
Apache ShardingSphere document
v5.1.1

Apache ShardingSphere

Apr 14, 2022

Contents

1 Overview 1
1.1 Introduction . 1

1.1.1 ShardingSphere‐JDBC . 2
1.1.2 ShardingSphere‐Proxy . 2
1.1.3 ShardingSphere‐Sidecar(TODO) . 3
1.1.4 Hybrid Architecture . 4

1.2 Solution . 5
1.3 Roadmap . 6

2 Quick Start 7
2.1 ShardingSphere‐JDBC . 7

2.1.1 Import Maven Dependency . 7
2.1.2 Rules Configuration . 7
2.1.3 3. Create Data Source . 7

2.2 ShardingSphere‐Proxy . 8
2.2.1 Rule Configuration . 8
2.2.2 Import Dependencies . 8
2.2.3 Start Server . 8
2.2.4 Use ShardingSphere‐Proxy . 8

2.3 ShardingSphere‐Scaling (Experimental) . 8
2.3.1 Rule Configuration . 8
2.3.2 Import Dependencies . 9
2.3.3 Start Server . 9
2.3.4 Create Migration Job . 9
2.3.5 Related documents . 9

3 Concepts 10
3.1 Adaptor . 10

3.1.1 ShardingSphere‐JDBC . 10
3.1.2 ShardingSphere‐Proxy . 11
3.1.3 Hybrid Adaptors . 12

i

3.2 Mode . 13
3.2.1 Background . 13
3.2.2 Memory mode . 14
3.2.3 Standalone mode . 14
3.2.4 Cluster mode . 14

3.3 DistSQL . 14
3.3.1 Background . 14
3.3.2 Challenges . 14
3.3.3 Goal . 15
3.3.4 Notice . 15

3.4 Pluggable Architecture . 15
3.4.1 Background . 15
3.4.2 Challenges . 15
3.4.3 Goal . 15
3.4.4 Implementation . 16

L1 Kernel Layer . 16
L2 Feature Layer . 16
L3 Ecosystem Layer . 17

4 Features 18
4.1 DB Compatibility . 18

4.1.1 Background . 18
4.1.2 Challenges . 18
4.1.3 Goal . 19
4.1.4 SQL Parser . 19

MySQL . 19
openGauss . 19
PostgreSQL . 20
SQLServer . 21
Oracle . 21
SQL92 . 21

4.1.5 DB Protocol . 21
4.1.6 Feature Support . 21

MySQL . 21
PostgreSQL . 22
SQLServer . 22
Oracle . 23
SQL92 . 23

4.2 Management . 23
4.2.1 Background . 23
4.2.2 Challenges . 23
4.2.3 Goal . 23
4.2.4 Core Concept . 24

Circuit Breaker . 24
Request Limit . 24

ii

4.3 Sharding . 24
4.3.1 Background . 24

Vertical Sharding . 25
Horizontal Sharding . 26

4.3.2 Challenges . 26
4.3.3 Goal . 27
4.3.4 Core Concept . 27

Overview . 27
Table . 27
Data Node . 29
Sharding . 30
Inline Expression . 31
Distributed Primary Key . 34
Hint Sharding Route . 36

4.3.5 Use Norms . 37
Background . 37
SQL . 37
Pagination . 41

4.4 Distributed Transaction . 43
4.4.1 Background . 43

Local Transaction . 44
2PC Transaction . 44
BASE Transaction . 45

4.4.2 Challenge . 45
4.4.3 Goal . 46
4.4.4 Core Concept . 46

Navigation . 46
XA . 46
BASE . 46

4.4.5 Use Norms . 47
Background . 47
Local Transaction . 47
XA . 47
BASE . 51

4.5 Readwrite‐splitting . 51
4.5.1 Background . 51
4.5.2 Challenges . 52
4.5.3 Goal . 53
4.5.4 Core Concept . 53

Primary Database . 53
Replica Database . 53
Primary Replica Replication . 54
Load Balance Strategy . 54

4.5.5 Use Norms . 54
Supported . 54

iii

Unsupported . 54
4.6 HA . 54

4.6.1 Background . 54
4.6.2 Challenges . 55
4.6.3 Goal . 55
4.6.4 Core Concept . 56

high Availability Type . 56
Dynamic Readwrite‐Splitting . 56

4.6.5 Use Norms . 56
Supported . 56
Unsupported . 56

4.7 Scaling . 56
4.7.1 Background . 56
4.7.2 Challenges . 56
4.7.3 Goal . 57
4.7.4 Status . 57
4.7.5 Core Concept . 57

Scaling Job . 57
Inventory Data . 57
Incremental Data . 57

4.7.6 User Norms . 57
Supported . 57
Unsupported . 58

4.8 Encryption . 58
4.8.1 Background . 58
4.8.2 Challenges . 58
4.8.3 Goal . 59
4.8.4 Core Concept . 59

Logic Column . 59
Cipher Column . 59
Query Assistant Column . 59
Plain Column . 59

4.8.5 Use Norms . 59
Supported . 59
Unsupported . 59

4.9 Shadow DB . 60
4.9.1 Background . 60
4.9.2 Challenges . 60
4.9.3 Goal . 60
4.9.4 Core Concept . 60

Production Database . 60
Shadow Database . 61
Shadow Algorithm . 61

4.9.5 Use Norms . 61
Supported . 61

iv

Unsupported . 61
4.10 Observability . 62

4.10.1 Background . 62
4.10.2 Challenges . 63
4.10.3 Goal . 63
4.10.4 Core Concept . 63

Agent . 63
APM . 63
Tracing . 64
Metrics . 64

4.10.5 Use Norms . 64
Compile source code . 64
Agent configuration . 64
Used in ShardingSphere‐Proxy . 67

5 User Manual 68
5.1 ShardingSphere‐JDBC . 68

5.1.1 Java API . 69
Overview . 69
Usage . 69
Mode Configuration . 70
Data Source . 72
Rules . 72

5.1.2 YAML Configuration . 86
Overview . 86
Usage . 86
YAML Syntax Explanation . 87
Mode Configuration . 87
Data Source . 88
Rules . 89

5.1.3 Spring Boot Starter . 95
Overview . 95
Usage . 95
Use ShardingSphere Data Source in Spring . 95
Mode Configuration . 95
Data Source . 97
Rules . 98

5.1.4 Spring Namespace . 106
Overview . 106
Usage . 106
Configure Spring Bean . 106
Use ShardingSphere Data Source in Spring . 107
Mode Configuration . 107
Data Source . 111
Rules . 112

v

5.1.5 Properties Configuration . 124
Configuration Item Explanation . 125

5.1.6 Builtin Algorithm . 126
Introduction . 126
Usage . 126
Metadata Repository . 126
Sharding Algorithm . 127
Key Generate Algorithm . 132
Load Balance Algorithm . 133
Encryption Algorithm . 133
Shadow Algorithm . 135

5.1.7 Special API . 136
Sharding . 136
Transaction . 140
Observability . 148

5.1.8 Unsupported Items . 151
DataSource Interface . 151
Connection Interface . 152
Statement and PreparedStatement Interface . 152
ResultSet Interface . 152
JDBC 4.1 . 152

5.2 ShardingSphere‐Proxy . 152
5.2.1 Startup . 153

Use Binary Tar . 153
Use Docker . 155
Use Helm . 156
ShardingSphere‐Proxy Helm Chart . 156

5.2.2 Yaml Configuration . 159
Authority . 159
Properties . 160

5.2.3 DistSQL . 162
Syntax . 162
Usage . 203

5.3 ShardingSphere‐Sidecar . 210
5.3.1 Introduction . 210
5.3.2 Comparison . 211

5.4 ShardingSphere‐Scaling . 211
5.4.1 Introduction . 211
5.4.2 Build . 212

Build&Deployment . 212
Shutdown . 215

5.4.3 Manual . 215
Manual . 215

6 DevManual 223

vi

6.1 Mode . 223
6.1.1 StandalonePersistRepository . 223
6.1.2 ClusterPersistRepository . 223
6.1.3 GovernanceWatcher . 224

6.2 Configuration . 224
6.2.1 RuleBuilder . 224
6.2.2 YamlRuleConfigurationSwapper . 225
6.2.3 ShardingSphereYamlConstruct . 226

6.3 Kernel . 227
6.3.1 SQLRouter . 227
6.3.2 SQLRewriteContextDecorator . 227
6.3.3 SQLExecutionHook . 227
6.3.4 ResultProcessEngine . 228
6.3.5 StoragePrivilegeHandler . 228

6.4 DataSource . 228
6.4.1 DatabaseType . 228
6.4.2 DialectTableMetaDataLoader . 229
6.4.3 DataSourcePoolMetaData . 229
6.4.4 DataSourcePoolActiveDetector . 229

6.5 SQL Parser . 230
6.5.1 DatabaseTypedSQLParserFacade . 230
6.5.2 SQLVisitorFacade . 230

6.6 Proxy . 230
6.6.1 DatabaseProtocolFrontendEngine . 230
6.6.2 JDBCDriverURLRecognizer . 231
6.6.3 AuthorityProvideAlgorithm . 231

6.7 Data Sharding . 232
6.7.1 ShardingAlgorithm . 232
6.7.2 KeyGenerateAlgorithm . 232
6.7.3 DatetimeService . 232
6.7.4 DatabaseSQLEntry . 233

6.8 Readwrite‐splitting . 233
6.8.1 ReadwriteSplittingType . 233
6.8.2 ReplicaLoadBalanceAlgorithm . 233

6.9 HA . 234
6.9.1 DatabaseDiscoveryType . 234

6.10 Distributed Transaction . 234
6.10.1 ShardingSphereTransactionManager . 234
6.10.2 XATransactionManagerProvider . 234
6.10.3 XADataSourceDefinition . 235
6.10.4 DataSourcePropertyProvider . 235

6.11 Scaling . 235
6.11.1 ScalingEntry . 235
6.11.2 JobCompletionDetectAlgorithm . 236
6.11.3 DataConsistencyCheckAlgorithm . 236

vii

6.11.4 SingleTableDataCalculator . 236
6.12 SQL Checker . 237

6.12.1 SQLChecker . 237
6.13 Encryption . 237

6.13.1 EncryptAlgorithm . 237
6.13.2 QueryAssistedEncryptAlgorithm . 237

6.14 Shadow DB . 238
6.14.1 ShadowAlgorithm . 238

6.15 Observability . 238
6.15.1 PluginDefinitionService . 238
6.15.2 PluginBootService . 238

7 Reference 240
7.1 Management . 240

7.1.1 Data Structure in Registry Center . 240
/rules . 241
/props . 241
/metadata/${schemaName}/dataSources . 242
/metadata/${schemaName}/rules . 242
/metadata/${schemaName}/tables . 243
/nodes/compute_nodes . 243
/nodes/storage_nodes . 243

7.2 Sharding . 243
7.2.1 SQL Parsing . 244
7.2.2 SQL Route . 244
7.2.3 SQL Rewrite . 244
7.2.4 SQL Execution . 245
7.2.5 Result Merger . 245
7.2.6 Query Optimization . 245
7.2.7 Parse Engine . 245

Abstract Syntax Tree . 245
SQL Parser . 246

7.2.8 Route Engine . 250
Sharding Route . 250
Broadcast Route . 252

7.2.9 Rewrite Engine . 254
Correctness Rewrite . 254
Identifier Rewrite . 254
Column Derivation . 256
Pagination Revision . 258
Batch Split . 259
Optimization Rewrite . 260

7.2.10 Execute Engine . 261
Connection Mode . 261
Automatic Execution Engine . 263

viii

7.2.11 Merger Engine . 266
Iteration Merger . 267
Order‐by Merger . 267
Group‐by Merger . 269
Aggregation Merger . 272
Pagination Merger . 272

7.3 Transaction . 273
7.3.1 Navigation . 273
7.3.2 XA Transaction . 274

Transaction Begin . 274
Execute actual sharding SQL . 274
Commit or Rollback . 275

7.3.3 Seata BASE transaction . 275
Init Seata Engine . 276
Transaction Begin . 276
Execute actual sharding SQL . 276
Commit or Rollback . 277

7.4 Scaling . 277
7.4.1 Principle Description . 277
7.4.2 Phase Description . 277

Preparing Phase . 277
Inventory Phase . 278
Incremental Phase . 278
Switching Phase . 278

7.5 Encryption . 278
7.5.1 Process Details . 278

Overall Architecture . 279
Encryption Rule . 279
Encryption Process . 281

7.5.2 Detailed Solution . 282
New Business . 282
Online Business Transformation . 284

7.5.3 The advantages of Middleware encryption service 288
7.5.4 Solution . 289

EncryptAlgorithm . 289
QueryAssistedEncryptAlgorithm . 289

7.6 Shadow . 290
7.6.1 Overall Architecture . 290
7.6.2 Shadow Rule . 291
7.6.3 Routing Process . 292
7.6.4 Shadow Judgment Process . 292

DML Statement . 292
DDL Statement . 292

7.6.5 Shadow Algorithm . 293
7.6.6 Use Example . 293

ix

Scenario . 293
Shadow DB configuration . 293
Shadow DB environment . 294
Shadow algorithm example . 294

7.7 Test . 297
7.7.1 Integration Test . 297
7.7.2 Module Test . 297
7.7.3 Performance Test . 297
7.7.4 Sysbench Test . 298
7.7.5 Integration Test . 298

Process . 298
Notice . 301

7.7.6 Performance Test . 301
Performance Test . 301
Sysbench Test . 311

7.7.7 Module Test . 342
SQL Parser Test . 342
SQL Rewrite Test . 344

7.8 FAQ . 345
7.8.1 [JDBC] Why there may be an error when configure both shardingsphere‐jdbc‐

spring‐boot‐starter and a spring‐boot‐starter of certain datasource pool(such as
druid)? . 345

7.8.2 [JDBC] Why is xsd unable to be found when Spring Namespace is used? 346
7.8.3 [JDBC] Found a JtaTransactionManager in spring boot project when integrating

with transaction of XA . 346
7.8.4 [Proxy] In Windows environment, could not find or load main class

org.apache.shardingsphere.proxy.Bootstrap, how to solve it? 346
7.8.5 [Proxy] How to add a new logic schema dynamically when use ShardingSphere‐

Proxy? . 346
7.8.6 [Proxy] How to use a suitable database tools connecting ShardingSphere‐Proxy? 347
7.8.7 [Proxy]Whenusing a client such asNavicat to connect to ShardingSphere‐Proxy,

if ShardingSphere‐Proxy does not create a Schema or does not add a Resource,
the client connection will fail? . 347

7.8.8 [Sharding] How to solve Cloud not resolve placeholder ⋯in string
value ⋯ error? . 348

7.8.9 [Sharding]Why does float number appear in the return result of inline expression?348
7.8.10 [Sharding] If sharding database is partial, should tables without sharding

database & table configured in sharding rules? 348
7.8.11 [Sharding] When generic Long type SingleKeyTableShardingAlgorithm

is used, why doesClassCastException: Integer can not cast to
Long exception appear? . 348

7.8.12 [Sharding:raw‐latex:PROXY] When implementing the StandardShardingAl-
gorithm custom algorithm, the specific type of Comparable is specified as
Long, and the field type in the database table is bigint, a ClassCastExcep-
tion: Integer can not cast to Long exception occurs. 348

x

7.8.13 [Sharding] Why are the default distributed auto‐augment key strategy provided
by ShardingSphere not continuous and most of them end with even numbers? . 349

7.8.14 [Sharding] How to allow range query with using inline sharding strat‐
egy(BETWEEN AND, >, <, >=, <=)? . 349

7.8.15 [Sharding] Why does my custom distributed primary key do not work after im‐
plementing KeyGenerateAlgorithm interface and configuring type property?349

7.8.16 [Sharding] In addition to internal distributed primary key, does ShardingSphere
support other native auto‐increment keys? . 350

7.8.17 [Encryption] How to solve that data encryption can’t work with JPA? . . . 350
7.8.18 [DistSQL] How to set custom JDBC connection properties or connection pool

properties when adding a data source using DistSQL? 350
7.8.19 [DistSQL] How to solve Resource [xxx] is still used by [Sin-

gleTableRule]. exception when dropping a data source using DistSQL? . . . 351
7.8.20 [DistSQL] How to solve Failed to get driver instance for jd-

bcURL=xxx. exception when adding a data source using DistSQL? 351
7.8.21 [Other] How to debug when SQL can not be executed rightly in ShardingSphere? 351
7.8.22 [Other] Why do some compiling errors appear? Why did not the IDEA index the

generated codes? . 351
7.8.23 [Other] In SQLSever and PostgreSQL, why does the aggregation column without

alias throw exception? . 352
7.8.24 [Other]WhydoesOracle database throw“Order by valuemust implementsCom‐

parable”exception when using Timestamp Order By? 352
7.8.25 [Other] In Windows environment,when cloning ShardingSphere source code

through Git, why prompt filename too long and how to solve it? 353
7.8.26 [Other] How to solve Type is required error? 354
7.8.27 [Other] How to speed up the metadata loading when service starts up? 354
7.8.28 [Other] The ANTLR plugin generates codes in the same level directory as src,

which is easy to commit by mistake. How to avoid it? 354
7.8.29 [Other] Why is the database sharding result not correct when using Proxool? . 355
7.8.30 [Other] The property settings in the configuration file do not take effect when

integrating ShardingSphere with Spring Boot 2.x ? 356
7.9 API Change Histories . 357

7.9.1 ShardingSphere‐JDBC . 357
YAML configuration . 357
Java API . 372
Spring namespace configuration change history 399
Spring Boot Starter Configuration . 420

7.9.2 ShardingSphere‐Proxy . 436
5.0.0‐beta . 436
5.0.0‐alpha . 438
ShardingSphere‐4.x . 440
ShardingSphere‐3.x . 442

8 Downloads 444
8.1 Latest Releases . 444

xi

8.1.1 Apache ShardingSphere ‐ Version: 5.1.0 (Release Date: Feb 16th, 2022) 444
8.2 All Releases . 444
8.3 Verify the Releases . 444

xii

1
Overview

Stargazers Over Time

Contributors Over Time

Apache ShardingSphere is positioned as a Database Plus, and aims at building a standard layer and
ecosystem above heterogeneous databases. It focuses on how to reuse existing databases and their
respective upper layer, rather than creating a new database. The goal is to minimize or eliminate the
challenges caused by underlying databases fragmentation.

The concepts at the core of the project are Connect, Enhance and Pluggable.

• Connect: Flexible adaptation of database protocol, SQL dialect and database storage. It can
quickly connect applications and heterogeneous databases quickly.

• Enhance: Capture database access entry to provide additional features transparently, such as:
redirect (sharding, readwrite‐splitting and shadow), transform (data encrypt and mask), authen‐
tication (security, audit and authority), governance (circuit breaker and access limitation and an‐
alyze, QoS and observability).

• Pluggable: Leveraging the micro kernel and 3 layers pluggable mode, features and database
ecosystem can be embedded flexibily. Developers can customize their ShardingSphere just like
building with LEGO blocks.

ShardingSphere became an Apache Top‐Level Project on April 16, 2020.

Welcome to interact with community via the official mail list and the ShardingSphere Slack.

1.1 Introduction

Apache ShardingSphere including 3 independent products: JDBC, Proxy & Sidecar (Planning). They all
provide functions of data scale‐out, distributed transaction and distributed governance, applicable in a
variety of situations such as Java isomorphism, heterogeneous language and Cloud‐Native.

As the cornerstone of enterprises, the relational databasehas ahugemarket share. Therefore, weprefer
to focus on its incrementation instead of a total overturn.

1

https://apache.org/index.html#projects-list
mailto:dev@shardingsphere.apache.org
https://app.slack.com/client/T026JKU2DPF/C026MLH7F34

Apache ShardingSphere document, v5.1.1

1.1.1 ShardingSphere-JDBC

ShardingSphere‐JDBC defines itself as a lightweight Java framework that provides extra services at the
Java JDBC layer. With the client end connecting directly to the database, it provides services in the form
of a jar and requires no extra deployment and dependence. It can be considered as an enhanced JDBC
driver, which is fully compatible with JDBC and all kinds of ORM frameworks.

• Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC
Template or direct use of JDBC;

• Supports any third‐party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP;

• Support any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any
JDBC adapted databases.

1.1.2 ShardingSphere-Proxy

ShardingSphere‐Proxy defines itself as a transparent database proxy, providing a database server that
encapsulates database binary protocol to support heterogeneous languages. Currently, MySQL and
PostgreSQL (compatible with PostgreSQL‐based databases, such as openGauss) versions are provided.
It can use any kind of terminal (such as MySQL Command Client, MySQLWorkbench, etc.) that is com‐
patible of MySQL or PostgreSQL protocol to operate data, which is friendlier to DBAs.

• Transparent towards applications, it can be used directly as MySQL and PostgreSQL servers;

• Applicable to any kind of terminal that is compatible with MySQL and PostgreSQL protocol.

1.1. Introduction 2

Apache ShardingSphere document, v5.1.1

1.1.3 ShardingSphere-Sidecar(TODO)

ShardingSphere‐Sidecar (TODO) defines itself as a cloud‐native database agent of the Kubernetes envi‐
ronment, in charge of all database access in the form of a sidecar. It provides a mesh layer interacting
with the database, we call this Database Mesh.

Database Mesh emphasizes how to connect distributed data‐access applications with the databases.
Focusing on interaction, it effectively organizes the interaction between messy applications and
databases. The applications and databases that use Database Mesh to visit databases will form a large
grid system, where they just need to be put into the right positions accordingly. They are all governed
by the mesh layer.

1.1. Introduction 3

Apache ShardingSphere document, v5.1.1

Shardi ngSphere-JDBC Shardin gSphere-Proxy ShardingS phere-Sidecar

Database Any My SQL/PostgreSQL My SQL/PostgreSQL
Connections Count Cost High Low High
Supported Languages Java Only Any Any
Performance Low loss Relatively High loss Low loss
De centralization Yes No No
Static Entry No Yes No

1.1.4 Hybrid Architecture

ShardingSphere‐JDBC adopts a decentralized architecture, applicable to high‐performance light‐weight
OLTP application developed with Java. ShardingSphere‐Proxy provides static entry and all languages
support, applicable for OLAP application and the sharding databases management and operation situ‐
ation.

ShardingSphere is an ecosystem consisting of multiple endpoints together. Through a mixed use of
ShardingSphere‐JDBC and ShardingSphere‐Proxy and a unified sharding strategy by the same registry
center, ShardingSphere can build an application system that is applicable to all kinds of scenarios. Ar‐
chitects can adjust the systemarchitecture to themost applicable one to their needs to conduct business
more freely.

1.1. Introduction 4

Apache ShardingSphere document, v5.1.1

1.2 Solution

S olutions/ Fea-
tures

•
Distributed
Database*

Data Security Database Gateway Stress T esting

Data Sharding Data Encrypt Heterogeneous
Databases Sup‐
ported

Shadow D
atabase

Readwrit e‐
splitting

Row Authority
(TODO)

SQL Dialect
Translate (TODO)

Observ ability

Distributed
Transaction

SQL Audit
(TODO)

Elastic Scale‐out SQL Firewall
(TODO)

Highly Available

1.2. Solution 5

Apache ShardingSphere document, v5.1.1

1.3 Roadmap

1.3. Roadmap 6

2
Quick Start

In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere.

2.1 ShardingSphere-JDBC

2.1.1 Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.

2.1.2 Rules Configuration

ShardingSphere‐JDBC can be configured by four methods, Java, YAML, Spring namespace and
Spring boot starter. Developers can choose the suitable method according to different situa‐
tions. Please refer to User Manual for more details.

2.1.3 3. Create Data Source

Use ShardingSphereDataSourceFactory and rule configurations to create ShardingSphere-
DataSource, which implements DataSource interface of JDBC. It can be used for native JDBC or JPA,
Hibernate, MyBatis and other ORM frameworks.

DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

7

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/

Apache ShardingSphere document, v5.1.1

2.2 ShardingSphere-Proxy

2.2.1 Rule Configuration

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/config-xxx.yaml.

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the shardingsphere proxy extract path. for ex‐
ample: /opt/shardingsphere‐proxy‐bin/

Please refer to Configuration Manual for more details.

2.2.2 Import Dependencies

If the backend database is PostgreSQL, there’s no need for additional dependencies.

If the backend database is MySQL, please download mysql‐connector‐java‐5.1.47.jar or mysql‐
connector‐java‐8.0.11.jar and put it into %SHARDINGSPHERE_PROXY_HOME%/ext-lib directory.

2.2.3 Start Server

• Use default configuration to start

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

Default port is 3307, default profile directory is %SHARDINGSPHERE_PROXY_HOME%/conf/ .

• Customize port and profile directory

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${port} ${proxy_conf_directory}

2.2.4 Use ShardingSphere-Proxy

Use MySQL or PostgreSQL client to connect ShardingSphere‐Proxy. For example with MySQL:

mysql -u${proxy_username} -p${proxy_password} -h${proxy_host} -P${proxy_port}

2.3 ShardingSphere-Scaling (Experimental)

2.3.1 Rule Configuration

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the shardingsphere proxy extract path. for ex‐
ample: /opt/shardingsphere‐proxy‐bin/

2.2. ShardingSphere-Proxy 8

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document, v5.1.1

Please refer to Build Manual for more details.

2.3.2 Import Dependencies

If the backend database is PostgreSQL, there’s no need for additional dependencies.

If the backend database is MySQL, please download mysql‐connector‐java‐5.1.47.jar and put it into
%SHARDINGSPHERE_PROXY_HOME%/lib directory.

2.3.3 Start Server

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

2.3.4 Create Migration Job

Use DistSQL interface to manage the migration jobs.

Please refer to Usage Manual for more details.

2.3.5 Related documents

• Features#Scaling : Core Concept, User Norms

• User Manual#Scaling : Build, Manual

• RAL#Scaling : DistSQL for Scaling

• Dev Manual#Scaling : SPI interfaces and implementations

2.3. ShardingSphere-Scaling (Experimental) 9

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-scaling/build/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-scaling/usage/
https://shardingsphere.apache.org/document/current/en/features/scaling/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-scaling/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling
https://shardingsphere.apache.org/document/current/en/dev-manual/scaling/

3
Concepts

The functions of Apache ShardingSphere are pretty complex with hundreds of modules, but the con‐
cepts are very simple and clear. Most modules are horizontal extensions faced to these concepts.

The concepts include: adaptor faced to independent products, runtimemode faced to startup, DistSQL
faced to users and pluggable architecture faced to developers.

This chapter describes concepts about Apache ShardingSphere.

3.1 Adaptor

Apache ShardingSphere including 2 independent products: ShardingSphere‐JDBC & ShardingSphere‐
Proxy. They all provide functions of data scale‐out, distributed transaction and distributed governance,
applicable in a variety of situations such as Java isomorphism, heterogeneous language and Cloud‐
Native.

3.1.1 ShardingSphere-JDBC

As the first product and the predecessor of Apache ShardingSphere, ShardingSphere‐JDBC defines itself
as a lightweight Java framework that provides extra service at Java JDBC layer. With the client end con‐
necting directly to the database, it provides service in the form of jar and requires no extra deployment
and dependence. It can be considered as an enhanced JDBC driver, which is fully compatible with JDBC
and all kinds of ORM frameworks.

• Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC
Template or direct use of JDBC;

• Support any third‐party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP;

• Support any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any
JDBC adapted databases.

10

Apache ShardingSphere document, v5.1.1

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost More Less
Supported Languages Java Only Any
Performance Low loss Relatively High loss
Decentralization Yes No
Static Entry No Yes

ShardingSphere‐JDBC is suitable for java application.

3.1.2 ShardingSphere-Proxy

ShardingSphere‐Proxy is the second product of Apache ShardingSphere. It defines itself as a trans‐
parent database proxy, providing a database server that encapsulates database binary protocol to sup‐
port heterogeneous languages. Currently, MySQL and PostgreSQL (compatible with PostgreSQL‐based
databases, such as openGauss) versions are provided. It can use any kind of terminal (such as MySQL
Command Client, MySQL Workbench, etc.) that is compatible with MySQL or PostgreSQL protocol to
operate data, which is friendlier to DBAs

• Totally transparent to applications, it can be used directly as MySQL/PostgreSQL;

• Applicable to any kind of client end that is compatible with MySQL/PostgreSQL protocol.

3.1. Adaptor 11

Apache ShardingSphere document, v5.1.1

ShardingSphere-JDBC ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost High Low
Supported Languages Java Only Any
Performance Low loss Relatively high loss
Decentralization Yes No
Static Entry No Yes

The advantages of ShardingSphere‐Proxy lie in supporting heterogeneous languages and providing op‐
erational entries for DBA.

3.1.3 Hybrid Adaptors

ShardingSphere‐JDBC adopts a decentralized architecture, applicable to high‐performance light‐weight
OLTP application developed with Java. ShardingSphere‐Proxy provides static entry and all languages
support, applicable for OLAP application and the sharding databases management and operation situ‐
ation.

ShardingSphere is an ecosystem consisting of multiple endpoints together. Through a mixed use of
ShardingSphere‐JDBC and ShardingSphere‐Proxy and a unified sharding strategy by the same registry
center, ShardingSphere can build an application system that is applicable to all kinds of scenarios. Ar‐
chitects can adjust the systemarchitecture to themost applicable one to their needs to conduct business

3.1. Adaptor 12

Apache ShardingSphere document, v5.1.1

more freely.

3.2 Mode

3.2.1 Background

In order to meet the different needs of users for quick test startup, stand‐alone running and cluster
running, Apache shardingsphere provides various mode such as memory, stand‐alone and cluster.

3.2. Mode 13

Apache ShardingSphere document, v5.1.1

3.2.2 Memorymode

Suitable for fast integration testing, which is convenient for testing, such as for developers looking to
perform fast integration function testing. This is the default mode of Apache ShardingSphere.

3.2.3 Standalonemode

Suitable in a standalone environment, through which data sources, rules, and metadata can be per‐
sisted. Will create a .shardingsphere file in the root directory to store configuration data by default.

3.2.4 Cluster mode

Suitable for use in distributed scenarioswhichprovidesmetadata sharing and state coordination among
multiple computing nodes. It is necessary to provide registry center for distributed coordination, such
as ZooKeeper or Etcd.

3.3 DistSQL

3.3.1 Background

DistSQL（Distributed SQL）is Apache ShardingSphere specific SQL, which provide added‐on operation
capability beside standard SQL.

3.3.2 Challenges

When using ShardingSphere‐Proxy, developers can operate data just like using database, but they need
to configure resources and rules through YAML file (or registry center). However, the format of YAML
and habits changed by using registry center are not friendly to DBA.

DistSQL enables users to operate Apache ShardingSphere like a database, transforming it from a frame‐
work and middleware for developers to a database product for DBAs.

DistSQL is divided into RDL, RQL and RAL.

• RDL (Resource & Rule Definition Language) responsible for the definition of resources and rules;

• RQL (Resource & Rule Query Language) responsible for the query of resources and rules;

• RAL (Resource & Rule Administration Language) responsible for the added‐on administrator fea‐
ture of hint, transaction type switch, sharding execute planning and so on.

3.3. DistSQL 14

Apache ShardingSphere document, v5.1.1

3.3.3 Goal

It is the design goal of DistSQL to break the boundary between middleware and database and let
developers use Apache ShardingSphere just like database.

3.3.4 Notice

DistSQL can use for ShardingSphere‐Proxy only, not for ShardingSphere‐JDBC now.

3.4 Pluggable Architecture

3.4.1 Background

In Apache ShardingSphere, many functionality implementations are uploaded through SPI (Service
Provider Interface), which is a kind of API for the third party to implement or expand, and can be
applied in framework expansion or component replacement.

3.4.2 Challenges

Pluggable architecture is very difficult to design for the project architecture. It needs tomake eachmod‐
ule decouple to independent and imperceptible to each other totally, and enables appendable functions
in a way of superposition through a pluggable kernel. Design an architecture to completely isolate each
function, not only can stimulate the enthusiasm of the open source community, but also can guarantee
the quality of the project.

Apache ShardingSphere begin to focus on pluggable architecture from version 5.x, features can be
embedded into project flexibility. Currently, the features such as data sharding, readwrite‐splitting,
data encrypt, shadow database, and SQL dialects / database protocols such as MySQL, PostgreSQL,
SQLServer, Oracle supported are all weaved by plugins. Developers can customize their own Shard‐
ingSphere just like building lego blocks. There are lots of SPI extensions for Apache ShardingSphere
now and increase continuously.

3.4.3 Goal

It is the design goal of Apache shardingsphere pluggable architecture to enable developers to cus‐
tomize their own unique systems just like building blocks.

3.4. Pluggable Architecture 15

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

Apache ShardingSphere document, v5.1.1

3.4.4 Implementation

The pluggable architecture of Apache ShardingSphere are composed by L1 Kernel Layer, L2 Feature
Layer and L3 Ecosystem Layer.

L1 Kernel Layer

An abstraction of basic capabilities of database. All components are required and the specific imple‐
mentation can be replaced by pluggable way. It includes query optimizer, distributed transaction en‐
gine, distributed execution engine, authority engine and scheduling engine.

L2 Feature Layer

Used to provide enhanced capability. All components are optional and can contain zero or multiple
components. Components isolate each other and multiple components can be used together super‐
imposed. It includes data sharding, readwrite‐splitting, database highly availability, data encryption,
shadow database and so on. The user‐defined feature can be fully customized and extended for the
top‐level interface defined by Apache ShardingSphere without changing kernel codes.

3.4. Pluggable Architecture 16

Apache ShardingSphere document, v5.1.1

L3 Ecosystem Layer

Used to integrate into the current database ecosystem. It includes database protocol, SQL parser and
storage adapter.

3.4. Pluggable Architecture 17

4
Features

Apache ShardingSphere provides a variety of features, from database kernel and database distributed
solution to applications closed features.

There is no boundary for these features, warmly welcomemore open source engineers to join the com‐
munity and provide exciting ideas and features.

4.1 DB Compatibility

4.1.1 Background

With information technology innovating, more and more applications established in the new fields,
prompt and push evolution of human society’s cooperation mode. Data is increasing explosively, the
data storage and computing method are facing innovation all the time.

Transaction, big data, association analysis, Internet of things and other scenarios subdivided quickly,
a single database can not apply to all application scenarios anymore. At the same time, the internal of
scenario is becoming more and more detailed, and it has become normal for similar scenarios to use
different databases.

The trend of database fragmentation is coming.

4.1.2 Challenges

There is nounifieddatabase access protocol andSQLdialect, aswell as themaintenance andmonitoring
methods differences by various databases, learning and maintenance cost of developers and DBAs are
increasing rapidly. Improving the compatibility with the original database is the premise of providing
incremental services on it.

The compatibility between SQL dialect and database protocol is the key point to improve database com‐
patibility.

18

Apache ShardingSphere document, v5.1.1

4.1.3 Goal

The goal of database compatibility for Apache ShardingSphere is make user feel nothing changed
among various original databases.

4.1.4 SQL Parser

SQL is the standard operation language between users and databases. SQL Parse engine used to parse
SQL into an abstract syntax tree to provide Apache ShardingSphere understand and implement the add‐
on features.

It supports SQL dialect forMySQL, PostgreSQL, SQLServer, Oracle, openGauss and SQL that conform to
the SQL92 specification. However, due to the complexity of SQL syntax, there are still a little of SQL do
not support yet.

This chapter has listed unsupported SQLs reference for users.

There are some unsupported SQLs maybemissing, welcome to finish them. We will try best to support
the unavailable SQLs in future versions.

MySQL

The unsupported SQL list for MySQL are as follows:

SQL

CLONE LOCAL DATA DIRECTORY =‘clone_dir’
INSTALL COMPONENT‘file://component1’,‘file://component2’
UNINSTALL COMPONENT‘file://component1’,‘file://component2’
REPAIR TABLE t_order
OPTIMIZE TABLE t_order
CHECKSUM TABLE t_order
CHECK TABLE t_order
SET RESOURCE GROUP group_name
DROP RESOURCE GROUP group_name
CREATE RESOURCE GROUP group_name TYPE = SYSTEM
ALTER RESOURCE GROUP rg1 VCPU = 0‐63

openGauss

The unsupported SQL list for openGauss are as follows:

4.1. DB Compatibility 19

file://component1
file://component2
file://component1
file://component2

Apache ShardingSphere document, v5.1.1

SQL

CREATE type avg_state AS (total bigint, count bigint);
CREATE AGGREGATE my_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;
CREATE SCHEMA alt_nsp1;
ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;
CREATE CONVERSION alt_conv1 FOR‘LATIN1’TO‘UTF8’FROM iso8859_1_to_utf8;
CREATE FOREIGN DATAWRAPPER alt_fdw1
CREATE SERVER alt_fserv1 FOREIGN DATAWRAPPER alt_fdw1
CREATE LANGUAGE alt_lang1 HANDLER plpgsql_call_handler
CREATE STATISTICS alt_stat1 ON a, b FROM alt_regress_1
CREATE TEXT SEARCH DICTIONARY alt_ts_dict1 (template=simple)
CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO
def_test SELECT new.*
ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)
CREATE PUBLICATION pub1 FOR TABLE alter1.t1, ALL TABLES IN SCHEMA alter2

PostgreSQL

The unsupported SQL list for PostgreSQL are as follows:

SQL

CREATE type avg_state AS (total bigint, count bigint);
CREATE AGGREGATE my_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;
CREATE SCHEMA alt_nsp1;
ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;
CREATE CONVERSION alt_conv1 FOR‘LATIN1’TO‘UTF8’FROM iso8859_1_to_utf8;
CREATE FOREIGN DATAWRAPPER alt_fdw1
CREATE SERVER alt_fserv1 FOREIGN DATAWRAPPER alt_fdw1
CREATE LANGUAGE alt_lang1 HANDLER plpgsql_call_handler
CREATE STATISTICS alt_stat1 ON a, b FROM alt_regress_1
CREATE TEXT SEARCH DICTIONARY alt_ts_dict1 (template=simple)
CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO
def_test SELECT new.*
ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)
CREATE PUBLICATION pub1 FOR TABLE alter1.t1, ALL TABLES IN SCHEMA alter2

4.1. DB Compatibility 20

Apache ShardingSphere document, v5.1.1

SQLServer

The unsupported SQL list for SQLServer are as follows:

TODO

Oracle

The unsupported SQL list for Oracle are as follows:

TODO

SQL92

The unsupported SQL list for SQL92 are as follows:

TODO

4.1.5 DB Protocol

Apache ShardingSphere implements MySQL and PostgreSQL Protocol.

4.1.6 Feature Support

Apache ShardingSphere provides the ability of distributed collaboration for the database, and abstracts
part of the database features to the upper layer for unifiedmanagement to reduce the difficulty of users.

Therefore, for the unified provided features, the native SQL will no longer be transferred to the
database, and it will be prompted that the operation is not supported. User can use the feature pro‐
vided by ShardingSphere to replace it.

This chapter has listed unsupported database features and related SQLs reference for users.

There are some unsupported SQLs maybe missing, welcome to finish them.

MySQL

The unsupported SQL list for MySQL are as follows:

4.1. DB Compatibility 21

Apache ShardingSphere document, v5.1.1

User & Role

SQL

CREATE USER‘finley’@‘localhost’IDENTIFIED BY‘password’
ALTER USER‘finley’@‘localhost’IDENTIFIED BY‘new_password’
DROP USER‘finley’@‘localhost’;
CREATE ROLE‘app_read’
DROP ROLE‘app_read’
SHOW CREATE USER finley
SET PASSWORD =‘auth_string’
SET ROLE DEFAULT;

Authorization

SQL

GRANT ALL ON db1.* TO‘jeffrey’@‘localhost’
GRANT SELECT ON world.* TO‘role3’;
GRANT‘role1’,‘role2’TO‘user1’@‘localhost’
REVOKE INSERT ON . FROM‘jeffrey’@‘localhost’
REVOKE‘role1’,‘role2’FROM‘user1’@‘localhost’
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user_or_role
SHOW GRANTS FOR‘jeffrey’@‘localhost’
SHOW GRANTS FOR CURRENT_USER
FLUSH PRIVILEGES

PostgreSQL

The unsupported SQL list for PostgreSQL are as follows:

TODO

SQLServer

The unsupported SQL list for SQLServer are as follows:

TODO

4.1. DB Compatibility 22

Apache ShardingSphere document, v5.1.1

Oracle

The unsupported SQL list for Oracle are as follows:

TODO

SQL92

The unsupported SQL list for SQL92 are as follows:

TODO

4.2 Management

4.2.1 Background

As the scale of data continues to expand, a distributed database has become a trend gradually. The
unified management ability of cluster perspective, and control ability of individual components are
necessary ability in modern database system.

4.2.2 Challenges

The challenge is ability which are unified management of centralized management, and operation in
case of single node in failure.

Centralized management is to uniformly manage the state of database storage nodes and middleware
computing nodes, and can detect the latest updates in the distributed environment in real time, further
provide information with control and scheduling.

In the overload traffic scenario, circuit breaker and request limiting for a node to ensurewhole database
cluster can run continuously is a challenge to control ability of a single node.

4.2.3 Goal

The goal of Apache ShardingSphere management module is to realize the integrated management
ability fromdatabase to computing node, and provide control ability for components in case of fail‐
ure.

4.2. Management 23

Apache ShardingSphere document, v5.1.1

4.2.4 Core Concept

Circuit Breaker

Fuse connection between Apache ShardingSphere and the database. When an Apache ShardingSphere
node exceeds the max load, stop the node’s access to the database, so that the database can ensure
sufficient resources to provide services for other Apache ShardingSphere nodes.

Request Limit

In the faceof overload requests, open request limiting toprotect some requests can still respondquickly.

4.3 Sharding

4.3.1 Background

The traditional solution that stores all the data in one concentrated node has hardly satisfied the re‐
quirement of massive data scenario in three aspects, performance, availability and operation cost.

In performance, the relational database mostly uses B+ tree index. When the data amount exceeds the
threshold, deeper indexwill increase the disk IO access number, and thereby, weaken the performance
of query. In the same time, high concurrency requests also make the centralized database to be the
greatest limitation of the system.

In availability, capacity can be expanded at a relatively low cost and any extent with stateless service,
which canmake all the pressure, at last, fall on the database. But the single data nodeor simple primary‐
replica structure has been harder and harder to take these pressures. Therefore, database availability
has become the key to the whole system.

From the aspect of operation costs, when the data in a database instance has reached above the thresh‐
old, DBA’s operation pressure will also increase. The time cost of data backup and data recovery will
be more uncontrollable with increasing amount of data. Generally, it is a relatively reasonable range
for the data in single database case to be within 1TB.

Under the circumstance that traditional relational databases cannot satisfy the requirement of the In‐
ternet, there are more and more attempts to store the data in native distributed NoSQL. But its incom‐
patibility with SQL and imperfection in ecosystem block it from defeating the relational database in the
competition, so the relational database still holds an unshakable position.

Sharding refers to splitting the data in one database and storing them in multiple tables and databases
according to some certain standard, so that the performance and availability can be improved. Both
methods can effectively avoid the query limitation caused by data exceeding affordable threshold.
What’s more, database sharding can also effectively disperse TPS. Table sharding, though cannot ease
the database pressure, can provide possibilities to transfer distributed transactions to local transac‐
tions, since cross‐database upgrades are once involved, distributed transactions can turn pretty tricky
sometimes. The use of multiple primary‐replica sharding method can effectively avoid the data con‐
centrating on one node and increase the architecture availability.

4.3. Sharding 24

Apache ShardingSphere document, v5.1.1

Splitting data through database sharding and table sharding is an effective method to deal with high
TPS and mass amount data system, because it can keep the data amount lower than the threshold and
evacuate the traffic. Sharding method can be divided into vertical sharding and horizontal sharding.

Vertical Sharding

According to business shardingmethod, it is called vertical sharding, or longitudinal sharding, the core
concept of which is to specialize databases for different uses. Before sharding, a database consists of
many tables corresponding to different businesses. But after sharding, tables are categorized into dif‐
ferent databases according to business, and the pressure is also separated into different databases. The
diagram below has presented the solution to assign user tables and order tables to different databases
by vertical sharding according to business need.

Vertical sharding requires to adjust the architecture and design from time to time. Generally speaking,
it is not soon enough to deal with fast changing needs from Internet business and not able to really
solve the single‐node problem. it can ease problems brought by the high data amount and concurrency
amount, but cannot solve them completely. After vertical sharding, if the data amount in the table still
exceeds the single node threshold, it should be further processed by horizontal sharding.

4.3. Sharding 25

Apache ShardingSphere document, v5.1.1

Horizontal Sharding

Horizontal sharding is also called transverse sharding. Compared with the categorization method
according to business logic of vertical sharding, horizontal sharding categorizes data to multiple
databases or tables according to some certain rules through certain fields, with each sharding con‐
taining only part of the data. For example, according to primary key sharding, even primary keys are
put into the 0 database (or table) and odd primary keys are put into the 1 database (or table), which is
illustrated as the following diagram.

Theoretically, horizontal sharding has overcome the limitation of data processing volume in singlema‐
chine and canbe extended relatively freely, so it canbe taken as a standard solution to database sharding
and table sharding.

4.3.2 Challenges

Though sharding has solved problems such as performance, availability and single‐node backup and
recovery, its distributed architecture has also introduced some new problems as acquiring profits.

One problem is that application development engineers and database administrators’operations be‐
come exceptionally laborious, when facing such scattered databases and tables. They should know
exactly which database table is the one to acquire data from.

Another challenge is that, the SQL that runs rightly in single‐node databases may not be right in the
sharding database. The change of table name after sharding, or misconducts caused by operations
such as pagination, order by or aggregated group by are just the case in point.

4.3. Sharding 26

Apache ShardingSphere document, v5.1.1

Cross‐database transaction is also a tricky thing that distributed databases need to deal. Fair use of
sharding tables can also lead to the full use of local transactions when single‐table data amount de‐
creases. Troubles brought by distributed transactions can be avoided by the wise use of different tables
in the same database. When cross‐database transactions cannot be avoided, some businesses still need
to keep transactions consistent. Internet giants have notmassively adopted XA based distributed trans‐
actions since they are not able to ensure its performance in high‐concurrency situations. They usually
replace strongly consistent transactions with eventually consistent soft state.

4.3.3 Goal

Themain design goal of the data shardingmodular of Apache ShardingSphere is to try to reduce the
influenceof sharding, inorder to letusersusehorizontal shardingdatabasegroup likeonedatabase.

4.3.4 Core Concept

Overview

This chapter is to introduce core concepts of data sharding.

Table

Table is the core concept of data sharding transparently. There are diversified tables provided for dif‐
ferent data sharding requirements by Apache ShardingSphere.

Logic Table

The logical name of the horizontal sharding databases (tables) with the same schema, it is the logical
table identification in SQL. For instance, the data of order is divided into 10 tables according to the
last number of the primary key, and they are from t_order_0 to t_order_9, whose logic name is
t_order.

Actual Table

The physical table that really exists in the horizontal sharding database, i.e., t_order_0 tot_order_9
in the instance above.

4.3. Sharding 27

Apache ShardingSphere document, v5.1.1

Binding Table

It refers to a group of sharding tables with the same sharding rules. When using binding tables inmulti‐
table correlating query, you must use the sharding key for correlation, otherwise Cartesian product
correlation or cross‐database correlation will appear, which will affect query efficiency. For example,
t_order and t_order_item are both sharded by order_id, and use order_id to correlate, so they
are binding tables with each other. Cartesian product correlation will not appear in the multi‐tables
correlating query, so the query efficiency will increase greatly. Take this one for example, if SQL is:

SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

When binding table relations are not configured, suppose the sharding key order_id routes value 10
to sharding 0 and value 11 to sharding 1, there will be 4 SQLs in Cartesian product after routing:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

With binding table configuration and use order_id to correlate, there should be 2 SQLs after routing:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

In them, since table t_order specifies sharding conditions，it will be taken by ShardingSphere as the
primary table of query. All the route computations will only use the sharding strategy of the primary
table, so sharding computation of t_order_item table will use the conditions of t_order.

4.3. Sharding 28

Apache ShardingSphere document, v5.1.1

Broadcast Table

It refers to tables that exist in all sharding database sources. The schema and data must consist in each
database. It can be applied to the small data volume that needs to correlate with big data tables to query,
dictionary table for example.

Single Table

It refers to only one table that exists in all sharding database sources. It is suitable for little data in table
without sharding.

Data Node

As the atomic unit of sharding, it consists of data source name and actual table name, e.g. ds_0.
t_order_0.

Mapping relationship between logic tables and actual tables and can be divided into two kinds: uniform
topology and user‐defined topology.

Uniform topology

It means that tables are evenly distributed in each data source, for example:

db0
├── t_order0
└── t_order1

db1
├── t_order0
└── t_order1

The data node configurations will be as follows:

db0.t_order0, db0.t_order1, db1.t_order0, db1.t_order1

User-defined topology

It means that tables are distributed with certain rules, for example:

db0
├── t_order0
└── t_order1

db1
├── t_order2
├── t_order3
└── t_order4

4.3. Sharding 29

Apache ShardingSphere document, v5.1.1

The data node configurations will be as follows:

db0.t_order0, db0.t_order1, db1.t_order2, db1.t_order3, db1.t_order4

Sharding

Sharding Key

Column used to determine database (table) sharding. For example, in last number modulo of order
ID sharding, order ID is taken as the sharding key. The full route executed when there is no sharding
column in SQL has a poor performance. Besides single sharding column, Apache ShardingSphere also
supports multiple sharding columns.

Sharding Algorithm

Data sharding can be achieved by sharding algorithms through =, >=, <=, >, <, BETWEEN and IN. It can
be implemented by developers themselves, or using built‐in syntactic sugar of Apache ShardingSphere,
with high flexibility.

Auto Sharding Algorithm

It provides syntactic sugar for sharding algorithm. It used to manage all data nodes automatically, user
do not care about the topology of physical data nodes. It includes lots of implementation forMod, Hash,
Range and Time Interval etc.

