLLBACKMIGRATION 1234

COMMIT MIGRATION jobId 完成作业 COMMIT MIGRATION 1234

熔断

语句 说明 示例
[ENABLE / DISABLE] READWRITE_SPLITTING
(READ)? resourceName [FROM databaseName]

启用 / 禁用
读库

ENABLE R EAD‐
WRITE_SPLITTING READ
resource_0

[ENABLE / DISABLE] INSTANCE instanceId 启用 / 禁用
proxy实例

DISABLE INSTANCE in‐
stance_1

SHOW INSTANCE LIST 查询 proxy
实例信息

SHOW INSTANCE LIST

SHOW READWRITE_SPLITTING (READ)? resource‐
Name [FROM databaseName]

查询所有读
库的状态

SHOW R EAD‐
WRITE_SPLITTING READ
RESOURCES

4.2. ShardingSphere-Proxy 233

Apache ShardingSphere document, v5.2.1

全局规则

语句 说明 示例
SHOW AUTHORITY RULE 查询权限规则配置 SHOW AUTHORITY RULE
SHOW TRANSACTION RULE 查询事务规则配置 SHOW TRANSACTION RULE
SHOW SQL_PARSER RULE 查询解析引擎规则配置 SHOW SQL_PARSER RULE
ALTER TRANSACTION RULE(DE
FAULT=xx,TYPE(NAME=xxx,
PROPERTIES(key1
=value1,key2=value2⋯)))

更新事务规则配置，DE
FAULT：默认事务类型，
支持 LOCAL、XA、BASE；
N AME：事务管理器名
称，支持 Ato mikos、
Narayana和 Bitronix

ALTER TRANSACTION
RULE(DEFAULT=“XA ”
,TYPE(NAME=“Narayana”,
PROPERTIES(“databaseName”=
“jbossts”,“host”=“127.0.0.1”)))

ALTER SQL_PARSER RULE SQL_C
OMMENT_PARSE_ENABLE=xx,
PARSE_TREE_CAC
HE(INITIAL_CAPACITY=xx,
MAXIMUM_SIZE=xx, CON‐
CURRENCY_LEVEL=xx),
SQL_STATEMENT_CACH
E(INITIAL_CAPACITY=xxx,
MAXIMUM_SIZE=xxx, CON‐
CURRENCY_LEVEL=xxx)

更 新 解 析 引 擎 规 则
配 置，SQL_COMM
ENT_PARSE_ENABL
E：是否解析 SQL 注释，
“ PARSE_TREE_CACH
E“：语法树本地缓存配
置，SQL_STATEMENT
_CACHE：SQL语句本地
缓存配置项

ALTER SQL_PARSER
RULE SQL_COMM
ENT_PARSE_ENABLE=false,
PARSE_TREE_CAC
HE(INITIAL_CAPACITY=10,
MAXIMUM_SIZE=11, CON‐
CURRENCY_LEVEL=1),
SQL_STATEMENT_CAC
HE(INITIAL_CAPACITY=11,
MAXIMUM_SIZE=11, CONCUR‐
RENCY_LEVEL=100)

4.2. ShardingSphere-Proxy 234

Apache ShardingSphere document, v5.2.1

其他

语句 说明 示例
SHOW INSTANCE INFO 查询当前 proxy的实例信息 SHOW INSTANCE INFO
SHOWMODE INFO 查询当前 proxy的mode配置 SHOWMODE INFO
SET VARIABLE pr
oxy_property_name = xx

proxy_property_name 为
proxy的属性配置，需使用下划
线命名

SET VARIABLE sql_show =
true

SET VARIABLE transaction_type =
xx

修改当前连接的事务类型,支持
LOCAL，XA，BASE

SET VARIABLE tr ansac‐
tion_type =“XA”

SET VARIABLE agen
t_plugins_enabled = [TRUE /
FALSE]

设置 agent插件的启用状态，默
认值 false

SET VARIABLE agent_p lug‐
ins_enabled = TRUE

SHOW ALL VARIABLES 查询 proxy所有的属性配置 SHOW ALL VARIABLES
SHOW VARIABLE variable_name 查询 proxy属性，需使用下划线

命名
SHOW VARIABLE sql_show

REFRESH TABLE METADATA 刷新所有表的元数据 REFRESHTABLEMETADATA
REFRESH TABLE METADATA
tableName

刷新指定表的元数据 REFRESHTABLEMETADATA
t_order

REFRESH TABLE METADATA
tableName FROM RESOURCE
resourceName

刷新指定数据源中表的元数据 REFRESHTABLEMETADATA
t_order FROM RESOURCE
ds_1

REFRESH TABLE METADATA
FROM RESOURCE resourceName
SCHEMA schemaName

刷新指定 schema 中表的元数
据，如果 schema中不存在表，则
会删除该 schema

REFRESH TABLE META‐
DATA FROM RESOURCE
ds_1 SCHEMA db_schema

SHOW TABLE METADATA table‐
Name [, tableName]⋯

查询表的元数据 SHOW TABLE METADATA
t_order

EXPORT DATABASE CONFIG
[FROM database_name] [, file=
“file_path”]

将 database 中的资源和规则配
置导出为 YAML格式

EXPORT DATABASE
CONFIG FROM readwrit
e_splitting_db

IMPORT DATABASE CONFIG
FILE=“file_path”

将 YAML 中的配置导入到
database 中，仅支持对空库进
行导入操作

IMPORT DATABASE CONFIG
FILE = “/xxx/config‐ shard‐
ing.yaml”

SHOW RULES USED RESOURCE
resourceName [from database]

查询 database 中使用指定资源
的规则

SHOW RULES USED RE‐
SOURCE ds_0 FROM
databaseName

4.2. ShardingSphere-Proxy 235

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/props/

Apache ShardingSphere document, v5.2.1

注意事项

ShardingSphere‐Proxy默认不支持 hint，如需支持，请在 conf/server.yaml中，将 props的属性
proxy-hint-enabled设置为 true。

RUL语法

RUL (Resource Utility Language)为 Apache ShardingSphere的工具类语言，提供 SQL解析、SQL格式
化、执行计划预览等功能。

SQL工具

语句 说明 示例
PARSE SQL 解析 SQL并输出抽象语法树 PARSE SELECT * FROM t_order
FORMAT SQL 解析并输出格式化后的 SQL语句 FORMAT SELECT * FROM t_order
PREVIEW SQL 预览 SQL执行计划 PREVIEW SELECT * FROM t_order

使用

本章节将结合 DistSQL的语法，并以实战的形式分别介绍如何使用 DistSQL管理分布式数据库下的资源
和规则。

前置工作

以MySQL为例，其他数据库可直接替换。
1. 启动MySQL服务；
2. 创建待注册资源的MySQL数据库；
3. 在MySQL中为 ShardingSphere‐Proxy创建一个拥有创建权限的角色或者用户；
4. 启动 ZooKeeper服务；
5. 添加 mode和 authentication配置参数到 server.yaml；
6. 启动 ShardingSphere‐Proxy；
7. 通过应用程序或终端连接到 ShardingSphere‐Proxy；

4.2. ShardingSphere-Proxy 236

Apache ShardingSphere document, v5.2.1

创建数据库

1. 创建逻辑库。

CREATE DATABASE foo_db;

2. 使用新创建的逻辑库。

USE foo_db;

资源操作

详见具体规则示例。

规则操作

详见具体规则示例。

注意事项

1. 当前, DROP DATABASE只会移除逻辑的分布式数据库，不会删除用户真实的数据库；
2. DROP TABLE会将逻辑分片表和数据库中真实的表全部删除；
3. CREATE DATABASE只会创建逻辑的分布式数据库，所以需要用户提前创建好真实的数据库。

数据分片

资源操作

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

4.2. ShardingSphere-Proxy 237

Apache ShardingSphere document, v5.2.1

规则操作

• 创建分片规则

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="4")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

• 创建切分表

CREATE TABLE `t_order` (
`order_id` int NOT NULL,
`user_id` int NOT NULL,
`status` varchar(45) DEFAULT NULL,
PRIMARY KEY (`order_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

• 删除切分表

DROP TABLE t_order;

• 删除分片规则

DROP SHARDING TABLE RULE t_order;

• 删除数据源

DROP RESOURCE ds_0, ds_1;

• 删除分布式数据库

DROP DATABASE foo_db;

读写分离

资源操作

ADD RESOURCE write_ds (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),read_ds (

4.2. ShardingSphere-Proxy 238

Apache ShardingSphere document, v5.2.1

HOST="127.0.0.1",
PORT=3307,
DB="ds_0",
USER="root",
PASSWORD="root"

);

规则操作

• 创建读写分离规则

CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME="random")
);

• 修改读写分离规则

ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME="random",PROPERTIES("read_weight"="2:0"))
);

• 删除读写分离规则

DROP READWRITE_SPLITTING RULE group_0;

• 删除数据源

DROP RESOURCE write_ds,read_ds;

• 删除分布式数据库

DROP DATABASE readwrite_splitting_db;

数据加密

资源操作

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",

4.2. ShardingSphere-Proxy 239

Apache ShardingSphere document, v5.2.1

PASSWORD="root"
);

规则操作

• 创建加密规则

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',
PROPERTIES('aes-key-value'='123456abc'))),

(NAME=order_id,PLAIN=order_plain,CIPHER =order_cipher,TYPE(NAME='RC4',
PROPERTIES('rc4-key-value'='123456abc')))
));

• 创建加密表

CREATE TABLE `t_encrypt` (
`id` int(11) NOT NULL,
`user_id` varchar(45) DEFAULT NULL,
`order_id` varchar(45) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

• 修改加密规则

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',
PROPERTIES('aes-key-value'='123456abc')))
));

• 删除加密规则

DROP ENCRYPT RULE t_encrypt;

• 删除数据源

DROP RESOURCE ds_0;

• 删除分布式数据库

DROP DATABASE encrypt_db;

4.2. ShardingSphere-Proxy 240

Apache ShardingSphere document, v5.2.1

数据库发现

资源操作

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

规则操作

• 创建数据库发现规则

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• 修改数据库发现规则

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• 删除数据库发现规则

DROP DB_DISCOVERY RULE db_discovery_group_0;

• 删除数据库发现类型

4.2. ShardingSphere-Proxy 241

Apache ShardingSphere document, v5.2.1

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

• 删除数据库发现心跳

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

• 删除数据源

DROP RESOURCE ds_0,ds_1,ds_2;

• 删除分布式数据库

DROP DATABASE discovery_db;

影子库压测

资源操作

ADD RESOURCE ds_0 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_0",
USER="root",
PASSWORD="root"

),ds_1 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_1",
USER="root",
PASSWORD="root"

),ds_2 (
HOST="127.0.0.1",
PORT=3306,
DB="ds_2",
USER="root",
PASSWORD="root"

);

4.2. ShardingSphere-Proxy 242

Apache ShardingSphere document, v5.2.1

规则操作

• 创建影子库压测规则

CREATE SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_1,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar"))),
(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert","column"="user_id",
"regex"='[1]')))),
t_order_item((TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar")))));

• 修改影子库压测规则

ALTER SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_2,
t_order_item((TYPE(NAME="SIMPLE_HINT", PROPERTIES("foo"="bar")))));

• 删除影子库压测规则

DROP SHADOW RULE group_0;

• 删除数据源

DROP RESOURCE ds_0,ds_1,ds_2;

9. 删除分布式数据库

DROP DATABASE foo_db;

4.2.4 数据迁移

简介

ShardingSphere可以提供给用户通用的数据迁移解决方案。
于 4.1.0开始向用户提供。

运行部署

背景信息

对于使用单数据库运行的系统来说，如何安全简单地将数据迁移至水平分片的数据库上，一直以来都是
一个迫切的需求。

4.2. ShardingSphere-Proxy 243

Apache ShardingSphere document, v5.2.1

前提条件

• Proxy采用纯 JAVA开发，JDK建议 1.8或以上版本。
• 数据迁移使用集群模式，目前支持 ZooKeeper作为注册中心。

操作步骤

1. 执行以下命令，编译生成 ShardingSphere‐Proxy二进制包：

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

发 布 包：‐ /shardingsphere‐distribution/shardingsphere‐proxy‐distribution/target/apache‐
shardingsphere‐${latest.release.version}‐shardingsphere‐proxy‐bin.tar.gz

或者通过下载页面获取安装包。
2. 解压缩 proxy发布包，修改配置文件 conf/config-sharding.yaml。详情请参见 proxy启动手
册。

3. 修改配置文件 conf/server.yaml，详情请参见模式配置。
目前 mode必须是 Cluster，需要提前启动对应的注册中心。
配置示例：

mode:
type: Cluster
repository:

type: ZooKeeper
props:
namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

4. 引入 JDBC驱动。
proxy已包含 PostgreSQL JDBC驱动。
如果后端连接以下数据库，请下载相应 JDBC驱动 jar包，并将其放入 ${shardingsphere-proxy}/
ext-lib目录。

4.2. ShardingSphere-Proxy 244

https://shardingsphere.apache.org/document/current/cn/downloads/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/mode/

Apache ShardingSphere document, v5.2.1

数 据
库

JDBC驱动 参考

MySQL ‘mysql‐co nnector‐java‐5.1.47.jar < https://repo1.maven.org/m
aven2/mysql/mysql‐connect or‐java/5.1.47/mysql‐conn ector‐java‐
5.1.47.jar>‘__

Con‐
nector/J
Versions

open‐
Gauss

opengauss‐jdbc‐3.0.0 .jar

如果是异构迁移，源端支持范围更广的数据库，比如：Oracle。JDBC驱动处理方式同上。
5. 启动 ShardingSphere‐Proxy：

sh bin/start.sh

6. 查看 proxy日志 logs/stdout.log，看到日志中出现：

[INFO] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy start
success

确认启动成功。
7. 按需配置迁移

7.1. 查询配置。

SHOW MIGRATION PROCESS CONFIGURATION;

默认配置如下：

+--+-------------------
-------------------+--+
| read | write

| stream_channel |
+--+-------------------
-------------------+--+
| {"workerThread":40,"batchSize":1000,"shardingSize":10000000} | {"workerThread
":40,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":10000}} |
+--+-------------------
-------------------+--+

7.2. 新建配置（可选）。
不配置的话有默认值。
完整配置 DistSQL示例：

CREATE MIGRATION PROCESS CONFIGURATION (
READ(
WORKER_THREAD=40,
BATCH_SIZE=1000,

4.2. ShardingSphere-Proxy 245

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/3.0.0/opengauss-jdbc-3.0.0.jar

Apache ShardingSphere document, v5.2.1

SHARDING_SIZE=10000000,
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))

),
WRITE(

WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='2000')))

),
STREAM_CHANNEL (TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='10000')))
);

配置项说明：

CREATE MIGRATION PROCESS CONFIGURATION (
READ(-- 数据读取配置。如果不配置则部分参数默认生效。
WORKER_THREAD=40, -- 从源端摄取全量数据的线程池大小。如果不配置则使用默认值。
BATCH_SIZE=1000, -- 一次查询操作返回的最大记录数。如果不配置则使用默认值。
SHARDING_SIZE=10000000, -- 全量数据分片大小。如果不配置则使用默认值。
RATE_LIMITER (-- 限流算法。如果不配置则不限流。
TYPE(-- 算法类型。可选项：QPS
NAME='QPS',
PROPERTIES(-- 算法属性
'qps'='500'
)))

),
WRITE(-- 数据写入配置。如果不配置则部分参数默认生效。
WORKER_THREAD=40, -- 数据写入到目标端的线程池大小。如果不配置则使用默认值。
BATCH_SIZE=1000, -- 一次批量写入操作的最大记录数。如果不配置则使用默认值。
RATE_LIMITER (-- 限流算法。如果不配置则不限流。
TYPE(-- 算法类型。可选项：TPS
NAME='TPS',
PROPERTIES(-- 算法属性
'tps'='2000'
)))

),
STREAM_CHANNEL (-- 数据通道，连接生产者和消费者，用于 read 和 write 环节。如果不配置则默认使
用 MEMORY 类型。
TYPE(-- 算法类型。可选项：MEMORY
NAME='MEMORY',
PROPERTIES(-- 算法属性
'block-queue-size'='10000' -- 属性：阻塞队列大小
)))
);

DistSQL示例：配置 READ限流。

CREATE MIGRATION PROCESS CONFIGURATION (
READ(

4.2. ShardingSphere-Proxy 246

Apache ShardingSphere document, v5.2.1

RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='500')))
)
);

配置读取数据限流，其它配置使用默认值。
7.3. 修改配置。
ALTER MIGRATION PROCESS CONFIGURATION，内部结构和 CREATE MIGRATION PROCESS
CONFIGURATION一致。
DistSQL示例：调整限流参数

ALTER MIGRATION PROCESS CONFIGURATION (
READ(
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='1000')))

)
);

ALTER MIGRATION PROCESS CONFIGURATION (
READ(
RATE_LIMITER (TYPE(NAME='QPS',PROPERTIES('qps'='1000')))

), WRITE(
RATE_LIMITER (TYPE(NAME='TPS',PROPERTIES('tps'='1000')))

)
);

7.4. 清除配置。
DistSQL示例：清空 READ配置、恢复为默认值。

DROP MIGRATION PROCESS CONFIGURATION '/READ';

DistSQL示例：清空 READ/RATE_LIMITER配置。

DROP MIGRATION PROCESS CONFIGURATION '/READ/RATE_LIMITER';

使用手册

MySQL使用手册

环境要求

支持的MySQL版本：5.1.15 ~ 8.0.x。

4.2. ShardingSphere-Proxy 247

Apache ShardingSphere document, v5.2.1

权限要求

1. 开启 binlog

MySQL 5.7 my.cnf示例配置：

[mysqld]
server-id=1
log-bin=mysql-bin
binlog-format=row
binlog-row-image=full
max_connections=600

执行以下命令，确认是否有开启 binlog：

show variables like '%log_bin%';
show variables like '%binlog%';

如以下显示，则说明 binlog已开启

+---+---------------------------------------+
| Variable_name | Value |
+---+---------------------------------------+
log_bin	ON
binlog_format	ROW
binlog_row_image	FULL
+---+---------------------------------------+

2. 赋予MySQL账号 Replication相关权限。
执行以下命令，查看该用户是否有迁移权限：

SHOW GRANTS FOR 'user';

示例结果：

+--+
|Grants for ${username}@${host} |
+--+
|GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO ${username}@${host} |
|....... |
+--+

4.2. ShardingSphere-Proxy 248

Apache ShardingSphere document, v5.2.1

完整流程示例

前提条件

1. 在MySQL已准备好源端库、表、数据。
示例：

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0 DEFAULT CHARSET utf8;

USE migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. 在MySQL准备目标端库。
示例：

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11 DEFAULT CHARSET utf8;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12 DEFAULT CHARSET utf8;

操作步骤

1. 在 proxy新建逻辑数据库并配置好资源和规则。

CREATE DATABASE sharding_db;

USE sharding_db

ADD RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_10?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_11?serverTimezone=UTC&

4.2. ShardingSphere-Proxy 249

Apache ShardingSphere document, v5.2.1

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_12?serverTimezone=UTC&

useSSL=false",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

如果是迁移到异构数据库，那目前需要在 proxy执行建表语句。
2. 在 proxy配置源端资源。

ADD MIGRATION SOURCE RESOURCE ds_0 (
URL="jdbc:mysql://127.0.0.1:3306/migration_ds_0?serverTimezone=UTC&useSSL=false

",
USER="root",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. 启动数据迁移。

MIGRATE TABLE ds_0.t_order INTO t_order;

或者指定目标端逻辑库：

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

4. 查看数据迁移作业列表。

SHOW MIGRATION LIST;

示例结果：

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | sharding_total_count | active |
create_time | stop_time |

4.2. ShardingSphere-Proxy 250

Apache ShardingSphere document, v5.2.1

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. 查看数据迁移详情。

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. 执行数据一致性校验。

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6' BY TYPE (NAME='CRC32_MATCH
');
Query OK, 0 rows affected (0.09 sec)

数据一致性校验算法类型来自：

SHOW MIGRATION CHECK ALGORITHMS;
+-------------+--+-----
-----------------------+
| type | supported_database_types |
description |
+-------------+--+-----
-----------------------+
| CRC32_MATCH | MySQL |
Match CRC32 of records. |
| DATA_MATCH | SQL92,MySQL,MariaDB,PostgreSQL,openGauss,Oracle,SQLServer,H2 |
Match raw data of records. |
+-------------+--+-----
-----------------------+

目标端开启数据加密的情况需要使用 DATA_MATCH。
异构迁移需要使用 DATA_MATCH。
查询数据一致性校验进度：

4.2. ShardingSphere-Proxy 251

Apache ShardingSphere document, v5.2.1

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. 完成作业。

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. 刷新元数据。

REFRESH TABLE METADATA;

更多 DistSQL请参见 RAL #数据迁移。

PostgreSQL使用手册

环境要求

支持的 PostgreSQL版本：9.4或以上版本。

权限要求

1. 开启 test_decoding。
2. 调整WAL配置。

postgresql.conf示例配置：

wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

详情请参见Write Ahead Log和 Replication。
3. 配置 PostgreSQL允许 Proxy拥有 replication权限。

pg_hba.conf示例配置：

4.2. ShardingSphere-Proxy 252

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/#%E6%95%B0%E6%8D%AE%E8%BF%81%E7%A7%BB
https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html

Apache ShardingSphere document, v5.2.1

host replication repl_acct 0.0.0.0/0 md5

详情请参见 The pg_hba.conf File。

完整流程示例

前提条件

1. 在 PostgreSQL已准备好源端库、表、数据。

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. 在 PostgreSQL准备目标端库。

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

操作步骤

1. 在 proxy新建逻辑数据库并配置好资源和规则。

CREATE DATABASE sharding_db;

\c sharding_db

ADD RESOURCE ds_2 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_10",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (

4.2. ShardingSphere-Proxy 253

https://www.postgresql.org/docs/9.6/auth-pg-hba-conf.html

Apache ShardingSphere document, v5.2.1

URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_11",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_12",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

如果是迁移到异构数据库，那目前需要在 proxy执行建表语句。
2. 在 proxy配置源端资源。

ADD MIGRATION SOURCE RESOURCE ds_0 (
URL="jdbc:postgresql://127.0.0.1:5432/migration_ds_0",
USER="postgres",
PASSWORD="root",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. 启动数据迁移。

MIGRATE TABLE ds_0.t_order INTO t_order;

或者指定目标端逻辑库：

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

也可以指定源端 schema：

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. 查看数据迁移作业列表。

SHOW MIGRATION LIST;

示例结果：

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | sharding_total_count | active |

4.2. ShardingSphere-Proxy 254

Apache ShardingSphere document, v5.2.1

create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. 查看数据迁移详情。

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. 执行数据一致性校验。

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

查询数据一致性校验进度：

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. 完成作业。

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. 刷新元数据。

REFRESH TABLE METADATA;

4.2. ShardingSphere-Proxy 255

Apache ShardingSphere document, v5.2.1

更多 DistSQL请参见 RAL #数据迁移。

openGauss使用手册

环境要求

支持的 openGauss版本：2.0.1 ~ 3.0.0。

权限要求

1. 调整WAL配置。
postgresql.conf示例配置：

wal_level = logical
max_wal_senders = 10
max_replication_slots = 10
wal_sender_timeout = 0
max_connections = 600

详情请参见Write Ahead Log和 Replication。
2. 配置 openGauss允许 Proxy拥有 replication权限。

pg_hba.conf示例配置：

host replication repl_acct 0.0.0.0/0 md5

详情请参见 Configuring Client Access Authentication和 Example: Logic Replication Code。

完整流程示例

前提条件

1. 在 openGauss已准备好源端库、表、数据。

DROP DATABASE IF EXISTS migration_ds_0;
CREATE DATABASE migration_ds_0;

\c migration_ds_0

CREATE TABLE t_order (order_id INT NOT NULL, user_id INT NOT NULL, status
VARCHAR(45) NULL, PRIMARY KEY (order_id));

INSERT INTO t_order (order_id, user_id, status) VALUES (1,2,'ok'),(2,4,'ok'),(3,6,
'ok'),(4,1,'ok'),(5,3,'ok'),(6,5,'ok');

2. 在 openGauss准备目标端库。

4.2. ShardingSphere-Proxy 256

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/#%E6%95%B0%E6%8D%AE%E8%BF%81%E7%A7%BB
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/settings.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/sending-server.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/configuring-client-access-authentication.html
https://opengauss.org/en/docs/2.0.1/docs/Developerguide/example-logic-replication-code.html

Apache ShardingSphere document, v5.2.1

DROP DATABASE IF EXISTS migration_ds_10;
CREATE DATABASE migration_ds_10;

DROP DATABASE IF EXISTS migration_ds_11;
CREATE DATABASE migration_ds_11;

DROP DATABASE IF EXISTS migration_ds_12;
CREATE DATABASE migration_ds_12;

操作步骤

1. 在 proxy新建逻辑数据库并配置好资源和规则。

CREATE DATABASE sharding_db;

\c sharding_db

ADD RESOURCE ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_10",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_3 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_11",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

), ds_4 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_12",
USER="gaussdb",
PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_2,ds_3,ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME="hash_mod",PROPERTIES("sharding-count"="6")),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME="snowflake"))
);

如果是迁移到异构数据库，那目前需要在 proxy执行建表语句。
2. 在 proxy配置源端资源。

ADD MIGRATION SOURCE RESOURCE ds_2 (
URL="jdbc:opengauss://127.0.0.1:5432/migration_ds_0",
USER="gaussdb",

4.2. ShardingSphere-Proxy 257

Apache ShardingSphere document, v5.2.1

PASSWORD="Root@123",
PROPERTIES("minPoolSize"="1","maxPoolSize"="20","idleTimeout"="60000")

);

3. 启动数据迁移。

MIGRATE TABLE ds_0.t_order INTO t_order;

或者指定目标端逻辑库：

MIGRATE TABLE ds_0.t_order INTO sharding_db.t_order;

也可以指定源端 schema：

MIGRATE TABLE ds_0.public.t_order INTO sharding_db.t_order;

4. 查看数据迁移作业列表。

SHOW MIGRATION LIST;

示例结果：

+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| id | tables | sharding_total_count | active |
create_time | stop_time |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+
| j01016e501b498ed1bdb2c373a2e85e2529a6 | t_order | 1 | true |
2022-10-13 11:16:01 | NULL |
+---------------------------------------+---------+----------------------+--------
+---------------------+-----------+

5. 查看数据迁移详情。

SHOW MIGRATION STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| item | data_source | status | active | processed_records_count
| inventory_finished_percentage | incremental_idle_seconds | error_message |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+
| 0 | ds_0 | EXECUTE_INCREMENTAL_TASK | true | 6
| 100 | 81 | |
+------+-------------+--------------------------+--------+-------------------------
+-------------------------------+--------------------------+---------------+

6. 执行数据一致性校验。

4.2. ShardingSphere-Proxy 258

Apache ShardingSphere document, v5.2.1

CHECK MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';
Query OK, 0 rows affected (0.09 sec)

查询数据一致性校验进度：

SHOW MIGRATION CHECK STATUS 'j01016e501b498ed1bdb2c373a2e85e2529a6';
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| tables | result | finished_percentage | remaining_seconds | check_begin_time

| check_end_time | duration_seconds | error_message |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+
| t_order | true | 100 | 0 | 2022-10-13 11:18:15.
171 | 2022-10-13 11:18:15.878 | 0 | |
+---------+--------+---------------------+-------------------+---------------------
----+-------------------------+------------------+---------------+

7. 完成作业。

COMMIT MIGRATION 'j01016e501b498ed1bdb2c373a2e85e2529a6';

8. 刷新元数据。

REFRESH TABLE METADATA;

更多 DistSQL请参见 RAL #数据迁移。

4.2.5 可观察性

源码编译

从 Github下载 Apache ShardingSphere源码，对源码进行编译，操作命令如下。

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

agent 包 输 出 目 录 为 shardingsphere‐agent/shardingsphere‐agent‐distribution/target/apache‐
shardingsphere‐${latest.release.version}‐shardingsphere‐agent‐bin.tar.gz

4.2. ShardingSphere-Proxy 259

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/#%E6%95%B0%E6%8D%AE%E8%BF%81%E7%A7%BB

Apache ShardingSphere document, v5.2.1

agent配置

• 目录说明
创建 agent目录，解压 agent二进制包到 agent目录。

mkdir agent
tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin.
tar.gz -C agent
cd agent
tree
.
└── apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin

├── LICENSE
├── NOTICE
├── conf
│ ├── agent.yaml
│ └── logback.xml
├── plugins
│ ├── shardingsphere-agent-logging-base-${latest.release.version}.jar
│ ├── shardingsphere-agent-metrics-prometheus-${latest.release.version}.jar
│ ├── shardingsphere-agent-tracing-jaeger-${latest.release.version}.jar
│ ├── shardingsphere-agent-tracing-opentelemetry-${latest.release.version}.

jar
│ ├── shardingsphere-agent-tracing-opentracing-${latest.release.version}.jar
│ └── shardingsphere-agent-tracing-zipkin-${latest.release.version}.jar
└── shardingsphere-agent.jar

• 配置说明
conf/agent.yaml用于管理 agent配置。内置插件包括 Jaeger、OpenTracing、Zipkin、OpenTelemetry、
BaseLogging及 Prometheus。默认不开启任何插件。

plugins:
logging:
BaseLogging:
props:
level: "INFO"
metrics:
Prometheus:
host: "localhost"
port: 9090
props:
jvm-information-collector-enabled: "true"
tracing:
Jaeger:
host: "localhost"
port: 5775
props:
service-name: "shardingsphere"

4.2. ShardingSphere-Proxy 260

Apache ShardingSphere document, v5.2.1

jaeger-sampler-type: "const"
jaeger-sampler-param: "1"
Zipkin:
host: "localhost"
port: 9411
props:
service-name: "shardingsphere"
url-version: "/api/v2/spans"
sampler-type: "const"
sampler-param: "1"
OpenTracing:
props:
opentracing-tracer-class-name: "org.apache.skywalking.apm.toolkit.
opentracing.SkywalkingTracer"
OpenTelemetry:
props:
otel-resource-attributes: "service.name=shardingsphere"
otel-traces-exporter: "zipkin"

• 参数说明；

4.2. ShardingSphere-Proxy 261

Apache ShardingSphere document, v5.2.1

名称 说明 取值范围 默认值
jvm‐
informat
ion‐
collector‐
enabled

是 否 开
启 JVM
采集器

tru e、f alse true

service‐
name

链 路 跟
踪 的 服
务名称

自定义 sharding‐
sphere

jaeger‐
sampler‐
type

Jaeger
采 样 率
类型

con st、pro babi list ic、rate limi ting、re mote const

jaeger‐
sampler‐
param

Jaeger
采 样 率
参数

con st：0、1，pro babi list ic：0.0 ‐ 1 .0，rat elim itin g：> 0，
自定义每秒采集数量，re mote：需要自定义配置远程采样率
管理服务地址，JAEG ER_S AMPL ER_M ANAG ER_H OST_
PORT

1（const类
型）

url‐version Zipkin
url地址

自定义 /api/v2/spans

sampler‐
type

Zipkin
采 样 率
类型

con st、coun ting、ra teli miti ng、boun dary const

sampler‐
param

Zipkin
采 样 率
参数

con st：0、1，co unti ng：0.01 ‐ 1 .0，rat elim itin g：> 0，
自定义每秒采集数量，b ound ary: 0. 0001 ‐ 1.0

1（const类
型）

ote l‐
resource‐
attributes

op en‐
teleme‐
try 资源
属性

字符串键值对（,分割） ser‐
vice.name
=shardingsphere‐
agent

otel‐traces‐
exporter

Tracing
expoter

zi pkin、ja eger zipkin

otel‐traces‐
sampler

op en‐
teleme‐
try 采样
率类型

alw ays_ on、alwa ys_o ff、trac eidr atio always_on

ot el‐
traces‐
sampler‐
arg

op en‐
teleme‐
try 采样
率参数

tr acei drat io：0.0 ‐ 1.0 1.0

4.2. ShardingSphere-Proxy 262

Apache ShardingSphere document, v5.2.1

ShardingSphere-Proxy中使用

通过非容器环境使用

• 编辑启动脚本
配置 shardingsphere‐agent.jar的绝对路径到 ShardingSphere‐Proxy的 start.sh启动脚本中，请注意配
置自己对应的绝对路径。

nohup java ${JAVA_OPTS} ${JAVA_MEM_OPTS} \
-javaagent:/xxxxx/agent/shardingsphere-agent.jar \
-classpath ${CLASS_PATH} ${MAIN_CLASS} >> ${STDOUT_FILE} 2>&1 &

• 启动 ShardingSphere‐Proxy

bin/start.sh

正常启动后，可以在 ShardingSphere‐Proxy日志中找到 plugin的加载信息，访问 Proxy后，可以通过配
置的监控地址查看到 Metric和 Tracing的数据。

通过容器环境使用

• 假设本地已完成如下的对应配置。
– 包含 ShardingSphere‐Agent二进制包解压后的所有文件的文件夹 ./custom/agent/

– 包含 server.yaml等 ShardingSphere‐Proxy的配置文件的文件夹为 ./custom/conf/

• 此时可通过环境变量 JVM_OPT来配置 ShardingSphere‐Agent的使用。以在Docker Compose环境
下启动为例，合理的 docker-compose.yml示例如下。

version: "3.8"

services:
apache-shardingsphere-proxy:

image: apache/shardingsphere-proxy:latest
environment:
JVM_OPTS: "-javaagent:/agent/shardingsphere-agent.jar"
PORT: 3308

volumes:
- ./custom/agent/:/agent/
- ./custom/conf/:/opt/shardingsphere-proxy/conf/

ports:
- "13308:3308"

4.2. ShardingSphere-Proxy 263

Apache ShardingSphere document, v5.2.1

Metrics

指标名称 类型 描述
proxy_request_total COUNTER 请求总数
proxy_connection_total GAUGE 当前连接总数
pro
xy_execute_latency_millis

HIS‐
TOGRAM

执行耗时毫秒

proxy_execute_error_total COUNTER 执行异常总数
route_sql_select_total COUNTER 路由执行 select SQL语句总数
route_sql_insert_total COUNTER 路由执行 insert SQL语句总数
route_sql_update_total COUNTER 路由执行 update SQL语句总数
route_sql_delete_total COUNTER 路由执行 delete SQL语句总数
route_datasource_total COUNTER 数据源路由总数
route_table_total COUNTER 表路由数
proxy _transac‐
tion_commit_total

COUNTER 事务提交次数

proxy_t ransac‐
tion_rollback_total

COUNTER 事务回滚次数

p
arse_sql_dml_insert_total

COUNTER 解析 insert SQL语句总数

p
arse_sql_dml_delete_total

COUNTER 解析 delete SQL语句总数

p
arse_sql_dml_update_total

COUNTER 解析 update SQL语句总数

p
arse_sql_dml_select_total

COUNTER 解析 select SQL语句总数

parse_sql_ddl_total COUNTER 解析 DDL SQL语句总数
parse_sql_dcl_total COUNTER 解析 DCL SQL语句总数
parse_sql_dal_total COUNTER 解析 DAL SQL语句总数
parse_sql_tcl_total COUNTER 解析 TCL SQL语句总数
parse_dist_sql_rql_total COUNTER 解析 RQL类型 DistSQL总数
parse_dist_sql_rdl_total COUNTER 解析 RDL类型 DistSQL总数
parse_dist_sql_ral_total COUNTER 解析 RAL类型 DistSQL总数
build_info GAUGE 构建信息
proxy_info GAUGE proxy信息，state:1正常状态，state:2熔断状态
meta_data_info GAUGE proxy 元 数 据 信 息，schema_count: 逻 辑 库 数 量，

database_count:数据源数量

4.2. ShardingSphere-Proxy 264

Apache ShardingSphere document, v5.2.1

4.2.6 可选插件

ShardingSphere默认情况下仅包含核心 SPI的实现，在 Git Source存在一部分包含第三方依赖的 SPI实
现的插件未包含在内。可在 https://central.sonatype.dev/进行检索。
所有插件对应的 SPI和 SPI的已有实现类均可在 https://shardingsphere.apache.org/document/current
/cn/dev‐manual/检索。
下以 groupId:artifactId的表现形式列出所有的内置插件。

• org.apache.shardingsphere:shardingsphere-db-protocol-core，数据库协议核心
• org.apache.shardingsphere:shardingsphere-mysql-protocol，数据库协议的MySQL
实现

• org.apache.shardingsphere:shardingsphere-postgresql-protocol，数据库协议的
PostgresSQL实现

• org.apache.shardingsphere:shardingsphere-opengauss-protocol，数据库协议的
OpenGauss实现

• org.apache.shardingsphere:shardingsphere-proxy-frontend-core， 用 于
ShardingSphere‐Proxy解析与适配访问数据库的协议

• org.apache.shardingsphere:shardingsphere-proxy-frontend-mysql， 用 于
ShardingSphere‐Proxy解析与适配访问数据库的协议的MySQL实现

• org.apache.shardingsphere:shardingsphere-proxy-frontend-reactive-mysql，
用于 ShardingSphere‐Proxy解析与适配访问数据库的协议的 MySQL的 vertx-sql-client实
现

• org.apache.shardingsphere:shardingsphere-proxy-frontend-postgresql，用于
ShardingSphere‐Proxy解析与适配访问数据库的协议的 PostgresSQL实现

• org.apache.shardingsphere:shardingsphere-proxy-frontend-opengauss， 用 于
ShardingSphere‐Proxy解析与适配访问数据库的协议的 openGauss实现

• org.apache.shardingsphere:shardingsphere-proxy-backend，ShardingSphere Proxy
的后端

• org.apache.shardingsphere:shardingsphere-cluster-mode-repository-zookeeper-curator，
集群模式配置信息持久化定义的 zookeeper实现

• org.apache.shardingsphere:shardingsphere-cluster-mode-repository-etcd，集
群模式配置信息持久化定义的 etcd实现

• org.apache.shardingsphere:shardingsphere-jdbc-core

对于核心的 org.apache.shardingsphere:shardingsphere-jdbc-core，其内置如下插件。
• org.apache.shardingsphere:shardingsphere-transaction-core，XA分布式事务管
理器核心

• org.apache.shardingsphere:shardingsphere-sql-parser-sql92，SQL解析的 SQL 92
方言实现

4.2. ShardingSphere-Proxy 265

https://central.sonatype.dev/
https://shardingsphere.apache.org/document/current/cn/dev-manual/
https://shardingsphere.apache.org/document/current/cn/dev-manual/

Apache ShardingSphere document, v5.2.1

• org.apache.shardingsphere:shardingsphere-sql-parser-mysql，SQL解析的MySQL
方言实现

• org.apache.shardingsphere:shardingsphere-sql-parser-postgresql，SQL解析的
PostgresSQL方言实现

• org.apache.shardingsphere:shardingsphere-sql-parser-oracle，SQL解析的 Ora‐
cle方言解析实现

• org.apache.shardingsphere:shardingsphere-sql-parser-sqlserver，SQL 解析的
SQL Server方言实现

• org.apache.shardingsphere:shardingsphere-sql-parser-opengauss，SQL 解析的
OpenGauss方言实现

• org.apache.shardingsphere:shardingsphere-mysql-dialect-exception，数据库网
关的MySQL实现

• org.apache.shardingsphere:shardingsphere-postgresql-dialect-exception，数
据库网关的 PostgresSQL实现

• org.apache.shardingsphere:shardingsphere-authority-core，用户权限加载逻辑核
心

• org.apache.shardingsphere:shardingsphere-single-table-core，单表（所有的分
片数据源中仅唯一存在的表）核心

• org.apache.shardingsphere:shardingsphere-traffic-core，流量治理核心
• org.apache.shardingsphere:shardingsphere-infra-context，Context的内核运行与
元数据刷新机制

• org.apache.shardingsphere:shardingsphere-standalone-mode-core，单机模式配
置信息持久化定义核心

• org.apache.shardingsphere:shardingsphere-standalone-mode-repository-jdbc-h2，
单机模式配置信息持久化定义的H2实现

• org.apache.shardingsphere:shardingsphere-cluster-mode-core，集群模式配置信
息持久化定义核心

• org.apache.shardingsphere:shardingsphere-sharding-core，数据分片核心
• org.apache.shardingsphere:shardingsphere-sharding-cache，参考未关闭的 https:
//github.com/apache/shardingsphere/issues/21223

• org.apache.shardingsphere:shardingsphere-readwrite-splitting-core，读写分
离核心

• org.apache.shardingsphere:shardingsphere-db-discovery-core，高可用核心
• org.apache.shardingsphere:shardingsphere-encrypt-core，数据加密核心
• org.apache.shardingsphere:shardingsphere-shadow-core，影子库核心
• org.apache.shardingsphere:shardingsphere-sql-federation-core，联邦查询执行
器核心

4.2. ShardingSphere-Proxy 266

https://github.com/apache/shardingsphere/issues/21223
https://github.com/apache/shardingsphere/issues/21223

Apache ShardingSphere document, v5.2.1

• org.apache.shardingsphere:shardingsphere-sql-federation-executor-advanced，
联邦查询执行器的 advanced实现

• org.apache.shardingsphere:shardingsphere-sql-federation-executor-original，
联邦查询执行器的 original实现

• org.apache.shardingsphere:shardingsphere-parser-core，SQL解析核心
如果 ShardingSphere Proxy需要使用可选插件，需要在Maven Central下载包含其 SPI实现的 JAR和其
依赖的 JAR。
下以 groupId:artifactId的表现形式列出所有的可选插件。

• 集群模式配置信息持久化定义
– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-nacos，
基于 Nacos的持久化

– org.apache.shardingsphere:shardingsphere-cluster-mode-repository-consul，
基于 Consul的持久化

• XA分布式事务管理器
– org.apache.shardingsphere:shardingsphere-transaction-xa-narayana，基
于 Narayana的 XA分布式事务管理器

– org.apache.shardingsphere:shardingsphere-transaction-xa-bitronix，基
于 Bitronix的 XA分布式事务管理器

• SQL翻译
– org.apache.shardingsphere:shardingsphere-sql-translator-jooq-provider，
使用 JooQ的 SQL翻译器

4.2.7 会话管理

ShardingSphere支持会话管理，可通过原生数据库的 SQL查看当前会话或杀掉会话。目前此功能仅限于
存储节点为MySQL的情况，支持MySQL SHOW PROCESSLIST命令和 KILL命令。

相关操作

查看会话

针对不同关联数据库支持不同的查看会话方法，关联MySQL数据库可使用 SHOW PROCESSLIST命令查
看会话。ShardingSphere会自动生成唯一的 UUID标识作为 ID，并将 SQL执行信息存储在各个实例中。
当执行此命令时，ShardingSphere会通过治理中心收集并同步各个计算节点的 SQL执行信息，然后汇总
返回给用户。

mysql> show processlist;
+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+
| Id | User | Host | db | Command |

4.2. ShardingSphere-Proxy 267

Apache ShardingSphere document, v5.2.1

Time | State | Info |
+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+
| 05ede3bd584fd4a429dcaac382be2973 | root | 127.0.0.1 | sharding_db | Execute | 2
| Executing 0/1 | select sleep(10) |

| f9e5c97431567415fe10badc5fa46378 | root | 127.0.0.1 | sharding_db | Sleep | 690
| | |

+----------------------------------+------+-----------+-------------+---------+----
--+---------------+------------------+

• 输出说明
模拟原生MySQL的输出，但 Id字段较为特殊为随机字符串。

杀掉会话

用户根据SHOW PROCESSLIST返回的结果，判断是否需要执行KILL语句，ShardingSphere会根据KILL
语句中的 ID取消正在执行中的 SQL。

mysql> kill 05ede3bd584fd4a429dcaac382be2973;
Query OK, 0 rows affected (0.04 sec)

mysql> show processlist;
Empty set (0.02 sec)

4.3 通用配置

本章主要介绍通用配置，包括属性配置和内置算法配置。

4.3.1 属性配置

背景信息

Apache ShardingSphere提供属性配置的方式配置系统级配置。

参数解释

操作步骤

属性配置直接配置在 ShardingSphere‐JDBC所使用的配置文件中，格式如下：

props:
sql-show: true

4.3. 通用配置 268

Apache ShardingSphere document, v5.2.1

配置示例

ShardingSphere仓库的示例中包含了多种不同场景的属性配置，请参考：https://github.com/apache/sh
ardingsphere/tree/master/examples/shardingsphere‐jdbc‐example

4.3.2 内置算法

简介

Apache ShardingSphere通过 SPI方式允许开发者扩展算法；与此同时，Apache ShardingSphere也提供
了大量的内置算法以便于开发者使用。

使用方式

内置算法均通过 type和 props进行配置，其中 type由算法定义在 SPI中，props用于传递算法的个性化
参数配置。
无论使用哪种配置方式，均是将配置完毕的算法命名，并传递至相应的规则配置中。本章节根据功能区
分并罗列 Apache ShardingSphere全部的内置算法，供开发者参考。

元数据持久化仓库

背景信息

Apache ShardingSphere为不同的运行模式提供了不同的元数据持久化方式，用户在配置运行模式的同
时可以选择合适的方式来存储元数据。

参数解释

数据库持久化

类型：JDBC

适用模式：Standalone

可配置属性：

4.3. 通用配置 269

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example
https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example

Apache ShardingSphere document, v5.2.1

名称 数 据
类型

说明 默认值

provider String 元数据存储
类型

H2

jdbc_url String JDBC URL j d bc : h2 : m e m :config;DB_C LOSE_DELAY=‐ 1;DATABASE_T
O_UPPER=fals e;MODE=MYSQL

user‐
name

String 账号 sa

pass‐
word

String 密码

ZooKeeper持久化

类型：ZooKeeper

适用模式：Cluster

可配置属性：

名称 数据类型 说明 默认值
retryIntervalMilliseconds int 重试间隔毫秒数 500
maxRetries int 客户端连接最大重试次数 3
timeToLiveSeconds int 临时数据失效的秒数 60
operationTimeoutMilliseconds int 客户端操作超时的毫秒数 500
digest String 登录认证密码

Etcd持久化

类型：Etcd

适用模式：Cluster

可配置属性：

名称 数据类型 说明 默认值
timeToLiveSeconds long 临时数据失效的秒数 30
connectionTimeout long 连接超时秒数 30

4.3. 通用配置 270

jdbc:h2:mem

Apache ShardingSphere document, v5.2.1

Nacos持久化

类型：Nacos

适用模式：Cluster

可配置属性：

名称 数据类型 说明 默认值
clusterIp String 集群中的唯一标识 真实主机 IP
retryIn tervalMilliseconds long 重试间隔毫秒数 500
maxRetries int 客户端检查数据可用性的最大重试次数 3
timeToLiveSeconds int 临时实例失效的秒数 30

Consul持久化

类型：Consul

适用模式：Cluster

可配置属性：

名称 数据类型 说明 默认值
timeToLiveSeconds String 临时实例失效的秒数 30s
blockQueryTimeToSeconds long 查询请求超时秒数 60

操作步骤

1. 在 server.yaml中配置Mode运行模式
2. 配置元数据持久化仓库类型

配置示例

• 单机模式配置方式

mode:
type: Standalone
repository:

type: JDBC
props:
provider: H2
jdbc_url: jdbc:h2:mem:config;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;

MODE=MYSQL
username: test
password: Test@123

4.3. 通用配置 271

Apache ShardingSphere document, v5.2.1

• 集群模式

mode:
type: Cluster
repository:

type: zookeeper
props:
namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

分片算法

背景信息

ShardingSphere内置提供了多种分片算法，按照类型可以划分为自动分片算法、标准分片算法、复合分
片算法和Hint分片算法，能够满足用户绝大多数业务场景的需要。此外，考虑到业务场景的复杂性，内
置算法也提供了自定义分片算法的方式，用户可以通过编写 Java代码来完成复杂的分片逻辑。

参数解释

自动分片算法

取模分片算法

类型：MOD

可配置属性：

属性名称 数据类型 说明
sharding‐count int 分片数量

基于 CosId的取模分片算法

基于 me.ahoo.cosid:cosid-core的工具类实现的取模分片算法。参考 https://github.com/apache/
shardingsphere/issues/14047的讨论。
类型：COSID_MOD

可配置属性：

4.3. 通用配置 272

https://github.com/apache/shardingsphere/issues/14047
https://github.com/apache/shardingsphere/issues/14047

Apache ShardingSphere document, v5.2.1

属性名称 数据类型 说明
mod int 分片数量
logic‐name‐prefix String 分片数据源或真实表的前缀格式

哈希取模分片算法

类型：HASH_MOD

可配置属性：

属性名称 数据类型 说明
sharding‐count int 分片数量

基于分片容量的范围分片算法

类型：VOLUME_RANGE

可配置属性：

属性名称 数据类型 说明
range‐lower long 范围下界，超过边界的数据会报错
range‐upper long 范围上界，超过边界的数据会报错
sharding‐volume long 分片容量

基于分片边界的范围分片算法

类型：BOUNDARY_RANGE

可配置属性：

属性名称 数据类型 说明
sharding‐ranges String 分片的范围边界，多个范围边界以逗号分隔

自动时间段分片算法

类型：AUTO_INTERVAL

可配置属性：

4.3. 通用配置 273

Apache ShardingSphere document, v5.2.1

属性名称 •
数据类型 *

说明

datetim e‐lower St ri ng 分片的起始时间范围，时间戳格
式：yyyy‐MM‐dd HH:mm:ss

datetim e‐upper St ri ng 分片的结束时间范围，时间戳格
式：yyyy‐MM‐dd HH:mm:ss

sh arding‐ seconds lo ng 单一分片所能承载的最大时间，
单位：秒，允许分片键的时间戳
格式的秒带有时间精度，但秒后
的时间精度会被自动抹去

标准分片算法

Apache ShardingSphere内置的标准分片算法实现类包括：

行表达式分片算法

使用 Groovy的表达式，提供对 SQL语句中的 =和 IN的分片操作支持，只支持单分片键。对于简单的分
片算法，可以通过简单的配置使用，从而避免繁琐的 Java代码开发，如: t_user_$->{u_id % 8}表
示 t_user表根据 u_id模 8，而分成 8张表，表名称为 t_user_0到 t_user_7。详情请参见行表达式。
类型：INLINE

可配置属性：

时间范围分片算法

此算法主动忽视了 datetime-pattern 的时区信息。这意味着当 datetime-lower,
datetime-upper 和传入的分片键含有时区信息时，不会因为时区不一致而发生时区转换。当
传入的分片键为 java.time.Instant 时存在特例处理，其会携带上系统的时区信息后转化为
datetime-pattern的字符串格式，再进行下一步分片。
类型：INTERVAL

可配置属性：

基于 CosId的固定时间范围的分片算法

基于 me.ahoo.cosid:cosid-core的工具类实现的固定时间范围的分片算法。当分片键为 JSR‐310的
所含类或与时间相关的类，将转换为 java.time.LocalDateTime 后再做下一步分片。参考 https:
//github.com/apache/shardingsphere/issues/14047的讨论。
类型：COSID_INTERVAL

可配置属性：

4.3. 通用配置 274

https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/#implementation-classes
https://github.com/apache/shardingsphere/issues/14047
https://github.com/apache/shardingsphere/issues/14047

Apache ShardingSphere document, v5.2.1

基于 CosId的雪花 ID固定时间范围的分片算法

基于 me.ahoo.cosid:cosid-core 的工具类实现的雪花 ID 固定时间范围的分片算法。当分片键为
JSR‐310的所含类或与时间相关的类，将转换为 java.time.LocalDateTime后再做下一步分片。参
考 https://github.com/apache/shardingsphere/issues/14047的讨论。
类型：COSID_INTERVAL_SNOWFLAKE

可配置属性：

复合分片算法

复合行表达式分片算法

详情请参见行表达式。
类型：COMPLEX_INLINE

Hint分片算法

Hint行表达式分片算法

详情请参见行表达式。
类型：HINT_INLINE

属性名称 数据类型 说明 默认值
algorithm‐expression (?) String 分片算法的行表达式 ${value}

自定义类分片算法

通过配置分片策略类型和算法类名，实现自定义扩展。CLASS_BASED 允许向算法类内传入额外
的自定义属性，传入的属性可以通过属性名为 props 的 java.util.Properties 类实例取
出。参考 Git 的 org.apache.shardingsphere.example.extension.sharding.algortihm.
classbased.fixture.ClassBasedStandardShardingAlgorithmFixture。
类型：CLASS_BASED

可配置属性：

属性名称 数 据 类
型

说明

strategy String 分片策略类型，支持 STANDARD、COMPLEX或 HINT（不区分大
小写）

algorithmClass‐
Name

String 分片算法全限定名

4.3. 通用配置 275

https://github.com/apache/shardingsphere/issues/14047
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/#implementation-classes
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/#implementation-classes

Apache ShardingSphere document, v5.2.1

操作步骤

1. 使用数据分片时，在 shardingAlgorithms属性下配置对应的数据分片算法即可；

配置示例

rules:
- !SHARDING
tables:

t_order:
actualDataNodes: ds_${0..1}.t_order_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: t-order-inline

keyGenerateStrategy:
column: order_id
keyGeneratorName: snowflake

t_order_item:
actualDataNodes: ds_${0..1}.t_order_item_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: t_order-item-inline

keyGenerateStrategy:
column: order_item_id
keyGeneratorName: snowflake

t_account:
actualDataNodes: ds_${0..1}.t_account_${0..1}
tableStrategy:
standard:

shardingAlgorithmName: t-account-inline
keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

defaultShardingColumn: account_id
bindingTables:

- t_order,t_order_item
broadcastTables:

- t_address
defaultDatabaseStrategy:

standard:
shardingColumn: user_id
shardingAlgorithmName: database-inline

defaultTableStrategy:
none:

4.3. 通用配置 276

Apache ShardingSphere document, v5.2.1

shardingAlgorithms:
database-inline:
type: INLINE
props:
algorithm-expression: ds_${user_id % 2}

t-order-inline:
type: INLINE
props:
algorithm-expression: t_order_${order_id % 2}

t_order-item-inline:
type: INLINE
props:
algorithm-expression: t_order_item_${order_id % 2}

t-account-inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

相关参考

• 核心特性：数据分片
• 开发者指南：数据分片

分布式序列算法

背景信息

传统数据库软件开发中，主键自动生成技术是基本需求。而各个数据库对于该需求也提供了相应的支持，
比如MySQL的自增键，Oracle的自增序列等。数据分片后，不同数据节点生成全局唯一主键是非常棘手
的问题。同一个逻辑表内的不同实际表之间的自增键由于无法互相感知而产生重复主键。虽然可通过约
束自增主键初始值和步长的方式避免碰撞，但需引入额外的运维规则，使解决方案缺乏完整性和可扩展
性。
目前有许多第三方解决方案可以完美解决这个问题，如UUID等依靠特定算法自生成不重复键，或者通过
引入主键生成服务等。为了方便用户使用、满足不同用户不同使用场景的需求，Apache ShardingSphere
不仅提供了内置的分布式主键生成器，例如 UUID、SNOWFLAKE，还抽离出分布式主键生成器的接口，
方便用户自行实现自定义的自增主键生成器。

4.3. 通用配置 277

https://shardingsphere.apache.org/document/current/cn/features/sharding/
https://shardingsphere.apache.org/document/current/cn/dev-manual/sharding/

Apache ShardingSphere document, v5.2.1

参数解释

雪花算法

类型：SNOWFLAKE

可配置属性：
注意：worker‐id为选配项 1. 在单机模式下支持用户自定义配置，如果用户不配置使用默认值为 0。2. 在
集群模式下会由系统自动生成，相同的命名空间下不会生成重复的值。

NanoID

类型：NANOID

可配置属性：无

UUID

类型：UUID

可配置属性：无

CosId

类型: COSID

可配置属性：

属性名称 数据类型 |说明
默认值

i d‐n ame S t r i n g ID生成器名称 ‘ __s hare __‘

as‐ str ing b o o l 是否生成字符串类
型 ID: 将 long 类
型 ID 转换成 62 进制
String 类型（Long.
MAX_VALUE 最大字符
串长度 11位），并保证
字符串 ID有序性

‘ fal se‘

4.3. 通用配置 278

Apache ShardingSphere document, v5.2.1

CosId-Snowflake

类型: COSID_SNOWFLAKE

可配置属性：

属性名称
数据类型 |说明

默认值

ep och S t r i n g 雪花 ID算法的 EPOCH 147 792960 0000
as‐ str ing b o o l 是否生成字符串类

型 ID: 将 long 类
型 ID 转换成 62 进制
String 类型（Long.
MAX_VALUE 最大字符
串长度 11位），并保证
字符串 ID有序性

f alse

操作步骤

1. 配置数据分片规则时为列配置分布式主键生成策略

配置示例

• 雪花算法

keyGenerators:
snowflake:

type: SNOWFLAKE

• NanoID

keyGenerators:
nanoid:

type: NANOID

• UUID

keyGenerators:
nanoid:

type: UUID

4.3. 通用配置 279

Apache ShardingSphere document, v5.2.1

负载均衡算法

背景信息

ShardingSphere内置提供了多种负载均衡算法，具体包括了轮询算法、随机访问算法和权重访问算法，能
够满足用户绝大多数业务场景的需要。此外，考虑到业务场景的复杂性，内置算法也提供了扩展方式，用
户可以基于 SPI接口实现符合自己业务需要的负载均衡算法。

参数解释

轮询负载均衡算法

类型：ROUND_ROBIN

说明：事务内，读请求路由到 primary，事务外，采用轮询策略路由到 replica。
可配置属性：无

随机负载均衡算法

类型：RANDOM

说明：事务内，读请求路由到 primary，事务外，采用随机策略路由到 replica。
可配置属性：无

权重负载均衡算法

类型：WEIGHT

说明：事务内，读请求路由到 primary，事务外，采用权重策略路由到 replica。
可配置属性：

•
属性名称 *

数据类型 说明

${repl ica‐name} dou ble 属性名使用读库名称，参数填写
读库对应的权重值。权重参数
范围最小值 > 0，合计 <= Dou‐
ble.MAX_VALUE。

4.3. 通用配置 280

Apache ShardingSphere document, v5.2.1

事务随机负载均衡算法

类型：TRANSACTION_RANDOM

说明：显式/非显式开启事务，读请求采用随机策略路由到多个 replica。
可配置属性：无

事务轮询负载均衡算法

类型：TRANSACTION_ROUND_ROBIN

说明：显式/非显式开启事务，读请求采用轮询策略路由到多个 replica。
可配置属性：无

事务权重负载均衡算法

类型：TRANSACTION_WEIGHT

说明：显式/非显式开启事务，读请求采用权重策略路由到多个 replica。
可配置属性：

•
属性名称 *

数据类型 说明

${repl ica‐name} dou ble 属性名使用读库名称，参数填写
读库对应的权重值。权重参数
范围最小值 > 0，合计 <= Dou‐
ble.MAX_VALUE。

固定副本随机负载均衡算法

类型：FIXED_REPLICA_RANDOM

说明：显式开启事务，读请求采用随机策略路由到一个固定 replica；不开事务，每次读流量使用随机策
略路由到不同的 replica。
可配置属性：无

4.3. 通用配置 281

Apache ShardingSphere document, v5.2.1

固定副本轮询负载均衡算法

类型：FIXED_REPLICA_ROUND_ROBIN

说明：显式开启事务，读请求采用轮询策略路由到一个固定 replica；不开事务，每次读流量使用轮询策
略路由到不同的 replica。
可配置属性：无

固定副本权重负载均衡算法

类型：FIXED_REPLICA_WEIGHT

说明：显式开启事务，读请求采用权重策略路由到一个固定 replica；不开事务，每次读流量使用权重策
略路由到不同的 replica。
可配置属性：

•
属性名称 *

数据类型 说明

${repl ica‐name} dou ble 属性名使用读库名称，参数填写
读库对应的权重值。权重参数
范围最小值 > 0，合计 <= Dou‐
ble.MAX_VALUE。

固定主库负载均衡算法

类型：FIXED_PRIMARY

说明：读请求全部路由到 primary

可配置属性：无

操作步骤

1. 使用读写分离时，在 loadBalancers属性下配置对应的负载均衡算法即可；

配置示例

rules:
- !READWRITE_SPLITTING
dataSources:

readwrite_ds:
staticStrategy:
writeDataSourceName: write_ds
readDataSourceNames:

4.3. 通用配置 282

Apache ShardingSphere document, v5.2.1

- read_ds_0
- read_ds_1

loadBalancerName: random
loadBalancers:

random:
type: RANDOM

相关参考

• 核心特性：读写分离
• 开发者指南：读写分离

加密算法

背景信息

加密算法是 Apache ShardingSphere的加密功能使用的算法，ShardingSphere内置了多种算法，可以让
用户方便使用。

参数解释

MD5加密算法

类型：MD5

可配置属性：无

AES加密算法

类型：AES

可配置属性：

名称 数据类型 说明
aes‐key‐value String AES使用的 KEY

4.3. 通用配置 283

https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/
https://shardingsphere.apache.org/document/current/cn/dev-manual/readwrite-splitting/

Apache ShardingSphere document, v5.2.1

RC4加密算法

类型：RC4

可配置属性：

名称 数据类型 说明
rc4‐key‐value String RC4使用的 KEY

SM3加密算法

类型：SM3

可配置属性：

名称 数据类型 说明
sm3‐salt String SM3使用的 SALT（空或 8 Bytes）

SM4加密算法

类型：SM4

可配置属性：

名称 数 据 类
型

说明

sm4‐key String SM4使用的 KEY（16 Bytes）
sm4‐mode String SM4使用的MODE（CBC或 ECB）
sm4‐iv String SM4使用的 IV（MODE为 CBC时需指定，16 Bytes）
sm4‐
padding

String SM4 使用的 PADDING （PKCS5Padding 或 PKCS7Padding，暂不支持
NoPadding）

操作步骤

1. 在加密规则中配置加密器
2. 为加密器指定加密算法类型

4.3. 通用配置 284

Apache ShardingSphere document, v5.2.1

配置示例

rules:
- !ENCRYPT
tables:

t_user:
columns:
username:

plainColumn: username_plain
cipherColumn: username
encryptorName: name-encryptor

encryptors:
name-encryptor:
type: AES
props:
aes-key-value: 123456abc

相关参考

• 核心特性：数据加密
• 开发者指南：数据加密

影子算法

背景信息

影子库功能对执行的 SQL语句进行影子判定。影子判定支持两种类型算法，用户可根据实际业务需求选
择一种或者组合使用。

参数解释

列影子算法

列值匹配算法

类型：VALUE_MATCH

属性名称 数据类型 说明
column String 影子列
operation String SQL操作类型（INSERT, UPDATE, DELETE, SELECT)
value String 影子列匹配的值

4.3. 通用配置 285

https://shardingsphere.apache.org/document/current/cn/features/encrypt/
https://shardingsphere.apache.org/document/current/cn/dev-manual/encrypt/

Apache ShardingSphere document, v5.2.1

列正则表达式匹配算法

类型：REGEX_MATCH

属性名称 数据类型 说明
column String 匹配列
operation String SQL操作类型 (INSERT, UPDATE, DELETE, SELECT)
regex String 影子列匹配正则表达式

Hint影子算法

简单Hint匹配影子算法

类型：SIMPLE_HINT

属性名称 数据类型 说明
foo String bar

配置示例

• Java API

public final class ShadowConfiguration {
// ...

private AlgorithmConfiguration createShadowAlgorithmConfiguration() {
Properties userIdInsertProps = new Properties();
userIdInsertProps.setProperty("operation", "insert");
userIdInsertProps.setProperty("column", "user_id");
userIdInsertProps.setProperty("value", "1");
return new AlgorithmConfiguration("VALUE_MATCH", userIdInsertProps);

}

// ...
}

• YAML:

shadowAlgorithms:
user-id-insert-algorithm:

type: VALUE_MATCH
props:
column: user_id
operation: insert
value: 1

4.3. 通用配置 286

Apache ShardingSphere document, v5.2.1

• Spring Boot Starter:

spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
type=VALUE_MATCH
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
props.operation=insert
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
props.column=user_id
spring.shardingsphere.rules.shadow.shadow-algorithms.user-id-insert-algorithm.
props.value=1

• Spring命名空间:

<shadow:shadow-algorithm id="user-id-insert-algorithm" type="VALUE_MATCH">
<props>

<prop key="operation">insert</prop>
<prop key="column">user_id</prop>
<prop key="value">1</prop>

</props>
</shadow:shadow-algorithm>

SQL翻译

原生 SQL翻译器

类型：NATIVE

可配置属性：
无
默认使用的 SQL翻译器，但目前暂未实现

使用 JooQ的 SQL翻译器

类型：JOOQ

可配置属性：
无
由于需要第三方的 JooQ依赖，因此 ShardingSphere默认并未包含相关模块，需要使用下面的Maven坐
标引用该模块

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-translator-jooq-provider</artifactId>
<version>${project.version}</version>

</dependency>

4.3. 通用配置 287

Apache ShardingSphere document, v5.2.1

分片审计算法

背景信息

分片审计功能是针对数据库分片场景下对执行的 SQL语句进行审计操作。分片审计既可以进行拦截操作，
拦截系统配置的非法 SQL语句，也可以是对 SQL语句进行统计操作。

参数解释

DML_SHARDING_CONDITIONS算法

类型：DML_SHARDING_CONDITIONS

操作步骤

1. 配置数据分片规则时设置分配审计生成策略

配置示例

• DML_SHARDING_CONDITIONS

auditors:
sharding_key_required_auditor:

type: DML_SHARDING_CONDITIONS

4.4 错误码

本章列举 Apache ShardingSphere错误码。包含 SQL错误码和服务器错误码。
本章节所有内容均为草稿，错误码仍可能调整。

4.4.1 SQL错误码

SQL错误码以标准的 SQL State，Vendor Code和详细错误信息提供，在 SQL执行错误时返回给客户端。
目前内容为草稿，错误码仍可能调整。

4.4. 错误码 288

Apache ShardingSphere document, v5.2.1

内核异常

元数据

SQL State Vendor Code 错误信息
42000 10000 Resource does not exist.
08000 10001 The URL ‘%s‘ is not recognized, please refer to the pattern ‘%s‘.
42000 10002 Can not support 3‐tier structure for actual data node ‘%s‘ with JDBC ‘%s‘.
HY004 10003 Invalid format for actual data node ‘%s‘.
42000 10004 Unsupported SQL node conversion for SQL statement ‘%s‘.
42000 10010 Rule does not exist.
42S02 10020 Schema ‘%s‘ does not exist.
42S02 10021 Single table ‘%s‘ does not exist.
HY000 10022 Can not load table with database name ‘%s‘ and data source name ‘%s‘.
0A000 10030 Can not drop schema ‘%s‘ because of contains tables.

数据

SQL State Vendor Code 错误信息
HY004 11000 Invalid value ‘%s‘.
HY004 11001 Unsupported conversion data type ‘%s‘ for value ‘%s‘.
HY004 11010 Unsupported conversion stream charset ‘%s‘.

语法

SQL State Vendor Code 错误信息
42000 12000 You have an error in your SQL syntax: %s
42000 12001 Can not accept SQL type ‘%s‘.
42000 12002 SQL String can not be NULL or empty.
42000 12010 Can not support variable ‘%s‘.
42S02 12011 Can not find column label ‘%s‘.
HV008 12020 Column index ‘%d‘ is out of range.
0A000 12100 DROP TABLE⋯CASCADE is not supported.

4.4. 错误码 289

Apache ShardingSphere document, v5.2.1

连接

SQL
State

Ven-
dor
Code

错误信息

08000 13000 Can not register driver, reason is: %s
01000 13010 Circuit break open, the request has been ignored.
08000 13020 Can not get %d connections one time, partition succeed c onnection(%d) have re‐

leased. Please consider increasing the ‘ maxPoolSize‘ of the data sources or decreasing
the ‘max‐co nnections‐siz e‐per‐query‘ in properties.

08000 13030 Connection has been closed.
08000 13031 Result set has been closed.
HY00013090 Load datetime from database failed, reason: %s

事务

SQL
State

Vendor
Code

错误信息

25000 14000 Switch transaction type failed, please terminate the current transaction.
25000 14100 JDBC does not support operations across multiple logical databases in

transaction.
25000 14200 Can not start new XA transaction in a active transaction.
25000 14201 Failed to create ‘%s‘ XA data source.

锁

SQL
State

Vendor
Code

错误信息

HY000 15000 The table ‘%s‘ of schema ‘%s‘ is locked.
HY000 15001 The table ‘%s‘ of schema ‘%s‘ lock wait timeout of ‘%s‘ milliseconds ex‐

ceeded.

审计

SQL State Vendor Code 错误信息
44000 16000 SQL check failed, error message: %s

4.4. 错误码 290

Apache ShardingSphere document, v5.2.1

集群

SQL State Vendor Code 错误信息
HY000 17000 Work ID assigned failed, which can not exceed 1024.
HY000 17001 Can not find ‘%s‘ file for datetime initialize.
HY000 17002 File access failed, reason is: %s
HY000 17010 Cluster persist repository error, reason is: %s

迁移

SQL
State

Vendor
Code

错误信息

44000 18001 Created process configuration already existed.
44000 18002 Altered process configuration does not exist.
HY000 18020 Failed to get DDL for table ‘%s‘.
42S01 18030 Duplicate resource names ‘%s‘.
42S02 18031 Resource names ‘%s‘ do not exist.
0A000 18032 Unsupported data type ‘%s‘ of unique key for pipeline job.
HY000 18050 Before data record is ‘%s‘, after data record is ‘%s‘.
08000 18051 Data check table ‘%s‘ failed.
0A000 18052 Unsupported pipeline database type ‘%s‘.
0A000 18053 Unsupported CRC32 data consistency calculate algorithm with database type

‘%s‘.
HY000 18080 Can not find pipeline job ‘%s‘.
HY000 18081 Job has already started.
HY000 18082 Sharding count of job ‘%s‘ is 0.
HY000 18083 Can not split by range for table ‘%s‘, reason is: %s
HY000 18084 Can not split by unique key ‘%s‘ for table ‘%s‘, reason is: %s
HY000 18085 Target table ‘%s‘ is not empty.
01007 18086 Source data source lacks %s privilege(s).
HY000 18087 Source data source required ‘%s = %s‘, now is ‘%s‘.
HY000 18088 User ‘%s‘ does exist.
08000 18089 Check privileges failed on source data source, reason is: %s
08000 18090 Data sources can not connect, reason is: %s
HY000 18091 Importer job write data failed.
08000 18092 Get binlog position failed by job ‘%s‘, reason is: %s
HY000 18093 Can not poll event because of binlog sync channel already closed.
HY000 18094 Task ‘%s‘ execute failed.
HY000 18095 Job has already finished, please run ‘CHECK MIGRATION %s‘ to start a new

data consistency check job.
HY000 18096 Uncompleted consistency check job ‘%s‘ exists.

4.4. 错误码 291

Apache ShardingSphere document, v5.2.1

DistSQL

SQL State Vendor Code 错误信息
44000 19000 Can not process invalid resources, error message is: %s
44000 19001 Resources ‘%s‘ do not exist in database ‘%s‘.
44000 19002 There is no resource in the database ‘%s‘.
44000 19003 Resource ‘%s‘ is still used by ‘%s‘.
44000 19004 Duplicate resource names ‘%s‘.
44000 19100 Invalid ‘%s‘ rule ‘%s‘, error message is: %s
44000 19101 %s rules ‘%s‘ do not exist in database ‘%s‘.
44000 19102 %s rules ‘%s‘ in database ‘%s‘ are still in used.
44000 19103 %s rule ‘%s‘ has been enabled in database ‘%s‘.
44000 19104 %s rule ‘%s‘ has been disabled in database ‘%s‘.
44000 19105 Duplicate %s rule names ‘%s‘ in database ‘%s‘.
44000 19150 Invalid %s algorithm(s) ‘%s‘.
44000 19151 %s algorithm(s) ‘%s‘ do not exist in database ‘%s‘.
44000 19152 %s algorithms ‘%s‘ in database ‘%s‘ are still in used.
44000 19153 Duplicate %s algorithms ‘%s‘ in database ‘%s‘.

功能异常

数据分片

SQL State Vendor Code 错误信息
44000 20000 Can not find table rule with logic tables ‘%s‘.
44000 20001 Can not get uniformed table structure for logic table ‘%s‘, it has different meta data of actual tables are as follows: %s
42S02 20002 Can not find data source in sharding rule, invalid actual data node ‘%s‘.
44000 20003 Data nodes must be configured for sharding table ‘%s‘.
44000 20004 Actual table ‘%s.%s‘ is not in table rule c onfiguration.
44000 20005 Can not find binding actual table, data source is ‘%s‘, logic table is ‘%s‘, other actual table is ‘%s‘.
44000 20006 Actual tables ‘%s‘ are in use.
42S01 20007 Index ‘%s‘ already exists.
42S02 20008 Index ‘%s‘ does not exist.
42S01 20009 View name has to bind to %s tables.
44000 20020 Sharding value can’t be null in insert statement.
HY004 20021 Found different types for sharding value ‘%s‘.
HY004 20022 Invalid %s, datetime pattern should be ‘%s‘, value is ‘%s‘.
0A000 20040 Can not support operation ‘%s‘ with sharding table ‘%s‘.
44000 20041 Can not update sharding value for table ‘%s‘.
0A000 20042 The CREATE VIEW statement contains unsupported query statement.
44000 20043 PREPARE statement can not support sharding tables route to same data sources.

续下页

4.4. 错误码 292

Apache ShardingSphere document, v5.2.1

表 1 –接上页
SQL State Vendor Code 错误信息
44000 20044 The table inserted and the table selected must be the same or bind tables.
0A000 20045 Can not support DML operation with multiple tables ‘%s‘.
42000 20046 %s⋯LIMIT can not support route to multiple data nodes.
44000 20047 Can not find actual data source intersection for logic tables ‘%s‘.
42000 20048 INSERT INTO⋯SELECT can not support applying key generator with absent generate key column.
0A000 20049 Alter view rename .. to .. statement should have same config for ‘%s‘ and ‘%s‘.
HY000 20060 ‘%s %s‘ can not route correctly for %s ‘%s‘.
42S02 20061 Can not get route result, please check your sharding rule c onfiguration.
34000 20062 Can not get cursor name from fetch statement.
HY000 20080 Sharding algorithm class ‘%s‘ should be implement ‘%s‘.
HY000 20081 Routed target ‘%s‘ does not exist, available targets are ‘%s‘.
44000 20082 Inline sharding algorithms expression ‘%s‘ and sharding column ‘%s‘ do not match.
44000 20090 Can not find strategy for generate keys with table ‘%s‘.
HY000 20099 Sharding plugin error, reason is: %s

读写分离

SQL State Vendor Code 错误信息
HY004 20280 Invalid read database weight ‘%s‘.

数据库高可用

SQLState Vendor
Code

错误信息

HY000 20380 MGR plugin is not active in database ‘%s‘.
44000 20381 MGR is not in single primary mode in database ‘%s‘.
44000 20382 ‘%s‘ is not in MGR replication group member in database ‘%s‘.
44000 20383 Group name inMGR is not samewith configured one ‘%s‘ in database ‘%s‘.

SQL方言转换

SQL State Vendor Code 错误信息
42000 20440 Can not support database ‘%s‘ in SQL translation.
42000 20441 Translation error, SQL is: %s

4.4. 错误码 293

Apache ShardingSphere document, v5.2.1

流量治理

SQL State Vendor Code 错误信息
42S02 20500 Can not get traffic execution unit.

数据加密

SQL
State

Vendor
Code

错误信息

44000 20700 Can not find logic encrypt column by ‘%s‘.
44000 20701 Fail to find encrypt column ‘%s‘ from table ‘%s‘.
44000 20702 Altered column ‘%s‘ must use same encrypt algorithm with previous column

‘%s‘ in table ‘%s‘.
42000 20740 Insert value of index ‘%s‘ can not support for encrypt.
0A000 20741 The SQL clause ‘%s‘ is unsupported in encrypt rule.
HY004 20780 Encrypt algorithm ‘%s‘ i nitialization failed, reason is: %s

影子库

SQL State Vendor Code 错误信息
HY004 20820 Shadow column ‘%s‘ of table ‘%s‘ does not support ‘%s‘ type.
42000 20840 Insert value of index ‘%s‘ can not support for shadow.

其他异常

SQL State Vendor Code 错误信息
HY004 30000 Unknown exception: %s
0A000 30001 Unsupported SQL operation: %s
0A000 30002 Database protocol exception: %s
0A000 30003 Unsupported command: %s

4.4.2 服务器错误码

服务器发生错误时所提供的唯一错误码，打印在 Proxy后端或 JDBC启动日志中。

4.4. 错误码 294

Apache ShardingSphere document, v5.2.1

错误码 错误信息
SPI‐00001 No implementation class load from SPI ‘%s‘ with type ‘%s‘.
DATA‐SOURCE‐00001 Data source unavailable.
PROPS‐00001 Value ‘%s‘ of ‘%s‘ cannot convert to type ‘%s‘.
PROXY‐00001 Load database server info failed.
SPRING‐00001 Can not find JNDI data source.
SPRING‐SHARDING‐00001 Can not support type ‘%s‘.

4.4. 错误码 295

5
开发者手册

Apache ShardingSphere可插拔架构提供了数十个基于 SPI的扩展点。对于开发者来说，可以十分方便的
对功能进行定制化扩展。
本章节将 Apache ShardingSphere的 SPI扩展点悉数列出。如无特殊需求，用户可以使用 Apache Shard‐
ingSphere提供的内置实现；高级用户则可以参考各个功能模块的接口进行自定义实现。
Apache ShardingSphere社区非常欢迎开发者将自己的实现类反馈至 [开源社区]，让更多用户从中收益。

5.1 运行模式

5.1.1 StandalonePersistRepository

全限定类名

org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepository

定义

单机模式配置信息持久化定义

已知实现

配 置 标
识

详细说明 全限定类名

H2 基于 H2 的持久
化

org.apache. shardingsphere.mode .repository.standal
one.h2.H2Repository

296

Apache ShardingSphere document, v5.2.1

5.1.2 ClusterPersistRepository

全限定类名

org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepository

定义

集群模式配置信息持久化定义

已知实现

配置标
识

详细说明 全限定类名

ZooKeeper基于 ZooKeeper
的持久化

org.apache. shardingsphere. mode.repository .cluster.zookee
per.CuratorZook eeperRepository

etcd 基于 Etcd 的持久
化

org.apach e.shardingspher e.mode.reposito ry.cluster.etcd .Etc‐
dRepository

Nacos 基于 Nacos 的持
久化

org.apache. shardingsphere. mode.repository .cluster.nacos. Na‐
cosRepository

Consul 基于 Consul 的持
久化

org.apache.sh ardingsphere.mo de.repository.c luster.consul.C on‐
sulRepository

5.1.3 GovernanceWatcher

全限定类名

org.apache.shardingsphere.mode.manager.cluster.coordinator.registry.GovernanceWatcher

定义

治理监听器定义

5.1. 运行模式 297

Apache ShardingSphere document, v5.2.1

已知实现

配置标识 详细说明 •
全限定类名 *

Types: ADDED, UPDATED,
DELETED; WatchingKeys:
/nodes/compute_nodes

计算节点状态变化监听器 org.apache. shardingsph
ere.mode.ma nager.clust
er.coordina tor.registr
y.status.co mpute.watch
er.ComputeN odeStateCha
ngedWatcher

Types: ADDED,
DELETED; WatchingKeys:
/lock/database/locks

数据库锁状态变化监听器 org.apac he.sharding
sphere.mode .manager.cl
uster.coord inator.lock
.database.w atcher.Data base‐
LockCha ngedWatcher

Types: ADDED,
DELETED; WatchingKeys:
/lock/distributed/locks

分布式锁变化监听器 org .apache.sha rdingsphere
.mode.manag er.cluster. coor‐
dinator .lock.distr ibuted.watc
her.Distrib utedLockCha
ngedWatcher

Types: UPDATED; Watch‐
ingKeys: /rules

全局规则配置变化监听器 org.apac he.sharding
sphere.mode .manager.cl
uster.coord inator.regi
stry.config .watcher.Gl obal‐
RuleCha ngedWatcher

Types: ADDED, UPDATED,
DELETED; WatchingKeys:
/metadata/${databaseName}

元数据变化监听器 org.apac he.sharding
sphere.mode .manager.cl
uster.coord inator.regi
stry.metada ta.watcher. Meta‐
DataCha ngedWatcher

Types: ADDED, UPDATED;
WatchingKeys: /props

属性变化监听器 org.apac he.sharding
sphere.mode .manager.cl
uster.coord inator.regi
stry.config .watcher.Pr op‐
ertiesCha ngedWatcher

Types: ADDED, UPDATED,
DELETED; WatchingKeys:
/nodes/storage_nodes

存储节点状态变化监听器 org.apache. shardingsph
ere.mode.ma nager.clust
er.coordina tor.registr
y.status.st orage.watch
er.StorageN odeStateCha
ngedWatcher

5.1. 运行模式 298

Apache ShardingSphere document, v5.2.1

5.2 配置

5.2.1 RuleBuilder

全限定类名

org.apache.shardingsphere.infra.rule.builder.RuleBuilder

定义

用于将用户配置转化为规则对象的接口

5.2. 配置 299

Apache ShardingSphere document, v5.2.1

已知实现

配置标识 详细说明 全限定类名
A uthor ityRu leCon
figur ation

用于将权限用户配置转化为
权限规则对象

org.apache.shar ding‐
sphere.authority.rule.builder.AuthorityRuleBuilder

S QLPar serRu leCon
figur ation

用于将 SQL解析用户配置转
化为 SQL解析规则对象

org.apache.s harding‐
sphere.parser.rule.builder.SQLParserRuleBuilder

Tra nsact ionRu leCon
figur ation

用于将事务用户配置转化为
事务规则对象

org.apache.sharding
sphere.transaction.rule.builder.TransactionRuleBuilder

Sin gleTa bleRu leCon
figur ation

用于将单表用户配置转化为
单表规则对象

org.apache.sharding
sphere.singletable.rule.builder.SingleTableRuleBuilder

Shard ingRu leCon figur
ation

用于将分片用户配置转化为
分片规则对象

org.apache.sh arding‐
sphere.sharding.rule.builder.ShardingRuleBuilder

Al gorit hmPro vided
Shard ingRu leCon figur
ation

用于将 Spr ing C ont ext下
基于算法的分片用户配置转
化为分片规则对象

org.apache.shardingsphere.shar
ding.rule.builder.AlgorithmProvidedShardingRuleBuilder

Readw riteS plitt ingRu
leCon figur ation

用于将读写分离用户配置转
化为读写分离规则对象

org.apache.shardingsphere.readwri tes‐
plitting.rule.builder.ReadwriteSplittingRuleBuilder

Al gorit hmPro vided
Readw riteS plitt ingRu
leCon figur ation

用于将基于算法的读写分离
用户配置转化为读写分离规
则对象

org.apache.shardingsphere.readwritesplitting.rule.
builder.AlgorithmProvidedReadwriteSplittingRuleBuilder

Data baseD iscov eryRu
leCon figur ation

用于将数据库发现用户配置
转化为数据库发现规则对象

org.apache.shardingsphere .dbdiscov‐
ery.rule.builder.DatabaseDiscoveryRuleBuilder

A lgori thmPr ovide
dData baseD iscov
eryRu leCon figur ation

用于将基于算法的数据库发
现用户配置转化为数据库发
现规则对象

org.apache.shardingsphere.dbdiscovery.rule
.builder.AlgorithmProvidedDatabaseDiscoveryRuleBuilder

Encr yptRu leCon figur
ation

用于将加密用户配置转化为
加密规则对象

org.apache. sharding‐
sphere.encrypt.rule.builder.EncryptRuleBuilder

A lgori thmPr ovide
dEncr yptRu leCon
figur ation

用于将基于算法的加密用户
配置转化为加密规则对象

org.apache.shardingsphere.en
crypt.rule.builder.AlgorithmProvidedEncryptRuleBuilder