User-Defined Sharding Algorithm

It provides interfaces for developers to implement the sharding algorithm related to business imple‐
mentation, and allows users to manage the physical topology physical data nodes by themselves. It
includes:

• Standard Sharding Algorithm

It is to process the sharding case in which single sharding keys =, IN, BETWEEN AND, >, <, >=, <= are
used.

• Complex Keys Sharding Algorithm

It is to process the sharding case in which multiple sharding keys are used. It has a relatively complex
logic that requires developers to deal by themselves.

• Hint Sharding Algorithm

It is to process the sharding case in which Hint is used.

4.3. Sharding 30

Apache ShardingSphere document, v5.1.1

Sharding Strategy

It includes the sharding key and the sharding algorithm, and the latter one is extracted out for its inde‐
pendence. Only sharding key + sharding algorithm can be used in sharding operation.

SQL Hint

In the case that the sharding column is not decide by SQL but other external conditions, SQL hint can be
used to inject sharding value. For example, databases are shard according to the staff’s ID, but column
does not exist in the database. SQL Hint can be used by two ways, Java API and SQL comment (TODO).
Please refer to Hint for more details.

Inline Expression

Motivation

Configuration simplicity and unity are two main problems that inline expression intends to solve.

In complex sharding rules, with more data nodes, a large number of configuration repetitions make
configurations difficult to maintain. Inline expressions can simplify data node configuration work.

Java codes are not helpful in the unified management of common configurations. Writing sharding
algorithms with inline expressions, users can store rules together, making them easier to be browsed
and stored.

Syntax Explanation

The use of inline expressions is really direct. Users only need to configure ${ expression } or
$->{ expression } to identify them. ShardingSphere currently supports the configurations of data
nodes and sharding algorithms. Inline expressions use Groovy syntax, which can support all kinds of
operations, including inline expressions. For example:

${begin..end}means range

${[unit1, unit2, unit_x]}means enumeration

If there are many continuous ${ expression } or $->{ expression } expressions, according to
each sub‐expression result, theultimate result of thewhole expressionwill be in cartesian combination.

For example, the following inline expression:

${['online', 'offline']}_table${1..3}

Will be parsed as:

online_table1, online_table2, online_table3, offline_table1, offline_table2,
offline_table3

4.3. Sharding 31

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/hint/

Apache ShardingSphere document, v5.1.1

Configuration

Data Node

For evenly distributed data nodes, if the data structure is as follow:

db0
├── t_order0
└── t_order1

db1
├── t_order0
└── t_order1

It can be simplified by inline expression as:

db${0..1}.t_order${0..1}

Or

db$->{0..1}.t_order$->{0..1}

For self‐defined data nodes, if the data structure is:

db0
├── t_order0
└── t_order1

db1
├── t_order2
├── t_order3
└── t_order4

It can be simplified by inline expression as:

db0.t_order${0..1},db1.t_order${2..4}

Or

db0.t_order$->{0..1},db1.t_order$->{2..4}

For data nodes with prefixes, inline expression can also be used to configure them flexibly, if the data
structure is:

db0
├── t_order_00
├── t_order_01
├── t_order_02
├── t_order_03
├── t_order_04
├── t_order_05

4.3. Sharding 32

Apache ShardingSphere document, v5.1.1

├── t_order_06
├── t_order_07
├── t_order_08
├── t_order_09
├── t_order_10
├── t_order_11
├── t_order_12
├── t_order_13
├── t_order_14
├── t_order_15
├── t_order_16
├── t_order_17
├── t_order_18
├── t_order_19
└── t_order_20

db1
├── t_order_00
├── t_order_01
├── t_order_02
├── t_order_03
├── t_order_04
├── t_order_05
├── t_order_06
├── t_order_07
├── t_order_08
├── t_order_09
├── t_order_10
├── t_order_11
├── t_order_12
├── t_order_13
├── t_order_14
├── t_order_15
├── t_order_16
├── t_order_17
├── t_order_18
├── t_order_19
└── t_order_20

Users can configure separately, data nodes with prefixes first, those without prefixes later, and auto‐
matically combine them with the cartesian product feature of inline expressions. The example above
can be simplified by inline expression as:

db${0..1}.t_order_0${0..9}, db${0..1}.t_order_${10..20}

Or

db$->{0..1}.t_order_0$->{0..9}, db$->{0..1}.t_order_$->{10..20}

4.3. Sharding 33

Apache ShardingSphere document, v5.1.1

Sharding Algorithm

For single sharding SQL that uses = and IN, inline expression can replace codes in configuration.

Inline expression is a piece of Groovy code in essence, which can return the corresponding real data
source or table name according to the computation method of sharding keys.

For example, sharding keys with the last number 0 are routed to the data source with the suffix of 0,
those with the last number 1 are routed to the data source with the suffix of 1, the rest goes on in the
same way. The inline expression used to indicate sharding algorithm is:

ds${id % 10}

Or

ds$->{id % 10}

Distributed Primary Key

Motivation

In the development of traditional database software, the automatic sequence generation technology is
a basic requirement. All kinds of databases have provided corresponding support for this requirement,
such as MySQL auto‐increment key, Oracle auto‐increment sequence and so on. It is a tricky problem
that there is only one sequence generated by different data nodes after sharding. Auto‐increment keys
in different physical tables in the same logic table can not perceive each other and thereby generate
repeated sequences. It is possible to avoid clashes by restricting the initiative value and increasing the
step of auto‐increment key. But introducing extra operation rules can make the solution lack integrity
and scalability.

Currently, there aremany third‐party solutions that can solve this problemperfectly, (such as UUID and
others) relying on some particular algorithms to generate unrepeated keys or introducing sequence
generation services. We have provided several built‐in key generators, such as UUID, SNOWFLAKE.
Besides, we have also extracted a key generator interface to make users implement self‐defined key
generator.

Built-In Key Generator

UUID

Use UUID.randomUUID() to generate the distributed key.

4.3. Sharding 34

Apache ShardingSphere document, v5.1.1

SNOWFLAKE

Users can configure the strategy of each table in sharding rule configuration module, with default
snowflake algorithm generating 64bit long integral data.

As the distributed sequence generation algorithmpublishedbyTwitter, snowflake algorithmcanensure
sequences of different processes do not repeat and those of the same process are ordered.

Principle

In the same process, it makes sure that IDs do not repeat through time, or through order if the time is
identical. In the same time,with monotonously increasing time, if servers are generally synchronized,
generated sequences are generally assumed to be ordered in a distributed environment. This can guar‐
antee the effectiveness in index field insertion, like the sequence of MySQL Innodb storage engine.

In the sequence generated with snowflake algorithm, binary form has 4 parts, 1 bit sign, 41bit times‐
tamp, 10bit work ID and 12bit sequence number from high to low.

• sign bit (1bit)

Reserved sign bit, constantly to be zero.

• timestamp bit (41bit)

41bit timestamp can contain 2 to the power of 41 milliseconds. One year can use 365 * 24 * 60 *
60 * 1000milliseconds. We can see from the calculation:

Math.pow(2, 41) / (365 * 24 * 60 * 60 * 1000L);

The result is approximately equal to 69.73 years. Apache ShardingSphere snowflake algorithm starts
from November 1st, 2016, and can be used until 2086, which we believe can satisfy the requirement of
most systems.

• work ID bit (10bit)

The sign is the only one in Java process. If applied in distributed deployment, each work ID should be
different. The default value is 0 and can be set through properties.

• sequence number bit (12bit)

The sequence number is used to generate different IDs in a millisecond. If the number generated in
that millisecond exceeds 4,096 (2 to the power of 12), the generator will wait till the next millisecond to
continue.

Please refer to the following picture for the detailed structure of snowflake algorithm sequence.

4.3. Sharding 35

Apache ShardingSphere document, v5.1.1

Clock-Back

The clock‐back of server can generate repeated sequence, so the default distributed sequence generator
has provided a maximum clock‐back millisecond. If the clock‐back time has exceeded it, the program
will report error. If it is within the tolerance range, the generator will wait till after the last generation
time and then continue to work. The default maximum clock‐back millisecond is 0 and can be set
through properties.

Hint Sharding Route

Motivation

Apache ShardingSphere can be compatible with SQL in way of parsing SQL statements and extracting
columns and values to shard. If SQL does not have sharding conditions, it is impossible to shardwithout
full data node route.

In some applications, sharding conditions are not in SQL but in external business logic. So it requires
to designate sharding result externally, which is referred to as Hint in ShardingSphere.

Mechanism

Apache ShardingSphere uses ThreadLocal to manage sharding key values. Users can program to add
sharding conditions to HintManager, but the condition is only effective within the current thread.

In addition to the programming method, Apache ShardingSphere is able to cite Hint through special
notation in SQL, so that users can use that function in a more transparent way.

The SQL designated with sharding hint will ignore the former sharding logic but directly route to the
designated node.

4.3. Sharding 36

Apache ShardingSphere document, v5.1.1

4.3.5 Use Norms

Background

Though Apache ShardingSphere intends to be compatible with all the SQLs and stand‐alone databases,
the distributed scenario has brought more complex situations to the database. Apache ShardingSphere
wants to solve massive data OLTP problem first and complete relevant OLAP support problem little by
little.

SQL

SQL Supporting Status

Compatible with all regular SQL when routing to single data node; The SQL routing to multiple data
nodes is pretty complex, it divides the scenarios as totally supported, experimental supported and un‐
supported.

Totally Supported

Fully support DML, DDL, DCL, TCL and most regular DAL. Support complex query with pagination,
DISTINCT, ORDER BY, GROUP BY, aggregation and table JOIN.

Regular Query

• SELECT Clause

SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE predicates]
[GROUP BY {col_name | position} [ASC | DESC], ...]
[ORDER BY {col_name | position} [ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

• select_expr

*
| [DISTINCT] COLUMN_NAME [AS] [alias]
| (MAX | MIN | SUM | AVG)(COLUMN_NAME | alias) [AS] [alias]
| COUNT(* | COLUMN_NAME | alias) [AS] [alias]

• table_reference

tbl_name [AS] alias] [index_hint_list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON
conditional_expr | USING (column_list)]

4.3. Sharding 37

Apache ShardingSphere document, v5.1.1

Subquery

Stable supportedwhen shardingkeys areusing inboth subquery andouter query, andvalues of sharding
keys are the same.

For example:

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 1;

Stable supported for subquery with pagination.

For example:

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT * FROM t_order) row_
WHERE rownum <= ?) WHERE rownum > ?;

Sharding value in expression

Sharding value in calculated expressions will lead to full routing.

For example, if create_time is sharding value:

SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01';

Experimental Supported

Experimental support specifically refers to use of Federation execution engine. The engine
still in rapid development, basically available to users, but it still needs lots of optimization. It is an
experimental product.

Subquery

Experimental supportedwhen sharding keys are not using for both subquery and outer query, or values
of sharding keys are not the same.

For example:

SELECT * FROM (SELECT * FROM t_order) o;

SELECT * FROM (SELECT * FROM t_order) o WHERE o.order_id = 1;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 2;

4.3. Sharding 38

https://shardingsphere.apache.org/document/current/en/features/sharding/usage-standard/pagination

Apache ShardingSphere document, v5.1.1

Join with cross databases

When tables in a join query are distributed on different database instances, sql statement will be sup‐
ported by Federation execution engine. Assuming that t_order and t_order_item are
sharding tables with multiple data nodes, and no binding table rules are configured, t_user and
t_user_role are single tables that distributed on different database instances. Federation ex-
ecution engine can support the following commonly used join query:

SELECT * FROM t_order o INNER JOIN t_order_item i ON o.order_id = i.order_id WHERE
o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user u ON o.user_id = u.user_id WHERE o.user_
id = 1;

SELECT * FROM t_order o LEFT JOIN t_user_role r ON o.user_id = r.user_id WHERE o.
user_id = 1;

SELECT * FROM t_order_item i LEFT JOIN t_user u ON i.user_id = u.user_id WHERE i.
user_id = 1;

SELECT * FROM t_order_item i RIGHT JOIN t_user_role r ON i.user_id = r.user_id
WHERE i.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role r ON u.user_id = r.user_id WHERE u.
user_id = 1;

Unsupported

CASEWHEN can not support as following:

• CASE WHEN containing sub‐query

• CASE WHEN containing logical‐table (instead of table alias)

4.3. Sharding 39

Apache ShardingSphere document, v5.1.1

SQL Example

Stable supported SQL Necessary conditions

SELECT * FROM tbl_name
SELECT * FROM tbl_nameWHERE (col1 = ? or col2 = ?) and
col3 = ?
SELECT * FROM tbl_name WHERE col1 = ? ORDER BY col2
DESC LIMIT ?
SELECT COUNT(*), SUM(col1), MIN(col1), MAX(col1),
AVG(col1) FROM tbl_nameWHERE col1 = ?
SELECT COUNT(col1) FROM tbl_name WHERE col2 = ?
GROUP BY col1 ORDER BY col3 DESC LIMIT ?, ?
SELECT DISTINCT * FROM tbl_nameWHERE col1 = ?
SELECT COUNT(DISTINCT col1), SUM(DISTINCT col1)
FROM tbl_name
(SELECT * FROM tbl_name)
SELECT * FROM (SELECT * FROM tbl_name WHERE col1 =
?) o WHERE o.col1 = ?

Subquery and outer query in same
sharded data node after route

INSERT INTO tbl_name (col1, col2,⋯) VALUES (?, ?,⋯.)
INSERT INTO tbl_name VALUES (?, ?,⋯.)
INSERT INTO tbl_name (col1, col2,⋯) VALUES(1 + 2, ?,⋯)
INSERT INTO tbl_name (col1, col2,⋯) VALUES (?, ?,⋯.), (?,
?,⋯.)
INSERT INTO tbl_name (col1, col2,⋯) SELECT col1, col2,
⋯FROM tbl_nameWHERE col3 = ?

Inserted and selected table must be
the same or binding tables

REPLACE INTO tbl_name (col1, col2,⋯) SELECT col1, col2,
⋯FROM tbl_nameWHERE col3 = ?

Replaced and selected table must be
the same or binding tables

UPDATE tbl_name SET col1 = ? WHERE col2 = ?
DELETE FROM tbl_nameWHERE col1 = ?
CREATE TABLE tbl_name (col1 int,⋯)
ALTER TABLE tbl_name ADD col1 varchar(10)
DROP TABLE tbl_name
TRUNCATE TABLE tbl_name
CREATE INDEX idx_name ON tbl_name
DROP INDEX idx_name ON tbl_name
DROP INDEX idx_name

4.3. Sharding 40

Apache ShardingSphere document, v5.1.1

Experimental supported SQL Necessary conditions

SELECT * FROM (SELECT * FROM tbl_name) o
SELECT * FROM (SELECT * FROM tbl_name) o
WHERE o.col1 = ?
SELECT * FROM (SELECT * FROM tbl_name WHERE
col1 = ?) o
SELECT * FROM (SELECT * FROM tbl_name WHERE
col1 = ?) o WHERE o.col1 = ?

Subquery and outer query in different
sharded data node after route

SELECT (SELECT MAX(col1) FROM tbl_name) a, col2
from tbl_name
SELECT SUM(DISTINCT col1), SUM(col1) FROM
tbl_name
SELECT col1, SUM(col2) FROM tbl_name GROUP BY
col1 HAVING SUM(col2) > ?
SELECT col1, col2 FROM tbl_name UNION SELECT
col1, col2 FROM tbl_name
SELECT col1, col2 FROM tbl_name UNION ALL SE‐
LECT col1, col2 FROM tbl_name

Slow SQL Reason

SELECT * FROM tbl_name WHERE
to_date(create_time,‘yyyy‐mm‐dd’) = ?

Full route because of sharding value in cal‐
culate expression

Unsupported SQL Reason So lution

INSERT INTO tbl_name (col1,
col2, ⋯) SELECT * FROM
tbl_nameWHERE col3 = ?

SELECT clause does not sup‐
port *‐shorthand and built‐in
key generator

•

REPLACE INTO tbl_name
(col1, col2,⋯) SELECT * FROM
tbl_nameWHERE col3 = ?

SELECT clause does not sup‐
port *‐shorthand and built‐in
key generator

•

SELECT MAX(tbl_name.col1)
FROM tbl_name

Use table name as column
owner in function

I nstead of table alias

Pagination

Totally support pagination queries of MySQL, PostgreSQL and Oracle; partly support SQLServer pagi‐
nation query due to its complexity.

4.3. Sharding 41

Apache ShardingSphere document, v5.1.1

Pagination Performance

Performance Bottleneck

Pagination with query offset too high can lead to a low data accessibility, take MySQL as an example:

SELECT * FROM t_order ORDER BY id LIMIT 1000000, 10

This SQL will make MySQL acquire another 10 records after skipping 1,000,000 records when it is not
able to use indexes. Its performance can thus be deduced. In sharding databases and sharding tables
(suppose there are two databases), to ensure the data correctness, the SQL will be rewritten as this:

SELECT * FROM t_order ORDER BY id LIMIT 0, 1000010

It also means taking out all the records prior to the offset and only acquire the last 10 records after
ordering. It will further aggravate the performance bottleneck effect when the database is already slow
in execution. The reason for that is the former SQL only needs to transmit 10 records to the user end,
but now it will transmit 1,000,010 * 2 records after the rewrite.

Optimization of ShardingSphere

ShardingSphere has optimized in two ways.

Firstly, it adopts stream process +merger ordering to avoid excessivememory occupation. SQL rewrite
unavoidably occupies extra bandwidth, but it will not lead to sharp increase of memory occupation.
Most people may assume that ShardingSphere would upload all the 1,000,010 * 2 records to the
memory and occupy a large amount of it, which can lead tomemory overflow. But each ShardingSphere
comparisononly acquires current result set record of each shard, since result set records have their own
order. The record stored in the memory is only the current position pointed by the cursor in the result
set of the shard routed to. For the item to be sorted which has its own order, merger ordering only has
the time complexity of O(mn(log m)), and the number of shard m is generally small enough to be
considered as O(n), with a very low performance consumption.

Secondly, ShardingSphere further optimizes the query that only falls into single shards. Requests of
this kind can guarantee the correctness of records without rewriting SQLs. Under this kind of situation,
ShardingSphere will not do that in order to save the bandwidth.

Pagination Solution Optimization

For LIMIT cannot search for data through indexes, if the ID continuity can be guaranteed, pagination
by ID is a better solution:

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id

Or use the ID of last record of the former query result to query the next page:

4.3. Sharding 42

Apache ShardingSphere document, v5.1.1

SELECT * FROM t_order WHERE id > 100000 LIMIT 10

Pagination Sub-query

Both Oracle and SQLServer pagination need to be processed by sub‐query, ShardingSphere supports
pagination related sub‐query.

• Oracle

Support rownum pagination:

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id
FROM t_order o JOIN t_order_item i ON o.order_id = i.order_id) row_ WHERE rownum <=
?) WHERE rownum > ?

Do not support rownum + BETWEEN pagination for now.

• SQLServer

Support TOP + ROW_NUMBER() OVER pagination:

SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS
rownum, * FROM t_order o) AS temp WHERE temp.rownum > ? ORDER BY temp.order_id

Support OFFSET FETCH pagination after SQLServer 2012:

SELECT * FROM t_order o ORDER BY id OFFSET ? ROW FETCH NEXT ? ROWS ONLY

Do not support WITH xxx AS (SELECT ...) pagination. Because SQLServer automatically gen‐
erated by Hibernate uses WITH statements, Hibernate SQLServer pagination or two TOP + sub‐query
pagination is not available now.

• MySQL, PostgreSQL

Both MySQL and PostgreSQL support LIMIT pagination, no need for sub‐query:

SELECT * FROM t_order o ORDER BY id LIMIT ? OFFSET ?

4.4 Distributed Transaction

4.4.1 Background

Database transactions should satisfy the features of ACID (atomicity, consistency, isolation and dura‐
bility).

• Atomicity guarantees that each transaction is treated as a single unit, which either succeeds com‐
pletely, or fails completely;

4.4. Distributed Transaction 43

Apache ShardingSphere document, v5.1.1

• Consistency ensures that a transaction can only bring the database fromone valid state to another,
maintaining database invariants;

• Isolation ensures that concurrent execution of transactions leaves the database in the same state
that would have been obtained if the transactions were executed sequentially;

• Durability guarantees that once a transaction has been committed, it will remain committed even
in the case of a system failure (e.g., power outage or crash).

In single data node, transactions are only restricted to the access and control of single database re‐
sources, called local transactions. Almost all themature relational databases have provided native sup‐
port for local transactions. But in distributed application situations based onmicro‐services, more and
moreof themrequire to includemultiple accesses to services and the correspondingdatabase resources
in the same transaction. As a result, distributed transactions appear.

Though the relational database has provided perfect native ACID support, it can become an obstacle to
the system performance under distributed situations. How tomake databases satisfy ACID features un‐
der distributed situations or find a corresponding substitute solution, is the priority work of distributed
transactions.

Local Transaction

It means let each data node tomanage their own transactions on the premise that any distributed trans‐
actionmanager is not on. They do not have any coordination and communication ability, or know other
data nodes have succeededor not. Thoughwithout any consumption inperformance, local transactions
are not capable enough in high consistency and eventual consistency.

2PC Transaction

The earliest distributed transaction model of XA standard is X/Open Distributed Transaction
Processing (DTP)model brought up by X/Open, XA for short.

Distributed transaction based on XA standard has little intrusion to businesses. Its biggest advantage
is the transparency to users, who can use distributed transactions based on XA standard just as local
transactions. XA standard can strictly guarantee ACID features of transactions.

That guarantee can be a double‐edged sword. It is more proper in the implementation of short transac‐
tions with fixed time, because it will lock all the resources needed during the implementation process.
For long transactions, data monopolization during its implementation will lead to an obvious concur‐
rency performance recession for business systems depend on hot spot data. Therefore, in high concur‐
rency situations that take performance as the highest, distributed transaction based on XA standard is
not the best choice.

4.4. Distributed Transaction 44

Apache ShardingSphere document, v5.1.1

BASE Transaction

If we call transactions that satisfy ACID features as hard transactions, then transactions based on BASE
features are called soft transactions. BASE is the abbreviation of basically available, soft state and even‐
tually consistent those there factors.

• Basically available feature means not all the participants of distributed transactions have to be
online at the same time.

• Soft state feature permits some time delay in system renewal, whichmay not be noticed by users.

• Eventually consistent feature of systems is usually guaranteed by message availability.

There is a high requirement for isolation in ACID transactions: all the resources must be locked during
the transaction implementation process. The concept of BASE transactions is uplifting mutex opera‐
tion from resource level to business level through business logic. Broaden the requirement for high
consistency to exchange the rise in system throughput.

Highly consistent transactions based on ACID and eventually consistent transactions based on BASE
are not silver bullets, and they can only take the most effect in the most appropriate situations. The
detailed distinctions between them are illustrated in the following table to help developers to choose
technically:

Local transaction 2PC (3PC) transaction BASE transaction

Business trans
formation

None None Relevant interface

Co nsistency Not support Support Eventual consistency
Isolation Not support Support Business‐side guarantee
Co ncurrency pe
rformance

No influence Serious recession Minor recession

Situation Inconsistent operation at
business side

Short transaction & low
concurrency

Long transaction & high
concurrency

4.4.2 Challenge

For different application situations, developers need to reasonably weight the performance and the
function between all kinds of distributed transactions.

Highly consistent transactions do not have totally the same API and functions as soft transactions, and
they cannot switch between each other freely and invisibly. The choice betweenhighly consistent trans‐
actions and soft transactions as early as development decision‐making phase has sharply increased the
design and development cost.

Highly consistent transactions based on XA is relatively easy to use, but is not good at dealing with long
transaction and high concurrency situation of the Internet. With a high access cost, soft transactions
require developers to transform the application and realize resources lock and backward compensa‐
tion.

4.4. Distributed Transaction 45

Apache ShardingSphere document, v5.1.1

4.4.3 Goal

The main design goal of the distributed transaction modular of Apache ShardingSphere is to inte‐
grate existing mature transaction cases to provide an unified distributed transaction interface for
local transactions, 2PC transactions and soft transactions; compensate for the deficiencies of cur‐
rent solutions to provide a one‐stop distributed transaction solution.

4.4.4 Core Concept

Navigation

This chapter mainly introduces the core concepts of distributed transactions, including:

• XA transaction

• BASE transaction

XA

2PC transaction submit uses the DTP Model defined by X/OPEN, in which created AP (Application Pro‐
gram), TM (Transaction Manager) and RM (Resource Manager) can guarantee a high transaction con‐
sistency. TM and RM use XA protocol for bidirectional streaming. Compared with traditional local
transactions, XA transactions have a prepared phase, where the database cannot only passively receive
commands, but also notify the submitter whether the transaction can be accepted. TM can collect all
the prepared results of branch transactions before submitting all of them together, which has guaran‐
teed the distributed consistency.

Java implements the XAmodel through defining a JTA interface, in which ResourceManager requires
an XA driver provided by database manufacturers and TransactionManager is provided by trans‐
action manager manufacturers. Traditional transaction managers need to be bound with application
server, which poises a high use cost. Built‐in transaction managers have already been able to provide
services through jar packages. Integrated with Apache ShardingSphere, it can guarantee the high con‐
sistency in cross‐database transactions after sharding.

Usually, to use XA transaction, users must use its connection pool provided by transaction manager
manufacturers. However, when Apache ShardingSphere integrates XA transactions, it has separated
the management of XA transaction and its connection pool, so XA will not invade the applications.

BASE

A paper published in 2008 first mentioned on BASE transaction, it advocates the use of eventual consis‐
tency to instead of consistency when improve concurrency of transaction processing.

TCC and Saga are two regular implementations. They use reverse operation implemented by developers
themselves to ensure the eventual consistency when data rollback. SEATA implements SQL reverse
operation automatically, so that BASE transaction can be used without the intervention of developers.

Apache ShardingSphere integrates SEATA as solution of BASE transaction.

4.4. Distributed Transaction 46

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://queue.acm.org/detail.cfm?id=1394128
https://github.com/seata/seata

Apache ShardingSphere document, v5.1.1

4.4.5 Use Norms

Background

Though Apache ShardingSphere intends to be compatible with all distributed scenario and best perfor‐
mance, under CAP theorem guidance, there is no sliver bullet with distributed transaction solution.

Apache ShardingSphere wants to give the user choice of distributed transaction type and use the most
suitable solution in different scenarios.

Local Transaction

Supported

• Support none‐cross‐database transactions. For example, sharding table or sharding databasewith
its route result in same database;

• Support cross‐database transactions caused by logic exceptions. For example, update two
databases in transaction with exception thrown, data can rollback in both databases.

Unsupported

• Do not support the cross‐database transactions caused by network or hardware crash. For exam‐
ple, when update two databases in transaction, if one database crashes before commit, then only
the data of the other database can commit.

XA

Supported

• Support cross‐database transactions after sharding;

• Operation atomicity and high data consistency in 2PC transactions;

• When service is down and restarted, commit and rollback transactions can be recovered auto‐
matically;

• Support use XA and non‐XA connection pool together.

4.4. Distributed Transaction 47

Apache ShardingSphere document, v5.1.1

Unsupported

• Recover committing and rolling back in other machines after the service is down.

• Savepoint.

• In the transaction block, the SQL execution is abnormal, and run Commit, and data remains con‐
sistent.

XA Transactionmanaged by XA Statement

• When using XA START to open a XA Transaction, ShardingSphere will pass it to backend database
directly, you have to manage this transaction by yourself;

• When recover from a crush, you have to call XA RECOVER to check unfinished transaction, and
choose to commit or rollback using xid. Or you can use ONE PHASE commit without PREPARE.

MySQL [(none)]> use test1
│MySQL [(none)]> use test2

Reading table information for completion of table and column names
│Reading table information for completion of table and column

names
You can turn off this feature to get a quicker startup with -A

│You can turn off this feature to get a quicker startup with -A

│
Database changed

│Database changed
MySQL [test1]> XA START '61c052438d3eb';

│MySQL [test2]> XA START '61c0524390927';
Query OK, 0 rows affected (0.030 sec)

│Query OK, 0 rows affected (0.009 sec)

│
MySQL [test1]> update test set val = 'xatest1' where id = 1;

│MySQL [test2]> update test set val = 'xatest2' where id = 1;
Query OK, 1 row affected (0.077 sec)

│Query OK, 1 row affected (0.010 sec)

│
MySQL [test1]> XA END '61c052438d3eb';

│MySQL [test2]> XA END '61c0524390927';
Query OK, 0 rows affected (0.006 sec)

│Query OK, 0 rows affected (0.008 sec)

│
MySQL [test1]> XA PREPARE '61c052438d3eb';

│MySQL [test2]> XA PREPARE '61c0524390927';
Query OK, 0 rows affected (0.018 sec)

4.4. Distributed Transaction 48

Apache ShardingSphere document, v5.1.1

│Query OK, 0 rows affected (0.011 sec)

│
MySQL [test1]> XA COMMIT '61c052438d3eb';

│MySQL [test2]> XA COMMIT '61c0524390927';
Query OK, 0 rows affected (0.011 sec)

│Query OK, 0 rows affected (0.018 sec)

│
MySQL [test1]> select * from test where id = 1;

│MySQL [test2]> select * from test where id = 1;
+----+---------+

│+----+---------+
| id | val |

│| id | val |
+----+---------+

│+----+---------+
| 1 | xatest1 |

│| 1 | xatest2 |
+----+---------+

│+----+---------+
1 row in set (0.016 sec)

│1 row in set (0.129 sec)

MySQL [test1]> XA START '61c05243994c3';
│MySQL [test2]> XA START '61c052439bd7b';

Query OK, 0 rows affected (0.047 sec)
│Query OK, 0 rows affected (0.006 sec)

│
MySQL [test1]> update test set val = 'xarollback' where id = 1;

│MySQL [test2]> update test set val = 'xarollback' where id =
1;
Query OK, 1 row affected (0.175 sec)

│Query OK, 1 row affected (0.008 sec)

│
MySQL [test1]> XA END '61c05243994c3';

│MySQL [test2]> XA END '61c052439bd7b';
Query OK, 0 rows affected (0.007 sec)

│Query OK, 0 rows affected (0.014 sec)

│
MySQL [test1]> XA PREPARE '61c05243994c3';

│MySQL [test2]> XA PREPARE '61c052439bd7b';
Query OK, 0 rows affected (0.013 sec)

│Query OK, 0 rows affected (0.019 sec)

4.4. Distributed Transaction 49

Apache ShardingSphere document, v5.1.1

│
MySQL [test1]> XA ROLLBACK '61c05243994c3';

│MySQL [test2]> XA ROLLBACK '61c052439bd7b';
Query OK, 0 rows affected (0.010 sec)

│Query OK, 0 rows affected (0.010 sec)

│
MySQL [test1]> select * from test where id = 1;

│MySQL [test2]> select * from test where id = 1;
+----+---------+

│+----+---------+
| id | val |

│| id | val |
+----+---------+

│+----+---------+
| 1 | xatest1 |

│| 1 | xatest2 |
+----+---------+

│+----+---------+
1 row in set (0.009 sec)

│1 row in set (0.083 sec)

MySQL [test1]> XA START '61c052438d3eb';
Query OK, 0 rows affected (0.030 sec)

MySQL [test1]> update test set val = 'recover' where id = 1;
Query OK, 1 row affected (0.072 sec)

MySQL [test1]> select * from test where id = 1;
+----+---------+
| id | val |
+----+---------+
| 1 | recover |
+----+---------+
1 row in set (0.039 sec)

MySQL [test1]> XA END '61c052438d3eb';
Query OK, 0 rows affected (0.005 sec)

MySQL [test1]> XA PREPARE '61c052438d3eb';
Query OK, 0 rows affected (0.020 sec)

MySQL [test1]> XA RECOVER;
+----------+--------------+--------------+---------------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+---------------+
| 1 | 13 | 0 | 61c052438d3eb |
+----------+--------------+--------------+---------------+

4.4. Distributed Transaction 50

Apache ShardingSphere document, v5.1.1

1 row in set (0.010 sec)

MySQL [test1]> XA RECOVER CONVERT XID;
+----------+--------------+--------------+------------------------------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+------------------------------+
| 1 | 13 | 0 | 0x36316330353234333864336562 |
+----------+--------------+--------------+------------------------------+
1 row in set (0.011 sec)

MySQL [test1]> XA COMMIT 0x36316330353234333864336562;
Query OK, 0 rows affected (0.029 sec)

MySQL [test1]> XA RECOVER;
Empty set (0.011 sec)

BASE

Supported

• Support cross‐database transactions after sharding;

• Support RC isolation level;

• Rollback transaction according to undo log;

• Support recovery committing transaction automatically after the service is down.

Unsupported

• Do not support other isolation level except RC.

To Be Optimized

• SQL parsed twice by Apache ShardingSphere and SEATA.

4.5 Readwrite-splitting

4.5.1 Background

Database throughput has faced the bottleneck with increasing TPS. For the application with massive
concurrence read but less write in the same time, we can divide the database into a primary database
and a replica database. The primary database is responsible for the insert, delete and update of trans‐
actions, while the replica database is responsible for queries. It can significantly improve the query
performance of the whole system by effectively avoiding row locks.

4.5. Readwrite-splitting 51

Apache ShardingSphere document, v5.1.1

One primary database with multiple replica databases can further enhance processing capacity by dis‐
tributing queries evenly into multiple data replicas. Multiple primary databases with multiple replica
databases can enhance not only throughput but also availability. Therefore, the system can still run
normally, even though any database is down or physical disk destroyed.

Different from the sharding that separates data to all nodes according to sharding keys, readwrite‐
splitting routes read and write separately to primary database and replica databases according SQL
analysis.

Data in readwrite‐splitting nodes are consistent, whereas that in shards is not. The combined use of
sharding and readwrite‐splitting will effectively enhance the system performance.

4.5.2 Challenges

Though readwrite‐splitting can enhance system throughput and availability, it also brings inconsis‐
tent data, including that among multiple primary databases and among primary databases and replica
databases. What’smore, it also brings the same problem as data sharding, complicating developer and
operator’smaintenance andoperation. The following diagramhas shown the complex topological rela‐
tions between applications and database groups when sharding used together with readwrite‐splitting.

4.5. Readwrite-splitting 52

Apache ShardingSphere document, v5.1.1

4.5.3 Goal

The main design goal of readwrite‐splitting of Apache ShardingSphere is to try to reduce the in‐
fluence of readwrite‐splitting, in order to let users use primary‐replica database group like one
database.

4.5.4 Core Concept

Primary Database

It refers to the database used in data insertion, update and deletion. It only supports single primary
database for now.

Replica Database

It refers to the database used in data query. It supports multiple replica databases.

4.5. Readwrite-splitting 53

Apache ShardingSphere document, v5.1.1

Primary Replica Replication

It refers to the operation to asynchronously replicate data from the primary database to the replica
database. Because of the asynchrony of primary‐replica synchronization, theremay be short‐time data
inconsistency between them.

Load Balance Strategy

Through this strategy, queries separated to different replica databases.

4.5.5 Use Norms

Supported

• Provide the readwrite‐splitting configuration of one primary database with multiple replica
databases, which can be used alone or with sharding table and database;

• Primary nodes need to be used for both reading and writing in the transaction;

• Forcible primary database route based on SQL Hint;

Unsupported

• Data replication between the primary and the replica databases;

• Data inconsistency caused by replication delay between databases;

• Double or multiple primary databases to provide write operation;

• The data for transaction across primary and replica nodes are inconsistent; In the readwrite‐
splitting model, primary nodes need to be used for both reading and writing in the transaction.

4.6 HA

4.6.1 Background

High availability is the most basic requirement of modern systems. As the cornerstone of the system,
the database is also essential for high availability.

In the distributed database systemwith storage‐compute splitting, the high availability solution of stor‐
age node and compute node are different. The stateful storage nodes need to pay attention to data
consistency, health detection, primary node election and so on; The stateless compute nodes need to
detect the changes of storage nodes, they also need to set up an independent load balancer and have
the ability of service discovery and request distribution.

4.6. HA 54

Apache ShardingSphere document, v5.1.1

Apache ShardingSphere provides compute nodes and reuse database as storage nodes. Therefore, the
high availability solution it adopts is to use the high availability solution of the database itself as the
high availability of the storage node, and detect the changes automatically.

4.6.2 Challenges

Apache ShardingSphere needs to detect high availability solution of diversified storage nodes automat‐
ically, and can also integrate the readwrite splitting dynamically, which is the main challenge of imple‐
mentation.

4.6.3 Goal

The main goal of Apache ShardingSphere high availability module which is ensuring 7 * 24‐hour
uninterrupted database service as much as possible.

4.6. HA 55

Apache ShardingSphere document, v5.1.1

4.6.4 Core Concept

high Availability Type

Apache ShardingSphere does not provide high availability solution of database, it reuses 3rd party high
availability solution and auto‐detect switch of primary and replica databases. Specifically, the ability
of Apache ShardingSphere provided is database discovery, detect the primary and replica databases
automatically, and updates the connection of compute nodes to the databases.

Dynamic Readwrite-Splitting

When high availability and readwrite‐splitting are used together, there is unnecessary to configure spe‐
cific primary and replica databases for readwrite‐splitting. Highly available data sourceswill update the
primary and replica databases of readwrite‐splitting dynamically, and route the query and update SQL
correctly.

4.6.5 Use Norms

Supported

• MySQL MGR single‐primary mode.

Unsupported

• MySQL MGRmulti‐primary mode.

4.7 Scaling

4.7.1 Background

There is a problemwhich how tomigrate data from stand‐alone database to sharding data nodes safely
and simply; For applications which have used Apache ShardingSphere, scale out elastically is a manda‐
tory requirement.

4.7.2 Challenges

Apache ShardingSphere provides great flexibility in sharding algorithms, but it gives a great challenge
to scaling out. So it’s the first challenge that how to find away can support kinds of sharding algorithms
and scale data nodes efficiently.

What’smore, During the scaling process, it should not affect the running applications. So It is another
big challenge for scaling to reduce the time window of data unavailability during the scaling as much
as possible, or even completely unaware.

4.7. Scaling 56

Apache ShardingSphere document, v5.1.1

Finally, scaling should not affect the existing data. How to ensure the availability and correctness of
data is the third challenge of scaling.

ShardingSphere‐Scaling is a common solution for migrating or scaling data.

4.7.3 Goal

The main design goal of ShardingSphere‐Scaling is providing common solution which can support
kinds of sharding algorithm and reduce the impact as much as possible during scaling.

4.7.4 Status

ShardingSphere‐Scaling since version 4.1.0. Current status is in alpha development.

4.7.5 Core Concept

Scaling Job

It refers one complete process of scaling data from old rule to new rule.

Inventory Data

It refers all existing data stored in data nodes before the scaling job started.

Incremental Data

It refers the new data generated by application during scaling job.

4.7.6 User Norms

Supported

• Migrate data outside into databases which managed by Apache ShardingSphere;

• Scale out data between data nodes of Apache ShardingSphere.

4.7. Scaling 57

Apache ShardingSphere document, v5.1.1

Unsupported

• Scale table without primary key, primary key can not be composite;

• Scale table with composite primary key;

• Do not support scale on in used databases, need to prepare a new database cluster for target.

4.8 Encryption

4.8.1 Background

Security control has always been a crucial link of data governance, data encryption falls into this cat‐
egory. For both Internet enterprises and traditional sectors, data security has always been a highly
valued and sensitive topic. Data encryption refers to transforming some sensitive information through
encrypt rules to safely protect the private data. Data involves client’s security or business sensibil‐
ity, such as ID number, phone number, card number, client number and other personal information,
requires data encryption according to relevant regulations.

The demand for data encryption is generally divided into two situations in real business scenarios:

1. When the new business start to launch, and the security department stipulates that the sensitive
information related to users, such as banks andmobile phone numbers, should be encrypted and
stored in the database, and then decrypted when used. Because it is a brand new system, there is
no inventory data cleaning problem, so the implementation is relatively simple.

2. For the service has been launched, and plaintext has been stored in the database before. The
relevant department suddenly needs to encrypt the data from the on‐line business. This scenario
generally needs to deal with three issues as followings:

• How to encrypt the historical data, a.k.a.s data clean.

• How to encrypt the newly added data and store it in the database without changing the business
SQL and logic; then decrypt the taken out data when use it.

• How to securely, seamlessly and transparently migrate plaintext and ciphertext data between
business systems.

4.8.2 Challenges

In the real business scenario, the relevant business development team often needs to implement and
maintain a set of encryption and decryption system according to the needs of the company’s secu‐
rity department. When the encryption scenario changes, the encryption system often faces the risk of
reconstruction or modification. In addition, for the online business system, it is relatively complex to
realize seamless encryption transformationwith transparency, security and low riskwithoutmodifying
the business logic and SQL.

4.8. Encryption 58

Apache ShardingSphere document, v5.1.1

4.8.3 Goal

Provides a security and transparent data encryption solution, which is the main design goal of
Apache ShardingSphere data encryptionmodule.

4.8.4 Core Concept

Logic Column

Column name used to encryption, it is the logical column identification in SQL. It includes cipher col‐
umn(required), query assistant column(optional) and plain column(optional).

Cipher Column

Encrypted data column.

Query Assistant Column

Column used to assistant for query. For non‐idempotent encryption algorithms with higher security
level, irreversible idempotent columns provided for query.

Plain Column

Columnused to persist plain column, for service provided during data encrypting. Should remove them
after data clean.

4.8.5 Use Norms

Supported

• Encrypt/decrypt one or more columns in the database table;

• Compatible with all regular SQL.

Unsupported

• Need to process original inventory data before encryption;

• Encrypted fields cannot support case insensitive queries;

• The value of encryption columns cannot support comparison, such as: >, <, ORDER BY, BE‐
TWEEN, LIKE, etc;

• The value of encryption columns cannot support calculation, such as AVG, SUM, and calculation
expressions.

4.8. Encryption 59

Apache ShardingSphere document, v5.1.1

4.9 Shadow DB

4.9.1 Background

Under the distributed application architecture based onmicroservices, business requires multiple ser‐
vices to be completed through a series of services andmiddleware calls. The pressure testing of a single
service can no longer reflect the real scenario.

In the test environment, the cost of rebuild complete set of pressure test environment similar to the
production environment is too high. It is usually impossible to simulate the complexity and data of the
production environment.

So, it is the better way to use the production environment for pressure test. The test results obtained
real capacity and performance of the system accurately.

4.9.2 Challenges

pressure testing on production environment is a complex and huge task. Coordination and adjustments
between microservices and middlewares required to cope with the transparent transmission of differ‐
ent flow rates and pressure test tags. Usually we will build a complete set of pressure testing platform
for different test plans.

Data isolation have to be done at the database‐level, in order to ensure the reliability and integrity of
the production data, data generated by pressure testing routed to test database. Prevent test data from
polluting the real data in the production database.

This requires business applications to perform data classification based on the transparently transmit‐
ted pressure test identification before executing SQL, and route the corresponding SQL to the corre‐
sponding data source.

4.9.3 Goal

**Apache ShardingSphere focuses on data solutions in pressure testing on production environment.

Themain goal of the Apache ShardingSphere shadow Databasemodule is routing pressure testing data
to user defined database automatically.**

4.9.4 Core Concept

Production Database

The database used for production data.

4.9. Shadow DB 60

Apache ShardingSphere document, v5.1.1

Shadow Database

The database for pressure testing data isolation.

Shadow Algorithm

The shadowalgorithms are closely related to business, there are 2 types of shadowalgorithms provided.

• Column based shadow algorithm

Recognize data from SQL and route to shadow databases. Suitable for test data driven scenario.

• Hint based shadow algorithm

Recognize comment from SQL and route to shadow databases. Suitable for identify passed by upstream
system scenario.

4.9.5 Use Norms

Supported

• Hint based shadow algorithm support all SQL;

• Column based shadow algorithm support part of SQL.

Unsupported

Hint based shadow algorithm

• None

Column based shadow algorithm

• Does not support DDL;

• Does not support range, group and subquery, for example: BETWEEN, GROUP BY⋯HAVING⋯;

SQL support list:

• INSERT

SQL Supp orted

INSERT INTO table (column,⋯) VALUES (value,⋯) Y
INSERT INTO table (column,⋯) VALUES (value,⋯),(value,⋯),⋯ Y
INSERT INTO table (column,⋯) SELECT column1 from table1 where column1 = value1 N

• SELECT/UPDATE/DELETE

4.9. Shadow DB 61

Apache ShardingSphere document, v5.1.1

•
Condition*

SQL S upp ort ed

= SELECT/UPDATE/DELETE ⋯
WHERE column = value

Y

LIKE/NOT LIKE SELECT/UPDATE/DELETE ⋯
WHERE column LIKE/NOT
LIKE value

Y

IN/NOT IN SELECT/UPDATE/DELETE ⋯
WHERE column IN/NOT IN
(value1,value2,⋯)

Y

BETWEEN SELECT/UPDATE/DELETE ⋯
WHERE column BETWEEN
value1 AND value2

N

GROUP BY⋯HAVING⋯ SELECT/UPDATE/DELETE ⋯
WHERE ⋯GROUP BY column
HAVING column > value

N

Subquery SELECT/UPDATE/DELETE ⋯
WHERE column = (SELECT
column FROM table WHERE
column = value)

N

4.10 Observability

4.10.1 Background

In order to grasp the distributed system status, observe running state of the cluster is a new challenge.
The point‐to‐point operationmode of logging in to a specific server cannot suite to large number of dis‐
tributed servers. Telemetry through observable data is the recommended operation and maintenance
mode for them. Tracking, metrics and logging are important ways to obtain observable data of system
status.

APM (application performance monitoring) is to monitor and diagnose the performance of the system
by collecting, storing and analyzing the observable data of the system. Its main functions include per‐
formance index monitoring, call stack analysis, service topology, etc.

Apache ShardingSphere is not responsible for gathering, storing and demonstrating APMdata, but pro‐
vides the necessary information for the APM. In other words, Apache ShardingSphere is only respon‐
sible for generating valuable data and submitting it to relevant systems through standard protocols or
plug‐ins. Tracing is to obtain the tracking information of SQL parsing and SQL execution. Apache
ShardingSphere provides support for SkyWalking, Zipkin, Jaeger and OpenTelemetry by default. It also
supports users to develop customized components through plug‐in.

• Use Zipkin or Jaeger

Just provides correct Zipkin or Jaeger server information in the agent configuration file.

4.10. Observability 62

Apache ShardingSphere document, v5.1.1

• Use OpenTelemetry

OpenTelemetry was merged by OpenTracing and OpenCencus in 2019. In this way, you only need to
fill in the appropriate configuration in the agent configuration file according to OpenTelemetry SDK
Autoconfigure Guide.

• Use SkyWalking

Enable the SkyWalking plug‐in in configuration file and need to configure the SkyWalking apm‐toolkit.

• Use SkyWalking’s automatic monitor probe

Cooperating with Apache SkyWalking team, Apache ShardingSphere team has realized Sharding-
Sphere automatic monitor probe to automatically send performance data to SkyWalking. Note that
automatic probe in this way cannot be used together with Apache ShardingSphere plug‐in probe.

Metrics used to collect and display statistical indicator of cluster. Apache ShardingSphere supports
Prometheus by default.

4.10.2 Challenges

Tracing andmetrics need to collect system information through event tracking. Lots of events tracking
make kernel code mess, difficult to maintain, and difficult to customize extend.

4.10.3 Goal

The goal of Apache ShardingSphere observability module is providing as many performance and
statistical indicators as possible and isolating kernel code and embedded code.

4.10.4 Core Concept

Agent

Based on bytecode enhance and plug‐in design to provide tracing, metrics and logging features. Enable
the plugin in agent to collect data and send data to the integrated 3rd APM system.

APM

APM is the abbreviation for application performance monitoring. It works for performance diagnosis
of distributed systems, including chain demonstration, service topology analysis and so on.

4.10. Observability 63

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://skywalking.apache.org/

Apache ShardingSphere document, v5.1.1

Tracing

Tracing data between distributed services or internal processes will be collected by agent. It then will
be sent to APM system.

Metrics

System statistical indicator which collected from agent. Write to time series databases periodically. 3rd
party UI can display the metrics data simply.

4.10.5 Use Norms

Compile source code

Download Apache ShardingSphere from GitHub,Then compile.