Sha dowRu leCon figur
ation

用于将影子库用户配置转化
为影子库规则对象

org.apache.shardingsphere.shadow.rule.builder.ShadowRuleBuilder

Algor ithmP rovid ed‐
Sha dowRu leCon figur
ation

用于将基于算法的影子库用
户配置转化为影子库规则对
象

org.apache.shardingsphere.
shadow.rule.builder.AlgorithmProvidedShadowRuleBuilder

5.2. 配置 300

Apache ShardingSphere document, v5.2.1

5.2.2 YamlRuleConfigurationSwapper

全限定类名

org.apache.shardingsphere.infra.yaml.config.swapper.YamlRuleConfigurationSwapper

定义

用于将 YAML配置转化为标准用户配置

5.2. 配置 301

Apache ShardingSphere document, v5.2.1

已知实现

配置标识 详细说明 全限定类名
AUTHOR‐
ITY

用于将权限规则的 YAML
配置转化为权限规则标准
配置

or g.apach e.shard ingsphe re.auth ority.y aml.swa pper.Ya
mlAutho rityRul eConfig uration Swapper

SQL_PARSER用于将 SQL解析的 YAML
配置转化为 SQL解析标准
配置

org.ap ache.sh ardings phere.p arser.y aml.swa pper.Ya
mlSQLPa rserRul eConfig uration Swapper

TRANSAC‐
TION

用于将事务的 YAML配置
转化为事务标准配置

org.ap ache.sh ardings phere.t ransact ion.yam l.swapp
er.Yaml Transac tionRul eConfig uration Swapper

SINGLE 用于将单表的 YAML配置
转化为单表标准配置

org.ap ache.sh ardings phere.s ingleta ble.yam l.confi
g.swapp er.Yaml SingleT ableRul eConfig uration Swapper

SHARD‐
ING

用于将分片的 YAML配置
转化为分片标准配置

org.apa che.sha rdingsp here.sh arding. yaml.sw apper.Y
amlShar dingRul eConfig uration Swapper

SHARD‐
ING

用于将基于算法的分片配
置转化为分片标准配置

org .apache .shardi ngspher e.shard ing.yam l.swapp
er.Yaml Shardin gRuleAl gorithm Provide rConfig uration
Swapper

READ
WRITE_SPLITTING

用于将读写分离的 YAML
配置转化为读写分离标准
配置

org.ap ache.sh ardings phere.r eadwrit esplitt ing.yam
l.swapp er.Yaml Readwri teSplit tingRul eConfig uration
Swapper

READ
WRITE_SPLITTING

用于将基于算法的读写分
离配置转化为读写分离标
准配置

or g.apach e.shard ingsphe re.read writesp litting .yaml.s
wapper. YamlRea dwriteS plittin gRuleAl gorithm Provide
rConfig uration Swapper

DB_DISCOVERY用于将数据库发现的
YAML 配置转化为数据库
发现标准配置

org.a pache.s harding sphere. dbdisco very.ya ml.swap
per.Yam lDataba seDisco veryRul eConfig uration Swapper

DB_DISCOVERY用于将基于算法的数据库
发现配置转化为数据库发
现标准配置

o rg.apac he.shar dingsph ere.dbd iscover y.yaml. swapper
.YamlDa tabaseD iscover yRuleAl gorithm Provide rConfig
uration Swapper

ENCRYPT 用于将加密的 YAML配置
转化为加密标准配置

org.a pache.s harding sphere. encrypt .yaml.s wapper.
YamlEnc ryptRul eConfig uration Swapper

ENCRYPT 用于将基于算法的加密配
置转化为加密标准配置

o rg.apac he.shar dingsph ere.enc rypt.yaml.swapper.Yam
lEncryp tRuleAl gorithm Provide rConfig uration Swapper

SHADOW 用于将影子库的 YAML配
置转化为影子库标准配置

org .apache .shardi ngspher e.shado w.yaml. swapper
.YamlSh adowRul eConfig uration Swapper

SHADOW 用于将基于算法的影子库
配置转化为影子库标准配
置

org.ap ache.sh ardings phere.s hadow.y aml.swa pper.Ya
mlShado wRuleAl gorithm Provide rConfig uration Swap‐
per

SQL_TRANSLATOR用于将 SQL转换的 YAML
配置转化为 SQL转换标准
配置

org .apache .shardi ngspher e.sqltr anslato r.yaml. swap‐
per .YamlSQ LTransl atorRul eConfig uration Swapper

5.2. 配置 302

Apache ShardingSphere document, v5.2.1

5.2.3 ShardingSphereYamlConstruct

全限定类名

org.apache.shardingsphere.infra.yaml.engine.constructor.ShardingSphereYamlConstruct

定义

用于将定制化对象和 YAML相互转化

已知实现

配置标识 详细说明 •
全限定类名 *

YamlNo neShardingStrategy‐
Configuration

用于将不分片策略对象和
YAML相互转化

o rg.apa che.sh arding sphere
.shard ing.ya ml.eng ine.co
nstruc t.None Shardi ngStra
tegyCo nfigur ationY amlCon
struct

5.3 内核

5.3.1 SQLRouter

全限定类名

org.apache.shardingsphere.infra.route.SQLRouter

定义

用于处理路由结果

5.3. 内核 303

Apache ShardingSphere document, v5.2.1

已知实现

配置标识 详细说明 全限定类名
Sin gleTableRule 用于处理单表路由

结果
org.apache.shardingsphere.s in‐
gletable.route.SingleTableSQLRouter

ShardingRule 用于处理分片路由
结果

org.apache.shardingsphere.sh ard‐
ing.route.engine.ShardingSQLRouter

ReadwriteS plit‐
tingRule

用于处理读写分离
路由结果

org. apache.shardingsphere.readwritesplitt
ing.route.ReadwriteSplittingSQLRouter

DatabaseD
iscoveryRule

用于处理数据库发
现路由结果

org.apache.shardingsphere.dbdisco
very.route.DatabaseDiscoverySQLRouter

ShadowRule 用于处理影子库路
由结果

org.apache.shardi ngsphere.shadow.route.ShadowSQLRouter

5.3.2 SQLRewriteContextDecorator

全限定类名

org.apache.shardingsphere.infra.rewrite.context.SQLRewriteContextDecorator

定义

用于处理 SQL改写结果

已知实现

配置标识 详细说明 全限定类名
Sh ard‐
ingRule

用于处理分片 SQL
改写结果

org.apach e.shardingsphere.sharding.rewrite.cont
ext.ShardingSQLRewriteContextDecorator

E ncryp‐
tRule

用于处理加密 SQL
改写结果

org.apa che.shardingsphere.encrypt.rewrite.con
text.EncryptSQLRewriteContextDecorator

5.3.3 SQLExecutionHook

全限定类名

org.apache.shardingsphere.infra.executor.sql.hook.SQLExecutionHook

5.3. 内核 304

Apache ShardingSphere document, v5.2.1

定义

SQL执行过程监听器

已知实现

配 置
标识

详细说明 全限定类名

无 基于事务的 SQL执行过
程监听器

org.apa che.shardingsphere.transaction.base.s
eata.at.TransactionalSQLExecutionHook

5.3.4 ResultProcessEngine

全限定类名

org.apache.shardingsphere.infra.merge.engine.ResultProcessEngine

定义

用于处理结果集

已知实现

配置标识 详细说明 全限定类名
S hard‐
ingRule

用于处理分片结果集
归并

org.apache.shardingsphere.sh ard‐
ing.merge.ShardingResultMergerEngine

Encryp‐
tRule

用于处理加密结果集
改写

org.apache.shardingsphere.enc rypt.merge.EncryptResultDecoratorEngine

5.4 数据源

5.4.1 DatabaseType

全限定类名

org.apache.shardingsphere.infra.database.type.DatabaseType

5.4. 数据源 305

Apache ShardingSphere document, v5.2.1

定义

支持的数据库类型

已知实现

配 置 标
识

详细说明 全限定类名

SQL92 遵循 SQL92 标准的数
据库类型

org.apache.sha rdingsphere.infra.d atabase.type.dialec
t.SQL92DatabaseType

MySQL MySQL数据库 org.apache.sha rdingsphere.infra.d atabase.type.dialec
t.MySQLDatabaseType

Mari‐
aDB

MariaDB数据库 org.apache.shard ingsphere.infra.dat abase.type.dialect. Mari‐
aDBDatabaseType

Post‐
greSQL

PostgreSQL数据库 org.apache.sharding sphere.infra.databa se.type.dialect.Pos
tgreSQLDatabaseType

Oracle Oracle数据库 org.apache.shar dingsphere.infra.da tabase.type.dialect .Ora‐
cleDatabaseType

SQLServer SQLServer数据库 org.apache.shardin gsphere.infra.datab ase.type.dialect.SQ
LServerDatabaseType

H2 H2数据库 org.apache. shardingsphere.infr a.database.type.dia
lect.H2DatabaseType

open‐
Gauss

OpenGauss数据库 org.apache.shardin gsphere.infra.datab ase.type.dialect.Op
enGaussDatabaseType

5.4.2 DialectSchemaMetaDataLoader

全限定类名

org.apache.shardingsphere.infra.metadata.database.schema.loader.spi.DialectSchemaMetaDataLoader

定义

使用 SQL方言快速加载元数据

5.4. 数据源 306

Apache ShardingSphere document, v5.2.1

已知实现

配置标
识

详细说明 全限定类名

MySQL 使用MySQL方言加
载元数据

o rg.apache.shardi ngsphere.infra.m etadata.database
.schema.loader.d ialect.MySQLSche maMetaDataLoader

Oracle 使用 Oracle方言加
载元数据

or g.apache.shardin gsphere.infra.me tadata.database.
schema.loader.di alect.OracleSche maMetaDataLoader

Post‐
greSQL

使用 PostgreSQL方
言加载元数据

org.ap ache.shardingsph ere.infra.metada ta.database.sche
ma.loader.dialec t.PostgreSQLSche maMetaDataLoader

SQLServer使用 SQLServer 方
言加载元数据

org.a pache.shardingsp here.infra.metad ata.database.sch
ema.loader.diale ct.SQLServerSche maMetaDataLoader

H2 使用 H2 方言加载
元数据

org.apache.sha rdingsphere.infr a.metadata.datab
ase.schema.loade r.dialect.H2Sche maMetaDataLoader

open‐
Gauss

使用 OpenGauss方
言加载元数据

org.a pache.shardingsp here.infra.metad ata.database.sch
ema.loader.diale ct.OpenGaussSche maMetaDataLoader

5.4.3 DataSourcePoolMetaData

全限定类名

org.apache.shardingsphere.infra.datasource.pool.metadata.DataSourcePoolMetaData

定义

数据源连接池元数据

已知实现

配置标识 详细说明 全限定类名
o rg.apache.commons.dbcp.BasicDataSource,
org.apache.tomcat.dbcp.dbcp2.BasicDataSource

DBCP 数据
库连接池
元数据

org .apache.sh ardingsphe re.infra.d ata‐
source. pool.metad ata.type.d bcp.DBCPDa
taSourcePo olMetaData

com.zaxxer.hikari.HikariDataSource Hikari 数
据源连接
池元数据

org.apa che.shardi ngsphere.i nfra.datas
ource.pool .metadata. type.hikar i.HikariDa
taSourcePo olMetaData

com.mchange.v2.c3p0.ComboPooledDataSourceC3P0 数据
源连接池
元数据

org .apache.sh ardingsphe re.infra.d ata‐
source. pool.metad ata.type.c 3p0.C3P0Da
taSourcePo olMetaData

5.4. 数据源 307

Apache ShardingSphere document, v5.2.1

5.4.4 DataSourcePoolActiveDetector

全限定类名

org.apache.shardingsphere.infra.datasource.pool.destroyer.detector.DataSourcePoolActiveDetector

定义

数据源连接池活跃探测器

已知实现

配置标识 详细说明 全限定类名
Default 默认数据源连接

池活跃探测器
org.apache. shardingsphere.i nfra.datasource.
pool.destroyer.d etector.type.Def aultDataSourcePo
olActiveDetector

com.zaxxer.hi
kari.HikariDataSource

Hikari数据源连
接池活跃探测器

org.apache .shardingsphere. infra.datasource
.pool.destroyer. detector.type.Hi kariDataSourcePo
olActiveDetector

5.5 SQL解析

5.5.1 DatabaseTypedSQLParserFacade

全限定类名

org.apache.shardingsphere.sql.parser.spi.DatabaseTypedSQLParserFacade

定义

配置用于 SQL解析的词法分析器和语法分析器入口

5.5. SQL解析 308

Apache ShardingSphere document, v5.2.1

已知实现

配 置 标
识

详细说明 全限定类名

MySQL 基于 MySQL 的 SQL 解析
器入口

org.apache.shardingsphere.sql.
parser.mysql.parser.MySQLParserFacade

Post‐
greSQL

基于 PostgreSQL 的 SQL
解析器入口

org .apache.shardingsphere.sql.parser.pos
tgresql.parser.PostgreSQLParserFacade

SQLServer 基于 SQLServer的 SQL解
析器入口

o rg.apache.shardingsphere.sql.parser.s
qlserver.parser.SQLServerParserFacade

Oracle 基于Oracle的 SQL解析器
入口

org.apache.shardingsphere.sql.pa
rser.oracle.parser.OracleParserFacade

SQL92 基于 SQL92的 SQL解析器
入口

org.apache.shardingsphere.sql.
parser.sql92.parser.SQL92ParserFacade

open‐
Gauss

基于 openGauss的 SQL解
析器入口

o rg.apache.shardingsphere.sql.parser.o pen‐
gauss.parser.OpenGaussParserFacade

5.5.2 SQLVisitorFacade

全限定类名

org.apache.shardingsphere.sql.parser.spi.SQLVisitorFacade

定义

SQL语法树访问器入口

5.5. SQL解析 309

Apache ShardingSphere document, v5.2.1

已知实现

配 置
标识

详细说明 全限定类名

MySQL 基于 MySQL 的 SQL 语
法树访问器入口

org.apache.shardingspher e.sql.parser.mysql.visitor.statement.
facade.MySQLStatementSQLVisitorFacade

Post‐
greSQL

基于 PostgreSQL的 SQL
语法树访问器入口

org.apache.shardingsphere.sql.pars
er.postgresql.visitor.statement.facad
e.PostgreSQLStatementSQLVisitorFacade

SQLServer基于 SQLServer 的 SQL
语法树访问器入口

org.apache.shardingsphere.sql.pa rser.sqlserver.visitor.statement.faca
de.SQLServerStatementSQLVisitorFacade

Ora‐
cle

基于Oracle的 SQL语法
树访问器入口

org.apache.shardingsphere. sql.parser.oracle.visitor.statement.f
acade.OracleStatementSQLVisitorFacade

SQL92 基于 SQL92的 SQL语法
树访问器入口

org.apache.shardingspher e.sql.parser.sql92.visitor.statement.
facade.SQL92StatementSQLVisitorFacade

open‐
Gauss

基于 openGauss的 SQL
语法树访问器入口

org.apache.shardingsphere.sql.pa rser.opengauss.visitor.statement.faca
de.OpenGaussStatementSQLVisitorFacade

5.6 代理端

5.6.1 DatabaseProtocolFrontendEngine

全限定类名

org.apache.shardingsphere.proxy.frontend.spi.DatabaseProtocolFrontendEngine

定义

用于 ShardingSphere‐Proxy解析与适配访问数据库的协议

已知实现

配置标识 |详细说明 |全限定类名|

M y S Q L MySQL 协议实现| org .apache.shardingsphere.proxy.frontend.mysql.
MySQLFrontendEngine

P o s t g r e S Q L P o s t g r e S Q L 协议实现| org.apache.sh ardingsphere.proxy.front
end.postgresql.PostgreSQLFrontendEngine

o p e n G a u s s o p e n G a u s s 协议实现| org.apache. shardingsphere.proxy.front
end.opengauss.OpenGaussFrontendEngine

5.6. 代理端 310

Apache ShardingSphere document, v5.2.1

5.6.2 AuthorityProvideAlgorithm

全限定类名

org.apache.shardingsphere.authority.spi.AuthorityProviderAlgorithm

定义

用户权限加载逻辑

已知实现

配置标识 |详细说明 |全限定类名

A L L _ P E R M I T T E D 默认授予所有权限（不鉴权） org.apache.shardingsphere.authori
ty.provider.simple.AllPermittedPrivilegesProviderAlgorithm

D A T A B A S E _ P E R M I T T
E D

通过属性 u ser ‐da tab ase ‐ma
ppi ngs配置的权限

org.apache.shardingsphere.authority.prov
ider.database.DatabasePermittedPrivilegesProviderAlgorithm

5.7 数据分片

5.7.1 ShardingAlgorithm

全限定类名

org.apache.shardingsphere.sharding.spi.ShardingAlgorithm

定义

分片算法

5.7. 数据分片 311

Apache ShardingSphere document, v5.2.1

已知实现

•
配置标识 *

•
自动分片算法 *

详细说明 全限定类名

MOD Y 基于取模的分片算法 org.ap ache.shardin
gsphere.shar
ding.algorit
hm.sharding.
mod.ModShard in‐
gAlgorithm

HASH_MOD Y 基于哈希取模的分片算
法

org.apache .shard‐
ingsph ere.sharding
.algorithm.s hard‐
ing.mod. HashMod‐
Shard ingAlgorithm

BOUND ARY_RANGE Y 基于分片边界的范围分
片算法

org.apache. shard‐
ingsphe re.sharding.
algorithm.sh ard‐
ing.range .Boundary‐
Bas edRangeShard
ingAlgorithm

VOL UME_RANGE Y 基于分片容量的范围分
片算法

org.apach
e.shardingsp
here.shardin
g.algorithm. shard‐
ing.ran ge.VolumeBas
edRangeShard ingAl‐
gorithm

AUTO _INTERVAL Y 基于可变时间范围的分
片算法

org.apac he.shardings
phere.shardi
ng.algorithm .shard‐
ing.da tetime.AutoI
ntervalShard ingAlgo‐
rithm

INTERVAL N 基于固定时间范围的分
片算法

org. apache.shard
ingsphere.sh ard‐
ing.algor ithm.shardin
g.datetime.I nterval‐
Shard ingAlgorithm

CL ASS_BASED N 基于自定义类的分片算
法

org.apac he.shardings
phere.shardi
ng.algorithm .shard‐
ing.cl assbased.Cla
ssBasedShard ingAlgo‐
rithm

INLINE N 基于行表达式的分片算
法

org.apache.s harding‐
spher e.sharding.a lgo‐
rithm.sha rding.inline
.InlineShard ingAlgo‐
rithm

COMPL EX_INLINE N 基于行表达式的复合分
片算法

org.apac he.shardings
phere.shardi
ng.algorithm .shard‐
ing.co mplex.Comple
xInlineShard ingAlgo‐
rithm

HI NT_INLINE N 基于行表达式的 Hint
分片算法

or g.apache.sha
rdingsphere. shard‐
ing.alg orithm.shard
ing.hint.Hin tInline‐
Shard ingAlgorithm

COSID_MOD N 基于 CosId的取模分片
算法

org.a pache.shardi
ngsphere.sha rd‐
ing.cosid. al‐
gorithm.sh ard‐
ing.mod.C osIdMod‐
Shard ingAlgorithm

COSID _INTERVAL N 基于 CosId的固定时间
范围的分片算法

org .apache.shar ding‐
sphere.s harding.cosi
d.algorithm. shard‐
ing.int erval.CosIdI
ntervalShard ingAlgo‐
rithm

COSID_ INTERVAL_
SNOWFLAKE

N 基于 CosId 的雪花 ID
固定时间范围的分片算
法

org.apache.s harding‐
spher e.sharding.c
osid.algorit
hm.sharding. inter‐
val.Cos IdSnowflakeI
ntervalShard ingAlgo‐
rithm

5.7. 数据分片 312

Apache ShardingSphere document, v5.2.1

5.7.2 KeyGenerateAlgorithm

全限定类名

org.apache.shardingsphere.sharding.spi.KeyGenerateAlgorithm

定义

分布式主键生成算法

已知实现

配置标识 详细说明 全限定类名
SNOWFLAKE 基于雪花算法的分布式

主键生成算法
org.apache.sh ardingsphere.shar ding.algorithm.ke
ygen.SnowflakeKey GenerateAlgorithm

UUID 基于 UUID 的分布式主
键生成算法

org.apac he.shardingsphere .sharding.algorit
hm.keygen.UUIDKey GenerateAlgorithm

NANOID 基于 NanoId 的分布式
主键生成算法

org.apache.shardi ngsphere.sharding .nanoid.algorithm
.keygen.NanoIdKey GenerateAlgorithm

COSID 基于 CosId 的分布式主
键生成算法

org.apache.shar dingsphere.shardi ng.cosid.algorith
m.keygen.CosIdKey GenerateAlgorithm

COSI
D_SNOWFLAKE

基于 CosId 的雪花算法
分布式主键生成算法

org.apa che.shardingspher e.sharding.cosid. algo‐
rithm.keygen. CosIdSnowflakeKey GenerateAlgorithm

5.7.3 ShardingAuditAlgorithm

全限定类名

org.apache.shardingsphere.sharding.spi.ShardingAuditAlgorithm

定义

分片审计算法

已知实现

配置标识 详细说明 全限定类名
DML_SHARDING
_CONDITIONS

禁止不带分片键
的 DML审计算法

org. apache.sharding sphere.sharding .algorithm.audi
t.DMLShardingCo nditionsShardin gAuditAlgorithm

5.7. 数据分片 313

Apache ShardingSphere document, v5.2.1

5.7.4 DatetimeService

全限定类名

org.apache.shardingsphere.infra.datetime.DatetimeService

定义

获取当前时间进行路由

已知实现

配置标识 详细说明 全限定类名
D atabaseDate
timeService

从数据库中获取当前时
间进行路由

org.apache. shardingsphere. agent.metrics.p
rometheus.servi ce.PrometheusPl uginBootService

Sys temDate‐
time

从应用系统时间中获取
当前时间进行路由

org .apache.shardin gsphere.datetim e.system.System
DatetimeService

5.8 读写分离

5.8.1 ReadQueryLoadBalanceAlgorithm

全限定类名

org.apache.shardingsphere.readwritesplitting.spi.ReadQueryLoadBalanceAlgorithm

定义

读库负载均衡算法

5.8. 读写分离 314

Apache ShardingSphere document, v5.2.1

已知实现

•
配置标识 *

详细说明 全限定类名

RO UND_ROBIN 基于轮询的读库负载均衡算法 o rg.apache.shardingsph
ere.readwritesplittin
g.algorithm.loadbalan
ce.RoundRobinReadQuer
yLoadBalanceAlgorithm

RANDOM 基于随机的读库负载均衡算法 org.apache.shardin
gsphere.readwritespli
tting.algorithm.loadb
alance.RandomReadQuer
yLoadBalanceAlgorithm

WEIGHT 基于权重的读库负载均衡算法 org.apache.shardin
gsphere.readwritespli
tting.algorithm.loadb
alance.WeightReadQuer yLoad‐
BalanceAlgorithm

TRANSACTI ON_RANDOM 无论是否在事务中，读请求采用
随机策略路由到多个读库

org.apac
he.shardingsphere.rea
dwritesplitting.algor
ithm.loadbalance.Tran sac‐
tionRandomReadQuer yLoad‐
BalanceAlgorithm

TRANS ACTION_RO
UND_ROBIN

无论是否在事务中，读请求采用
轮询策略路由到多个读库

org.apache.s harding‐
sphere.readwri tesplit‐
ting.algorithm .loadbal‐
ance.Transact ionRoundRobin‐
ReadQuer yLoadBalanceAlgo‐
rithm

TRANSACTI ON_WEIGHT 无论是否在事务中，读请求采用
权重策略路由到多个读库

org.apac
he.shardingsphere.rea
dwritesplitting.algor
ithm.loadbalance.Tran sac‐
tionWeightReadQuer yLoad‐
BalanceAlgorithm

FI XED_REPLI CA_RANDOM 显式开启事务，读请求采用随机
策略路由到一个固定读库；不开
事务，每次读流量使用指定算法
路由到不同的读库

org.apach
e.shardingsphere.read
writesplitting.algori
thm.loadbalance.Fixed
ReplicaRandomReadQuer
yLoadBalanceAlgorithm

FIXED_R EPLICA_RO
UND_ROBIN

显式开启事务，读请求采用轮询
策略路由到一个固定读库；不开
事务，每次读流量使用指定算法
路由到不同的读库

org.apache.sh arding‐
sphere.readwrit esplit‐
ting.algorithm. load‐
balance.FixedRepl
icaRoundRobinReadQuer
yLoadBalanceAlgorithm

FI XED_REPLI CA_WEIGHT 显式开启事务，读请求采用权重
策略路由到多个读库；不开事务，
每次读流量使用指定算法路由
到不同的读库

org.apach
e.shardingsphere.read
writesplitting.algori
thm.loadbalance.Fixed Repli‐
caWeightReadQuer yLoadBal‐
anceAlgorithm

FIXE D_PRIMARY 读请求全部路由到主库 org .apache.shardingspher
e.readwritesplitting. algo‐
rithm.loadbalance .Fixed‐
PrimaryReadQuer yLoadBal‐
anceAlgorithm

5.8. 读写分离 315

Apache ShardingSphere document, v5.2.1

5.9 高可用

5.9.1 DatabaseDiscoveryProviderAlgorithm

全限定类名

org.apache.shardingsphere.dbdiscovery.spi.DatabaseDiscoveryProviderAlgorithm

定义

数据库发现提供算法的定义

已知实现

配置标识 详细说明 全限定类名
MySQL.MGR 基于MySQLMGR的

数据库发现算法
org.apache. shardingsphere.d bdiscovery.mysql
.type.MGRMySQLDa tabaseDiscoveryP roviderAlgo‐
rithm

MySQL.NO
RMAL_REPLICATION

基于 MySQL 主从同
步的数据库发现算
法

org.apach e.shardingsphere .dbdiscovery.mys
ql.type.MySQLNor malReplicationDa tabaseDiscov‐
eryP roviderAlgorithm

openGauss.NO
RMAL_REPLICATION

基于 openGauss 主
从同步的数据库发
现算法

org.apache.s hardingsphere.db discovery.openga
uss.OpenGaussNor malReplicationDa tabaseDiscoveryP
roviderAlgorithm

5.10 分布式事务

5.10.1 ShardingSphereTransactionManager

全限定类名

org.apache.shardingsphere.transaction.spi.ShardingSphereTransactionManager

定义

分布式事务管理器

5.9. 高可用 316

Apache ShardingSphere document, v5.2.1

已知实现

配 置
标识

详细说明 全限定类名

XA 基于 XA 的分布式事
务管理器

org.apache .shardingsphe re.transactio n.xa.XAShardi ngSphere‐
Trans actionManager

BASE 基于 Seata 的分布式
事务管理器

org.apache.sh ardingsphere. transaction.b ase.seata.at. SeataAT‐
Shardi ngSphereTrans actionManager

5.10.2 XATransactionManagerProvider

全限定类名

org.apache.shardingsphere.transaction.xa.spi.XATransactionManagerProvider

定义

XA分布式事务管理器

已知实现

•
配置标识 *

详细说明 •
全限定类名 *

Atomikos 基于 Atomikos 的 XA 分布式事
务管理器

org.ap ache.shardi ngsphere.tr
ansaction.x a.atomikos. man‐
ager.Ato mikosTransa ction‐
Manage rProvider｜

Narayana 基于 Narayana 的 XA 分布式事
务管理器

org.apac he.sharding
sphere.tran saction.xa.
narayana.ma nager.Naray
anaXATransa ctionManage
rProvider｜

Bitronix 基于 Bitronix的 XA分布式事务
管理器

org.apac he.sharding
sphere.tran saction.xa. bi‐
tronix.ma nager.Bitro nixXA‐
Transa ctionManage rProvider
｜

5.10. 分布式事务 317

Apache ShardingSphere document, v5.2.1

5.10.3 XADataSourceDefinition

全限定类名

org.apache.shardingsphere.transaction.xa.jta.datasource.properties.XADataSourceDefinition

定义

用于非 XA数据源转化为 XA数据源

已知实现

配 置
标识

详细说明 全限定类名

MySQL 非 XA的MySQL数据源自动转
化为 XA的MySQL数据源

org.ap ache.sh ardings phere.t ransact ion.xa. jta.dat
asource .proper ties.di alect.M ySQLXAD ataSour ceDefin
ition｜

M
ari‐
aDB

非 XA的 MariaDB数据源自动
转化为 XA的MariaDB数据源

o rg.apac he.shar dingsph ere.tra nsactio n.xa.jt a.datas
ource.p roperti es.dial ect.Mar iaDBXAD ataSour ceDefin
ition｜

Post
greSQL

非 XA的 PostgreSQL数据源自
动转化为 XA的 PostgreSQL数
据源

org. apache. shardin gsphere .transa ction.x a.jta.d ata‐
sour ce.prop erties. dialect .Postgr eSQLXAD ataSour
ceDefin ition｜

Ora‐
cle

非 XA的 Oracle数据源自动转
化为 XA的 Oracle数据源

org.apa che.sha rdingsp here.tr ansacti on.xa.j ta.data
source. propert ies.dia lect.Or acleXAD ataSour ceDefin
ition｜

SQL
Server

非 XA 的 SQLServer 数据源自
动转化为 XA 的 SQLServer 数
据源

org .apache .shardi ngspher e.trans action. xa.jta. datasou
rce.pro perties .dialec t.SQLSe rverXAD ataSour ceDefin
ition｜

H2 非 XA的H2数据源自动转化为
XA的H2数据源

org .apache .shardi ngspher e.trans action. xa.jta. datasou
rce.pro perties .dialec t.H2XAD ataSour ceDefin ition｜

5.10.4 DataSourcePropertyProvider

全限定类名

org.apache.shardingsphere.transaction.xa.jta.datasource.swapper.DataSourcePropertyProvider

5.10. 分布式事务 318

Apache ShardingSphere document, v5.2.1

定义

用于获取数据源连接池的标准属性

已知实现

配置标识 详细说明 •
全限定类名 *

com. za‐
xxer.hikari.HikariDataSource

用于获取 HikariCP 连接池的标
准属性

org.a pache. shardi ngsphe
re.tra nsacti on.xa. jta.da
tasour ce.swa pper.i mpl.Hi
kariCP Proper tyProv ider｜

5.11 SQL检查

5.11.1 全限定类名

org.apache.shardingsphere.infra.executor.check.SQLChecker

5.11.2 定义

SQL检查定义接口

5.11.3 已知实现

配置标识 详细说明 全限定类名
Authori‐
tyRule.class

权限检查器 org. apache.shardin gsphere.author ity.checker.Au thority‐
Checker

Shard‐
ingRule.class

分片审计检
查器

org.apache.sh ardingsphere.s harding.checke r.audit.Shardi
ngAuditChecker

5.12 数据加密

5.12.1 EncryptAlgorithm

全限定类名

org.apache.shardingsphere.encrypt.spi.EncryptAlgorithm

5.11. SQL检查 319

Apache ShardingSphere document, v5.2.1

定义

数据加密算法

已知实现

配 置 标
识

详细说明 全限定类名

MD5 基于 MD5 的数据加密算
法

org.apach e.shardingsphere.encrypt
ion.algorithm.MD5Encrypt

AES 基于 AES 的数据加密算
法

org.apach e.shardingsphere.encrypt
ion.algorithm.AESEncrypt

RC4 基于 RC4 的数据加密算
法

org.apach e.shardingsphere.encrypt
ion.algorithm.RC4Encrypt

SM3 基于 SM3 的数据加密算
法

org.apach e.shardingsphere.encrypt
ion.algorithm.SM3Encrypt

SM4 基于 SM4 的数据加密算
法

org.apach e.shardingsphere.encrypt
ion.algorithm.SM4Encrypt

5.13 影子库

5.13.1 ShadowAlgorithm

全限定类名

org.apache.shardingsphere.shadow.spi.ShadowAlgorithm

定义

影子库提供的影子算法

5.13. 影子库 320

Apache ShardingSphere document, v5.2.1

已知实现

已知实现类 详细说明 完全限定类名
Co lumnValue‐
MatchedShadowAl‐
gorithm

基于字段值匹
配影子算法

org.apache .shardings phere.shad ow.algorit hm.shadow.
column.Col umnValueMa tchedShado wAlgorithm

Co lumnRegex‐
MatchedShadowAl‐
gorithm

基于字段值正
则匹配影子算
法

org.apache .shardings phere.shad ow.algorit hm.shadow.
column.Col umnRegexMa tchedShado wAlgorithm

SimpleHintShad‐
owAlgorithm

基于 Hint 简单
匹配影子算法

org.apache .shardings phere.shad ow.algorit hm.shadow.
hint.Simpl eHintShado wAlgorithm

5.14 可观察性

5.14.1 PluginBootService

全限定类名

org.apache.shardingsphere.agent.spi.boot.PluginBootService

定义

插件启动服务定义接口

已知实现

配 置 标
识

详细说明 全限定类名

PrometheusPrometheus plugin
启动类

org.a pache.sha rdingsphe re.agent. metrics.p rometheus .ser‐
vice. Prometheu sPluginBo otService

Logging Logging plugin启动
类

org.apa che.shard ingsphere .agent.pl ugin.logg ing.base. ser‐
vice.B aseLoggin gPluginBo otService

Jaeger Jaeger plugin启动类 or g.apache. shardings phere.age nt.plugin .tracing. jaeger.se
rvice.Jae gerTracin gPluginBo otService

Open‐
Teleme‐
try

OpenTelemetry‐
Tracing plugin 启动
类

org.apa che.shard ingsphere .agent.pl ugin.trac ing.opent eleme‐
try. service.O penTeleme tryTracin gPluginBo otService

Open‐
Tracing

OpenTracing plugin
启动类

org.a pache.sha rdingsphe re.agent. plugin.tr acing.ope ntracing.
service.O penTracin gPluginBo otService

Zipkin Zipkin plugin 启动
类

or g.apache. shardings phere.age nt.plugin .tracing. zipkin.se
rvice.Zip kinTracin gPluginBo otService

5.14. 可观察性 321

Apache ShardingSphere document, v5.2.1

5.14.2 PluginDefinitionService

全限定类名

org.apache.shardingsphere.agent.spi.definition.PluginDefinitionService

定义

探针插件定义服务接口

已知实现

配置标识 详细说明 •
全限定类名 *

Prometheus Prometheus插件定义 org.apa che.shardin
gsphere.age nt.metrics.
prometheus. definition.
PrometheusP luginDefini
tionService

Logging Logging插件定义 org.apach e.shardings
phere.agent .plugin.log
ging.base.d efinition.B aseLog‐
gingP luginDefini tionService

Jaeger Jaeger插件定义 org.ap ache.shardi ngsphere.ag
ent.plugin. tracing.jae
ger.definit ion.JaegerP lug‐
inDefini tionService

OpenTelemetry OpenTelemetryTracing 插件定
义

org.a pache.shard ingsphere.a
gent.plugin .tracing.op en‐
telemetry .definition .Open‐
Teleme tryTracingP luginDefini
tionService

OpenTracing OpenTracing插件定义 org.a pache.shard ingsphere.a
gent.plugin .tracing.op entrac‐
ing.d efinition.O penTracingP
luginDefini tionService

Zipkin Zipkin插件定义 org.ap ache.shardi ngsphere.ag
ent.plugin. tracing.zip
kin.definit ion.ZipkinP lug‐
inDefini tionService

5.14. 可观察性 322

6
测试手册

Apache ShardingSphere提供了完善的整合测试、模块测试和性能测试。

6.1 整合测试

通过真实的 Apache ShardingSphere和数据库的连接，提供端到端的测试。
整合测试引擎以 XML方式定义 SQL，分别为各个数据库独立运行测试用例。为了方便上手，测试引擎无
需修改任何 Java代码，只需修改相应的配置文件即可运行断言。测试引擎不依赖于任何第三方环境，用
于测试的 ShardingSphere‐Proxy计算节点和数据库均由 Docker镜像提供。

6.2 模块测试

将复杂的模块单独提炼成为测试引擎。
模块测试引擎同样以 XML方式定义 SQL，分别为各个数据库独立运行测试用例，包括 SQL解析和 SQL
改写模块。

6.3 性能测试

提供多样性的性能测试方法，包括 Sysbench、JMH、TPCC等。

6.4 集成测试

6.4.1 设计

集成测试包括 3个模块：测试用例、测试环境以及测试引擎。

323

Apache ShardingSphere document, v5.2.1

测试用例

用于定义待测试的 SQL以及测试结果的断言数据。每个用例定义一条 SQL，SQL可定义多种数据库执行
类型。

测试环境

用于搭建运行测试用例的数据库和 ShardingSphere‐Proxy环境。环境又具体分为环境准备方式，数据库
类型和场景。
环境准备方式分为 Native和 Docker，未来还将增加 Embed类型的支持。

• Native环境用于测试用例直接运行在开发者提供的测试环境中，适用于调试场景。
• Docker环境由 Testcontainer创建，适用于云编译环境和测试 ShardingSphere‐Proxy的场景，如：
GitHub Action。

• Embed环境由测试框架自动搭建嵌入式MySQL，适用于 ShardingSphere‐JDBC的本地环境测试。
当前默认采用Docker环境，使用 Testcontainer创建运行时环境并执行测试用例。未来将采用 Embed环
境的 ShardingSphere‐JDBC + MySQL，替换 Native执行测试用例的默认环境类型。
数据库类型目前支持MySQL、PostgreSQL、SQLServer和 Oracle，并且可以支持使用 ShardingSphere‐
JDBC或是使用 ShardingSphere‐Proxy执行测试用例。
场景用于对 ShardingSphere支持规则进行测试，目前支持数据分片和读写分离的相关场景，未来会不断
完善场景的组合。

测试引擎

用于批量读取测试用例，并逐条执行和断言测试结果。
测试引擎通过将用例和环境进行排列组合，以达到用最少的用例测试尽可能多场景的目的。
每条 SQL会以数据库类型 * 接入端类型 * SQL 执行模式 * JDBC 执行模式 * 场景的组合方式生
成测试报告，目前各个维度的支持情况如下：

• 数据库类型：H2、MySQL、PostgreSQL、SQLServer和 Oracle；
• 接入端类型：ShardingSphere‐JDBC和 ShardingSphere‐Proxy；
• SQL执行模式：Statement和 PreparedStatement；
• JDBC执行模式：execute和 executeQuery（查询）/ executeUpdate（更新）；
• 场景：分库、分表、读写分离和分库分表 +读写分离。

因此，1条 SQL会驱动：数据库类型（5）* 接入端类型（2）* SQL 执行模式（2）* JDBC 执行模式
（2）* 场景（4）= 160个测试用例运行，以达到项目对于高质量的追求。

6.4. 集成测试 324

Apache ShardingSphere document, v5.2.1

6.4.2 使用指南

模 块 路 径：shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-suite

测试用例配置

SQL用例在 resources/cases/${SQL-TYPE}/${SQL-TYPE}-integration-test-cases.xml。
用例文件格式如下：

<integration-test-cases>
<test-case sql="${SQL}">

<assertion parameters="${value_1}:${type_1}, ${value_2}:${type_2}"
expected-data-file="${dataset_file_1}.xml" />

<!-- ... more assertions -->
<assertion parameters="${value_3}:${type_3}, ${value_4}:${type_4}"

expected-data-file="${dataset_file_2}.xml" />
</test-case>

<!-- ... more test cases -->
</integration-test-cases>

expected-data-file 的查找规则是：1. 查找同级目录中 dataset\${SCENARIO_NAME}\
${DATABASE_TYPE}\${dataset_file}.xml 文件；2. 查找同级目录中 dataset\
${SCENARIO_NAME}\${dataset_file}.xml 文件；3. 查找同级目录中 dataset\
${dataset_file}.xml文件；4. 都找不到则报错。
断言文件格式如下：

<dataset>
<metadata>

<column name="column_1" />
<!-- ... more columns -->
<column name="column_n" />

</metadata>
<row values="value_01, value_02" />
<!-- ... more rows -->
<row values="value_n1, value_n2" />

</dataset>

6.4. 集成测试 325

Apache ShardingSphere document, v5.2.1

环境配置

${SCENARIO-TYPE}表示场景名称，在测试引擎运行中用于标识唯一场景。${DATABASE-TYPE}表示
数据库类型。

Native环境配置

目录：src/test/resources/env/scenario/${SCENARIO-TYPE}

• scenario-env.properties: 数据源配置；
• rules.yaml: 规则配置；
• databases.xml: 真实库名称；
• dataset.xml: 初始化数据；
• init-sql\${DATABASE-TYPE}\init.sql: 初始化数据库表结构；
• authority.xml: 待补充。

Docker环境配置

目录：src/test/resources/env/${SCENARIO-TYPE}

• proxy/conf/config-${SCENARIO-TYPE}.yaml: 规则配置。
Docker 环 境 配 置 为 ShardingSphere‐Proxy 提 供 了 远 程 调 试 端 口， 可 以 在
“shardingsphere‐test/shardingsphere‐integration‐test/shardingsphere‐integration‐test‐
fixture/src/test/assembly/bin/start.sh“ 文件的 “JAVA_OPTS“ 中找到第 2 个暴露的端口用于远程调
试。

运行测试引擎

配置测试引擎运行环境

通过配置 src/test/resources/env/engine-env.properties控制测试引擎。
所有的属性值都可以通过Maven命令行 -D的方式动态注入。

运行模式，多个值可用逗号分隔。可选值：Standalone, Cluster
it.run.modes=Cluster

场景类型，多个值可用逗号分隔。可选值：db, tbl, dbtbl_with_replica_query, replica_query
it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

是否运行附加测试用例
it.run.additional.cases=false

配置环境类型，只支持单值。可选值：docker 或空，默认值：空

6.4. 集成测试 326

Apache ShardingSphere document, v5.2.1

it.cluster.env.type=${it.env}
待测试的接入端类型，多个值可用逗号分隔。可选值：jdbc, proxy, 默认值：jdbc
it.cluster.adapters=jdbc

场景类型，多个值可用逗号分隔。可选值：H2, MySQL, Oracle, SQLServer, PostgreSQL
it.cluster.databases=H2,MySQL,Oracle,SQLServer,PostgreSQL

运行调试模式

• 标 准 测 试 引 擎 运 行 org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.General${SQL-TYPE}IT以启动不同 SQL类型的测试引擎。

• 批量测试引擎运行 org.apache.shardingsphere.test.integration.engine.dml.
BatchDMLIT，以启动为 DML语句提供的测试 addBatch()的批量测试引擎。

• 附 加 测 试 引 擎 运 行 org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.Additional${SQL-TYPE}IT 以启动使用更多 JDBC 方法调用的测试引擎。
附加测试引擎需要通过设置 it.run.additional.cases=true开启。

运行 Docker模式

./mvnw -B clean install -f shardingsphere-test/shardingsphere-integration-test/pom.
xml -Pit.env.docker -Dit.cluster.adapters=proxy,jdbc -Dit.scenarios=${scenario_
name_1,scenario_name_2,scenario_name_n} -Dit.cluster.databases=MySQL

运 行 以 上 命 令 会 构 建 出 一 个 用 于 集 成 测 试 的 Docker 镜 像 apache/
shardingsphere-proxy-test:latest。如果仅修改了测试代码，可以复用已有的测试镜像，
无须重新构建。使用以下命令可以跳过镜像构建，直接运行集成测试：

./mvnw -B clean install -f shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-suite/pom.xml -Pit.env.docker -Dit.cluster.
adapters=proxy,jdbc -Dit.scenarios=${scenario_name_1,scenario_name_2,scenario_name_
n} -Dit.cluster.databases=MySQL

远程 debug Docker容器中的 Proxy代码

IT测试的 Proxy镜像默认开启了 3308端口用于远程调试容器中的实例。
使用 IDEA等 IDE工具可以通过如下方式连接并 debug容器中的 Proxy代码：

IDEA ‐> Run ‐> Edit Configurations ‐> Add New Configuration ‐> Remote JVM Debug

编辑对应的信息：‐ Name：一个描述性的名字，例如 docker‐debug。‐ Host：可以访问 docker的 IP，例
如 127.0.0.1。‐ Port：调试端口 3308。‐ use module classpath：项目根目录 shardingsphere。
编辑好上面的信息后，在 IDEA中 Run ‐> Run ‐> docker‐debug即可启动 IDEA的远程 debug。

6.4. 集成测试 327

Apache ShardingSphere document, v5.2.1

注意事项

1. 如需测试 Oracle，请在 pom.xml中增加 Oracle驱动依赖；
2. 为了保证测试数据的完整性和易读性，整合测试中的分库分表采用了 10库 10表的方式，完全运行
测试用例所需时间较长。

6.5 性能测试

提供各个压测工具的性能测试结果。

6.5.1 Sysbench ShardingSphere Proxy空 Rules性能测试

测试目的

对 ShardingSphere‐Proxy及MySQL进行性能对比 1. sysbench直接压测MySQL性能 2. sysbench压测
ShardingSphere‐Proxy(底层透传MySQL)

基于以上两组实验，得到使用 ShardingSphere‐Proxy对于MySQL的损耗。

测试环境搭建

服务器信息

1. DB相关配置：推荐内存大于压测的数据量，使得数据均在内存热块中，其余可自行调整；
2. ShardingSphere‐Proxy相关配置：推荐使用高性能多核 CPU，其余可自行调整；
3. 压测涉及服务器均关闭 swap分区。

数据库

[mysqld]
innodb_buffer_pool_size=${MORE_THAN_DATA_SIZE}
innodb-log-file-size=3000000000
innodb-log-files-in-group=5
innodb-flush-log-at-trx-commit=0
innodb-change-buffer-max-size=40
back_log=900
innodb_max_dirty_pages_pct=75
innodb_open_files=20480
innodb_buffer_pool_instances=8
innodb_page_cleaners=8
innodb_purge_threads=2
innodb_read_io_threads=8
innodb_write_io_threads=8

6.5. 性能测试 328

Apache ShardingSphere document, v5.2.1

table_open_cache=102400
log_timestamps=system
thread_cache_size=16384
transaction_isolation=READ-COMMITTED

可参考进行适当调优，旨在放大底层 DB 性能，不让实验受制于 DB 性能瓶颈。

压测工具

可通过 sysbench官网自行获取

ShardingSphere-Proxy

bin/start.sh

-Xmx16g -Xms16g -Xmn8g # 调整 JVM 相关参数

config.yaml

databaseName: sharding_db

dataSources:
ds_0:

url: jdbc:mysql://***.***.***.***:****/test?serverTimezone=UTC&useSSL=false # 参
数可适当调整

username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200 # 最大链接池设为 ${压测并发数} 与压测并发数保持一致，屏蔽压测过程中额外的

链接带来的影响
minPoolSize: 200 # 最小链接池设为 ${压测并发数} 与压测并发数保持一致，屏蔽压测过程中初始化

链接带来的影响

rules: []

6.5. 性能测试 329

https://github.com/akopytov/sysbench

Apache ShardingSphere document, v5.2.1

测试阶段

环境准备

sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-
user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-
size=1000000 --report-interval=10 --time=100 --threads=200 cleanup
sysbench oltp_read_write --mysql-host=${DB_IP} --mysql-port=${DB_PORT} --mysql-
user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --table-
size=1000000 --report-interval=10 --time=100 --threads=200 prepare

压测命令

sysbench oltp_read_write --mysql-host=${DB/PROXY_IP} --mysql-port=${DB/PROXY_PORT}
--mysql-user=${USER} --mysql-password=${PASSWD} --mysql-db=test --tables=10 --
table-size=1000000 --report-interval=10 --time=100 --threads=200 run

压测报告分析

sysbench 1.0.20 (using bundled LuaJIT 2.1.0-beta2)
Running the test with following options:
Number of threads: 200
Report intermediate results every 10 second(s)
Initializing random number generator from current time
Initializing worker threads...
Threads started!
每 10 秒钟报告一次测试结果，tps、每秒读、每秒写、95% 以上的响应时长统计
[10s] thds: 200 tps: 11161.70 qps: 223453.06 (r/w/o: 156451.76/44658.51/22342.80)
lat (ms,95%): 27.17 err/s: 0.00 reconn/s: 0.00
...
[120s] thds: 200 tps: 11731.00 qps: 234638.36 (r/w/o: 164251.67/46924.69/23462.
00) lat (ms,95%): 24.38 err/s: 0.00 reconn/s: 0.00
SQL statistics:

queries performed:
read: 19560590 # 读总数
write: 5588740 # 写总数
other: 27943700 # 其他操作总

数 (COMMIT 等)
total: 27943700 # 全部总数

transactions: 1397185 (11638.59 per sec.) # 总事务数 (
每秒事务数)

queries: 27943700 (232771.76 per sec.) # 执行语句总
数 (每秒执行语句次数)

ignored errors: 0 (0.00 per sec.) # 忽略错误数
(每秒忽略错误数)

6.5. 性能测试 330

Apache ShardingSphere document, v5.2.1

reconnects: 0 (0.00 per sec.) # 重连次数 (
每秒重连次数)

General statistics:
total time: 120.0463s # 总共耗时
total number of events: 1397185 # 总共发生多

少事务数

Latency (ms):
min: 5.37 # 最小延时
avg: 17.13 # 平均延时
max: 109.75 # 最大延时
95th percentile: 24.83 # 超过 95%

平均耗时
sum: 23999546.19

Threads fairness:
events (avg/stddev): 6985.9250/34.74 # 平均每线程

完成 6985.9250 次 event，标准差为 34.74
execution time (avg/stddev): 119.9977/0.01 # 每个线程平

均耗时 119.9977 秒，标准差为 0.01

压测过程中值得关注的点

1. ShardingSphere‐Proxy所在服务器 CPU利用率，充分利用 CPU为佳；
2. DB所在服务器磁盘 IO，物理读越低越好；
3. 压测中涉及服务器的网络 IO。

6.5.2 BenchmarkSQL ShardingSphere Proxy分片性能测试

测试目的

使用 BenchmarkSQL工具测试 ShardingSphere Proxy的分片性能。

测试方法

ShardingSphere Proxy 支持通过 BenchmarkSQL 5.0 进行 TPC‐C 测试。除本文说明的内容外，Bench‐
markSQL操作步骤按照原文档 HOW-TO-RUN.txt即可。

6.5. 性能测试 331

https://sourceforge.net/projects/benchmarksql/

Apache ShardingSphere document, v5.2.1

测试工具微调

与单机数据库压测不同，分布式数据库解决方案难免在功能支持上有所取舍。使用 BenchmarkSQL压测
ShardingSphere Proxy建议进行如下调整。

移除外键与 extraHistID

修改 BenchmarkSQL目录下 run/runDatabaseBuild.sh，文件第 17行。
修改前：

AFTER_LOAD="indexCreates foreignKeys extraHistID buildFinish"

修改后：

AFTER_LOAD="indexCreates buildFinish"

压测环境或参数建议

注意：本节中提到的任何参数都不是绝对值，都需要根据实际测试结果进行调整或取舍。

建议使用 Java 17运行 ShardingSphere

编译 ShardingSphere可以使用 Java 8。
使用 Java 17可以在默认情况下尽量提升 ShardingSphere的性能。

ShardingSphere数据分片建议

对 BenchmarkSQL的数据分片，可以考虑以各个表中的 warehouse id作为分片键。
其中一个表 bmsql_item没有warehouse id，数据量固定 10万行：‐可以取 i_id作为分片键。但可能
会导致同一个 Proxy连接同时持有多个不同数据源的连接。‐或考虑不做分片，存在单个数据源内。可能
会导致某一数据源压力较大。‐或对 i_id进行范围分片，例如 1‐50000分布在数据源 0、50001‐100000分
布在数据源 1。
BenchmarkSQL中有如下 SQL涉及多表：

SELECT c_discount, c_last, c_credit, w_tax
FROM bmsql_customer

JOIN bmsql_warehouse ON (w_id = c_w_id)
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (

6.5. 性能测试 332

Apache ShardingSphere document, v5.2.1

SELECT max(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
)

如果以 warehouse id作为分片键，以上 SQL涉及的表可以配置为 bindingTable：

rules:
- !SHARDING

bindingTables:
- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_line

以 warehouse id为分片键的数据分片配置可以参考本文附录。

PostgreSQL JDBC URL参数建议

对 BenchmarkSQL 所使用的配置文件中的 JDBC URL 进行调整，即参数名 conn 的值：‐ 增加参数
defaultRowFetchSize=50可能减少多行结果集的 fetch次数，需要根据实际测试结果适当增大或减
小。‐增加参数reWriteBatchedInserts=true可能减少批量插入的耗时，例如准备数据或NewOrder
业务的批量插入，需要根据实际测试结果决定是否启用。
props.pg文件节选，建议修改的位置为第 3行 conn的参数值：

db=postgres
driver=org.postgresql.Driver
conn=jdbc:postgresql://localhost:5432/postgres?defaultRowFetchSize=50&
reWriteBatchedInserts=true
user=benchmarksql
password=PWbmsql

ShardingSphere Proxy server.yaml参数建议

proxy-backend-query-fetch-size参数值默认值为 ‐1，修改为 50左右可以尽量减少多行结果集
的 fetch次数。proxy-frontend-executor-size参数默认值为 CPU * 2，可以根据实际测试结果减
少至 CPU * 0.5左右；如果涉及 NUMA，可以根据实际测试结果设置为单个 CPU的物理核数。
server.yaml文件节选：

props:
proxy-backend-query-fetch-size: 50
proxy-frontend-executor-size: 32 # 4 路 32C aarch64
proxy-frontend-executor-size: 12 # 2 路 12C24T x86

6.5. 性能测试 333

Apache ShardingSphere document, v5.2.1

附录

BenchmarkSQL数据分片参考配置

Pool size请根据实际压测情况适当调整。

databaseName: bmsql_sharding
dataSources:
ds_0:

url: jdbc:postgresql://db0.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_1:
url: jdbc:postgresql://db1.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_2:
url: jdbc:postgresql://db2.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_3:
url: jdbc:postgresql://db3.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

rules:
- !SHARDING

bindingTables:
- bmsql_warehouse, bmsql_customer

6.5. 性能测试 334

Apache ShardingSphere document, v5.2.1

- bmsql_stock, bmsql_district, bmsql_order_line
defaultDatabaseStrategy:
none:

defaultTableStrategy:
none:

keyGenerators:
snowflake:
type: SNOWFLAKE

tables:
bmsql_config:
actualDataNodes: ds_0.bmsql_config

bmsql_warehouse:
actualDataNodes: ds_${0..3}.bmsql_warehouse
databaseStrategy:

standard:
shardingColumn: w_id
shardingAlgorithmName: mod_4

bmsql_district:
actualDataNodes: ds_${0..3}.bmsql_district
databaseStrategy:

standard:
shardingColumn: d_w_id
shardingAlgorithmName: mod_4

bmsql_customer:
actualDataNodes: ds_${0..3}.bmsql_customer
databaseStrategy:

standard:
shardingColumn: c_w_id
shardingAlgorithmName: mod_4

bmsql_item:
actualDataNodes: ds_${0..3}.bmsql_item
databaseStrategy:

standard:
shardingColumn: i_id
shardingAlgorithmName: mod_4

bmsql_history:
actualDataNodes: ds_${0..3}.bmsql_history
databaseStrategy:

standard:
shardingColumn: h_w_id
shardingAlgorithmName: mod_4

bmsql_oorder:

6.5. 性能测试 335

Apache ShardingSphere document, v5.2.1

actualDataNodes: ds_${0..3}.bmsql_oorder
databaseStrategy:

standard:
shardingColumn: o_w_id
shardingAlgorithmName: mod_4

bmsql_stock:
actualDataNodes: ds_${0..3}.bmsql_stock
databaseStrategy:

standard:
shardingColumn: s_w_id
shardingAlgorithmName: mod_4

bmsql_new_order:
actualDataNodes: ds_${0..3}.bmsql_new_order
databaseStrategy:

standard:
shardingColumn: no_w_id
shardingAlgorithmName: mod_4

bmsql_order_line:
actualDataNodes: ds_${0..3}.bmsql_order_line
databaseStrategy:

standard:
shardingColumn: ol_w_id
shardingAlgorithmName: mod_4

shardingAlgorithms:
mod_4:

type: MOD
props:

sharding-count: 4

BenchmarkSQL 5.0 PostgreSQL语句列表

Create tables

create table bmsql_config (
cfg_name varchar(30) primary key,
cfg_value varchar(50)

);

create table bmsql_warehouse (
w_id integer not null,
w_ytd decimal(12,2),
w_tax decimal(4,4),

6.5. 性能测试 336

Apache ShardingSphere document, v5.2.1

w_name varchar(10),
w_street_1 varchar(20),
w_street_2 varchar(20),
w_city varchar(20),
w_state char(2),
w_zip char(9)

);

create table bmsql_district (
d_w_id integer not null,
d_id integer not null,
d_ytd decimal(12,2),
d_tax decimal(4,4),
d_next_o_id integer,
d_name varchar(10),
d_street_1 varchar(20),
d_street_2 varchar(20),
d_city varchar(20),
d_state char(2),
d_zip char(9)

);

create table bmsql_customer (
c_w_id integer not null,
c_d_id integer not null,
c_id integer not null,
c_discount decimal(4,4),
c_credit char(2),
c_last varchar(16),
c_first varchar(16),
c_credit_lim decimal(12,2),
c_balance decimal(12,2),
c_ytd_payment decimal(12,2),
c_payment_cnt integer,
c_delivery_cnt integer,
c_street_1 varchar(20),
c_street_2 varchar(20),
c_city varchar(20),
c_state char(2),
c_zip char(9),
c_phone char(16),
c_since timestamp,
c_middle char(2),
c_data varchar(500)

);

create sequence bmsql_hist_id_seq;

6.5. 性能测试 337

Apache ShardingSphere document, v5.2.1

create table bmsql_history (
hist_id integer,
h_c_id integer,
h_c_d_id integer,
h_c_w_id integer,
h_d_id integer,
h_w_id integer,
h_date timestamp,
h_amount decimal(6,2),
h_data varchar(24)

);

create table bmsql_new_order (
no_w_id integer not null,
no_d_id integer not null,
no_o_id integer not null

);

create table bmsql_oorder (
o_w_id integer not null,
o_d_id integer not null,
o_id integer not null,
o_c_id integer,
o_carrier_id integer,
o_ol_cnt integer,
o_all_local integer,
o_entry_d timestamp

);

create table bmsql_order_line (
ol_w_id integer not null,
ol_d_id integer not null,
ol_o_id integer not null,
ol_number integer not null,
ol_i_id integer not null,
ol_delivery_d timestamp,
ol_amount decimal(6,2),
ol_supply_w_id integer,
ol_quantity integer,
ol_dist_info char(24)

);

create table bmsql_item (
i_id integer not null,
i_name varchar(24),
i_price decimal(5,2),
i_data varchar(50),
i_im_id integer

6.5. 性能测试 338

Apache ShardingSphere document, v5.2.1

);

create table bmsql_stock (
s_w_id integer not null,
s_i_id integer not null,
s_quantity integer,
s_ytd integer,
s_order_cnt integer,
s_remote_cnt integer,
s_data varchar(50),
s_dist_01 char(24),
s_dist_02 char(24),
s_dist_03 char(24),
s_dist_04 char(24),
s_dist_05 char(24),
s_dist_06 char(24),
s_dist_07 char(24),
s_dist_08 char(24),
s_dist_09 char(24),
s_dist_10 char(24)

);

Create indexes

alter table bmsql_warehouse add constraint bmsql_warehouse_pkey
primary key (w_id);

alter table bmsql_district add constraint bmsql_district_pkey
primary key (d_w_id, d_id);

alter table bmsql_customer add constraint bmsql_customer_pkey
primary key (c_w_id, c_d_id, c_id);

create index bmsql_customer_idx1
on bmsql_customer (c_w_id, c_d_id, c_last, c_first);

alter table bmsql_oorder add constraint bmsql_oorder_pkey
primary key (o_w_id, o_d_id, o_id);

create unique index bmsql_oorder_idx1
on bmsql_oorder (o_w_id, o_d_id, o_carrier_id, o_id);

alter table bmsql_new_order add constraint bmsql_new_order_pkey
primary key (no_w_id, no_d_id, no_o_id);

alter table bmsql_order_line add constraint bmsql_order_line_pkey

6.5. 性能测试 339

Apache ShardingSphere document, v5.2.1

primary key (ol_w_id, ol_d_id, ol_o_id, ol_number);

alter table bmsql_stock add constraint bmsql_stock_pkey
primary key (s_w_id, s_i_id);

alter table bmsql_item add constraint bmsql_item_pkey
primary key (i_id);

NewOrder业务

stmtNewOrderSelectWhseCust

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderSelectDist

SELECT d_tax, d_next_o_id
FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?
FOR UPDATE

stmtNewOrderUpdateDist

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderInsertOrder

INSERT INTO bmsql_oorder (
o_id, o_d_id, o_w_id, o_c_id, o_entry_d,
o_ol_cnt, o_all_local)

VALUES (?, ?, ?, ?, ?, ?, ?)

stmtNewOrderInsertNewOrder

INSERT INTO bmsql_new_order (
no_o_id, no_d_id, no_w_id)

VALUES (?, ?, ?)

stmtNewOrderSelectStock

SELECT s_quantity, s_data,
s_dist_01, s_dist_02, s_dist_03, s_dist_04,
s_dist_05, s_dist_06, s_dist_07, s_dist_08,
s_dist_09, s_dist_10

6.5. 性能测试 340

Apache ShardingSphere document, v5.2.1

FROM bmsql_stock
WHERE s_w_id = ? AND s_i_id = ?
FOR UPDATE

stmtNewOrderSelectItem

SELECT i_price, i_name, i_data
FROM bmsql_item
WHERE i_id = ?

stmtNewOrderUpdateStock

UPDATE bmsql_stock
SET s_quantity = ?, s_ytd = s_ytd + ?,

s_order_cnt = s_order_cnt + 1,
s_remote_cnt = s_remote_cnt + ?

WHERE s_w_id = ? AND s_i_id = ?

stmtNewOrderInsertOrderLine

INSERT INTO bmsql_order_line (
ol_o_id, ol_d_id, ol_w_id, ol_number,
ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_dist_info)

VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)

Payment业务

stmtPaymentSelectWarehouse

SELECT w_name, w_street_1, w_street_2, w_city,
w_state, w_zip

FROM bmsql_warehouse
WHERE w_id = ?

stmtPaymentSelectDistrict

SELECT d_name, d_street_1, d_street_2, d_city,
d_state, d_zip

FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?

stmtPaymentSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

6.5. 性能测试 341

Apache ShardingSphere document, v5.2.1

stmtPaymentSelectCustomer

SELECT c_first, c_middle, c_last, c_street_1, c_street_2,
c_city, c_state, c_zip, c_phone, c_since, c_credit,
c_credit_lim, c_discount, c_balance

FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?
FOR UPDATE

stmtPaymentSelectCustomerData

SELECT c_data
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateWarehouse

UPDATE bmsql_warehouse
SET w_ytd = w_ytd + ?
WHERE w_id = ?

stmtPaymentUpdateDistrict

UPDATE bmsql_district
SET d_ytd = d_ytd + ?
WHERE d_w_id = ? AND d_id = ?

stmtPaymentUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateCustomerWithData

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1,
c_data = ?

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentInsertHistory

INSERT INTO bmsql_history (
h_c_id, h_c_d_id, h_c_w_id, h_d_id, h_w_id,
h_date, h_amount, h_data)

VALUES (?, ?, ?, ?, ?, ?, ?, ?)

6.5. 性能测试 342

Apache ShardingSphere document, v5.2.1

Order Status业务

stmtOrderStatusSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtOrderStatusSelectCustomer

SELECT c_first, c_middle, c_last, c_balance
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtOrderStatusSelectLastOrder

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (

SELECT max(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

)

stmtOrderStatusSelectOrderLine

SELECT ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_delivery_d

FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?
ORDER BY ol_w_id, ol_d_id, ol_o_id, ol_number

Stock level业务

stmtStockLevelSelectLow

SELECT count(*) AS low_stock FROM (
SELECT s_w_id, s_i_id, s_quantity

FROM bmsql_stock
WHERE s_w_id = ? AND s_quantity < ? AND s_i_id IN (

SELECT ol_i_id
FROM bmsql_district
JOIN bmsql_order_line ON ol_w_id = d_w_id
AND ol_d_id = d_id
AND ol_o_id >= d_next_o_id - 20
AND ol_o_id < d_next_o_id

6.5. 性能测试 343

Apache ShardingSphere document, v5.2.1

WHERE d_w_id = ? AND d_id = ?
)

) AS L

Delivery BG业务

stmtDeliveryBGSelectOldestNewOrder

SELECT no_o_id
FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ?
ORDER BY no_o_id ASC

stmtDeliveryBGDeleteOldestNewOrder

DELETE FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ? AND no_o_id = ?

stmtDeliveryBGSelectOrder

SELECT o_c_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGUpdateOrder

UPDATE bmsql_oorder
SET o_carrier_id = ?
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGSelectSumOLAmount

SELECT sum(ol_amount) AS sum_ol_amount
FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateOrderLine

UPDATE bmsql_order_line
SET ol_delivery_d = ?
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance + ?,

c_delivery_cnt = c_delivery_cnt + 1
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

6.5. 性能测试 344

Apache ShardingSphere document, v5.2.1

6.6 模块测试

提供复杂模块的测试引擎。

6.6.1 SQL解析测试

数据准备

SQL解析无需真实的测试环境，开发者只需定义好待测试的 SQL，以及解析后的断言数据即可：

SQL数据

在集成测试的部分提到过 sql-case-id，其对应的 SQL，可以在不同模块共享。开发者只需
要 在 shardingsphere-sql-parser/shardingsphere-sql-parser-test/src/main/
resources/sql/supported/${SQL-TYPE}/*.xml添加待测试的 SQL即可。

断言数据

断言的解析数据保存在 shardingsphere-sql-parser/shardingsphere-sql-parser-test/
src/main/resources/case/${SQL-TYPE}/*.xml在 xml文件中，可以针对表名，token，SQL条
件等进行断言，例如如下的配置：

<parser-result-sets>
<parser-result sql-case-id="insert_with_multiple_values">

<tables>
<table name="t_order" />

</tables>
<tokens>

<table-token start-index="12" table-name="t_order" length="7" />
</tokens>
<sharding-conditions>

<and-condition>
<condition column-name="order_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
</and-condition>
<and-condition>

<condition column-name="order_id" table-name="t_order" operator=
"EQUAL">

<value literal="2" type="int" />

6.6. 模块测试 345

Apache ShardingSphere document, v5.2.1

</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="2" type="int" />

</condition>
</and-condition>

</sharding-conditions>
</parser-result>

</parser-result-sets>

设 置 好 上 面 两 类 数 据， 开 发 者 就 可 以 通 过 shardingsphere-sql-parser/
shardingsphere-sql-parser-test下对应的测试引擎启动 SQL解析的测试了。

6.6.2 SQL改写测试

目标

面向逻辑库与逻辑表书写的 SQL，并不能够直接在真实的数据库中执行，SQL改写用于将逻辑 SQL改写
为在真实数据库中可以正确执行的 SQL。它包括正确性改写和优化改写两部分，所以 SQL改写的测试都
是基于这些改写方向进行校验的。

测试

SQL改写测试用例位于 sharding-core/sharding-core-rewrite下的 test中。SQL改写的测试主
要依赖如下几个部分：

• 测试引擎
• 环境配置
• 验证数据

测试引擎是 SQL 改写测试的入口，跟其他引擎一样，通过 Junit 的 Parameterized 逐条读取 test\
resources目录中测试类型下对应的 xml文件，然后按读取顺序一一进行验证。
环境配置存放在test\resources\yaml路径中测试类型下对应的 yaml中。配置了dataSources，shard‐
ingRule，encryptRule等信息，例子如下：

dataSources:
db: !!com.zaxxer.hikari.HikariDataSource

driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:db;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:

sharding 规则
rules:
- !SHARDING

6.6. 模块测试 346

https://github.com/junit-team/junit4/wiki/Parameterized-tests

Apache ShardingSphere document, v5.2.1

tables:
t_account:
actualDataNodes: db.t_account_${0..1}
tableStrategy:
standard:

shardingColumn: account_id
shardingAlgorithmName: account_table_inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

t_account_detail:
actualDataNodes: db.t_account_detail_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: account_detail_table_inline

bindingTables:
- t_account, t_account_detail

shardingAlgorithms:
account_table_inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

account_detail_table_inline:
type: INLINE
props:
algorithm-expression: t_account_detail_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

验证数据存放在 test\resources路径中测试类型下对应的 xml文件中。验证数据中，yaml-rule指
定了环境以及 rule的配置文件，input指定了待测试的 SQL以及参数，output指定了期待的 SQL以及
参数。其中 db-type决定了 SQL解析的类型，默认为 SQL92，例如：

<rewrite-assertions yaml-rule="yaml/sharding/sharding-rule.yaml">
<!-- 替换数据库类型需要在这里更改 db-type -->
<rewrite-assertion id="create_index_for_mysql" db-type="MySQL">

<input sql="CREATE INDEX index_name ON t_account ('status')" />
<output sql="CREATE INDEX index_name ON t_account_0 ('status')" />
<output sql="CREATE INDEX index_name ON t_account_1 ('status')" />

</rewrite-assertion>
</rewrite-assertions>

只需在 xml文件中编写测试数据，配置好相应的 yaml配置文件，就可以在不更改任何 Java代码的情况
下校验对应的 SQL了。

6.6. 模块测试 347

Apache ShardingSphere document, v5.2.1

6.7 Scaling集成测试

6.7.1 测试目的

验证数据迁移以及依赖模块功能的正确性。

6.7.2 测试环境

目前支持 Native和 Docker两种环境。
1. Native环境直接运行在开发者提供的测试环境中，需要用户自己启动 ShardingSphere‐Proxy和对
应的数据库实例，适于调试场景；

2. Docker环境由Maven运行，适用于云编译环境和测试 ShardingSphere‐Proxy的场景，如：GitHub
Action。

目前支持的数据库类型：MySQL、PostgreSQL、openGauss。

6.7.3 使用指南

模 块 路 径 shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-scaling。

环境配置

${DOCKER-IMAGE}表示 docker镜像名称，如 mysql:8。${DATABASE-TYPE}表示数据库类型。目
录：src/test/resources/env ‐it-env.properties：集成测试启动参数。‐${DATABASE-TYPE}/
server.yaml：数据库对应的 ShardingSphere‐Proxy配置文件。‐ ${DATABASE-TYPE}/initdb.sql：
数据库初始化 SQL。‐ ${DATABASE-TYPE}/*.cnf,*.conf：以 cnf或者 conf结尾的文件，是数据库
的配置文件，用于 Docker挂载。‐ common/command.xml：测试中用到的 DistSQL。‐ scenario/：存
放测试场景中的 SQL。

测试用例

目前所有的测试用例，都直接继承自BaseExtraSQLITCase，间接继承了BaseITCase。‐BaseITCase：
提供了通用方法给子类 ‐ BaseExtraSQLITCase：提供了建表、CRUD语句执行方法
用例示例：MySQLGeneralScalingIT。覆盖的功能点如下：‐库级别迁移（所有表）‐表级别迁移（任意多
个表）‐迁移数据一致性校验 ‐数据迁移过程中支持停写 ‐数据迁移过程中支持重启 ‐数据迁移支持整型
主键 ‐数据迁移支持字符串主键 ‐使用非管理员账号进行数据迁移

6.7. Scaling集成测试 348

Apache ShardingSphere document, v5.2.1

运行测试用例

it-env.properties所有属性值都可以通过Maven命令行 -D的方式传入，优先级高于配置文件。

Native环境启动

使用者在本地提前启动 ShardingSphere‐Proxy 以及依赖的配置中心（如 ZooKeeper）和数据库。要求
ShardingSphere‐Proxy的端口是 3307。以MySQL为例，it-env.properties可以配置如下：

scaling.it.env.type=NATIVE
scaling.it.native.database=mysql
scaling.it.native.mysql.username=root
scaling.it.native.mysql.password=root
scaling.it.native.mysql.port=3306

找到对应的用例，在 IDE下使用 Junit的方式启动即可。

Docker环境启动

第一步：打包镜像

./mvnw -B clean install -am -pl shardingsphere-test/shardingsphere-integration-
test/shardingsphere-integration-test-scaling -Pit.env.docker -DskipTests

运行以上命令会构建出一个用于集成测试的Docker镜像 apache/shardingsphere‐proxy‐test:latest，该镜
像设置了远程调试的端口，默认是 3308。如果仅修改了测试代码，可以复用已有的测试镜像，无须重新
构建。
Docker模式下，如果需要对 Docker镜像启动参数进行调整，可以对修改 ShardingSphereProxyDocker‐
Container文件中的相关配置。
ShardingSphere‐Proxy输出的日志带有:Scaling‐Proxy前缀。
使用Maven的方式运行用例。以MySQL为例：

./mvnw -nsu -B install -f shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-scaling/pom.xml -Dscaling.it.env.type=DOCKER -
Dscaling.it.docker.mysql.version=${image-name}

也可以使用 IDE的方式运行用例。it-env.properties可以配置如下：

scaling.it.env.type=DOCKER
scaling.it.docker.mysql.version=mysql:5.7

6.7. Scaling集成测试 349

7
技术参考

本章包含了 Apache ShardingSphere的技术实现细节，供开发者和用户参考。

7.1 数据兼容性

• SQL兼容
SQL是使用者与数据库交流的标准语言。SQL解析引擎负责将 SQL字符串解析为抽象语法树，供 Apache
ShardingSphere理解并实现其增量功能。
ShardingSphere目前支持 MySQL, PostgreSQL, SQLServer, Oracle, openGauss以及符合 SQL92规范的
SQL方言。由于 SQL语法的复杂性，目前仍然存在少量不支持的 SQL。

• 数据库协议兼容

350

Apache ShardingSphere document, v5.2.1

Apache ShardingSphere目前根据不同的数据协议，实现了MySQL和 PostgreSQL协议。
• 特性支持

Apache ShardingSphere为数据库提供了分布式协作的能力，同时将一部分数据库特性抽象到了上层，进
行统一管理，以降低用户的使用难度。
因此，对于统一提供的特性，原生的 SQL 将不再下发到数据库，并提示该操作不被支持，用户可使用
ShardingSphere提供的的方式进行代替。

7.2 数据库网关

Apache ShardingSphere提供了 SQL方言翻译的能力，能否实现数据库方言之间的自动转换。例如，用
户可以使用MySQL客户端连接 ShardingSphere并发送基于MySQL方言的 SQL，ShardingSphere能自
动识别用户协议与存储节点类型，自动完成 SQL方言转换，访问 PostgreSQL等异构存储节点。

7.3 管控

7.3.1 注册中心数据结构

在定义的命名空间下，rules、props和 metadata节点以 YAML格式存储配置，可通过修改节点来实
现对于配置的动态管理。nodes存储数据库访问对象运行节点，用于区分不同数据库访问实例。
namespace

├──rules # 全局规则配置
├──props # 属性配置
├──metadata # Metadata 配置
├ ├──${databaseName} # 逻辑数据库名称
├ ├ ├──schemas # Schema 列表
├ ├ ├ ├──${schemaName} # 逻辑 Schema 名称
├ ├ ├ ├ ├──tables # 表结构配置
├ ├ ├ ├ ├ ├──${tableName}
├ ├ ├ ├ ├ ├──...

├ ├ ├ ├──...
├ ├ ├──versions # 元数据版本列表

7.2. 数据库网关

351

├ ├ ├ ├ ├──views # 视图结构配置
├ ├ ├ ├ ├ ├──${viewName}
├ ├ ├ ├ ├ ├──...

Apache ShardingSphere document, v5.2.1

├ ├ ├ ├──${versionNumber} # 元数据版本号
├ ├ ├ ├ ├──dataSources # 数据源配置
├ ├ ├ ├ ├──rules # 规则配置
├ ├ ├ ├──...
├ ├ ├──active_version # 激活的元数据版本号
├ ├──...
├──nodes
├ ├──compute_nodes
├ ├ ├──online
├ ├ ├ ├──proxy
├ ├ ├ ├ ├──UUID # Proxy 实例唯一标识
├ ├ ├ ├ ├──....
├ ├ ├ ├──jdbc
├ ├ ├ ├ ├──UUID # JDBC 实例唯一标识
├ ├ ├ ├ ├──....
├ ├ ├──status
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──worker_id
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├ ├──process_trigger
├ ├ ├ ├──process_list_id:UUID
├ ├ ├ ├──....
├ ├ ├──labels
├ ├ ├ ├──UUID
├ ├ ├ ├──....
├ ├──storage_nodes
├ ├ ├──${databaseName.groupName.ds}
├ ├ ├──${databaseName.groupName.ds}

/rules

全局规则配置，可包括访问 ShardingSphere‐Proxy用户名和密码的权限配置。

- !AUTHORITY
users:
- root@%:root
- sharding@127.0.0.1:sharding

provider:
type: ALL_PERMITTED

7.3. 管控 352

Apache ShardingSphere document, v5.2.1

/props

属性配置，详情请参见配置手册。

kernel-executor-size: 20
sql-show: true

/metadata/databaseName/versions/{versionNumber}/dataSources

多个数据库连接池的集合，不同数据库连接池属性自适配（例如：DBCP，C3P0，Druid，HikariCP）。

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-1

ds_1:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_1?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-2

7.3. 管控 353

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/props/

Apache ShardingSphere document, v5.2.1

/metadata/databaseName/versions/{versionNumber}/rules

规则配置，可包括数据分片、读写分离、数据加密、影子库压测等配置。

- !SHARDING
xxx

- !READWRITE_SPLITTING
xxx

- !ENCRYPT
xxx

/metadata/databaseName/schemas/{schemaName}/tables

表结构配置，每个表使用单独节点存储，暂不支持动态修改。

name: t_order # 表名
columns: # 列
id: # 列名

caseSensitive: false
dataType: 0
generated: false
name: id
primaryKey: trues

order_id:
caseSensitive: false
dataType: 0
generated: false
name: order_id
primaryKey: false

indexs: # 索引
t_user_order_id_index: # 索引名

name: t_user_order_id_index

/nodes/compute_nodes

数据库访问对象运行实例信息，子节点是当前运行实例的标识。运行实例标识使用 UUID生成，每次启
动重新生成。运行实例标识均为临时节点，当实例上线时注册，下线时自动清理。注册中心监控这些节
点的变化来治理运行中实例对数据库的访问等。

7.3. 管控 354

Apache ShardingSphere document, v5.2.1

/nodes/storage_nodes

可以治理读写分离从库，可动态添加删除以及禁用。

7.4 数据分片

ShardingSphere数据分片的原理如下图所示，按照是否需要进行查询优化，可以分为 Simple Push Down
下推流程和 SQL Federation 执行引擎流程。Simple Push Down 下推流程由 SQL 解析 => SQL 绑定
=> SQL 路由 => SQL 改写 => SQL 执行 => 结果归并组成，主要用于处理标准分片场景下的 SQL
执行。SQL Federation执行引擎流程由 SQL 解析 => SQL 绑定 => 逻辑优化 => 物理优化 => 数据
拉取 => 算子执行组成，SQL Federation执行引擎内部进行逻辑优化和物理优化，在优化执行阶段依赖
Standard内核流程，对优化后的逻辑 SQL进行路由、改写、执行和归并。

7.4. 数据分片 355

Apache ShardingSphere document, v5.2.1

7.4.1 SQL解析

分为词法解析和语法解析。先通过词法解析器将 SQL拆分为一个个不可再分的单词。再使用语法解析器
对 SQL进行理解，并最终提炼出解析上下文。解析上下文包括表、选择项、排序项、分组项、聚合函数、
分页信息、查询条件以及可能需要修改的占位符的标记。

7.4.2 SQL路由

根据解析上下文匹配用户配置的分片策略，并生成路由路径。目前支持分片路由和广播路由。

7.4.3 SQL改写

将 SQL改写为在真实数据库中可以正确执行的语句。SQL改写分为正确性改写和优化改写。

7.4.4 SQL执行

通过多线程执行器异步执行。

7.4.5 结果归并

将多个执行结果集归并以便于通过统一的 JDBC接口输出。结果归并包括流式归并、内存归并和使用装饰
者模式的追加归并这几种方式。

7.4.6 查询优化

由 Federation执行引擎（开发中）提供支持，对关联查询、子查询等复杂查询进行优化，同时支持跨多
个数据库实例的分布式查询，内部使用关系代数优化查询计划，通过最优计划查询出结果。

7.4.7 解析引擎

相对于其他编程语言，SQL是比较简单的。不过，它依然是一门完善的编程语言，因此对 SQL的语法进
行解析，与解析其他编程语言（如：Java语言、C语言、Go语言等）并无本质区别。

抽象语法树

解析过程分为词法解析和语法解析。词法解析器用于将 SQL拆解为不可再分的原子符号，称为 Token。并
根据不同数据库方言所提供的字典，将其归类为关键字，表达式，字面量和操作符。再使用语法解析器
将词法解析器的输出转换为抽象语法树。
例如，以下 SQL：

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

7.4. 数据分片 356

Apache ShardingSphere document, v5.2.1

解析之后的为抽象语法树见下图。

为了便于理解，抽象语法树中的关键字的 Token用绿色表示，变量的 Token用红色表示，灰色表示需要
进一步拆分。
最后，通过 visitor对抽象语法树遍历构造域模型，通过域模型（SQLStatement）去提炼分片所需的
上下文，并标记有可能需要改写的位置。供分片使用的解析上下文包含查询选择项（Select Items）、表信
息（Table）、分片条件（Sharding Condition）、自增主键信息（Auto increment Primary Key）、排序信
息（Order By）、分组信息（Group By）以及分页信息（Limit、Rownum、Top）。SQL的一次解析过程
是不可逆的，一个个 Token按 SQL原本的顺序依次进行解析，性能很高。考虑到各种数据库 SQL方言的
异同，在解析模块提供了各类数据库的 SQL方言字典。

SQL解析引擎

历史

SQL解析作为分库分表类产品的核心，其性能和兼容性是最重要的衡量指标。ShardingSphere的 SQL解
析器经历了 3代产品的更新迭代。
第一代 SQL解析器为了追求性能与快速实现，在 1.4.x之前的版本使用 Druid作为 SQL解析器。经实际
测试，它的性能远超其它解析器。
第二代 SQL解析器从 1.5.x版本开始，ShardingSphere采用完全自研的 SQL解析引擎。由于目的不同，
ShardingSphere并不需要将 SQL转为一颗完全的抽象语法树，也无需通过访问器模式进行二次遍历。它
采用对 SQL半理解的方式，仅提炼数据分片需要关注的上下文，因此 SQL解析的性能和兼容性得到了进
一步的提高。

7.4. 数据分片 357

Apache ShardingSphere document, v5.2.1

第三代 SQL解析器从 3.0.x版本开始，尝试使用 ANTLR作为 SQL解析引擎的生成器，并采用 Visit的方
式从 AST中获取 SQL Statement。从 5.0.x版本开始，解析引擎的架构已完成重构调整，同时通过将第一
次解析得到的 AST放入缓存，方便下次直接获取相同 SQL的解析结果，来提高解析效率。因此我们建议
用户采用 PreparedStatement这种 SQL预编译的方式来提升性能。

功能点

• 提供独立的 SQL解析功能
• 可以非常方便的对语法规则进行扩充和修改（使用了 ANTLR）
• 支持多种方言的 SQL解析

数据库 支持状态
MySQL 支持，完善
PostgreSQL 支持，完善
SQLServer 支持
Oracle 支持
SQL92 支持
openGauss 支持

API使用

• 引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-engine</artifactId>
<version>${project.version}</version>

</dependency>
<!-- 根据需要引入指定方言的解析模块（以 MySQL 为例），可以添加所有支持的方言，也可以只添加使用到的
-->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-mysql</artifactId>
<version>${project.version}</version>

</dependency>

• 获取语法树

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine(sql, cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);

• 获取 SQLStatement

7.4. 数据分片 358

Apache ShardingSphere document, v5.2.1

CacheOption cacheOption = new CacheOption(128, 1024L);
SQLParserEngine parserEngine = new SQLParserEngine(sql, cacheOption);
ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(sql, "STATEMENT",
useCache, new Properties());
SQLStatement sqlStatement = sqlVisitorEngine.visit(parseASTNode);

• SQL格式化

ParseASTNode parseASTNode = parserEngine.parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(sql, "FORMAT", useCache,
new Properties());
String result = sqlVisitorEngine.visit(parseASTNode);

例子：

7.4. 数据分片 359

Apache ShardingSphere document, v5.2.1

原 SQL 格式化 SQL

select a+1 as b, namen from table1 join table2
where id=1 and name=‘lu’;

SELECT a + 1 AS b, name nFROM table1 JOIN ta‐
ble2WHERE id = 1 and name =‘lu’
;

select id, name, age, sex, ss, yy from table1
where id=1;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1;

select id, name, age, count(*) as n, (select id,
name, age, sex from table2where id=2) as sid,
yyyy from table1 where id=1;

SELECT id , name , age , COUNT(*)
AS n, (SELECT id
, name , age , sex
 FROM ta‐
ble2 WHERE
 id = 2) AS
sid, yyyy FROM table1WHERE id = 1;

select id, name, age, sex, ss, yy from table1
where id=1 and name=1 and a=1 and b=2 and
c=4 and d=3;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1 and name =
1 and a = 1 and b = 2 and c
= 4 and d = 3;

ALTER TABLE t_order ADD column4
DATE, ADD column5 DATETIME, engine
ss max_rows 10,min_rows 2, ADD column6
TIMESTAMP, ADD column7 TIME;

ALTER TABLE t_order ADD col‐
umn4 DATE, ADD column5 DATE‐
TIME, ENGINE ss MAX_ROWS
10, MIN_ROWS 2, ADD column6
TIMESTAMP, ADD column7 TIME

CREATE TABLE IF NOT EXISTS
runoob_tbl(runoob_id INT UNSIGNED
AUTO_INCREMENT,runoob_title VAR‐
CHAR(100) NOT NULL,runoob_author
VARCHAR(40) NOT NULL,runoob_test
NATIONAL CHAR(40),submission_date
DATE,PRIMARY KEY
(runoob_id))ENGINE=InnoDB DEFAULT
CHARSET=utf8;

CREATE TABLE IF NOT EXISTS runoob_tbl
(runoob_id INT UNSIGNED
AUTO_INCREMENT, runoob_title VAR‐
CHAR(100) NOT NULL, runoob_author
VARCHAR(40) NOT NULL , runoob_test
NATIONAL CHAR(40), submission_date
DATE, PRIMARY KEY (runoob_id)) EN‐
GINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO t_order_item(order_id,
user_id, status, creation_date) values (1,
1,‘insert’,‘2017‐08‐08’), (2, 2,‘insert’,
‘2017‐08‐08’) ON DUPLICATE KEY UPDATE
status =‘init’;

INSERT INTO t_order_item (order_id , user_id , sta‐
tus , creatio n_date)VALUES (1, 1,‘insert’,
‘2017‐08‐08’), (2, 2,‘insert’,‘2017‐08‐08’
)ON DUPLICATE KEY UPDATE status =‘init’;

INSERT INTO t_order SET order_id
= 1, user_id = 1, status = con‐
vert(to_base64(aes_encrypt(1, ‘key’))
USING utf8) ON DUPLICATE KEY UPDATE
status = VALUES(status);

INSERT INTO t_order SET order_id =
1, user_id = 1, status = CON‐
VERT(to_ base64(aes_encrypt(1 , ‘key’)) USING
utf8)ON DUPLICATE KEY UPDATE status = VAL‐
UES(status);

INSERT INTO t_order (order_id, user_id, sta‐
tus) SELECT order_id, user_id, status FROM
t_order WHERE order_id = 1;

INSERT INTO t_order (order_id , user_id , sta‐
tus) SELECT order_id , user_id , status FROM
t_orderWHERE order_id = 1;

7.4. 数据分片 360

Apache ShardingSphere document, v5.2.1

7.4.8 路由引擎

根据解析上下文匹配数据库和表的分片策略，并生成路由路径。对于携带分片键的 SQL，根据分片键的
不同可以划分为单片路由（分片键的操作符是等号）、多片路由（分片键的操作符是 IN）和范围路由（分
片键的操作符是 BETWEEN）。不携带分片键的 SQL则采用广播路由。
分片策略通常可以采用由数据库内置或由用户方配置。数据库内置的方案较为简单，内置的分片策略大
致可分为尾数取模、哈希、范围、标签、时间等。由用户方配置的分片策略则更加灵活，可以根据使用方
需求定制复合分片策略。如果配合数据自动迁移来使用，可以做到无需用户关注分片策略，自动由数据
库中间层分片和平衡数据即可，进而做到使分布式数据库具有的弹性伸缩的能力。在 ShardingSphere的
线路规划中，弹性伸缩将于 4.x开启。

分片路由

用于根据分片键进行路由的场景，又细分为直接路由、标准路由和笛卡尔积路由这 3种类型。

直接路由

满足直接路由的条件相对苛刻，它需要通过Hint（使用HintAPI直接指定路由至库表）方式分片，并且
是只分库不分表的前提下，则可以避免 SQL解析和之后的结果归并。因此它的兼容性最好，可以执行包
括子查询、自定义函数等复杂情况的任意 SQL。直接路由还可以用于分片键不在 SQL中的场景。例如，设
置用于数据库分片的键为 3，

hintManager.setDatabaseShardingValue(3);

假如路由算法为 value % 2，当一个逻辑库 t_order对应 2个真实库 t_order_0和 t_order_1时，
路由后 SQL将在 t_order_1上执行。下方是使用 API的代码样例：

String sql = "SELECT * FROM t_order";
try (

HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {

while (rs.next()) {
//...