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

Output directory: shardingsphere‐agent/shardingsphere‐agent‐distribution/target/apache‐
shardingsphere‐${latest.release.version}‐shardingsphere‐agent‐bin.tar.gz

Agent configuration

• Directory structure

Create agent directory, and unzip agent distribution package to the directory. ˋˋˋshellmkdir agent
tar ‐zxvf apache‐shardingsphere‐latest.release.version − shardingsphere − agent − bin.tar.gz −
Cagentcdagenttree.���conf� ���agent.yaml� ���logback.xml���plugins� ���shardingsphere−
agent − logging − base−{latest.release.version}.jar � ��� shardingsphere‐agent‐
metrics‐prometheus‐latest.release.version.jar� ���shardingsphere − agent −
tracing − jaeger−{latest.release.version}.jar � ��� shardingsphere‐agent‐tracing‐
opentelemetry‐latest.release.version.jar� ���shardingsphere − agent − tracing −
opentracing−{latest.release.version}.jar � ��� shardingsphere‐agent‐tracing‐zipkin‐
${latest.release.version}.jar ��� shardingsphere‐agent.jar

* Configuration file

agent.yaml is a configuration file. The plug-ins include Jaeger, opentracing,
Zipkin, opentelemetry, logging and Prometheus.
Remove the corresponding plug-in in ignoredpluginnames to start the plug-in.

```yaml

4.10. Observability 64



Apache ShardingSphere document, v5.1.1

applicationName: shardingsphere-agent
ignoredPluginNames:
- Jaeger
- OpenTracing
- Zipkin
- OpenTelemetry
- Logging
- Prometheus

plugins:
Prometheus:

host: "localhost"
port: 9090
props:
JVM_INFORMATION_COLLECTOR_ENABLED : "true"

Jaeger:
host: "localhost"
port: 5775
props:
SERVICE_NAME: "shardingsphere-agent"
JAEGER_SAMPLER_TYPE: "const"
JAEGER_SAMPLER_PARAM: "1"

Zipkin:
host: "localhost"
port: 9411
props:
SERVICE_NAME: "shardingsphere-agent"
URL_VERSION: "/api/v2/spans"
SAMPLER_TYPE: "const"
SAMPLER_PARAM: "1"

OpenTracing:
props:
OPENTRACING_TRACER_CLASS_NAME: "org.apache.skywalking.apm.toolkit.

opentracing.SkywalkingTracer"
OpenTelemetry:

props:
otel.resource.attributes: "service.name=shardingsphere-agent"
otel.traces.exporter: "zipkin"

Logging:
props:
LEVEL: "INFO"

• Parameter description:

4.10. Observability 65



Apache ShardingSphere document, v5.1.1

Name Descrip-
tion

Value range Default
value

JVM _IN‐
FORMA‐
TION_CO
LLEC‐
TOR_ENABLED

Start JVM
collector

true、false true

SER‐
VICE_NAME

Tracking
service
name

Custom shardi
ngsphere‐
agent

JAEG
ER_SAMPLER_TYPE

Jaeger
sample
rate type

const、proba bilistic、ratel imiting、remote const

JAEGE
R_SAMPLER_PARAM

Jaeger
sam‐
ple rate
parameter

const:0、1, pr obabilistic:0.0 ‐ 1.0, ratelimiting: > 0,
Customize the number of acquisitions per secon d，re‐
mote：need to customize the remote service addres,JA
EGER_SAMPLER_MA NAGER_HOST_PORT

1（const
type）

SAM‐
PLER_TYPE

Zipkin
sample
rate type

const、co unting、ratelim iting、boundary const

SAM‐
PLER_PARAM

Zipkin
sam‐
pling rate
parameter

const:0、1, counting:0.01 ‐ 1.0, ratelimiting: > 0, bound‐
ary:0.0001 ‐ 1.0

1（const
type）

otel.reso
urce.attributes

open‐
telemetry
properties

String key value pair (, split) servi
ce.name=shardi
ngsphere‐
agent

otel.
traces.exporter

Tracing
expoter

zipkin、jaeger zipkin

otel
.traces.sampler

Open‐
telemetry
sample
rate type

alway s_on、always_of f、traceidratio always_on

otel.tra
ces.sampler.arg

Open‐
telemetry
sam‐
ple rate
parameter

tr aceidratio：0.0 ‐ 1.0 1.0

4.10. Observability 66



Apache ShardingSphere document, v5.1.1

Used in ShardingSphere-Proxy

• Startup script

Configure the absolute path of shardingsphere‐agent.jar to the start.sh startup script of shardingsphere
proxy.

nohup java ${JAVA_OPTS} ${JAVA_MEM_OPTS} \
-javaagent:/xxxxx/agent/shardingsphere-agent.jar \
-classpath ${CLASS_PATH} ${MAIN_CLASS} >> ${STDOUT_FILE} 2>&1 &

• Launch plugin

bin/start.sh

After normal startup, you can view the startup log of the plugin in the shardingsphere proxy log, and
you can view the data at the configured address.

4.10. Observability 67



5
User Manual

This chapter describes how to use projects of Apache ShardingSphere.

5.1 ShardingSphere-JDBC

Configuration is the only module in ShardingSphere‐JDBC that interacts with application devel‐
opers, through which developers can quickly and clearly understand the functions provided by
ShardingSphere‐JDBC.

This chapter is a configuration manual for ShardingSphere‐JDBC, which can also be referred to as a
dictionary if necessary.

ShardingSphere‐JDBC has provided 4 kinds of configuration methods for different situations. By con‐
figuration, application developers can flexibly use data sharding, readwrite‐splitting, data encryption,
shadow database or the combination of them.

Mixed rule configurations are very similar to single rule configuration, except for the differences from
single rule to multiple rules.

It should be noted that the superposition between rules are data source and table name related. If
the previous rule is data source oriented aggregation, the next rule needs to use the aggregated logical
data source name configured by the previous rule when configuring the data source; Similarly, if the
previous rule is table oriented aggregation, the next rule needs to use the aggregated logical table name
configured by the previous rule when configuring the table.

Please refer to Example for more details.

68

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example


Apache ShardingSphere document, v5.1.1

5.1.1 Java API

Overview

Java API is the basic configuration methods in ShardingSphere‐JDBC, and other configurations will
eventually be transformed into Java API configuration methods.

The Java API is themost complex and flexible configurationmethod, which is suitable for the scenarios
requiring dynamic configuration through programming.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Create Data Source

ShardingSphere‐JDBC Java API consists of schema name, mode configuration, data source map, rule
configurations and properties.

The ShardingSphereDataSource created by ShardingSphereDataSourceFactory implements the stan‐
dard JDBC DataSource interface.

String schemaName = "foo_schema"; // Indicate logic schema name
ModeConfiguration modeConfig = ... // Build mode configuration
Map<String, DataSource> dataSourceMap = ... // Build actual data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build concentrate rule
configurations
Properties props = ... // Build properties
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

Please refer to Mode Confiugration for more mode details.

Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

5.1. ShardingSphere-JDBC 69

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules


Apache ShardingSphere document, v5.1.1

Use Data Source

Developer can choose tousenative JDBCorORMframeworks suchas JPA,Hibernate orMyBatis through
the DataSource.

Take native JDBC usage as an example:

// Create ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

Mode Configuration

Root Configuration

Class name: org.apache.shardingsphere.infra.config.mode.ModeConfiguration

Attributes:

5.1. ShardingSphere-JDBC 70



Apache ShardingSphere document, v5.1.1

•
N am e *

Data Type Description •
D e f a u l t V a l u e *

t y p e S tring Type of mode configu‐
rationValues could be:
Memory, Standalone,
Cluster

M e m o r y

r e p o s i t o r y Persi stReposito ryCon
figur ation

Persist repository
configurationMem‐
ory type does not
need persist, could be
nullStandalone type
uses StandalonePer‐
sistRepositoryCon‐
figurationCluster
type uses ClusterPer‐
sistRepositoryConfig‐
uration

o v e r w r i t e bo olean Whether overwrite
persistent config‐
uration with local
configuration

f a l s e

Standalone Persist Configuration

Classname: org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepositoryConfiguration

Attributes:

Name DataType Description

type String Type of persist repository
props Properties Properties of persist repository

Cluster Persist Configuration

Classname: org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration

Attributes:

Name DataType Description

type String Type of persist repository
namespace String Namespace of registry center
serverLists String Server lists of registry center
props Properties Properties of persist repository

5.1. ShardingSphere-JDBC 71



Apache ShardingSphere document, v5.1.1

Please refer to Builtin Persist Repository List for more details about type of repository.

Data Source

ShardingSphere‐JDBC Supports all JDBC drivers and database connection pools.

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced
with other database drivers and connection pools.

Map<String, DataSource> dataSourceMap = new HashMap<>();

// Configure the 1st data source
HikariDataSource dataSource1 = new HikariDataSource();
dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
dataSource1.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSource1.setUsername("root");
dataSource1.setPassword("");
dataSourceMap.put("ds_1", dataSource1);

// Configure the 2nd data source
HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");
dataSourceMap.put("ds_2", dataSource2);

// Configure other data sources
...

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a java rule configuration manual
for ShardingSphere‐JDBC.

Sharding

Root Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

Attributes:

5.1. ShardingSphere-JDBC 72

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/


Apache ShardingSphere document, v5.1.1

Name DataType Description Def ault Va lue

tables (+) Collec‐
tion<ShardingTa
bleRuleConfigura‐
tion>

Sharding table rules •

autoTables (+) Coll ec‐
tion<ShardingAutoTa
bleRuleConfigura‐
tion>

Sharding automatic ta‐
ble rules

•

bind ingTableGroups
(*)

Collection<String> Binding table rules E mpty

b roadcastTables (*) Collection<String> Broadcast table rules E mpty
def aultDatabaseSh
ardingStrategy (?)

Sharding StrategyCon‐
figuration

Default database
sharding strategy

Not shar ding

defaultTableSh ard‐
ingStrategy (?)

Sharding StrategyCon‐
figuration

Default table sharding
strategy

Not shar ding

defaultKeyGe nerateS‐
trategy (?)

KeyG eneratorConfig‐
uration

Default key generator S nowf lake

default ShardingCol‐
umn (?)

String Default sharding col‐
umn name

None

shar dingAlgorithms
(+)

Map<String, Sharding‐
SphereAl gorithmCon‐
figuration>

Sharding algorithm
name and configura‐
tions

None

keyGenerators (?) Map<String, Sharding‐
SphereAl gorithmCon‐
figuration>

Key generate algo‐
rithm name and
configurations

None

Sharding Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

Attributes:

5.1. ShardingSphere-JDBC 73



Apache ShardingSphere document, v5.1.1

•
Name*

Dat aType Description Default Value

logic Table String Name of sharding
logic table

•

actua lData Nodes (?) String Describe data source
names and actual
tables, delimiter as
point. Multiple data
nodes split by comma,
support inline expres‐
sion

Broadcast table or
databases sharding
only

data baseS hardi ngStr
ategy (?)

Shard ingStr ategyC
onfigu ration

Databases sharding
strategy

Use default databases
sharding strategy

t ableS hardi ngStr at‐
egy (?)

Shard ingStr ategyC
onfigu ration

Tables sharding strat‐
egy

Use default tables
sharding strategy

keyG enera teStr ategy
(?)

K eyGene ratorC on‐
figu ration

Key generator configu‐
ration

Use default key gener‐
ator

Sharding Automatic Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

Attributes:

Name DataType Description Default Value

lo gicTable String Name of sharding
logic table

•

a ctualDat aSources (?) String Data source names.
Multiple data nodes
split by comma

Use all configured data
sources

sharding Strategy (?) Shardin gStrategyCo
nfiguration

Sharding strategy Use default sharding
strategy

key Generate Strategy
(?)

Key GeneratorCo nfig‐
uration

Key generator configu‐
ration

Use default key gener‐
ator

5.1. ShardingSphere-JDBC 74



Apache ShardingSphere document, v5.1.1

Sharding Strategy Configuration

Standard Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumn String Sharding column name
shardingAlgorithmName String Sharding algorithm name

Complex Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumns String Sharding column name, separated by commas
shardingAlgorithmName String Sharding algorithm name

Hint Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingAlgorithmName String Sharding algorithm name

None Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration

Attributes: None

Please refer to Built‐in Sharding Algorithm List for more details about type of algorithm.

5.1. ShardingSphere-JDBC 75

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding


Apache ShardingSphere document, v5.1.1

Key Generate Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration

Attributes:

Name DataType Description

column String Column name of key generate
keyGeneratorName String key generate algorithm name

Please refer to Built‐in Key Generate Algorithm List for more details about type of algorithm.

Readwrite-splitting

Root Configuration

Class name: org.apache.shardingsphere.readwritesplitting.api.ReadwriteSplittingRuleConfiguration

Attributes:

•
Name*

DataType Description

d ataSo urces (+) Collectio
n<ReadwriteSplittingData
SourceRuleConfiguration>

Data sources of write and reads

loa dBala ncers (*) Map<String, ShardingSpher
eAlgorithmConfiguration>

Load balance algorithm name
and configurations of replica
data sources

5.1. ShardingSphere-JDBC 76

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen


Apache ShardingSphere document, v5.1.1

Readwrite-splitting Data Source Configuration

Classname: org.apache.shardingsphere.readwritesplitting.api.rule.ReadwriteSplittingDataSourceRuleConfiguration

Attributes:

Name D ataType Description Default Value

name String Readwrite‐splitting
data source name

•

type String Readwrite‐splitting
type, such as: Static、
Dynamic

•

props Pr operties Readwrite‐splitting
required properties.
Static: write‐data‐
source‐name、read‐
data‐source‐names,
Dynamic: aut o‐aware‐
data‐source‐name

•

loadB alancerName (?) String Load balance algo‐
rithm name of replica
sources

Round robin load bal‐
ance algorithm

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Use Norms for more details about query consistent routing.

HA

Root Configuration

Class name：org.apache.shardingsphere.dbdiscovery.api.config.DatabaseDiscoveryRuleConfiguration
Attributes：

Name DataType Description

dataSources (+) Collection<DatabaseDisc overyData‐
SourceRuleConfiguration>

Data source configuration

discover yHeart‐
beats (+)

Map<String, Databas eDiscoveryHeartBeat‐
Configuration>

Detect heartbeat configura‐
tion

dis coveryTypes
(+)

Map<String, Shar dingSphereAlgorithmCon‐
figuration>

Database discovery type con‐
figuration

5.1. ShardingSphere-JDBC 77

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms


Apache ShardingSphere document, v5.1.1

Data Source Configuration

Classname：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryDataSourceRuleConfiguration
Attributes：

Name Dat aType Description D efa ult Val ue

groupName (+) String Database discovery
group name

•

dataSo urceNames (+) Collec tion<S tring> Data source names,
multiple data source
names separated with
comma. Such as:
ds_0, ds_1

•

disc overyHear tbeat‐
Name (+)

String Detect heartbeat name •

discover yTypeName
(+)

String Database discovery
type name

•

Detect Heartbeat Configuration

Classname：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryHeartBeatConfiguration

Attributes：

Name Dat aType Description D ef au lt Va lu e

props (+) Prop erties Detect heartbeat
attribute configura‐
tion, keep‐alive‐cron
configuration, cron
expression. Such as:
‘0/5 * * * * ?’

•

Database Discovery Type Configuration

Classname：org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

Attributes：

5.1. ShardingSphere-JDBC 78



Apache ShardingSphere document, v5.1.1

Name D ataType Description D efa ult Val ue

type (+) String Database discovery
type, such as: MGR、
openGauss

•

props (?) Pr operties Required parameters
for high‐availability
types, such as MGR’s
group‐name

•

Encryption

Root Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

Attributes:

Name DataType Description D ef au
lt Va lu
e

tables (+) Collectio
n<EncryptTableRu
leConfiguration>

Encrypt table rule configurations

encr yptors
(+)

Map<String, Shard
ingSphereAlgorit hmCon‐
figuration>

Encrypt algorithm name and configurations

que ryWith
Cipher Col‐
umn (?)

boolean Whether query with cipher column for data
encrypt. User you can use plaintext to query
if have

tr ue

5.1. ShardingSphere-JDBC 79



Apache ShardingSphere document, v5.1.1

Encrypt Table Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

Attributes:

•
Name*

DataType Description

name String Table name
co lumns (+) Collection <EncryptColumn‐

RuleConfiguration>
Encrypt column rule configura‐
tions

q ueryW ithCi pherC olumn (?) boolean The current table whether
query with cipher column for
data encrypt.

Encrypt Column Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

Attributes:

Name DataType Description

logicColumn String Logic column name
cipherColumn String Cipher column name
assistedQueryColumn (?) String Assisted query column name
plainColumn (?) String Plain column name
encryptorName String Encrypt algorithm name

Encrypt Algorithm Configuration

Classname: org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

Attributes:

Name DataType Description

name String Encrypt algorithm name
type String Encrypt algorithm type
properties Properties Encrypt algorithm properties

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

5.1. ShardingSphere-JDBC 80

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt


Apache ShardingSphere document, v5.1.1

Shadow DB

Root Configuration

Class name: org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

Attributes:

Name DataType Description Def ault
Va lue

d ataSources Map<String, ShadowD ata‐
SourceConfiguration>

Shadow data source mapping
name and configuration

tables Map<String, Sh adowTableCon‐
figuration>

Shadow table name and config‐
uration

defaul tShadowAlg
orithmName

String Default shadowalgorithmname

shadow Algo‐
rithms

Map<String, ShardingSphere Al‐
gorithmConfiguration>

Shadow algorithm name and
configuration

Shadow Data Source Configuration

Classname: org.apache.shardingsphere.shadow.api.config.datasource.ShadowDataSourceConfiguration

Attributes:

Name DataType Description

sourceDataSourceName String Production data source name
shadowDataSourceName String Shadow data source name

Shadow Table Configuration

Class name: org.apache.shardingsphere.shadow.api.config.table.ShadowTableConfiguration

Attributes:

Name DataType Description

da taSourceNames Colle
ction<String>

Shadow table location shadow data source mapping
names

shadowA lgorithm‐
Names

Colle
ction<String>

Shadow table location shadow algorithm names

5.1. ShardingSphere-JDBC 81



Apache ShardingSphere document, v5.1.1

Shadow Algorithm Configuration

Please refer to Built‐in Shadow Algorithm List.

SQL Parser

Root Configuration

Class：org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration

Attributes：

name DataType Description

sqlCommentParseEnabled (?) boolean Whether to parse SQL comments
parseTreeCache (?) CacheOption Parse syntax tree local cache configuration
sqlStatementCache (?) CacheOption sql statement local cache configuration

Cache option Configuration

Class：org.apache.shardingsphere.sql.parser.api.CacheOption

Attributes：

n am e •
D a t a T y p e *

Description Default Value

i ni ti al Ca pa ci ty i n t Initial capacity of local
cache

parser syntax tree lo‐
cal cache default value
128, SQL statement
cache default value
2000

ma xi mu mS iz e( ?) l o n g Maximum capacity of
local cache

The default value of
local cache for pars‐
ing syntax tree is 1024,
and the default value
of sql statement cache
is 65535

co nc ur re nc yL ev el i n t Local cache con‐
currency level, the
maximum number of
concurrent updates
allowed by threads

4

5.1. ShardingSphere-JDBC 82



Apache ShardingSphere document, v5.1.1

Mixed Rules

Configuration Item Explanation

/* Data source configuration */
HikariDataSource writeDataSource0 = new HikariDataSource();
writeDataSource0.setDriverClassName("com.mysql.jdbc.Driver");
writeDataSource0.setJdbcUrl("jdbc:mysql://localhost:3306/db0?serverTimezone=UTC&
useSSL=false&useUnicode=true&characterEncoding=UTF-8");
writeDataSource0.setUsername("root");
writeDataSource0.setPassword("");

HikariDataSource writeDataSource1 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read0OfwriteDataSource0 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read1OfwriteDataSource0 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read0OfwriteDataSource1 = new HikariDataSource();
// ...Omit specific configuration.

HikariDataSource read1OfwriteDataSource1 = new HikariDataSource();
// ...Omit specific configuration.

Map<String, DataSource> datasourceMaps = new HashMap<>(6);

datasourceMaps.put("write_ds0", writeDataSource0);
datasourceMaps.put("write_ds0_read0", read0OfwriteDataSource0);
datasourceMaps.put("write_ds0_read1", read1OfwriteDataSource0);

datasourceMaps.put("write_ds1", writeDataSource1);
datasourceMaps.put("write_ds1_read0", read0OfwriteDataSource1);
datasourceMaps.put("write_ds1_read1", read1OfwriteDataSource1);

/* Sharding rule configuration */
// The enumeration value of `ds_$->{0..1}` is the name of the logical data source
configured with read-query
ShardingTableRuleConfiguration tOrderRuleConfiguration = new
ShardingTableRuleConfiguration("t_order", "ds_${0..1}.t_order_${[0, 1]}");
tOrderRuleConfiguration.setKeyGenerateStrategy(new
KeyGenerateStrategyConfiguration("order_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy(new
StandardShardingStrategyConfiguration("order_id", "tOrderInlineShardingAlgorithm
"));
Properties tOrderShardingInlineProps = new Properties();

5.1. ShardingSphere-JDBC 83



Apache ShardingSphere document, v5.1.1

tOrderShardingInlineProps.setProperty("algorithm-expression", "t_order_${order_id %
2}");
tOrderRuleConfiguration.getShardingAlgorithms().putIfAbsent(
"tOrderInlineShardingAlgorithm", new ShardingSphereAlgorithmConfiguration("INLINE",
tOrderShardingInlineProps));

ShardingTableRuleConfiguration tOrderItemRuleConfiguration = new
ShardingTableRuleConfiguration("t_order_item", "ds_${0..1}.t_order_item_${[0, 1]}
");
tOrderItemRuleConfiguration.setKeyGenerateStrategy(new
KeyGenerateStrategyConfiguration("order_item_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy(new
StandardShardingStrategyConfiguration("order_item_id",
"tOrderItemInlineShardingAlgorithm"));
Properties tOrderItemShardingInlineProps = new Properties();
tOrderItemShardingInlineProps.setProperty("algorithm-expression", "t_order_item_$
{order_item_id % 2}");
tOrderRuleConfiguration.getShardingAlgorithms().putIfAbsent(
"tOrderItemInlineShardingAlgorithm", new ShardingSphereAlgorithmConfiguration(
"INLINE",tOrderItemShardingInlineProps));

ShardingRuleConfiguration shardingRuleConfiguration = new
ShardingRuleConfiguration();
shardingRuleConfiguration.getTables().add(tOrderRuleConfiguration);
shardingRuleConfiguration.getTables().add(tOrderItemRuleConfiguration);
shardingRuleConfiguration.getBindingTableGroups().add("t_order, t_order_item");
shardingRuleConfiguration.getBroadcastTables().add("t_bank");
// Default database strategy configuration
shardingRuleConfiguration.setDefaultDatabaseShardingStrategy(new
StandardShardingStrategyConfiguration("user_id", "default_db_strategy_inline"));
Properties defaultDatabaseStrategyInlineProps = new Properties();
defaultDatabaseStrategyInlineProps.setProperty("algorithm-expression", "ds_${user_
id % 2}");
shardingRuleConfiguration.getShardingAlgorithms().put("default_db_strategy_inline",
new ShardingSphereAlgorithmConfiguration("INLINE",
defaultDatabaseStrategyInlineProps));

// Key generate algorithm configuration
Properties snowflakeProperties = new Properties();
shardingRuleConfiguration.getKeyGenerators().put("snowflake", new
ShardingSphereAlgorithmConfiguration("SNOWFLAKE", snowflakeProperties));

/* Data encrypt rule configuration */
Properties encryptProperties = new Properties();
encryptProperties.setProperty("aes-key-value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new
EncryptColumnRuleConfiguration("username", "username", "", "username_plain", "name_
encryptor");

5.1. ShardingSphere-JDBC 84



Apache ShardingSphere document, v5.1.1

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_pwd", "", "pwd_
encryptor");
EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest));
// Data encrypt algorithm configuration
Map<String, ShardingSphereAlgorithmConfiguration> encryptAlgorithmConfigs = new
LinkedHashMap<>(2, 1);
encryptAlgorithmConfigs.put("name_encryptor", new
ShardingSphereAlgorithmConfiguration("AES", encryptProperties));
encryptAlgorithmConfigs.put("pwd_encryptor", new
ShardingSphereAlgorithmConfiguration("assistedTest", encryptProperties));
EncryptRuleConfiguration encryptRuleConfiguration = new
EncryptRuleConfiguration(Collections.singleton(encryptTableRuleConfig),
encryptAlgorithmConfigs);

/* Readwrite-splitting rule configuration */
Properties readwriteProps1 = new Properties();
readwriteProps1.setProperty("write-data-source-name", "write_ds0");
readwriteProps1.setProperty("read-data-source-names", "write_ds0_read0, write_ds0_
read1");
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_0", "Static", readwriteProps1,
"roundRobin");
Properties readwriteProps2 = new Properties();
readwriteProps2.setProperty("write-data-source-name", "write_ds0");
readwriteProps2.setProperty("read-data-source-names", "write_ds1_read0, write_ds1_
read1");
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_1", "Static", readwriteProps2,
"roundRobin");

// Load balance algorithm configuration
Map<String, ShardingSphereAlgorithmConfiguration> loadBalanceMaps = new HashMap<>
(1);
loadBalanceMaps.put("roundRobin", new ShardingSphereAlgorithmConfiguration("ROUND_
ROBIN", new Properties()));

ReadwriteSplittingRuleConfiguration readWriteSplittingRuleConfiguration = new
ReadwriteSplittingRuleConfiguration(Arrays.asList(dataSourceConfiguration1,
dataSourceConfiguration2), loadBalanceMaps);

/* Other Properties configuration */
Properties otherProperties = new Properties();
otherProperties.setProperty("sql-show", "true");

/* The variable `shardingDataSource` is the logic data source referenced by other

5.1. ShardingSphere-JDBC 85



Apache ShardingSphere document, v5.1.1

frameworks(such as ORM, JPA, etc.) */
DataSource shardingDataSource = ShardingSphereDataSourceFactory.
createDataSource(datasourceMaps, Arrays.asList(shardingRuleConfiguration,
readWriteSplittingRuleConfiguration, encryptRuleConfiguration), otherProperties);

5.1.2 YAML Configuration

Overview

YAML configuration provides interactionwith ShardingSphere JDBC through configuration files. When
usedwith the governancemodule together, the configuration of persistence in the configuration center
is YAML format.

YAML configuration is the most common configuration mode, which can omit the complexity of pro‐
gramming and simplify user configuration.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

YAML Format

ShardingSphere‐JDBC YAML file consists of schema name, mode configuration, data source map, rule
configurations and properties.

Note: The example connection pool is HikariCP, which can be replaced with other connection pools
according to business scenarios.

# Alias of the datasource in JDBC.
# Through this parameter to connect, ShardingSphere-JDBC and ShardingSphere-Proxy.
# Default value: logic_db
schemaName (?):

mode:

dataSources:

rules:
- !FOO_XXX

5.1. ShardingSphere-JDBC 86



Apache ShardingSphere document, v5.1.1

...
- !BAR_XXX

...

props:
key_1: value_1
key_2: value_2

Please refer to Mode Confiugration for more mode details.

Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

Create Data Source

The ShardingSphereDataSource created by YamlShardingSphereDataSourceFactory implements the
standard JDBC DataSource interface.

File yamlFile = // Indicate YAML file
DataSource dataSource = YamlShardingSphereDataSourceFactory.
createDataSource(yamlFile);

Use Data Source

Same with Java API.

YAML Syntax Explanation

!!means instantiation of that class

!means self‐defined alias

-means one or multiple can be included

[]means array, can substitutable with - each other

Mode Configuration

Configuration Item Explanation

mode (?): # Default value is Memory
type: # Type of mode configuration. Values could be: Memory, Standalone, Cluster
repository (?): # Persist repository configuration. Memory type does not need

persist
overwrite: # Whether overwrite persistent configuration with local configuration

5.1. ShardingSphere-JDBC 87

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules


Apache ShardingSphere document, v5.1.1

Memory Mode

mode:
type: Memory

Standalone Mode

mode:
type: Standalone
repository:

type: # Type of persist repository
props: # Properties of persist repository
foo_key: foo_value
bar_key: bar_value

overwrite: # Whether overwrite persistent configuration with local configuration

Cluster Mode

mode:
type: Cluster
repository:

type: # Type of persist repository
props: # Properties of persist repository
namespace: # Namespace of registry center
server-lists: # Server lists of registry center
foo_key: foo_value
bar_key: bar_value

overwrite: # Whether overwrite persistent configuration with local configuration

Please refer to Builtin Persist Repository List for more details about type of repository.

Data Source

It is divided into single data source configuration andmulti data source configuration. ShardingSphere‐
JDBC Supports all JDBC drivers and database connection pools.

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced
with other database drivers and connection pools.

5.1. ShardingSphere-JDBC 88

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/


Apache ShardingSphere document, v5.1.1

Configuration Item Explanation

dataSources: # Data sources configuration, multiple <data-source-name> available
<data-source-name>: # Data source name

dataSourceClassName: # Data source class name
driverClassName: # Class name of database driver, ref property of connection

pool
jdbcUrl: # Database URL, ref property of connection pool
username: # Database username, ref property of connection pool
password: # Database password, ref property of connection pool
# ... Other properties for data source pool

Example

dataSources:
ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:

ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root
password:

# Configure other data sources

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a YAML rule configurationmanual
for ShardingSphere‐JDBC.

Sharding

Configuration Item Explanation

rules:
- !SHARDING
tables: # Sharding table configuration

<logic-table-name> (+): # Logic table name
actualDataNodes (?): # Describe data source names and actual tables (refer to

5.1. ShardingSphere-JDBC 89



Apache ShardingSphere document, v5.1.1

Inline syntax rules)
databaseStrategy (?): # Databases sharding strategy, use default databases

sharding strategy if absent. sharding strategy below can choose only one.
standard: # For single sharding column scenario

shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name

complex: # For multiple sharding columns scenario
shardingColumns: # Sharding column names, multiple columns separated with

comma
shardingAlgorithmName: # Sharding algorithm name

hint: # Sharding by hint
shardingAlgorithmName: # Sharding algorithm name

none: # Do not sharding
tableStrategy: # Tables sharding strategy, same as database sharding strategy
keyGenerateStrategy: # Key generator strategy
column: # Column name of key generator
keyGeneratorName: # Key generator name

autoTables: # Auto Sharding table configuration
t_order_auto: # Logic table name
actualDataSources (?): # Data source names
shardingStrategy: # Sharding strategy
standard: # For single sharding column scenario

shardingColumn: # Sharding column name
shardingAlgorithmName: # Auto sharding algorithm name

bindingTables (+): # Binding tables
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>

broadcastTables (+): # Broadcast tables
- <table-name>
- <table-name>

defaultDatabaseStrategy: # Default strategy for database sharding
defaultTableStrategy: # Default strategy for table sharding
defaultKeyGenerateStrategy: # Default Key generator strategy
defaultShardingColumn: # Default sharding column name

# Sharding algorithm configuration
shardingAlgorithms:

<sharding-algorithm-name> (+): # Sharding algorithm name
type: # Sharding algorithm type
props: # Sharding algorithm properties
# ...

# Key generate algorithm configuration
keyGenerators:

<key-generate-algorithm-name> (+): # Key generate algorithm name
type: # Key generate algorithm type
props: # Key generate algorithm properties
# ...

5.1. ShardingSphere-JDBC 90



Apache ShardingSphere document, v5.1.1

Readwrite-splitting

Configuration Item Explanation

rules:
- !READWRITE_SPLITTING
dataSources:

<data-source-name> (+): # Logic data source name of readwrite-splitting
type: # Readwrite-splitting type, such as: Static, Dynamic
props:
auto-aware-data-source-name: # Auto aware data source name(Use with

database discovery)
write-data-source-name: # Write data source name
read-data-source-names: # Read data source names, multiple data source

names separated with comma
loadBalancerName: # Load balance algorithm name

# Load balance algorithm configuration
loadBalancers:

<load-balancer-name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
# ...

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Use Norms for more details about query consistent routing.

HA

rules:
- !DB_DISCOVERY
dataSources:

<data-source-name> (+): # Logic data source name
dataSourceNames: # Data source names
- <data-source>
- <data-source>

discoveryHeartbeatName: # Detect heartbeat name
discoveryTypeName: # Database discovery type name

# Heartbeat Configuration
discoveryHeartbeats:

<discovery-heartbeat-name> (+): # heartbeat name
props:
keep-alive-cron: # This is cron expression, such as：'0/5 * * * * ?'

# Database Discovery Configuration
discoveryTypes:

5.1. ShardingSphere-JDBC 91

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms


Apache ShardingSphere document, v5.1.1

<discovery-type-name> (+): # Database discovery type name
type: # Database discovery type, such as: MGR、openGauss
props (?):
group-name: 92504d5b-6dec-11e8-91ea-246e9612aaf1 # Required parameters for

database discovery types, such as MGR's group-name

Encryption

Configuration Item Explanation

rules:
- !ENCRYPT
tables:

<table-name> (+): # Encrypt table name
columns:
<column-name> (+): # Encrypt logic column name

cipherColumn: # Cipher column name
assistedQueryColumn (?): # Assisted query column name
plainColumn (?): # Plain column name
encryptorName: # Encrypt algorithm name

queryWithCipherColumn(?): # The current table whether query with cipher
column for data encrypt.

# Encrypt algorithm configuration
encryptors:

<encrypt-algorithm-name> (+): # Encrypt algorithm name
type: # Encrypt algorithm type
props: # Encrypt algorithm properties
# ...

queryWithCipherColumn: # Whether query with cipher column for data encrypt. User
you can use plaintext to query if have

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

rules:
- !SHADOW

dataSources:
shadowDataSource:
sourceDataSourceName: # Production data source name
shadowDataSourceName: # Shadow data source name

5.1. ShardingSphere-JDBC 92

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt


Apache ShardingSphere document, v5.1.1

tables:
<table-name>:
dataSourceNames: # Shadow table location shadow data source names

- <shadow-data-source>
shadowAlgorithmNames: # Shadow table location shadow algorithm names

- <shadow-algorithm-name>
defaultShadowAlgorithmName: # Default shadow algorithm name
shadowAlgorithms:
<shadow-algorithm-name> (+): # Shadow algorithm name
type: # Shadow algorithm type
props: # Shadow algorithm property configuration
# ...

Mixed Rules

The overlay between rule items in a mixed configuration is associated by the data source name and the
table name.

If the previous rule is aggregation‐oriented, the next rule needs to use the aggregated logical data source
name configured by the previous rule when configuring the data source. Similarly, if the previous rule
is table aggregation‐oriented, the next rule needs to use the aggregated logical table name configured
by the previous rule when configuring the table.

Configuration Item Explanation

dataSources: # Configure the real data source name.
write_ds:

# ...Omit specific configuration.
read_ds_0:

# ...Omit specific configuration.
read_ds_1:

# ...Omit specific configuration.

rules:
- !SHARDING # Configure data sharding rules.

tables:
t_user:
actualDataNodes: ds.t_user_${0..1} # Data source name 'ds' uses the logical

data source name of the readwrite-splitting configuration.
tableStrategy:

standard:
shardingColumn: user_id
shardingAlgorithmName: t_user_inline

shardingAlgorithms:
t_user_inline:

type: INLINE

5.1. ShardingSphere-JDBC 93



Apache ShardingSphere document, v5.1.1

props:
algorithm-expression: t_user_${user_id % 2}

- !ENCRYPT # Configure data encryption rules.
tables:
t_user: # Table `t_user` is the name of the logical table that uses the data

sharding configuration.
columns:

pwd:
plainColumn: plain_pwd
cipherColumn: cipher_pwd
encryptorName: encryptor_aes

encryptors:
encryptor_aes:

type: aes
props:

aes-key-value: 123456abc

- !READWRITE_SPLITTING # Configure readwrite-splitting rules.
dataSources:
ds: # The logical data source name 'ds' for readwrite-splitting is used in

data sharding.
type: Static
props:

write-data-source-name: write_ds # Use the real data source name 'write_
ds'.

read-data-source-names: read_ds_0, read_ds_1 # Use the real data source
name 'read_ds_0', 'read_ds_1'.

loadBalancerName: roundRobin
loadBalancers:
roundRobin:

type: ROUND_ROBIN

props:
sql-show: true

SQL-parser

Configuration Item Explanation

rules:
- !SQL_PARSER
sqlCommentParseEnabled: # Whether to parse SQL comments
sqlStatementCache: # SQL statement local cache

initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache

5.1. ShardingSphere-JDBC 94



Apache ShardingSphere document, v5.1.1

concurrencyLevel: # Local cache concurrency level, the maximum number of
concurrent updates allowed by threads
parseTreeCache: # Parse tree local cache

initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache
concurrencyLevel: # Local cache concurrency level, the maximum number of

concurrent updates allowed by threads

5.1.3 Spring Boot Starter

Overview

ShardingSphere‐JDBC provides official Spring Boot Starter to make convenient for developers to inte‐
grate ShardingSphere‐JDBC and Spring Boot.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Use ShardingSphere Data Source in Spring

Developer can inject to use native JDBC or ORM frameworks such as JPA, Hibernate orMyBatis through
the DataSource.

Take native JDBC usage as an example:

@Resource
private DataSource dataSource;

Mode Configuration

Default is Memory mode.

5.1. ShardingSphere-JDBC 95



Apache ShardingSphere document, v5.1.1

Configuration Item Explanation

spring.shardingsphere.mode.type= # Type of mode configuration. Values could be:
Memory, Standalone, Cluster
spring.shardingsphere.mode.repository= # Persist repository configuration. Memory
type does not need persist
spring.shardingsphere.mode.overwrite= # Whether overwrite persistent configuration
with local configuration

Memory Mode

spring.shardingsphere.mode.type=Memory

Standalone Mode

spring.shardingsphere.mode.type=Standalone
spring.shardingsphere.mode.repository.type= # Type of persist repository
spring.shardingsphere.mode.repository.props.<key>= # Properties of persist
repository
spring.shardingsphere.mode.overwrite= # Whether overwrite persistent configuration
with local configuration

Cluster Mode

spring.shardingsphere.mode.type=Cluster
spring.shardingsphere.mode.repository.type= # Type of persist repository
spring.shardingsphere.mode.repository.props.namespace= # Namespace of registry
center
spring.shardingsphere.mode.repository.props.server-lists= # Server lists of
registry center
spring.shardingsphere.mode.repository.props.<key>= # Properties of persist
repository
spring.shardingsphere.mode.overwrite= # Whether overwrite persistent configuration
with local configuration

Please refer to Builtin Persist Repository List for more details about type of repository.

5.1. ShardingSphere-JDBC 96

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/


Apache ShardingSphere document, v5.1.1

Data Source

Use Native Data Source

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Actual data source name, multiple split
by `,`

# <actual-data-source-name> indicate name of data source name
spring.shardingsphere.datasource.<actual-data-source-name>.type= # Full class name
of database connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.driver-class-name= #
Class name of database driver, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.jdbc-url= # Database
URL, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.username= # Database
username, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.password= # Database
password, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.<xxx>= # ... Other
properties for data source pool

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced
with other database drivers and connection pools.

# Configure actual data sources
spring.shardingsphere.datasource.names=ds1,ds2

# Configure the 1st data source
spring.shardingsphere.datasource.ds1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds1.jdbc-url=jdbc:mysql://localhost:3306/ds1
spring.shardingsphere.datasource.ds1.username=root
spring.shardingsphere.datasource.ds1.password=

# Configure the 2nd data source
spring.shardingsphere.datasource.ds2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds2.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds2.jdbc-url=jdbc:mysql://localhost:3306/ds2
spring.shardingsphere.datasource.ds2.username=root
spring.shardingsphere.datasource.ds2.password=

5.1. ShardingSphere-JDBC 97



Apache ShardingSphere document, v5.1.1

Use JNDI Data Source

If developer plan to use ShardingSphere‐JDBC in Web Server (such as Tomcat) with JNDI data source,
spring.shardingsphere.datasource.${datasourceName}.jndiName can be used as an al‐
ternative to series of configuration of data source.

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Actual data source name, multiple split
by `,`

# <actual-data-source-name> indicate name of data source name
spring.shardingsphere.datasource.<actual-data-source-name>.jndi-name= # JNDI of
data source

Example

# Configure actual data sources
spring.shardingsphere.datasource.names=ds1,ds2

# Configure the 1st data source
spring.shardingsphere.datasource.ds1.jndi-name=java:comp/env/jdbc/ds1
# Configure the 2nd data source
spring.shardingsphere.datasource.ds2.jndi-name=java:comp/env/jdbc/ds2

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a Spring Boot Starter rule configu‐
ration manual for ShardingSphere‐JDBC.

Sharding

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

# Standard sharding table configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= #
Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means sharding
databases only.

5.1. ShardingSphere-JDBC 98



Apache ShardingSphere document, v5.1.1

# Databases sharding strategy, use default databases sharding strategy if absent.
sharding strategy below can choose only one.

# For single sharding column scenario
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-algorithm-name= # Sharding algorithm name

# For multiple sharding columns scenario
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-columns= # Sharding column names, multiple columns separated with comma
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-algorithm-name= # Sharding algorithm name

# Sharding by hint
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.hint.
sharding-algorithm-name= # Sharding algorithm name

# Tables sharding strategy, same as database sharding strategy
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= #
Omitted

# Auto sharding table configuraiton
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.actual-data-
sources= # data source names

spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-algorithm-name= # Auto sharding algorithm name

# Key generator strategy configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # Column name of key generator
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # Key generator name

spring.shardingsphere.rules.sharding.binding-tables[0]= # Binding table name
spring.shardingsphere.rules.sharding.binding-tables[1]= # Binding table name
spring.shardingsphere.rules.sharding.binding-tables[x]= # Binding table name

spring.shardingsphere.rules.sharding.broadcast-tables[0]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[1]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[x]= # Broadcast tables

spring.shardingsphere.sharding.default-database-strategy.xxx= # Default strategy
for database sharding

5.1. ShardingSphere-JDBC 99



Apache ShardingSphere document, v5.1.1

spring.shardingsphere.sharding.default-table-strategy.xxx= # Default strategy for
table sharding
spring.shardingsphere.sharding.default-key-generate-strategy.xxx= # Default Key
generator strategy
spring.shardingsphere.sharding.default-sharding-column= # Default sharding column
name

# Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # Sharding algorithm type
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx=# Sharding algorithm properties

# Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # Key generate algorithm type
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # Key generate algorithm properties

Please refer to Built‐in Sharding Algorithm List and Built‐in Key Generate Algorithm List for more de‐
tails about type of algorithm.

Attention

Inline expression identifier can use ${...} or $->{...}, but ${...} is conflict with spring place‐
holder of properties, so use $->{...} on spring environment is better.

Readwrite splitting

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.type= # Readwrite-splitting type, such as: Static, Dynamic
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.auto-aware-data-source-name= # Auto aware data source
name(Use with database discovery)
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.write-data-source-name= # Write data source name
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.read-data-source-names= # Read data source names, multiple
data source names separated with comma
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # Load balance algorithm name

5.1. ShardingSphere-JDBC 100

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen


Apache ShardingSphere document, v5.1.1

# Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # Load balance algorithm type
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx= # Load balance algorithm properties

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Use Norms for more details about query consistent routing.

HA

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.data-source-names= # Data source names, multiple data source
names separated with comma. Such as: ds_0, ds_1
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-heartbeat-name= # Detect heartbeat name
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-type-name= # Database discovery type name

spring.shardingsphere.rules.database-discovery.discovery-heartbeats.<discovery-
heartbeat-name>.props.keep-alive-cron= # This is cron expression, such as：'0/5 * *
* * ?'

spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type= # Database discovery type, such as: MGR、openGauss
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.group-name= # Required parameters for database discovery types, such as
MGR's group-name

Encryption

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.encrypt.tables.<table-name>.query-with-cipher-column= #
Whether the table uses cipher columns for query
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.

5.1. ShardingSphere-JDBC 101

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms


Apache ShardingSphere document, v5.1.1

cipher-column= # Cipher column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # Assisted query column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # Plain column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # Encrypt algorithm name

# Encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= #
Encrypt algorithm type
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
# Encrypt algorithm properties

spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # Whether query with
cipher column for data encrypt. User you can use plaintext to query if have

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.source-data-
source-name= # Production data source name
spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.shadow-data-
source-name= # Shadow data source name

spring.shardingsphere.rules.shadow.tables.<table-name>.data-source-names= # Shadow
table location shadow data source names (multiple values are separated by ",")
spring.shardingsphere.rules.shadow.tables.<table-name>.shadow-algorithm-names= #
Shadow table location shadow algorithm names (multiple values are separated by ",")

spring.shardingsphere.rules.shadow.defaultShadowAlgorithmName= # Default shadow
algorithm name，optional item.

spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.type=
# Shadow algorithm type
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.props.
xxx= # Shadow algorithm property configuration

5.1. ShardingSphere-JDBC 102

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt


Apache ShardingSphere document, v5.1.1

Mixed Rules

Configuration Item Explanation

# data source configuration
spring.shardingsphere.datasource.names= write-ds0,write-ds1,write-ds0-read0,write-
ds1-read0

spring.shardingsphere.datasource.write-ds0.jdbc-url= # Database URL connection
spring.shardingsphere.datasource.write-ds0.type= # Database connection pool type
name
spring.shardingsphere.datasource.write-ds0.driver-class-name= # Database driver
class name
spring.shardingsphere.datasource.write-ds0.username= # Database username
spring.shardingsphere.datasource.write-ds0.password= # Database password
spring.shardingsphere.datasource.write-ds0.xxx= # Other properties of database
connection pool

spring.shardingsphere.datasource.write-ds1.url= # Database URL connection
# ...Omit specific configuration.

spring.shardingsphere.datasource.write-ds0-read0.url= # Database URL connection
# ...Omit specific configuration.

spring.shardingsphere.datasource.write-ds1-read0.url= # Database URL connection
# ...Omit specific configuration.

# Sharding rules configuration
# Databases sharding strategy
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
column=user_id
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
algorithm-name=default-database-strategy-inline
# Binding table rules configuration ,and multiple groups of binding-tables
configured with arrays
spring.shardingsphere.rules.sharding.binding-tables[0]=t_user,t_user_detail
spring.shardingsphere.rules.sharding.binding-tables[1]= # Binding table names,
multiple table name are separated by commas
spring.shardingsphere.rules.sharding.binding-tables[x]= # Binding table names,
multiple table name are separated by commas
# Broadcast table rules configuration
spring.shardingsphere.rules.sharding.broadcast-tables= # Broadcast table names,
multiple table name are separated by commas

# Table sharding strategy
# The enumeration value of `ds_$->{0..1}` is the name of the logical data source
configured with readwrite-splitting
spring.shardingsphere.rules.sharding.tables.t_user.actual-data-nodes=ds_$->{0..1}.

5.1. ShardingSphere-JDBC 103



Apache ShardingSphere document, v5.1.1

t_user_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-algorithm-name=user-table-strategy-inline

# Data encrypt configuration
# Table `t_user` is the name of the logical table that uses for data sharding
configuration.
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor

# Data encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc

# Key generate strategy configuration
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.
column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.key-
generator-name=snowflake

# Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-
inline.type=INLINE
# The enumeration value of `ds_$->{user_id % 2}` is the name of the logical data
source configured with readwrite-splitting
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-
inline.algorithm-expression=ds$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.algorithm-expression=t_user_$->{user_id % 2}

# Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE

# read query configuration
# ds_0,ds_1 is the logical data source name of the readwrite-splitting

5.1. ShardingSphere-JDBC 104



Apache ShardingSphere document, v5.1.1

spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.type=Static
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.props.write-data-
source-name=write-ds0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.props.read-data-
source-names=write-ds0-read0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.load-balancer-
name=read-random
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.type=Static
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.props.write-data-
source-name=write-ds1
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.props.read-data-
source-names=write-ds1-read0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.load-balancer-
name=read-random

# Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.read-random.
type=RANDOM

SQL Parser

Configuration Item Explanation

spring.shardingsphere.rules.sql-parser.sql-comment-parse-enabled= # Whether to
parse SQL comments

spring.shardingsphere.rules.sql-parser.sql-statement-cache.initial-capacity= #
Initial capacity of SQL statement local cache
spring.shardingsphere.rules.sql-parser.sql-statement-cache.maximum-size= # Maximum
capacity of SQL statement local cache
spring.shardingsphere.rules.sql-parser.sql-statement-cache.concurrency-level= # SQL
statement local cache concurrency level, the maximum number of concurrent updates
allowed by threads

spring.shardingsphere.rules.sql-parser.parse-tree-cache.initial-capacity= # Initial
capacity of parse tree local cache
spring.shardingsphere.rules.sql-parser.parse-tree-cache.maximum-size= # Maximum
local cache capacity of parse tree
spring.shardingsphere.rules.sql-parser.parse-tree-cache.concurrency-level= # The
local cache concurrency level of the parse tree. The maximum number of concurrent
updates allowed by threads

5.1. ShardingSphere-JDBC 105



Apache ShardingSphere document, v5.1.1

5.1.4 Spring Namespace

Overview

ShardingSphere‐JDBC provides official Spring Namespace to make convenient for developers to inte‐