}
}

}

7.4. 数据分片 361

Apache ShardingSphere document, v5.2.1

标准路由

标准路由是 ShardingSphere最为推荐使用的分片方式，它的适用范围是不包含关联查询或仅包含绑定表
之间关联查询的 SQL。当分片运算符是等于号时，路由结果将落入单库（表），当分片运算符是 BETWEEN
或 IN时，则路由结果不一定落入唯一的库（表），因此一条逻辑 SQL最终可能被拆分为多条用于执行的
真实 SQL。举例说明，如果按照 order_id的奇数和偶数进行数据分片，一个单表查询的 SQL如下：

SELECT * FROM t_order WHERE order_id IN (1, 2);

那么路由的结果应为：

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

绑定表的关联查询与单表查询复杂度和性能相当。举例说明，如果一个包含绑定表的关联查询的 SQL如
下：

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_
id IN (1, 2);

那么路由的结果应为：

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

可以看到，SQL拆分的数目与单表是一致的。

笛卡尔路由

笛卡尔路由是最复杂的情况，它无法根据绑定表的关系定位分片规则，因此非绑定表之间的关联查询需
要拆解为笛卡尔积组合执行。如果上个示例中的 SQL并未配置绑定表关系，那么路由的结果应为：

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

笛卡尔路由查询性能较低，需谨慎使用。

7.4. 数据分片 362

Apache ShardingSphere document, v5.2.1

广播路由

对于不携带分片键的 SQL，则采取广播路由的方式。根据 SQL类型又可以划分为全库表路由、全库路由、
全实例路由、单播路由和阻断路由这 5种类型。

全库表路由

全库表路由用于处理对数据库中与其逻辑表相关的所有真实表的操作，主要包括不带分片键的 DQL 和
DML，以及 DDL等。例如：

SELECT * FROM t_order WHERE good_prority IN (1, 10);

则会遍历所有数据库中的所有表，逐一匹配逻辑表和真实表名，能够匹配得上则执行。路由后成为

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

全库路由

全库路由用于处理对数据库的操作，包括用于库设置的 SET类型的数据库管理命令，以及 TCL这样的事
务控制语句。在这种情况下，会根据逻辑库的名字遍历所有符合名字匹配的真实库，并在真实库中执行
该命令，例如：

SET autocommit=0;

在 t_order中执行，t_order有 2个真实库。则实际会在 t_order_0和 t_order_1上都执行这个命
令。

全实例路由

全实例路由用于 DCL操作，授权语句针对的是数据库的实例。无论一个实例中包含多少个 Schema，每
个数据库的实例只执行一次。例如：

CREATE USER customer@127.0.0.1 identified BY '123';

这个命令将在所有的真实数据库实例中执行，以确保 customer用户可以访问每一个实例。

7.4. 数据分片 363

Apache ShardingSphere document, v5.2.1

单播路由

单播路由用于获取某一真实表信息的场景，它仅需要从任意库中的任意真实表中获取数据即可。例如：

DESCRIBE t_order;

t_order的两个真实表 t_order_0，t_order_1的描述结构相同，所以这个命令在任意真实表上选择执行一
次。

阻断路由

阻断路由用于屏蔽 SQL对数据库的操作，例如：

USE order_db;

这个命令不会在真实数据库中执行，因为 ShardingSphere采用的是逻辑 Schema的方式，无需将切换数
据库 Schema的命令发送至数据库中。
路由引擎的整体结构划分如下图。

7.4. 数据分片 364

Apache ShardingSphere document, v5.2.1

7.4.9 改写引擎

工程师面向逻辑库与逻辑表书写的 SQL，并不能够直接在真实的数据库中执行，SQL改写用于将逻辑 SQL
改写为在真实数据库中可以正确执行的 SQL。它包括正确性改写和优化改写两部分。

正确性改写

在包含分表的场景中，需要将分表配置中的逻辑表名称改写为路由之后所获取的真实表名称。仅分库则
不需要表名称的改写。除此之外，还包括补列和分页信息修正等内容。

标识符改写

需要改写的标识符包括表名称、索引名称以及 Schema名称。
表名称改写是指将找到逻辑表在原始 SQL中的位置，并将其改写为真实表的过程。表名称改写是一个典
型的需要对 SQL进行解析的场景。从一个最简单的例子开始，若逻辑 SQL为：

SELECT order_id FROM t_order WHERE order_id=1;

假设该 SQL配置分片键 order_id，并且 order_id=1的情况，将路由至分片表 1。那么改写之后的 SQL应
该为：

SELECT order_id FROM t_order_1 WHERE order_id=1;

在这种最简单的 SQL场景中，是否将 SQL解析为抽象语法树似乎无关紧要，只要通过字符串查找和替换
就可以达到 SQL改写的效果。但是下面的场景，就无法仅仅通过字符串的查找替换来正确的改写 SQL了：

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

正确改写的 SQL应该是：

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

而非：

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

由于表名之外可能含有表名称的类似字符，因此不能通过简单的字符串替换的方式去改写 SQL。
下面再来看一个更加复杂的 SQL改写场景：

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order
xxx';

上面的 SQL将表名作为字段的标识符，因此在 SQL改写时需要一并修改：

SELECT t_order_1.order_id FROM t_order_1 WHERE t_order_1.order_id=1 AND remarks='
t_order xxx';

7.4. 数据分片 365

Apache ShardingSphere document, v5.2.1

而如果 SQL中定义了表的别名，则无需连同别名一起修改，即使别名与表名相同亦是如此。例如：

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

SQL改写则仅需要改写表名称就可以了：

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

索引名称是另一个有可能改写的标识符。在某些数据库中（如MySQL、SQLServer），索引是以表为维度
创建的，在不同的表中的索引是可以重名的；而在另外的一些数据库中（如 PostgreSQL、Oracle），索引
是以数据库为维度创建的，即使是作用在不同表上的索引，它们也要求其名称的唯一性。
在 ShardingSphere中，管理 Schema的方式与管理表如出一辙，它采用逻辑 Schema去管理一组数据源。
因此，ShardingSphere需要将用户在 SQL中书写的逻辑 Schema替换为真实的数据库 Schema。
ShardingSphere目前还不支持在 DQL和 DML语句中使用 Schema。它目前仅支持在数据库管理语句中
使用 Schema，例如：

SHOW COLUMNS FROM t_order FROM order_ds;

Schema 的改写指的是将逻辑 Schema 采用单播路由的方式，改写为随机查找到的一个正确的真实
Schema。

补列

需要在查询语句中补列通常由两种情况导致。第一种情况是 ShardingSphere需要在结果归并时获取相应
数据，但该数据并未能通过查询的 SQL返回。这种情况主要是针对 GROUP BY和 ORDER BY。结果归并
时，需要根据 GROUP BY和 ORDER BY的字段项进行分组和排序，但如果原始 SQL的选择项中若并未包
含分组项或排序项，则需要对原始 SQL进行改写。先看一下原始 SQL中带有结果归并所需信息的场景：

SELECT order_id, user_id FROM t_order ORDER BY user_id;

由于使用 user_id进行排序，在结果归并中需要能够获取到 user_id的数据，而上面的 SQL是能够获取
到 user_id数据的，因此无需补列。
如果选择项中不包含结果归并时所需的列，则需要进行补列，如以下 SQL：

SELECT order_id FROM t_order ORDER BY user_id;

由于原始 SQL中并不包含需要在结果归并中需要获取的 user_id，因此需要对 SQL进行补列改写。补列
之后的 SQL是：

SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_order ORDER BY user_id;

值得一提的是，补列只会补充缺失的列，不会全部补充，而且，在 SELECT语句中包含 *的 SQL，也会根
据表的元数据信息选择性补列。下面是一个较为复杂的 SQL补列场景：

7.4. 数据分片 366

Apache ShardingSphere document, v5.2.1

SELECT o.* FROM t_order o, t_order_item i WHERE o.order_id=i.order_id ORDER BY
user_id, order_item_id;

我们假设只有 t_order_item表中包含 order_item_id列，那么根据表的元数据信息可知，在结果归并时，
排序项中的 user_id是存在于 t_order表中的，无需补列；order_item_id并不在 t_order中，因此需要补
列。补列之后的 SQL是：

SELECT o.*, order_item_id AS ORDER_BY_DERIVED_0 FROM t_order o, t_order_item i
WHERE o.order_id=i.order_id ORDER BY user_id, order_item_id;

补列的另一种情况是使用 AVG聚合函数。在分布式的场景中，使用 avg1 + avg2 + avg3 / 3计算平均值并
不正确，需要改写为 (sum1 + sum2 + sum3) / (count1 + count2 + count3)。这就需要将包含 AVG的 SQL
改写为 SUM和 COUNT，并在结果归并时重新计算平均值。例如以下 SQL：

SELECT AVG(price) FROM t_order WHERE user_id=1;

需要改写为：

SELECT COUNT(price) AS AVG_DERIVED_COUNT_0, SUM(price) AS AVG_DERIVED_SUM_0 FROM t_
order WHERE user_id=1;

然后才能够通过结果归并正确的计算平均值。
最后一种补列是在执行 INSERT的 SQL语句时，如果使用数据库自增主键，是无需写入主键字段的。但
数据库的自增主键是无法满足分布式场景下的主键唯一的，因此 ShardingSphere提供了分布式自增主键
的生成策略，并且可以通过补列，让使用方无需改动现有代码，即可将分布式自增主键透明的替换数据库
现有的自增主键。分布式自增主键的生成策略将在下文中详述，这里只阐述与 SQL改写相关的内容。举
例说明，假设表 t_order的主键是 order_id，原始的 SQL为：

INSERT INTO t_order (`field1`, `field2`) VALUES (10, 1);

可以看到，上述 SQL中并未包含自增主键，是需要数据库自行填充的。ShardingSphere配置自增主键后，
SQL将改写为：

INSERT INTO t_order (`field1`, `field2`, order_id) VALUES (10, 1, xxxxx);

改写后的 SQL将在 INSERT FIELD和 INSERT VALUE的最后部分增加主键列名称以及自动生成的自增主
键值。上述 SQL中的 xxxxx表示自动生成的自增主键值。
如果 INSERT的 SQL中并未包含表的列名称，ShardingSphere也可以根据判断参数个数以及表元信息中
的列数量对比，并自动生成自增主键。例如，原始的 SQL为：

INSERT INTO t_order VALUES (10, 1);

改写的 SQL将只在主键所在的列顺序处增加自增主键即可：

INSERT INTO t_order VALUES (xxxxx, 10, 1);

自增主键补列时，如果使用占位符的方式书写 SQL，则只需要改写参数列表即可，无需改写 SQL本身。

7.4. 数据分片 367

Apache ShardingSphere document, v5.2.1

分页修正

从多个数据库获取分页数据与单数据库的场景是不同的。假设每 10条数据为一页，取第 2页数据。在分
片环境下获取 LIMIT 10, 10，归并之后再根据排序条件取出前 10条数据是不正确的。举例说明，若 SQL
为：

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

下图展示了不进行 SQL的改写的分页执行结果。

通过图中所示，想要取得两个表中共同的按照分数排序的第 2条和第 3条数据，应该是 95和 90。由于执
行的 SQL只能从每个表中获取第 2条和第 3条数据，即从 t_score_0表中获取的是 90和 80；从 t_score_1
表中获取的是 85和 75。因此进行结果归并时，只能从获取的 90，80，85和 75之中进行归并，那么结
果归并无论怎么实现，都不可能获得正确的结果。
正确的做法是将分页条件改写为 LIMIT 0, 3，取出所有前两页数据，再结合排序条件计算出正确的数
据。下图展示了进行 SQL改写之后的分页执行结果。

7.4. 数据分片 368

Apache ShardingSphere document, v5.2.1

越获取偏移量位置靠后数据，使用 LIMIT分页方式的效率就越低。有很多方法可以避免使用 LIMIT进行
分页。比如构建行记录数量与行偏移量的二级索引，或使用上次分页数据结尾 ID作为下次查询条件的分
页方式等。
分页信息修正时，如果使用占位符的方式书写 SQL，则只需要改写参数列表即可，无需改写 SQL本身。

批量拆分

在使用批量插入的 SQL时，如果插入的数据是跨分片的，那么需要对 SQL进行改写来防止将多余的数据
写入到数据库中。插入操作与查询操作的不同之处在于，查询语句中即使用了不存在于当前分片的分片
键，也不会对数据产生影响；而插入操作则必须将多余的分片键删除。举例说明，如下 SQL：

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, 'xxx');

假设数据库仍然是按照 order_id的奇偶值分为两片的，仅将这条 SQL中的表名进行修改，然后发送至数
据库完成 SQL的执行，则两个分片都会写入相同的记录。虽然只有符合分片查询条件的数据才能够被查
询语句取出，但存在冗余数据的实现方案并不合理。因此需要将 SQL改写为：

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

使用 IN的查询与批量插入的情况相似，不过 IN操作并不会导致数据查询结果错误。通过对 IN查询的改
写，可以进一步的提升查询性能。如以下 SQL：

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

改写为：

7.4. 数据分片 369

Apache ShardingSphere document, v5.2.1

SELECT * FROM t_order_0 WHERE order_id IN (2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 3);

可以进一步的提升查询性能。ShardingSphere暂时还未实现此改写策略，目前的改写结果是：

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

虽然 SQL的执行结果是正确的，但并未达到最优的查询效率。

优化改写

优化改写的目的是在不影响查询正确性的情况下，对性能进行提升的有效手段。它分为单节点优化和流
式归并优化。

单节点优化

路由至单节点的 SQL，则无需优化改写。当获得一次查询的路由结果后，如果是路由至唯一的数据节点，
则无需涉及到结果归并。因此补列和分页信息等改写都没有必要进行。尤其是分页信息的改写，无需将
数据从第 1条开始取，大量的降低了对数据库的压力，并且节省了网络带宽的无谓消耗。

流式归并优化

它仅为包含 GROUP BY的 SQL增加 ORDER BY以及和分组项相同的排序项和排序顺序，用于将内存归
并转化为流式归并。在结果归并的部分中，将对流式归并和内存归并进行详细说明。
改写引擎的整体结构划分如下图所示。

7.4. 数据分片 370

Apache ShardingSphere document, v5.2.1

7.4.10 执行引擎

ShardingSphere采用一套自动化的执行引擎，负责将路由和改写完成之后的真实 SQL安全且高效发送到
底层数据源执行。它不是简单地将 SQL通过 JDBC直接发送至数据源执行；也并非直接将执行请求放入
线程池去并发执行。它更关注平衡数据源连接创建以及内存占用所产生的消耗，以及最大限度地合理利
用并发等问题。执行引擎的目标是自动化的平衡资源控制与执行效率。

连接模式

从资源控制的角度看，业务方访问数据库的连接数量应当有所限制。它能够有效地防止某一业务操作过
多的占用资源，从而将数据库连接的资源耗尽，以致于影响其他业务的正常访问。特别是在一个数据库实
例中存在较多分表的情况下，一条不包含分片键的逻辑 SQL将产生落在同库不同表的大量真实 SQL，如
果每条真实 SQL都占用一个独立的连接，那么一次查询无疑将会占用过多的资源。
从执行效率的角度看，为每个分片查询维持一个独立的数据库连接，可以更加有效的利用多线程来提升
执行效率。为每个数据库连接开启独立的线程，可以将 I/O所产生的消耗并行处理。为每个分片维持一个
独立的数据库连接，还能够避免过早的将查询结果数据加载至内存。独立的数据库连接，能够持有查询
结果集游标位置的引用，在需要获取相应数据时移动游标即可。
以结果集游标下移进行结果归并的方式，称之为流式归并，它无需将结果数据全数加载至内存，可以有效
的节省内存资源，进而减少垃圾回收的频次。当无法保证每个分片查询持有一个独立数据库连接时，则

7.4. 数据分片 371

Apache ShardingSphere document, v5.2.1

需要在复用该数据库连接获取下一张分表的查询结果集之前，将当前的查询结果集全数加载至内存。因
此，即使可以采用流式归并，在此场景下也将退化为内存归并。
一方面是对数据库连接资源的控制保护，一方面是采用更优的归并模式达到对中间件内存资源的节省，如
何处理好两者之间的关系，是 ShardingSphere执行引擎需要解决的问题。具体来说，如果一条 SQL在经
过 ShardingSphere的分片后，需要操作某数据库实例下的 200张表。那么，是选择创建 200个连接并行
执行，还是选择创建一个连接串行执行呢？效率与资源控制又应该如何抉择呢？
针对上述场景，ShardingSphere提供了一种解决思路。它提出了连接模式（Connection Mode）的概念，
将其划分为内存限制模式（MEMORY_STRICTLY）和连接限制模式（CONNECTION_STRICTLY）这两种
类型。

内存限制模式

使用此模式的前提是，ShardingSphere对一次操作所耗费的数据库连接数量不做限制。如果实际执行的
SQL需要对某数据库实例中的 200张表做操作，则对每张表创建一个新的数据库连接，并通过多线程的
方式并发处理，以达成执行效率最大化。并且在 SQL满足条件情况下，优先选择流式归并，以防止出现
内存溢出或避免频繁垃圾回收情况。

连接限制模式

使用此模式的前提是，ShardingSphere严格控制对一次操作所耗费的数据库连接数量。如果实际执行的
SQL需要对某数据库实例中的 200张表做操作，那么只会创建唯一的数据库连接，并对其 200张表串行
处理。如果一次操作中的分片散落在不同的数据库，仍然采用多线程处理对不同库的操作，但每个库的
每次操作仍然只创建一个唯一的数据库连接。这样即可以防止对一次请求对数据库连接占用过多所带来
的问题。该模式始终选择内存归并。
内存限制模式适用于 OLAP操作，可以通过放宽对数据库连接的限制提升系统吞吐量；连接限制模式适
用于 OLTP操作，OLTP通常带有分片键，会路由到单一的分片，因此严格控制数据库连接，以保证在线
系统数据库资源能够被更多的应用所使用，是明智的选择。

自动化执行引擎

ShardingSphere最初将使用何种模式的决定权交由用户配置，让开发者依据自己业务的实际场景需求选
择使用内存限制模式或连接限制模式。
这种解决方案将两难的选择的决定权交由用户，使得用户必须要了解这两种模式的利弊，并依据业务场
景需求进行选择。这无疑增加了用户对 ShardingSphere的学习和使用的成本，并非最优方案。
这种一分为二的处理方案，将两种模式的切换交由静态的初始化配置，是缺乏灵活应对能力的。在实际的
使用场景中，面对不同 SQL以及占位符参数，每次的路由结果是不同的。这就意味着某些操作可能需要使
用内存归并，而某些操作则可能选择流式归并更优，具体采用哪种方式不应该由用户在 ShardingSphere
启动之前配置好，而是应该根据 SQL和占位符参数的场景，来动态的决定连接模式。
为了降低用户的使用成本以及连接模式动态化这两个问题，ShardingSphere提炼出自动化执行引擎的思
路，在其内部消化了连接模式概念。用户无需了解所谓的内存限制模式和连接限制模式是什么，而是交
由执行引擎根据当前场景自动选择最优的执行方案。

7.4. 数据分片 372

Apache ShardingSphere document, v5.2.1

自动化执行引擎将连接模式的选择粒度细化至每一次 SQL的操作。针对每次 SQL请求，自动化执行引擎
都将根据其路由结果，进行实时的演算和权衡，并自主地采用恰当的连接模式执行，以达到资源控制和
效率的最优平衡。针对自动化的执行引擎，用户只需配置maxConnectionSizePerQuery即可，该参数表
示一次查询时每个数据库所允许使用的最大连接数。
执行引擎分为准备和执行两个阶段。

准备阶段

顾名思义，此阶段用于准备执行的数据。它分为结果集分组和执行单元创建两个步骤。
结果集分组是实现内化连接模式概念的关键。执行引擎根据maxConnectionSizePerQuery配置项，结合
当前路由结果，选择恰当的连接模式。具体步骤如下：

1. 将 SQL的路由结果按照数据源的名称进行分组。
2. 通过下图的公式，可以获得每个数据库实例在 maxConnectionSizePerQuery的允许范围内，每
个连接需要执行的 SQL路由结果组，并计算出本次请求的最优连接模式。

在maxConnectionSizePerQuery允许的范围内，当一个连接需要执行的请求数量大于 1时，意味着当前
的数据库连接无法持有相应的数据结果集，则必须采用内存归并；反之，当一个连接需要执行的请求数
量等于 1时，意味着当前的数据库连接可以持有相应的数据结果集，则可以采用流式归并。
每一次的连接模式的选择，是针对每一个物理数据库的。也就是说，在同一次查询中，如果路由至一个
以上的数据库，每个数据库的连接模式不一定一样，它们可能是混合存在的形态。
通过上一步骤获得的路由分组结果创建执行的单元。当数据源使用数据库连接池等控制数据库连接数量
的技术时，在获取数据库连接时，如果不妥善处理并发，则有一定几率发生死锁。在多个请求相互等待
对方释放数据库连接资源时，将会产生饥饿等待，造成交叉的死锁问题。
举例说明，假设一次查询需要在某一数据源上获取两个数据库连接，并路由至同一个数据库的两个分表
查询。则有可能出现查询 A已获取到该数据源的 1个数据库连接，并等待获取另一个数据库连接；而查
询 B也已经在该数据源上获取到的一个数据库连接，并同样等待另一个数据库连接的获取。如果数据库
连接池的允许最大连接数是 2，那么这 2个查询请求将永久的等待下去。下图描绘了死锁的情况。

7.4. 数据分片 373

Apache ShardingSphere document, v5.2.1

ShardingSphere为了避免死锁的出现，在获取数据库连接时进行了同步处理。它在创建执行单元时，以
原子性的方式一次性获取本次 SQL请求所需的全部数据库连接，杜绝了每次查询请求获取到部分资源的
可能。由于对数据库的操作非常频繁，每次获取数据库连接时时都进行锁定，会降低 ShardingSphere的
并发。因此，ShardingSphere在这里进行了 2点优化：

1. 避免锁定一次性只需要获取 1个数据库连接的操作。因为每次仅需要获取 1个连接，则不会发生两
个请求相互等待的场景，无需锁定。对于大部分 OLTP的操作，都是使用分片键路由至唯一的数据
节点，这会使得系统变为完全无锁的状态，进一步提升了并发效率。除了路由至单分片的情况，读
写分离也在此范畴之内。

2. 仅针对内存限制模式时才进行资源锁定。在使用连接限制模式时，所有的查询结果集将在装载至内
存之后释放掉数据库连接资源，因此不会产生死锁等待的问题。

执行阶段

该阶段用于真正的执行 SQL，它分为分组执行和归并结果集生成两个步骤。
分组执行将准备执行阶段生成的执行单元分组下发至底层并发执行引擎，并针对执行过程中的每个关键
步骤发送事件。如：执行开始事件、执行成功事件以及执行失败事件。执行引擎仅关注事件的发送，它并
不关心事件的订阅者。ShardingSphere的其他模块，如：分布式事务、调用链路追踪等，会订阅感兴趣
的事件，并进行相应的处理。
ShardingSphere通过在执行准备阶段的获取的连接模式，生成内存归并结果集或流式归并结果集，并将
其传递至结果归并引擎，以进行下一步的工作。
执行引擎的整体结构划分如下图所示。

7.4. 数据分片 374

Apache ShardingSphere document, v5.2.1

7.4.11 归并引擎

将从各个数据节点获取的多数据结果集，组合成为一个结果集并正确的返回至请求客户端，称为结果归
并。
ShardingSphere支持的结果归并从功能上分为遍历、排序、分组、分页和聚合 5种类型，它们是组合而
非互斥的关系。从结构划分，可分为流式归并、内存归并和装饰者归并。流式归并和内存归并是互斥的，
装饰者归并可以在流式归并和内存归并之上做进一步的处理。
由于从数据库中返回的结果集是逐条返回的，并不需要将所有的数据一次性加载至内存中，因此，在进
行结果归并时，沿用数据库返回结果集的方式进行归并，能够极大减少内存的消耗，是归并方式的优先
选择。
流式归并是指每一次从结果集中获取到的数据，都能够通过逐条获取的方式返回正确的单条数据，它与
数据库原生的返回结果集的方式最为契合。遍历、排序以及流式分组都属于流式归并的一种。
内存归并则是需要将结果集的所有数据都遍历并存储在内存中，再通过统一的分组、排序以及聚合等计
算之后，再将其封装成为逐条访问的数据结果集返回。
装饰者归并是对所有的结果集归并进行统一的功能增强，目前装饰者归并有分页归并和聚合归并这 2种
类型。

7.4. 数据分片 375

Apache ShardingSphere document, v5.2.1

遍历归并

它是最为简单的归并方式。只需将多个数据结果集合并为一个单向链表即可。在遍历完成链表中当前数
据结果集之后，将链表元素后移一位，继续遍历下一个数据结果集即可。

排序归并

由于在 SQL中存在 ORDER BY语句，因此每个数据结果集自身是有序的，因此只需要将数据结果集当前
游标指向的数据值进行排序即可。这相当于对多个有序的数组进行排序，归并排序是最适合此场景的排
序算法。
ShardingSphere在对排序的查询进行归并时，将每个结果集的当前数据值进行比较（通过实现 Java的
Comparable接口完成），并将其放入优先级队列。每次获取下一条数据时，只需将队列顶端结果集的游
标下移，并根据新游标重新进入优先级排序队列找到自己的位置即可。
通过一个例子来说明 ShardingSphere的排序归并，下图是一个通过分数进行排序的示例图。图中展示
了 3张表返回的数据结果集，每个数据结果集已经根据分数排序完毕，但是 3个数据结果集之间是无序
的。将 3个数据结果集的当前游标指向的数据值进行排序，并放入优先级队列，t_score_0的第一个数据值
最大，t_score_2的第一个数据值次之，t_score_1的第一个数据值最小，因此优先级队列根据 t_score_0，
t_score_2和 t_score_1的方式排序队列。

下图则展现了进行 next调用的时候，排序归并是如何进行的。通过图中我们可以看到，当进行第一次 next
调用时，排在队列首位的 t_score_0将会被弹出队列，并且将当前游标指向的数据值（也就是 100）返回
至查询客户端，并且将游标下移一位之后，重新放入优先级队列。而优先级队列也会根据 t_score_0的当
前数据结果集指向游标的数据值（这里是 90）进行排序，根据当前数值，t_score_0排列在队列的最后一
位。之前队列中排名第二的 t_score_2的数据结果集则自动排在了队列首位。

7.4. 数据分片 376

Apache ShardingSphere document, v5.2.1

在进行第二次 next时，只需要将目前排列在队列首位的 t_score_2弹出队列，并且将其数据结果集游标
指向的值返回至客户端，并下移游标，继续加入队列排队，以此类推。当一个结果集中已经没有数据了，
则无需再次加入队列。

可以看到，对于每个数据结果集中的数据有序，而多数据结果集整体无序的情况下，ShardingSphere无
需将所有的数据都加载至内存即可排序。它使用的是流式归并的方式，每次 next仅获取唯一正确的一条
数据，极大的节省了内存的消耗。
从另一个角度来说，ShardingSphere的排序归并，是在维护数据结果集的纵轴和横轴这两个维度的有序
性。纵轴是指每个数据结果集本身，它是天然有序的，它通过包含 ORDER BY的 SQL所获取。横轴是指
每个数据结果集当前游标所指向的值，它需要通过优先级队列来维护其正确顺序。每一次数据结果集当
前游标的下移，都需要将该数据结果集重新放入优先级队列排序，而只有排列在队列首位的数据结果集
才可能发生游标下移的操作。

分组归并

分组归并的情况最为复杂，它分为流式分组归并和内存分组归并。流式分组归并要求 SQL的排序项与分
组项的字段以及排序类型（ASC或 DESC）必须保持一致，否则只能通过内存归并才能保证其数据的正确
性。
举例说明，假设根据科目分片，表结构中包含考生的姓名（为了简单起见，不考虑重名的情况）和分数。
通过 SQL获取每位考生的总分，可通过如下 SQL：

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

7.4. 数据分片 377

Apache ShardingSphere document, v5.2.1

在分组项与排序项完全一致的情况下，取得的数据是连续的，分组所需的数据全数存在于各个数据结果
集的当前游标所指向的数据值，因此可以采用流式归并。如下图所示。

进行归并时，逻辑与排序归并类似。下图展现了进行 next调用的时候，流式分组归并是如何进行的。

7.4. 数据分片 378

Apache ShardingSphere document, v5.2.1

通过图中我们可以看到，当进行第一次 next调用时，排在队列首位的 t_score_java将会被弹出队列，并
且将分组值同为“Jerry”的其他结果集中的数据一同弹出队列。在获取了所有的姓名为“Jerry”的同学
的分数之后，进行累加操作，那么，在第一次 next调用结束后，取出的结果集是“Jerry”的分数总和。
与此同时，所有的数据结果集中的游标都将下移至数据值“Jerry”的下一个不同的数据值，并且根据数
据结果集当前游标指向的值进行重排序。因此，包含名字顺着第二位的“John”的相关数据结果集则排
在的队列的前列。
流式分组归并与排序归并的区别仅仅在于两点：

1. 它会一次性的将多个数据结果集中的分组项相同的数据全数取出。
2. 它需要根据聚合函数的类型进行聚合计算。

对于分组项与排序项不一致的情况，由于需要获取分组的相关的数据值并非连续的，因此无法使用流式
归并，需要将所有的结果集数据加载至内存中进行分组和聚合。例如，若通过以下 SQL获取每位考生的
总分并按照分数从高至低排序：

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

那么各个数据结果集中取出的数据与排序归并那张图的上半部分的表结构的原始数据一致，是无法进行
流式归并的。
当 SQL中只包含分组语句时，根据不同数据库的实现，其排序的顺序不一定与分组顺序一致。但由于排
序语句的缺失，则表示此 SQL并不在意排序顺序。因此，ShardingSphere通过 SQL优化的改写，自动增
加与分组项一致的排序项，使其能够从消耗内存的内存分组归并方式转化为流式分组归并方案。

7.4. 数据分片 379

Apache ShardingSphere document, v5.2.1

聚合归并

无论是流式分组归并还是内存分组归并，对聚合函数的处理都是一致的。除了分组的 SQL之外，不进行
分组的 SQL也可以使用聚合函数。因此，聚合归并是在之前介绍的归并类的之上追加的归并能力，即装
饰者模式。聚合函数可以归类为比较、累加和求平均值这 3种类型。
比较类型的聚合函数是指 MAX和 MIN。它们需要对每一个同组的结果集数据进行比较，并且直接返回其
最大或最小值即可。
累加类型的聚合函数是指 SUM和 COUNT。它们需要将每一个同组的结果集数据进行累加。
求平均值的聚合函数只有 AVG。它必须通过 SQL改写的 SUM和 COUNT进行计算，相关内容已在 SQL改
写的内容中涵盖，不再赘述。

分页归并

上文所述的所有归并类型都可能进行分页。分页也是追加在其他归并类型之上的装饰器，ShardingSphere
通过装饰者模式来增加对数据结果集进行分页的能力。分页归并负责将无需获取的数据过滤掉。
ShardingSphere的分页功能比较容易让使用者误解，用户通常认为分页归并会占用大量内存。在分布式
的场景中，将 LIMIT 10000000, 10改写为 LIMIT 0, 10000010，才能保证其数据的正确性。用户
非常容易产生 ShardingSphere会将大量无意义的数据加载至内存中，造成内存溢出风险的错觉。其实，
通过流式归并的原理可知，会将数据全部加载到内存中的只有内存分组归并这一种情况。而通常来说，进
行 OLAP的分组 SQL，不会产生大量的结果数据，它更多的用于大量的计算，以及少量结果产出的场景。
除了内存分组归并这种情况之外，其他情况都通过流式归并获取数据结果集，因此 ShardingSphere会通
过结果集的 next方法将无需取出的数据全部跳过，并不会将其存入内存。
但同时需要注意的是，由于排序的需要，大量的数据仍然需要传输到 ShardingSphere的内存空间。因此，
采用 LIMIT这种方式分页，并非最佳实践。由于 LIMIT并不能通过索引查询数据，因此如果可以保证 ID
的连续性，通过 ID进行分页是比较好的解决方案，例如：

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id;

或通过记录上次查询结果的最后一条记录的 ID进行下一页的查询，例如：

SELECT * FROM t_order WHERE id > 10000000 LIMIT 10;

归并引擎的整体结构划分如下图。

7.4. 数据分片 380

Apache ShardingSphere document, v5.2.1

7.5 分布式事务

7.5.1 导览

本小节主要介绍 Apache ShardingSphere分布式事务的实现原理
• 基于 XA协议的两阶段事务
• 基于 Seata的柔性事务

7.5.2 XA事务

XAShardingSphereTransactionManager为 Apache ShardingSphere的分布式事务的 XA实现类。
它主要负责对多数据源进行管理和适配，并且将相应事务的开启、提交和回滚操作委托给具体的 XA事务
管理器。

7.5. 分布式事务 381

Apache ShardingSphere document, v5.2.1

开启全局事务

收到接入端的 set autoCommit=0 时，XAShardingSphereTransactionManager 将调用具体的
XA事务管理器开启 XA全局事务，以 XID的形式进行标记。

执行真实分片 SQL

XAShardingSphereTransactionManager将数据库连接所对应的 XAResource注册到当前 XA事务
中之后，事务管理器会在此阶段发送 XAResource.start命令至数据库。数据库在收到 XAResource.
end命令之前的所有 SQL操作，会被标记为 XA事务。
例如:

XAResource1.start ## Enlist 阶段执行
statement.execute("sql1"); ## 模拟执行一个分片 SQL1
statement.execute("sql2"); ## 模拟执行一个分片 SQL2
XAResource1.end ## 提交阶段执行

示例中的 sql1和 sql2将会被标记为 XA事务。

7.5. 分布式事务 382

Apache ShardingSphere document, v5.2.1

提交或回滚事务

XAShardingSphereTransactionManager在接收到接入端的提交命令后，会委托实际的 XA事务管
理进行提交动作，事务管理器将收集到的当前线程中所有注册的XAResource，并发送 XAResource.end
指令，用以标记此 XA事务边界。接着会依次发送 prepare指令，收集所有参与 XAResource投票。若
所有 XAResource的反馈结果均为正确，则调用 commit指令进行最终提交；若有任意 XAResource的反
馈结果不正确，则调用 rollback指令进行回滚。在事务管理器发出提交指令后，任何 XAResource产
生的异常都会通过恢复日志进行重试，以保证提交阶段的操作原子性，和数据强一致性。
例如:

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResource1.commit
XAResource2.commit

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResource1.rollback
XAResource2.rollback

7.5.3 Seata柔性事务

整合 Seata AT事务时，需要将 TM，RM和 TC的模型融入 Apache ShardingSphere的分布式事务生态中。
在数据库资源上，Seata通过对接DataSource接口，让 JDBC操作可以同TC进行远程通信。同样，Apache
ShardingSphere也是面向 DataSource接口，对用户配置的数据源进行聚合。因此，将 DataSource
封装为基于 Seata的 DataSource后，就可以将 Seata AT事务融入到 Apache ShardingSphere的分片生
态中。

7.5. 分布式事务 383

Apache ShardingSphere document, v5.2.1

引擎初始化

包含 Seata柔性事务的应用启动时，用户配置的数据源会根据 seata.conf的配置，适配为 Seata事务
所需的 DataSourceProxy，并且注册至 RM中。

开启全局事务

TM控制全局事务的边界，TM通过向 TC发送 Begin指令，获取全局事务 ID，所有分支事务通过此全局
事务 ID，参与到全局事务中；全局事务 ID的上下文存放在当前线程变量中。

执行真实分片 SQL

处于 Seata全局事务中的分片 SQL通过 RM生成 undo快照，并且发送 participate指令至 TC，加入
到全局事务中。由于 Apache ShardingSphere的分片物理 SQL采取多线程方式执行，因此整合 Seata AT
事务时，需要在主线程和子线程间进行全局事务 ID的上下文传递。