grate ShardingSphere‐JDBC and Spring.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Spring Bean

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‐5.0.0.
xsd

<shardingsphere:data‐source />

N ame •
T y p e *

Description

id A t t r i b u t e Spring Bean Id
sch ema‐ name (?) A t t r i b u t e JDBC data source alias
d ata‐ sour ce‐n ames A t t r i b u t e Data source name, multiple

data source names are sepa‐
rated by commas

r ule‐ refs A t t r i b u t e Rule name, multiple rule
names are separated by com‐
mas

mode (?) T a g Mode configuration
p rops (?) T a g Properties configuration,

Please refer to Properties
Configuration for more details

5.1. ShardingSphere-JDBC 106

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.xsd
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/props
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/props


Apache ShardingSphere document, v5.1.1

Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=

"..." rule-refs="...">
<shardingsphere:mode type="..." />
<props>

<prop key="xxx.xxx">${xxx.xxx}</prop>
</props>

</shardingsphere:data-source>
</beans>

Use ShardingSphere Data Source in Spring

Same with Spring Boot Starter.

Mode Configuration

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‐5.1.0.
xsd

<shardingsphere:mode />

Name Ty pe Description D efault
Value

type Att rib
ute

Type of mode configuration. Values could be: Memory,
Standalone, Cluster

reposi tory‐
ref (?)

Att rib
ute

Persist repository configuration. Memory type does not
need persist

o verwrite (?) Att rib
ute

Whether overwrite persistent configuration with local con‐
figuration

false

5.1. ShardingSphere-JDBC 107

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.xsd


Apache ShardingSphere document, v5.1.1

Memory Mode

It is the default value.

Example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd">

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"..." rule-refs="..." />
</beans>

Standalone Mode

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/mode‐repository/standalone
/repository‐5.0.0.xsd

Name Type Description

id Attribute Name of persist repository bean
type Attribute Type of persist repository
props (?) Tag Properties of persist repository

Example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:standalone="http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone"

5.1. ShardingSphere-JDBC 108

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd


Apache ShardingSphere document, v5.1.1

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-

beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

datasource
http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone
http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone/repository.xsd">
<standalone:repository id="standaloneRepository" type="File">

<props>
<prop key="path">target</prop>

</props>
</standalone:repository>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"..." rule-refs="..." >

<shardingsphere:mode type="Standalone" repository-ref="standaloneRepository
" overwrite="true" />

</shardingsphere:data-source>
</beans>

Cluster Mode

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/mode‐repository/cluster/re
pository‐5.0.0.xsd

Name Type Description

id Attribute Name of persist repository bean
type Attribute Type of persist repository
namespace Attribute Namespace of registry center
server‐lists Attribute Server lists of registry center
props (?) Tag Properties of persist repository

5.1. ShardingSphere-JDBC 109

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd


Apache ShardingSphere document, v5.1.1

Example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode-

repository/cluster"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster/repository.xsd">

<cluster:repository id="clusterRepository" type="Zookeeper" namespace=
"regCenter" server-lists="localhost:3182">

<props>
<prop key="max-retries">3</prop>
<prop key="operation-timeout-milliseconds">1000</prop>

</props>
</cluster:repository>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"..." rule-refs="...">

<shardingsphere:mode type="Cluster" repository-ref="clusterRepository"
overwrite="true" />

</shardingsphere:data-source>
</beans>

Please refer to Builtin Persist Repository List for more details about type of repository.

5.1. ShardingSphere-JDBC 110

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/


Apache ShardingSphere document, v5.1.1

Data Source

Any data source configured as spring bean can be cooperated with spring namespace.

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced
with other database drivers and connection pools.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<bean id="ds1" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close

">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="ds2" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close
">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds2" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"ds1,ds2" rule-refs="..." />
</beans>

5.1. ShardingSphere-JDBC 111



Apache ShardingSphere document, v5.1.1

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a Spring namespace rule configu‐
ration manual for ShardingSphere‐JDBC.

Sharding

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‐5.1.0.xsd

<sharding:rule />

Name T ype Description

id A ttri bute Spring Bean Id
table‐rules (?) Tag Sharding table rule configuration
auto‐table‐rules (?) Tag Automatic sharding table rule configuration
binding‐table‐rules (?) Tag Binding table rule configuration
broadcast‐table‐rules (?) Tag Broadcast table rule configuration
def ault‐database‐strategy‐ref (?) A ttri bute Default database strategy name
default‐table‐strategy‐ref (?) A ttri bute Default table strategy name
default ‐key‐generate‐strategy‐ref (?) A ttri bute Default key generate strategy name
default‐sharding‐column (?) A ttri bute Default sharding column name

<sharding:table‐rule />

5.1. ShardingSphere-JDBC 112

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.1.0.xsd


Apache ShardingSphere document, v5.1.1

Name Type Description

logic‐table At
trib‐
ute

Logic table name

actual‐
data‐nodes

At
trib‐
ute

Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means shard‐
ing databases only.

actual‐
data‐
sources

At
trib‐
ute

Data source names for auto sharding table

database‐
strategy‐
ref

At
trib‐
ute

Database strategy name for standard sharding table

table‐
strategy‐
ref

At
trib‐
ute

Table strategy name for standard sharding table

sharding‐
strategy‐
ref

At
trib‐
ute

sharding strategy name for auto sharding table

key‐
generate‐
strategy‐
ref

At
trib‐
ute

Key generate strategy name

<sharding:binding‐table‐rules />

Name Type Description

binding‐table‐rule (+) Tag Binding table rule configuration

<sharding:binding‐table‐rule />

Name •
Type*

Description

logi c‐tables Attr ibute Binding table name, multiple
tables separated with comma

<sharding:broadcast‐table‐rules />

Name Type Description

broadcast‐table‐rule (+) Tag Broadcast table rule configuration

<sharding:broadcast‐table‐rule />

5.1. ShardingSphere-JDBC 113



Apache ShardingSphere document, v5.1.1

Name Type Description

table Attribute Broadcast table name

<sharding:standard‐strategy />

Name Type Description

id Attribute Standard sharding strategy name
sharding‐column Attribute Sharding column name
algorithm‐ref Attribute Sharding algorithm name

<sharding:complex‐strategy />

Name T ype Description

id A ttri bute Complex sharding strategy name
shardi ng‐
columns

A ttri bute Sharding column names, multiple columns separated with
comma

alg orithm‐ref A ttri bute Sharding algorithm name

<sharding:hint‐strategy />

Name Type Description

id Attribute Hint sharding strategy name
algorithm‐ref Attribute Sharding algorithm name

<sharding:none‐strategy />

Name Type Description

id Attribute Sharding strategy name

<sharding:key‐generate‐strategy />

Name Type Description

id Attribute Key generate strategy name
column Attribute Key generate column name
algorithm‐ref Attribute Key generate algorithm name

<sharding:sharding‐algorithm />

Name Type Description

id Attribute Sharding algorithm name
type Attribute Sharding algorithm type
props (?) Tag Sharding algorithm properties

5.1. ShardingSphere-JDBC 114



Apache ShardingSphere document, v5.1.1

<sharding:key‐generate‐algorithm />

Name Type Description

id Attribute Key generate algorithm name
type Attribute Key generate algorithm type
props (?) Tag Key generate algorithm properties

Please refer to Built‐in Sharding Algorithm List and Built‐in Key Generate Algorithm List for more de‐
tails about type of algorithm.

Attention

Inline expression identifier can use ${...} or $->{...}, but ${...} is conflict with spring place‐
holder of properties, so use $->{...} on spring environment is better.

Readwrite-splitting

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/readwrite‐splitting/readwrit
e‐splitting‐5.1.0.xsd

<readwrite‐splitting:rule />

Name •
Type*

Description

id Attr ibute Spring Bean Id
data‐source‐rule (+) Tag Readwrite‐splitting data source

rule configuration

<readwrite‐splitting:data‐source‐rule />

Name Ty pe Description

id Att
rib
ute

Readwrite‐splitting data source rule name

type Att
rib
ute

Readwrite‐splitting type, such as: Static、Dynamic

props Tag Readwrite‐splitting required properties. Static: wri te‐data‐source‐name、
read‐data‐source‐names, Dynamic: auto‐aware‐data‐source‐name

load‐balance ‐
algorithm‐ref

Att
rib
ute

Load balance algorithm name

5.1. ShardingSphere-JDBC 115

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.0.xsd


Apache ShardingSphere document, v5.1.1

<readwrite‐splitting:load‐balance‐algorithm />

Name Type Description

id Attribute Load balance algorithm name
type Attribute Load balance algorithm type
props (?) Tag Load balance algorithm properties

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Use Norms for more details about query consistent routing.

HA

Configuration Item Explanation

Namespace：http://shardingsphere.apache.org/schema/shardingsphere/database‐discovery/databas
e‐discovery‐5.1.0.xsd

<database‐discovery:rule />

Name Type Description

id Attribute Spring Bean Id
data‐source‐rule (+) tag Data source rule configuration
discovery‐heartbeat (+) tag Detect heartbeat rule configuration

<database‐discovery:data‐source‐rule />

Name T yp e Description

id A tt ri
bu te

Data source rule Id

data‐ source‐names A tt ri
bu te

Data source names, multiple data source names separated with
comma. Such as: ds_0, ds_1

discovery‐he
artbeat‐name

A tt ri
bu te

Detect heartbeat name

discove ry‐type‐
name

A tt ri
bu te

Database discovery type name

<database‐discovery:discovery‐heartbeat />

5.1. ShardingSphere-JDBC 116

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd


Apache ShardingSphere document, v5.1.1

Name •
Type*

Description

id Attr ibute Detect heartbeat Id
props tag Detect heartbeat attribute

configuration, keep‐alive‐cron
configuration, cron expres‐
sion. Such as: ‘0/5 * * * *
?’

<database‐discovery:discovery‐type />

N ame •
Type*

Description

id Attr ibute Database discovery type Id
type Attr ibute Database discovery type, such

as: MGR、openGauss
p rops (?) tag Required parameters for

database discovery types, such
as MGR’s group‐name

Encryption

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt‐5.1.0.xsd

<encrypt:rule />

Name •
T y p e *

Description Def ault Va lue

id A t t r i b u t e Spring Bean Id
que ryWithCip herCol‐
umn (?)

A t t r i b u t e Whether querywith ci‐
pher column for data
encrypt. User you can
use plaintext to query
if have

true

table (+) T a g Encrypt table configu‐
ration

<encrypt:table />

5.1. ShardingSphere-JDBC 117

http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.1.0.xsd


Apache ShardingSphere document, v5.1.1

Name •
T y p e *

Description

name A t t r i b u t e Encrypt table name
column (+) T a g Encrypt column configuration
que ry‐with‐ciph er‐column(?)
(?)

A t t r i b u t e Whether the table query with
cipher column for data en‐
crypt. User you can use plain‐
text to query if have

<encrypt:column />

Name Type Description

logic‐column Attribute Column logic name
cipher‐column Attribute Cipher column name
assisted‐query‐column (?) Attribute Assisted query column name
plain‐column (?) Attribute Plain column name
encrypt‐algorithm‐ref Attribute Encrypt algorithm name

<encrypt:encrypt‐algorithm />

Name Type Description

id Attribute Encrypt algorithm name
type Attribute Encrypt algorithm type
props (?) Tag Encrypt algorithm properties

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow‐5.1.0.xsd

<shadow:rule />

Name Type Description

id Attribute Spring Bean Id
d ata‐source(?) Tag Shadow data source configuration
defaul t‐shadow‐algo rithm‐name(?) Tag Default shadow algorithm configuration
sh adow‐table(?) Tag Shadow table configuration

<shadow:data‐source />

5.1. ShardingSphere-JDBC 118

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt
http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow-5.1.0.xsd


Apache ShardingSphere document, v5.1.1

Name Type Description

id Attribute Spring Bean Id
source‐data‐source‐name Attribute Production data source name
shadow‐data‐source‐name Attribute Shadow data source name

<shadow:default‐shadow‐algorithm‐name />

Name Type Description

name Attribute Default shadow algorithm name

<shadow:shadow‐table />

Name Type Description

name At‐
tribute

Shadow table name

data‐
sources

At‐
tribute

Shadow table location shadow data source names (multiple values are sep‐
arated by“,”)

algorithm
(?)

Tag Shadow table location shadow algorithm configuration

<shadow:algorithm />

Name Type Description

shadow‐algorithm‐ref Attribute Shadow table location shadow algorithm name

<shadow:shadow‐algorithm />

Name Type Description

id Attribute Shadow algorithm name
type Attribute Shadow algorithm type
props (?) Attribute Shadow algorithm property configuration

SQL Parser

Configuration Item Explanation

Namespace：http://shardingsphere.apache.org/schema/shardingsphere/sql‐parser/sql‐parser‐5.1.0.
xsd

<sql‐parser:rule />

5.1. ShardingSphere-JDBC 119

http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.1.0.xsd


Apache ShardingSphere document, v5.1.1

Name Type Description

id Attribute Spring Bean Id
sql‐comment‐parse‐enable Attribute Whether to parse SQL comments
parse‐tree‐cache‐ref Attribute Parse tree local cache name
sql‐statement‐cache‐ref Attribute SQL statement local cache name

<sql‐parser:cache‐option />

Name Ty pe Description

id Att rib
ute

Local cache configuration item name

initial‐
capacity

Att rib
ute

Initial capacity of local cache

maximum‐
size

Att rib
ute

Maximum capacity of local cache

concurrency‐
level

Att rib
ute

Local cache concurrency level, the maximum number of concurrent up‐
dates allowed by threads

Mixed Rules

Configuration Item Explanation

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:readwrite-splitting="http://shardingsphere.apache.org/schema/

shardingsphere/readwrite-splitting"
xmlns:encrypt="http://shardingsphere.apache.org/schema/shardingsphere/

encrypt"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting/readwrite-splitting.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
encrypt

http://shardingsphere.apache.org/schema/shardingsphere/

5.1. ShardingSphere-JDBC 120



Apache ShardingSphere document, v5.1.1

encrypt/encrypt.xsd
">

<bean id="write_ds0" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/write_ds?

useSSL=false&amp;useUnicode=true&amp;characterEncoding=UTF-8" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="read_ds0_0" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- ...Omit specific configuration. -->
</bean>

<bean id="read_ds0_1" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- ...Omit specific configuration. -->
</bean>

<bean id="write_ds1" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- ...Omit specific configuration. -->
</bean>

<bean id="read_ds1_0" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- ...Omit specific configuration. -->
</bean>

<bean id="read_ds1_1" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- ...Omit specific configuration. -->
</bean>

<!-- load balance algorithm configuration for readwrite-splitting -->
<readwrite-splitting:load-balance-algorithm id="randomStrategy" type="RANDOM" /

>

<!-- readwrite-splitting rule configuration -->
<readwrite-splitting:rule id="readWriteSplittingRule">

<readwrite-splitting:data-source-rule id="ds_0" type="Static" load-balance-
algorithm-ref="randomStrategy">

<props>
<prop key="write-data-source-name">write_ds0</prop>
<prop key="read-data-source-names">read_ds0_0, read_ds0_1</prop>

</props>

5.1. ShardingSphere-JDBC 121



Apache ShardingSphere document, v5.1.1

</readwrite-splitting:data-source-rule>
<readwrite-splitting:data-source-rule id="ds_1" type="Static" load-balance-

algorithm-ref="randomStrategy">
<props>

<prop key="write-data-source-name">write_ds1</prop>
<prop key="read-data-source-names">read_ds1_0, read_ds1_1</prop>

</props>
</readwrite-splitting:data-source-rule>

</readwrite-splitting:rule>

<!-- sharding strategy configuration -->
<sharding:standard-strategy id="databaseStrategy" sharding-column="user_id"

algorithm-ref="inlineDatabaseStrategyAlgorithm" />
<sharding:standard-strategy id="orderTableStrategy" sharding-column="order_id"

algorithm-ref="inlineOrderTableStrategyAlgorithm" />
<sharding:standard-strategy id="orderItemTableStrategy" sharding-column="order_

item_id" algorithm-ref="inlineOrderItemTableStrategyAlgorithm" />

<sharding:sharding-algorithm id="inlineDatabaseStrategyAlgorithm" type="INLINE
">

<props>
<!-- the expression enumeration is the logical data source name of the

readwrite-splitting configuration -->
<prop key="algorithm-expression">ds_${user_id % 2}</prop>

</props>
</sharding:sharding-algorithm>
<sharding:sharding-algorithm id="inlineOrderTableStrategyAlgorithm" type=

"INLINE">
<props>

<prop key="algorithm-expression">t_order_${order_id % 2}</prop>
</props>

</sharding:sharding-algorithm>
<sharding:sharding-algorithm id="inlineOrderItemTableStrategyAlgorithm" type=

"INLINE">
<props>

<prop key="algorithm-expression">t_order_item_${order_item_id % 2}</
prop>

</props>
</sharding:sharding-algorithm>

<!-- sharding rule configuration -->
<sharding:rule id="shardingRule">

<sharding:table-rules>
<!-- the expression 'ds_${0..1}' enumeration is the logical data source

name of the readwrite-splitting configuration -->
<sharding:table-rule logic-table="t_order" actual-data-nodes="ds_${0..

1}.t_order_${0..1}" database-strategy-ref="databaseStrategy" table-strategy-ref=
"orderTableStrategy" key-generate-strategy-ref="orderKeyGenerator"/>

5.1. ShardingSphere-JDBC 122



Apache ShardingSphere document, v5.1.1

<sharding:table-rule logic-table="t_order_item" actual-data-nodes="ds_$
{0..1}.t_order_item_${0..1}" database-strategy-ref="databaseStrategy" table-
strategy-ref="orderItemTableStrategy" key-generate-strategy-ref="itemKeyGenerator"/
>

</sharding:table-rules>
<sharding:binding-table-rules>

<sharding:binding-table-rule logic-tables="t_order, t_order_item"/>
</sharding:binding-table-rules>
<sharding:broadcast-table-rules>

<sharding:broadcast-table-rule table="t_address"/>
</sharding:broadcast-table-rules>

</sharding:rule>

<!-- data encrypt configuration -->
<encrypt:encrypt-algorithm id="name_encryptor" type="AES">

<props>
<prop key="aes-key-value">123456</prop>

</props>
</encrypt:encrypt-algorithm>
<encrypt:encrypt-algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user">

<encrypt:column logic-column="username" cipher-column="username" plain-
column="username_plain" encrypt-algorithm-ref="name_encryptor" />

<encrypt:column logic-column="pwd" cipher-column="pwd" assisted-query-
column="assisted_query_pwd" encrypt-algorithm-ref="pwd_encryptor" />

</encrypt:table>
</encrypt:rule>

<!-- datasource configuration -->
<!-- the element data-source-names's value is all of the datasource name -->
<shardingsphere:data-source id="readQueryDataSource" data-source-names="write_

ds0, read_ds0_0, read_ds0_1, write_ds1, read_ds1_0, read_ds1_1"
rule-refs="readWriteSplittingRule, shardingRule, encryptRule" >
<props>

<prop key="sql-show">true</prop>
</props>

</shardingsphere:data-source>
</beans>

5.1. ShardingSphere-JDBC 123



Apache ShardingSphere document, v5.1.1

5.1.5 Properties Configuration

Apache ShardingSphere provides the way of property configuration to configure system level configu‐
ration.

5.1. ShardingSphere-JDBC 124



Apache ShardingSphere document, v5.1.1

Configuration Item Explanation

N ame •
D a t a T y p e *

Description •
D e f a u l t V a l u e *

sql‐ show (?) b o o l e a n Whether show SQL
or not in log. Print
SQL details can help
developers debug
easier. The log details
include: logic SQL,
actual SQL and SQL
parse result. Enable
this property will log
into log topic Shard-
ingSphere-SQL, log
level is INFO

f a l s e

sq l‐si mple (?) b o o l e a n Whether show SQL de‐
tails in simple style

f a l s e

kern el‐e xecu tor‐ size
(?)

i n t The max thread size
of worker group to
execute SQL. One
ShardingSphereData‐
Source will use a
independent thread
pool, it does not share
thread pool even dif‐
ferent data source in
same JVM

i n f i n i t e

ma x‐co nnec tion s‐si
ze‐p er‐q uery (?)

i n t Max opened connec‐
tion size for each
query

1

chec k‐ta ble‐ meta
data ‐ena bled (?)

b o o l e a n Whether validate table
meta data consistency
when application
startup or updated

f a l s e

c heck ‐dup lica te‐t
able ‐ena bled (?)

b o o l e a n Whether validate du‐
plicate table when ap‐
plication startup or up‐
dated

f a l s e

sq l‐fe dera tion ‐ena
bled (?)

b o o l e a n Whether enable SQL
federation

f a l s e

5.1. ShardingSphere-JDBC 125



Apache ShardingSphere document, v5.1.1

5.1.6 Builtin Algorithm

Introduction

Apache ShardingSphere allows developers to implement algorithms via SPI; At the same time, Apache
ShardingSphere also provides a couple of builtin algorithms for simplify developers.

Usage

The builtin algorithms are configured by type and props. Type is defined by the algorithm in SPI, and
props is used to deliver the customized parameters of the algorithm.

No matter which configuration type is used, the configured algorithm is named and passed to the cor‐
responding rule configuration. This chapter distinguishes and lists all the builtin algorithms of Apache
ShardingSphere according to its functions for developers’reference.

Metadata Repository

File Repository

Type: File

Mode: Standalone

Attributes:

Name Type Description Default Value

path String Path for metadata persist .shardingsphere

ZooKeeper Repository

Type: ZooKeeper

Mode: Cluster

Attributes:

Name Type Description Default Value

retryInte rvalMilliseconds int Milliseconds of retry interval 500
maxRetries int Max retries of client connection 3
t imeToLiveSeconds int Seconds of ephemeral data live 60
operationTim eoutMilliseconds int Milliseconds of operation timeout 500
digest String Password of login

5.1. ShardingSphere-JDBC 126



Apache ShardingSphere document, v5.1.1

Etcd Repository

Type: Etcd

Mode: Cluster

Attributes:

Name Type Description Default Value

timeToLiveSeconds long Seconds of ephemeral data live 30
connectionTimeout long Seconds of connection timeout 30

Sharding Algorithm

Auto Sharding Algorithm

Modulo Sharding Algorithm

Type: MOD

Attributes:

Name DataType Description

sharding‐count int Sharding count

Hash Modulo Sharding Algorithm

Type: HASH_MOD

Attributes:

Name DataType Description

sharding‐count int Sharding count

Volume Based Range Sharding Algorithm

Type: VOLUME_RANGE

Attributes:

Name DataType Description

range‐lower long Range lower bound, throw exception if lower than bound
range‐upper long Range upper bound, throw exception if upper than bound
sharding‐volume long Sharding volume

5.1. ShardingSphere-JDBC 127



Apache ShardingSphere document, v5.1.1

Boundary Based Range Sharding Algorithm

Type: BOUNDARY_RANGE

Attributes:

Name Data
Type

Description

shardi ng‐
ranges

S tring Rangeof shardingborder,multiple boundaries separatedby commas

Auto Interval Sharding Algorithm

Type: AUTO_INTERVAL

Attributes:

Name •
D a t a T y p e *

Description

da tet ime ‐lo wer S t r i n g Shard datetime begin bound‐
ary, pattern: yyyy‐MM‐dd
HH:mm:ss

da tet ime ‐up per S t r i n g Shard datetime end bound‐
ary, pattern: yyyy‐MM‐dd
HH:mm:ss

s har din g‐s eco nds l o n g Max seconds for the data in
one shard, allows sharding
key timestamp format seconds
with time precision, but time
precision after seconds is
automatically erased

5.1. ShardingSphere-JDBC 128



Apache ShardingSphere document, v5.1.1

Standard Sharding Algorithm

Apache ShardingSphere built‐in standard sharding algorithm are:

Inline Sharding Algorithm

With Groovy expressions, InlineShardingStrategy provides single‐key support for the sharding
operation of = and IN in SQL. Simple sharding algorithms can be used through a simple configuration
to avoid laborious Java code developments. For example, t_user_$->{u_id % 8}means table t_user
is divided into 8 tables according to u_id, with table names from t_user_0 to t_user_7. Please refer
to Inline Expression for more details.

Type: INLINE

Attributes:

Name •
D a t a T y p e *

Description D efa ult Val ue

algori thm‐expression S t r i n g Inline expression
sharding algorithm

•

allow‐rang e‐query‐
with‐i nline‐sharding
(?)

b o o l e a n Whether range query
is allowed. Note:
range query will
ignore sharding strat‐
egy and conduct full
routing

fa lse

Interval Sharding Algorithm

Type: INTERVAL

Attributes:

5.1. ShardingSphere-JDBC 129

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/inline-expression/


Apache ShardingSphere document, v5.1.1

Name •
D a t a T y p e *

Description •
D e f a u l t V a l u e *

date time‐p attern S t r i n g Timestamp pattern of
sharding value, must
can be transformed to
Java LocalDateTime.
For example: yyyy‐
MM‐dd HH:mm:ss

•

da tetime ‐lower S t r i n g Datetime sharding
lower boundary,
pattern is defined
datetime-pattern

•

da tetime ‐upper (?) S t r i n g Datetime sharding
upper boundary,
pattern is defined
datetime-pattern

N o w

shard ing‐su ffix‐p at‐
tern

S t r i n g Suffix pattern of
sharding data sources
or tables, must can
be transformed to
Java LocalDateTime,
must be consis‐
tent with date-
time-interval-unit.
For example: yyyyMM

•

dateti me‐int erval‐
amount (?)

i n t Interval of sharding
value

1

date time‐i nterva l‐
unit (?)

S t r i n g Unit of sharding value
interval, must can be
transformed to Java
ChronoUnit’s Enum
value. For example:
MONTHS

D A Y S

Complex Sharding Algorithm

Complex Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

5.1. ShardingSphere-JDBC 130

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/inline-expression/


Apache ShardingSphere document, v5.1.1

Name •
D a t a T y p e *

Description D efa ult Val ue

sh arding‐columns (?) S t r i n g sharing columnnames •

algori thm‐expression S t r i n g Inline expression
sharding algorithm

•

allow‐rang e‐query‐
with‐i nline‐sharding
(?)

b o o l e a n Whether range query
is allowed. Note:
range query will
ignore sharding strat‐
egy and conduct full
routing

fa lse

Hint Sharding Algorithm

Hint Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

Name DataType Description Default Value

algor ithm‐expression String Inline expression sharding algorithm ${value}

Class Based Sharding Algorithm

Realize custom extension by configuring the sharding strategy type and algorithm class name.

Type：CLASS_BASED

Attributes：

Name Data
Type

Description

strategy S tring Sharding strategy type, support STANDARD, COMPLEX or HINT
(case insensitive)

algor ithmClass‐
Name

S tring Fully qualified name of sharding algorithm

5.1. ShardingSphere-JDBC 131

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/inline-expression/


Apache ShardingSphere document, v5.1.1

Key Generate Algorithm

Snowflake

Type: SNOWFLAKE

Attributes:

Name •
D a t a T y p e *

Description Def ault Va lue

max ‐tolerate‐time‐diff
erence‐milliseconds
(?)

l o n g The max tolerate time
for different server’s
time difference in mil‐
liseconds

10 mill isec onds

m ax‐vibration‐offset
(?)

i n t The max upper limit
value of vibrate
number, range [0,
4096). Notice: To use
the generated value
of this algorithm as
sharding value, it is
recommended to con‐
figure this property.
The algorithm gener‐
ates keymod 2^n (2^n
is usually the sharding
amount of tables or
databases) in different
milliseconds and the
result is always 0 or 1.
To prevent the above
sharding problem, it is
recommended to con‐
figure this property,
its value is (2^n)-1

1

UUID

Type: UUID

Attributes: None

5.1. ShardingSphere-JDBC 132



Apache ShardingSphere document, v5.1.1

Load Balance Algorithm

Round Robin Algorithm

Type: ROUND_ROBIN

Attributes: None

Random Algorithm

Type: RANDOM

Attributes: None

Weight Algorithm

Type: WEIGHT

Attributes:

All read data in use must be configured with weights

Name Data Type Description

• (+)
d ouble The attribute name uses the

read database name, and
the parameter fills in the
weight value corresponding
to the read database.The min‐
imum value of the weight
parameter range>0,the total
<=Double.MAX_VALUE.

Encryption Algorithm

MD5 Encrypt Algorithm

Type: MD5

Attributes: None

5.1. ShardingSphere-JDBC 133



Apache ShardingSphere document, v5.1.1

AES Encrypt Algorithm

Type: AES

Attributes:

Name DataType Description

aes‐key‐value String AES KEY

RC4 Encrypt Algorithm

Type: RC4

Attributes:

Name DataType Description

rc4‐key‐value String RC4 KEY

SM3 Encrypt Algorithm

Type: SM3

Attributes:

Name DataType Description

sm3‐salt String SM3 SALT (should be blank or 8 bytes long)

SM4 Encrypt Algorithm

Type: SM4

Attributes:

Name DataType Description

sm4‐key String SM4 KEY (should be 16 bytes)
sm4‐mode String SM4 MODE (should be CBC or ECB)
sm4‐iv String SM4 IV (should be specified on CBC, 16 bytes long)
sm4‐
padding

String SM4 PADDING (should be PKCS5Padding or PKCS7Padding, NoPadding ex‐
cepted)

5.1. ShardingSphere-JDBC 134



Apache ShardingSphere document, v5.1.1

Shadow Algorithm

Column Shadow Algorithm

Column Value Match Shadow Algorithm

Type：VALUE_MATCH

Attributes:

Name DataType Description

column String Shadow column
operation String SQL operation type（INSERT, UPDATE, DELETE, SELECT）
value String Shadow columnmatching value

Column Regex Match Shadow Algorithm

Type: REGEX_MATCH

Attributes:

Name DataType Description

column String Shadow column
operation String SQL operation type (insert, update, delete, select)
regex String Shadow columnmatching regular expression

Hint Shadow Algorithm

Simple Hint Shadow Algorithm

Type: SIMPLE_HINT

Attributes:

Configure at least a set of arbitrary key‐value pairs. For example: foo:bar

Name DataType Description

foo String bar

5.1. ShardingSphere-JDBC 135



Apache ShardingSphere document, v5.1.1

5.1.7 Special API

This chapter will introduce the special API of ShardingSphere‐JDBC.

Sharding

This chapter will introduce the Sharding API of ShardingSphere‐JDBC.

Hint

Introduction

Apache ShardingSphere uses ThreadLocal to manage sharding key value or hint route. Users can add
sharding values to HintManager, and those values only take effect within the current thread.

Apache ShardingSphere is able to add special comments in SQL to hint route too.

Usage of hint:

• Sharding columns are not in SQL and table definition, but in external business logic.

• Some operations forced to do in the primary database.

• Some operations forced to do in the database chosen by yourself.

Usage

Sharding with Hint

Hint Configuration

Hint algorithms require users to implement the interface of org.apache.shardingsphere.api.
sharding.hint.HintShardingAlgorithm. Apache ShardingSphere will acquire sharding values
from HintManager to route.

Take the following configurations for reference:

rules:
- !SHARDING
tables:

t_order:
actualDataNodes: demo_ds_${0..1}.t_order_${0..1}
databaseStrategy:
hint:

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
tableStrategy:
hint:

5.1. ShardingSphere-JDBC 136



Apache ShardingSphere document, v5.1.1

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
defaultTableStrategy:

none:
defaultKeyGenerateStrategy:

type: SNOWFLAKE
column: order_id

props:
sql-show: true

Get HintManager

HintManager hintManager = HintManager.getInstance();

Add Sharding Value

• Use hintManager.addDatabaseShardingValue to add sharding key value of data source.

• Use hintManager.addTableShardingValue to add sharding key value of table.

Users can usehintManager.setDatabaseShardingValue to add sharding in hint route
to some certain sharding database without sharding tables.

Clean Hint Values

Sharding values are saved in ThreadLocal, so it is necessary to use hintManager.close() to clean
ThreadLocal.

ˋˋHintManagerˋˋ has implemented ˋˋAutoCloseableˋˋ. We recommend to close it automaticallywith
ˋˋtry with resourceˋˋ.

Codes:

// Sharding database and table with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}

5.1. ShardingSphere-JDBC 137



Apache ShardingSphere document, v5.1.1

}
}

// Sharding database and one database route with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

Primary Route with Hint

Usemanual programming

Get HintManager

Be the same as sharding based on hint.

Configure Primary Database Route

• Use hintManager.setWriteRouteOnly to configure primary database route.

Clean Hint Value

Be the same as data sharding based on hint.

Codes:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setWriteRouteOnly();
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}

5.1. ShardingSphere-JDBC 138



Apache ShardingSphere document, v5.1.1

}
}

Use special SQL comments

Terms of Use

To use SQL Hint function, users need to set sqlCommentParseEnabled to true. The comment for‐
mat only supports /* */ for now. The content needs to start with ShardingSphere hint:, and the
attribute name needs to be writeRouteOnly.

Codes:

/* ShardingSphere hint: writeRouteOnly=true */
SELECT * FROM t_order;

Route to the specified database with Hint

Usemanual programming

Get HintManager

Be the same as sharding based on hint.

Configure Database Route

• Use hintManager.setDataSourceName to configure database route.

Codes:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDataSourceName("ds_0");
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

5.1. ShardingSphere-JDBC 139



Apache ShardingSphere document, v5.1.1

Use special SQL comments

Terms of Use

To use SQL Hint function, users need to set sqlCommentParseEnabled to true. Currently, only
support routing to one data source. The comment format only supports /* */ for now. The content
needs to start with ShardingSphere hint:, and the attribute name needs to be dataSourceName.

Codes:

/* ShardingSphere hint: dataSourceName=ds_0 */
SELECT * FROM t_order;

Transaction

Using distributed transaction through Apache ShardingSphere is no different from local transaction. In
addition to transparent use of distributed transaction, Apache ShardingSphere can switch distributed
transaction types every time the database accesses.

Supported transaction types include local, XA and BASE. It can be set before creating a database con‐
nection, and default value can be set when Apache ShardingSphere startup.

Use Java API

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- import if using XA transaction -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- import if using BASE transaction -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

5.1. ShardingSphere-JDBC 140



Apache ShardingSphere document, v5.1.1

Use Distributed Transaction

TransactionTypeHolder.set(TransactionType.XA); // Support TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
try (Connection conn = dataSource.getConnection()) { // Use
ShardingSphereDataSource

conn.setAutoCommit(false);
PreparedStatement ps = conn.prepareStatement("INSERT INTO t_order (user_id,

status) VALUES (?, ?)");
ps.setObject(1, 1000);
ps.setObject(2, "init");
ps.executeUpdate();
conn.commit();

}

Use Spring Boot Starter

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- import if using XA transaction -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- import if using BASE transaction -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

5.1. ShardingSphere-JDBC 141



Apache ShardingSphere document, v5.1.1

Configure Transaction Manager

@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {

@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {

return new DataSourceTransactionManager(dataSource);
}

@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {

return new JdbcTemplate(dataSource);
}

}

Use Distributed Transaction

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // Support TransactionType.
LOCAL, TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();

});
}

Use Spring Namespace

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- import if using XA transaction -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>

5.1. ShardingSphere-JDBC 142



Apache ShardingSphere document, v5.1.1

<version>${shardingsphere.version}</version>
</dependency>

<!-- import if using BASE transaction -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Transaction Manager

<!-- ShardingDataSource configuration -->
<!-- ... -->

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<tx:annotation-driven />

<!-- Enable auto scan @ShardingSphereTransactionType annotation to inject the
transaction type before connection created -->
<sharding:tx-type-annotation-driven />

Use Distributed Transaction

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // Support TransactionType.
LOCAL, TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();

});
}

5.1. ShardingSphere-JDBC 143



Apache ShardingSphere document, v5.1.1

Atomikos Transaction

The default XA transaction manager of Apache ShardingSphere is Atomikos.

Data Recovery

xa_tx.log generated in the projectlogs folder is necessary for the recoverywhenXA crashes. Please
keep it.

Update Configuration

Developer can add jta.properties in classpath of the application to customize Atomikos configura‐
tion. For detailed configuration rules.

Please refer to Atomikos official documentation for more details.

Bitronix Transaction

Import Maven Dependency

<properties>
<btm.version>2.1.3</btm.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-bitronix</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.codehaus.btm</groupId>
<artifactId>btm</artifactId>

5.1. ShardingSphere-JDBC 144

https://www.atomikos.com/Documentation/JtaProperties


Apache ShardingSphere document, v5.1.1

<version>${btm.version}</version>
</dependency>

Customize Configuration Items

Please refer to Bitronix official documentation for more details.

Configure XA Transaction Manager Type

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Bitronix

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Bitronix

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Bitronix</prop>
</props>

</shardingsphere:data-source>

Narayana Transaction

Import Maven Dependency

<properties>
<narayana.version>5.9.1.Final</narayana.version>
<jboss-transaction-spi.version>7.6.0.Final</jboss-transaction-spi.version>
<jboss-logging.version>3.2.1.Final</jboss-logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

5.1. ShardingSphere-JDBC 145

https://github.com/bitronix/btm/wiki


Apache ShardingSphere document, v5.1.1

<!-- Import if using XA transaction -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${shardingsphere.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jta</groupId>
<artifactId>jta</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana-jts-integration</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss</groupId>
<artifactId>jboss-transaction-spi</artifactId>
<version>${jboss-transaction-spi.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>${jboss-logging.version}</version>

</dependency>

Customize Configuration Items

Add jbossts-properties.xml in classpath of the application to customize Narayana configuration.

Please refer to Narayana official documentation for more details.

5.1. ShardingSphere-JDBC 146

https://narayana.io/documentation/index.html


Apache ShardingSphere document, v5.1.1

Configure XA Transaction Manager Type

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Narayana

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Narayana

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Narayana</prop>
</props>

</shardingsphere:data-source>

Seata Transaction

Startup Seata Server

Download seata server according to seata‐work‐shop.

Create Undo Log Table

Create undo_log table in each physical database (sample for MySQL).

CREATE TABLE IF NOT EXISTS `undo_log`
(
`id` BIGINT(20) NOT NULL AUTO_INCREMENT COMMENT 'increment id',
`branch_id` BIGINT(20) NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(100) NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as

serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME NOT NULL COMMENT 'modify datetime',
PRIMARY KEY (`id`),
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)

) ENGINE = InnoDB

5.1. ShardingSphere-JDBC 147

https://github.com/seata/seata-workshop


Apache ShardingSphere document, v5.1.1

AUTO_INCREMENT = 1
DEFAULT CHARSET = utf8 COMMENT ='AT transaction mode undo table';

Update Configuration

Configure seata.conf file in classpath.

client {
application.id = example ## application unique ID
transaction.service.group = my_test_tx_group ## transaction group

}

Modify file.conf and registry.conf if needed.

Observability

Introduce how to use agent and integrate 3rd party with observability.

Use Agent

Build

Local Build

> cd shardingsphere/shardingsphere-agent
> mvn clean install

Download（Not Released Yet）

> weget http://xxxxx/shardingsphere-agent.tar.gz
> tar -zxvcf shardingsphere-agent.tar.gz

Configuration

Found agent.yaml file:

applicationName: shardingsphere-agent
ignoredPluginNames: # A collection of ignored plugins
- Opentracing
- Jaeger
- Zipkin
- Prometheus

5.1. ShardingSphere-JDBC 148



Apache ShardingSphere document, v5.1.1

- OpenTelemetry
- Logging

plugins:
Prometheus:

host: "localhost"
port: 9090
props:
JVM_INFORMATION_COLLECTOR_ENABLED : "true"

Jaeger:
host: "localhost"
port: 5775
props:
SERVICE_NAME: "shardingsphere-agent"
JAEGER_SAMPLER_TYPE: "const"
JAEGER_SAMPLER_PARAM: "1"
JAEGER_REPORTER_LOG_SPANS: "true"
JAEGER_REPORTER_FLUSH_INTERVAL: "1"

Zipkin:
host: "localhost"
port: 9411
props:
SERVICE_NAME: "shardingsphere-agent"
URL_VERSION: "/api/v2/spans"

Opentracing:
props:
OPENTRACING_TRACER_CLASS_NAME: "org.apache.skywalking.apm.toolkit.

opentracing.SkywalkingTracer"
OpenTelemetry:

props:
otel.resource.attributes: "service.name=shardingsphere-agent" # Multiple

configurations can be split by ','
otel.traces.exporter: "zipkin"

Logging:
props:
LEVEL: "INFO"

5.1. ShardingSphere-JDBC 149



Apache ShardingSphere document, v5.1.1

Startup

Add arguments in startup script.

-javaagent:\absolute path\shardingsphere-agent.jar

APM Integration

Usage

Use OpenTracing

• Method 1: inject Tracer provided by APM system through reading system parameters

Add startup arguments

-Dorg.apache.shardingsphere.tracing.opentracing.tracer.class=org.apache.skywalking.
apm.toolkit.opentracing.SkywalkingTracer

Call initialization method.

ShardingTracer.init();

• Method 2: inject Tracer provided by APM through parameter.

ShardingTracer.init(new SkywalkingTracer());

Notice: when using SkyWalking OpenTracing agent, the OpenTracing plug­in of Apache ShardingSphere Agent
cannot be used at the same time to prevent the two plug­ins from conflicting with each other.

Use SkyWalking’s Automatic Agent

Please refer to SkyWalking Manual.

Use OpenTelemetry

Just fill in the configuration in agent.yaml. For example, export Traces data to Zipkin.

OpenTelemetry:
props:
otel.resource.attributes: "service.name=shardingsphere-agent"
otel.traces.exporter: "zipkin"
otel.exporter.zipkin.endpoint: "http://127.0.0.1:9411/api/v2/spans"

5.1. ShardingSphere-JDBC 150

https://github.com/apache/skywalking/blob/5.x/docs/en/Quick-start.md


Apache ShardingSphere document, v5.1.1

Result Demonstration

No matter in which way, it is convenient to demonstrate APM information in the connected system.
Take SkyWalking for example:

Application Architecture

Use ShardingSphere-Proxy to visit two databases, 192.168.0.1:3306 and 192.168.0.2:3306,
and there are two tables in each one of them.

Topology

It can be seen from the picture that the user has accessed ShardingSphere‐Proxy 18 times, with each
database twice each time. It is because two tables in each database are accessed each time, so there are
totally four tables accessed each time.

Tracking Data

SQL parsing and implementation can be seen from the tracing diagram.

/Sharding-Sphere/parseSQL/ indicates the SQL parsing performance this time.

/Sharding-Sphere/executeSQL/ indicates the SQL parsing performance in actual execution.

Exception

Exception nodes can be seen from the tracing diagram.

/Sharding-Sphere/executeSQL/ indicates the exception results of SQL.

/Sharding-Sphere/executeSQL/ indicates the exception log of SQL execution.

5.1.8 Unsupported Items

DataSource Interface

• Do not support timeout related operations

5.1. ShardingSphere-JDBC 151



Apache ShardingSphere document, v5.1.1

Connection Interface

• Do not support operations of stored procedure, function and cursor

• Do not support native SQL

• Do not support savepoint related operations

• Do not support Schema/Catalog operation

• Do not support self‐defined type mapping

Statement and PreparedStatement Interface

• Do not support statements that return multiple result sets (stored procedures, multiple pieces of
non‐SELECT data)

• Do not support the operation of international characters

ResultSet Interface

• Do not support getting result set pointer position

• Do not support changing result pointer position through none‐next method

• Do not support revising the content of result set

• Do not support acquiring international characters

• Do not support getting Array

JDBC 4.1

• Do not support new functions of JDBC 4.1 interface

For all the unsupported methods, please read org.apache.shardingsphere.driver.jdbc.
unsupported package.

5.2 ShardingSphere-Proxy

Configuration is the only module in ShardingSphere‐Proxy that interacts with application devel‐
opers, through which developer can quickly and clearly understand the functions provided by
ShardingSphere‐Proxy.

This chapter is a configuration manual for ShardingSphere‐Proxy, which can also be referred to as a
dictionary if necessary.

ShardingSphere‐Proxy provided YAML configuration, and used DistSQL to communicate. By config‐
uration, application developers can flexibly use data sharding, readwrite‐splitting, data encryption,
shadow database or the combination of them.

5.2. ShardingSphere-Proxy 152



Apache ShardingSphere document, v5.1.1

Rule configuration keeps consist with YAMLconfiguration of ShardingSphere‐JDBC.DistSQL andYAML
can be replaced each other.

Please refer to Example for more details.

5.2.1 Startup

This chapter will introduce the deployment and startup of ShardingSphere‐Proxy.

Use Binary Tar

Startup Steps

1. Get ShardingSphere‐Proxy binary package from download page.

2. After the decompression, revise conf/server.yaml and documents begin with config- pre‐
fix, conf/config-xxx.yaml for example, to configure sharding rules and readwrite‐splitting
rules. Please refer to Configuration Manual for the configuration method.

3. Please run bin/start.sh for Linux operating system; run bin/start.bat for Windows op‐
erating system to start ShardingSphere‐Proxy. To configure start port and document location,
please refer to Quick Start.

Using database protocol

Using PostgreSQL

1. Use any PostgreSQL terminal to connect, such as psql -U root -h 127.0.0.1 -p 3307.

Using MySQL

1. Copy MySQL’s JDBC driver to folder ext-lib/.

2. Use any MySQL terminal to connect, such as mysql -u root -h 127.0.0.1 -P 3307.

Using openGauss

1. Copy openGauss’s JDBC driver whose package prefixed with org.opengauss to folder
ext-lib/.

2. Use any openGauss terminal to connect, such as gsql -U root -h 127.0.0.1 -p 3307.

5.2. ShardingSphere-Proxy 153

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://shardingsphere.apache.org/document/current/en/downloads/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://shardingsphere.apache.org/document/current/en/quick-start/shardingsphere-proxy-quick-start/


Apache ShardingSphere document, v5.1.1

Usingmetadata persist repository

Using ZooKeeper

Integrated ZooKeeper Curator client by default.

Using Etcd

1. Copy Etcd’s client driver to folder ext-lib/.

Using Distributed Transaction

Same with ShardingSphere‐JDBC. please refer to Distributed Transaction for more details.

Using user-defined algorithm

When developer need to use user‐defined algorithm, should use the way below to configure algorithm,
use sharding algorithm as example.

1. Implement ShardingAlgorithm interface.

2. Create META-INF/services directory in the resources directory.

3. Create a new file org.apache.shardingsphere.sharding.spi.ShardingAlgorithm in
the META-INF/services directory.

4. Absolute path of the implementation class are write to the file org.apache.shardingsphere.
sharding.spi.ShardingAlgorithm

5. Package Java file to jar.

6. Copy jar to ShardingSphere‐Proxy’s ext-lib/ folder.

7. Configure user‐defined Java class into YAML file. Please refer to Configuration Manual for more
details.

Notices

1. ShardingSphere‐Proxy uses 3307 port in default. Users can start the script parameter as the start
port number, like bin/start.sh 3308.

2. ShardingSphere‐Proxy uses conf/server.yaml to configure the registry center, authentication
information and public properties.

3. ShardingSphere‐Proxy supportsmulti‐logic data sources, with each yaml configuration document
named by config- prefix as a logic data source.

5.2. ShardingSphere-Proxy 154

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/special-api/transaction/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/


Apache ShardingSphere document, v5.1.1

Use Docker

Pull Official Docker Image

docker pull apache/shardingsphere-proxy

Build Docker Image Manually (Optional)

git clone https://github.com/apache/shardingsphere
mvn clean install
cd shardingsphere-distribution/shardingsphere-proxy-distribution
mvn clean package -Prelease,docker

Configure ShardingSphere-Proxy

Create server.yaml and config-xxx.yaml to configure sharding rules and server rule in /
${your_work_dir}/conf/. Please refer to Configuration Manual. Please refer to Example.

Run Docker

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -e PORT=3308
-p13308:3308 apache/shardingsphere-proxy:latest

Notice

• You can define port 3308 and 13308 by yourself. 3308 refers to docker port; 13308 refers to the
host port.

• You have to volume conf dir to /opt/shardingsphere-proxy/conf.

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -e JVM_OPTS=
"-Djava.awt.headless=true" -e PORT=3308 -p13308:3308 apache/shardingsphere-
proxy:latest

Notice

• You can define JVM related parameters to environment variable JVM_OPTS.

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -v /${your_
work_dir}/ext-lib:/opt/shardingsphere-proxy/ext-lib -p13308:3308 apache/
shardingsphere-proxy:latest

Notice

• If you need to import external jar packages (such as MySQL/openGauss JDBC driver, custom algo‐
rithm, etc.), you may bind mount a volume to /opt/shardingsphere-proxy/ext-lib.

5.2. ShardingSphere-Proxy 155

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://github.com/apache/shardingsphere/tree/master/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf


Apache ShardingSphere document, v5.1.1

Access ShardingSphere-Proxy

It is in the same way as connecting to PostgreSQL.

psql -U ${your_username} -h ${your_host} -p 13308

FAQ

Question 1: there is I/O exception (java.io.IOException) when process request to {}->unix://
localhost:80: Connection is refused.

Answer: before building image, please make sure docker daemon thread is running.

Question 2: there is error report of being unable to connect to the database.

Answer: please make sure the designated PostgreSQL’s IP in /${your_work_dir}/conf/
config-xxx.yaml configuration is accessible to Docker container.

Question 3：How to start ShardingSphere‐Proxy whose backend databases are MySQL or openGauss.

Answer：Mount the directory where mysql-connector.jar or opengauss-jdbc.jar stores to /
opt/shardingsphere-proxy/ext-lib.

Question 4：How to import user‐defined sharding strategy？
Answer: Volume the directory where shardingsphere-strategy.jar stores to /opt/
shardingsphere-proxy/ext-lib.

Use Helm

ShardingSphere-Proxy Helm Chart

TL;DR

helm repo add shardingsphere https://shardingsphere.apache.org/charts
helm install shardingsphere-proxy shardingsphere/shardingsphere-proxy

Introduction to ShardingSphere-Proxy

These charts use the Helm tool to provide guidance for the installation of a ShardingSphere‐Proxy in‐
stance in a Kubernetes cluster.

5.2. ShardingSphere-Proxy 156



Apache ShardingSphere document, v5.1.1

Requirements

Kubernetes 1.18+ kubectl Helm 3.2.0+ If you need persistent data: Please configure StorageClass that
allows dynamic provisioning of Persistent Volumes (PV)

Install ShardingSphere-Proxy chart

Add ShardingSphere‐Proxy to the local helm repo

helm repo add shardingsphere https://shardingsphere.apache.org/charts

Install ShardingSphere‐Proxy charts

helm install shardingsphere-proxy shardingsphere/shardingsphere-proxy

Once execution of the above commands is completed, charts will be installed with default configura‐
tion. You can refer to the configuration list below for other configurations.

If you need to acquire all the installed releases, execute helm list

Uninstall

To uninstall the releases, please execute

helm uninstall shardingsphere-proxy

helm uninstall will delete all release records by default. If you need to keep them, please add
--keep-history

Configuration Items’Description

Parameters

Global parameters

Name Description V a l u
e

global.reso urces.
limits

The resources limits for the ShardingSphere‐Proxy, MySQL,
ZooKeeper. containers

ˋ global.resour
ces.requests`

The requested resources for the ShardingSphere‐Proxy, MySQL,
ZooKeeper containers.

5.2. ShardingSphere-Proxy 157



Apache ShardingSphere document, v5.1.1

MySQL parameters

Name Description Value

mysql.enabled Enable MySQL sub‐charts dependency. TRUE
mysql.storageclass Storage class needed by MySQL persistent storage. nil
mysql.storagerequest Space for MySQL persistent storage. nil

ZooKeeper parameters

Name Description V a l u e

z ookeeper.enabled Enable ZooKeeper sub‐charts dependency. T RU E ˋ ˋ
zookee per.storageclass Storage class needed by ZooKeeper persistent stor‐

age.
n i l ˋ ˋ

zookeepe r.
storagerequest

Space for ZooKeeper persistent storage. n i l ˋ ˋ

ShardingSphere-Proxy parameters

Name Description V a l u e

ˋˋ image.rep os‐
itoryˋˋ

ShardingSphere‐Proxy’s image name. The default set‐
ting is to pull it from the Apache official‐images reposi‐
tory.

a p a c h e / s h a r d i n
g s p h e r e ‐ p r o x y ˋ
ˋ

ˋˋ image.pul
lPolicyˋˋ

The policy for pulling an image. I f N o t P r e s e n t ˋ ˋ

im age.tag Image tag. ˋ
r eplicas Number of cluster‐mode replicas in ShardingSphere‐

Proxy.
ˋ

servi ce.
type

ShardingSphere‐Proxy network mode. N o d e P o r t ˋ ˋ

mysqlc on-
nector. en-
abled

MySQL connector enabled. T R U E ˋ ˋ

mysqlc on-
nector. ver-
sion

MySQL connector Version 4 9 ˋ ˋ

pr oxyport start port 3 3 0 7 ˋ ˋ

5.2. ShardingSphere-Proxy 158



Apache ShardingSphere document, v5.1.1

ShardingSphere-Proxy config.yaml && server.yaml configuration

For more configuration information, please refer to the following link: YAML Configuration :: Shard‐
ingSphere (apache.org)

5.2.2 Yaml Configuration

The YAML configuration of ShardingSphere‐JDBC is the subset of ShardingSphere‐Proxy. In server.
yaml file, ShardingSphere‐Proxy can configure authority feature and more properties for Proxy only.

This chapter will introduce the extra YAML configuration of ShardingSphere‐Proxy.

Authority

It is used to set up initial user to login compute node, and authority data of storage node.

Configuration Item Explanation

rules:
- !AUTHORITY

users:
- # Username, authorized host and password for compute node. Format:

<username>@<hostname>:<password>, hostname is % or empty string means do not care
about authorized host

provider:
type: # authority provider for storage node, the default value is ALL_

PRIVILEGES_PERMITTED

Example

ALL_PRIVILEGES_PERMITTED

rules:
- !AUTHORITY

users:
- root@localhost:root
- my_user@:pwd

provider:
type: ALL_PRIVILEGES_PERMITTED

5.2. ShardingSphere-Proxy 159

https://shardingsphere.apache.org/document/5.1.0/en/user-manual/shardingsphere-jdbc/yaml-config/
https://shardingsphere.apache.org/document/5.1.0/en/user-manual/shardingsphere-jdbc/yaml-config/


Apache ShardingSphere document, v5.1.1

SCHEMA_PRIVILEGES_PERMITTED

rules:
- !AUTHORITY

users:
- root@:root
- my_user@:pwd

provider:
type: SCHEMA_PRIVILEGES_PERMITTED
props:
user-schema-mappings: root@=sharding_db, root@=test_db, my_user@127.0.0.

1=sharding_db

The above configurationmeans: ‐ The user root can access sharding_dbwhen connecting from any
host ‐ The user root can access test_db when connecting from any host ‐ The user my_user can
access sharding_db only when connected from 127.0.0.1

Refer to Authority Provider for more implementations.

Properties

Introduction

Apache ShardingSphere provides the way of property configuration to configure system level configu‐
ration.

5.2. ShardingSphere-Proxy 160

https://shardingsphere.apache.org/document/current/en/dev-manual/proxy


Apache ShardingSphere document, v5.1.1

Configuration Item Explanation

Name •
D a t a T y p e *

Description •
D e f a u l t V a l u e
*

•
D y n am i c U p d a
t e *

sq l‐s how (?) b o o l e a n Whether show
SQL or not in log.
Print SQL details
can help develop‐
ers debug easier.
The log details
include: logic
SQL, actual SQL
and SQL parse
result. Enable
this property will
log into log topic
Sharding-
Sphere-SQL,
log level is INFO.

f a l s e t r u e

s ql‐ sim ple (?) b o o l e a n Whether show
SQL details in
simple style.

f a l s e t r u e

ke rne l‐e xec uto
r‐s ize (?)

i n t The max thread
size of worker
group to exe‐
cute SQL. One
ShardingSphere‐
DataSource will
use a indepen‐
dent thread pool,
it does not share
thread pool even
different data
source in same
JVM.

i n f i n i t e f a l s e

max ‐co nne cti
ons ‐si ze‐ per ‐qu
ery (?)

i n t Max opened con‐
nection size for
each query.

1 t r u e

c hec k‐t abl e‐m
eta dat a‐e nab led
(?)

b o o l e a n Whether vali‐
date table meta
data consistency
when applica‐
tion startup or
updated.

f a l s e f a l s e

pro xy‐ fro nte nd‐
flu sh‐ thr esh old
(?)

i n t Flush thresh‐
old for every
records from
databases for
ShardingSphere‐
Proxy.

1 2 8 t r u e

p rox y‐o pen tra
cin g‐e nab led (?)

b o o l e a n Whether enable
opentracing for
ShardingSphere‐
Proxy.

f a l s e t r u e

pro xy‐ hin t‐e
nab led (?)

b o o l e a n Whether en‐
able hint for
ShardingSphere‐
Proxy. UsingHint
will switch proxy
thread mode
from IO multi‐
plexing to per
connection per
thread, which
will reduce sys‐
tem throughput.

f a l s e t r u e

pro xy‐ bac ken d‐
q uer y‐f etc h‐s
ize (?)

i n t Proxy backend
query fetch size.
A larger value
may increase the
memory usage of
ShardingSphere
Proxy. The de‐
fault value is ‐1,
which means
set the mini‐
mum value for
different JDBC
drivers.

•
1

f a l s e

ch eck ‐du pli cat
e‐t abl e‐e nab led
(?)

b o o l e a n Whether validate
duplicate table
when applica‐
tion startup or
updated.

f a l s e f a l s e

p rox y‐f ron ten
d‐e xec uto r‐s ize
(?)

i n t Proxy frontend
Netty executor
size. The default
value is 0, which
means let Netty
decide.

0 f a l s e

p rox y‐b ack end
‐ex ecu tor ‐su ita
ble (?)

S t r i n g Available op‐
tions of proxy
backend ex‐
ecutor suitable:
OLAP(default),
OLTP. The OLTP
option may re‐
duce time cost of
writing packets
to client, but it
may increase
the latency of
SQL execution
and block other
clients if client
connections
are more than
proxy-frontend-executor-size,
especially exe‐
cuting slow SQL.

O L A P f a l s e

pro xy‐ fro nte nd‐
max ‐co nne cti
ons (?)

i n t The maximum
permitted num‐
ber of client
connections to
Proxy. The de‐
fault value is 0
and less than or
equal to 0 means
no limitation.

0 t r u e

s ql‐ fed era tio n‐
e nab led (?)

b o o l e a n Whether enable
sql federation.

f a l s e t r u e

s how ‐pr oce ss‐
lis t‐e nab led (?)

b o o l e a n Whether enable
show process
list, and it only
take effect when
mode is Cluster.
This function is
similar as MySQL
show processlist.
It just apply
on DDL and
DML statements
currently.

f a l s e t r u e

5.2. ShardingSphere-Proxy 161



Apache ShardingSphere document, v5.1.1

Properties can be updated by DistSQL#RAL. Dynamic update can take effect immediately, static update
can take effect after restarted.

5.2.3 DistSQL

This chapter will introduce the detailed syntax of DistSQL.

Syntax

This chapter describes the syntax of DistSQL in detail, and introduces use of DistSQL with practical
examples.

RDL Syntax

RDL (Resource & Rule Definition Language) responsible for definition of resources/rules.

Resource Definition

Syntax

ADD RESOURCE dataSource [, dataSource] ...

ALTER RESOURCE dataSource [, dataSource] ...

DROP RESOURCE dataSourceName [, dataSourceName] ... [ignore single tables]

dataSource:
simpleSource | urlSource

simpleSource:
dataSourceName(HOST=hostname,PORT=port,DB=dbName,USER=user [,PASSWORD=password]

[,PROPERTIES(poolProperty [,poolProperty] ...)])

urlSource:
dataSourceName(URL=url,USER=user [,PASSWORD=password] [,PROPERTIES(poolProperty

[,poolProperty]) ...])

poolProperty:
"key"= ("value" | value)

• Before adding resources, please confirm that a distributed database has been created, and execute
the use command to successfully select a database

• Confirm that the added resource can be connected normally, otherwise it will not be added suc‐
cessfully

5.2. ShardingSphere-Proxy 162

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/
https://shardingsphere.apache.org/document/current/en/concepts/distsql/


Apache ShardingSphere document, v5.1.1

• Duplicate dataSourceName is not allowed to be added

• In the definition of a dataSource, the syntax of simpleSource and urlSource cannot be
mixed

• poolProperty is used to customize connection pool properties, key must be the same as the
connection pool property name, value supports int and String types

• ALTER RESOURCE is not allowed to change the real data source associated with this resource

• ALTER RESOURCE will switch the connection pool. This operation may affect the ongoing busi‐
ness, please use it with caution

• DROP RESOURCE will only delete logical resources, not real data sources

• Resources referenced by rules cannot be deleted

• If the resource is only referenced bysingle table rule, and the user confirms that the restric‐
tion can be ignored, the optional parameter ignore single tables can be added to perform
forced deletion

Example

ADD RESOURCE resource_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db0,
USER=root,
PASSWORD=root

),resource_1 (
HOST=127.0.0.1,
PORT=3306,
DB=db1,
USER=root

),resource_2 (
HOST=127.0.0.1,
PORT=3306,
DB=db2,
USER=root,
PROPERTIES("maximumPoolSize"=10)

),resource_3 (
URL="jdbc:mysql://127.0.0.1:3306/db3?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

ALTER RESOURCE resource_0 (
HOST=127.0.0.1,
PORT=3309,

5.2. ShardingSphere-Proxy 163



Apache ShardingSphere document, v5.1.1

DB=db0,
USER=root,
PASSWORD=root

),resource_1 (
URL="jdbc:mysql://127.0.0.1:3309/db1?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

DROP RESOURCE resource_0, resource_1;
DROP RESOURCE resource_2, resource_3 ignore single tables;

Rule Definition

This chapter describes the syntax of rule definition.

Sharding

Syntax

Sharding Table Rule

CREATE SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

ALTER SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

DROP SHARDING TABLE RULE tableName [, tableName] ...

CREATE DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

ALTER DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

DROP DEFAULT SHARDING shardingScope STRATEGY;

CREATE SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

ALTER SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

DROP SHARDING ALGORITHM algorithmName [, algorithmName] ...

5.2. ShardingSphere-Proxy 164



Apache ShardingSphere document, v5.1.1

CREATE SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

ALTER SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

DROP SHARDING KEY GENERATOR keyGeneratorName [, keyGeneratorName] ...

shardingTableRuleDefinition:
shardingAutoTableRule | shardingTableRule

shardingAutoTableRule:
tableName(resources, shardingColumn, algorithmDefinition [,

keyGenerateDeclaration])

shardingTableRule:
tableName(dataNodes [, databaseStrategy] [, tableStrategy] [,

keyGenerateDeclaration])

resources:
RESOURCES(resource [, resource] ...)

dataNodes:
DATANODES(dataNode [, dataNode] ...)

resource:
resourceName | inlineExpression

dataNode:
resourceName | inlineExpression

shardingColumn:
SHARDING_COLUMN=columnName

algorithmDefinition:
TYPE(NAME=shardingAlgorithmType [, PROPERTIES([algorithmProperties])])

keyGenerateDeclaration:
keyGenerateDefinition | keyGenerateConstruction

keyGenerateDefinition:
KEY_GENERATE_STRATEGY(COLUMN=columnName, strategyDefinition)

shardingScope:
DATABASE | TABLE

databaseStrategy:
DATABASE_STRATEGY(shardingStrategy)

tableStrategy:

5.2. ShardingSphere-Proxy 165



Apache ShardingSphere document, v5.1.1

TABLE_STRATEGY(shardingStrategy)

keyGenerateConstruction
KEY_GENERATE_STRATEGY(COLUMN=columnName, KEY_

GENERATOR=keyGenerateAlgorithmName)

shardingStrategy:
TYPE=strategyType, shardingColumn, shardingAlgorithm

shardingAlgorithm:
existingAlgorithm | autoCreativeAlgorithm

existingAlgorithm:
SHARDING_ALGORITHM=shardingAlgorithmName

autoCreativeAlgorithm:
SHARDING_ALGORITHM(algorithmDefinition)

strategyDefinition:
TYPE(NAME=keyGenerateStrategyType [, PROPERTIES([algorithmProperties])])

shardingAlgorithmDefinition:
shardingAlgorithmName(algorithmDefinition)

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

keyGeneratorDefinition:
keyGeneratorName (algorithmDefinition)

• RESOURCES needs to use data source resources managed by RDL

• shardingAlgorithmType specifies the type of automatic sharding algorithm, please refer to
Auto Sharding Algorithm

• keyGenerateStrategyType specifies the distributed primary key generation strategy, please
refer to Key Generate Algorithm

• Duplicate tableName will not be created

• shardingAlgorithm can be reused by different Sharding Table Rule, so when executing
DROP SHARDING TABLE RULE, the corresponding shardingAlgorithm will not be removed

• To remove shardingAlgorithm, please execute DROP SHARDING ALGORITHM

• strategyType specifies the sharding strategy，please refer toSharding Strategy

• Sharding Table Rule supports both Auto Table and Table at the same time. The two types

5.2. ShardingSphere-Proxy 166

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#sharding-strategy


Apache ShardingSphere document, v5.1.1

are different in syntax. For the corresponding configuration file, please refer to Sharding

• When using the autoCreativeAlgorithm way to specify shardingStrategy, a new
sharding algorithm will be created automatically. The algorithm naming rule is table-
Name_strategyType_shardingAlgorithmType, such as t_order_database_inline

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

ALTER SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

DROP SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

bindTableRulesDefinition:
(tableName [, tableName] ... )

• ALTER will overwrite the binding table configuration in the database with the new configuration

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (tableName [, tableName] ... )

ALTER SHARDING BROADCAST TABLE RULES (tableName [, tableName] ... )

DROP SHARDING BROADCAST TABLE RULES

• ALTERwill overwrite the broadcast table configuration in the databasewith thenewconfiguration

Sharding Scaling Rule

CREATE SHARDING SCALING RULE scalingName [scalingRuleDefinition]

DROP SHARDING SCALING RULE scalingName

ENABLE SHARDING SCALING RULE scalingName

DISABLE SHARDING SCALING RULE scalingName

scalingRuleDefinition:
[inputDefinition] [, outputDefinition] [, streamChannel] [, completionDetector]

[, dataConsistencyChecker]

5.2. ShardingSphere-Proxy 167

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/


Apache ShardingSphere document, v5.1.1

inputDefinition:
INPUT ([workerThread] [, batchSize] [, rateLimiter])

outputDefinition:
OUTPUT ([workerThread] [, batchSize] [, rateLimiter])

completionDetector:
COMPLETION_DETECTOR (algorithmDefinition)

dataConsistencyChecker:
DATA_CONSISTENCY_CHECKER (algorithmDefinition)

rateLimiter:
RATE_LIMITER (algorithmDefinition)

streamChannel:
STREAM_CHANNEL (algorithmDefinition)

workerThread:
WORKER_THREAD=intValue

batchSize:
BATCH_SIZE=intValue

intValue:
INT

• ENABLE is used to set which sharding scaling rule is enabled

• DISABLE will disable the sharding scaling rule currently in use

• Enabled by default when creating the first sharding scaling rule in a schema

Example

Sharding Table Rule

Key Generator

CREATE SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME=SNOWFLAKE)
);

ALTER SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME=SNOWFLAKE))
);

DROP SHARDING KEY GENERATOR snowflake_key_generator;

5.2. ShardingSphere-Proxy 168



Apache ShardingSphere document, v5.1.1

Auto Table

CREATE SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1),
SHARDING_COLUMN=order_id,TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=4)),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME=snowflake))
);

ALTER SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1,resource_2,resource_3),
SHARDING_COLUMN=order_id,TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=16)),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME=snowflake))
);

DROP SHARDING TABLE RULE t_order;

DROP SHARDING ALGORITHM t_order_hash_mod;

Table

CREATE SHARDING ALGORITHM table_inline (
TYPE(NAME=inline,PROPERTIES("algorithm-expression"="t_order_item_${order_id % 2}"))
);

CREATE SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..1}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE(NAME=inline,PROPERTIES("algorithm-expression"="resource_${user_id %
2}")))),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator)
);

ALTER SHARDING ALGORITHM database_inline (
TYPE(NAME=inline,PROPERTIES("algorithm-expression"="resource_${user_id % 4}"))
),table_inline (
TYPE(NAME=inline,PROPERTIES("algorithm-expression"="t_order_item_${order_id % 4}"))
);

ALTER SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator)
);

5.2. ShardingSphere-Proxy 169



Apache ShardingSphere document, v5.1.1

DROP SHARDING TABLE RULE t_order_item;

DROP SHARDING ALGORITHM database_inline;

CREATE DEFAULT SHARDING DATABASE STRATEGY (
TYPE = standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=database_inline
);

ALTER DEFAULT SHARDING DATABASE STRATEGY (
TYPE = standard,SHARDING_COLUMN=another_id,SHARDING_ALGORITHM=database_inline
);

DROP DEFAULT SHARDING DATABASE STRATEGY;

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item),(t_1,t_2);

ALTER SHARDING BINDING TABLE RULES (t_order,t_order_item);

DROP SHARDING BINDING TABLE RULES;

DROP SHARDING BINDING TABLE RULES (t_order,t_order_item);

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (t_b,t_a);

ALTER SHARDING BROADCAST TABLE RULES (t_b,t_a,t_3);

DROP SHARDING BROADCAST TABLE RULES;

Sharding Scaling Rule

CREATE SHARDING SCALING RULE sharding_scaling(
INPUT(

WORKER_THREAD=40,
BATCH_SIZE=1000

),
OUTPUT(
WORKER_THREAD=40,
BATCH_SIZE=1000

),

5.2. ShardingSphere-Proxy 170



Apache ShardingSphere document, v5.1.1

STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))),
COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-minute-
threshold"=30))),
DATA_CONSISTENCY_CHECKER(TYPE(NAME=DATA_MATCH, PROPERTIES("chunk-size"=1000)))
);

ENABLE SHARDING SCALING RULE sharding_scaling;

DISABLE SHARDING SCALING RULE sharding_scaling;

DROP SHARDING SCALING RULE sharding_scaling;

Single Table

Definition

CREATE DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

ALTER DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

DROP DEFAULT SINGLE TABLE RULE

singleTableRuleDefinition:
RESOURCE = resourceName

• RESOURCE needs to use data source resource managed by RDL

Example

Single Table Rule

CREATE DEFAULT SINGLE TABLE RULE RESOURCE = ds_0

ALTER DEFAULT SINGLE TABLE RULE RESOURCE = ds_1

DROP DEFAULT SINGLE TABLE RULE

5.2. ShardingSphere-Proxy 171



Apache ShardingSphere document, v5.1.1

Readwrite-Splitting

Syntax

CREATE READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition] ...

ALTER READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition] ...

DROP READWRITE_SPLITTING RULE ruleName [, ruleName] ...

readwriteSplittingRuleDefinition:
ruleName ([staticReadwriteSplittingRuleDefinition |

dynamicReadwriteSplittingRuleDefinition]
[, loadBanlancerDefinition])

staticReadwriteSplittingRuleDefinition:
WRITE_RESOURCE=writeResourceName, READ_RESOURCES(resourceName [, resourceName]

... )

dynamicReadwriteSplittingRuleDefinition:
AUTO_AWARE_RESOURCE=resourceName

loadBanlancerDefinition:
TYPE(NAME=loadBanlancerType [, PROPERTIES([algorithmProperties] )] )

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

• Support the creation of static readwrite‐splitting rules and dynamic readwrite‐splitting rules

• Dynamic readwrite‐splitting rules rely on database discovery rules

• loadBanlancerType specifies the load balancing algorithm type, please refer to Load Balance
Algorithm

• Duplicate ruleName will not be created

5.2. ShardingSphere-Proxy 172

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance/


Apache ShardingSphere document, v5.1.1

Example

// Static
CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1),
TYPE(NAME=random)
);

// Dynamic
CREATE READWRITE_SPLITTING RULE ms_group_1 (
AUTO_AWARE_RESOURCE=group_0,
TYPE(NAME=random,PROPERTIES(read_weight='2:1'))
);

ALTER READWRITE_SPLITTING RULE ms_group_1 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1,read_ds_2),
TYPE(NAME=random,PROPERTIES(read_weight='2:0'))
);

DROP READWRITE_SPLITTING RULE ms_group_1;

DB Discovery

Syntax

CREATE DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

ALTER DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

DROP DB_DISCOVERY RULE ruleName [, ruleName] ...

CREATE DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

ALTER DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

DROP DB_DISCOVERY TYPE discoveryTypeName [, discoveryTypeName] ...

CREATE DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

ALTER DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

5.2. ShardingSphere-Proxy 173



Apache ShardingSphere document, v5.1.1

DROP DB_DISCOVERY HEARTBEAT discoveryHeartbeatName [, discoveryHeartbeatName] ...

ruleDefinition:
(databaseDiscoveryRuleDefinition | databaseDiscoveryRuleConstruction)

databaseDiscoveryRuleDefinition
ruleName (resources, typeDefinition, heartbeatDefinition)

databaseDiscoveryRuleConstruction
ruleName (resources, TYPE = discoveryTypeName, HEARTBEAT =

discoveryHeartbeatName)

databaseDiscoveryTypeDefinition
discoveryTypeName (typeDefinition)

databaseDiscoveryHeartbaetDefinition
discoveryHeartbeatName (PROPERTIES (properties))

resources:
RESOURCES(resourceName [, resourceName] ...)

typeDefinition:
TYPE(NAME=typeName [, PROPERTIES([properties] )] )

heartbeatDefinition
HEARTBEAT (PROPERTIES (properties))

properties:
property [, property] ...

property:
key=value

• discoveryType specifies the database discovery service type, ShardingSphere has built‐in
support for MGR

• Duplicate ruleName will not be created

• The discoveryType and discoveryHeartbeat being used cannot be deleted

• Names with - need to use " " when changing

• When removing the discoveryRule, the discoveryType and discoveryHeartbeat used
by the discoveryRule will not be removed

5.2. ShardingSphere-Proxy 174



Apache ShardingSphere document, v5.1.1

Example

When creating a discoveryRule, create both discoveryType and discoveryHeartbeat

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME=mgr,PROPERTIES('group-name'='246e9612-aaf1')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

DROP DB_DISCOVERY RULE db_discovery_group_0;

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

Use the existing discoveryType and discoveryHeartbeat to create a discoveryRule

CREATE DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec'))

);

CREATE DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/5 * * * * ?')

);

CREATE DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

ALTER DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME=mgr,PROPERTIES('group-name'='246e9612-aaf1'))

);

ALTER DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/10 * * * * ?')

);

5.2. ShardingSphere-Proxy 175



Apache ShardingSphere document, v5.1.1

ALTER DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

DROP DB_DISCOVERY RULE db_discovery_group_1;

DROP DB_DISCOVERY TYPE db_discovery_group_1_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat;

Encrypt

Syntax

CREATE ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

ALTER ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

DROP ENCRYPT RULE tableName [, tableName] ...

encryptRuleDefinition:
tableName(COLUMNS(columnDefinition [, columnDefinition] ...), QUERY_WITH_

CIPHER_COLUMN=queryWithCipherColumn)

columnDefinition:
(NAME=columnName [, PLAIN=plainColumnName] , CIPHER=cipherColumnName,

encryptAlgorithm)

encryptAlgorithm:
TYPE(NAME=encryptAlgorithmType [, PROPERTIES([algorithmProperties] )] )

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

• PLAIN specifies the plain column, CIPHER specifies the cipher column

• encryptAlgorithmType specifies the encryption algorithm type, please refer to Encryption
Algorithm

• Duplicate tableName will not be created

• queryWithCipherColumn support uppercase or lowercase true or false

5.2. ShardingSphere-Proxy 176

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt/


Apache ShardingSphere document, v5.1.1

Example

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER =order_cipher,TYPE(NAME=MD5))
), QUERY_WITH_CIPHER_COLUMN=true),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER=order_cipher,TYPE(NAME=MD5))
), QUERY_WITH_CIPHER_COLUMN=FALSE);

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id,CIPHER=order_cipher,TYPE(NAME=MD5))
), QUERY_WITH_CIPHER_COLUMN=TRUE);

DROP ENCRYPT RULE t_encrypt,t_encrypt_2;

Shadow

Syntax

CREATE SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

ALTER SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

CREATE SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

ALTER SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

DROP SHADOW RULE ruleName [, ruleName] ...

DROP SHADOW ALGORITHM algorithmName [, algorithmName] ...

CREATE DEFAULT SHADOW ALGORITHM NAME = algorithmName

shadowRuleDefinition: ruleName(resourceMapping, shadowTableRule [, shadowTableRule]
...)

resourceMapping: SOURCE=resourceName, SHADOW=resourceName

5.2. ShardingSphere-Proxy 177



Apache ShardingSphere document, v5.1.1

shadowTableRule: tableName(shadowAlgorithm [, shadowAlgorithm] ...)

shadowAlgorithm: ([algorithmName, ] TYPE(NAME=shadowAlgorithmType,
PROPERTIES([algorithmProperties] ...)))

algorithmProperties: algorithmProperty [, algorithmProperty] ...

algorithmProperty: key=value

• Duplicate ruleName cannot be created

• resourceMapping specifies the mapping relationship between the source database and the
shadow library. You need to use the resourcemanaged by RDL, please refer to resource

• shadowAlgorithm can act on multiple shadowTableRule at the same time

• If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType

• shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SIMPLE_HINT

• shadowTableRule can be reused by different shadowRuleDefinition, so when executing
DROP SHADOW RULE, the corresponding shadowTableRule will not be removed

• shadowAlgorithm can be reused by different shadowTableRule, so when executing ALTER
SHADOW RULE, the corresponding shadowAlgorithm will not be removed

Example

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true",
foo="bar"))),(TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME=VALUE_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "value"='1')))));

ALTER SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true",
foo="bar"))),(TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME=VALUE_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "value"='1')))));

CREATE SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true", "foo"=

5.2. ShardingSphere-Proxy 178

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/


Apache ShardingSphere document, v5.1.1

"bar"))),
(user_id_match_algorithm, TYPE(NAME=REGEX_MATCH,PROPERTIES("operation"="insert",
"column"="user_id", "regex"='[1]')));

ALTER SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="false", "foo"=
"bar"))),
(user_id_match_algorithm, TYPE(NAME=VALUE_MATCH,PROPERTIES("operation"="insert",
"column"="user_id", "value"='1')));

DROP SHADOW RULE shadow_rule;

DROP SHADOW ALGORITHM simple_note_algorithm;

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

RQL Syntax

RQL (Resource & Rule Query Language) responsible for resources/rules query.

Resource Query

Syntax

SHOW SCHEMA RESOURCES [FROM schemaName]

Return Value Description

Column Description

name Data source name
type Data source type
host Data source host
port Data source port
db Database name
attribute Data source attribute

5.2. ShardingSphere-Proxy 179



Apache ShardingSphere document, v5.1.1

Example

mysql> show schema resources;
+------+-------+-----------+------+------+-----------------------------------------
-----------------------------------------------------------------------------------
---------------------------------+
| name | type | host | port | db | attribute

|
+------+-------+-----------+------+------+-----------------------------------------
-----------------------------------------------------------------------------------
---------------------------------+
| ds_0 | MySQL | 127.0.0.1 | 3306 | ds_0 | {"minPoolSize":1,
"connectionTimeoutMilliseconds":30000,"maxLifetimeMilliseconds":1800000,"readOnly
":false,"idleTimeoutMilliseconds":60000,"maxPoolSize":50} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | ds_1 | {"minPoolSize":1,
"connectionTimeoutMilliseconds":30000,"maxLifetimeMilliseconds":1800000,"readOnly
":false,"idleTimeoutMilliseconds":60000,"maxPoolSize":50} |
+------+-------+-----------+------+------+-----------------------------------------
-----------------------------------------------------------------------------------
---------------------------------+
2 rows in set (0.84 sec)

Rule Query

This chapter describes the syntax of rule query.

Sharding

Syntax

Sharding Table Rule

SHOW SHARDING TABLE tableRule | RULES [FROM schemaName]

SHOW SHARDING ALGORITHMS [FROM schemaName]

SHOW UNUSED SHARDING ALGORITHMS [FROM schemaName]

SHOW SHARDING KEY GENERATORS [FROM schemaName]

SHOW UNUSED SHARDING KEY GENERATORS [FROM schemaName]

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName [FROM schemaName]

5.2. ShardingSphere-Proxy 180



Apache ShardingSphere document, v5.1.1

SHOW DEFAULT SHARDING STRATEGY

SHOW SHARDING TABLE NODES;

tableRule:
RULE tableName

• Support query all data fragmentation rules and specified table query

• Support query all sharding algorithms

Sharding Binding Table Rule

SHOW SHARDING BINDING TABLE RULES [FROM schemaName]

Sharding Broadcast Table Rule

SHOW SHARDING BROADCAST TABLE RULES [FROM schemaName]

Sharding Scaling Rule

SHOW SHARDING SCALING RULES [FROM schemaName]

Return Value Description

5.2. ShardingSphere-Proxy 181



Apache ShardingSphere document, v5.1.1

Sharding Table Rule

Column Description

table Logical table name
actual_data_nodes Actual data node
actual_data_sources Actual data source (Displayed when creating rules by RDL)
database_strategy_type Database sharding strategy type
d atabase_sharding_column Database sharding column
database_ sharding_algorithm_type Database sharding algorithm type
database_s harding_algorithm_props Database sharding algorithm properties
table_strategy_type Table sharding strategy type
table_sharding_column Table sharding column
table_ sharding_algorithm_type Table sharding algorithm type
table_s harding_algorithm_props Table sharding algorithm properties
key_generate_column Sharding key generator column
key_generator_type Sharding key generator type
key_generator_props Sharding key generator properties

Sharding Algorithms

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Unused Sharding Algorithms

Column Description

name Sharding algorithm name
type Sharding algorithm type
props Sharding algorithm properties

Sharding key generators

Column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

5.2. ShardingSphere-Proxy 182



Apache ShardingSphere document, v5.1.1

Unused Sharding Key Generators

Column Description

name Sharding key generator name
type Sharding key generator type
props Sharding key generator properties

Default Sharding Strategy

Column Description

name Strategy name
type Sharding strategy type
sharding_column Sharding column
sharding_algorithm_name Sharding algorithm name
sharding_algorithm_type Sharding algorithm type
sharding_algorithm_props Sharding algorithm properties

Sharding Table Nodes

Column Description

name Sharding rule name
nodes Sharding nodes

Sharding Binding Table Rule

Column Description

sharding_binding_tables sharding Binding Table list

Sharding Broadcast Table Rule

Column Description

sharding_broadcast_tables sharding Broadcast Table list

5.2. ShardingSphere-Proxy 183



Apache ShardingSphere document, v5.1.1

Sharding Scaling Rule

Column Description

name name of sharding scaling rule
input data read configuration
output data write configuration
stream_channel algorithm of stream channel
completion_detector algorithm of completion detecting
data_consistency_checker algorithm of data consistency checking

Example

Sharding Table Rule

SHOW SHARDING TABLE RULES

mysql> SHOW SHARDING TABLE RULES;
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---------------------------------------------------+------------------
-+------------------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_
strategy_type | database_sharding_column | database_sharding_algorithm_type |
database_sharding_algorithm_props | table_strategy_type | table_sharding_
column | table_sharding_algorithm_type | table_sharding_algorithm_props

| key_generate_column | key_generator_type | key_generator_props |
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---------------------------------------------------+------------------
-+------------------+-------------------+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE

| user_id | INLINE | algorithm-
expression:ds_${user_id % 2} | INLINE | order_id | INLINE

| algorithm-expression:t_order_${order_id % 2} | order_id
| SNOWFLAKE | |

| t_order_item | ds_${0..1}.t_order_item_${0..1} | | INLINE
| user_id | INLINE | algorithm-

expression:ds_${user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_item_${order_id % 2} | order_item_id

| SNOWFLAKE | |
| t2 | | ds_0,ds_1 |

| | |
| mod | id | mod

| sharding-count:10 | |

5.2. ShardingSphere-Proxy 184



Apache ShardingSphere document, v5.1.1

| |
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---------------------------------------------------+------------------
-+------------------+-------------------+
3 rows in set (0.02 sec)

SHOW SHARDING TABLE RULE tableName

mysql> SHOW SHARDING TABLE RULE t_order;
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+----------------------------------------------+-------------------+------------
------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_
type | database_sharding_column | database_sharding_algorithm_type | database_
sharding_algorithm_props | table_strategy_type | table_sharding_column |
table_sharding_algorithm_type | table_sharding_algorithm_props |
key_generate_column | key_generator_type | key_generator_props |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+----------------------------------------------+-------------------+------------
------+-------------------+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE |
user_id | INLINE | algorithm-expression:ds_$
{user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_${order_id % 2} | order_id | SNOWFLAKE

| |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+----------------------------------------------+-------------------+------------
------+-------------------+
1 row in set (0.01 sec)

SHOW SHARDING ALGORITHMS

mysql> SHOW SHARDING ALGORITHMS;
+-------------------------+--------+-----------------------------------------------
------+
| name | type | props

|
+-------------------------+--------+-----------------------------------------------
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

5.2. ShardingSphere-Proxy 185



Apache ShardingSphere document, v5.1.1

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
2} |
+-------------------------+--------+-----------------------------------------------
------+
2 row in set (0.01 sec)

SHOW UNUSED SHARDING ALGORITHMS

mysql> SHOW UNUSED SHARDING ALGORITHMS;
+---------------+--------+-----------------------------------------------------+
| name | type | props |
+---------------+--------+-----------------------------------------------------+
| t1_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
+---------------+--------+-----------------------------------------------------+
1 row in set (0.01 sec)

SHOW SHARDING KEY GENERATORS

mysql> SHOW SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
| t_order_snowflake | snowflake | |
| t_order_item_snowflake | snowflake | |
| uuid_key_generator | uuid | |
+------------------------+-----------+-----------------+
3 row in set (0.01 sec)

SHOW UNUSED SHARDING KEY GENERATORS

mysql> SHOW UNUSED SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
| uuid_key_generator | uuid | |
+------------------------+-----------+-----------------+
1 row in set (0.01 sec)

SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName

mysql> SHOW SHARDING TABLE RULES USED KEY GENERATOR keyGeneratorName;
+------------------------+-----------+-----------------+
| schema | type | name |
+------------------------+-----------+-----------------+
| sharding_db | table | t_order |
+------------------------+-----------+-----------------+
1 row in set (0.01 sec)

5.2. ShardingSphere-Proxy 186



Apache ShardingSphere document, v5.1.1

SHOW DEFAULT SHARDING STRATEGY

mysql> SHOW DEFAULT SHARDING STRATEGY ;

+----------+---------+--------------------+-------------------------+--------------
-----------+------------------------------------------+
| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |
+----------+---------+--------------------+-------------------------+--------------
-----------+------------------------------------------+
| TABLE | NONE | | |

| |
| DATABASE | STANDARD| order_id | database_inline | INLINE

| {algorithm-expression=ds_${user_id % 2}} |
+----------+---------+--------------------+-------------------------+--------------
-----------+------------------------------------------+
2 rows in set (0.07 sec)

SHOW SHARDING TABLE NODES

mysql> SHOW SHARDING TABLE NODES;
+---------+----------------------------------------------------------------+
| name | nodes |
+---------+----------------------------------------------------------------+
| t_order | ds_0.t_order_0, ds_1.t_order_1, ds_0.t_order_2, ds_1.t_order_3 |
+---------+----------------------------------------------------------------+
1 row in set (0.02 sec)

Sharding Binding Table Rule

mysql> SHOW SHARDING BINDING TABLE RULES;
+----------------------+
| sharding_binding_tables |
+----------------------+
| t_order,t_order_item |
| t1,t2 |
+----------------------+
2 rows in set (0.00 sec)

5.2. ShardingSphere-Proxy 187



Apache ShardingSphere document, v5.1.1

Sharding Broadcast Table Rule

mysql> SHOW SHARDING BROADCAST TABLE RULES;
+------------------------+
| sharding_broadcast_tables |
+------------------------+
| t_1 |
| t_2 |
+------------------------+
2 rows in set (0.00 sec)

Sharding Scaling Rule

mysql> SHOW SHARDING SCALING RULES;
+------------------+---------------------------------------------------------------
-------------------------+---------------------------------------------------------
---------------------------------+-------------------------------------------------
-------+-------------------------------------------------------------------------+-
----------------------------------------------------+
| name | input

| output
| stream_channel

| completion_detector |
data_consistency_checker |
+------------------+---------------------------------------------------------------
-------------------------+---------------------------------------------------------
---------------------------------+-------------------------------------------------
-------+-------------------------------------------------------------------------+-
----------------------------------------------------+
| sharding_scaling | {"workerThread":40,"batchSize":1000} | {"workerThread":40,
"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"10000"}} | {"type
":"IDLE","props":{"incremental-task-idle-minute-threshold":"30"}} | {"type":"DATA_
MATCH","props":{"chunk-size":"1000"}} |
+------------------+---------------------------------------------------------------
-------------------------+---------------------------------------------------------
---------------------------------+-------------------------------------------------
-------+-------------------------------------------------------------------------+-
----------------------------------------------------+
1 row in set (0.00 sec)

5.2. ShardingSphere-Proxy 188



Apache ShardingSphere document, v5.1.1

Single Table

Syntax

SHOW SINGLE TABLE (tableRule | RULES) [FROM schemaName]

SHOW SINGLE TABLES

tableRule:
RULE tableName

Return Value Description

Single Table Rule

Column Description

name Rule name
resource_name Data source name

Single Table

Column Description

table_name Single table name
resource_name The resource name where the single table is located

Example

single table rules

sql> show single table rules;
+---------+---------------+
| name | resource_name |
+---------+---------------+
| default | ds_1 |
+---------+---------------+
1 row in set (0.01 sec)

single tables

mysql> show single tables;
+--------------+---------------+
| table_name | resource_name |

5.2. ShardingSphere-Proxy 189



Apache ShardingSphere document, v5.1.1

+--------------+---------------+
| t_single_0 | ds_0 |
| t_single_1 | ds_1 |
+--------------+---------------+
2 rows in set (0.02 sec)

Readwrite-Splitting

Syntax

SHOW READWRITE_SPLITTING RULES [FROM schemaName]

Return Value Description

Column Description

name Rule name
auto_aware_data_source_nameAuto‐Aware discovery data source name（Display configuration dynamic

readwrite splitting rules）
write_data_source_name Write data source name
read_data_source_names Read data source name list
load_balancer_type Load balance algorithm type
load_balancer_props Load balance algorithm parameter

Example

Static Readwrite Splitting Rules

mysql> show readwrite_splitting rules;
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| ms_group_0 | | ds_primary | ds_slave_0,
ds_slave_1 | random | |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
1 row in set (0.00 sec)

Dynamic Readwrite Splitting Rules

5.2. ShardingSphere-Proxy 190



Apache ShardingSphere document, v5.1.1

mysql> show readwrite_splitting rules from readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | |

| random | read_weight=2:1 |
+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.01 sec)

Static Readwrite Splitting Rules And Dynamic Readwrite Splitting Rules

mysql> show readwrite_splitting rules from readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | write_ds | read_ds_0,
read_ds_1 | random | read_weight=2:1 |
+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.00 sec)

DB Discovery

Syntax

SHOW DB_DISCOVERY RULES [FROM schemaName]

SHOW DB_DISCOVERY TYPES [FROM schemaName]

SHOW DB_DISCOVERY HEARTBEATS [FROM schemaName]

5.2. ShardingSphere-Proxy 191



Apache ShardingSphere document, v5.1.1

Return Value Description

DB Discovery Rule

Column Description

group_name Rule name
data_source_names Data source name list
primary_data_source_name Primary data source name
discovery_type Database discovery service type
discovery_heartbeat Database discovery service heartbeat

DB Discovery Type

Column Description

name Type name
type Type category
props Type properties

DB Discovery Heartbeat

Column Description

name Heartbeat name
props Heartbeat properties

Example

DB Discovery Rule

mysql> show db_discovery rules;
+----------------------+-------------------+--------------------------+------------
-----------------------------------------------------------------+-----------------
-------------------------------------------------------------+
| group_name | data_source_names | primary_data_source_name | discovery_
type | discovery_
heartbeat |
+----------------------+-------------------+--------------------------+------------
-----------------------------------------------------------------+-----------------
-------------------------------------------------------------+
| db_discovery_group_0 | ds_0,ds_1,ds_2 | ds_0 | {name=db_
discovery_group_0_mgr, type=mgr, props={group-name=92504d5b-6dec}} | {name=db_
discovery_group_0_heartbeat, props={keep-alive-cron=0/5 * * * * ?}} |

5.2. ShardingSphere-Proxy 192



Apache ShardingSphere document, v5.1.1

+----------------------+-------------------+--------------------------+------------
-----------------------------------------------------------------+-----------------
-------------------------------------------------------------+
1 row in set (0.20 sec)

DB Discovery Type

mysql> show db_discovery types;
+---------------------------+------+------------------------------+
| name | type | props |
+---------------------------+------+------------------------------+
| db_discovery_group_0_mgr | mgr | {group-name=92504d5b-6dec} |
+---------------------------+------+------------------------------+
1 row in set (0.01 sec)

DB Discovery Heartbeat

mysql> show db_discovery heartbeats;
+--------------------------------+---------------------------------+
| name | props |
+--------------------------------+---------------------------------+
| db_discovery_group_0_heartbeat | {keep-alive-cron=0/5 * * * * ?} |
+---------------------------------+---------------------------------+
1 row in set (0.01 sec)

Encrypt

Syntax

SHOW ENCRYPT RULES [FROM schemaName]

SHOW ENCRYPT TABLE RULE tableName [from schemaName]

• Support to query all data encryption rules and specify logical table name query

5.2. ShardingSphere-Proxy 193



Apache ShardingSphere document, v5.1.1

Return Value Description

Column Description

table Logical table name
logic_column Logical column name
logic_data_type Logical column data type
cipher_column Ciphertext column name
cipher_data_type Ciphertext column data type
plain_column Plaintext column name
plain_data_type Plaintext column data type
assisted_query_column Assisted query column name
assisted_query_data_type Assisted query column data type
encryptor_type Encryption algorithm type
encryptor_props Encryption algorithm parameter
query_with_cipher_column Whether to use encrypted column for query

Example

Show Encrypt Rules

mysql> show encrypt rules from encrypt_db;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
| t_encrypt_2 | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | false |
| t_encrypt_2 | order_id | | order_cipher | |

| | | |
MD5 | | false |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+

5.2. ShardingSphere-Proxy 194



Apache ShardingSphere document, v5.1.1

4 rows in set (0.78 sec)

Show Encrypt Table Rule Table Name

mysql> show encrypt table rule t_encrypt;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
2 rows in set (0.01 sec)

mysql> show encrypt table rule t_encrypt from encrypt_db;
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| table | logic_column | logic_data_type | cipher_column | cipher_data_type |
plain_column | plain_data_type | assisted_query_column | assisted_query_data_type |
encryptor_type | encryptor_props | query_with_cipher_column |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
| t_encrypt | user_id | | user_cipher | |
user_plain | | | |
AES | aes-key-value=123456abc | true |
| t_encrypt | order_id | | order_cipher | |

| | | |
MD5 | | true |
+-------------+--------------+-----------------+---------------+------------------
+--------------+-----------------+-----------------------+-------------------------
-+----------------+-------------------------+--------------------------+
2 rows in set (0.01 sec))

5.2. ShardingSphere-Proxy 195



Apache ShardingSphere document, v5.1.1

Shadow

Syntax

SHOW SHADOW shadowRule | RULES [FROM schemaName]

SHOW SHADOW TABLE RULES [FROM schemaName]

SHOW SHADOW ALGORITHMS [FROM schemaName]

shadowRule:
RULE ruleName

• Support querying all shadow rules and specified table query

• Support querying all shadow table rules

• Support querying all shadow algorithms

Return Value Description

Shadow Rule

Column Description

rule_name Rule name
source_name Source database
shadow_name Shadow database
shadow_table Shadow table

Shadow Table Rule

Column Description

shadow_table Shadow table
shadow_algorithm_name Shadow algorithm name

Shadow Algorithms

Column Description

shadow_algorithm_name Shadow algorithm name
type Shadow algorithm type
props Shadow algorithm properties
is_default Default

5.2. ShardingSphere-Proxy 196



Apache ShardingSphere document, v5.1.1

Shadow Rule status

Column Description

status Enable

Example

SHOW SHADOW RULES

mysql> show shadow rules;
+--------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+--------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
| shadow_rule_2 | ds_2 | ds_shadow_2 | t_order_item |
+--------------------+-------------+-------------+--------------+
2 rows in set (0.02 sec)

SHOW SHADOW RULE ruleName

mysql> show shadow rule shadow_rule_1;
+------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
+------------------+-------------+-------------+--------------+
1 rows in set (0.01 sec)

SHOW SHADOW TABLE RULES

mysql> show shadow table rules;
+--------------+-------------------------------------------------------------------
-------------+
| shadow_table | shadow_algorithm_name

|
+--------------+-------------------------------------------------------------------
-------------+
| t_order_1 | user_id_match_algorithm,simple_note_algorithm_1

|
+--------------+-------------------------------------------------------------------
-------------+
1 rows in set (0.01 sec)

SHOW SHADOW ALGORITHMS

mysql> show shadow algorithms;
+-------------------------+--------------------+-----------------------------------

5.2. ShardingSphere-Proxy 197



Apache ShardingSphere document, v5.1.1

--------+----------------+
| shadow_algorithm_name | type | props

| is_default |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
| user_id_match_algorithm | COLUMN_REGEX_MATCH | operation=insert,column=user_id,
regex=[1] | false |
| simple_note_algorithm_1 | SIMPLE_NOTE | shadow=true,foo=bar

| false |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
2 rows in set (0.01 sec)

RAL Syntax

RAL (Resource & Rule Administration Language) responsible for the added‐on feature of hint, transac‐
tion type switch, scaling, sharding execute planning and so on.

5.2. ShardingSphere-Proxy 198



Apache ShardingSphere document, v5.1.1

Hint

Statement Function Example

SET READ
WRITE_SPLITTING
HINT SOURCE = [auto /
write]

For current connection, set readwrite split‐
ting routing strategy (automatic or forced to
write data source)

SET READWRITE_
SPLITTINGHINT
SOURCE = write

SET SHARDING HINT
DATABASE_VALUE = yy

For current connection, set sharding value
for database sharding only, yy: sharding
value

SET SHARDING HINT
D ATABASE_VALUE =
100

ADD SHARDING HINT
DATABASE_VALUE table‐
Name= yy

For current connection, add sharding value
for table, xx: logic table, yy: database shard‐
ing value

ADD SHARDING HINT
D ATABASE_VALUE
t_order = 100

ADD SHARDING HINT
TABLE_VALUE tableName
= yy

For current connection, add sharding value
for table, xx: logic table, yy: table sharding
value

ADD SHARDING HINT
TABLE_VALUE t_order
= 100

CLEAR HINT SETTINGS For current connection, clear all hint set‐
tings

CLEAR HINT

CLEAR [SHARD‐
ING HINT / READ
WRITE_SPLITTING
HINT]

For current connection, clear hint settings of
sharding or readwrite splitting

CLEAR READWR
ITE_SPLITTING HINT

SHOW [SHARD‐
ING / READW
RITE_SPLITTING] HINT
STATUS

For current connection, query hint settings
of sharding or readwrite splitting

SHOW READWR
ITE_SPLITTING HINT
STATUS

5.2. ShardingSphere-Proxy 199



Apache ShardingSphere document, v5.1.1

Scaling

Statement Function Example

SHOW SCALING LIST Query running list SHOW SCALING LIST
SHOW SCALING STATUS jobId Query scaling status, xx: jobId SHOWSCALINGLIST 1234
START SCALING jobId Start scaling, xx: jobId START SCALING 1234
STOP SCALING jobId Stop scaling, xx: jobId STOP SCALING 1234
DROP SCALING jobId Drop scaling, xx: jobId DROP SCALING 1234
RESET SCALING jobId reset progress, xx: jobId RESET SCALING 1234
CHECK SCALING jobId Data consistency check with algo‐

rithm in server.yaml, xx: jobId
CHECK SCALING 1234

SHOWSCALINGCHECKALGO‐
RITHMS

Showavailable consistency check al‐
gorithms

SHOW SCALING CHECK
ALGORITHMS

CHECK SCALING {jobId} by
type(n ame={algorithmType})

Data consistency check with defined
algorithm

CHECK SCALING 1234 by
typ e(name=DEFAULT)

STOP SCALING SOURCEWRIT‐
ING jobId

The source ShardingSphere data
source is discontinued, xx: jobId

STOP SCALING SOURCE
WRITING 1234

RESTORE SCALING SOURCE
WRITING jobId

Restore source data source writing,
xx: jobId

RESTORE SCALING
SOURCEWRITING 1234

APPLY SCALING jobId Switch to target ShardingSphere
metadata, xx: jobId

APPLY SCALING 1234

Circuit Breaker

Statement Function Example

[ENABLE / DISABLE] READWRITE_SPLITTING
(READ)? resourceName [FROM schemaName]

Enable or disable
read data source

ENABLE READ‐
WRITE_SPLITTING READ
resource_0

[ENABLE / DISABLE] INSTANCE [IP=xxx,
PORT=xxx / instanceId]

Enable or disable
proxy instance

DISABLE INSTANCE
127.0.0.1@3307

SHOW INSTANCE LIST Query proxy
instance informa‐
tion

SHOW INSTANCE LIST

SHOW READWRITE_SPLITTING (READ)? re‐
sourceName [FROM schemaName]

Query all read re‐
sources status

SHOW READ‐
WRITE_SPLITTING READ
RESOURCES

5.2. ShardingSphere-Proxy 200

mailto:127.0.0.1@3307


Apache ShardingSphere document, v5.1.1

Global Rule

Statement Function Example

SHOW AUTHORITY RULE Query authority rule config‐
uration

SHOW AUTHORITY RULE

SHOW TRANSACTION RULE Query transaction rule con‐
figuration

SHOW TRANSACTION RULE

SHOW SQL_PARSER RULE Query SQL parser rule con‐
figuration

SHOW SQL_PARSER RULE

ALTER TRANSAC‐
TION RULE(DEFAU
LT=xx,TYPE(NAME=xxx,
PROPER TIES(“key1”=“value1”
,“key2”=“value2”⋯)))

Alter transaction rule con‐
figur ation，DEFAULT:
default transaction type，
support LOCAL、XA、BASE;
NAME: name of transac‐
tion manager, support
Atomikos, Narayana and
Bitronix

ALTER TRANSACTION
RULE(DEFAULT=XA
,TYPE(NAME=Narayana, PROP‐
ERTIES(“datab aseName”=
“jbossts”,“host”=“127.0.0.1”
)))

ALTER SQL_PARSER
RULE SQL_COMM
ENT_PARSE_ENABLE=xx,
PARSE_TREE_CACHE( INI‐
TIAL_CAPACITY=xx, MAX‐
IMUM_SIZE=xx, CO NCUR‐
RENCY_LEVEL=xx), S
QL_STATEMENT_CACHE(I
NITIAL_CAPACITY=xxx, MAX‐
IMUM_SIZE=xxx, CO NCUR‐
RENCY_LEVEL=xxx)

Alter SQL parser rule
configuration, SQL_CO
MMENT_PARSE_ENABLE:
whether to parse
the SQL comment,
PARSE_TREE_CACHE:
local cache configura‐
tion of syntax tree, S
QL_STATEMENT_CACHE:
local cache of SQL state‐
ment

ALTER SQL_PARSER
RULE SQL_COMMENT
_PARSE_ENABLE=false,
PARSE_TREE_CACHE( INI‐
TIAL_CAPACITY=10, MAX‐
IMUM_SIZE=11, C ON‐
CURRENCY_LEVEL=1),
SQL_STATEMENT_CACHE(
INITIAL_CAPACITY=11, MAX‐
IMUM_SIZE=11, CO NCUR‐
RENCY_LEVEL=100)

5.2. ShardingSphere-Proxy 201



Apache ShardingSphere document, v5.1.1

Other

Statement Function Example

SHOW INSTANCE MODE Query the mode configuration of the
proxy

SHOW INSTANCE
MODE

COUNT SCHEMA RULES [FROM
schema]

Query the number of rules in a
schema

count schema rules

SET VARIABLE
proxy_property_name = xx

proxy_property_name is one of prop‐
erties configuration of proxy, name is
split by underscore

SET VARIABLE
sql_show = true

SET VARIABLE transaction_type =
xx

Modify transaction_type of the cur‐
rent connection, supports LOCAL,
XA, BASE

SET VARIABLE tran
saction_type = XA

SET VARIABLE
agent_plugins_enabled = [TRUE /
FALSE]

Set whether the agent plugins are en‐
abled, the default value is false

SET VARI‐
ABLE agent_plu
gins_enabled = TRUE

SHOW ALL VARIABLES Query proxy all properties configura‐
tion

SHOW ALL VARI‐
ABLES

SHOW VARIABLE variable_name Queryproxy variable, name is split by
underscore

SHOW VARIABLE
sql_show

PREVIEW SQL Preview the actual SQLs PREVIEW SELECT *
FROM t_order

PARSE SQL Parse SQL and output abstract syntax
tree

PARSE SELECT *
FROM t_order

REFRESH TABLE METADATA Refresh the metadata of all tables REFRESH TABLE
METADATA

REFRESH TABLE METADATA
[tableName / tableName FROM
resource resourceName]

Refresh the metadata of a table REFRESH TABLE
METADATA t_order
FROM resource ds_1

SHOW TABLE METADATA table‐
Name [, tableName]⋯

Query table metadata SHOW TABLE META‐
DATA t_order

EXPORT SCHEMA CONFIG