7.5. 分布式事务 384

Apache ShardingSphere document, v5.2.1

提交或回滚事务

提交 Seata事务时，TM会向 TC发送全局事务的提交或回滚指令，TC根据全局事务 ID协调所有分支事
务进行提交或回滚。

7.6 数据迁移

7.6.1 原理说明

目前的数据迁移解决方案为：使用一个全新的数据库集群作为迁移目标库。
这种实现方式有以下优点：

1. 迁移过程中，原始数据没有任何影响；
2. 迁移失败无风险；
3. 不受分片策略限制。

同时也存在一定的缺点：
1. 在一定时间内存在冗余服务器；
2. 所有数据都需要移动。

一次数据迁移包括以下几个主要阶段：
1. 准备阶段；
2. 存量数据迁移阶段；
3. 增量数据同步阶段；
4. 流量切换阶段。

7.6. 数据迁移 385

Apache ShardingSphere document, v5.2.1

7.6.2 执行阶段说明

准备阶段

在准备阶段，数据迁移模块会进行数据源连通性及权限的校验，同时进行存量数据的统计、日志位点的
记录，最后根据数据量和用户设置的并行度，对任务进行分片。

存量数据迁移阶段

执行在准备阶段拆分好的存量数据迁移任务，存量迁移阶段采用 JDBC查询的方式，直接从源端读取数
据，基于配置的分片等规则写入到目标端。

增量数据同步阶段

由于存量数据迁移耗费的时间受到数据量和并行度等因素影响，此时需要对这段时间内业务新增的数据
进行同步。不同的数据库使用的技术细节不同，但总体上均为基于复制协议或WAL日志实现的变更数据
捕获功能。

• MySQL：订阅并解析 binlog；
• PostgreSQL：采用官方逻辑复制 test_decoding。

这些捕获的增量数据，同样会由数据迁移模块写入到新数据节点中。当增量数据基本同步完成时（由于
业务系统未停止，增量数据是不断的），则进入流量切换阶段。

流量切换阶段

在此阶段，可能存在一定时间的业务只读窗口期，通过设置数据库只读、控制源头写流量等方式，让源
端数据节点中的数据短暂静态，确保增量同步完全完成。
这个只读窗口期时长取决于用户是否需要对数据进行一致性校验以及数据量。确认完成后，数据迁移完
成。然后用户可以把读流量或者写流量切换到 Apache ShardingSphere。

7.6.3 相关参考

数据迁移的配置

7.7 数据加密

7.7.1 处理流程详解

Apache ShardingSphere 通过对用户输入的 SQL 进行解析，并依据用户提供的加密规则对 SQL 进行改
写，从而实现对原文数据进行加密，并将原文数据（可选）及密文数据同时存储到底层数据库。在用户查
询数据时，它仅从数据库中取出密文数据，并对其解密，最终将解密后的原始数据返回给用户。Apache
ShardingSphere自动化 &透明化了数据加密过程，让用户无需关注数据加密的实现细节，像使用普通数

7.7. 数据加密 386

https://www.postgresql.org/docs/9.4/test-decoding.html
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/migration/

Apache ShardingSphere document, v5.2.1

据那样使用加密数据。此外，无论是已在线业务进行加密改造，还是新上线业务使用加密功能，Apache
ShardingSphere都可以提供一套相对完善的解决方案。

整体架构

加密模块将用户发起的 SQL进行拦截，并通过 SQL语法解析器进行解析、理解 SQL行为，再依据用户传
入的加密规则，找出需要加密的字段和所使用的加解密算法对目标字段进行加解密处理后，再与底层数
据库进行交互。Apache ShardingSphere会将用户请求的明文进行加密后存储到底层数据库；并在用户
查询时，将密文从数据库中取出进行解密后返回给终端用户。通过屏蔽对数据的加密处理，使用户无需
感知解析 SQL、数据加密、数据解密的处理过程，就像在使用普通数据一样使用加密数据。

加密规则

在详解整套流程之前，我们需要先了解下加密规则与配置，这是认识整套流程的基础。加密配置主要分
为四部分：数据源配置，加密算法配置，加密表配置以及查询属性配置，其详情如下图所示：

7.7. 数据加密 387

Apache ShardingSphere document, v5.2.1

数据源配置：指数据源配置。
加密算法配置：指使用什么加密算法进行加解密。目前 ShardingSphere 内置了五种加解密算法：AES，
MD5，RC4，SM3和 SM4。用户还可以通过实现 ShardingSphere提供的接口，自行实现一套加解密算法。
加密表配置：用于告诉 ShardingSphere数据表里哪个列用于存储密文数据（cipherColumn）、使用什么
算法加解密（encryptorName）、哪个列用于存储辅助查询数据（assistedQueryColumn）、使用什么算法
加解密（assistedQueryEncryptorName）、哪个列用于存储明文数据（plainColumn）以及用户想使用哪
个列进行 SQL编写（logicColumn）。

如何理解用户想使用哪个列进行 SQL 编写（logicColumn）？
我们可以从加密模块存在的意义来理解。加密模块最终目的是希望屏蔽底层对数据的加密处
理，也就是说我们不希望用户知道数据是如何被加解密的、如何将明文数据存储到 plainCol‐
umn，将密文数据存储到 cipherColumn，将辅助查询数据存储到 assistedQueryColumn。换
句话说，我们不希望用户知道 plainColumn、cipherColumn和 assistedQueryColumn的存在
和使用。所以，我们需要给用户提供一个概念意义上的列，这个列可以脱离底层数据库的真实
列，它可以是数据库表里的一个真实列，也可以不是，从而使得用户可以随意改变底层数据库
的 plainColumn、cipherColumn和 assistedQueryColumn的列名。或者删除 plainColumn，
选择永远不再存储明文，只存储密文。只要用户的 SQL面向这个逻辑列进行编写，并在加密
规则里给出 logicColumn和 plainColumn、cipherColumn、assistedQueryColumn之间正确
的映射关系即可。
为什么要这么做呢？答案在文章后面，即为了让已上线的业务能无缝、透明、安全地进行数据
加密迁移。

查询属性的配置：当底层数据库表里同时存储了明文数据、密文数据后，该属性开关用于决定是直接查

7.7. 数据加密 388

Apache ShardingSphere document, v5.2.1

询数据库表里的明文数据进行返回，还是查询密文数据通过 Apache ShardingSphere解密后返回。该属
性开关支持表级别和整个规则级别配置，表级别优先级最高。

加密处理过程

举例说明，假如数据库里有一张表叫做 t_user，这张表里实际有两个字段 pwd_plain，用于存放明
文数据、pwd_cipher，用于存放密文数据、pwd_assisted_query，用于存放辅助查询数据，同时定
义 logicColumn为 pwd。那么，用户在编写 SQL时应该面向 logicColumn进行编写，即 INSERT INTO
t_user SET pwd = '123'。Apache ShardingSphere接收到该 SQL，通过用户提供的加密配置，发
现 pwd是 logicColumn，于是便对逻辑列及其对应的明文数据进行加密处理。Apache ShardingSphere
将面向用户的逻辑列与面向底层数据库的明文列和密文列进行了列名以及数据的加密映射转换。如下图
所示：

7.7. 数据加密 389

Apache ShardingSphere document, v5.2.1

即依据用户提供的加密规则，将用户 SQL与底层数据表结构割裂开来，使得用户的 SQL编写不再依赖于
真实的数据库表结构。而用户与底层数据库之间的衔接、映射、转换交由 Apache ShardingSphere进行
处理。
下方图片展示了使用加密模块进行增删改查时，其中的处理流程和转换逻辑，如下图所示。

7.7. 数据加密 390

Apache ShardingSphere document, v5.2.1

7.7.2 解决方案详解

在了解了 Apache ShardingSphere加密处理流程后，即可将加密配置、加密处理流程与实际场景进行结
合。所有的设计开发都是为了解决业务场景遇到的痛点。那么面对之前提到的业务场景需求，又应该如
何使用 Apache ShardingSphere这把利器来满足业务需求呢？

新上线业务

业务场景分析：新上线业务由于一切从零开始，不存在历史数据清洗问题，所以相对简单。
解决方案说明：选择合适的加密算法，如 AES后，只需配置逻辑列（面向用户编写 SQL）和密文列（数
据表存密文数据）即可，逻辑列和密文列可以相同也可以不同。建议配置如下（YAML格式展示）：

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd:

cipherColumn: pwd_cipher

7.7. 数据加密 391

Apache ShardingSphere document, v5.2.1

encryptorName: aes_encryptor
assistedQueryColumn: pwd_assisted_query
assistedQueryEncryptorName: pwd_assisted_query_cipher
queryWithCipherColumn: true

使用这套配置，Apache ShardingSphere只需将 logicColumn和 cipherColumn，assistedQueryColumn
进行转换，底层数据表不存储明文，只存储了密文，这也是安全审计部分的要求所在。如果用户希望将
明文、密文一同存储到数据库，只需添加 plainColumn配置即可。整体处理流程如下图所示：

已上线业务改造

业务场景分析：由于业务已经在线上运行，数据库里必然存有大量明文历史数据。现在的问题是如何让
历史数据得以加密清洗、如何让增量数据得以加密处理、如何让业务在新旧两套数据系统之间进行无缝、
透明化迁移。
解决方案说明：在提供解决方案之前，我们先来头脑风暴一下：首先，既然是旧业务需要进行加密改造，
那一定存储了非常重要且敏感的信息。这些信息含金量高且业务相对基础重要。不应该采用停止业务禁
止新数据写入，再找个加密算法把历史数据全部加密清洗，再把之前重构的代码部署上线，使其能把存
量和增量数据进行在线加密解密。
那么另一种相对安全的做法是：重新搭建一套和生产环境一模一样的预发环境，然后通过相关迁移洗数
工具把生产环境的存量原文数据加密后存储到预发环境，而新增数据则通过例如MySQL主从复制及业务
方自行开发的工具加密后存储到预发环境的数据库里，再把重构后可以进行加解密的代码部署到预发环
境。这样生产环境是一套以明文为核心的查询修改的环境；预发环境是一套以密文为核心加解密查询修
改的环境。在对比一段时间无误后，可以夜间操作将生产流量切到预发环境中。此方案相对安全可靠，只
是时间、人力、资金、成本较高，主要包括：预发环境搭建、生产代码整改、相关辅助工具开发等。
业务开发人员最希望的做法是：减少资金费用的承担、最好不要修改业务代码、能够安全平滑迁移系统。
于是，ShardingSphere的加密功能模块便应运而生。可分为 3步进行：

1. 系统迁移前
假设系统需要对 t_user的 pwd字段进行加密处理，业务方使用 Apache ShardingSphere来代替标准化
的 JDBC接口，此举基本不需要额外改造（我们还提供了 Spring Boot Starter，Spring命名空间，YAML
等接入方式，满足不同业务方需求）。另外，提供一套加密配置规则，如下所示：

7.7. 数据加密 392

Apache ShardingSphere document, v5.2.1

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd:

plainColumn: pwd
cipherColumn: pwd_cipher
encryptorName: aes_encryptor
assistedQueryColumn: pwd_assisted_query
assistedQueryEncryptorName: pwd_assisted_query_cipher
queryWithCipherColumn: false

依据上述加密规则可知，首先需要在数据库表 t_user里新增一个字段叫做 pwd_cipher，即 cipherCol‐
umn，用于存放密文数据，同时我们把 plainColumn设置为 pwd，用于存放明文数据，而把 logicColumn
也设置为 pwd。由于之前的代码 SQL就是使用 pwd进行编写，即面向逻辑列进行 SQL编写，所以业务
代码无需改动。通过 Apache ShardingSphere，针对新增的数据，会把明文写到 pwd列，并同时把明文
进行加密存储到 pwd_cipher列。此时，由于 queryWithCipherColumn设置为 false，对业务应用来
说，依旧使用 pwd这一明文列进行查询存储，却在底层数据库表 pwd_cipher上额外存储了新增数据的
密文数据，其处理流程如下图所示：

新增数据在插入时，就通过 Apache ShardingSphere加密为密文数据，并被存储到了 cipherColumn。而
现在就需要处理历史明文存量数据。由于 Apache ShardingSphere目前并未提供相关迁移洗数工具，此
时需要业务方自行将 “pwd“中的明文数据进行加密处理存储到 “pwd_cipher“。

2. 系统迁移中
新增的数据已被 Apache ShardingSphere将密文存储到密文列，明文存储到明文列；历史数据被业务方
自行加密清洗后，将密文也存储到密文列。也就是说现在的数据库里即存放着明文也存放着密文，只是

7.7. 数据加密 393

Apache ShardingSphere document, v5.2.1

由于配置项中的 queryWithCipherColumn = false，所以密文一直没有被使用过。现在我们为了让
系统能切到密文数据进行查询，需要将加密配置中的 queryWithCipherColumn设置为 true。在重启系统
后，我们发现系统业务一切正常，但是 Apache ShardingSphere已经开始从数据库里取出密文列的数据，
解密后返回给用户；而对于用户的增删改需求，则依旧会把原文数据存储到明文列，加密后密文数据存
储到密文列。
虽然现在业务系统通过将密文列的数据取出，解密后返回；但是，在存储的时候仍旧会存一份原文数据
到明文列，这是为什么呢？答案是：为了能够进行系统回滚。因为只要密文和明文永远同时存在，我们
就可以通过开关项配置自由将业务查询切换到 cipherColumn或 plainColumn。也就是说，如果将系统
切到密文列进行查询时，发现系统报错，需要回滚。那么只需将 queryWithCipherColumn = false，
Apache ShardingSphere将会还原，即又重新开始使用 plainColumn进行查询。处理流程如下图所示：

3. 系统迁移后
由于安全审计部门要求，业务系统一般不可能让数据库的明文列和密文列永久同步保留，我们需要在系统
稳定后将明文列数据删除。即我们需要在系统迁移后将 plainColumn，即 pwd进行删除。那问题来了，现
在业务代码都是面向 pwd进行编写 SQL的，把底层数据表中的存放明文的 pwd删除了，换用 pwd_cipher
进行解密得到原文数据，那岂不是意味着业务方需要整改所有 SQL，从而不使用即将要被删除的 pwd列？
还记得我们 Apache ShardingSphere的核心意义所在吗？

这也正是 Apache ShardingSphere核心意义所在，即依据用户提供的加密规则，将用户 SQL
与底层数据库表结构割裂开来，使得用户的 SQL编写不再依赖于真实的数据库表结构。而用
户与底层数据库之间的衔接、映射、转换交由 Apache ShardingSphere进行处理。

是的，因为有 logicColumn存在，用户的编写 SQL都面向这个虚拟列，Apache ShardingSphere就可以
把这个逻辑列和底层数据表中的密文列进行映射转换。于是迁移后的加密配置即为：

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:

7.7. 数据加密 394

Apache ShardingSphere document, v5.2.1

t_user:
columns:
pwd: # pwd 与 pwd_cipher 的转换映射

cipherColumn: pwd_cipher
encryptorName: aes_encryptor
assistedQueryColumn: pwd_assisted_query
assistedQueryEncryptorName: pwd_assisted_query_cipher
queryWithCipherColumn: true

其处理流程如下：

4. 系统迁移完成
安全审计部门再要求，业务系统需要定期或某些紧急安全事件触发修改密钥，我们需要再次进行迁移洗
数，即使用旧密钥解密后再使用新密钥加密。既要又要还要的问题来了，明文列数据已删除，数据库表
中数据量千万级，迁移洗数需要一定时间，迁移洗数过程中密文列在变化，系统还需正确提供服务。怎
么办？答案是：辅助查询列因为辅助查询列一般使用不可逆的MD5和 SM3等算法，基于辅助列进行查
询，即使在迁移洗数过程中，系统也是可以提供正确服务。
至此，已在线业务加密整改解决方案全部叙述完毕。我们提供了 Java、YAML、Spring Boot Starter、Spring
命名空间多种方式供用户选择接入，力求满足业务不同的接入需求。该解决方案目前已在京东数科不断
落地上线，提供对内基础服务支撑。

7.7.3 中间件加密服务优势

1. 自动化 &透明化数据加密过程，用户无需关注加密中间实现细节。
2. 提供多种内置、第三方（AKS）的加密算法，用户仅需简单配置即可使用。
3. 提供加密算法 API接口，用户可实现接口，从而使用自定义加密算法进行数据加密。
4. 支持切换不同的加密算法。
5. 针对已上线业务，可实现明文数据与密文数据同步存储，并通过配置决定使用明文列还是密文列进
行查询。可实现在不改变业务查询 SQL前提下，已上线系统对加密前后数据进行安全、透明化迁移。

7.7. 数据加密 395

Apache ShardingSphere document, v5.2.1

7.7.4 加密算法解析

Apache ShardingSphere提供了加密算法用于数据加密，即 EncryptAlgorithm。
一方面，Apache ShardingSphere为用户提供了内置的加解密实现类，用户只需进行配置即可使用；另一
方面，为了满足用户不同场景的需求，我们还开放了相关加解密接口，用户可依据这两种类型的接口提
供具体实现类。再进行简单配置，即可让 Apache ShardingSphere调用用户自定义的加解密方案进行数
据加密。

EncryptAlgorithm

该解决方案通过提供 encrypt()，decrypt() 两种方法对需要加密的数据进行加解密。在用户进行
INSERT，DELETE，UPDATE时，ShardingSphere会按照用户配置，对 SQL进行解析、改写、路由，并
调用 encrypt()将数据加密后存储到数据库，而在 SELECT时，则调用 decrypt()方法将从数据库中
取出的加密数据进行逆向解密，最终将原始数据返回给用户。
当前，Apache ShardingSphere针对这种类型的加密解决方案提供了五种具体实现类，分别是MD5（不
可逆），AES（可逆），RC4（可逆），SM3（不可逆），SM4（可逆），用户只需配置即可使用这五种内置的
方案。

7.8 影子库

7.8.1 原理介绍

Apache ShardingSphere 通 过 解 析 SQL， 对 传 入 的 SQL 进 行 影 子 判
定， 根 据 配 置 文 件 中 用 户 设 置 的 影 子 规 则， 路 由 到 生 产 库 或 者 影 子 库。

7.8. 影子库 396

Apache ShardingSphere document, v5.2.1

以 INSERT语句为例，在写入数据时，Apache ShardingSphere会对 SQL进行解析，再根据配置文件中
的规则，构造一条路由链。在当前版本的功能中，影子功能处于路由链中的最后一个执行单元，即，如果
有其他需要路由的规则存在，如分片，Apache ShardingSphere会首先根据分片规则，路由到某一个数据
库，再执行影子路由判定流程，判定执行 SQL满足影子规则的配置，数据路由到与之对应的影子库，生
产数据则维持不变。

DML语句

支持两种算法。影子判定会首先判断执行 SQL相关表与配置的影子表是否有交集。如果有交集，依次判
定交集部分影子表关联的影子算法，有任何一个判定成功。SQL语句路由到影子库。影子表没有交集或
者影子算法判定不成功，SQL语句路由到生产库。

DDL语句

仅支持注解影子算法。在压测场景下，DDL语句一般不需要测试。主要在初始化或者修改影子库中影子
表时使用。影子判定会首先判断执行 SQL是否包含注解。如果包含注解，影子规则中配置的 HINT影子
算法依次判定。有任何一个判定成功。SQL语句路由到影子库。执行 SQL不包含注解或者 HINT影子算
法判定不成功，SQL语句路由到生产库。

7.8. 影子库 397

Apache ShardingSphere document, v5.2.1

7.8.2 相关参考

JAVA API：影子库配置
YAML配置：影子库配置
Spring Boot Starter：影子库配置
Spring命名空间：影子库配置

7.9 可观察性

7.9.1 原理说明

ShardingSphere‐Agent模块为 ShardingSphere提供了可观察性的框架，它是基于 Java Agent技术实现
的。
Metrics、Tracing和 Logging等功能均通过插件的方式集成在 Agent中，如图：

• Metrics 插件用于收集和展示整个集群的统计指标。Apache ShardingSphere 默认提供了对
Prometheus的支持。

• Tracing插件用于获取 SQL解析与 SQL执行的链路跟踪信息。Apache ShardingSphere默认提供了
对 Jaeger、OpenTelemetry、OpenTracing（SkyWalking）和 Zipkin的支持，也支持用户通过插件
化的方式开发自定义的 Tracing组件。

7.9. 可观察性 398

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/shadow/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/spring-namespace/rules/shadow/

Apache ShardingSphere document, v5.2.1

• 默认的 Logging插件展示了如何在 ShardingSphere中记录额外的日志，实际应用中需要用户根据
自己的需求进行探索。

7.10 DistSQL

本章节将介绍 DistSQL的详细语法。

7.10.1 语法

本章节将对 DistSQL的语法进行详细说明，并以实际的列子介绍 DistSQL的使用。

RDL语法

RDL (Resource & Rule Definition Language)为 Apache ShardingSphere的资源和规则定义语言。

资源定义

本章节将对资源定义的语法进行详细说明。

ADD RESOURCE

描述

ADD RESOURCE语法用于为当前所选逻辑库（DATABASE）添加资源。

语法

AddResource ::=
'ADD' 'RESOURCE' resourceDefinition (',' resourceDefinition)*

resourceDefinition ::=
resourceName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName |

'URL' '=' url) ',' 'USER' '=' user (',' 'PASSWORD' '=' password)? (','
proerties)?')'

resourceName ::=
identifier

hostname ::=
string

port ::=
int

7.10. DistSQL 399

https://shardingsphere.apache.org/document/current/cn/concepts/distsql/

Apache ShardingSphere document, v5.2.1

dbName ::=
string

url ::=
string

user ::=
string

password ::=
string

proerties ::=
PROPERTIES '(' property (',' property)* ')'

property ::=
key '=' value

key ::=
string

value ::=
string

特别说明

• 添加资源前请确认已经在 Proxy中创建逻辑数据库，并执行 use命令成功选择一个逻辑数据库；
• 确认添加的资源是可以正常连接的，否则将不能添加成功；
• resourceName区分大小写；
• resourceName在当前逻辑库中需要唯一；
• resourceName命名只允许使用字母、数字以及 _，且必须以字母开头；
• poolProperty用于自定义连接池参数，key必须和连接池参数名一致，value支持 int和 String
类型；

• 当 password 包含特殊字符时，建议使用 string 形式；例如 password@123 的 string 形式为
"password@123"。

7.10. DistSQL 400

Apache ShardingSphere document, v5.2.1

示例

• 使用标准模式添加资源

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db_0,
USER=root,
PASSWORD=root

);

• 使用标准模式添加资源并设置连接池参数

ADD RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=db_1,
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10)

);

• 使用 URL模式添加资源并设置连接池参数

ADD RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

保留字

ADD、RESOURCE、HOST、PORT、DB、USER、PASSWORD、PROPERTIES、URL

7.10. DistSQL 401

Apache ShardingSphere document, v5.2.1

相关链接

• 保留字

ALTER RESOURCE

描述

ALTER RESOURCE语法用于修改当前所选逻辑库（DATABASE）的资源。

语法

AlterResource ::=
'ALTER' 'RESOURCE' resourceDefinition (',' resourceDefinition)*

resourceDefinition ::=
resourceName '(' ('HOST' '=' hostName ',' 'PORT' '=' port ',' 'DB' '=' dbName |

'URL' '=' url) ',' 'USER' '=' user (',' 'PASSWORD' '=' password)? (','
proerties)?')'

resourceName ::=
identifier

hostname ::=
string

port ::=
int

dbName ::=
string

url ::=
string

user ::=
string

password ::=
string

proerties ::=
PROPERTIES '(' property (',' property)* ')'

property ::=
key '=' value

7.10. DistSQL 402

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

key ::=
string

value ::=
string

补充说明

• 修改资源前请确认已经在 Proxy中创建逻辑数据库，并执行 use命令成功选择一个逻辑数据库；
• ALTER RESOURCE不允许改变该资源关联的真实数据源；
• ALTER RESOURCE会发生连接池的切换，这个操作可能对进行中的业务造成影响，请谨慎使用；
• 确认添加的资源是可以正常连接的，否则将不能添加成功；
• resourceName区分大小写；
• resourceName在当前逻辑库中需要唯一；
• resourceName命名只允许使用字母、数字以及 _，且必须以字母开头；
• poolProperty用于自定义连接池参数，key必须和连接池参数名一致，value支持 int和 String
类型；

• 当 password 包含特殊字符时，建议使用 string 形式；例如 password@123 的 string 形式为
"password@123"。

示例

• 使用标准模式修改资源

ALTER RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db_0,
USER=root,
PASSWORD=root

);

• 使用标准模式修改资源并设置连接池参数

ALTER RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=db_1,
USER=root,
PASSWORD=root,

7.10. DistSQL 403

Apache ShardingSphere document, v5.2.1

PROPERTIES("maximumPoolSize"=10)
);

• 使用 URL模式修改资源并设置连接池参数

ALTER RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/db_2?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

保留字

ALTER、RESOURCE、HOST、PORT、DB、USER、PASSWORD、PROPERTIES、URL

相关链接

• 保留字

DROP RESOURCE

描述

DROP RESOURCE语法用于从当前逻辑库中移除资源。

语法

DropResource ::=
'DROP' 'RESOURCE' ('IF' 'EXISTS')? resourceName (',' resourceName)* (

'IGNORE' 'SINGLE' 'TABLES')?

resourceName ::=
identifier

7.10. DistSQL 404

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

补充说明

• DROP RESOURCE只会移除 Proxy中的资源，不会删除与资源对应的真实数据源；
• 无法移除已经被规则使用的资源。移除被规则使用的资源时会提示 Resources are still in
used；

• 将要移除的资源中仅包含 SINGLE TABLE RULE，且用户确认可以忽略该限制时，可添加 IGNORE
SINGLE TABLES关键字移除资源。

示例

• 移除资源

DROP RESOURCE ds_0;

• 移除多个资源

DROP RESOURCE ds_1, ds_2;

• 忽略单表移除资源

DROP RESOURCE ds_3 IGNORE SINGLE TABLES;

• 如果资源存在则移除

DROP RESOURCE IF EXISTS ds_4;

保留字

DROP、RESOURCE、IF、EXISTS、IGNORE、SINGLE、TABLES

相关链接

• 保留字

规则定义

本章节将对规则定义的语法进行详细说明。

7.10. DistSQL 405

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

数据库发现

本章节将对数据库发现特性的语法进行详细说明。

CREATE DB_DISCOVERY RULE

描述

CREATE DB_DISCOVERY RULE语法用于创建数据库发现规则

语法定义

CreateDatabaseDiscoveryRule ::=
'CREATE' 'DB_DISCOVERY' 'RULE' (databaseDiscoveryDefinition |

databaseDiscoveryConstruction) (',' (databaseDiscoveryDefinition |
databaseDiscoveryConstruction))*

databaseDiscoveryDefinition ::=
ruleName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ',' 'TYPE'

'(' 'NAME' '=' typeName (',' 'PROPERTIES' 'key' '=' 'value' (',' 'key' '=' 'value
')*)? ',' 'HEARTBEAT' '(' 'key' '=' 'value' (',' 'key' '=' 'value')* ')' ')'

databaseDiscoveryConstruction ::=
ruleName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ',' 'TYPE'

'=' discoveryTypeName ',' 'HEARTBEAT' '=' discoveryHeartbeatName ')'

ruleName ::=
identifier

resourceName ::=
identifier

typeName ::=
identifier

discoveryHeartbeatName ::=
identifier

7.10. DistSQL 406

Apache ShardingSphere document, v5.2.1

补充说明

• discoveryType指定数据库发现服务类型，ShardingSphere内置支持 MySQL.MGR；
• 重复的 ruleName将无法被创建。

示例

创建 discoveryRule时同时创建 discoveryType和 discoveryHeartbeat

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))

);

使用已有的 discoveryType和 discoveryHeartbeat创建 discoveryRule

CREATE DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat

);

保留字

CREATE、DB_DISCOVERY、RULE、RESOURCES、TYPE、NAME、PROPERTIES、HEARTBEAT

相关链接

• 保留字

CREATE DB_DISCOVERY TYPE

描述

CREATE DB_DISCOVERY TYPE语法用于创建数据库发现类型规则

7.10. DistSQL 407

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

语法定义

CreateDatabaseDiscoveryType ::=
'CREATE' 'DB_DISCOVERY' 'TYPE' databaseDiscoveryTypeDefinition (','

databaseDiscoveryTypeDefinition)*

databaseDiscoveryTypeDefinition ::=
discoveryTypeName '(' 'TYPE' '(' 'NAME' '=' typeName (',' 'PROPERTIES' '('

'key' '=' 'value' (',' 'key' '=' 'value')* ')')? ')' ')'

discoveryTypeName ::=
identifier

typeName ::=
string

补充说明

• discoveryType指定数据库发现服务类型，ShardingSphere内置支持 MySQL.MGR。

示例

创建 discoveryType

CREATE DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME='MySQL.MGR',PROPERTIES('group-name'='92504d5b-6dec'))

);

保留字

CREATE、DB_DISCOVERY、TYPE、NAME、PROPERTIES

相关链接

• 保留字

7.10. DistSQL 408

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

CREATE DB_DISCOVERY HEARTBEAT

描述

CREATE DB_DISCOVERY HEARTBEAT语法用于创建数据库发现心跳包规则

语法定义

CreateDatabaseDiscoveryHeartbeat ::=
'CREATE' 'DB_DISCOVERY' 'HEARTBEAT' databaseDiscoveryHeartbaetDefinition (','

databaseDiscoveryHeartbaetDefinition)*

databaseDiscoveryHeartbaetDefinition ::=
discoveryHeartbeatName '(' 'PROPERTIES' '(' 'key' '=' 'value' (',' 'key' '='

'value')* ')' ')'

discoveryHeartbeatName ::=
identifier

补充说明

• 带有 -的命名在改动时需要使用 " "。

示例

创建 HEARTBEAT

CREATE DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/5 * * * * ?')

);

保留字

CREATE、DB_DISCOVERY、HEARTBEAT

7.10. DistSQL 409

Apache ShardingSphere document, v5.2.1

相关链接

• 保留字

数据加密

本章节将对数据加密特性的语法进行详细说明。

CREATE ENCRYPT RULE

描述

CREATE ENCRYPT RULE语法用于创建数据加密规则

语法定义

CreateEncryptRule ::=
'CREATE' 'ENCRYPT' 'RULE' encryptDefinition (',' encryptDefinition)*

encryptDefinition ::=
tableName '(' 'COLUMNS' '(' columnDefinition (',' columnDefinition)* ')' ','

'QUERY_WITH_CIPHER_COLUMN' '=' ('TRUE' | 'FALSE') ')'

columnDefinition ::=
'NAME' '=' columnName ',' ('PLAIN' '=' plainColumnName)? 'CIPHER' '='

cipherColumnName ',' 'TYPE' '(' 'NAME' '=' encryptAlgorithmType (',' 'PROPERTIES'
'(' 'key' '=' 'value' (',' 'key' '=' 'value')* ')')? ')'

tableName ::=
identifier

columnName ::=
identifier

plainColumnName ::=
identifier

cipherColumnName ::=
identifier

encryptAlgorithmType ::=
string

7.10. DistSQL 410

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

补充说明

• PLAIN指定明文数据列，CIPHER指定密文数据列；
• encryptAlgorithmType指定加密算法类型，请参考加密算法；
• 重复的 tableName将无法被创建；
• queryWithCipherColumn支持大写或小写的 true或 false。

示例

创建数据加密规则

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER =order_cipher,TYPE(NAME='MD5'))
),QUERY_WITH_CIPHER_COLUMN=true),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME='AES',PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER=order_cipher,TYPE(NAME='MD5'))
), QUERY_WITH_CIPHER_COLUMN=FALSE);

保留字

CREATE、ENCRYPT、RULE、COLUMNS、NAME、CIPHER、PLAIN、QUERY_WITH_CIPHER_COLUMN、TYPE、
TRUE、FALSE

相关链接

• 保留字

读写分离

本章节将对读写分离特性的语法进行详细说明。

7.10. DistSQL 411

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

CREATE READWRITE_SPLITTING RULE

描述

CREATE DEFAULT SINGLE TABLE RULE语法用于创建读写分离规则

语法定义

CreateReadwriteSplittingRule ::=
'CREATE' 'READWRITE_SPLITTING' 'RULE' readwriteSplittingDefinition (','

readwriteSplittingDefinition)*

readwriteSplittingDefinition ::=
ruleName '(' (staticReadwriteSplittingDefinition |

dynamicReadwriteSplittingDefinition) (',' loadBalancerDefinition)? ')'

staticReadwriteSplittingDefinition ::=
'WRITE_RESOURCE' '=' writeResourceName ',' 'READ_RESOURCES' '(' ruleName (','

ruleName)* ')'

dynamicReadwriteSplittingDefinition ::=
'AUTO_AWARE_RESOURCE' '=' resourceName (',' 'WRITE_DATA_SOURCE_QUERY_ENABLED'

'=' ('TRUE' | 'FALSE'))?

loadBalancerDefinition ::=
'TYPE' '(' 'NAME' '=' loadBalancerType (',' 'PROPERTIES' '(' 'key' '=' 'value'

(',' 'key' '=' 'value')* ')')? ')'

ruleName ::=
identifier

writeResourceName ::=
identifier

resourceName ::=
identifier

loadBalancerType ::=
string

7.10. DistSQL 412

Apache ShardingSphere document, v5.2.1

补充说明

• 支持创建静态读写分离规则和动态读写分离规则；
• 动态读写分离规则依赖于数据库发现规则；
• loadBalancerType指定负载均衡算法类型，请参考负载均衡算法；
• 重复的 ruleName将无法被创建。

示例

创建静态读写分离规则

CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1),
TYPE(NAME="random")

);

创建动态读写分离规则

CREATE READWRITE_SPLITTING RULE ms_group_1 (
AUTO_AWARE_RESOURCE=group_0,
WRITE_DATA_SOURCE_QUERY_ENABLED=false,
TYPE(NAME="random",PROPERTIES("read_weight"="2:1"))

);

保留字

CREATE、READWRITE_SPLITTING、RULE、WRITE_RESOURCE、READ_RESOURCES、
AUTO_AWARE_RESOURCE、WRITE_DATA_SOURCE_QUERY_ENABLED、TYPE、NAME、PROPERTIES、
TRUE、FALSE

相关链接

• 保留字

7.10. DistSQL 413

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

影子库压测

本章节将对影子库压测特性的语法进行详细说明。

CREATE SHADOWRULE

描述

CREATE SHADOW RULE语法用于创建影子库压测规则。

语法定义

CreateShadowRule ::=
'CREATE' 'SHADOW' 'RULE' shadowDefinition (',' shadowDefinition)*

shadowDefinition ::=
ruleName '(' resourceMapping shadowTableRule (',' shadowTableRule)* ')'

resourceMapping ::=
'SOURCE' '=' resourceName ',' 'SHADOW' '=' resourceName

shadowTableRule ::=
tableName '(' shadowAlgorithm (',' shadowAlgorithm)* ')'

shadowAlgorithm ::=
(algorithmName ',')? 'TYPE' '(' 'NAME' '=' shadowAlgorithmType ','

'PROPERTIES' '(' 'key' '=' 'value' (',' 'key' '=' 'value') ')'

ruleName ::=
identifier

resourceName ::=
identifier

tableName ::=
identifier

algorithmName ::=
identifier

shadowAlgorithmType ::=
string

7.10. DistSQL 414

Apache ShardingSphere document, v5.2.1

补充说明

• 重复的 ruleName无法被创建；
• resourceMapping指定源数据库和影子库的映射关系，需使用 RDL管理的 resource，请参考
数据源资源；

• shadowAlgorithm可同时作用于多个 shadowTableRule；
• algorithmName未指定时会根据 ruleName、tableName和 shadowAlgorithmType自动生
成；

• shadowAlgorithmType目前支持 VALUE_MATCH、REGEX_MATCH和 SIMPLE_HINT。

示例

创建影子库压测规则

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"=

"true", "foo"="bar"))),(TYPE(NAME="REGEX_MATCH", PROPERTIES("operation"="insert",
"column"="user_id", "regex"='[1]')))),

t_order_item((TYPE(NAME="VALUE_MATCH", PROPERTIES("operation"="insert","column"=
"user_id", "value"='1'))))
);

保留字

CREATE、SHADOW、RULE、SOURCE、SHADOW、TYPE、NAME、PROPERTIES

相关链接

• 保留字

CREATE SHADOW ALGORITHM

描述

CREATE SHADOW ALGORITHM语法用于创建影子库算法规则。

7.10. DistSQL 415

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/rdl/resource-definition/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

语法定义

CreateShadowAlgorithm ::=
'CREATE' 'SHADOW' 'ALGORITHM' shadowAlgorithm (',' shadowAlgorithm)*

shadowAlgorithm ::=
'(' (algorithmName ',')? 'TYPE' '(' 'NAME' '=' shadowAlgorithmType ','

'PROPERTIES' '(' ('key' '=' 'value' (',' 'key' '=' 'value')*) ')' ')'

algorithmName ::=
identifier

shadowAlgorithmType ::=
string

补充说明

• shadowAlgorithm可同时作用于多个 shadowTableRule；
• algorithmName未指定时会根据 ruleName、tableName和 shadowAlgorithmType自动生
成；

• shadowAlgorithmType目前支持 VALUE_MATCH、REGEX_MATCH和 SIMPLE_HINT。

示例

创建影子库压测算法

CREATE SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME="SIMPLE_HINT", PROPERTIES("shadow"="true", "foo

"="bar"))),
(user_id_match_algorithm, TYPE(NAME="REGEX_MATCH",PROPERTIES("operation"="insert

", "column"="user_id", "regex"='[1]'))
);

保留字

CREATE、SHADOW、ALGORITHM、TYPE、NAME、PROPERTIES

7.10. DistSQL 416

Apache ShardingSphere document, v5.2.1

相关链接

• 保留字

CREATE DEFAULT SHADOW ALGORITHM

描述

CREATE DEFAULT SHADOW ALGORITHM语法用于创建影子库默认算法规则。

语法定义

CreateDefaultShadowAlgorithm ::=
'CREATE' 'DEFAULT' 'SHADOW' 'ALGORITHM' 'NAME' '=' algorithmName

algorithmName ::=
identifier

示例

创建影子库压测算法

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

保留字

CREATE、DEFAULT、SHADOW、ALGORITHM、NAME

相关链接

• 保留字

分片

本章节将对分片特性的语法进行详细说明。

7.10. DistSQL 417

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

CREATE SHARDING TABLE RULE

描述

CREATE SHARDING TABLE RULE语法用于为当前所选逻辑库添加分片规则

语法定义

CreateShardingTableRule ::=
'CREATE' 'SHARDING' 'TABLE' 'RULE' (tableDefinition | autoTableDefinition) (',

' (tableDefinition | autoTableDefinition))*

tableDefinition ::=
tableName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_

STRATEGY' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '('
strategyDefinition ')')? (',' 'KEY_GENERATE_STRATEGY' '('
keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

autoTableDefinition ::=
tableName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ','

'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_
STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

strategyDefinition ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='

columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
'KEY_GENERATE_STRATEGY' '(' 'COLUMN' '=' columnName ',' ('KEY_GENERATOR' '='

algorihtmName | algorithmDefinition) ')'

auditStrategyDefinition ::=
'AUDIT_STRATEGY' '(' 'AUDITORS' '=' '[' auditorName ',' auditorName ']' ','

'ALLOW_HINT_DISABLE' '=' 'TRUE | FALSE' ')'
|
'AUDIT_STRATEGY' '(' '[' 'NAME' '=' auditorName ',' algorithmDefinition ']' ','

'[' 'NAME' '=' auditorName ',' algorithmDefinition ']' ')'

algorithmDefinition ::=
('SHARDING_ALGORITHM' '=' algorithmName | 'TYPE' '(' 'NAME' '=' algorithmType (

',' 'PROPERTIES' '(' propertyDefinition ')')?')')