[FROM schema_name] [, file=
“file_path”]

Query / export resources and rule
configuration in schema

EXPORT SCHEMA
CONFIG FROM read‐
write_ splitting_db

SHOW RULES USED RESOURCE
resourceName [from schema]

Query the rules for using the speci‐
fied resource in schema

SHOW RULES USED
RESOURCE ds_0
FROM schemaName

5.2. ShardingSphere-Proxy 202

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/


Apache ShardingSphere document, v5.1.1

Notice

ShardingSphere‐Proxy does not support hint by default, to support it, set proxy-hint-enabled to
true in conf/server.yaml.

Usage

This chapter will introduce how to use DistSQL tomanage resources and rules in a distributed database.

Pre-work

Use MySQL as example, can replace to other databases.

1. Start the MySQL service;

2. Create to be registered MySQL databases;

3. Create role and user in MySQL with creation permission for ShardingSphere‐Proxy;

4. Start Zookeeper service;

5. Add mode and authentication configurations to server.yaml;

6. Start ShardingSphere‐Proxy;

7. Use SDK or terminal connect to ShardingSphere‐Proxy.

Create Logic Database

1. Create logic database

CREATE DATABASE foo_db;

2. Use newly created logic database

USE foo_db;

Resource Operation

More details please see concentrate rule examples.

5.2. ShardingSphere-Proxy 203



Apache ShardingSphere document, v5.1.1

Rule Operation

More details please see concentrate rule examples.

Notice

1. Currently, DROP DATABASE will only remove the logical distributed database, not the
user’s actual database;

2. DROP TABLE will delete all logical fragmented tables and actual tables in the database;

3. CREATE DATABASE will only create a logical distributed database, so users need to
create actual databases in advance.

Sharding

Resource Operation

• Configure data source information

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root
);

ADD RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root
);

Rule Operation

• Create sharding rule

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=4)),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME=snowflake))
);

5.2. ShardingSphere-Proxy 204



Apache ShardingSphere document, v5.1.1

• Create sharding table

CREATE TABLE `t_order` (
`order_id` int NOT NULL,
`user_id` int NOT NULL,
`status` varchar(45) DEFAULT NULL,
PRIMARY KEY (`order_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

• Drop sharding table

DROP TABLE t_order;

• Drop sharding rule

DROP SHARDING TABLE RULE t_order;

• Drop resource

DROP RESOURCE ds_0, ds_1;

• Drop distributed database

DROP DATABASE foo_db;

readwrite_splitting

Resource Operation

ADD RESOURCE write_ds (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root
),read_ds (
HOST=127.0.0.1,
PORT=3307,
DB=ds_0,
USER=root,
PASSWORD=root
);

5.2. ShardingSphere-Proxy 205



Apache ShardingSphere document, v5.1.1

Rule Operation

• Create readwrite_splitting rule

CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME=random)
);

• Alter readwrite_splitting rule

ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME=random,PROPERTIES(read_weight='2:0'))
);

• Drop readwrite_splitting rule

DROP READWRITE_SPLITTING RULE group_0;

• Drop resource

DROP RESOURCE write_ds,read_ds;

• Drop distributed database

DROP DATABASE readwrite_splitting_db;

Encrypt

Resource Operation

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root

);

5.2. ShardingSphere-Proxy 206



Apache ShardingSphere document, v5.1.1

Rule Operation

• Create encrypt rule

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES(
'aes-key-value'='123456abc'))),

(NAME=order_id,PLAIN=order_plain,CIPHER =order_cipher,TYPE(NAME=RC4,
PROPERTIES('rc4-key-value'='123456abc')))
));

• Create encrypt table

CREATE TABLE `t_encrypt` (
`id` int(11) NOT NULL,
`user_id` varchar(45) DEFAULT NULL,
`order_id` varchar(45) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

• Alter encrypt rule

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES(
'aes-key-value'='123456abc')))
));

• Drop encrypt rule

DROP ENCRYPT RULE t_encrypt;

• Drop resource

DROP RESOURCE ds_0;

• Drop distributed database

DROP DATABASE encrypt_db;

5.2. ShardingSphere-Proxy 207



Apache ShardingSphere document, v5.1.1

DB Discovery

Resource Operation

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root
),RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root
),RESOURCE ds_2 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root
);

Rule Operation

• Create DB discovery rule

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1),
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• Alter DB discovery rule

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• Drop db_discovery rule

DROP DB_DISCOVERY RULE db_discovery_group_0;

• Drop db_discovery type

5.2. ShardingSphere-Proxy 208



Apache ShardingSphere document, v5.1.1

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

• Drop db_discovery heartbeat

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

• Drop resource

DROP RESOURCE ds_0,ds_1,ds_2;

• Drop distributed database

DROP DATABASE discovery_db;

Shadow

Resource Operation

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root
),ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root
),ds_2 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root
);

5.2. ShardingSphere-Proxy 209



Apache ShardingSphere document, v5.1.1

Rule Operation

• Create shadow rule

CREATE SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_1,
t_order((simple_note_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("foo"="bar"))),
(TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"="user_id", "regex
"='[1]')))),
t_order_item((TYPE(NAME=SIMPLE_HINT, PROPERTIES("foo"="bar")))));

• Alter shadow rule

ALTER SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_2,
t_order_item((TYPE(NAME=SIMPLE_HINT, PROPERTIES("foo"="bar")))));

• Drop shadow rule

DROP SHADOW RULE group_0;

• Drop resource

DROP RESOURCE ds_0,ds_1,ds_2;

• Drop distributed database

DROP DATABASE foo_db;

5.3 ShardingSphere-Sidecar

5.3.1 Introduction

ShardingSphere‐Sidecar (TODO) defines itself as a cloud native database agent of the Kubernetes envi‐
ronment, in charge of all the access to the database in the form of sidecar.

It provides a mesh layer interacting with the database, we call this as Database Mesh.

5.3. ShardingSphere-Sidecar 210



Apache ShardingSphere document, v5.1.1

5.3.2 Comparison

Shardi ngSphere-JDBC Shardin gSphere-Proxy ShardingS phere-Sidecar

Database Any My SQL/PostgreSQL MySQL
Connections Count Cost High Low High
Supported Languages Java Only Any Any
Performance Low loss Relatively High loss Low loss
De centralization Yes No Yes
Static Entry No Yes No

The advantage of ShardingSphere‐Sidecar lies in its cloud native support for Kubernetes and Mesos.

5.4 ShardingSphere-Scaling

5.4.1 Introduction

ShardingSphere‐Scaling is a common solution for migrating data to ShardingSphere or scaling data in
Apache ShardingSphere since 4.1.0, current state is Experimental version.

5.4. ShardingSphere-Scaling 211



Apache ShardingSphere document, v5.1.1

5.4.2 Build

Build&Deployment

1. Execute the following command to compile and generate the ShardingSphere‐Proxy binary pack‐
age:

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

The binary packages: ‐ /shardingsphere‐distribution/shardingsphere‐proxy‐
distribution/target/apache‐shardingsphere‐${latest.release.version}‐shardingsphere‐proxy‐bin.tar.gz

Or get binary package from download page.

Scaling is an experimental feature, if scaling job fail, you could try nightly version, click here
to download nightly build.

2. Unzip the proxy distribution package, modify the configuration file conf/config-sharding.
yaml. Please refer to proxy startup manual for more details.

3. Modify the configuration file conf/server.yaml. Please refer to Mode Configuration for more
details. Type of modemust be Cluster for now, please start the registry center before running
proxy.

Configuration Example:

mode:
type: Cluster
repository:

type: ZooKeeper
props:
namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500

overwrite: false

4. Enable scaling

Way 1. Modify scalingName and scaling configuration in conf/config-sharding.yaml.

Configuration Items Explanation:

rules:
- !SHARDING
# ignored configuration

5.4. ShardingSphere-Scaling 212

https://shardingsphere.apache.org/document/current/en/downloads/
https://github.com/apache/shardingsphere#nightly-builds
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/


Apache ShardingSphere document, v5.1.1

scalingName: # Enabled scaling action config name
scaling:

<scaling-action-config-name> (+):
input: # Data read configuration. If it's not configured, then part of its

configuration will take effect.
workerThread: # Worker thread pool size for inventory data ingestion from

source. If it's not configured, then use system default value.
batchSize: # Maximum records count of a DML select operation. If it's not

configured, then use system default value.
rateLimiter: # Rate limit algorithm. If it's not configured, then system

will skip rate limit.
type: # Algorithm type. Options:
props: # Algorithm properties

output: # Data write configuration. If it's not configured, then part of its
configuration will take effect.

workerThread: # Worker thread pool size for data importing to target. If it
's not configured, then use system default value.

batchSize: # Maximum records count of a DML insert/delete/update operation.
If it's not configured, then use system default value.

rateLimiter: # Rate limit algorithm. If it's not configured, then system
will skip rate limit.

type: # Algorithm type. Options:
props: # Algorithm properties

streamChannel: # Algorithm of channel that connect producer and consumer,
used for input and output. If it's not configured, then system will use MEMORY type

type: # Algorithm type. Options: MEMORY
props: # Algorithm properties

block-queue-size: # Property: data channel block queue size. Available
for types: MEMORY

completionDetector: # Completion detect algorithm. If it's not configured,
then system won't continue to do next steps automatically.

type: # Algorithm type. Options: IDLE
props: # Algorithm properties

incremental-task-idle-minute-threshold: # If incremental tasks is idle
more than so much minutes, then it could be considered as almost completed.
Available for types: IDLE

dataConsistencyChecker: # Data consistency check algorithm. If it's not
configured, then system will skip this step.

type: # Algorithm type. Options: DATA_MATCH, CRC32_MATCH
props: # Algorithm properties

chunk-size: # Maximum records count of a query operation for check

Configuration Example:

rules:
- !SHARDING
# ignored configuration

5.4. ShardingSphere-Scaling 213



Apache ShardingSphere document, v5.1.1

scalingName: default_scaling
scaling:

default_scaling:
input:
workerThread: 40
batchSize: 1000

output:
workerThread: 40
batchSize: 1000

streamChannel:
type: MEMORY
props:

block-queue-size: 10000
completionDetector:
type: IDLE
props:

incremental-task-idle-minute-threshold: 30
dataConsistencyChecker:
type: DATA_MATCH
props:

chunk-size: 1000

You could customize completionDetector, dataConsistencyChecker algorithm by implement‐
ing SPI. Current implementation could be referenced, please refer to Dev Manual#Scaling for more
details.

Way 2: Configure scaling by DistSQL

Create scaling configuration example:

CREATE SHARDING SCALING RULE default_scaling (
INPUT(

WORKER_THREAD=40,
BATCH_SIZE=1000

),
OUTPUT(
WORKER_THREAD=40,
BATCH_SIZE=1000

),
STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))),
COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-minute-
threshold"=3))),
DATA_CONSISTENCY_CHECKER(TYPE(NAME=DATA_MATCH, PROPERTIES("chunk-size"=1000)))
);

Please refer to RDL#Sharding for more details.

5. Start up ShardingSphere‐Proxy:

5.4. ShardingSphere-Scaling 214

https://shardingsphere.apache.org/document/current/en/dev-manual/scaling/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/


Apache ShardingSphere document, v5.1.1

sh bin/start.sh

6. Check proxy log logs/stdout.log:

[INFO ] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy start
success

It means proxy start up successfully.

Shutdown

sh bin/stop.sh

5.4.3 Manual

Manual

Environment

JAVA，JDK 1.8+.

The migration scene we support:

Source Target

MySQL(5.1.15 ~ 5.7.x) MySQL(5.1.15 ~ 5.7.x)
PostgreSQL(9.4 ~ ) PostgreSQL(9.4 ~ )
openGauss(2.1.0) openGauss(2.1.0)

Attention:

If the backend database is in following table, please download JDBC driver jar and put it into ${shard-
ingsphere-proxy}/lib directory.

RDBMS JDBC driver Reference

MySQL ˋmysql‐co nnector‐java‐5.1.47.jar < https://repo1.maven.org/m
aven2/mysql/mysql‐connect or‐java/5.1.47/mysql‐conn ector‐java‐
5.1.47.jar>ˋ__

Con‐
nector/J
Versions

open‐
Gauss

opengauss‐jd bc‐2.0.1‐compatibility.ja r

Supported features:

5.4. ShardingSphere-Scaling 215

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/2.0.1-compatibility/opengauss-jdbc-2.0.1-compatibility.jar


Apache ShardingSphere document, v5.1.1

Feature MySQL PostgreSQL openGauss

Inventory migration Supported Supported Supported
Incremental migration Supported Supported Supported
Create table automatically Supported Unsupported Supported
DATA_MATCH data consistency check Supported Supported Supported
CRC32_MATCH data consistency check Supported Unsupported Unsupported

Attention:

For RDBMSwhich Create table automatically feature is not supported, we need to create shard‐
ing tables manually.

Privileges

MySQL

1. Enable binlog

Configuration Example of MySQL 5.7 my.cnf:

[mysqld]
server-id=1
log-bin=mysql-bin
binlog-format=row
binlog-row-image=full
max_connections=600

Execute the following SQL to confirm whether binlog is turned on or not:

show variables like '%log_bin%';
show variables like '%binlog%';

As shown below, it means binlog has been turned on:

+-----------------------------------------+---------------------------------------+
| Variable_name | Value |
+-----------------------------------------+---------------------------------------+
| log_bin | ON |
| binlog_format | ROW |
| binlog_row_image | FULL |
+-----------------------------------------+---------------------------------------+

2. Privileges of account that scaling use should include Replication privileges.

Execute the following SQL to confirm whether the user has migration permission or not:

SHOW GRANTS 'user';

5.4. ShardingSphere-Scaling 216



Apache ShardingSphere document, v5.1.1

Result Example:

+------------------------------------------------------------------------------+
|Grants for ${username}@${host} |
+------------------------------------------------------------------------------+
|GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO ${username}@${host} |
|....... |
+------------------------------------------------------------------------------+

PostgreSQL

1. Enable test_decoding feature.

2. Adjust WAL configuration

Configuration Example of postgresql.conf:

wal_level = logical
max_replication_slots = 10

Please refer to Write Ahead Log and Replication for more details.

DistSQL API for automode

Preview current sharding rule

Example:

preview select count(1) from t_order;

Response:

mysql> preview select count(1) from t_order;
+------------------+--------------------------------+
| data_source_name | sql |
+------------------+--------------------------------+
| ds_0 | select count(1) from t_order_0 |
| ds_0 | select count(1) from t_order_1 |
| ds_1 | select count(1) from t_order_0 |
| ds_1 | select count(1) from t_order_1 |
+------------------+--------------------------------+
4 rows in set (0.00 sec)

5.4. ShardingSphere-Scaling 217

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html


Apache ShardingSphere document, v5.1.1

Start scaling job

1. Add new data source resources

Please refer to RDL#Data Source for more details.

Create database on underlying RDBMS first, it will be used in following DistSQL.

Example:

ADD RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_2?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_3?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_4?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

2. Alter sharding table rule for tables to be scaled

We could scale all tables or partial tables. Binding tables must be scaled together.

Currently, scaling job could only be emitted by executing ALTER SHARDING TABLE RULE DistSQL.

Please refer to RDL#Sharding for more details.

SHARDING TABLE RULE support two types: TableRule and AutoTableRule. Following is a com‐
parison of the two sharding rule types:

Type Au-
toTableRule

TableRule

Def‐
ini‐
tion

Auto
Sharding
Alg orithm

ˋUser‐Defined Sharding Algorithm < https://shardingsphere.ap
ache.org/document/current /en/features/sharding/con
cept/sharding/#user‐defin ed‐sharding‐algorithm>ˋ__

Meaning of fields in DistSQL is the same as YAML configuration, please refer to YAML Configura‐
tion#Sharding for more details.

Example of alter AutoTableRule:

ALTER SHARDING TABLE RULE t_order (
RESOURCES(ds_2, ds_3, ds_4),

5.4. ShardingSphere-Scaling 218

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/


Apache ShardingSphere document, v5.1.1

SHARDING_COLUMN=order_id,
TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=6)),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME=snowflake))
);

RESOURCES is altered from (ds_0, ds_1) to (ds_2, ds_3, ds_4), and sharding-count is
altered from 4 to 6, it will emit scaling job.

Uncompleted example of alter TableRule:

ALTER SHARDING ALGORITHM database_inline (
TYPE(NAME=INLINE,PROPERTIES("algorithm-expression"="ds_${user_id % 3 + 2}"))
);

ALTER SHARDING TABLE RULE t_order (
DATANODES("ds_${2..4}.t_order_${0..1}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=t_order_
inline),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME=snowflake))
), t_order_item (
DATANODES("ds_${2..4}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=t_order_
item_inline),
KEY_GENERATE_STRATEGY(COLUMN=order_item_id,TYPE(NAME=snowflake))
);

algorithm-expression of database_inline is alerted from ds_${user_id % 2} to
ds_${user_id % 3 + 2}, and DATANODES of t_order is alerted from ds_${0..1}.
t_order_${0..1} to ds_${2..4}.t_order_${0..1}, it will emit scaling job.

Currently, ALTER SHARDING ALGORITHMwill take effect immediately, but table rule will not, it might
cause inserting data into source side failure, so alter sharding table rule to AutoTableRule is recom‐
mended for now.

List scaling jobs

Please refer to RAL#Scaling for more details.

Example:

show scaling list;

Response:

5.4. ShardingSphere-Scaling 219

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling


Apache ShardingSphere document, v5.1.1

mysql> show scaling list;
+--------------------+-----------------------+----------------------+--------+-----
----------------+---------------------+
| id | tables | sharding_total_count | active |
create_time | stop_time |
+--------------------+-----------------------+----------------------+--------+-----
----------------+---------------------+
| 659853312085983232 | t_order_item, t_order | 2 | false |
2021-10-26 20:21:31 | 2021-10-26 20:24:01 |
| 660152090995195904 | t_order_item, t_order | 2 | false |
2021-10-27 16:08:43 | 2021-10-27 16:11:00 |
+--------------------+-----------------------+----------------------+--------+-----
----------------+---------------------+
2 rows in set (0.04 sec)

Get scaling progress

Example:

show scaling status {jobId};

Response:

mysql> show scaling status 660152090995195904;
+------+-------------+----------+-------------------------------+------------------
--------+
| item | data_source | status | inventory_finished_percentage | incremental_idle_
seconds |
+------+-------------+----------+-------------------------------+------------------
--------+
| 0 | ds_1 | FINISHED | 100 | 2834

|
| 1 | ds_0 | FINISHED | 100 | 2834

|
+------+-------------+----------+-------------------------------+------------------
--------+
2 rows in set (0.00 sec)

Current scaling job is finished, new sharding rule should take effect, and not if scaling job is failed.

status values:

5.4. ShardingSphere-Scaling 220



Apache ShardingSphere document, v5.1.1

Value Description

PREPARING preparing
RUNNING running
EXECUTE_INVENTORY_TASK inventory task running
EXE‐
CUTE_INCREMENTAL_TASK

incremental task running

FINISHED finished (The whole process is completed, and the new rules
have been taken effect)

PREPARING_FAILURE preparation failed
E XE‐
CUTE_INVENTORY_TASK_FAILURE

inventory task failed

EXE
CUTE_INCREMENTAL_TASK_FAILURE

incremental task failed

If status fails, you can check the log of proxy to view the error stack and analyze the problem.

Preview new sharding rule

Example:

preview select count(1) from t_order;

Response:

mysql> preview select count(1) from t_order;
+------------------+--------------------------------+
| data_source_name | sql |
+------------------+--------------------------------+
| ds_2 | select count(1) from t_order_0 |
| ds_2 | select count(1) from t_order_1 |
| ds_3 | select count(1) from t_order_0 |
| ds_3 | select count(1) from t_order_1 |
| ds_4 | select count(1) from t_order_0 |
| ds_4 | select count(1) from t_order_1 |
+------------------+--------------------------------+
6 rows in set (0.01 sec)

5.4. ShardingSphere-Scaling 221



Apache ShardingSphere document, v5.1.1

Other DistSQL

Please refer to RAL#Scaling for more details.

DistSQL API for manual mode

Data consistency check and switch configuration could be emitted manually. Please refer to
RAL#Scaling for more details.

5.4. ShardingSphere-Scaling 222

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling


6
Dev Manual

Apache ShardingSphere provides dozens of SPI based extensions. it is very convenient to customize the
functions for developers.

This chapter lists all SPI extensions of Apache ShardingSphere. If there is no special requirement, users
can use the built‐in implementation provided by Apache ShardingSphere; advanced users can refer to
the interfaces for customized implementation.

Apache ShardingSphere community welcomes developers to feed back their implementations to the
open‐source community, so that more users can benefit from it.

6.1 Mode

6.1.1 StandalonePersistRepository

SPI Name Description

StandalonePersistRepository Standalone mode Configuration persistence

Implementation Class Description

FileRepository File persistence
H2Repository H2 persistence

6.1.2 ClusterPersistRepository

SPI Name Description

ClusterPersistRepository Registry center repository

223

https://github.com/apache/shardingsphere/pulls


Apache ShardingSphere document, v5.1.1

Implementation Class Description

CuratorZookeeperRepository ZooKeeper registry center repository
EtcdRepository Etcd registry center repository

6.1.3 GovernanceWatcher

SPI Name Description

GovernanceWatcher Governance watcher

Implementation Class Description

StorageNodeStateChangedWatcher Storage node changed watcher
ComputeNodeStateChangedWatcher Compute node changed watcher
PropertiesChangedWatcher Properties changed watcher
PrivilegeNodeChangedWatcher Privilege changed watcher
GlobalRuleChangedWatcher Global rule changed watcher
MetaDataChangedWatcher Meta data changed watcher

6.2 Configuration

6.2.1 RuleBuilder

SPI Name Description

RuleBuilder Used to convert user configurations to rule objects

6.2. Configuration 224



Apache ShardingSphere document, v5.1.1

Implementation Class Description

AlgorithmPro videdRead‐
writeSpl ittingRuleBuilder

Used to convert algorithm‐based read‐write separation user config‐
uration into read‐write separation rule objects

AlgorithmPr ovided‐
DatabaseDis coveryRule‐
Builder

Used to convert algorithm‐based database discovery user configu‐
ration into database discovery rule objects

Al gorithmProvidedSh ard‐
ingRuleBuilder

Used to convert algorithm‐based sharding user configuration into
sharding rule objects

A lgorithmProvidedE ncryp‐
tRuleBuilder

Used to convert algorithm‐based encryption user configuration
into encryption rule objects

AlgorithmProvided Shad‐
owRuleBuilder

Used to convert algorithm‐based shadow database user configura‐
tion into shadow database rule objects

ReadwriteSpl ittingRule‐
Builder

Used to convert read‐write separation user configuration into read‐
write separation rule objects

DatabaseDis coveryRule‐
Builder

Used to convert database discovery user configuration into
database discovery rule objects

Singl eTableRuleBuilder Used to convert single‐table user configuration into a single‐table
rule objects

Aut horityRuleBuilder Used to convert permissionuser configuration intopermission rule
objects

Sh ardingRuleBuilder Used to convert sharding user configuration into sharding rule ob‐
jects

E ncryptRuleBuilder Used to convert encrypted user configuration into encryption rule
objects

ShadowRuleBuilder Used to convert shadow database user configuration into shadow
database rule objects

Trans actionRuleBuilder Used to convert transaction user configuration into transaction
rule objects

SQL ParserRuleBuilder Used to convert SQL parser user configuration into SQL parser rule
objects

6.2.2 YamlRuleConfigurationSwapper

SPI Name Description

YamlRul eConfigurationSwap‐
per

Used to convert YAML configuration to standard user configura‐
tion

6.2. Configuration 225



Apache ShardingSphere document, v5.1.1

Implementation Class Description

ReadwriteSplittingRul eAlgorithm‐
ProviderCon figurationYamlSwap‐
per

Used to convert algorithm‐based read‐write separation con‐
figuration into read‐write separation standard configuration

DatabaseDiscoveryRul eAlgorithm‐
ProviderCon figurationYamlSwap‐
per

Used to convert algorithm‐based database discovery configu‐
ration into database discovery standard configuration

ShardingRul eAlgorithmProvider‐
Con figurationYamlSwapper

Used to convert algorithm‐based sharding configuration into
sharding standard configuration

EncryptRul eAlgorithmProvider‐
Con figurationYamlSwapper

Used to convert algorithm‐based encryption configuration
into encryption standard configuration

ShadowRul eAlgorithmProviderCon
figurationYamlSwapper

Used to convert algorithm‐based shadow database configura‐
tion into shadow database standard configuration

Read writeSplittingRuleCon figura‐
tionYamlSwapper

Used to convert the YAML configuration of read‐write separa‐
tion into the standard configuration of read‐write separation

Dat abaseDiscoveryRuleCon figura‐
tionYamlSwapper

Used to convert the YAML configuration of database discov‐
ery into the standard configuration of database discovery

AuthorityRuleCon figurationYaml‐
Swapper

Used to convert the YAML configuration of permission rules
into standard configuration of permission rules

ShardingRuleCon figurationYaml‐
Swapper

Used to convert the YAML configuration of the shard into the
standard configuration of the shard

EncryptRuleCon figurationYaml‐
Swapper

Used to convert encrypted YAML configuration into en‐
crypted standard configuration

ShadowRuleCon figurationYaml‐
Swapper

Used to convert the YAML configuration of the shadow
database into the standard configuration of the shadow
database

TransactionRuleCon figura‐
tionYamlSwapper

Used to convert the YAML configuration of the transaction
into the standard configuration of the transaction

SingleTableRuleCon figura‐
tionYamlSwapper

Used to convert the YAML configuration of the single table
into the standard configuration of the single table

SQLParserRuleCon figurationYaml‐
Swapper

Used to convert the YAML configuration of the SQL parser
into the standard configuration of the SQL parser

6.2.3 ShardingSphereYamlConstruct

SPI Name Description

ShardingSphereYamlConstruct Used to convert customized objects and YAML to each other

Implementation Class Description

NoneShardingStrate gyConfigurationYaml‐
Construct

Used to convert non sharding strategy and YAML to
each other

6.2. Configuration 226



Apache ShardingSphere document, v5.1.1

6.3 Kernel

6.3.1 SQLRouter

SPI Name Description

SQLRouter Used to process routing results

Implementation Class Description

Re adwriteSplittingSQLRouter Used to process read‐write separation routing results
D atabaseDiscoverySQLRouter Used to process database discovery routing results
SingleTableSQLRouter Used to process single‐table routing results
ShardingSQLRouter Used to process sharding routing results
ShadowSQLRouter Used to process shadow database routing results

6.3.2 SQLRewriteContextDecorator

SPI Name Description

SQLRewriteContextDecorator Used to process SQL rewrite results

SPI Name Description

Shardin gSQLRewriteContextDecorator Used to process sharding SQL rewrite results
Encryp tSQLRewriteContextDecorator Used to process encryption SQL rewrite results

6.3.3 SQLExecutionHook

SPI Name Description

SQLExecutionHook Hook of SQL execution

Implementation Class Description

TransactionalSQLExecutionHook Transaction hook of SQL execution

6.3. Kernel 227



Apache ShardingSphere document, v5.1.1

6.3.4 ResultProcessEngine

SPI Name Description

ResultProcessEngine Used by merge engine to process result set

Implementation Class Description

Shard ingResultMergerEngine Used by merge engine to process sharding result set
Encrypt ResultDecoratorEngine Used by merge engine to process encryption result set

6.3.5 StoragePrivilegeHandler

SPI Name Description

StoragePrivilegeHandler Use SQL dialect to process privilege metadata

Implementation Class Description

Postg reSQLPrivilegeHandler Use PostgreSQL dialect to process privilege metadata
SQLS erverPrivilegeHandler Use SQLServer dialect to process privilege metadata
O raclePrivilegeHandler Use Oracle dialect to process privilege metadata
MySQLPrivilegeHandler Use MySQL dialect to process privilege metadata

6.4 DataSource

6.4.1 DatabaseType

SPI Name Description

DatabaseType Supported database type

Implementation Class Description

SQL92DatabaseType SQL92 database type
MySQLDatabaseType MySQL database
MariaDBDatabaseType MariaDB database
PostgreSQLDatabaseType PostgreSQL database
OracleDatabaseType Oracle database
SQLServerDatabaseType SQLServer database
H2DatabaseType H2 database
OpenGaussDatabaseType OpenGauss database

6.4. DataSource 228



Apache ShardingSphere document, v5.1.1

6.4.2 DialectTableMetaDataLoader

SPI Name Description

DialectTableMetaDataLoader Use SQL dialect to load meta data rapidly

Implementation Class Description

MySQLTableMetaDataLoader Use MySQL dialect to load meta data
OracleTableMetaDataLoader Use Oracle dialect to load meta data
PostgreSQLTableMetaDataLoader Use PostgreSQL dialect to load meta data
SQLServerTableMetaDataLoader Use SQLServer dialect to load meta data
H2TableMetaDataLoader Use H2 dialect to load meta data
OpenGaussTableMetaDataLoader Use OpenGauss dialect to load meta data

6.4.3 DataSourcePoolMetaData

SPI Name Description

DataSourcePoolMetaData Data source pool meta data

Implementation Class Description

DBCPDataSourcePoolMetaData DBCP data source pool meta data
HikariDataSourcePoolMetaData Hikari data source pool meta data

6.4.4 DataSourcePoolActiveDetector

SPI Name Description

DataSourcePoolActiveDetector Data source pool active detector

Implementation Class Description

Defau ltDataSourcePoolActiveDetector Default data source pool active detector
Hika riDataSourcePoolActiveDetector Hikari data source pool active detector

6.4. DataSource 229



Apache ShardingSphere document, v5.1.1

6.5 SQL Parser

6.5.1 DatabaseTypedSQLParserFacade

SPI Name Description

DatabaseTypedSQLParserFacade SQL parser facade for lexer and parser

Implementation Class Description

MySQLParserFacade SQL parser facade for MySQL
PostgreSQLParserFacade SQL parser facade for PostgreSQL
SQLServerParserFacade SQL parser facade for SQLServer
OracleParserFacade SQL parser facade for Oracle
SQL92ParserFacade SQL parser facade for SQL92
OpenGaussParserFacade SQL parser facade for openGauss

6.5.2 SQLVisitorFacade

SPI Name Description

SQLVisitorFacade SQL AST visitor facade

Implementation Class Description

MySQLS tatementSQLVisitorFacade SQL visitor of statement extracted facade for MySQL
PostgreSQLS tatementSQLVisitorFacade SQL visitor of statement extracted facade for PostgreSQL
SQLServerS tatementSQLVisitorFacade SQL visitor of statement extracted facade for SQLServer
OracleS tatementSQLVisitorFacade SQL visitor of statement extracted facade for Oracle
SQL92S tatementSQLVisitorFacade SQL visitor of statement extracted facade for SQL92

6.6 Proxy

6.6.1 DatabaseProtocolFrontendEngine

SPI Name Description

DatabaseProto colFron‐
tendEngine

Regulate parse and adapter protocol of database access for
ShardingSphere‐Proxy

6.5. SQL Parser 230



Apache ShardingSphere document, v5.1.1

Implementation Class Description

MySQLFrontendEngine Base on MySQL database protocol
PostgreSQLFrontendEngine Base on PostgreSQL database protocol
OpenGaussFrontendEngine Base on openGauss database protocol

6.6.2 JDBCDriverURLRecognizer

SPI Name Description

JDBCDriverURLRecognizer Use JDBC driver to execute SQL

Implementation Class Description

MySQLRecognizer Use MySQL JDBC driver to execute SQL
PostgreSQLRecognizer Use PostgreSQL JDBC driver to execute SQL
OracleRecognizer Use Oracle JDBC driver to execute SQL
SQLServerRecognizer Use SQLServer JDBC driver to execute SQL
H2Recognizer Use H2 JDBC driver to execute SQL
P6SpyDriverRecognizer Use P6Spy JDBC driver to execute SQL
OpenGaussRecognizer Use openGauss JDBC driver to execute SQL

6.6.3 AuthorityProvideAlgorithm

SPI Name Description

AuthorityProvideAlgorithm User authority loading logic

Implementation Class Type Description

NativeAuthorityP
roviderAlgorithm (Dep‐
recated)

NATIVE Persist user authority defined in server.yaml into
the backend database. An admin user will be cre‐
ated if not existed.

AllPrivilegesPer mit‐
tedAuthorityP roviderAl‐
gorithm

ALL_PR IVILEG
ES_PER MITTED

All privileges granted to user by default (No authen‐
tication). Will not interact with the actual database.

Sch emaPrivileges‐
Per mittedAuthorityP
roviderAlgorithm

SCH EMA_PR
IVILEG ES_PER
MITTED

Permissions configured through the attribute user‐
schema‐mappings.

6.6. Proxy 231



Apache ShardingSphere document, v5.1.1

6.7 Data Sharding

6.7.1 ShardingAlgorithm

SPI Name Description

ShardingAlgorithm Sharding algorithm

Implementation Class Description

Boundar yBasedRangeShardingAlgorithm Boundary based range sharding algorithm
Volum eBasedRangeShardingAlgorithm Volume based range sharding algorithm
Co mplexInlineShardingAlgorithm Complex inline sharding algorithm
A utoIntervalShardingAlgorithm Mutable interval sharding algorithm
ClassBasedShardingAlgorithm Class based sharding algorithm
HintInlineShardingAlgorithm Hint inline sharding algorithm
IntervalShardingAlgorithm Fixed interval sharding algorithm
HashModShardingAlgorithm Hash modulo sharding algorithm
InlineShardingAlgorithm Inline sharding algorithm
ModShardingAlgorithm Modulo sharding algorithm

6.7.2 KeyGenerateAlgorithm

SPI Name Description

KeyGenerateAlgorithm Key generate algorithm

Implementation Class Description

SnowflakeKeyGenerateAlgorithm Snowflake key generate algorithm
UUIDKeyGenerateAlgorithm UUID key generate algorithm

6.7.3 DatetimeService

SPI Name Description

DatetimeService Use current time for routing

Implementation Class Description

DatabaseDa tetimeServiceDelegate Get the current time from the database for routing
SystemDatetimeService Get the current time from the application system for routing

6.7. Data Sharding 232



Apache ShardingSphere document, v5.1.1

6.7.4 DatabaseSQLEntry

SPI Name Description

DatabaseSQLEntry Database dialect for get current time

Implementation Class Description

MySQLDatabaseSQLEntry MySQL dialect for get current time
PostgreSQLDatabaseSQLEntry PostgreSQL dialect for get current time
OracleDatabaseSQLEntry Oracle dialect for get current time
SQLServerDatabaseSQLEntry SQLServer dialect for get current time

6.8 Readwrite-splitting

6.8.1 ReadwriteSplittingType

SPI名称 详细说明
ReadwriteSplittingType Readwrite‐splitting type

已知实现类 详细说明
StaticReadwriteSplittingType Static readwrite‐splitting type
DynamicReadwriteSplittingType Dynamic readwrite‐splitting type

6.8.2 ReplicaLoadBalanceAlgorithm

SPI Name Description

ReplicaLoadBalanceAlgorithm Load balance algorithm of replica databases

Implementation Class Description

RoundRobinRe plicaLoadBalanceAlgo‐
rithm

Round robin load balance algorithm of replica
databases

RandomRe plicaLoadBalanceAlgorithm Random load balance algorithm of replica databases
WeightRe plicaLoadBalanceAlgorithm Weight load balance algorithm of replica databases

6.8. Readwrite-splitting 233



Apache ShardingSphere document, v5.1.1

6.9 HA

6.9.1 DatabaseDiscoveryType

SPI Name Description

DatabaseDiscoveryType Database discovery type

Implementation Class Description

MGRDatabaseDiscoveryType Database discovery of MySQL’s MGR
ShowSlaveSt atusDatabaseDiscoveryType Database discovery of MySQL’s master‐slave delay
OpenG aussDatabaseDiscoveryType Database discovery of openGauss

6.10 Distributed Transaction

6.10.1 ShardingSphereTransactionManager

SPI Name Description

ShardingSphereTransactionManager Distributed transaction manager

Implementation Class Description

X AShardingSphereTransactionManager XA distributed transaction manager
SeataA TShardingSphereTransactionManager Seata distributed transaction manager

6.10.2 XATransactionManagerProvider

SPI Name Description

XATransactionManagerProvider XA distributed transaction manager

Implementation Class Description

Atomikos TransactionManagerProvider XAdistributed transactionmanager based onAtomikos
NarayanaXA TransactionManager‐
Provider

XAdistributed transactionmanager based onNarayana

BitronixXA TransactionManagerProvider XA distributed transaction manager based on Bitronix

6.9. HA 234



Apache ShardingSphere document, v5.1.1

6.10.3 XADataSourceDefinition

SPI Name Description

XADataSourceDefinition Auto convert Non XA data source to XA data source

Implementation Class Description

MySQLXAD ataSourceDefini‐
tion

Auto convertNonXAMySQLdata source toXAMySQLdata source

MariaDBXAD ataSourceDefini‐
tion

Auto convert Non XA MariaDB data source to XA MariaDB data
source

PostgreSQLXAD ataSourceDefi‐
nition

Auto convert Non XA PostgreSQL data source to XA PostgreSQL
data source

OracleXAD ataSourceDefinition Auto convert Non XA Oracle data source to XA Oracle data source
SQLServerXAD ataSourceDefi‐
nition

Auto convert Non XA SQLServer data source to XA SQLServer data
source

H2XAD ataSourceDefinition Auto convert Non XA H2 data source to XA H2 data source

6.10.4 DataSourcePropertyProvider

SPI Name Description

DataS ourcePropertyProvider Used to get standard properties of data source pool

Implementation Class Description

HikariCPPropertyProvider Used to get standard properties of HikariCP

6.11 Scaling

6.11.1 ScalingEntry

SPI Name Description

ScalingEntry Entry of scaling

Implementation Class Description

MySQLScalingEntry MySQL entry of scaling
PostgreSQLScalingEntry PostgreSQL entry of scaling
OpenGaussScalingEntry openGauss entry of scaling

6.11. Scaling 235



Apache ShardingSphere document, v5.1.1

6.11.2 JobCompletionDetectAlgorithm

SPI Name Description

JobCompletionDetectAlgorithm Job completion check algorithm

Implementation Class Description

IdleRuleAl teredJobCompletionDetectAlgorithm Incremental task idle time based algorithm

6.11.3 DataConsistencyCheckAlgorithm

SPI Name Description

DataConsistencyCheckAlgo‐
rithm

Data consistency check algorithm on source and target database
cluster

Implementation Class Description

DataMatchDataC onsistencyCheck‐
Algorithm

Records content match implementation. Type name:
DATA_MATCH.

CRC32MatchDataC onsistencyCheck‐
Algorithm

Records CRC32 match implementation. Type name:
CRC32_MATCH.

6.11.4 SingleTableDataCalculator

SPI Name Description

S ingleTableDataCalculator Single table data calculator for data consistency check

Implementation Class Description

DataMatchS ingleTableDataCalculator Single table data calculator for DATA_MATCH data consis‐
tency check

CRC32MatchMySQLS ingleTableData‐
Calculator

Single table data calculator for CRC32_MATCH data con‐
sistency check

6.11. Scaling 236



Apache ShardingSphere document, v5.1.1

6.12 SQL Checker

6.12.1 SQLChecker

SPI Name Description

SQLChecker SQL checker

Implementation Class Description

AuthorityChecker Authority checker

6.13 Encryption

6.13.1 EncryptAlgorithm

SPI Name Description

EncryptAlgorithm Data encrypt algorithm

Implementation Class Description

MD5EncryptAlgorithm MD5 data encrypt algorithm
AESEncryptAlgorithm AES data encrypt algorithm
RC4EncryptAlgorithm RC4 data encrypt algorithm
SM3EncryptAlgorithm SM3 data encrypt algorithm
SM4EncryptAlgorithm SM4 data encrypt algorithm

6.13.2 QueryAssistedEncryptAlgorithm

SPI Name Description

QueryAss istedEncryptAlgorithm Data encrypt algorithm which include query assisted column

Implementation Class Description

None

6.12. SQL Checker 237



Apache ShardingSphere document, v5.1.1

6.14 Shadow DB

6.14.1 ShadowAlgorithm

SPI Name Description

ShadowAlgorithm shadow routing algorithm

Implementation Class Description

ColumnValueMatchShadowAlgorithm Column value match shadow algorithm
ColumnRegexMatchShadowAlgorithm Column regex match shadow algorithm
SimpleHintShadowAlgorithm Simple hint shadow algorithm

6.15 Observability

6.15.1 PluginDefinitionService

SPI Name Description

PluginDefinitionService Agent plugin definition

Implementation Class Description

PrometheusPluginDefinitionService Prometheus plugin
BaseLoggingPluginDefinitionService Logging plugin
JaegerPluginDefinitionService Jaeger plugin
OpenTelemetryTracingPluginDefinitionService OpenTelemetryTracing plugin
OpenTracingPluginDefinitionService OpenTracing plugin
ZipkinPluginDefinitionService Zipkin plugin

6.15.2 PluginBootService

SPI Name Description

PluginBootService Plugin startup service definition

6.14. Shadow DB 238



Apache ShardingSphere document, v5.1.1

Implementation Class Description

PrometheusPluginBootService Prometheus plugin startup class
BaseLoggingPluginBootService Logging plugin startup class
JaegerTracingPluginBootService Jaeger plugin startup class
OpenTelemetryTracingPluginBootService OpenTelemetryTracing plugin startup class
OpenTracingPluginBootService OpenTracing plugin startup class
ZipkinTracingPluginBootService Zipkin plugin startup class

6.15. Observability 239



7
Reference

This chapter contains a section of technical implementation and test process with Apache Sharding‐
Sphere, which provide the reference with users and developers.

7.1 Management

7.1.1 Data Structure in Registry Center

Under defined namespace, rules, props and metadata nodes persist in YAML,modifying nodes can
dynamically refresh configurations. nodes node persist the runtime node of database access object, to
distinguish different database access instances.

namespace
├──rules # Global rule configuration
├──props # Properties configuration
├──metadata # Metadata configuration
├ ├──${schema_1} # Schema name 1
├ ├ ├──dataSources # Datasource configuration
├ ├ ├──rules # Rule configuration
├ ├ ├──tables # Table configuration
├ ├ ├ ├──t_1
├ ├ ├ ├──t_2
├ ├──${schema_2} # Schema name 2
├ ├ ├──dataSources # Datasource configuration
├ ├ ├──rules # Rule configuration
├ ├ ├──tables # Table configuration
├──nodes
├ ├──compute_nodes
├ ├ ├──online
├ ├ ├ ├──proxy
├ ├ ├ ├ ├──${your_instance_ip_a}@${your_instance_port_x}
├ ├ ├ ├ ├──${your_instance_ip_b}@${your_instance_port_y}
├ ├ ├ ├ ├──....

240



Apache ShardingSphere document, v5.1.1

├ ├ ├ ├──jdbc
├ ├ ├ ├ ├──${your_instance_ip_a}@${your_instance_pid_x}
├ ├ ├ ├ ├──${your_instance_ip_b}@${your_instance_pid_y}
├ ├ ├ ├ ├──....
├ ├ ├──attributies
├ ├ ├ ├──${your_instance_ip_a}@${your_instance_port_x}
├ ├ ├ ├ ├──status
├ ├ ├ ├ ├──label
├ ├ ├ ├──${your_instance_ip_b}@${your_instance_pid_y}
├ ├ ├ ├ ├──status
├ ├ ├ ├──....
├ ├──storage_nodes
├ ├ ├──disable
├ ├ ├ ├──${schema_1.ds_0}
├ ├ ├ ├──${schema_1.ds_1}
├ ├ ├ ├──....
├ ├ ├──primary
├ ├ ├ ├──${schema_2.ds_0}
├ ├ ├ ├──${schema_2.ds_1}
├ ├ ├ ├──....

/rules

global rule configurations，including configure the username and password for ShardingSphere‐Proxy.

- !AUTHORITY
users:
- root@%:root
- sharding@127.0.0.1:sharding

provider:
type: ALL_PRIVILEGES_PERMITTED

/props

Properties configuration. Please refer to Configuration Manual for more details.

kernel-executor-size: 20
sql-show: true

7.1. Management 241

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/props/


Apache ShardingSphere document, v5.1.1

/metadata/${schemaName}/dataSources

A collection of multiple database connection pools, whose properties (e.g. DBCP, C3P0, Druid and
HikariCP) are configured by users themselves.

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-1

ds_1:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_1?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-2

/metadata/${schemaName}/rules

Rule configurations, including sharding, readwrite‐splitting, data encryption, shadow DB configura‐
tions.

- !SHARDING
xxx

- !READWRITE_SPLITTING
xxx

- !ENCRYPT
xxx

7.1. Management 242



Apache ShardingSphere document, v5.1.1

/metadata/${schemaName}/tables

Use separate node storage for each table, dynamic modification of metadata content is not supported
currently.

name: t_order # Table name
columns: # Columns
id: # Column name

caseSensitive: false
dataType: 0
generated: false
name: id
primaryKey: trues

order_id:
caseSensitive: false
dataType: 0
generated: false
name: order_id
primaryKey: false

indexs: # Index
t_user_order_id_index: # Index name

name: t_user_order_id_index

/nodes/compute_nodes

It includes running instance information of database access object, with sub‐nodes as the identifiers
of currently running instance, which consist of IP and PORT. Those identifiers are temporary nodes,
which are registered when instances are on‐line and cleared when instances are off‐line. The registry
centermonitors the change of those nodes to govern the database access of running instances and other
things.

/nodes/storage_nodes

It is able to orchestrate replica database, delete or disable data dynamically.

7.2 Sharding

The major sharding processes of all the three ShardingSphere products are identical. According to
whether query optimization is performed, they can be divided into standard kernel process and feder‐
ation executor engine process. The standard kernel process consists of SQL Parse => SQL Route
=> SQL Rewrite => SQL Execute => Result Merge, which is used to process SQL execution
in standard sharding scenarios. The federation executor engine process consists of SQL Parse =>
Logical Plan Optimize => Physical Plan Optimize => Plan Execute => Standard
Kernel Process. The federation executor engine perform logical plan optimization and physical

7.2. Sharding 243



Apache ShardingSphere document, v5.1.1

plan optimization. In the optimization execution phase, it relies on the standard kernel process to
route, rewrite, execute, and merge the optimized logical SQL.

7.2.1 SQL Parsing

It is divided into lexical parsing and syntactic parsing. The lexical parser will split SQL into inseparable
words, and then the syntactic parserwill analyze SQLand extract the parsing context, which can include
tables, options, ordering items, grouping items, aggregation functions, pagination information, query
conditions and placeholders that may be revised.

7.2.2 SQL Route

It is the sharding strategy that matches users’configurations according to the parsing context and the
route path can be generated. It supports sharding route and broadcast route currently.

7.2.3 SQL Rewrite

It rewrites SQL as statement that can be rightly executed in the real database, and can be divided into
correctness rewrite and optimization rewrite.

7.2. Sharding 244



Apache ShardingSphere document, v5.1.1

7.2.4 SQL Execution

Through multi‐thread executor, it executes asynchronously.

7.2.5 Result Merger

It merges multiple execution result sets to output through unified JDBC interface. Result merger in‐
cludes methods as streammerger, memory merger and addition merger using decorator merger.

7.2.6 Query Optimization

Supported by federation executor engine(under development), optimization is performed on complex
query such as join query and subquery. It also supports distributed query across multiple database
instances. It uses relational algebra internally to optimize query plan, and then get query result through
the best query plan.

7.2.7 Parse Engine

Compared to other programming languages, SQL is relatively simple, but it is still a complete set of
programming language, so there is no essential difference between parsing SQL grammar and parsing
other languages (Java, C and Go, etc.).

Abstract Syntax Tree

The parsing process can be divided into lexical parsing and syntactic parsing. Lexical parser is used to
divide SQL into indivisible atomic signs, i.e., Token. According to the dictionary provided by different
database dialect, it is categorized into keyword, expression, literal value and operator. SQL is then
converted into abstract syntax tree by syntactic parser.

For example, the following SQL:

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

Its parsing AST (Abstract Syntax Tree) is this:

7.2. Sharding 245



Apache ShardingSphere document, v5.1.1

To better understand, the Token of keywords in abstract syntax tree is shown in green; that of variables
is shown in red; what’s to be further divided is shown in grey.

At last, through traversing the abstract syntax tree, the context needed by sharding is extracted and the
place that may need to be rewritten is alsomarked out. Parsing context for the use of sharding includes
select items, table information, sharding conditions, auto‐increment primary key information, Order
By information, Group By information, and pagination information (Limit, Rownum and Top). One‐
time SQL parsing process is irreversible, each Token is parsed according to the original order of SQL
in a high performance. Considering similarities and differences between SQL of all kinds of database
dialect, SQL dialect dictionaries of different types of databases are provided in the parsing module.

SQL Parser

History

As the core of database sharding and table sharding, SQL parser takes the performance and compatibil‐
ity as its most important index. ShardingSphere SQL parser has undergone the upgrade and iteration
of 3 generations of products.

To pursue good performance and quick achievement, the first generation of SQL parser uses Druid
before 1.4.x version. As tested in practice, its performance exceeds other parsers a lot.

The second generation of SQL parsing engine begins from 1.5.x version, ShardingSphere has adopted
fully self‐developed parsing engine ever since. Due to different purposes, ShardingSphere does not
need to transform SQL into a totally abstract syntax tree or traverse twice through visitor. Using half

7.2. Sharding 246



Apache ShardingSphere document, v5.1.1

parsingmethod, it only extracts the context required by data sharding, so the performance and com‐
patibility of SQL parsing is further improved.

The third generation of SQL parsing engine begins from 3.0.x version. ShardingSphere tries to adopts
ANTLR as a generator for the SQL parsing engine, and uses Visit to obtain SQL Statement from AST.
Starting from version 5.0.x, the architecture of the parsing engine has been refactored. At the same
time, it is convenient to directly obtain the parsing results of the same SQL to improve parsing effi‐
ciency by putting theAST obtained from the first parsing into the cache. Therefore, we recommend that
users adopt PreparedStatement this SQL pre‐compilation method to improve performance. Cur‐
rently, users can also use ShardingSphere’s SQL parsing engine independently to obtain AST and SQL
Statements for a variety of mainstream relational databases. In the future, the SQL parsing engine will
continue to provide powerful functions such as SQL formatting and SQL templating.

Features

• Independent SQL parsing engine

• The syntax rules can be easily expanded and modified (using ANTLR)

• Support multiple dialects

DB Status

MySQL supported
PostgreSQL supported
SQLServer supported
Oracle supported
SQL92 supported
openGauss supported

• SQL format (developing)

• SQL parameterize (developing)

API Usage

Maven config

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-engine</artifactId>
<version>${project.version}</version>

</dependency>
// According to the needs, introduce the parsing module of the specified dialect
(take MySQL as an example), you can add all the supported dialects, or just what
you need
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-mysql</artifactId>

7.2. Sharding 247



Apache ShardingSphere document, v5.1.1

<version>${project.version}</version>
</dependency>

demo:

• Get AST

/**
* databaseType type:String values: MySQL, Oracle, PostgreSQL, SQL92, SQLServer,

openGauss
* sql type:String SQL to be parsed
* useCache type:boolean whether use cache
* @return parse context
*/

ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache)

• GET SQLStatement

/**
* databaseType type:String values: MySQL, Oracle, PostgreSQL, SQL92, SQLServer,

openGauss
* useCache type:boolean whether use cache
* @return SQLStatement
*/

ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "STATEMENT
");
SQLStatement sqlStatement = sqlVisitorEngine.visit(parseContext);

• SQL Format

/**
* databaseType type:String values MySQL
* useCache type:boolean whether use cache
* @return String
*/

ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "FORMAT",
new Properties());
String formatedSql = sqlVisitorEngine.visit(parseContext);

example：

7.2. Sharding 248



Apache ShardingSphere document, v5.1.1

sql formatedSql

select a+1 as b, name n from table1 join ta‐
ble2 where id=1 and name=‘lu’;

SELECT a + 1 AS b, name nFROM table1 JOIN ta‐
ble2WHERE        id = 1        and name =‘lu’
;

select id, name, age, sex, ss, yy from table1
where id=1;

SELECT id , name , age ,         sex , ss , yy FROM
table1WHERE         id = 1;

select id, name, age, count(*) as n, (select id,
name, age, sex from table2 where id=2) as
sid, yyyy from table1 where id=1;

SELECT id , name , age ,         COUNT(*)
AS n,         (                SELECT id
, name , age ,                         sex
                FROM ta‐
ble2                WHERE
                        id = 2        ) AS
sid, yyyy FROM table1WHERE         id = 1;

select id, name, age, sex, ss, yy from table1
where id=1 and name=1 and a=1 and b=2 and
c=4 and d=3;

SELECT id , name , age ,         sex , ss , yy FROM
table1WHERE         id = 1        and name =
1        and a = 1        and b = 2        and c
= 4        and d = 3;

ALTER TABLE t_order ADD column4
DATE, ADD column5 DATETIME, engine
ss max_rows 10,min_rows 2, ADD column6
TIMESTAMP, ADD column7 TIME;

ALTER TABLE t_order        ADD col‐
umn4 DATE,        ADD column5 DATE‐
TIME,        ENGINE ss        MAX_ROWS
10,        MIN_ROWS 2,        ADD column6
TIMESTAMP,        ADD column7 TIME

CREATE TABLE IF NOT EX‐
ISTS ˋˋ runoob_tblˋˋ(runoob_id
INT UNSIGNED AUTO_ INCRE‐
MENT,runoob_title VARCHAR(100)
NOT NULL,runoob_author VARCHAR(40)
NOT NULL,runoob_test NATIONAL CH
AR(40),submission_date DATE,PRIMARY
KEY ( runoob_id))ENGINE=InnoDB DE‐
FAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS runoob_tbl
(        runoob_id INT UNSIGNED
AUTO_INCREMENT,        runoob_title VAR‐
CHAR(100) NOT NULL,        runoob_author
VARCHAR(40) NOT NULL,        runoob_test
NATIONAL CHAR(40),        submission_date
DATE,        PRIMARY KEY (runoob_id)) EN‐
GINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO t_order_item(order_id,
user_id, status, creation_date) values (1, 1,
‘insert’, ‘2017‐08‐08’), (2, 2, ‘insert’,
‘2017‐08‐08’) ON DUPLICATE KEY UPDATE
status =‘init’;

INSERT INTO t_order_item (order_id , user_id , sta‐
tus , creation_date)VALUES        (1, 1,‘insert’,
‘2017‐08‐08’),        (2, 2,‘insert’,‘2017‐08‐08’
)ON DUPLICATE KEY UPDATE status =‘init’;

INSERT INTO t_order SET order_id
= 1, user_id = 1, status = conv
ert(to_base64(aes_encrypt(1, ‘key’))
USING utf8) ON DUPLICATE KEY UPDATE
status = VALUES(status);

INSERT INTO t_order SET order_id =
1,        user_id = 1,        status = CON‐
VERT(to_base64(aes_encrypt(1 , ‘key’)) USING
utf8)ON DUPLICATE KEY UPDATE status = VAL‐
UES(status);

INSERT INTO t_order (order_id, user_id, sta‐
tus) SELECT order_id, user_id, status FROM
t_order WHERE order_id = 1；

INSERT INTO t_order (order_id , user_id , sta‐
tus) SELECT order_id , user_id , status FROM
t_orderWHERE         order_id = 1;

7.2. Sharding 249



Apache ShardingSphere document, v5.1.1

7.2.8 Route Engine

It refers to the sharding strategy thatmatches databases and tables according to the parsing context and
generates route path. SQL with sharding keys can be divided into single‐sharding route (equal mark as
the operator of sharding key), multiple‐sharding route (IN as the operator of sharding key) and range
sharding route (BETWEEN as the operator of sharding key). SQLwithout sharding key adopts broadcast
route.

Sharding strategies can usually be set in the database or by users. Strategies built in the database are
relatively simple and can generally be divided into last number modulo, hash, range, tag, time and so
on. More flexible, sharding strategies set by users can be customized according to their needs. Together
with automatic data migration, database middle layer can automatically shard and balance the data
without users paying attention to sharding strategies, and thereby the distributed database can have
the elastic scaling‐out ability. In ShardingSphere’s roadmap, elastic scaling‐out ability will start from
4.x version.

Sharding Route

It is used in the situation to route according to the sharding key, and can be sub‐divided into 3 types,
direct route, standard route and Cartesian product route.

Direct Route

The conditions for direct route are relatively strict. It requires to shard through Hint (use HintAPI to
appoint the route to databases and tables directly). On the premise of having database sharding but
not table sharding, SQL parsing and the following result merging can be avoided. Therefore, with the
highest compatibility, it can execute any SQL in complex situations, including sub‐queries, self‐defined
functions. Direct route can also be used in the situation where sharding keys are not in SQL. For exam‐
ple, set sharding key as 3.

hintManager.setDatabaseShardingValue(3);

If the routing algorithm is value % 2, when a logical database t_order corresponds to two physical
databasest_order_0 and t_order_1, the SQL will be executed on t_order_1 after routing. The
following is a sample code using the API.

String sql = "SELECT * FROM t_order";
try (

HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {

while (rs.next()) {
//...

}

7.2. Sharding 250



Apache ShardingSphere document, v5.1.1

}
}

Standard Route

Standard route is ShardingSphere’s most recommended shardingmethod. Its application range is the
SQL that does not include joint query or only includes joint query between binding tables. When the
sharding operator is equal mark, the route result will fall into a single database (table); when sharding
operators are BETWEEN or IN, the route result will not necessarily fall into the only database (table). So
one logic SQL canfinally be split intomultiple real SQL to execute. For example, if sharding is according
to the odd number or even number of order_id, a single table query SQL is as the following:

SELECT * FROM t_order WHERE order_id IN (1, 2);

The route result will be:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

The complexity and performance of the joint query are comparable with those of single‐table query.
For instance, if a joint query SQL that contains binding tables is as this:

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_
id IN (1, 2);

Then, the route result will be:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

It can be seen that, the number of divided SQL is the same as the number of single tables.

Cartesian Route

Cartesian route has themost complex situation, it cannot locate sharding rules according to the binding
table relationship, so the joint querybetweennon‐binding tablesneeds tobe split intoCartesianproduct
combination to execute. If SQL in the last case is not configured with binding table relationship, the
route result will be:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE

7.2. Sharding 251



Apache ShardingSphere document, v5.1.1

order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

Cartesian product route has a relatively low performance, so it should be careful to use.

Broadcast Route

For SQL without sharding key, broadcast route is used. According to SQL types, it can be divided into
five types, schema & table route, database schema route, database instance route, unicast route and
ignore route.

Schema & Table Route

Schema & table route is used to deal with all the operations of physical tables related to its logic table,
including DQL and DML without sharding key and DDL, etc. For example.

SELECT * FROM t_order WHERE good_prority IN (1, 10);

It will traverse all the tables in all the databases, match the logical table and the physical table name
one by one and execute them if succeeded. After routing, they are:

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

Database Schema Route

Database schema route is used to deal with database operations, including the SET database manage‐
ment order used to set the database and transaction control statement as TCL. In this case, all physical
databases matched with the name are traversed according to logical database name, and the command
is executed in the physical database. For example:

SET autocommit=0;

If this command is executed in t_order, t_order will have 2 physical databases. And it will actually
be executed in both t_order_0 and t_order_1.

7.2. Sharding 252



Apache ShardingSphere document, v5.1.1

Database Instance Route

Database instance route is used in DCL operation, whose authorization statement aims at database
instances. No matter how many schemas are included in one instance, each one of them can only be
executed once. For example:

CREATE USER customer@127.0.0.1 identified BY '123';

This command will be executed in all the physical database instances to ensure customer users have
access to each instance.

Unicast Route

Unicast route is used in the scenario of acquiring the information from some certain physical table. It
only requires to acquire data from any physical table in any database. For example:

DESCRIBE t_order;

The descriptions of the two physical tables, t_order_0 and t_order_1 of t_order have the same structure,
so this command is executed once on any physical table.

Ignore Route

Ignore route is used to block the operation of SQL to the database. For example:

USE order_db;

This command will not be executed in physical database. Because ShardingSphere uses logic Schema,
there is no need to send the Schema shift order to the database.

The overall structure of route engine is as the following:

7.2. Sharding 253



Apache ShardingSphere document, v5.1.1

7.2.9 Rewrite Engine

The SQL written by engineers facing logic databases and tables cannot be executed directly in actual
databases. SQL rewrite is used to rewrite logic SQL into rightly executable ones in actual databases,
including two parts, correctness rewrite and optimization rewrite.

Correctness Rewrite

In situationwith sharding tables, it requires to rewrite logic table names in sharding settings into actual
table names acquired after routing. Database sharding does not require to rewrite table names. In
addition to that, there are also column derivation, pagination information revision and other content.

Identifier Rewrite

Identifiers that need to be rewritten include table name, index name and schema name. Table name
rewrite refers to the process to locate the position of logic tables in the original SQL and rewrite it as
the physical table. Table name rewrite is one typical situation that requires to parse SQL. From a most
plain case, if the logic SQL is as follow:

SELECT order_id FROM t_order WHERE order_id=1;

If the SQL is configured with sharding key order_id=1, it will be routed to Sharding Table 1. Then, the
SQL after rewrite should be:

7.2. Sharding 254



Apache ShardingSphere document, v5.1.1

SELECT order_id FROM t_order_1 WHERE order_id=1;

In this most simple kind of SQL, whether parsing SQL to abstract syntax tree seems unimportant, SQL
can be rewritten only by searching for and substituting characters. But in the following situation, it is
unable to rewrite SQL rightly merely by searching for and substituting characters:

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

The SQL rightly rewritten is supposed to be:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

Rather than:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

Because there may be similar characters besides the table name, the simple character substitute
method cannot be used to rewrite SQL. Here is another more complex SQL rewrite situation:

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order
xxx';

The SQL above takes table name as the identifier of the field, so it should also be revised when SQL is
rewritten:

SELECT t_order_1.order_id FROM t_order_1 WHERE t_order_1.order_id=1 AND remarks='
t_order xxx';

But if there is another table name defined in SQL, it is not necessary to revise that, even though that
name is the same as the table name. For example:

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

SQL rewrite only requires to revise its table name:

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

Index name is another identifier that can be rewritten. In some databases (such as MySQL/SQLServer),
the index is created according to the table dimension, and its names in different tables can repeat.
In some other databases (such as PostgreSQL/Oracle), however, the index is created according to the
database dimension, index names in different tables are required to be one and the only.

In ShardingSphere, schema management method is similar to that of the table. It uses logic schema
to manage a set of data sources, so it requires to replace the logic schema written by users in SQL with
physical database schema.

ShardingSphere only supports to use schema in database management statements but not in DQL and
DML statements, for example:

7.2. Sharding 255



Apache ShardingSphere document, v5.1.1

SHOW COLUMNS FROM t_order FROM order_ds;

Schemarewrite refers to rewriting logic schemaas a right and real schema foundarbitrarilywithunicast
route.

Column Derivation

Columnderivation in query statements usually results from two situations. First, ShardingSphereneeds
to acquire the corresponding data when merging results, but it is not returned through the query SQL.
This kind of situation aims mainly at GROUP BY and ORDER BY. Result merger requires sorting and
ranking according to items of GROUP BY and ORDER BYfield. But if sorting and ranking items are not
included in the original SQL, it should be rewritten. Look at the situation where the original SQL has
the information required by result merger:

SELECT order_id, user_id FROM t_order ORDER BY user_id;

Since user_id is used in ranking, the result merger needs the data able to acquire user_id. The SQL
above is able to acquire user_id data, so there is no need to add columns.

If the selected item does not contain the column required by result merger, it will need to add column,
as the following SQL:

SELECT order_id FROM t_order ORDER BY user_id;

Since the original SQL does not contain user_id needed by result merger, the SQL needs to be rewritten
by adding columns, and after that, it will be:

SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_order ORDER BY user_id;

What’s to be mentioned, column derivation will only add the missing column rather than all of them;
the SQL that includes * in SELECT will also selectively add columns according to the meta‐data infor‐
mation of tables. Here is a relatively complex SQL column derivation case:

SELECT o.* FROM t_order o, t_order_item i WHERE o.order_id=i.order_id ORDER BY
user_id, order_item_id;

Suppose only t_order_item table contains order_item_id column, according to the meta‐data informa‐
tion of tables, the user_id in sorting item exists in table t_order as merging result, but order_item_id
does not exist in t_order, so it needs to add columns. The SQL after that will be:

SELECT o.*, order_item_id AS ORDER_BY_DERIVED_0 FROM t_order o, t_order_item i
WHERE o.order_id=i.order_id ORDER BY user_id, order_item_id;

Another situation of column derivation is using AVG aggregation function. In distributed situations, it
is not right to calculate the average value with avg1 + avg2 + avg3 / 3, and it should be rewritten as (sum1
+ sum2 + sum3) / (count1 + count2 + count3). This requires to rewrite the SQL that contains AVG as SUM
and COUNT and recalculate the average value in result merger. Such as the following SQL:

7.2. Sharding 256



Apache ShardingSphere document, v5.1.1

SELECT AVG(price) FROM t_order WHERE user_id=1;

Should be rewritten as:

SELECT COUNT(price) AS AVG_DERIVED_COUNT_0, SUM(price) AS AVG_DERIVED_SUM_0 FROM t_
order WHERE user_id=1;

Then it can calculate the right average value through result merger.

The last kind of column derivation is in SQL with INSERT. With database auto‐increment key, there is
no need to fill in primary key field. But database auto‐increment key cannot satisfy the requirement of
only one primary key being in the distributed situation. So ShardingSphere provides a distributed auto‐
increment key generation strategy, enabling users to replace the current auto‐increment key invisibly
with a distributed one without changing existing codes through column derivation. Distributed auto‐
increment key generation strategy will be expounded in the following part, here we only explain the
content related to SQL rewrite. For example, if the primary key of t_order is order_id, and the original
SQL is:

INSERT INTO t_order (`field1`, `field2`) VALUES (10, 1);

It can be seen that the SQL above does not include an auto‐increment key, which will be filled by the
database itself. After ShardingSphere set an auto‐increment key, the SQL will be rewritten as:

INSERT INTO t_order (`field1`, `field2`, order_id) VALUES (10, 1, xxxxx);

Rewritten SQL will add auto‐increment key name and its value generated automatically in the last part
of INSERT FIELD and INSERT VALUE. xxxxx in the SQL above stands for the latter one.

If INSERT SQL does not contain the column name of the table, ShardingSphere can also automatically
generate auto‐increment key by comparing the number of parameter and column in the table meta‐
information. For example, the original SQL is:

INSERT INTO t_order VALUES (10, 1);

The rewritten SQL only needs to add an auto‐increment key in the column where the primary key is:

INSERT INTO t_order VALUES (xxxxx, 10, 1);

When auto‐increment key derives column, if the user writes SQL with placeholder, he only needs to
rewrite parameter list but not SQL itself.

7.2. Sharding 257



Apache ShardingSphere document, v5.1.1

Pagination Revision

The scenarios of acquiring pagination data frommultiple databases is different from that of one single
database. If every 10 pieces of data are taken as one page, the user wants to take the second page of
data. It is not right to take, acquire LIMIT 10, 10 under sharding situations, and take out the first 10
pieces of data according to sorting conditions after merging. For example, if the SQL is:

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

The following picture shows the pagination execution results without SQL rewrite.

As shown in the picture, if you want to acquire the second and the third piece of data ordered by score
common inboth tables, and they are supposed to be95 and90. Since the executed SQL canonly acquire
the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and 75 from
t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the
right result cannot be acquired anyway.

The right way is to rewrite pagination conditions as LIMIT 0, 3, take out all the data from the first
two pages and combine sorting conditions to calculate the right data. The following picture shows the
execution of pagination results after SQL rewrite.

7.2. Sharding 258



Apache ShardingSphere document, v5.1.1

The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are
manyways to avoidusingLIMITaspaginationmethod, suchas constructing a secondary index to record
line record number and line offset amount, or using the tail ID of last pagination data as the pagination
method of conditions of the next query.

When revising pagination information, if the user uses placeholdermethod towrite SQL, he only needs
to rewrite parameter list rather than SQL itself.

Batch Split

When using batch inserted SQL, if the inserted data crosses sharding, the user needs to rewrite SQL
to avoid writing excessive data into the database. The differences between insert operation and query
operation are: though the query sentence has used sharding keys that do not exist in current sharding,
they will not have any influence on data, but insert operation has to delete extra sharding keys. Take
the following SQL for example:

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, 'xxx');

If the database is still divided into two parts according to odd and even number of order_id, this SQL
will be executed after its table name is revised. Then, both shards will be written with the same record.
Though only the data that satisfies sharding conditions can be taken out from query statement, it is not
reasonable for the schema to have excessive data. So the SQL should be rewritten as:

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

7.2. Sharding 259



Apache ShardingSphere document, v5.1.1

IN query is similar to batch insertion, but IN operationwill not lead towrong data query result. Through
rewriting IN query, the query performance can be further improved. Like the following SQL:

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

Is rewritten as:

SELECT * FROM t_order_0 WHERE order_id IN (2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 3);

Thequeryperformancewill be further improved. Fornow, ShardingSpherehasnot realized this rewrite
strategy, so the current rewrite result is:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

Though the execution result of SQL is right, but it has not achieved themost optimized query efficiency.

Optimization Rewrite

Its purpose is to effectively improve the performance without influencing the correctness of the query.
It can be divided into single node optimization and streammerger optimization.

Single Node Optimization

It refers to the optimization that stops the SQL rewrite from the route to the single node. After acquiring
one route result, if it is routed to a single data node, result merging is unnecessary to be involved, so
there is no need for rewrites as derived column, pagination information and others. In particular, there
is no need to read from the first piece of information, which reduces the pressure for the database to a
large extent and saves meaningless consumption of the network bandwidth.

StreamMerger Optimization

It only adds sorting items and sorting orders identical with grouping items and ORDER BY to GROUP BY
SQL, and they are used to transfer memorymerger to streammerger. In the result merger part, stream
merger and memory merger will be explained in detail.

The overall structure of rewrite engine is shown in the following picture.

7.2. Sharding 260



Apache ShardingSphere document, v5.1.1

7.2.10 Execute Engine

ShardingSphere adopts a set of automatic execution engine, responsible for sending the true SQL,which
has been routed and rewritten, to execute in the underlying data source safely and effectively. It does
not simply send the SQL through JDBC to directly execute in the underlying data source, or put execu‐
tion requests directly to the thread pool to concurrently execute, but focuses more on the creation of
a balanced data source connection, the consumption generated by the memory usage, the maximum
utilization of the concurrency and other problems. The objective of the execution engine is to automat‐
ically balance between the resource control and the execution efficiency.

Connection Mode

From the perspective of resource control, the connection number of the business side’s visit of the
database should be limited. It can effectively prevent some certain business from occupying exces‐
sive resource, exhausting database connection resources and influencing the normal use of other busi‐
nesses. Especially when one database contains many tables, a logic SQL that does not contain any
sharding keywill produce a large amount of physical SQLs that fall into different tables in one database.
If each physical SQL takes an independent connection, a query will undoubtedly take up excessive re‐
sources.

From the perspective of execution efficiency, holding an independent database connection for each
sharding query can make effective use of multi‐thread to improve execution efficiency. Opening an
independent thread for each database connection can parallelize IO produced consumption. Holding

7.2. Sharding 261



Apache ShardingSphere document, v5.1.1

an independent database connection for each sharding query can also avoid loading the query result
to the memory too early. It is enough for independent database connections to maintain result set
quotation and cursor position, and move the cursor when acquiring corresponding data.

Merging result set by moving down its cursor is called stream merger. It does not require to load all
the query results to the memory. Thus, it is able to save memory resource effectively and reduce trash
recycle frequency. When it is not able tomake sure each sharding query holds an independent database
connection, it requires to load all the current query results to thememory before reusing that database
connection to acquire the query result from the next sharding table. Therefore, though the stream
merger can be used, under this kind of circumstances, it will also degenerate to the memory merger.

The control and protection of database connection resources is one thing, adopting better merging
model to save thememory resources of middleware is another thing. How to deal with the relationship
between them is a problem that ShardingSphere execution engine should solve. To be accurate, if a
sharding SQL needs to operate 200 tables under some database case, should we choose to create 200
parallel connection executions or a serial connection execution? Or to say, how to choose between
efficiency and resource control?

Aiming at the above situation, ShardingSphere has provided a solution. It has put forward a Connection
Mode concept divided into two types, MEMORY_STRICTLYmode and CONNECTION_STRICTLYmode.

MEMORY_STRICTLY Mode

The prerequisite to use this mode is that ShardingSphere does not restrict the connection number of
one operation. If the actual executed SQL needs to operate 200 tables in some database instance, it will
create a new database connection for each table and deal with them concurrently throughmulti‐thread
to maximize the execution efficiency. When the SQL is up to standard, it will choose streammerger in
priority to avoid memory overflow or frequent garbage recycle.

CONNECTION_STRICTLY Mode

The prerequisite to use this mode is that ShardingSphere strictly restricts the connection consumption
number of one operation. If the SQL to be executed needs to operate 200 tables in database instance,
it will create one database connection and operate them serially. If shards exist in different databases,
it will still be multi‐thread operations for different databases, but with only one database connection
being created for each operation in each database. It can prevent the problem brought by excessive
occupation of database connection from one request. The mode chooses memory merger all the time.

TheMEMORY_STRICTLYmode is applicable toOLAPoperation and can increase the systemcapacity by
removing database connection restrictions. It is also applicable to OLTP operation, which usually has
sharding keys and can be routed to a single shard. So it is a wise choice to control database connection
strictly to make sure resources of online system databases can be used by more applications.

7.2. Sharding 262



Apache ShardingSphere document, v5.1.1

Automatic Execution Engine

ShardingSphere uses which mode at first is up to users’setting and they can choose to use MEM‐
ORY_STRICTLY mode or CONNECTION_STRICTLY mode according to their actual business scenarios.

The solution gives users the right to choose, requiring them to know the advantages and disadvantages
of both modes and make decision according to the actual business situations. No doubt, it is not the
best solution due to increasing users’study cost and use cost.

This kind of dichotomy solution lacks flexible coping ability to switch between two modes with static
initialization. In practical situations, route results of each timemay differ with different SQL and place‐
holder indexes. It means some operations may need to use memory merger, while others are better to
use stream merger. Connection modes should not be set by users before initializing ShardingSphere,
but should be decided dynamically by the situation of SQL and placeholder indexes.

To reduce users’use cost and solve the dynamic connection mode problem, ShardingSphere has ex‐
tracted the thought of automatic execution engine in order to eliminate the connection mode con‐
cept inside. Users do not need to know what are so called MEMORY_STRICTLY mode and CONNEC‐
TION_STRICTLY mode, but let the execution engine to choose the best solution according to current
situations.

Automatic execution engine has narrowed the selection scale of connection mode to each SQL opera‐
tion. Aiming at each SQL request, automatic execution enginewill do real‐time calculations and evalua‐
tions according to its route result and execute the appropriate connectionmode automatically to strike
the most optimized balance between resource control and efficiency. For automatic execution engine,
users only need to configure maxConnectionSizePerQuery, which represents the maximum con‐
nection number allowed by each database for one query.

The execution engine can be divided into two phases: preparation and execution.

Preparation Phrase

As indicated by its name, this phrase is used to prepare the data to be executed. It can be divided into
two steps: result set grouping and unit creation.

Result set grouping is the key to realize the internal connectionmodel concept. According to the config‐
uration option of maxConnectionSizePerQuery, execution engine will choose an appropriate con‐
nection mode combined with current route result.

Detailed steps are as follow:

1. Group SQL route results according to data source names.

2. Through the equation in the following picture, users can acquire the SQL route result group to be
executed by each database case within the maxConnectionSizePerQuery permission range
and calculate the most optimized connection mode of this request.

7.2. Sharding 263



Apache ShardingSphere document, v5.1.1

Within the range that maxConnectionSizePerQuery permits, when the request number that one con‐
nection needs to execute is more than 1, meaning current database connection cannot hold the corre‐
sponding data result set, it must uses memory merger. On the contrary, when it equals to 1, meaning
current database connection can hold the according data result set, it can use streammerger.

Each choice of connection mode aims at each physical database; that is to say, if it is routed to more
than one databases, the connection mode of each database may mix with each other and not be the
same in one query.

Users can use the route group result acquired from the last step to create the execution unit. When
the data source uses technologies, such as database connection pool, to control database connection
number, there is some chance for deadlock, if it has not dealt with concurrency properly. As multiple
requests waiting for each other to release database connection resources, it will generate hunger wait
and cause the crossing deadlock problem.

For example, suppose one query needs to acquire two database connections from a data source and
apply them in two table sharding queries routed to one database. It is possible that Query A has already
acquired a database connection from that data source and waits to acquire another connection; but in
the same time, Query B has also finished it and waits. If the maximum connection number that the
connection pool permits is 2, those two query requests will wait forever. The following picture has
illustrated the deadlock situation:

7.2. Sharding 264



Apache ShardingSphere document, v5.1.1

To avoid the deadlock, ShardingSphere will go through synchronous processing when acquiring
database connection. When creating execution units, it acquires all the database connections that this
SQL requires for once with atomic method and reduces the possibility of acquiring only part of the re‐
sources. Due to the high operation frequency, locking the connection each time when acquiring it can
decrease ShardingSphere’s concurrency. Therefore, it has improved two aspects here:

1. Avoid the setting that locking only takes one database connection each time. Because under this
kind of circumstance, two requests waiting for each other will not happen, so there is no need
for locking. Most OLTP operations use sharding keys to route to the only data node, which will
make the system in a totally unlocked state, thereby improve the concurrency efficiency further.
In addition to routing to a single shard, readwrite‐splitting also belongs to this category.

2. Only aim at MEMORY_STRICTLY mode to lock resources. When using CONNECTION_STRICTLY
mode, all the query result sets will release database connection resources after loading them to
the memory, so deadlock wait will not appear.

Execution Phrase

Applied in actually SQL execution, this phrase can be divided into two steps: group execution and
merger result generation.

Group execution can distribute execution unit groups generated in preparation phrase to the underly‐
ing concurrency engine and send events according to each key steps during the execution process, such
as starting, successful and failed execution events. Execution engine only focuses on message send‐
ing rather than subscribers of the event. Other ShardingSphere modules, such as distributed transac‐

7.2. Sharding 265



Apache ShardingSphere document, v5.1.1

tions, invoked chain tracing and so on, will subscribe focusing events and do corresponding operations.
Through the connection mode acquired in preparation phrase, ShardingSphere will generate memory
merger result set or stream merger result set, and transfer it to the result merger engine for the next
step.

The overall structure of execution engine is shown as the following picture:

7.2.11 Merger Engine

Result merger refers to merging multi‐data result set acquired from all the data nodes as one result set
and returning it to the request end rightly.

In function, the result merger supported by ShardingSphere can be divided into five kinds, iteration,
order‐by, group‐by, pagination and aggregation, which are in composition relation rather than clash
relation. In structure, it can be divided into stream merger, memory merger and decorator merger,
among which, stream merger and memory merger clash with each other; decorator merger can be
further processed based on streammerger and memory merger.

Since the result set is returned from database line by line instead of being loaded to the memory all at
once, the most prior choice of merger method is to follow the database returned result set, for it is able
to reduce the memory consumption to a large extend.

Streammergermeans, each time, the data acquired from the result set is able to return the single piece
of right data line by line.

It is the most suitable one for the method that the database returns original result set. Iteration, order‐

7.2. Sharding 266



Apache ShardingSphere document, v5.1.1

by, and stream group‐by belong to streammerger.

Memory merger needs to iterate all the data in the result set and store it in the memory first. after uni‐
fied grouping, ordering, aggregation and other computations, it will pack it into data result set, which
is visited line by line, and return that result set.

Decorator merger merges and reinforces all the result sets function uniformly. Currently, decorator
merger has pagination merger and aggregation merger these two kinds.

Iteration Merger

As the simplest merger method, iterationmerger only requires the combination of multiple data result
sets into a single‐direction chain table. After iterating current data result sets in the chain table, it only
needs to move the element of chain table to the next position and iterate the next data result set.

Order-by Merger

Because there is ORDER BY statement in SQL, each data result has its own order. So it is enough only
to order data value that the result set cursor currently points to, which is equal to sequencing multiple
already ordered arrays, and therefore, order‐by merger is the most suitable ordering algorithm in this
situation.

When merging order inquiries, ShardingSphere will compare current data values in each result set
(which is realized by Java Comparable interface) and put them into the priority queue. Each time when
acquiring the next piece of data, it only needs to move down the result set in the top end of the line,
renter the priority order according to the new cursor and relocate its own position.

Here is an instance to explain ShardingSphere’s order‐by merger. The following picture is an illus‐
tration of ordering by the score. Data result sets returned by 3 tables are shown in the example and
each one of them has already been ordered according to the score, but there is no order between 3 data
result sets. Order the data value that the result set cursor currently points to in these 3 result sets. Then
put them into the priority queue. the data value of t_score_0 is the biggest, followed by that of t_score_2
and t_score_1 in sequence. Thus, the priority queue is ordered by the sequence of t_score_0, t_score_2
and t_score_1.

7.2. Sharding 267



Apache ShardingSphere document, v5.1.1

This diagram illustrates how the order‐by merger works when using next invocation. We can see from
the diagram that when using next invocation, t_score_0 at the first of the queue will be popped out.
After returning the data value currently pointed by the cursor (i.e., 100) to the client end, the cursor
will be moved down and t_score_0 will be put back to the queue.

While the priority queue will also be ordered according to the t_score_0 data value (90 here) pointed by
the cursor of current data result set. According to the current value, t_score_0 is at the last of the queue,
and in the second place of the queue formerly, the data result set of t_score_2, automatically moves to
the first place of the queue.

In the second next operation, t_score_2 in the first position is popped out of the queue. Its value pointed
by the cursor of the data result set is returned to the client end, with its cursormoved down to rejoin the
queue, and the following will be in the same way. If there is no data in the result set, it will not rejoin
the queue.

7.2. Sharding 268



Apache ShardingSphere document, v5.1.1

It can be seen that, under the circumstance that data in each result set is ordered while result sets are
disordered, ShardingSphere does not need to upload all the data to the memory to order. In the order‐
bymergermethod, each next operation only acquires the right piece of data each time, which saves the
memory consumption to a large extent.

On the other hand, the order‐by merger has maintained the orderliness on horizontal axis and vertical
axis of the data result set. Naturally ordered, vertical axis refers to each data result set itself, which is
acquired by SQLwith ORDER BY. Horizontal axis refers to the current value pointed by each data result
set, and its order needs to be maintained by the priority queue.Each time when the current cursor
moves down, it requires to put the result set in the priority order again, which means only the cursor
of the first data result set can be moved down.

Group-by Merger

With the most complicated situation, group‐by merger can be divided into stream group‐by merger
and memory group‐by merger. Stream group‐by merger requires SQL field and order item type (ASC
or DESC) to be the same with group‐by item. Otherwise, its data accuracy can only be maintained by
memory merger.

For instance, if it is sharded by subject, table structure contains examinees’name (to simplify, name
repetition is not taken into consideration) and score. The SQL used to acquire each examinee’s total
score is as follow:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

7.2. Sharding 269



Apache ShardingSphere document, v5.1.1

When order‐by item and group‐by item are totally consistent, the data obtained is continuous. The data
to group are all stored in the data value that data result set cursor currently points to, stream group‐by
merger can be used, as illustrated by the diagram:

Themerging logic is similar to that of order‐bymerger. The following picture shows how stream group‐
by merger works in next invocation.

7.2. Sharding 270



Apache ShardingSphere document, v5.1.1

We can see from the picture, in the first next invocation, t_score_java in the first position, along with
other result set data also having the grouping value of“Jerry”, will be popped out of the queue. After
acquiring all the students’scores with the name of“Jerry”, the accumulation operation will be pro‐
ceeded. Hence, after the first next invocation is finished, the result set acquired is the sum of Jerry’s
scores. In the same time, all the cursors in data result sets will be moved down to a different data value
next to“Jerry”and rearranged according to current result set value. Thus, the data that contains the
second name“John”will be put at the beginning of the queue.

Stream group‐by merger is different from order‐by merger only in two points:

1. It will take out all the data with the same group item frommultiple data result sets for once.

2. It does the aggregation calculation according to aggregation function type.

For the inconsistency between the group item and the order item, it requires to upload all the data to
thememory to group and aggregate, since the relevant data value needed to acquire group information
is not continuous, and stream merger is not able to use. For example, acquire each examinee’s total
score through the following SQL and order them from the highest to the lowest:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

Then, stream merger is not able to use, for the data taken out from each result set is the same as the
original data of the diagram ordered by score in the upper half part structure.

When SQL only contains group‐by statement, according to different database implementation, its se‐
quencing order may not be the same as the group order. The lack of ordering statement indicates the
order is not important in this SQL. Therefore, through SQL optimization re‐write, ShardingSphere can

7.2. Sharding 271



Apache ShardingSphere document, v5.1.1

automatically add the ordering item same as grouping item, converting it from the memory merger
that consumes memory to streammerger.

Aggregation Merger

Whether stream group‐by merger or memory group‐by merger processes the aggregation function in
the sameway. Therefore, aggregationmerger is an additional merging ability based on what have been
introduced above, i.e., the decorator mode. The aggregation function can be categorized into three
types, comparison, sum and average.

Comparison aggregation function refers to MAX and MIN. They need to compare all the result set data
and return its maximum or minimum value directly.

Sum aggregation function refers to SUM and COUNT. They need to sum up all the result set data.

Average aggregation function refers only to AVG. It must be calculated through SUM and COUNT of SQL
re‐write, which has been mentioned in SQL re‐write, so we will state no more here.

Pagination Merger

All themerger types above can be paginated. Pagination is the decorator added on other kinds ofmerg‐
ers. ShardingSphere augments its ability to paginate the data result set through the decorator mode.
Pagination merger is responsible for filtering the data unnecessary to acquire.

ShardingSphere’s pagination function can be misleading to users in that they may think it will take a
large amount of memory. In distributed scenarios, it can only guarantee the data accuracy by rewriting
LIMIT 10000000, 10 to LIMIT 0, 10000010. Users can easily have the misconception that
ShardingSphere uploads a large amount ofmeaningless data to thememory and has the risk ofmemory
overflow. Actually, it can be known from the principle of streammerger, onlymemory group‐bymerger
will upload all the data to the memory. Generally speaking, however, SQL used for OLAP grouping, is
applied more frequently to massive calculation or small result generation rather than vast result data
generation. Except for memory group‐by merger, other cases use streammerger to acquire data result
set. So ShardingSphere would skip unnecessary data through next method in result set, rather than
storing them in the memory.

What’s to be noticed, pagination with LIMIT is not the best practice actually, because a large amount
of data still needs to be transmitted to ShardingSphere’s memory space for ordering. LIMIT cannot
search for data by index, so paginating with ID is a better solution on the premise that the ID continuity
can be guaranteed. For example:

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id;

Or search the next page through the ID of the last query result, for example:

SELECT * FROM t_order WHERE id > 10000000 LIMIT 10;

The overall structure of merger engine is shown in the following diagram:

7.2. Sharding 272



Apache ShardingSphere document, v5.1.1

7.3 Transaction

7.3.1 Navigation

This chapter mainly introduces the principles of the distributed transactions:

• 2PC transaction with XA

• BASE transaction with Seata

7.3. Transaction 273



Apache ShardingSphere document, v5.1.1

7.3.2 XA Transaction

XAShardingSphereTransactionManager is XA transaction manager of Apache ShardingSphere.
Itsmain responsibility ismanage and adaptmultiple data sources, and sent corresponding transactions
to concrete XA transaction manager.

Transaction Begin

When receiving set autoCommit=0 from client, XAShardingSphereTransactionManager will
use XA transaction managers to start overall XA transactions, which is marked by XID.

Execute actual sharding SQL

After XAShardingSphereTransactionManager register the corresponding XAResource to the cur‐
rent XA transaction, transactionmanagerwill send XAResource.start command to databases. After
databases received XAResource.end command, all SQL operator will mark as XA transaction.

For example:

XAResource1.start ## execute in the enlist phase
statement.execute("sql1");
statement.execute("sql2");
XAResource1.end ## execute in the commit phase

sql1 and sql2 in example will be marked as XA transaction.

7.3. Transaction 274



Apache ShardingSphere document, v5.1.1

Commit or Rollback

After XAShardingSphereTransactionManager receives the commit command in the access, it will
delegate it to the actual XA manager. It will collect all the registered XAResource in the thread, before
sending XAResource.end to mark the boundary for the XA transaction. Then it will send prepare
command one by one to collect votes from XAResource. If all the XAResource feedback is OK, it will
send commit command to finally finish it; If there is any No XAResource feedback, it will send roll‐
back command to roll back. After sending the commit command, all XAResource exceptions will be
submitted again according to the recovery log to ensure the atomicity and high consistency.

For example:

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResource1.commit
XAResource2.commit

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResource1.rollback
XAResource2.rollback

7.3.3 Seata BASE transaction

When integrating Seata AT transaction, we need to integrate TM, RM and TC component into Shard‐
ingSphere transaction manager. Seata have proxied DataSource interface in order to RPC with TC.
Similarly, Apache ShardingSphere faced to DataSource interface to aggregate data sources too. After
Seata DataSource encapsulation, it is easy to put Seata AT transaction into Apache ShardingSphere
sharding ecosystem.

7.3. Transaction 275



Apache ShardingSphere document, v5.1.1

Init Seata Engine

When an application containing ShardingSphereTransactionBaseSeataAT startup, the user‐
configuredDataSourcewill bewrapped into seata DataSourceProxy throughseata.conf, then reg‐
istered into RM.

Transaction Begin

TM controls the boundaries of global transactions. TM obtains the global transaction ID by sending Be‐
gin instructions to TC. All branch transactions participate in the global transaction through this global
transaction ID. The context of the global transaction ID will be stored in the thread local variable.

Execute actual sharding SQL

Actual SQL in Seata global transaction will be intercepted to generate undo snapshots by RM and sends
participate instructions to TC to join global transaction. Since actual sharding SQLs executed in multi‐
threads, global transaction context should transfer from main thread to child thread, which is exactly
the same as context transfer between services.

7.3. Transaction 276



Apache ShardingSphere document, v5.1.1

Commit or Rollback

When submitting a seata transaction, TM sends TC the commit and rollback instructions of the global
transaction. TC coordinates all branch transactions for commit and rollback according to the global
transaction ID.

7.4 Scaling

7.4.1 Principle Description

Consider about these challenges of ShardingSphere‐Scaling, the solution is: Use two database clusters
temporarily, and switch after the scaling is completed.

Advantages:

1. No effect for origin data during scaling.

2. No risk for scaling failure.

3. No limited by sharding strategies.

Disadvantages：
1. Redundant servers during scaling.

2. All data needs to be moved.

ShardingSphere‐Scaling will analyze the sharding rules and extract information like datasource and
data nodes. According the sharding rules, ShardingSphere‐Scaling create a scaling job with 4 main
phases.

1. Preparing Phase.

2. Inventory Phase.

3. Incremental Phase.

4. Switching Phase.

7.4.2 Phase Description

Preparing Phase

ShardingSphere‐Scaling will check the datasource connectivity and permissions, statistic the amount
of inventory data, record position of log, shard tasks based on amount of inventory data and the paral‐
lelism set by the user.

7.4. Scaling 277



Apache ShardingSphere document, v5.1.1

Inventory Phase

Executing the Inventory datamigration tasks sharded in preparing phase. ShardingSphere‐Scaling uses
JDBC to query inventory data directly from data nodes and write to the new cluster using new rules.

Incremental Phase

The data in data nodes is still changing during the inventory phase, so ShardingSphere‐Scaling need to
synchronize these incremental data to new data nodes. Different databases have different implemen‐
tations, but generally implemented by change data capture function based on replication protocols or
WAL logs.

• MySQL：subscribe and parse binlog.

• PostgreSQL：official logic replication test_decoding.

These captured incremental data, Apache ShardingSphere alsowrite to the new cluster using new rules.

Switching Phase

In this phase, there may be a temporary read only time, make the data in old data nodes static so that
the incremental phase complete fully. The read only time is range seconds to minutes, it depends on
the amount of data and the checking data. After finished, Apache ShardingSphere can switch the con‐
figuration by register‐center and config‐center, make application use new sharding rule and new data
nodes.

7.5 Encryption

7.5.1 Process Details

Apache ShardingSphere can encrypt the plaintext by parsing and rewriting SQL according to the en‐
cryption rule, and store the plaintext (optional) and ciphertext data to the database at the same time.
Queries data only extracts the ciphertext data from database and decrypts it, and finally returns the
plaintext to user. Apache ShardingSphere transparently process of data encryption, so that users do
not need to know to the implementation details of it, use encrypted data just like as regular data. In
addition, Apache ShardingSphere can provide a relatively complete set of solutions whether the online
business system has been encrypted or the new online business system uses the encryption function.

7.5. Encryption 278

https://www.postgresql.org/docs/9.4/test-decoding.html


Apache ShardingSphere document, v5.1.1

Overall Architecture

Encrypt module intercepts SQL initiated by user, analyzes and understands SQL behavior through the
SQL syntax parser. According to the encryption rules passed by the user, find out the fields that need
to be encrypted/decrypted and the encryptor/decryptor used to encrypt/decrypt the target fields, and
then interact with the underlying database. ShardingSphere will encrypt the plaintext requested by the
user and store it in the underlying database; and when the user queries, the ciphertext will be taken
out of the database for decryption and returned to the end user. ShardingSphere shields the encryption
of data, so that users do not need to perceive the process of parsing SQL, data encryption, and data
decryption, just like using ordinary data.

Encryption Rule

Before explaining the whole process in detail, we need to understand the encryption rules and configu‐
ration, which is the basis of understanding the whole process. The encryption configuration is mainly
divided into four parts: data source configuration, encrypt algorithm configuration, encryption table
rule configuration, and query attribute configuration. The details are shown in the following figure:

7.5. Encryption 279



Apache ShardingSphere document, v5.1.1

Datasource Configuration：The configuration of DataSource.
Encrypt AlgorithmConfiguration：What kind of encryption strategy to use for encryption and decryp‐

tion. Currently ShardingSphere has five built‐in encryption/decryption strategies: AES, MD5, RC4, 

SM3, and SM4.Users can also implement a set of encryption/decryption algorithms by implementin

g the interfaceprovided by Apache ShardingSphere.
Encryption Table Configuration：Show the ShardingSphere data table which column is used to store
cipher column data (cipherColumn), which column is used to store plain text data (plainColumn), and
which column users want to use for SQL writing (logicColumn)

How to understand Which column do users want to use to write SQL (log-
icColumn)?

We can understand according to themeaning of Apache ShardingSphere. The ultimate goal
of Apache ShardingSphere is to shield the encryption of the underlying data, that is, we do
not want users to know how the data is encrypted/decrypted, how to store plaintext data in
plainColumn, and ciphertext data in cipherColumn. In other words, we do not even want
users to know the existence and use of plainColumn and cipherColumn. Therefore, we need
to provide users with a column in conceptual. This column can be separated from the real
column of the underlying database. It can be a real column in the database table or not, so
that the user can freely change the plainColumn and The column name of cipherColumn.
Or delete plainColumn and choose to never store plain text and only store cipher text. As
long as the user’s SQL is written according to this logical column, and the correct mapping
relationship between logicColumn and plainColumn, cipherColumn is given in the encryp‐
tion rule.

7.5. Encryption 280



Apache ShardingSphere document, v5.1.1

Why do you do this? The answer is at the end of the article, that is, to enable the online
services to seamlessly, transparently, and safely carry out data encryption migration.

Query Attribute configuration：When the plaintext data and ciphertext data are stored in the under‐
lying database table at the same time, this attribute switch is used to decide whether to directly query
the plaintext data in the database table to return, or to query the ciphertext data and decrypt it through
Apache ShardingSphere to return. This switch supports table level and whole rule level configuration,
and table level has the highest priority.

Encryption Process

For example, if there is a table in the database called t_user, there are actually two fields pwd_plain
in this table, used to store plain text data, pwd_cipher, used to store cipher text data, and define logic‐
Column as pwd. Then, when writing SQL, users should write to logicColumn, that is, INSERT INTO
t_user SET pwd = '123'. Apache ShardingSphere receives the SQL, and through the encryption
configuration provided by the user, finds that pwd is a logicColumn, so it decrypt the logical column
and its corresponding plaintext data. As can be seen that ** Apache ShardingSphere has carried out the
column‐sensitive and data‐sensitive mapping conversion of the logical column facing the user and the
plaintext and ciphertext columns facing the underlying database. As shown below:

This is also the core meaning of Apache ShardingSphere, which is to separate user SQL from the un‐
derlying data table structure according to the encryption rules provided by the user, so that the SQL
writer by user no longer depends on the actual database table structure. The connection, mapping,