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

7.10. DistSQL 418

Apache ShardingSphere document, v5.2.1

tableName ::=
identifier

resourceName ::=
identifier

columnName ::=
identifier

auditorName ::=
identifier

algorithmName ::=
identifier

algorithmType ::=
string

补充说明

• tableDefinition为标准分片规则定义；autoTableDefinition为自动分片规则定义。标准
分片规则和自动分片规则可参考数据分片；

• 当使用标准分片时：
– DATANODES只能使用已经添加到当前逻辑库的资源，且只能使用 INLINE表达式指定需要的
资源；

– DATABASE_STRATEGY、TABLE_STRATEGY表示分库和分表策略，均为可选项，未配置时使
用默认策略；

– strategyDefinition 中属性 TYPE 用于指定分片算法的类型，目前仅支持 STANDARD 、
COMPLEX。使用 COMPLEX时需要用 SHARDING_COLUMNS指定多个分片键。

• 当使用自动分片时：
– RESOURCES只能使用已经添加到当前逻辑库的资源，可通过枚举或 INLINE表达式指定需要
的资源；

– 只能使用自动分片算法，可参考自动分片算法。
• algorithmType为分片算法类型，分片算法类型请参考分片算法；
• 自动生成的算法命名规则为 tableName _ strategyType _ algorithmType；
• 自动生成的主键策略命名规则为 tableName _ ‘strategyType；
• KEY_GENERATE_STRATEGY用于指定主键生成策略，为可选项，关于主键生成策略可参考分布式
主键。

• AUDIT_STRATEGY用于指定分配审计生成策略，为可选项，关于分片审计生成策略可参考分片审
计。

7.10. DistSQL 419

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/sharding/#自定义分片算法
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding/#自动分片算法
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document, v5.2.1

示例

1.标准分片规则

• 指定分片算法创建标准分片规则

-- 创建分片算法
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- 指定分片算法创建分片规则
CREATE SHARDING TABLE RULE t_order (

DATANODES("ds_${0..1}.t_order_${0..1}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)
);

• 在默认分库策略下，通过指定分片算法创建标准分片规则

-- 创建分片算法
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- 创建默认分库策略
CREATE DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

-- 指定分片算法创建分片规则
CREATE SHARDING TABLE RULE t_order (

DATANODES("ds_${0..1}.t_order_${0..1}"),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)
);

7.10. DistSQL 420

Apache ShardingSphere document, v5.2.1

• 在默认分库分表策略下，通过指定分片算法创建标准分片规则

-- 创建分片算法
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- 创建默认分库策略
CREATE DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

-- 创建默认分表策略
CREATE DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=table_inline
);

-- 创建分片规则
CREATE SHARDING TABLE RULE t_order (

DATANODES("ds_${0..1}.t_order_${0..1}")
);

• 创建标准分片规则的同时创建分片算法

CREATE SHARDING TABLE RULE t_order (
DATANODES("ds_${0..1}.t_order_${0..1}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${user_id % 2}
")))),

TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_
ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${order_id % 2}
"))))
);

7.10. DistSQL 421

Apache ShardingSphere document, v5.2.1

2.自动分片规则

• 创建自动分片规则

CREATE SHARDING TABLE RULE t_order (
RESOURCES(ds_0, ds_1),
SHARDING_COLUMN=order_id, TYPE(NAME="MOD", PROPERTIES("sharding-count"="4"))

);

保留字

CREATE、SHARDING、TABLE、RULE、DATANODES、DATABASE_STRATEGY、TABLE_STRATEGY、
KEY_GENERATE_STRATEGY、RESOURCES、SHARDING_COLUMN、TYPE、SHARDING_COLUMN、
KEY_GENERATOR、SHARDING_ALGORITHM、COLUMN、NAME、PROPERTIES、AUDIT_STRATEGY、
AUDITORS、ALLOW_HINT_DISABLE

相关链接

• 保留字
• CREATE SHARDING ALGORITHM

• CREATE DEFAULT_SHARDING STRATEGY

ALTER SHARDING TABLE RULE

描述

ALTER SHARDING TABLE RULE语法用于修改当前所选逻辑库的分片规则

语法定义

AlterShardingTableRule ::=
'ALTER' 'SHARDING' 'TABLE' 'RULE' (tableDefinition | autoTableDefinition) (','

(tableDefinition | autoTableDefinition))*

tableDefinition ::=
tableName '(' 'DATANODES' '(' dataNode (',' dataNode)* ')' (',' 'DATABASE_

STRATEGY' '(' strategyDefinition ')')? (',' 'TABLE_STRATEGY' '('
strategyDefinition ')')? (',' 'KEY_GENERATE_STRATEGY' '('
keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

autoTableDefinition ::=
tableName '(' 'RESOURCES' '(' resourceName (',' resourceName)* ')' ','

7.10. DistSQL 422

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/rdl/rule-definition/create-sharding-algorithm/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/rdl/rule-definition/create-default-sharding-strategy/

Apache ShardingSphere document, v5.2.1

'SHARDING_COLUMN' '=' columnName ',' algorithmDefinition (',' 'KEY_GENERATE_
STRATEGY' '(' keyGenerateStrategyDefinition ')')? (',' 'AUDIT_STRATEGY' '('
auditStrategyDefinition ')')? ')'

strategyDefinition ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' | 'SHARDING_COLUMNS') '='

columnName ',' algorithmDefinition

keyGenerateStrategyDefinition ::=
'KEY_GENERATE_STRATEGY' '(' 'COLUMN' '=' columnName ',' ('KEY_GENERATOR' '='

algorihtmName | algorithmDefinition) ')'

auditStrategyDefinition ::=
'AUDIT_STRATEGY' '(' 'AUDITORS' '=' '[' auditorName ',' auditorName ']' ','

'ALLOW_HINT_DISABLE' '=' 'TRUE | FALSE' ')'
|
'AUDIT_STRATEGY' '(' '[' 'NAME' '=' auditorName ',' algorithmDefinition ']' ','

'[' 'NAME' '=' auditorName ',' algorithmDefinition ']' ')'

algorithmDefinition ::=
('SHARDING_ALGORITHM' '=' algorithmName | 'TYPE' '(' 'NAME' '=' algorithmType (

',' 'PROPERTIES' '(' propertyDefinition ')')?')')

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

tableName ::=
identifier

resourceName ::=
identifier

columnName ::=
identifier

auditorName ::=
identifier

algorithmName ::=
identifier

strategyType ::=
string

7.10. DistSQL 423

Apache ShardingSphere document, v5.2.1

补充说明

• tableDefinition为标准分片规则定义；
• autoTableDefinition为自动分片规则定义。标准分片规则和自动分片规则可参考数据分片；
• 当使用标准分片时：

– DATANODES只能使用已经添加到当前逻辑库的资源，且只能使用 INLINE表达式指定需要的
资源；

– DATABASE_STRATEGY、TABLE_STRATEGY表示分库和分表策略，均为可选项，未配置时使
用默认策略；

– strategyDefinition 中属性 TYPE 用于指定分片算法的类型，目前仅支持 STANDARD 、
COMPLEX。使用 COMPLEX时需要用 SHARDING_COLUMNS指定多个分片键。

• 当使用自动分片时：
– RESOURCES只能使用已经添加到当前逻辑库的资源，可通过枚举或 INLINE表达式指定需要
的资源；

– 只能使用自动分片算法，可参考自动分片算法。
• algorithmType为分片算法类型，分片算法类型请参考分片算法；
• 自动生成的算法命名规则为 tableName _ strategyType _ algorithmType；
• 自动生成的主键策略命名规则为 tableName _ strategyType；
• KEY_GENERATE_STRATEGY用于指定主键生成策略，为可选项，关于主键生成策略可参考分布式
主键。

• AUDIT_STRATEGY用于指定分配审计生成策略，为可选项，关于分片审计生成策略可参考分片审
计。

示例

1.标准分片规则

• 修改分片算法并修改标准分片规则为指定分片算法

-- 修改分片算法
ALTER SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 4}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 4}
"))
);

-- 修改分片规则为指定分片算法
ALTER SHARDING TABLE RULE t_order (

7.10. DistSQL 424

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/sharding/#自定义分片算法
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding/#自动分片算法
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit/

Apache ShardingSphere document, v5.2.1

DATANODES("resource_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)
);

• 修改默认分库策略并修改标准分片规则为指定分片算法

-- 修改分片算法
ALTER SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 4}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 4}
"))
);

-- 修改默认分库策略
ALTER DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

-- 修改分片规则为指定分片算法
ALTER SHARDING TABLE RULE t_order (

DATANODES("resource_${0..3}.t_order_item${0..3}"),
TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_

ALGORITHM=table_inline)
);

• 修改默认分库分表策略并修改标准分片规则为指定分片算法

-- 修改分片算法
ALTER SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 4}
"))
), table_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 4}
"))
);

-- 修改默认分库策略
ALTER DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=database_inline
);

7.10. DistSQL 425

Apache ShardingSphere document, v5.2.1

-- 修改默认分表策略
ALTER DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=order_id, SHARDING_ALGORITHM=table_inline
);

-- 修改分片规则
ALTER SHARDING TABLE RULE t_order (

DATANODES("resource_${0..3}.t_order_item${0..3}")
);

• 修改标准分片规则的同时创建分片算法

ALTER SHARDING TABLE RULE t_order (
DATANODES("resource_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_

ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${user_id % 2}
")))),

TABLE_STRATEGY(TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_
ALGORITHM(TYPE(NAME="inline", PROPERTIES("algorithm-expression"="ds_${order_id % 2}
"))))
);

2.自动分片规则

• 修改自动分片规则

ALTER SHARDING TABLE RULE t_order (
RESOURCES(ds_0, ds_1),
SHARDING_COLUMN=order_id, TYPE(NAME="MOD", PROPERTIES("sharding-count"="4"))

);

保留字

ALTER、SHARDING、TABLE、RULE、DATANODES、DATABASE_STRATEGY、TABLE_STRATEGY、
KEY_GENERATE_STRATEGY、RESOURCES、SHARDING_COLUMN、TYPE、SHARDING_COLUMN、
KEY_GENERATOR、SHARDING_ALGORITHM、COLUMN、NAME、PROPERTIES、AUDIT_STRATEGY、
AUDITORS、ALLOW_HINT_DISABLE

7.10. DistSQL 426

Apache ShardingSphere document, v5.2.1

相关链接

• 保留字
• ALTER SHARDING ALGORITHM

• ALTER DEFAULT_SHARDING STRATEGY

CREATE SHARDING ALGORITHM

描述

CREATE SHARDING ALGORITHM语法用于为当前所选的逻辑库添加分片算法

语法定义

CreateShardingAlgorithm ::=
'CREATE' 'SHARDING' 'ALGORITHM' shardingAlgorithmName '(' algorithmDefinition ')'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

shardingAlgorithmName ::=
identifier

algorithmType ::=
string

补充说明

• algorithmType为分片算法类型，详细的分片算法类型信息请参考分片算法。

示例

1.创建分片算法

-- 创建类型为 INLINE 的分片算法
CREATE SHARDING ALGORITHM inline_algorithm (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${user_id % 2}
"))
);

7.10. DistSQL 427

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/rdl/rule-definition/alter-sharding-algorithm/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/rdl/rule-definition/alter-default-sharding-strategy/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding/

Apache ShardingSphere document, v5.2.1

-- 创建类型为 AUTO_INTERVAL 的分片算法
CREATE SHARDING ALGORITHM interval_algorithm (

TYPE(NAME="auto_interval", PROPERTIES("datetime-lower"="2022-01-01 00:00:00",
"datetime-upper"="2022-01-03 00:00:00", "sharding-seconds"="86400"))
);

保留字

CREATE、SHARDING、ALGORITHM、TYPE、NAME、PROPERTIES

相关链接

• 保留字

CREATE DEFAULT SHARDING STRATEGY

描述

CREATE DEFAULT SHARDING STRATEGY语法用于创建默认的分片策略

语法定义

CreateDefaultShardingStrategy ::=
'CREATE' 'DEFAULT' 'SHARDING' ('DATABASE' | 'TABLE') 'STRATEGY' '('

shardingStrategy ')'

shardingStrategy ::=
'TYPE' '=' strategyType ',' ('SHARDING_COLUMN' '=' columnName | 'SHARDING_

COLUMNS' '=' columnNames) ',' ('SHARDING_ALGORITHM' '=' algorithmName |
algorithmDefinition)

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

columnNames ::=
columnName (',' columnName)+

columnName ::=
identifier

algorithmName ::=
identifier

7.10. DistSQL 428

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

algorithmType ::=
string

补充说明

• 当使用复合分片算法时，需要通过 SHARDING_COLUMNS指定多个分片键；
• algorithmType为分片算法类型，详细的分片算法类型信息请参考分片算法。

示例

1.通过已有的分片算法创建默认分库策略

-- 创建分片算法
CREATE SHARDING ALGORITHM database_inline (

TYPE(NAME="inline", PROPERTIES("algorithm-expression"="t_order_${order_id % 2}
"))
);

-- 创建默认分库策略
CREATE DEFAULT SHARDING DATABASE STRATEGY (

TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM=database_inline
);

2.同时创建分片算法和默认分表策略

-- 创建默认分表策略
CREATE DEFAULT SHARDING TABLE STRATEGY (

TYPE="standard", SHARDING_COLUMN=user_id, SHARDING_ALGORITHM(TYPE(NAME=inline,
PROPERTIES("algorithm-expression"="t_order_${user_id % 2}")))
);

保留字

CREATE、DEFAULT、SHARDING、DATABASE、TABLE、STRATEGY、TYPE、SHARDING_COLUMN、
SHARDING_COLUMNS、SHARDING_ALGORITHM、NAME、PROPERTIES

7.10. DistSQL 429

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/sharding/

Apache ShardingSphere document, v5.2.1

相关链接

• 保留字
• CREATE SHARDING ALGORITHM

CREATE SHARDING BINDING TABLE RULE

描述

CREATE SHARDING BINDING TABLE RULE语法用于为具有分片规则的表（分片表）添加绑定关系并
创建绑定规则

语法定义

CreateBindingTableRule ::=
'CREATE' 'SHARDING' 'BINDING' 'TABLE' 'RULES' bindingRelationshipDefinition (',

' bindingRelationshipDefinition)*

bindingRelationshipDefinition ::=
'(' tableName (',' tableName)* ')'

tableName ::=
identifier

补充说明

• 只有分片表才能创建绑定关系；
• 一个分片表只能具有一个绑定关系；
• 添加绑定关系的分片表需要使用相同的资源，并且分片节点个数相同。例如 ds_${0..1}.
t_order_${0..1}与 ds_${0..1}.t_order_item_${0..1}；

• 添加绑定关系的分片表需要对分片键使用相同的分片算法。例如 t_order_${order_id % 2}与
t_order_item_${order_item_id % 2}；

• 只能存在一个绑定规则，但可包含多个绑定关系，因此无法重复执行CREATE SHARDING BINDING
TABLE RULE。当绑定规则已经存在但还需要添加绑定关系时，需要使用 ALTER SHARDING
BINDING TABLE RULE来修改绑定规则。

7.10. DistSQL 430

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/rdl/rule-definition/create-sharding-algorithm/

Apache ShardingSphere document, v5.2.1

示例

1.创建绑定关系

-- 创建绑定关系之前需要先创建分片表 t_order,t_order_item
CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item);

2.创建多个绑定关系

-- 创建绑定关系之前需要先创建分片表 t_order,t_order_item,t_product,t_product_item
CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item),(t_product,t_product_
item);

保留字

CREATE、SHARDING、BINDING、TABLE、RULES

相关链接

• 保留字
• CREATE SHARDING TABLE RULE

CREATE SHARDING BROADCAST TABLE RULE

描述

CREATE SHARDING BROADCAST TABLE RULE语法用于为需要广播的表（广播表）创建广播规则

语法定义

CreateBroadcastTableRule ::=
'CREATE' 'SHARDING' 'BROADCAST' 'TABLE' 'RULES' '(' tableName (',' tableName)* ')

'

tableName ::=
identifier

7.10. DistSQL 431

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/rdl/rule-definition/create-sharding-table-rule/

Apache ShardingSphere document, v5.2.1

补充说明

• tableName可使用已经存在的表或者将要创建的表；
• 只能存在一个广播规则，但可包含多个广播表，因此无法重复执行CREATE SHARDING BROADCAST
TABLE RULE。当广播规则已经存在但还需要添加广播表时，需要使用ALTER BROADCAST TABLE
RULE来修改广播规则。

示例

创建广播规则

-- 将 t_province， t_city 添加到广播规则中
CREATE SHARDING BROADCAST TABLE RULES (t_province, t_city);

保留字

CREATE、SHARDING、BROADCAST、TABLE、RULES

相关链接

• 保留字

CREATE SHARDING AUDITOR

描述

CREATE SHARDING AUDITOR语法用于为当前所选的逻辑库添加分片审计生成器

语法定义

CreateShardingAlgorithm ::=
'CREATE' 'SHARDING' 'AUDITOR' auditorName '(' algorithmDefinition ')'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

auditorName ::=
identifier

7.10. DistSQL 432

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

algorithmType ::=
string

补充说明

• algorithmType为分片审计算法类型，详细的分片审计生成算法类型信息请参考分片审计算法类
型。

示例

创建分片审计器

CREATE SHARDING AUDITOR sharding_key_required_auditor (
TYPE(NAME="DML_SHARDING_CONDITIONS", PROPERTIES("a"="b"))

);

保留字

CREATE、SHARDING、AUDITOR、TYPE、NAME、PROPERTIES

相关链接

• 保留字

CREATE SHARDING KEY GENERATOR

描述

CREATE SHARDING KEY GENERATOR语法用于为当前所选的逻辑库添加分布式主键生成器

语法定义

CreateShardingAlgorithm ::=
'CREATE' 'SHARDING' 'KEY' 'GENERATOR' keyGeneratorName '(' algorithmDefinition ')

'

algorithmDefinition ::=
'TYPE' '(' 'NAME' '=' algorithmType (',' 'PROPERTIES' '(' propertyDefinition

')')?')'

7.10. DistSQL 433

https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit/
https://shardingsphere.apache.org/document/current/cn/user-manual/common-config/builtin-algorithm/audit/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

propertyDefinition ::=
(key '=' value) (',' key '=' value)*

keyGeneratorName ::=
identifier

algorithmType ::=
string

补充说明

• algorithmType为分布式主键生成算法类型，详细的分布式主键生成算法类型信息请参考分布式
序列算法类型。

示例

创建分布式主键生成器

CREATE SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME="SNOWFLAKE", PROPERTIES("max-vibration-offset"="3"))

);

保留字

CREATE、SHARDING、KEY、GENERATOR、TYPE、NAME、PROPERTIES

相关链接

• 保留字

单表

本章节将对单表特性的语法进行详细说明。

7.10. DistSQL 434

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

ALTER DEFAULT SINGLE TABLE RULE

描述

ALTER DEFAULT SINGLE TABLE RULE语法用于修改默认的单表规则

语法定义

AlterDefaultSingleTableRule ::=
'ALTER' 'DEFAULT' 'SINGLE' 'TABLE' 'RULE' singleTableDefinition

singleTableDefinition ::=
'RESOURCE' '=' resourceName

resourceName ::=
identifier

补充说明

• RESOURCE需使用 RDL管理的数据源资源。

示例

修改默认单表规则

ALTER DEFAULT SINGLE TABLE RULE RESOURCE = ds_0;

保留字

ALTER、SHARDING、SINGLE、TABLE、RULE、RESOURCE

相关链接

• 保留字

7.10. DistSQL 435

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

CREATE DEFAULT SINGLE TABLE RULE

描述

CREATE DEFAULT SINGLE TABLE RULE语法用于创建默认的单表规则

语法定义

CreateDefaultSingleTableRule ::=
'CREATE' 'DEFAULT' 'SINGLE' 'TABLE' 'RULE' singleTableDefinition

singleTableDefinition ::=
'RESOURCE' '=' resourceName

resourceName ::=
identifier

补充说明

• RESOURCE需使用 RDL管理的数据源资源。

示例

创建默认单表规则

CREATE DEFAULT SINGLE TABLE RULE RESOURCE = ds_0;

保留字

CREATE、SHARDING、SINGLE、TABLE、RULE、RESOURCE

相关链接

• 保留字

7.10. DistSQL 436

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

DROP DEFAULT SINGLE TABLE RULE

描述

DROP DEFAULT SINGLE TABLE RULE语法用于删除默认的单表规则

语法定义

DropDefaultSingleTableRule ::=
'DROP' 'DEFAULT' 'SINGLE' 'TABLE' 'RULE' ifExists?

ifExists ::=
'IF' 'EXISTS'

示例

删除默认单表规则

DROP DEFAULT SINGLE TABLE RULE;

保留字

DROP、SHARDING、SINGLE、TABLE、RULE

相关链接

• 保留字

RQL语法

RQL (Resource & Rule Query Language)为 Apache ShardingSphere的资源和规则查询语言。

资源查询

本章节将对资源查询的语法进行详细说明。

7.10. DistSQL 437

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

SHOWDATABASE RESOURCES

描述

SHOW DATABASE RESOURCES语法用于查询指定逻辑库已经添加的资源。

语法

ShowResource ::=
'SHOW' 'DATABASE' 'RESOURCES' ('FROM' databaseName)?

databaseName ::=
identifier

特别说明

• 未指定 databaseName 时，默认是当前使用的 DATABASE；如未使用 DATABASE 则会提示 No
database selected。

返回值说明

列 说明
name 数据源名称
type 数据源类型
host 数据源地址
port 数据源端口
db 数据库名称
attribute 数据源参数

示例

• 查询指定逻辑库的资源

SHOW DATABASE RESOURCES FROM sharding_db;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

7.10. DistSQL 438

Apache ShardingSphere document, v5.2.1

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

7.10. DistSQL 439

Apache ShardingSphere document, v5.2.1

---+
2 rows in set (0.26 sec)

• 查询当前逻辑库的资源

SHOW DATABASE RESOURCES;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",

7.10. DistSQL 440

Apache ShardingSphere document, v5.2.1

"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | db_1 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
2 rows in set (0.26 sec)

SHOWUNUSED RESOURCE

描述

SHOW UNUSED RESOURCE语法用于查询指定逻辑库中还未被规则引用的资源。

语法

ShowUnusedResource ::=
'SHOW' 'UNUSED' 'DATABASE'? 'RESOURCES' ('FROM' databaseName)?

databaseName ::=
identifier

7.10. DistSQL 441

Apache ShardingSphere document, v5.2.1

特别说明

• 未指定 databaseName 时，默认是当前使用的 DATABASE；如未使用 DATABASE 则会提示 No
database selected。

返回值说明

列 说明
name 数据源名称
type 数据源类型
host 数据源地址
port 数据源端口
db 数据库名称
attribute 数据源参数

###示例
• 查询指定逻辑库的资源

SHOW UNUSED DATABASE RESOURCES FROM sharding_db;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

7.10. DistSQL 442

Apache ShardingSphere document, v5.2.1

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
1 rows in set (0.26 sec)

• 查询当前逻辑库的资源

SHOW UNUSED DATABASE RESOURCES;

+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| name | type | host | port | db | connection_timeout_milliseconds | idle_
timeout_milliseconds | max_lifetime_milliseconds | max_pool_size | min_pool_size |
read_only | other_attributes

7.10. DistSQL 443

Apache ShardingSphere document, v5.2.1

|
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
| ds_0 | MySQL | 127.0.0.1 | 3306 | db_0 | 30000 | 60000

| 1800000 | 50 | 1 |
false | {"dataSourceProperties":{"cacheServerConfiguration":"true",
"elideSetAutoCommits":"true","useServerPrepStmts":"true","cachePrepStmts":"true",
"rewriteBatchedStatements":"true","cacheResultSetMetadata":"false",
"useLocalSessionState":"true","maintainTimeStats":"false","prepStmtCacheSize":
"200000","tinyInt1isBit":"false","prepStmtCacheSqlLimit":"2048",
"zeroDateTimeBehavior":"round","netTimeoutForStreamingResults":"0"},
"healthCheckProperties":{},"initializationFailTimeout":1,"validationTimeout":5000,
"leakDetectionThreshold":0,"registerMbeans":false,"allowPoolSuspension":false,
"autoCommit":true,"isolateInternalQueries":false} |
+------+-------+-----------+------+------+---------------------------------+-------
--------------------+---------------------------+---------------+---------------+--
---------+---

---+
1 rows in set (0.26 sec)

7.10. DistSQL 444

Apache ShardingSphere document, v5.2.1

SHOWRULES USED RESOURCE

描述

SHOW RULES USED RESOURCE语法用于查询指定逻辑库中使用指定资源的规则。

语法

showRulesUsedResource ::=
'SHOW' 'RULES' 'USED' 'RESOURCES' resourceName ('FROM' databaseName)?

resourceName ::=
IDENTIFIER | STRING

databaseName ::=
IDENTIFIER

特别说明

• 未指定 databaseName 时, 默认是当前使用的 DATABASE；如未使用 DATABASE 则会提示 No
database selected。

返回值说明

列 说明
type 特性
name 数据源名称

示例

• 查询指定逻辑库中使用指定资源的规则

SHOW RULES USED RESOURCE ds_0 FROM sharding_db;

+----------+--------------+
| type | name |
+----------+--------------+
| sharding | t_order |
| sharding | t_order_item |
+----------+--------------+
2 rows in set (0.00 sec)

• 查询当前逻辑库中使用指定资源的规则

7.10. DistSQL 445

Apache ShardingSphere document, v5.2.1

SHOW RULES USED RESOURCE ds_0;

+----------+--------------+
| type | name |
+----------+--------------+
| sharding | t_order |
| sharding | t_order_item |
+----------+--------------+
2 rows in set (0.00 sec)

规则查询

本章节将对规则查询的语法进行详细说明。

分片

本章节将对分片特性的语法进行详细说明。

SHOW SHARDING TABLE RULE

描述

SHOW SHARDING TABLE RULE语法用于查询指定逻辑库中的分片规则。

语法

ShowShardingTableRule ::=
'SHOW' 'SHARDING' 'TABLE' ('RULE' tableName | 'RULES') ('FROM' databaseName)?

tableName ::=
identifier

databaseName ::=
identifier

7.10. DistSQL 446

Apache ShardingSphere document, v5.2.1

补充说明

• 未指定 databaseName时，默认是当前使用的 DATABASE。如果也未使用 DATABASE则会提示 No
database selected。

返回值说明

列 说明
table 逻辑表名
actual_data_nodes 实际的数据节点
actual_data_sources 实际的数据源（通过 RDL创建的规则时显示）
database_strategy_type 数据库分片策略类型
database_sharding_column 数据库分片键
database_sharding_algorithm_type 数据库分片算法类型
d atabase_sharding_algorithm_props 数据库分片算法参数
table_strategy_type 表分片策略类型
table_sharding_column 表分片键
table_sharding_algorithm_type 表分片算法类型
table_sharding_algorithm_props 表分片算法参数
key_generate_column 分布式主键生成列
key_generator_type 分布式主键生成器类型
key_generator_props 分布式主键生成器参数

###示例 ‐查询指定逻辑库的分片规则

SHOW SHARDING TABLE RULES FROM sharding_db;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

7.10. DistSQL 447

Apache ShardingSphere document, v5.2.1

| sharding-count=4 | | |
|

| t_order_item | | ds_0,ds_1 | |
| |

| mod | order_id | mod
| sharding-count=4 | | |

|
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
2 rows in set (0.12 sec)

• 查询当前逻辑库的分片规则

SHOW SHARDING TABLE RULES;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

| sharding-count=4 | | |
|

| t_order_item | | ds_0,ds_1 | |
| |

| mod | order_id | mod
| sharding-count=4 | | |

|
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+

7.10. DistSQL 448

Apache ShardingSphere document, v5.2.1

2 rows in set (0.12 sec)

• 查询指定逻辑表的分片规则

SHOW SHARDING TABLE RULE t_order;

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_type |
database_sharding_column | database_sharding_algorithm_type | database_sharding_
algorithm_props | table_strategy_type | table_sharding_column | table_sharding_
algorithm_type | table_sharding_algorithm_props | key_generate_column | key_
generator_type | key_generator_props |
+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
| t_order | | ds_0,ds_1 | |

| |
| mod | order_id | mod

| sharding-count=4 | | |
|

+--------------+-------------------+---------------------+------------------------
+--------------------------+----------------------------------+--------------------
---------------+---------------------+-----------------------+---------------------
----------+--------------------------------+---------------------+-----------------
---+---------------------+
1 rows in set (0.12 sec)

保留字

CREATE、SHARDING、TABLE、RULE、FROM

相关链接

• 保留字

7.10. DistSQL 449

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

SHOW SHARDING ALGORITHMS

描述

SHOW SHARDING ALGORITHMS语法用于查询指定逻辑库的分片算法。

语法

ShowShardingAlgorithms::=
'SHOW' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

补充说明

• 未指定 databaseName时，默认是当前使用的 DATABASE。如果也未使用 DATABASE则会提示 No
database selected。

返回值说明

列 说明
name 分片算法名称
type 分片算法类型
props 分片算法参数

示例

• 查询指定逻辑库的分片算法

SHOW SHARDING ALGORITHMS;

mysql> SHOW SHARDING ALGORITHMS;
+-------------------------+--------+---
------+
| name | type | props

|
+-------------------------+--------+---
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %

7.10. DistSQL 450

Apache ShardingSphere document, v5.2.1

2} |
+-------------------------+--------+---
------+
2 row in set (0.01 sec)

保留字

SHOW、SHARDING、ALGORITHMS、FROM

相关链接

• 保留字

SHOWUNUSED SHARDING ALGORITHMS

描述

SHOW UNUSED SHARDING ALGORITHMS语法用于查询指定逻辑库未使用的分片算法。

语法

ShowShardingAlgorithms::=
'SHOW' 'UNUSED' 'SHARDING' 'ALGORITHMS' ('FROM' databaseName)?

databaseName ::=
identifier

补充说明

• 未指定 databaseName时，默认是当前使用的 DATABASE。如果也未使用 DATABASE则会提示 No
database selected。

返回值说明

列 说明
name 分片算法名称
type 分片算法类型
props 分片算法参数

7.10. DistSQL 451

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

示例

• 查询指定逻辑库未使用的分片算法

SHOW UNUSED SHARDING ALGORITHMS;

mysql> SHOW UNUSED SHARDING ALGORITHMS;
+---------------+--------+---+
| name | type | props |
+---------------+--------+---+
| t1_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
+---------------+--------+---+
1 row in set (0.01 sec)

保留字

SHOW、UNUSED、SHARDING、ALGORITHMS、FROM

相关链接

• 保留字

RAL语法

RAL (Resource & Rule Administration Language)为 Apache ShardingSphere的管理语言，负责强制路
由、事务类型切换、弹性伸缩、分片执行计划查询等增量功能的操作。

保留字

RDL

基础保留字

CREATE、ALTER、DROP、TABLE、RULE、TYPE、NAME、PROPERTIES、TRUE、FALSE

资源定义

ADD、RESOURCE、IF、EXISTS、HOST、PORT、DB、USER、PASSWORD、PROPERTIES、URL、IGNORE、
SINGLE、TABLES

7.10. DistSQL 452

https://shardingsphere.apache.org/document/current/cn/reference/distsql/syntax/reserved-word/

Apache ShardingSphere document, v5.2.1

规则定义

分片

DEFAULT、SHARDING、BROADCAST、BINDING、DATABASE、STRATEGY、RULES、ALGORITHM
、DATANODES、DATABASE_STRATEGY、TABLE_STRATEGY、KEY_GENERATE_STRATEGY、
RESOURCES、SHARDING_COLUMN、KEY 、GENERATOR、SHARDING_COLUMNS、KEY_GENERATOR、
SHARDING_ALGORITHM、COLUMN、AUDIT_STRATEGY、AUDITORS、ALLOW_HINT_DISABLE

单表

SHARDING、SINGLE、RESOURCE

读写分离

READWRITE_SPLITTING、WRITE_RESOURCE、READ_RESOURCES、AUTO_AWARE_RESOURCE、
WRITE_DATA_SOURCE_QUERY_ENABLED

数据加密

ENCRYPT、COLUMNS、CIPHER、PLAIN、QUERY_WITH_CIPHER_COLUMN

数据库发现

DB_DISCOVERY、RESOURCES、HEARTBEAT

影子压测

SHADOW、DEFAULT、ALGORITHM、SOURCE、SHADOW

RQL

基础保留字

SHOW、RULE、RULES、TABLE、DATABASE、FROM

7.10. DistSQL 453

Apache ShardingSphere document, v5.2.1

资源定义

RESOURCES、UNUSED、USED

规则定义

分片

UNUSED、SHARDING、ALGORITHMS

补充说明

• 上述保留字大小写不敏感

7.11 基础架构

让开发者能够像使用积木一样定制属于自己的独特系统，是 Apache ShardingSphere可插拔架构的设计
目标。
可插拔架构对程序架构设计的要求非常高，需要将各个模块相互独立，互不感知，并且通过一个可插拔
内核，以叠加的方式将各种功能组合使用。设计一套将功能开发完全隔离的架构体系，既可以最大限度
的将开源社区的活力激发出来，也能够保障项目的质量。
Apache ShardingSphere 5.x版本开始致力于可插拔架构，项目的功能组件能够灵活的以可插拔的方式进
行扩展。目前，数据分片、读写分离、数据库高可用、数据加密、影子库压测等功能，以及对MySQL、Post‐
greSQL、SQLServer、Oracle等 SQL与协议的支持，均通过插件的方式织入项目。Apache ShardingSphere
目前已提供数十个 SPI（Service Provider Interface）作为系统的扩展点，而且仍在不断增加中。

7.11. 基础架构 454

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

Apache ShardingSphere document, v5.2.1

7.11. 基础架构 455

8
FAQ

8.1 JDBC

8.1.1 JDBC 为什么配置了某个数据连接池的 spring-boot-starter（比如 druid）和
shardingsphere-jdbc-spring-boot-starter时，系统启动会报错？

回答：
1. 因为数据连接池的 starter（比如 druid）可能会先加载并且其创建一个默认数据源，这将会使得

ShardingSphere‐JDBC创建数据源时发生冲突。
2. 解决办法为，去掉数据连接池的 starter即可，ShardingSphere‐JDBC自己会创建数据连接池。

8.1.2 JDBC使用 Spring命名空间时找不到 xsd?

回答：
Spring命名空间使用规范并未强制要求将 xsd文件部署至公网地址，但考虑到部分用户的需求，我们也
将相关 xsd文件部署至 ShardingSphere官网。实际上 shardingsphere‐jdbc‐spring‐namespace的 jar包
中 META‐INF:raw‐latex:spring.schemas 配置了 xsd 文件的位置：META‐INF:raw‐latex:namespace:raw‐
latex:‘\sharding‘.xsd和META‐INF:raw‐latex:namespace:raw‐latex:‘\readwrite‘‐splitting.xsd，只需确保
jar包中该文件存在即可。

8.1.3 JDBC引入 shardingsphere-transaction-xa-core后，如何避免 spring-
boot自动加载默认的 JtaTransactionManager？

回答:

1. 需 要 在 spring‐boot 的 引 导 类 中 添 加 @SpringBootApplication(exclude =
JtaAutoConfiguration.class)。### JDBCOracle表名、字段名配置大小写在加载 metadata
元数据时结果不正确？回答：需要注意，Oracle表名和字段名，默认元数据都是大写，除非建表语
句中带双引号，如 CREATE TABLE "TableName"("Id" number)元数据为双引号中内容，可
参考以下 SQL查看元数据的具体情况：

456

Apache ShardingSphere document, v5.2.1

SELECT OWNER, TABLE_NAME, COLUMN_NAME, DATA_TYPE FROM ALL_TAB_COLUMNS WHERE TABLE_
NAME IN ('TableName')

ShardingSphere使用 OracleTableMetaDataLoader对 Oracle元数据进行加载，配置时需确保表名、
字段名的大小写配置与数据库中的一致。ShardingSphere查询元数据关键 SQL:

private String getTableMetaDataSQL(final Collection<String> tables, final
DatabaseMetaData metaData) throws SQLException {

StringBuilder stringBuilder = new StringBuilder(28);
if (versionContainsIdentityColumn(metaData)) {

stringBuilder.append(", IDENTITY_COLUMN");
}
if (versionContainsCollation(metaData)) {

stringBuilder.append(", COLLATION");
}
String collation = stringBuilder.toString();
return tables.isEmpty() ? String.format(TABLE_META_DATA_SQL, collation)

: String.format(TABLE_META_DATA_SQL_IN_TABLES, collation, tables.
stream().map(each -> String.format("'%s'", each)).collect(Collectors.joining(",
")));
}

8.2 Proxy

8.2.1 Proxy Windows环境下，运行 ShardingSphere-Proxy，找不到或无法加载主类
org.apache.shardingsphere.proxy.Bootstrap，如何解决？

回答：
某些解压缩工具在解压 ShardingSphere‐Proxy二进制包时可能将文件名截断，导致找不到某些类。解决
方案：打开 cmd.exe并执行下面的命令：

tar zxvf apache-shardingsphere-${RELEASE.VERSION}-shardingsphere-proxy-bin.tar.gz

8.2.2 Proxy在使用 ShardingSphere-Proxy的时候，如何动态在添加新的逻辑库？

回答：
使用 ShardingSphere‐Proxy时，可以通过 DistSQL动态的创建或移除逻辑库，语法如下：

CREATE DATABASE [IF NOT EXISTS] databaseName;
DROP DATABASE [IF EXISTS] databaseName;

例：

8.2. Proxy 457

Apache ShardingSphere document, v5.2.1

CREATE DATABASE sharding_db;
DROP DATABASE sharding_db;

8.2.3 Proxy 在使用 ShardingSphere-Proxy 时，怎么使用合适的工具连接到
ShardingSphere-Proxy？

回答：
1. ShardingSphere‐Proxy可以看做是一个 database server，所以首选支持 SQL命令连接和操作。
2. 如果使用其他第三方数据库工具，可能由于不同工具的特定实现导致出现异常。
3. 目前已测试的第三方数据库工具如下：

• Navicat：11.1.13、15.0.20。
• DataGrip：2020.1、2021.1（使用 IDEA/DataGrip 时打开 introspect using JDBC
metadata选项）。

• WorkBench：8.0.25。

8.2.4 Proxy 使用 Navicat 等第三方数据库工具连接 ShardingSphere-Proxy 时，如果
ShardingSphere-Proxy没有创建 Database或者没有添加 Resource，连接失败？

回答：
1. 第三方数据库工具在连接 ShardingSphere‐Proxy 时会发送一些 SQL 查询元数据，当

ShardingSphere‐Proxy 没有创建 database 或者没有添加 resource 时，ShardingSphere‐
Proxy无法执行 SQL。

2. 推荐先创建 database和 resource之后再使用第三方数据库工具连接。
3. 有关 resource的详情请参考。相关介绍

8.3 分片

8.3.1 分片 Cloud not resolve placeholder⋯in string value⋯异常的解决方法?

回答：
行表达式标识符可以使用 ${...}或 $->{...}，但前者与 Spring本身的属性文件占位符冲突，因此在
Spring环境中使用行表达式标识符建议使用 $->{...}。

8.3. 分片 458

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.2.1

8.3.2 分片 inline表达式返回结果为何出现浮点数？

回答：
Java的整数相除结果是整数，但是对于 inline表达式中的 Groovy语法则不同，整数相除结果是浮点数。
想获得除法整数结果需要将 A/B改为 A.intdiv(B)。

8.3.3 分片如果只有部分数据库分库分表，是否需要将不分库分表的表也配置在分片规
则中？

回答：
不需要，ShardingSphere会自动识别。

8.3.4 分片指定了泛型为 Long 的 SingleKeyTableShardingAlgorithm，遇到
ClassCastException: Integer can not cast to Long?

回答：
必须确保数据库表中该字段和分片算法该字段类型一致，如：数据库中该字段类型为 int(11)，泛型所对
应的分片类型应为 Integer，如果需要配置为 Long类型，请确保数据库中该字段类型为 bigint。

8.3.5 [分片、PROXY] 实现 StandardShardingAlgorithm 自定义算法时，指定
了 Comparable 的具体类型为 Long, 且数据库表中字段类型为 bigint，出现
ClassCastException: Integer can not cast to Long异常。

回答：
实现 doSharding方法时，不建议指定方法声明中 Comparable具体的类型，而是在 doSharding方
法实现中对类型进行转换，可以参考 ModShardingAlgorithm#doSharding方法

8.3.6 分片 ShardingSphere提供的默认分布式自增主键策略为什么是不连续的，且尾
数大多为偶数？

回答：
ShardingSphere采用 snowflake算法作为默认的分布式自增主键策略，用于保证分布式的情况下可以无
中心化的生成不重复的自增序列。因此自增主键可以保证递增，但无法保证连续。而 snowflake算法的最
后 4位是在同一毫秒内的访问递增值。因此，如果毫秒内并发度不高，最后 4位为零的几率则很大。因此
并发度不高的应用生成偶数主键的几率会更高。在 3.1.0版本中，尾数大多为偶数的问题已彻底解决，参
见：https://github.com/apache/shardingsphere/issues/1617

8.3. 分片 459

https://github.com/apache/shardingsphere/issues/1617

Apache ShardingSphere document, v5.2.1

8.3.7 分片如何在 inline分表策略时，允许执行范围查询操作（BETWEEN AND、>、<、
>=、<=）？

回答：
1. 需要使用 4.1.0或更高版本。
2. 调整以下配置项（需要注意的是，此时所有的范围查询将会使用广播的方式查询每一个分表）：
• 4.x版本：allow.range.query.with.inline.sharding设置为 true即可（默认为 false）。
• 5.x版本：在 InlineShardingStrategy中将 allow-range-query-with-inline-sharding设
置为 true即可（默认为 false）。

8.3.8 分片为什么我实现了 KeyGenerateAlgorithm接口，也配置了 Type，但是自
定义的分布式主键依然不生效？

回答：
Service Provider Interface (SPI) 是一种为了被第三方实现或扩展的 API，除了实现接口外，还需要在
META‐INF/services中创建对应文件来指定 SPI的实现类，JVM才会加载这些服务。具体的 SPI使用方
式，请大家自行搜索。与分布式主键 KeyGenerateAlgorithm接口相同，其他 ShardingSphere的扩
展功能也需要用相同的方式注入才能生效。

8.3.9 分片 ShardingSphere除了支持自带的分布式自增主键之外，还能否支持原生的
自增主键？

回答：
是的，可以支持。但原生自增主键有使用限制，即不能将原生自增主键同时作为分片键使用。由于 Shard‐
ingSphere并不知晓数据库的表结构，而原生自增主键是不包含在原始 SQL中内的，因此 ShardingSphere
无法将该字段解析为分片字段。如自增主键非分片键，则无需关注，可正常返回；若自增主键同时作为分
片键使用，ShardingSphere无法解析其分片值，导致 SQL路由至多张表，从而影响应用的正确性。而原
生自增主键返回的前提条件是 INSERT SQL必须最终路由至一张表，因此，面对返回多表的 INSERT SQL，
自增主键则会返回零。

8.4 数据加密

8.4.1 数据加密 JPA和数据加密无法一起使用，如何解决？

回答：
由于数据加密的 DDL尚未开发完成，因此对于自动生成 DDL语句的 JPA与数据加密一起使用时，会导
致 JPA的实体类（Entity）无法同时满足 DDL和 DML的情况。解决方案如下：1. 以需要加密的逻辑列名
编写 JPA的实体类（Entity）。2. 关闭 JPA的 auto‐ddl，如 auto‐ddl=none。3. 手动建表，建表时应使用
数据加密配置的 cipherColumn,plainColumn和 assistedQueryColumn代替逻辑列。

8.4. 数据加密 460

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://shardingsphere.apache.org/document/current/cn/concepts/pluggable/
https://shardingsphere.apache.org/document/current/cn/concepts/pluggable/

Apache ShardingSphere document, v5.2.1

8.5 DistSQL

8.5.1 DistSQL使用DistSQL添加数据源时，如何设置自定义的 JDBC连接参数或连接池
属性？

回答：
1. 如需自定义 JDBC参数，请使用 urlSource的方式定义 dataSource。
2. ShardingSphere预置了必要的连接池参数，如 maxPoolSize、idleTimeout等。如需增加或覆
盖参数配置，请在 dataSource中通过 PROPERTIES指定。

3. 以上规则请参考相关介绍。

8.5.2 DistSQL使用 DistSQL删除资源时，出现 Resource [xxx] is still used
by [SingleTableRule]。

回答：
1. 被规则引用的资源将无法被删除。
2. 若资源只被 single table rule引用，且用户确认可以忽略该限制，则可以添加可选参数 ignore single

tables进行强制删除。

8.5.3 DistSQL使用DistSQL添加资源时，出现Failed to get driver instance
for jdbcURL=xxx。

回答：
ShardingSphere‐Proxy在部署过程中没有添加 jdbc驱动，需要将 jdbc驱动放入 ShardingSphere‐Proxy
解压后的 ext‐lib目录，例如：mysql-connector。

8.6 其他

8.6.1 其他如果 SQL在 ShardingSphere中执行不正确，该如何调试？

回答：
在 ShardingSphere‐Proxy以及 ShardingSphere‐JDBC 1.5.0版本之后提供了 sql.show的配置，可以将
解析上下文和改写后的 SQL以及最终路由至的数据源的细节信息全部打印至 info日志。sql.show配置
默认关闭，如果需要请通过配置开启。>注意：5.x版本以后，sql.show参数调整为 sql-show。

8.5. DistSQL 461

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.2.1

8.6.2 其他阅读源码时为什么会出现编译错误? IDEA不索引生成的代码？

回答：
ShardingSphere 使用 lombok 实现极简代码。关于更多使用和安装细节，请参考 lombok 官网。org.
apache.shardingsphere.sql.parser.autogen包下的代码由 ANTLR生成，可以执行以下命令
快速生成：

./mvnw -Dcheckstyle.skip=true -Drat.skip=true -Dmaven.javadoc.skip=true -Djacoco.
skip=true -DskipITs -DskipTests install -T1C

生 成 的 代 码 例 如 org.apache.shardingsphere.sql.parser.autogen.
PostgreSQLStatementParser 等 Java 文件由于较大，默认配置的 IDEA 可能不会索引该文件。
可以调整 IDEA的属性：idea.max.intellisense.filesize=10000。

8.6.3 其他使用 SQLSever和 PostgreSQL时，聚合列不加别名会抛异常？

回答：
SQLServer和 PostgreSQL获取不加别名的聚合列会改名。例如，如下 SQL：

SELECT SUM(num), SUM(num2) FROM tablexxx;

SQLServer获取到的列为空字符串和 (2)，PostgreSQL获取到的列为空 sum和 sum(2)。这将导致 Shard‐
ingSphere在结果归并时无法找到相应的列而出错。正确的 SQL写法应为：

SELECT SUM(num) AS sum_num, SUM(num2) AS sum_num2 FROM tablexxx;

8.6.4 其他 Oracle数据库使用 Timestamp类型的 Order By语句抛出异常提示“Order
by valuemust implements Comparable”?

回答：
针对上面问题解决方式有两种：1. 配置启动 JVM 参数“‐oracle.jdbc.J2EE13Compliant=true”2. 通
过代码在项目初始化时设置 System.getProperties().setProperty(“oracle.jdbc.J2EE13Compliant”
, “true”); 原因如下: org.apache.shardingsphere.sharding.merge.dql.orderby.
OrderByValue#getOrderValues()方法如下:

private List<Comparable<?>> getOrderValues() throws SQLException {
List<Comparable<?>> result = new ArrayList<>(orderByItems.size());
for (OrderItem each : orderByItems) {

Object value = resultSet.getObject(each.getIndex());
Preconditions.checkState(null == value || value instanceof Comparable,

"Order by value must implements Comparable");
result.add((Comparable<?>) value);

}
return result;

}

8.6. 其他 462

https://projectlombok.org/download.html

Apache ShardingSphere document, v5.2.1

使用了 resultSet.getObject(int index)方法，针对TimeStamporacle会根据 oracle.jdbc.J2EE13Compliant
属性判断返回 java.sql.TimeStamp 还是自定义 oralce.sql.TIMESTAMP 详见 ojdbc 源码 ora‐
cle.jdbc.driver.TimestampAccessor#getObject(int var1)方法:

Object getObject(int var1) throws SQLException {
Object var2 = null;
if(this.rowSpaceIndicator == null) {

DatabaseError.throwSqlException(21);
}
if(this.rowSpaceIndicator[this.indicatorIndex + var1] != -1) {

if(this.externalType != 0) {
switch(this.externalType) {
case 93:

return this.getTimestamp(var1);
default:

DatabaseError.throwSqlException(4);
return null;

}
}
if(this.statement.connection.j2ee13Compliant) {

var2 = this.getTimestamp(var1);
} else {

var2 = this.getTIMESTAMP(var1);
}

}
return var2;

}

8.6.5 其他Windows环境下，通过 Git克隆 ShardingSphere源码时为什么提示文件名
过长，如何解决？

回答：
为保证源码的可读性，ShardingSphere编码规范要求类、方法和变量的命名要做到顾名思义，避免使用
缩写，因此可能导致部分源码文件命名较长。由于Windows版本的 Git是使用msys编译的，它使用了
旧版本的Windows Api，限制文件名不能超过 260个字符。解决方案如下：打开 cmd.exe（你需要将 git
添加到环境变量中）并执行下面的命令，可以让 git支持长文件名：

git config --global core.longpaths true

如果是 Windows 10，还需要通过注册表或组策略，解除操作系统的文件名长度限制（需要重
启） ：> 在注册表编辑器中创建 HKLM\SYSTEM\CurrentControlSet\Control\FileSystem
LongPathsEnabled，类型为 REG_DWORD，并设置为 1。>或者从系统菜单点击设置图标，输入“编辑组
策略”，然后在打开的窗口依次进入“计算机管理”>“管理模板”>“系统”>“文件系统”，在右侧双击“启用
win32长路径”。参考资料：https://docs.microsoft.com/zh‐cn/windows/desktop/FileIO/naming‐a‐file

8.6. 其他 463

https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file

Apache ShardingSphere document, v5.2.1

https://ourcodeworld.com/articles/read/109/how‐to‐solve‐filename‐too‐long‐error‐in‐git‐powershell‐
and‐github‐application‐for‐windows

8.6.6 其他 Type is required异常的解决方法?

回答：
ShardingSphere中很多功能实现类的加载方式是通过 SPI注入的方式完成的，如分布式主键，注册中心
等；这些功能通过配置中 type类型来寻找对应的 SPI实现，因此必须在配置文件中指定类型。

8.6.7 其他服务启动时如何加快 metadata加载速度？

回答：
1. 升级到 4.0.1以上的版本，以提高metadata的加载速度。
2. 参照你采用的连接池，将：
• 配置项max.connections.size.per.query（默认值为 1）调高（版本 >= 3.0.0.M3且低于 5.0.0）。
• 配置项 max-connections-size-per-query（默认值为 1）调高（版本 >= 5.0.0）。

8.6.8 其他 ANTLR插件在 src同级目录下生成代码，容易误提交，如何避免？

回答：
进入 Settings ‐> Languages&Frameworks ‐> ANTLR v4 default project settings配置生成代码的输出目录

8.6. 其他 464

https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://shardingsphere.apache.org/document/current/cn/concepts/pluggable/
jetbrains://idea/settings?name=Languages+%26+Frameworks--ANTLR+v4+default+project+settings

Apache ShardingSphere document, v5.2.1

为target/gen，如图：

8.6.9 其他使用 Proxool时分库结果不正确？

回答：
使用 Proxool配置多个数据源时，应该为每个数据源设置 alias，因为 Proxool在获取连接时会判断连接
池中是否包含已存在的 alias，不配置 alias会造成每次都只从一个数据源中获取连接。以下是 Proxool源
码中 ProxoolDataSource类 getConnection方法的关键代码：

if(!ConnectionPoolManager.getInstance().isPoolExists(this.alias)) {
this.registerPool();

}

更多关于 alias使用方法请参考 Proxool官网。PS：sourceforge网站需要翻墙访问。

8.6.10 其他使用 Spring Boot 2.x集成 ShardingSphere时，配置文件中的属性设置不生
效？

回答：
需要特别注意，Spring Boot 2.x 环境下配置文件的属性名称约束为仅允许小写字母、数字和短横线，
即 [a-z][0-9] 和 -。原因如下: Spring Boot 2.x 环境下，ShardingSphere 通过 Binder 来绑定
配置文件，属性名称不规范（如：驼峰或下划线等）会导致属性设置不生效从而校验属性值时抛出
NullPointerException异常。参考以下错误示例：下划线示例：database_inline

8.6. 其他 465

http://proxool.sourceforge.net/configure.html

Apache ShardingSphere document, v5.2.1

spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.props.
algorithm-expression=ds-$->{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'database_inline': Initialization of bean failed; nested exception
is java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.
java:897)

at org.apache.shardingsphere.sharding.algorithm.sharding.inline.
InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)

at org.apache.shardingsphere.sharding.algorithm.sharding.inline.
InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)

at org.apache.shardingsphere.spring.boot.registry.
AbstractAlgorithmProvidedBeanRegistry.
postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)

at org.springframework.beans.factory.support.
AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

驼峰示例：databaseInline

spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.props.
algorithm-expression=ds-$->{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'databaseInline': Initialization of bean failed; nested exception is
java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.
java:897)

at org.apache.shardingsphere.sharding.algorithm.sharding.inline.
InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)

at org.apache.shardingsphere.sharding.algorithm.sharding.inline.
InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)

at org.apache.shardingsphere.spring.boot.registry.
AbstractAlgorithmProvidedBeanRegistry.

8.6. 其他 466

Apache ShardingSphere document, v5.2.1

postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)
at org.springframework.beans.factory.support.

AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

从异常堆栈中分析可知：AbstractAlgorithmProvidedBeanRegistry.registerBean方法调用
PropertyUtil.containPropertyPrefix(environment, prefix)方法判断指定前缀 prefix
的配置是否存在，而PropertyUtil.containPropertyPrefix(environment, prefix)方法，在
Spring Boot 2.x环境下使用了 Binder，不规范的属性名称（如：驼峰或下划线等）会导致属性设置不生
效。

8.6. 其他 467

9
下载

9.1 最新版本

Apache ShardingSphere的发布版包括源码包及其对应的二进制包。由于下载内容分布在镜像服务器上，
所以下载后应该进行 GPG或 SHA‐512校验，以此来保证内容没有被篡改。

9.1.1 Apache ShardingSphere -版本: 5.2.1 (发布日期: Oct 18th, 2022)

• 源码: SRC (ASC, SHA512)

• ShardingSphere‐JDBC二进制包: TAR (ASC, SHA512)

• ShardingSphere‐Proxy二进制包: TAR (ASC, SHA512)

• ShardingSphere‐Agent二进制包: TAR (ASC, SHA512)

9.2 全部版本

全部版本请到 Archive repository查看。全部孵化器版本请到 Archive incubator repository查看。

9.3 校验版本

PGP签名文件
使用 PGP或 SHA签名验证下载文件的完整性至关重要。可以使用 GPG或 PGP验证 PGP签名。请下载
KEYS以及发布的 asc签名文件。建议从主发布目录而不是镜像中获取这些文件。

gpg -i KEYS

或者

468

https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-src.zip
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-src.zip.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-src.zip.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-jdbc-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-jdbc-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-jdbc-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-proxy-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-proxy-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-proxy-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-agent-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-agent-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.2.1/apache-shardingsphere-5.2.1-shardingsphere-agent-bin.tar.gz.sha512
https://archive.apache.org/dist/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://downloads.apache.org/shardingsphere/KEYS

Apache ShardingSphere document, v5.2.1

pgpk -a KEYS

或者

pgp -ka KEYS

要验证二进制文件或源代码，您可以从主发布目录下载相关的 asc文件，并按照以下指南进行操作。

gpg --verify apache-shardingsphere-********.asc apache-shardingsphere-*********

或者

pgpv apache-shardingsphere-********.asc

或者

pgp apache-shardingsphere-********.asc

9.3. 校验版本 469

	概览
	什么是 ShardingSphere
	介绍
	ShardingSphere-JDBC
	ShardingSphere-Proxy

	产品功能
	产品优势

	设计哲学
	连接：打造数据库上层标准
	增强：数据库计算增强引擎
	可插拔：构建数据库功能生态
	L1 内核层
	L2 功能层
	L3 生态层

	部署形态
	ShardingSphere-JDBC 独立部署
	ShardingSphere-Proxy 独立部署
	混合部署架构

	运行模式
	单机模式
	集群模式

	线路规划
	如何参与

	快速入门
	ShardingSphere-JDBC
	应用场景
	使用限制
	前提条件
	操作步骤

	ShardingSphere-Proxy
	应用场景
	使用限制
	前提条件
	操作步骤

	功能
	数据分片
	背景
	垂直分片
	水平分片

	挑战
	目标
	应用场景
	海量数据高并发的 OLTP 场景
	海量数据实时分析 OLAP 场景

	相关参考
	核心概念
	表
	逻辑表
	真实表
	绑定表
	广播表
	单表

	数据节点
	均匀分布
	自定义分布

	分片
	分片键
	分片算法
	自动化分片算法
	自定义分片算法
	分片策略
	强制分片路由

	行表达式
	分布式主键

	使用限制
	稳定支持
	常规查询
	子查询
	分页查询
	运算表达式中包含分片键

	实验性支持
	子查询
	跨库关联查询

	不支持
	CASE WHEN
	分页查询

	附录

	分布式事务
	背景
	挑战
	目标
	原理介绍
	LOCAL 事务
	XA 事务
	BASE 事务

	应用场景
	ShardingSphere XA 事务使用场景
	ShardingSphere BASE 事务使用场景
	ShardingSphere LOCAL 事务使用场景

	相关参考
	核心概念
	XA 协议

	使用限制
	LOCAL 事务
	支持项
	不支持项

	XA 事务
	支持项
	不支持项

	BASE 事务
	支持项
	不支持项

	附录

	读写分离
	背景
	挑战
	目标
	应用场景
	复杂的主从数据库架构

	相关参考
	核心概念
	主库
	从库
	主从同步
	负载均衡策略

	使用限制

	高可用
	背景
	挑战
	目标
	应用场景
	相关参考
	核心概念
	高可用类型
	动态读写分离

	使用限制
	支持项
	不支持项

	数据库网关
	背景
	挑战
	目标
	应用场景
	核心概念
	SQL 方言

	使用限制

	流量治理
	背景
	挑战
	目标
	应用场景
	计算节点过载保护
	存储节点限流

	核心概念
	熔断
	限流

	数据迁移
	背景
	挑战
	目标
	应用场景
	相关参考
	核心概念
	节点
	集群
	源端
	目标端
	数据迁移作业
	存量数据
	增量数据

	使用限制
	支持项
	不支持项

	数据加密
	背景
	挑战
	目标
	应用场景
	新上线业务
	成熟业务

	相关参考
	核心概念
	逻辑列
	密文列
	查询辅助列
	明文列

	使用限制
	附录

	影子库
	背景
	挑战
	目标
	应用场景
	相关参考
	核心概念
	生产库
	影子库
	影子算法

	使用限制
	基于 Hint 的影子算法
	基于列的影子算法

	可观察性
	背景
	挑战
	目标
	应用场景
	监控仪表盘
	应用性能监控
	应用链路追踪

	相关参考
	核心概念
	Agent
	APM
	Tracing
	Metrics
	Logging

	用户手册
	ShardingSphere-JDBC
	YAML 配置
	简介
	使用步骤
	引入 Maven 依赖
	配置 YAML
	构建数据源
	使用数据源

	语法说明
	模式配置
	参数解释
	单机模式
	集群模式 (推荐)

	注意事项
	配置示例
	单机模式
	集群模式 (推荐)

	相关参考

	数据源配置
	背景信息
	参数解释
	配置示例

	规则配置
	数据分片
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	读写分离
	背景信息
	参数解释
	静态读写分离
	动态读写分离
	操作步骤
	配置示例
	相关参考

	分布式事务
	背景信息
	参数解释
	操作步骤
	使用 LOCAL 模式
	使用 XA 模式
	使用 BASE 模式

	高可用
	背景信息
	参数解释
	配置示例
	相关参考

	数据加密
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	影子库
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	SQL 解析
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	SQL 翻译
	配置项说明

	混合规则
	背景信息
	参数解释
	配置示例

	算法配置
	分片算法
	加密算法
	读写分离负载均衡算法
	影子算法
	高可用

	JDBC 驱动
	背景信息
	参数解释
	驱动类名称
	URL 配置

	操作步骤
	配置示例

	Java API
	简介
	使用步骤
	引入 Maven 依赖
	构建数据源
	使用数据源

	模式配置
	背景信息
	参数解释
	Standalone 持久化配置
	Cluster 持久化配置

	注意事项
	操作步骤
	引入Maven 依赖。

	配置示例
	Standalone 运行模式
	Cluster 运行模式 (推荐)

	相关参考

	数据源配置
	背景信息
	操作步骤
	1. 引入 Maven 依赖

	配置示例

	规则配置
	数据分片
	背景信息
	参数解释
	配置入口
	分片表配置
	自动分片表配置
	分片策略配置
	标准分片策略配置
	复合分片策略配置
	Hint 分片策略配置
	不分片策略配置
	分布式序列策略配置
	分片审计策略配置
	操作步骤
	配置示例
	相关参考

	读写分离
	背景信息
	参数解释
	配置入口
	主从数据源配置
	操作步骤
	配置示例
	相关参考

	分布式事务
	配置入口

	高可用
	背景信息
	参数解释
	配置入口
	数据源配置
	监听心跳配置
	数据库发现类型配置
	操作步骤
	相关参考

	数据加密
	背景信息
	参数解释
	配置入口
	加密表规则配置
	加密列规则配置
	加解密算法配置
	操作步骤
	配置示例
	相关参考

	影子库
	背景信息
	参数解释
	配置入口
	影子数据源配置
	影子表配置
	影子算法配置
	操作步骤
	配置示例
	相关参考

	SQL 解析
	背景信息
	参数解释
	本地缓存配置
	操作步骤
	配置示例
	相关参考

	SQL 翻译
	配置入口

	混合规则
	背景信息
	配置示例

	算法配置
	分片算法
	加密算法
	读写分离负载均衡算法
	影子算法
	高可用

	Spring Boot Starter
	简介
	使用步骤
	引入 Maven 依赖
	配置 Spring Boot 属性
	使用数据源

	模式配置
	参数解释
	单机模式
	集群模式 (推荐)

	注意事项
	操作步骤
	配置示例
	单机模式
	集群模式 (推荐)

	相关参考

	数据源配置
	背景信息
	使用本地数据源
	使用 JNDI 数据源

	参数解释
	使用本地数据源
	使用 JNDI 数据源

	操作步骤
	1. 引入 MAVEN 依赖

	配置示例
	使用本地数据源
	使用 JNDI 数据源

	规则配置
	数据分片
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	读写分离
	背景信息
	参数解释
	静态读写分离
	动态读写分离
	操作步骤
	配置示例
	相关参考

	高可用
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	数据加密
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	影子库
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	SQL 解析
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	混合规则
	背景信息
	参数解释
	配置示例

	算法配置
	分片算法
	加密算法
	读写分离负载均衡算法
	影子算法
	高可用

	Spring 命名空间
	简介
	使用步骤
	引入 Maven 依赖
	配置 Spring Bean
	配置项说明
	配置示例

	使用数据源

	模式配置
	背景信息
	参数解释
	单机模式
	集群模式 (推荐)

	注意事项
	操作步骤
	配置示例
	单机模式
	集群模式

	相关参考

	数据源配置
	背景信息
	操作步骤
	1. 引入 MAVEN 依赖

	配置示例

	规则配置
	数据分片
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	读写分离
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	高可用
	背景信息
	参数解释
	操作步骤
	1. 引入 MAVEN 依赖
	配置示例
	相关参考

	数据加密
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	影子库
	背景信息
	参数解释
	配置入口
	可配置属性：
	影子数据源配置：
	影子表配置：
	影子算法配置：
	操作步骤
	配置示例
	相关参考

	SQL解析
	背景信息
	参数解释
	操作步骤
	配置示例
	相关参考

	混合规则
	背景信息
	配置示例

	算法配置
	分片算法
	加密算法
	读写分离负载均衡算法
	影子算法
	高可用

	特殊 API
	数据分片
	强制路由
	背景信息
	操作步骤
	配置示例
	使用 Hint 分片
	规则配置
	获取 HintManager
	添加分片键值
	清除分片键值
	完整代码示例
	使用 SQL 注释的方式
	使用规范
	完整示例
	相关参考

	读写分离
	强制路由
	背景信息
	操作步骤
	配置示例
	使用 Hint 强制主库路由
	使用手动编程的方式
	获取 HintManager
	设置主库路由
	清除分片键值
	完整代码示例
	使用 SQL 注释的方式
	使用规范
	完整示例

	分布式事务
	使用 Java API
	背景信息
	前提条件
	操作步骤
	配置示例

	使用 Spring Boot Starter
	背景信息
	操作步骤
	配置示例
	配置事务类型
	使用分布式事务

	使用 Spring 命名空间
	背景信息
	操作步骤
	配置示例
	配置事务管理器
	使用分布式事务

	Atomikos 事务
	背景信息
	配置示例
	配置事务类型
	配置 Atomikos
	数据恢复

	Narayana 事务
	背景信息
	前提条件
	操作步骤
	配置示例
	配置 Narayana
	设置 XA 事务类型

	Bitronix 事务
	背景信息
	前提条件
	操作步骤
	配置示例
	配置 XA 事务类型
	配置 Bitronix （可省略）

	Seata 事务
	背景信息
	操作步骤
	配置示例
	启动 Seata Server
	创建 undo_log 表
	修改配置

	不支持项
	DataSource 接口
	Connection 接口
	Statement 和 PreparedStatement 接口
	ResultSet 接口
	JDBC 4.1

	ShardingSphere-Proxy
	启动手册
	使用二进制发布包
	背景信息
	前提条件
	操作步骤
	配置示例

	使用 Docker
	背景信息
	注意事项
	操作步骤
	配置示例

	构建 GraalVM Native Image(Alpha)
	背景信息
	注意事项
	前提条件
	操作步骤

	使用 Helm
	背景信息
	前提条件
	操作步骤
	在线安装
	源码安装
	卸载

	参数解释
	治理节点配置项
	治理节点 ZooKeeper 配置项
	计算节点 ShardingSphere-Proxy 配置项

	配置示例

	添加依赖
	添加 Bitronix 依赖
	添加 Bitronix 依赖包
	jar 文件下载地址

	添加 Narayana 依赖
	添加 Narayana 依赖包
	jar 文件下载地址

	YAML 配置
	权限
	背景信息
	参数解释
	配置示例
	ALL_PERMITTED
	DATABASE_PERMITTED

	相关参考

	属性配置
	背景信息
	参数解释
	配置示例

	规则配置
	背景信息
	参数解释
	注意事项

	DistSQL
	定义
	相关概念
	RDL
	RQL
	RAL
	RUL

	对系统的影响
	之前
	之后

	使用限制
	原理介绍
	相关参考
	语法
	语法规则
	标识符
	字面量

	RDL 语法
	资源定义
	语法说明
	参数解释
	注意事项
	示例
	规则定义
	数据分片
	语法说明
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	示例
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	单表
	定义
	示例
	Single Table Rule
	读写分离
	语法说明
	参数解释
	注意事项
	示例
	数据库发现
	语法说明
	参数解释
	注意事项
	示例
	创建 discoveryRule 时同时创建 discoveryType 和 discoveryHeartbeat
	使用已有的 discoveryType 和 discoveryHeartbeat 创建 discoveryRule
	数据加密
	语法说明
	参数解释
	注意事项
	示例
	影子库压测
	语法说明
	参数解释
	注意事项
	示例

	RQL 语法
	资源查询
	语法说明
	返回值说明
	示例
	规则查询
	数据分片
	语法说明
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Table Rule
	Sharding Algorithms
	Unused Sharding Algorithms
	Sharding Auditors
	Unused Sharding Auditors
	Sharding Key Generators
	Unused Sharding Key Generators
	Default Sharding Strategy
	Sharding Table Nodes
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	单表
	语法说明
	返回值说明
	Single Table Rule
	Single Table
	Single Table Rule Count
	示例
	读写分离
	语法说明
	返回值说明
	示例
	数据库发现
	语法说明
	返回值说明
	DB Discovery Rule
	DB Discovery Type
	DB Discovery Heartbeat
	示例
	数据加密
	语法说明
	返回值说明
	示例
	影子库压测
	语法说明
	返回值说明
	Shadow Rule
	Shadow Table Rule
	Shadow Algorithms
	Shadow Rule status
	示例

	RAL 语法
	强制路由
	数据迁移
	熔断
	全局规则
	其他
	注意事项

	RUL 语法
	SQL 工具

	使用
	前置工作
	创建数据库
	资源操作
	规则操作
	注意事项
	数据分片
	资源操作
	规则操作

	读写分离
	资源操作
	规则操作

	数据加密
	资源操作
	规则操作

	数据库发现
	资源操作
	规则操作

	影子库压测
	资源操作
	规则操作

	数据迁移
	简介
	运行部署
	背景信息
	前提条件
	操作步骤

	使用手册
	MySQL 使用手册
	环境要求
	权限要求
	完整流程示例
	前提条件
	操作步骤

	PostgreSQL 使用手册
	环境要求
	权限要求
	完整流程示例
	前提条件
	操作步骤

	openGauss 使用手册
	环境要求
	权限要求
	完整流程示例
	前提条件
	操作步骤

	可观察性
	源码编译
	agent 配置
	ShardingSphere-Proxy 中使用
	通过非容器环境使用
	通过容器环境使用

	Metrics

	可选插件
	会话管理
	相关操作
	查看会话
	杀掉会话

	通用配置
	属性配置
	背景信息
	参数解释
	操作步骤
	配置示例

	内置算法
	简介
	使用方式
	元数据持久化仓库
	背景信息
	参数解释
	数据库持久化
	ZooKeeper 持久化
	Etcd 持久化
	Nacos 持久化
	Consul 持久化

	操作步骤
	配置示例

	分片算法
	背景信息
	参数解释
	自动分片算法
	取模分片算法
	基于 CosId 的取模分片算法
	哈希取模分片算法
	基于分片容量的范围分片算法
	基于分片边界的范围分片算法
	自动时间段分片算法
	标准分片算法
	行表达式分片算法
	时间范围分片算法
	基于 CosId 的固定时间范围的分片算法
	基于 CosId 的雪花ID固定时间范围的分片算法
	复合分片算法
	复合行表达式分片算法
	Hint 分片算法
	Hint 行表达式分片算法
	自定义类分片算法

	操作步骤
	配置示例
	相关参考

	分布式序列算法
	背景信息
	参数解释
	雪花算法
	NanoID
	UUID
	CosId
	CosId-Snowflake

	操作步骤
	配置示例

	负载均衡算法
	背景信息
	参数解释
	轮询负载均衡算法
	随机负载均衡算法
	权重负载均衡算法
	事务随机负载均衡算法
	事务轮询负载均衡算法
	事务权重负载均衡算法
	固定副本随机负载均衡算法
	固定副本轮询负载均衡算法
	固定副本权重负载均衡算法
	固定主库负载均衡算法

	操作步骤
	配置示例
	相关参考

	加密算法
	背景信息
	参数解释
	MD5 加密算法
	AES 加密算法
	RC4 加密算法
	SM3 加密算法
	SM4 加密算法

	操作步骤
	配置示例
	相关参考

	影子算法
	背景信息
	参数解释
	列影子算法
	列值匹配算法
	列正则表达式匹配算法
	Hint 影子算法
	简单 Hint 匹配影子算法

	配置示例

	SQL 翻译
	原生 SQL 翻译器
	使用 JooQ 的 SQL 翻译器

	分片审计算法
	背景信息
	参数解释
	DML_SHARDING_CONDITIONS 算法

	操作步骤
	配置示例

	错误码
	SQL 错误码
	内核异常
	元数据
	数据
	语法
	连接
	事务
	锁
	审计
	集群
	迁移
	DistSQL

	功能异常
	数据分片
	读写分离
	数据库高可用
	SQL 方言转换
	流量治理
	数据加密
	影子库

	其他异常

	服务器错误码

	开发者手册
	运行模式
	StandalonePersistRepository
	全限定类名
	定义
	已知实现

	ClusterPersistRepository
	全限定类名
	定义
	已知实现

	GovernanceWatcher
	全限定类名
	定义
	已知实现

	配置
	RuleBuilder
	全限定类名
	定义
	已知实现

	YamlRuleConfigurationSwapper
	全限定类名
	定义
	已知实现

	ShardingSphereYamlConstruct
	全限定类名
	定义
	已知实现

	内核
	SQLRouter
	全限定类名
	定义
	已知实现

	SQLRewriteContextDecorator
	全限定类名
	定义
	已知实现

	SQLExecutionHook
	全限定类名
	定义
	已知实现

	ResultProcessEngine
	全限定类名
	定义
	已知实现

	数据源
	DatabaseType
	全限定类名
	定义
	已知实现

	DialectSchemaMetaDataLoader
	全限定类名
	定义
	已知实现

	DataSourcePoolMetaData
	全限定类名
	定义
	已知实现

	DataSourcePoolActiveDetector
	全限定类名
	定义
	已知实现

	SQL 解析
	DatabaseTypedSQLParserFacade
	全限定类名
	定义
	已知实现

	SQLVisitorFacade
	全限定类名
	定义
	已知实现

	代理端
	DatabaseProtocolFrontendEngine
	全限定类名
	定义
	已知实现

	AuthorityProvideAlgorithm
	全限定类名
	定义
	已知实现

	数据分片
	ShardingAlgorithm
	全限定类名
	定义
	已知实现

	KeyGenerateAlgorithm
	全限定类名
	定义
	已知实现

	ShardingAuditAlgorithm
	全限定类名
	定义
	已知实现

	DatetimeService
	全限定类名
	定义
	已知实现

	读写分离
	ReadQueryLoadBalanceAlgorithm
	全限定类名
	定义
	已知实现

	高可用
	DatabaseDiscoveryProviderAlgorithm
	全限定类名
	定义
	已知实现

	分布式事务
	ShardingSphereTransactionManager
	全限定类名
	定义
	已知实现

	XATransactionManagerProvider
	全限定类名
	定义
	已知实现

	XADataSourceDefinition
	全限定类名
	定义
	已知实现

	DataSourcePropertyProvider
	全限定类名
	定义
	已知实现

	SQL 检查
	全限定类名
	定义
	已知实现

	数据加密
	EncryptAlgorithm
	全限定类名
	定义
	已知实现

	影子库
	ShadowAlgorithm
	全限定类名
	定义
	已知实现

	可观察性
	PluginBootService
	全限定类名
	定义
	已知实现

	PluginDefinitionService
	全限定类名
	定义
	已知实现

	测试手册
	整合测试
	模块测试
	性能测试
	集成测试
	设计
	测试用例
	测试环境
	测试引擎

	使用指南
	测试用例配置
	环境配置
	Native 环境配置
	Docker 环境配置

	运行测试引擎
	配置测试引擎运行环境
	运行调试模式
	运行 Docker 模式
	远程 debug Docker 容器中的 Proxy 代码
	注意事项

	性能测试
	Sysbench ShardingSphere Proxy 空 Rules 性能测试
	测试目的
	测试环境搭建
	服务器信息
	数据库
	压测工具
	ShardingSphere-Proxy
	bin/start.sh
	config.yaml

	测试阶段
	环境准备
	压测命令
	压测报告分析
	压测过程中值得关注的点

	BenchmarkSQL ShardingSphere Proxy 分片性能测试
	测试目的
	测试方法
	测试工具微调
	移除外键与 extraHistID

	压测环境或参数建议
	建议使用 Java 17 运行 ShardingSphere
	ShardingSphere 数据分片建议
	PostgreSQL JDBC URL 参数建议
	ShardingSphere Proxy server.yaml 参数建议

	附录
	BenchmarkSQL 数据分片参考配置

	BenchmarkSQL 5.0 PostgreSQL 语句列表
	Create tables
	Create indexes
	New Order 业务
	Payment 业务
	Order Status 业务
	Stock level 业务
	Delivery BG 业务

	模块测试
	SQL 解析测试
	数据准备
	SQL数据
	断言数据

	SQL 改写测试
	目标
	测试

	Scaling 集成测试
	测试目的
	测试环境
	使用指南
	环境配置
	测试用例
	运行测试用例
	Native 环境启动
	Docker环境启动

	技术参考
	数据兼容性
	数据库网关
	管控
	注册中心数据结构
	/rules
	/props
	/metadata/databaseName/versions/{versionNumber}/dataSources
	/metadata/databaseName/versions/{versionNumber}/rules
	/metadata/databaseName/schemas/{schemaName}/tables
	/nodes/compute_nodes
	/nodes/storage_nodes

	数据分片
	SQL 解析
	SQL 路由
	SQL 改写
	SQL 执行
	结果归并
	查询优化
	解析引擎
	抽象语法树
	SQL 解析引擎
	历史
	功能点
	API使用

	路由引擎
	分片路由
	直接路由
	标准路由
	笛卡尔路由

	广播路由
	全库表路由
	全库路由
	全实例路由
	单播路由
	阻断路由

	改写引擎
	正确性改写
	标识符改写
	补列
	分页修正
	批量拆分

	优化改写
	单节点优化
	流式归并优化

	执行引擎
	连接模式
	内存限制模式
	连接限制模式

	自动化执行引擎
	准备阶段
	执行阶段

	归并引擎
	遍历归并
	排序归并
	分组归并
	聚合归并
	分页归并

	分布式事务
	导览
	XA 事务
	开启全局事务
	执行真实分片SQL
	提交或回滚事务

	Seata 柔性事务
	引擎初始化
	开启全局事务
	执行真实分片SQL
	提交或回滚事务

	数据迁移
	原理说明
	执行阶段说明
	准备阶段
	存量数据迁移阶段
	增量数据同步阶段
	流量切换阶段

	相关参考

	数据加密
	处理流程详解
	整体架构
	加密规则
	加密处理过程

	解决方案详解
	新上线业务
	已上线业务改造

	中间件加密服务优势
	加密算法解析
	EncryptAlgorithm

	影子库
	原理介绍
	DML 语句
	DDL 语句

	相关参考

	可观察性
	原理说明

	DistSQL
	语法
	RDL 语法
	资源定义
	ADD RESOURCE
	描述
	语法
	特别说明
	示例
	保留字
	相关链接
	ALTER RESOURCE
	描述
	语法
	补充说明
	示例
	保留字
	相关链接
	DROP RESOURCE
	描述
	语法
	补充说明
	示例
	保留字
	相关链接

	规则定义
	数据库发现
	CREATE DB_DISCOVERY RULE
	描述
	语法定义
	补充说明
	示例
	创建 discoveryRule 时同时创建 discoveryType 和 discoveryHeartbeat
	使用已有的 discoveryType 和 discoveryHeartbeat 创建 discoveryRule
	保留字
	相关链接
	CREATE DB_DISCOVERY TYPE
	描述
	语法定义
	补充说明
	示例
	创建 discoveryType
	保留字
	相关链接
	CREATE DB_DISCOVERY HEARTBEAT
	描述
	语法定义
	补充说明
	示例
	创建 HEARTBEAT
	保留字
	相关链接
	数据加密
	CREATE ENCRYPT RULE
	描述
	语法定义
	补充说明
	示例
	创建数据加密规则
	保留字
	相关链接
	读写分离
	CREATE READWRITE_SPLITTING RULE
	描述
	语法定义
	补充说明
	示例
	创建静态读写分离规则
	创建动态读写分离规则
	保留字
	相关链接
	影子库压测
	CREATE SHADOW RULE
	描述
	语法定义
	补充说明
	示例
	创建影子库压测规则
	保留字
	相关链接
	CREATE SHADOW ALGORITHM
	描述
	语法定义
	补充说明
	示例
	创建影子库压测算法
	保留字
	相关链接
	CREATE DEFAULT SHADOW ALGORITHM
	描述
	语法定义
	示例
	创建影子库压测算法
	保留字
	相关链接
	分片
	CREATE SHARDING TABLE RULE
	描述
	语法定义
	补充说明
	示例
	1.标准分片规则
	2.自动分片规则
	保留字
	相关链接
	ALTER SHARDING TABLE RULE
	描述
	语法定义
	补充说明
	示例
	1.标准分片规则
	2.自动分片规则
	保留字
	相关链接
	CREATE SHARDING ALGORITHM
	描述
	语法定义
	补充说明
	示例
	1.创建分片算法
	保留字
	相关链接
	CREATE DEFAULT SHARDING STRATEGY
	描述
	语法定义
	补充说明
	示例
	1.通过已有的分片算法创建默认分库策略
	2.同时创建分片算法和默认分表策略
	保留字
	相关链接
	CREATE SHARDING BINDING TABLE RULE
	描述
	语法定义
	补充说明
	示例
	1.创建绑定关系
	2.创建多个绑定关系
	保留字
	相关链接
	CREATE SHARDING BROADCAST TABLE RULE
	描述
	语法定义
	补充说明
	示例
	创建广播规则
	保留字
	相关链接
	CREATE SHARDING AUDITOR
	描述
	语法定义
	补充说明
	示例
	创建分片审计器
	保留字
	相关链接
	CREATE SHARDING KEY GENERATOR
	描述
	语法定义
	补充说明
	示例
	创建分布式主键生成器
	保留字
	相关链接
	单表
	ALTER DEFAULT SINGLE TABLE RULE
	描述
	语法定义
	补充说明
	示例
	修改默认单表规则
	保留字
	相关链接
	CREATE DEFAULT SINGLE TABLE RULE
	描述
	语法定义
	补充说明
	示例
	创建默认单表规则
	保留字
	相关链接
	DROP DEFAULT SINGLE TABLE RULE
	描述
	语法定义
	示例
	删除默认单表规则
	保留字
	相关链接

	RQL 语法
	资源查询
	SHOW DATABASE RESOURCES
	描述
	语法
	特别说明
	返回值说明
	示例
	SHOW UNUSED RESOURCE
	描述
	语法
	特别说明
	返回值说明
	SHOW RULES USED RESOURCE
	描述
	语法
	特别说明
	返回值说明
	示例

	规则查询
	分片
	SHOW SHARDING TABLE RULE
	描述
	语法
	补充说明
	返回值说明
	保留字
	相关链接
	SHOW SHARDING ALGORITHMS
	描述
	语法
	补充说明
	返回值说明
	示例
	保留字
	相关链接
	SHOW UNUSED SHARDING ALGORITHMS
	描述
	语法
	补充说明
	返回值说明
	示例
	保留字
	相关链接

	RAL 语法
	保留字
	RDL
	基础保留字
	资源定义
	规则定义
	分片
	单表
	读写分离
	数据加密
	数据库发现
	影子压测

	RQL
	基础保留字
	资源定义
	规则定义
	分片

	补充说明

	基础架构

	FAQ
	JDBC
	JDBC 为什么配置了某个数据连接池的 spring-boot-starter（比如 druid）和 shardingsphere-jdbc-spring-boot-starter 时，系统启动会报错？
	JDBC 使用 Spring 命名空间时找不到 xsd?
	JDBC 引入 shardingsphere-transaction-xa-core 后，如何避免 spring-boot 自动加载默认的 JtaTransactionManager？

	Proxy
	Proxy Windows 环境下，运行 ShardingSphere-Proxy，找不到或无法加载主类 org.apache.shardingsphere.proxy.Bootstrap，如何解决？
	Proxy 在使用 ShardingSphere-Proxy 的时候，如何动态在添加新的逻辑库？
	Proxy 在使用 ShardingSphere-Proxy 时，怎么使用合适的工具连接到 ShardingSphere-Proxy？
	Proxy 使用 Navicat 等第三方数据库工具连接 ShardingSphere-Proxy 时，如果 ShardingSphere-Proxy 没有创建 Database 或者没有添加 Resource，连接失败？

	分片
	分片 Cloud not resolve placeholder … in string value … 异常的解决方法?
	分片 inline 表达式返回结果为何出现浮点数？
	分片 如果只有部分数据库分库分表，是否需要将不分库分表的表也配置在分片规则中？
	分片 指定了泛型为 Long 的 SingleKeyTableShardingAlgorithm，遇到 ClassCastException: Integer can not cast to Long?
	[分片、PROXY] 实现 StandardShardingAlgorithm 自定义算法时，指定了 Comparable 的具体类型为 Long, 且数据库表中字段类型为 bigint，出现 ClassCastException: Integer can not cast to Long 异常。
	分片 ShardingSphere 提供的默认分布式自增主键策略为什么是不连续的，且尾数大多为偶数？
	分片 如何在 inline 分表策略时，允许执行范围查询操作（BETWEEN AND、>、<、>=、<=）？
	分片 为什么我实现了 KeyGenerateAlgorithm 接口，也配置了 Type，但是自定义的分布式主键依然不生效？
	分片 ShardingSphere 除了支持自带的分布式自增主键之外，还能否支持原生的自增主键？

	数据加密
	数据加密 JPA 和 数据加密无法一起使用，如何解决？

	DistSQL
	DistSQL 使用 DistSQL 添加数据源时，如何设置自定义的 JDBC 连接参数或连接池属性？
	DistSQL 使用 DistSQL 删除资源时，出现 Resource [xxx] is still used by [SingleTableRule]。
	DistSQL 使用 DistSQL 添加资源时，出现 Failed to get driver instance for jdbcURL=xxx。

	其他
	其他 如果 SQL 在 ShardingSphere 中执行不正确，该如何调试？
	其他 阅读源码时为什么会出现编译错误? IDEA 不索引生成的代码？
	其他 使用 SQLSever 和 PostgreSQL 时，聚合列不加别名会抛异常？
	其他 Oracle 数据库使用 Timestamp 类型的 Order By 语句抛出异常提示 “Order by value must implements Comparable”?
	其他 Windows 环境下，通过 Git 克隆 ShardingSphere 源码时为什么提示文件名过长，如何解决？
	其他 Type is required 异常的解决方法?
	其他 服务启动时如何加快 metadata 加载速度？
	其他 ANTLR 插件在 src 同级目录下生成代码，容易误提交，如何避免？
	其他 使用 Proxool 时分库结果不正确？
	其他 使用 Spring Boot 2.x 集成 ShardingSphere 时，配置文件中的属性设置不生效？

	下载
	最新版本
	Apache ShardingSphere - 版本: 5.2.1 (发布日期: Oct 18th, 2022)

	全部版本
	校验版本