and conversion between the user and the underlying database are handled by Apache ShardingSphere.

7.5. Encryption 281



Apache ShardingSphere document, v5.1.1

Why should we do this? It is still the same : in order to enable the online business to seamlessly, trans‐
parently and safely perform data encryption migration.

In order to make the reader more clearly understand the core processing flow of Apache Sharding‐
Sphere, the followingpicture shows theprocessingflowandconversion logicwhenusingApache Shard‐
ingSphere to add, delete, modify and check, as shown in the following figure.

7.5.2 Detailed Solution

After understanding the Apache ShardingSphere encryption process, you can combine the encryption
configuration and encryption process with the actual scenario. All design and development are to solve
the problems encountered in business scenarios. So for the business scenario requirementsmentioned
earlier, how should ShardingSphere be used to achieve business requirements?

New Business

Business scenario analysis: The newly launched business is relatively simple because everything starts
from scratch and there is no historical data cleaning problem.

Solution description: After selecting the appropriate encrypt algorithm, such as AES, you only need to
configure the logical column (write SQL for users) and the ciphertext column (the data table stores the
ciphertext data). It can also be different **. The recommended configuration is as follows (shown in
Yaml format):

7.5. Encryption 282



Apache ShardingSphere document, v5.1.1

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd:

cipherColumn: pwd
encryptorName: aes_encryptor

With this configuration, ApacheShardingSphereonlyneeds to convert logicColumnandcipherColumn.
The underlying data table does not store plain text, only cipher text. This is also a requirement of the
security audit part. If users want to store plain text and cipher text together in the database, they just
need to add plainColumn configuration. The overall processing flow is shown below:

7.5. Encryption 283



Apache ShardingSphere document, v5.1.1

Online Business Transformation

Business scenario analysis: As the business is already running online, there must be a large amount of
plain text historical data stored in the database. The current challenges are how to enable historical
data to be encrypted and cleaned, how to enable incremental data to be encrypted, and how to allow
businesses to seamlessly and transparently migrate between the old and new data systems.

Solution description: Before providing a solution, let’s brainstorm: First, if the old business needs to
be desensitized, it must have stored very important and sensitive information. This information has a
high gold content and the business is relatively important. If it is broken, the whole team KPI is over.
Therefore, it is impossible to suspend business immediately, prohibit writing of new data, encrypt and
clean all historical data with an encrypt algorithm, and then deploy the previously reconstructed code
online, so that it can encrypt and decrypt online and incremental data. Such a simple and rough way,
based on historical experience, will definitely not work.

Then another relatively safe approach is to rebuild a pre‐release environment exactly like the pro‐
duction environment, and then encrypt the Inventory plaintext data of the production environment
through the relevant migration and washing tools and store it in the pre‐release environment. The
Increment data is encrypted by tools such as MySQL replica query and the business party ’s own
development, encrypted and stored in the database of the pre‐release environment, and then the refac‐
tored code can be deployed to the pre‐release environment. In this way, the production environment
is a set of environment formodified/queries with plain text as the core; the pre‐release environment
is a set of encrypt/decrypt queries modified with ciphertext as the core. After comparing for a pe‐
riod of time, the production flow can be cut into the pre‐release environment at night. This solution is
relatively safe and reliable, but it takes more time, manpower, capital, and costs. It mainly includes:
pre‐release environment construction, production code rectification, and related auxiliary tool devel‐
opment. Unless there is no way to go, business developers generally go from getting started to giving
up.

Business developers must hope: reduce the burden of capital costs, do not modify the business code,
and be able to safely and smoothly migrate the system. So, the encryption function module of Shard‐
ingSphere was born. It can be divided into three steps:

1. Before systemmigration

Assuming that the systemneeds to encrypt the pwdfield of t_user, the business side uses Apache Shard‐
ingSphere to replace the standardized JDBC interface, which basically requires no additional modifi‐
cation (we also provide Spring Boot Starter, Spring Namespace, YAML and other access methods to
achieve different services demand). In addition, demonstrate a set of encryption configuration rules,
as follows:

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:

7.5. Encryption 284



Apache ShardingSphere document, v5.1.1

columns:
pwd:

plainColumn: pwd
cipherColumn: pwd_cipher
encryptorName: aes_encryptor

queryWithCipherColumn: false

According to the above encryption rules, we need to add a column called pwd_cipher in the t_user table,
that is, cipherColumn, which is used to store ciphertext data. At the same time, we set plainColumn to
pwd, which is used to store plaintext data, and logicColumn is also set to pwd. Because the previous SQL
was written using pwd, that is, the SQL was written for logical columns, so the business code did not
need to be changed. Through Apache ShardingSphere, for the incremental data, the plain text will be
written to the pwd column, and the plain text will be encrypted and stored in the pwd_cipher column.
At this time, because queryWithCipherColumn is set to false, for business applications, the plain
text column of pwd is still used for query storage, but the cipher text data of the new data is additionally
stored on the underlying database table pwd_cipher. The processing flow is shown below:

When the newly added data is inserted, it is encrypted as ciphertext data through Apache Sharding‐
Sphere and stored in the cipherColumn. Now it is necessary to process historical plaintext inventory
data. AsApache ShardingSphere currently does not provide the correspondingmigration andwash‐
ing tools, the business party needs to encrypt and store the plain text data in pwd to pwd_cipher.

2. During systemmigration

The incremental data has been stored by Apache ShardingSphere in the ciphertext column and the
plaintext is stored in the plaintext column; after the historical data is encrypted and cleaned by the

7.5. Encryption 285



Apache ShardingSphere document, v5.1.1

business party itself, the ciphertext is also stored in the ciphertext column. That is to say, the plaintext
and the ciphertext are stored in the current database. Since the queryWithCipherColumn = false
in the configuration item, the ciphertext has never been used. Now we need to set the queryWith-
CipherColumn in the encryption configuration to true in order for the system to cut the ciphertext
data for query. After restarting the system, we found that the system business is normal, but Apache
ShardingSphere has started to extract the ciphertext data from the database, decrypt it and return it to
the user; and for the user’s insert, delete and update requirements, the original data will still be stored
The plaintext column, the encrypted ciphertext data is stored in the ciphertext column.

Although the business system extracts the data in the ciphertext column and returns it after decryption;
however, it will still save a copy of the original data to the plaintext column during storage. Why? The
answer is: in order to be able to roll back the system. Because as long as the ciphertext and plaintext
always exist at the same time, we can freely switch the business query to cipherColumn or plain‐
Column through the configuration of the switch item. In other words, if the system is switched to
the ciphertext column for query, the system reports an error and needs to be rolled back. Then just
set queryWithCipherColumn = false, Apache ShardingSphere will restore, that is, start using
plainColumn to query again. The processing flow is shown in the following figure:

3. After systemmigration

Due to the requirements of the security audit department, it is generally impossible for the business
system to keep the plaintext and ciphertext columns of the database permanently synchronized. We
need to delete the plaintext data after the system is stable. That is, we need to delete plainColumn
(ie pwd) after system migration. The problem is that now the business code is written for pwd SQL,
delete the pwd in the underlying data table stored in plain text, and use pwd_cipher to decrypt to get

7.5. Encryption 286



Apache ShardingSphere document, v5.1.1

the original data, does thatmean that the business side needs to rectify all SQL, thus Do not use the pwd
column that is about to be deleted? Remember the core meaning of our encrypt module?

This is also the core meaning of encrypt module. According to the encryption rules pro‐
vided by the user, the user SQL is separated from the underlying database table structure,
so that the user’s SQL writing no longer depends on the actual database table structure.
The connection, mapping, and conversion between the user and the underlying database
are handled by ShardingSphere.

Yes, because of the existence of logicColumn, users write SQL for this virtual column. Apache Shard‐
ingSphere can map this logical column and the ciphertext column in the underlying data table. So the
encryption configuration after migration is:

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd: # pwd and pwd_cipher transformation mapping

cipherColumn: pwd_cipher
encryptorName: aes_encryptor

The processing flow is as follows:

7.5. Encryption 287



Apache ShardingSphere document, v5.1.1

So far, the online service encryption and rectification solutions have all beendemonstrated. Weprovide
Java, YAML, Spring Boot Starter, Spring Namespace multiple ways for users to choose to use, and strive
to fulfill business requirements. The solution has been continuously launched on JD Digits, providing
internal basic service support.

7.5.3 The advantages of Middleware encryption service

1. Transparent data encryption process, users do not need to pay attention to the implementation
details of encryption.

2. Provide a variety of built‐in, third‐party (AKS) encryption strategies, users only need to modify
the configuration to use.

3. Provides a encryption strategy API interface, users can implement the interface to use a custom
encryption strategy for data encryption.

4. Support switching different encryption strategies.

5. For online services, it is possible to store plaintext data and ciphertext data synchronously, and
decide whether to use plaintext or ciphertext columns for query through configuration. Without
changing the business query SQL, the on‐line system can safely and transparently migrate data
before and after encryption.

7.5. Encryption 288



Apache ShardingSphere document, v5.1.1

7.5.4 Solution

Apache ShardingSphere has provided two data encryption solutions, corresponding to two Shard‐
ingSphere encryption and decryption interfaces, i.e., EncryptAlgorithm and QueryAssistedEn-
cryptAlgorithm.

On the one hand, Apache ShardingSphere has provided internal encryption and decryption implemen‐
tations for users, which can be used by them only after configuration. On the other hand, to satisfy
users’requirements for different scenarios, we have also opened relevant encryption and decryption
interfaces, according to which, users can provide specific implementation types. Then, after simple
configurations, Apache ShardingSphere can use encryption and decryption solutions defined by users
themselves to desensitize data.

EncryptAlgorithm

The solution has provided two methods encrypt() and decrypt() to encrypt/decrypt data for en‐
cryption.

WhenusersINSERT,DELETE andUPDATE, ShardingSpherewill parse, rewrite and route SQLaccording
to the configuration. It will also use encrypt() to encrypt data and store them in the database. When
using SELECT, theywill decrypt sensitive data from the databasewith decrypt() reversely and return
them to users at last.

Currently, Apache ShardingSphere has provided three types of implementations for this kind of encrypt
solution, MD5 (irreversible), AES (reversible) and RC4 (reversible), which can be used after configura‐
tion.

QueryAssistedEncryptAlgorithm

Compared with the first encrypt scheme, this one is more secure and complex. Its concept is: even the
same data, two same user passwords for example, should not be stored as the same desensitized form
in the database. It can help to protect user information and avoid credential stuffing.

This scheme provides three functions to implement, encrypt(), decrypt() and queryAssiste-
dEncrypt(). In encrypt() phase, users can set some variable, timestamp for example, and encrypt
a combination of original data + variable. This method can make sure the encrypted data of the same
original data are different, due to the existence of variables. In decrypt() phase, users can use vari‐
able data to decrypt according to the encryption algorithms set formerly.

Though thismethod can indeed increase data security, another problem can appearwith it: as the same
data is stored in the database in different content, usersmay not be able to find out all the same original
data with equivalent query (SELECT FROM table WHERE encryptedColumnn = ?) according to
this encryption column. Because of it, we have brought out assistant query column, which is generated
by queryAssistedEncrypt(). Different from decrypt(), thismethod uses anotherway to encrypt
the original data; but for the same original data, it can generate consistent encryption data. Users can
store data processed by queryAssistedEncrypt() to assist the query of original data. So there may
be one more assistant query column in the table.

7.5. Encryption 289



Apache ShardingSphere document, v5.1.1

queryAssistedEncrypt() and encrypt() can generate and store different encryption data; de-
crypt() is reversible and queryAssistedEncrypt() is irreversible. So when querying the original
data, we will parse, rewrite and route SQL automatically. We will also use assistant query column to
do WHERE queries and use decrypt() to decrypt encrypt() data and return them to users. All these
can not be felt by users.

For now, ShardingSphere has abstracted the concept to be an interface for users to develop rather than
providing accurate implementation for this kind of encrypt solution. ShardingSphere will use the ac‐
curate implementation of this solution provided by users to desensitize data.

7.6 Shadow

7.6.1 Overall Architecture

Apache ShardingSphere makes shadow judgments on incoming SQL by parsing SQL, according to the
shadow rules set by the user in the configuration file, route to production DB or shadow DB.

7.6. Shadow 290



Apache ShardingSphere document, v5.1.1

7.6.2 Shadow Rule

Shadow rules include shadow data source mapping, shadow tables, and shadow algorithms.

data‐sources：Production data source name and shadow data source name mappings.

tables：Shadow tables related to stress testing. Shadow tables must exist in the specified shadow DB,
and the shadow algorithm needs to be specified.

shadow‐algorithms：SQL routing shadow algorithm.

default‐shadow‐algorithm‐name：Default shadow algorithm. Optional item, the default matching al‐
gorithm for tables that not configured with the shadow algorithm.

7.6. Shadow 291



Apache ShardingSphere document, v5.1.1

7.6.3 Routing Process

Take the INSERT statement as an example. When writing data Apache ShardingSphere will parse the
SQL, and then construct a routing chain according to the rules in the configuration file.

In the current version of the function, the shadow function is the last execution unit in the routing
chain, that is, if there are other rules that require routing, such as sharding, Apache ShardingSphere
will first route to a certain database according to the sharding rules, and then perform the shadow
routing decision process.

It determined that the execution of SQL satisfies the configuration of the shadow rule, the data routed
to the corresponding shadow database, and the production data remains unchanged.

7.6.4 Shadow Judgment Process

The Shadow DB performs shadow judgment on the executed SQL statements.

Shadow judgment supports two types of algorithms, users can choose one or combine them according
to actual business needs.

DML Statement

Support two type shadow algorithms.

The shadow judgment first judges whether there is an intersection between SQL related tables and con‐
figured shadow tables.

If there is an intersection, determine the shadow algorithm associated with the shadow table of the
intersection in turn，and any one of them was successful. SQL statement executed shadow DB.

If shadow tables have no intersection, or shadow algorithms are unsuccessful, SQL statement executed
production DB.

DDL Statement

Only support note shadow algorithm.

In the pressure testing scenarios, DDL statements are not need tested generally. It is mainly used when
initializing or modifying the shadow table in the shadow DB.

The shadow judgment first judges whether the executed SQL contains notes.

If contains notes, determine the note shadow algorithms in the shadow rule in turn, and any one of
them was successful. SQL statement executed shadow DB.

The executed SQL does not contain notes, or shadow algorithms are unsuccessful, SQL statement exe‐
cuted production DB.

7.6. Shadow 292



Apache ShardingSphere document, v5.1.1

7.6.5 Shadow Algorithm

Shadow algorithm details, please refer to List of built‐in shadow algorithms

7.6.6 Use Example

Scenario

Assume that the e‐commerce website wants to perform pressure testing on the order business,

the pressure testing related table t_order is a shadow table，the production data executed to the ds
production DB, and the pressure testing data executed to the database ds_shadow shadow DB.

Shadow DB configuration

The shadow configuration for example(YAML)：

data-sources:
shadow-data-source:

source-data-source-name: ds
shadow-data-source-name: ds-shadow

tables:
t_order:

data-source-names: shadow-data-source
shadow-algorithm-names:
- simple-hint-algorithm
- user-id-value-match-algorithm

shadow-algorithms:
simple-hint-algorithm:

type: SIMPLE_HINT
props:
foo: bar

user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

sql-parser:
sql-comment-parse-enabled: true

Note: If you use the Hint shadow algorithm, the parse SQL comment configuration item
sql-comment-parse-enabled: true need to be turned on. turned off by default. please refer
to SQL‐PARSER Configuration

7.6. Shadow 293

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/shadow
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/


Apache ShardingSphere document, v5.1.1

Shadow DB environment

• Create the shadow DB ds_shadow.

• Create shadow tables, tables structure must be consistent with the production environment. As‐
sume that the t_order table created in the shadow DB. Create table statement need to add SQL
comment /*foo:bar,.. .*/.

CREATE TABLE t_order (order_id INT(11) primary key, user_id int(11) not null, ...)
/*foo:bar,...*/

Execute to the shadow DB.

Note: If use the MySQL client for testing, the link needs to use the parameter -c, for example:

mysql> mysql -u root -h127.0.0.1 -P3306 -proot -c

Parameter description: keep the comment, send the comment to the server

Execute SQL containing annotations, for example:

SELECT * FROM table_name /*shadow:true,foo:bar*/;

Comment statement will be intercepted by the MySQL client if parameter -c not be used, for example:

SELECT * FROM table_name;

Affect test results.

Shadow algorithm example

1. Column shadow algorithm example

Assume that the t_order table contains a list of user_id to store the order user ID. The data of the
order created by the user whose user ID is 0 executed to shadow DB, other data executed to production
DB.

INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...)

No need to modify any SQL or code, only need to control the data of the testing to realize the pressure
testing.

Column Shadow algorithm configuration (YAML):

shadow-algorithms:
user-id-value-match-algorithm:

type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

7.6. Shadow 294



Apache ShardingSphere document, v5.1.1

Note: When the shadow table uses the column shadow algorithm, the same type of shadow operation
(INSERT, UPDATE, DELETE, SELECT) currently only supports a single column.

2. Hint shadow algorithm example

Assume that the t_order table does not contain columns that can matching. Executed SQL statement
need to add SQL note /*foo:bar,.. .*/

SELECT * FROM t_order WHERE order_id = xxx /*foo:bar,...*/

SQL executed to shadow DB, other data executed to production DB.

Note Shadow algorithm configuration (YAML):

shadow-algorithms:
simple-hint-algorithm:

type: SIMPLE_HINT
props:
foo: bar

3. Hybrid two shadow algorithm example

Assume that the pressure testing of the t_order gauge needs to cover the above two scenarios.

INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...);

SELECT * FROM t_order WHERE order_id = xxx /*foo:bar,...*/;

Both will be executed to shadow DB, other data executed to production DB.

2 type of shadow algorithm example (YAML):

shadow-algorithms:
user-id-value-match-algorithm:

type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

4. Default shadow algorithm example

Assume that the column shadow algorithm used for the t_order, all other shadow tables need to use
the note shadow algorithm.

INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...);

INSERT INTO t_xxx_1 (order_item_id, order_id, ...) VALUES (xxx..., xxx..., ...) /

7.6. Shadow 295



Apache ShardingSphere document, v5.1.1

*foo:bar,...*/;

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:bar,...*/;

SELECT * FROM t_xxx_3 WHERE order_id = xxx /*foo:bar,...*/;

Both will be executed to shadow DB, other data executed to production DB.

Default shadow algorithm configuration (YAML):

data-sources:
shadow-data-source:

source-data-source-name: ds
shadow-data-source-name: ds-shadow

tables:
t_order:

data-source-names: shadow-data-source
shadow-algorithm-names:
- simple-hint-algorithm
- user-id-value-match-algorithm

default-shadow-algorithm-name: simple-note-algorithm
shadow-algorithms:

simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

sql-parser:
sql-comment-parse-enabled: true

Note: The default shadow algorithm only supports Hint shadow algorithm. When using ensure that
the configuration items of props in the configuration file are less than or equal to those in the SQL
comment, And the specific configuration of the configuration file should same as the configuration
written in the SQL comment. The fewer configuration items in the configuration file, the looser the
matching conditions

simple-note-algorithm:
type: SIMPLE_HINT
props:

foo: bar
foo1: bar1

For example, the‘props’item have 2 configure, the following syntax can be used in SQL:

7.6. Shadow 296



Apache ShardingSphere document, v5.1.1

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:bar, foo1:bar1*/

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:bar, foo1:bar1, foo2:bar2, ...*/

simple-note-algorithm:
type: SIMPLE_HINT
props:

foo: bar

For example, the‘props’item have 1 configure, the following syntax can be used in SQL:

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:foo*/

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:foo, foo1:bar1, ...*/

7.7 Test

Apache ShardingSphere provides test engines for integration, module and performance.

7.7.1 Integration Test

Provide point to point test which connect real ShardingSphere and database instances.

They define SQLs in XML files, engine run for each database independently. All test engines designed
to modify the configuration files to execute all assertions without any Java code modification. It does
not depend on any third‐party environment, ShardingSphere‐Proxy and database used for testing are
provided by docker image.

7.7.2 Module Test

Provide module test engine for complex modules.

They define SQLs in XML files, engine run for each database independently too It includes SQL parser
and SQL rewriter modules.

7.7.3 Performance Test

Provide multiple performance test methods, includes Sysbench, JMH or TPCC and so on.

7.7. Test 297



Apache ShardingSphere document, v5.1.1

7.7.4 Sysbench Test

7.7.5 Integration Test

TheSQLparsingunit test covers both SQLplaceholder and literal dimension. Integration test canbe fur‐
ther divided into two dimensions of strategy and JDBC; the former one includes strategies as Sharding,
table Sharding, database Sharding, and readwrite‐splitting while the latter one includes Statement
and PreparedStatement.

Therefore, one SQL can drive 5 kinds of database parsing * 2 kinds of parameter transmission modes +
5 kinds of databases * 5 kinds of Sharding strategies * 2 kinds of JDBC operation modes = 60 test cases,
to enable ShardingSphere to achieve the pursuit of high quality.

Process

The Parameterized in JUnit will collect all test data, and pass to test method to assert one by one.
The process of handling test data is just like a leaking hourglass:

Configuration

• environment type

– /shardingsphere‐integration‐test‐suite/src/test/resources/env‐native.properties

– /shardingsphere‐integration‐test‐suite/src/test/resources/env/SQL-TYPE/dataset.xml

– /shardingsphere‐integration‐test‐suite/src/test/resources/env/SQL-TYPE/schema.xml

• test case type

– /shardingsphere‐integration‐test‐suite/src/test/resources/cases/SQL-TYPE/SQL-TYPE‐
integration‐test‐cases.xml

– /shardingsphere‐integration‐test‐suite/src/test/resources/cases/SQL-TYPE/dataset/FEATURE-TYPE/*.xml

• sql‐case

– /sharding‐sql‐test/src/main/resources/sql/sharding/SQL-TYPE/*.xml

Environment Configuration

Integration test depends on existed database environment, developer need to setup the configuration
file for corresponding database to test:

Firstly, setup configuration file /shardingsphere-integration-test-suite/src/test/
resources/env-native.properties, for example:

# the switch for PK, concurrent, column index testing and so on
it.run.additional.cases=false

7.7. Test 298



Apache ShardingSphere document, v5.1.1

# test scenarios, could define multiple rules
it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

# database type, could define multiple databases(H2,MySQL,Oracle,SQLServer,
PostgreSQL)
it.cluster.databases=MySQL,PostgreSQL

# MySQL configuration
it.mysql.host=127.0.0.1
it.mysql.port=13306
it.mysql.username=root
it.mysql.password=root

## PostgreSQL configuration
it.postgresql.host=db.psql
it.postgresql.port=5432
it.postgresql.username=postgres
it.postgresql.password=postgres

## SQLServer configuration
it.sqlserver.host=db.mssql
it.sqlserver.port=1433
it.sqlserver.username=sa
it.sqlserver.password=Jdbc1234

## Oracle configuration
it.oracle.host=db.oracle
it.oracle.port=1521
it.oracle.username=jdbc
it.oracle.password=jdbc

Secondly, setup configuration file /shardingsphere-integration-test-suite/src/test/
resources/env/SQL-TYPE/dataset.xml. Developer can set up metadata and expected data to
start the data initialization in dataset.xml. For example:

<dataset>
<metadata data-nodes="tbl.t_order_${0..9}">

<column name="order_id" type="numeric" />
<column name="user_id" type="numeric" />
<column name="status" type="varchar" />

</metadata>
<row data-node="tbl.t_order_0" values="1000, 10, init" />
<row data-node="tbl.t_order_1" values="1001, 10, init" />
<row data-node="tbl.t_order_2" values="1002, 10, init" />
<row data-node="tbl.t_order_3" values="1003, 10, init" />
<row data-node="tbl.t_order_4" values="1004, 10, init" />
<row data-node="tbl.t_order_5" values="1005, 10, init" />
<row data-node="tbl.t_order_6" values="1006, 10, init" />

7.7. Test 299



Apache ShardingSphere document, v5.1.1

<row data-node="tbl.t_order_7" values="1007, 10, init" />
<row data-node="tbl.t_order_8" values="1008, 10, init" />
<row data-node="tbl.t_order_9" values="1009, 10, init" />

</dataset>

Developer can customize DDL to create databases and tables in schema.xml.

Assertion Configuration

So far have confirmed what kind of sql execute in which environment in upon configura‐
tion, here define the data for assert. There are two kinds of config for assert, one is
at /shardingsphere-integration-test-suite/src/test/resources/cases/SQL-TYPE/
SQL-TYPE-integration-test-cases.xml. This file just like an index, defined the sql, parameters
and expected index position for execution. the SQL is the value for sql-case-id. For example:

<integration-test-cases>
<dml-test-case sql-case-id="insert_with_all_placeholders">

<assertion parameters="1:int, 1:int, insert:String" expected-data-file=
"insert_for_order_1.xml" />

<assertion parameters="2:int, 2:int, insert:String" expected-data-file=
"insert_for_order_2.xml" />

</dml-test-case>
</integration-test-cases>

Another kind of config for assert is the data, as known as the corresponding expected‐data‐file in
SQL‐TYPE‐integration‐test‐cases.xml, which is at /shardingsphere-integration-test-suite/
src/test/resources/cases/SQL-TYPE/dataset/FEATURE-TYPE/*.xml.
This file is very like the dataset.xml mentioned before, and the difference is that expected‐data‐file
contains some other assert data, such as the return value after a sql execution. For examples:

<dataset update-count="1">
<metadata data-nodes="db_${0..9}.t_order">

<column name="order_id" type="numeric" />
<column name="user_id" type="numeric" />
<column name="status" type="varchar" />

</metadata>
<row data-node="db_0.t_order" values="1000, 10, update" />
<row data-node="db_0.t_order" values="1001, 10, init" />
<row data-node="db_0.t_order" values="2000, 20, init" />
<row data-node="db_0.t_order" values="2001, 20, init" />

</dataset>

Util now, all config files are ready, just launch the corresponding test case is fine.With no need tomodify
any Java code, only set up some config files. This will reduce the difficulty for ShardingSphere testing.

7.7. Test 300



Apache ShardingSphere document, v5.1.1

Notice

1. If Oracle needs to be tested, please add Oracle driver dependencies to the pom.xml.

2. 10 splitting‐databases and 10 splitting‐tables are used in the integrated test to ensure the test data
is full, so it will take a relatively long time to run the test cases.

7.7.6 Performance Test

Provides result for each performance test tools.

Performance Test

Target

The performance of ShardingSphere‐JDBC, ShardingSphere‐Proxy and MySQL would be compared
here. INSERT & UPDATE & DELETE which regarded as a set of associated operation and SELECT which
focus on sharding optimization are used to evaluate performance for the basic scenarios (single route,
readwrite‐splitting & encrypt & sharding, full route). While another set of associated operation, IN‐
SERT & SELECT & DELETE, is used to evaluate performance for readwrite‐splitting. To achieve the
result better, these tests are performed with jmeter which based on a certain amount of data with 20
concurrent threads for 30 minutes, and one MySQL has been deployed on one machine, while the sce‐
nario of MySQL used for comparison is deployed on one machine with one instance.

Test Scenarios

Single Route

On the basis of one thousand data volume, four databases that are deployed on the same machine and
each contains 1024 tableswithid used for database sharding andk used for table sharding are designed
for this scenario, single route select sql statement is chosen here. While as a comparison, MySQL runs
with INSERT & UPDATE & DELETE statement and single route select sql statement on the basis of one
thousand data volume.

Readwrite-splitting

One primary database and one replica database, which are deployed on different machines, are de‐
signed for this scenario based on ten thousand data volume. While as a comparison, MySQL runs with
INSERT & SELECT & DELETE sql statement on the basis of ten thousand data volume.

7.7. Test 301



Apache ShardingSphere document, v5.1.1

Readwrite-splitting & Encrypt & Sharding

On the basis of one thousand data volume, four databases that are deployed on different machines and
each contains 1024 tables with id used for database sharding, k used for table sharding, c encrypted
with aes and pad encrypted with md5 are designed for this scenario, single route select sql statement
is chosen here. While as a comparison, MySQL runs with INSERT & UPDATE & DELETE statement and
single route select sql statement on the basis of one thousand data volume.

Full Route

On the basis of one thousand data volume, four databases that are deployed on different machines and
each contains one table are designed for this scenario, field id is used for database sharding and k is
used for table sharding, full route select sql statement is chosen here. While as a comparison, MySQL
runs with INSERT & UPDATE & DELETE statement and full route select sql statement on the basis of
one thousand data volume.

Testing Environment

Table Structure of Database

The structure of table here refer to sbtest in sysbench.

CREATE TABLE `tbl` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`k` int(11) NOT NULL DEFAULT 0,
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`)

);

7.7. Test 302



Apache ShardingSphere document, v5.1.1

Test Scenarios Configuration

The same configurations are used for ShardingSphere‐JDBC and ShardingSphere‐Proxy, while MySQL
with one database connected is designed for comparision. The details for these scenarios are shown as
follows.

Single Route Configuration

schemaName: sharding_db

dataSources:
ds_0:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !SHARDING

tables:
tbl:

7.7. Test 303



Apache ShardingSphere document, v5.1.1

actualDataNodes: ds_${0..3}.tbl${0..1023}
tableStrategy:
standard:

shardingColumn: k
shardingAlgorithmName: tbl_table_inline

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
inline:
shardingColumn: id
shardingAlgorithmName: default_db_inline

defaultTableStrategy:
none:

shardingAlgorithms:
tbl_table_inline:
type: INLINE
props:
algorithm-expression: tbl${k % 1024}

default_db_inline:
type: INLINE
props:
algorithm-expression: ds_${id % 4}

keyGenerators:
snowflake:
type: SNOWFLAKE

Readwrite-splitting Configuration

schemaName: sharding_db

dataSources:
primary_ds:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_0:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000

7.7. Test 304



Apache ShardingSphere document, v5.1.1

maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !READWRITE_SPLITTING

dataSources:
readwrite_ds:
type: Static
props:
write-data-source-name: primary_ds
read-data-source-names: replica_ds_0

Readwrite-splitting & Encrypt & Sharding Configuration

schemaName: sharding_db

dataSources:
primary_ds_0:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_0:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

primary_ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000

7.7. Test 305



Apache ShardingSphere document, v5.1.1

maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

primary_ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

primary_ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !SHARDING

tables:
tbl:
actualDataNodes: readwrite_ds_${0..3}.tbl${0..1023}
databaseStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: tbl_database_inline

tableStrategy:
standard:

shardingColumn: k
shardingAlgorithmName: tbl_table_inline

keyGenerateStrategy:

7.7. Test 306



Apache ShardingSphere document, v5.1.1

column: id
keyGeneratorName: snowflake

bindingTables:
- tbl

defaultDataSourceName: primary_ds_1
defaultTableStrategy:
none:

shardingAlgorithms:
tbl_database_inline:
type: INLINE
props:

algorithm-expression: readwrite_ds_${id % 4}
tbl_table_inline:
type: INLINE
props:

algorithm-expression: tbl${k % 1024}
keyGenerators:

snowflake:
type: SNOWFLAKE

- !READWRITE_SPLITTING
dataSources:

readwrite_ds_0:
type: Static
props:
write-data-source-name: primary_ds_0
read-data-source-names: replica_ds_0

loadBalancerName: round_robin
readwrite_ds_1:
type: Static
props:

write-data-source-name: primary_ds_1
read-data-source-names: replica_ds_1

loadBalancerName: round_robin
readwrite_ds_2:
type: Static
props:

write-data-source-name: primary_ds_2
read-data-source-names: replica_ds_2

loadBalancerName: round_robin
readwrite_ds_3:
type: Static
props:

write-data-source-name: primary_ds_3
read-data-source-names: replica_ds_3

loadBalancerName: round_robin
loadBalancers:

round_robin:
type: ROUND_ROBIN

7.7. Test 307



Apache ShardingSphere document, v5.1.1

- !ENCRYPT:
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

md5_encryptor:
type: MD5

tables:
sbtest:
columns:
c:

plainColumn: c_plain
cipherColumn: c_cipher
encryptorName: aes_encryptor

pad:
cipherColumn: pad_cipher
encryptorName: md5_encryptor

Full Route Configuration

schemaName: sharding_db

dataSources:
ds_0:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000

7.7. Test 308



Apache ShardingSphere document, v5.1.1

maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !SHARDING

tables:
tbl:
actualDataNodes: ds_${0..3}.tbl1
tableStrategy:
standard:

shardingColumn: k
shardingAlgorithmName: tbl_table_inline

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:
shardingColumn: id
shardingAlgorithmName: default_database_inline

defaultTableStrategy:
none:

shardingAlgorithms:
default_database_inline:
type: INLINE
props:
algorithm-expression: ds_${id % 4}

tbl_table_inline:
type: INLINE
props:
algorithm-expression: tbl1

keyGenerators:
snowflake:
type: SNOWFLAKE

7.7. Test 309



Apache ShardingSphere document, v5.1.1

Test Result Verification

SQL Statement

INSERT+UPDATE+DELETE sql statements:
INSERT INTO tbl(k, c, pad) VALUES(1, '###-###-###', '###-###');
UPDATE tbl SET c='####-####-####', pad='####-####' WHERE id=?;
DELETE FROM tbl WHERE id=?

SELECT sql statement for full route:
SELECT max(id) FROM tbl WHERE id%4=1

SELECT sql statement for single route:
SELECT id, k FROM tbl ignore index(`PRIMARY`) WHERE id=1 AND k=1

INSERT+SELECT+DELETE sql statements：
INSERT INTO tbl1(k, c, pad) VALUES(1, '###-###-###', '###-###');
SELECT count(id) FROM tbl1;
SELECT max(id) FROM tbl1 ignore index(`PRIMARY`);
DELETE FROM tbl1 WHERE id=?

Jmeter Class

Consider the implementation of shardingsphere‐benchmark Notes: the notes in shardingsphere‐
benchmark/README.md should be taken attention to

Compile & Build

git clone https://github.com/apache/shardingsphere-benchmark.git
cd shardingsphere-benchmark/shardingsphere-benchmark
mvn clean install

Perform Test

cp target/shardingsphere-benchmark-1.0-SNAPSHOT-jar-with-dependencies.jar apache-
jmeter-4.0/lib/ext
jmeter –n –t test_plan/test.jmx
test.jmx example:https://github.com/apache/shardingsphere-benchmark/tree/master/
report/script/test_plan/test.jmx

7.7. Test 310

https://github.com/apache/shardingsphere-benchmark/tree/master/shardingsphere-benchmark


Apache ShardingSphere document, v5.1.1

Process Result Data

Make sure the location of result.jtl file is correct.

sh shardingsphere-benchmark/report/script/gen_report.sh

Display of Historical Performance Test Data

In progress, please wait.

Sysbench Test

At least 5 machines are required:

Jenkins * 1: ${host-jenkins}
Sysbench * 1: ${host-sysbench}
ShardingSphere-Proxy * 1: ${host-proxy}
MySQL Server * 2: ${host-mysql-1}, ${host-mysql-2}

The hardware standards of Jenkins and Sysbench machines can appropriately lower.

Software Environment

Jenkins: The latest version
Sysbench: 1.0.20
ShardingSphere-Proxy: package from master branch
MySQL Server: 5.7.28

Test Program

According to the above hardware environment, the configuration parameters are as follows, and the
parameters should be adjusted according to the changes in the hardware environment.

ShardingSphere-Proxy Configuration

Proxy runs on ${host-proxy}
Version includes: Master branch, 4.1.1, 3.0.0
Scenarios: config-sharding, config-replica-query, config-sharding-replica-query,
config-encrypt
Configurations: Refer to Appendix 1

7.7. Test 311



Apache ShardingSphere document, v5.1.1

MySQL Server Configuration

Two MySQL instances runs on ${host-mysql-1} and ${host-mysql-2}machines respectively.

Need to create the 'sbtest' database on both instances in advance.
Set parameter: max_prepared_stmt_count = 500000
Set parameter: max_connections = 2000

Jenkins Configuration

Create 6 Jenkins tasks, and each task calls the next task in turn: (runs on the ${host-jenkins}ma‐
chine).

1. sysbench_install: Pull the latest code, package the Proxy compression package

The following tasks are run on a separate Sysbench pressure generating machine via Jenkins slave:
(runs on the {host-sysbench}machine)

2. sysbench_sharding:
a. Sharding scenarios for remote deployment of various versions of Proxy
b. Execute Sysbench command to pressure test Proxy
c. Execute Sysbench command to pressure test MySQL Server
d. Save Sysbench stress test results
e. Use drawing scripts to generate performance curves and tables (see Appendix 2

for drawing scripts)
3. sysbench_master_slave:

a. Read and write separation scenarios for remote deployment of various versions
of Proxy

b. Execute Sysbench command to pressure test Proxy
c. Execute Sysbench command to pressure test MySQL Server
d. Save Sysbench stress test results
e. Use drawing scripts to generate performance curves and tables

4. sysbench_sharding_master_slave:
a. Remote deployment of sharding + read-write splitting scenarios of various

versions of Proxy
b. Execute Sysbench command to pressure test Proxy
c. Execute Sysbench command to pressure test MySQL Server
d. Save Sysbench stress test results
e. Use drawing scripts to generate performance curves and tables

5. sysbench_encrypt:
a. Encryption scenarios for remote deployment of various versions of Proxy
b. Execute Sysbench command to pressure test Proxy
c. Execute Sysbench command to pressure test MySQL Server
d. Save Sysbench stress test results
e. Use drawing scripts to generate performance curves and tables

6. sysbench_result_aggregation:
a. Re-execute the drawing script for the pressure test results of all tasks

7.7. Test 312



Apache ShardingSphere document, v5.1.1

python3 plot_graph.py sharding
python3 plot_graph.py ms
python3 plot_graph.py sharding_ms
python3 plot_graph.py encrypt

b. Use Jenkins "Publish HTML reports" plugin to integrate all images into one
HTML page

Testing Process

Take sysbench sharding as an example (other scenarios are similar)

Enter the Sysbench pressure test result directory

cd /home/jenkins/sysbench_res/sharding

Create the folder for this build

mkdir $BUILD_NUMBER

Take the last 14 builds and save them in a hidden file

ls -v | tail -n14 > .build_number.txt

Deployment and stress testing

Step 1: Execute remote deployment script to deploy Proxy to {host-proxy}

./deploy_sharding.sh

#!/bin/sh
rm -fr apache-shardingsphere-*-shardingsphere-proxy-bin
tar zxvf apache-shardingsphere-*-shardingsphere-proxy-bin.tar.gz
sh stop_proxy.sh
cp -f prepared_conf/mysql-connector-java-5.1.47.jar apache-shardingsphere-*-
shardingsphere-proxy-bin/lib
cp -f prepared_conf/start.sh apache-shardingsphere-*-shardingsphere-proxy-bin/bin
cp -f prepared_conf/config-sharding.yaml prepared_conf/server.yaml apache-
shardingsphere-*-shardingsphere-proxy-bin/conf
./apache-shardingsphere-*-shardingsphere-proxy-bin/bin/start.sh
sleep 30

Step 2: Execute the sysbench script

7.7. Test 313



Apache ShardingSphere document, v5.1.1

# master
cd /home/jenkins/sysbench_res/sharding
cd $BUILD_NUMBER
sysbench oltp_read_only --mysql-host=${host-proxy} --mysql-port=3307 --mysql-
user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=10 --time=3600 --threads=10 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --rand-type=uniform --range_selects=off -
-auto_inc=off cleanup
sysbench oltp_read_only --mysql-host=${host-proxy} --mysql-port=3307 --mysql-
user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=10 --time=3600 --threads=10 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --rand-type=uniform --range_selects=off -
-auto_inc=off prepare
sysbench oltp_read_only --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run
sysbench oltp_read_only --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run | tee oltp_read_only.master.txt
sysbench oltp_point_select --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run | tee oltp_point_select.master.txt
sysbench oltp_read_write --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run | tee oltp_read_write.master.txt
sysbench oltp_write_only --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run | tee oltp_write_only.master.txt
sysbench oltp_update_index --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run | tee oltp_update_index.master.txt
sysbench oltp_update_non_index --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run | tee oltp_update_non_index.master.txt

7.7. Test 314



Apache ShardingSphere document, v5.1.1

sysbench oltp_delete --mysql-host=${host-proxy} --mysql-port=3307 --
mysql-user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=30 --time=180 --threads=256 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --range_selects=off --rand-type=uniform
--auto_inc=off run | tee oltp_delete.master.txt
sysbench oltp_read_only --mysql-host=${host-proxy} --mysql-port=3307 --mysql-
user=root --mysql-password='root' --mysql-db=sbtest --tables=10 --table-
size=1000000 --report-interval=10 --time=3600 --threads=10 --max-requests=0 --
percentile=99 --mysql-ignore-errors="all" --rand-type=uniform --range_selects=off -
-auto_inc=off cleanup

4.1.1, 3.0.0, three scenarios of direct connection to MySQL, repeat steps 1 and 2 above.

Execute stop proxy script

./stop_proxy.sh

#!/bin/sh
./3.0.0_sharding-proxy/bin/stop.sh
./4.1.1_apache-shardingsphere-4.1.1-sharding-proxy-bin/bin/stop.sh
./apache-shardingsphere-*-shardingsphere-proxy-bin/bin/stop.sh

Generate pressure test curve picture

# Generate graph
cd /home/jenkins/sysbench_res/
python3 plot_graph.py sharding

Use Jenkins Publish HTML reports plugin to publish pictures to the page

HTML directory to archive: /home/jenkins/sysbench_res/graph/
Index page[s]: 01_sharding.html
Report title: HTML Report

sysbench test case describe

oltp_point_select

Prepare Statement (ID = 1): SELECT c FROM sbtest1 WHERE id=?
Execute Statement: ID = 1

7.7. Test 315



Apache ShardingSphere document, v5.1.1

oltp_read_only

Prepare Statement (ID = 1): 'COMMIT'
Prepare Statement (ID = 2): SELECT c FROM sbtest1 WHERE id=?
Statement: 'BEGIN'
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 1

oltp_write_only

Prepare Statement (ID = 1): 'COMMIT'
Prepare Statement (ID = 2): UPDATE sbtest1 SET k=k+1 WHERE id=?
Prepare Statement (ID = 3): UPDATE sbtest6 SET c=? WHERE id=?
Prepare Statement (ID = 4): DELETE FROM sbtest1 WHERE id=?
Prepare Statement (ID = 5): INSERT INTO sbtest1 (id, k, c, pad) VALUES (?, ?, ?, ?)
Statement: 'BEGIN'
Execute Statement: ID = 2
Execute Statement: ID = 3
Execute Statement: ID = 4
Execute Statement: ID = 5
Execute Statement: ID = 1

oltp_read_write

Prepare Statement (ID = 1): 'COMMIT'
Prepare Statement (ID = 2): SELECT c FROM sbtest1 WHERE id=?
Prepare Statement (ID = 3): UPDATE sbtest3 SET k=k+1 WHERE id=?
Prepare Statement (ID = 4): UPDATE sbtest10 SET c=? WHERE id=?
Prepare Statement (ID = 5): DELETE FROM sbtest8 WHERE id=?
Prepare Statement (ID = 6): INSERT INTO sbtest8 (id, k, c, pad) VALUES (?, ?, ?, ?)
Statement: 'BEGIN'
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2

7.7. Test 316



Apache ShardingSphere document, v5.1.1

Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 2
Execute Statement: ID = 3
Execute Statement: ID = 4
Execute Statement: ID = 5
Execute Statement: ID = 6
Execute Statement: ID = 1

oltp_update_index

Prepare Statement (ID = 1): UPDATE sbtest1 SET k=k+1 WHERE id=?
Execute Statement: ID = 1

oltp_update_non_index

Prepare Statement (ID = 1): UPDATE sbtest1 SET c=? WHERE id=?
Execute Statement: ID = 1

oltp_delete

Prepare Statement (ID = 1): DELETE FROM sbtest1 WHERE id=?
Execute Statement: ID = 1

Appendix 1

Master branch version

server.yaml

rules:
-!AUTHORITY

users:
- root@%:root
- sharding@:sharding

provider:
type: ALL_PRIVILEGES_PERMITTED

props:
max-connections-size-per-query: 1
kernel-executor-size: 16 # Infinite by default.

7.7. Test 317



Apache ShardingSphere document, v5.1.1

proxy-frontend-flush-threshold: 128 # The default value is 128.
proxy-hint-enabled: false
sql-show: false
check-table-metadata-enabled: false
show-process-list-enabled: false
proxy-backend-query-fetch-size: -1
check-duplicate-table-enabled: false
proxy-frontend-executor-size: 0
proxy-backend-executor-suitable: OLAP
proxy-frontend-max-connections: 0
sql-federation-enabled: false

config‐sharding.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256
minPoolSize: 256

ds_1:
url: jdbc:mysql://${host-mysql-2}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256
minPoolSize: 256

rules:
- !SHARDING

tables:
sbtest1:
actualDataNodes: ds_${0..1}.sbtest1_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_1

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest2:
actualDataNodes: ds_${0..1}.sbtest2_${0..99}

7.7. Test 318



Apache ShardingSphere document, v5.1.1

tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_2

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest3:
actualDataNodes: ds_${0..1}.sbtest3_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_3

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest4:
actualDataNodes: ds_${0..1}.sbtest4_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_4

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest5:
actualDataNodes: ds_${0..1}.sbtest5_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_5

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest6:
actualDataNodes: ds_${0..1}.sbtest6_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_6

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest7:
actualDataNodes: ds_${0..1}.sbtest7_${0..99}
tableStrategy:
standard:

shardingColumn: id

7.7. Test 319



Apache ShardingSphere document, v5.1.1

shardingAlgorithmName: table_inline_7
keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest8:
actualDataNodes: ds_${0..1}.sbtest8_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_8

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest9:
actualDataNodes: ds_${0..1}.sbtest9_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_9

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest10:
actualDataNodes: ds_${0..1}.sbtest10_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_10

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:
shardingColumn: id
shardingAlgorithmName: database_inline

shardingAlgorithms:
database_inline:
type: INLINE
props:
algorithm-expression: ds_${id % 2}

table_inline_1:
type: INLINE
props:
algorithm-expression: sbtest1_${id % 100}

table_inline_2:
type: INLINE
props:
algorithm-expression: sbtest2_${id % 100}

7.7. Test 320



Apache ShardingSphere document, v5.1.1

table_inline_3:
type: INLINE
props:
algorithm-expression: sbtest3_${id % 100}

table_inline_4:
type: INLINE
props:
algorithm-expression: sbtest4_${id % 100}

table_inline_5:
type: INLINE
props:
algorithm-expression: sbtest5_${id % 100}

table_inline_6:
type: INLINE
props:
algorithm-expression: sbtest6_${id % 100}

table_inline_7:
type: INLINE
props:
algorithm-expression: sbtest7_${id % 100}

table_inline_8:
type: INLINE
props:
algorithm-expression: sbtest8_${id % 100}

table_inline_9:
type: INLINE
props:
algorithm-expression: sbtest9_${id % 100}

table_inline_10:
type: INLINE
props:
algorithm-expression: sbtest10_${id % 100}

keyGenerators:
snowflake:
type: SNOWFLAKE

config‐readwrite‐splitting.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 128

7.7. Test 321



Apache ShardingSphere document, v5.1.1

minPoolSize: 128
rules:
- !READWRITE_SPLITTING

dataSources:
readwrite_ds:
primaryDataSourceName: ds_0
replicaDataSourceNames:
- ds_0
- ds_0

config‐shadow.yaml

schemaName: sbtest
dataSources:
primary_ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256
minPoolSize: 256

primary_ds_1:
url: jdbc:mysql://${host-mysql-2}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256
minPoolSize: 256

rules:
- !SHARDING

tables:
sbtest1:
actualDataNodes: ds_${0..1}.sbtest1_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_1

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest2:
actualDataNodes: ds_${0..1}.sbtest2_${0..99}
tableStrategy:
standard:

7.7. Test 322



Apache ShardingSphere document, v5.1.1

shardingColumn: id
shardingAlgorithmName: table_inline_2

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest3:
actualDataNodes: ds_${0..1}.sbtest3_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_3

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest4:
actualDataNodes: ds_${0..1}.sbtest4_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_4

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest5:
actualDataNodes: ds_${0..1}.sbtest5_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_5

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest6:
actualDataNodes: ds_${0..1}.sbtest6_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_6

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest7:
actualDataNodes: ds_${0..1}.sbtest7_${0..99}
tableStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: table_inline_7

keyGenerateStrategy:

7.7. Test 323



Apache ShardingSphere document, v5.1.1

column: id
keyGeneratorName: snowflake

sbtest8:
actualDataNodes: ds_${0..1}.sbtest8_${0..99}
tableStrategy:

standard:
shardingColumn: id
shardingAlgorithmName: table_inline_8

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest9:
actualDataNodes: ds_${0..1}.sbtest9_${0..99}
tableStrategy:

standard:
shardingColumn: id
shardingAlgorithmName: table_inline_9

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

sbtest10:
actualDataNodes: ds_${0..1}.sbtest10_${0..99}
tableStrategy:

standard:
shardingColumn: id
shardingAlgorithmName: table_inline_10

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:
shardingColumn: id
shardingAlgorithmName: database_inline

shardingAlgorithms:
database_inline:
type: INLINE
props:

algorithm-expression: ds_${id % 2}
table_inline_1:
type: INLINE
props:

algorithm-expression: sbtest1_${id % 100}
table_inline_2:
type: INLINE
props:

algorithm-expression: sbtest2_${id % 100}
table_inline_3:

7.7. Test 324



Apache ShardingSphere document, v5.1.1

type: INLINE
props:
algorithm-expression: sbtest3_${id % 100}

table_inline_4:
type: INLINE
props:
algorithm-expression: sbtest4_${id % 100}

table_inline_5:
type: INLINE
props:
algorithm-expression: sbtest5_${id % 100}

table_inline_6:
type: INLINE
props:
algorithm-expression: sbtest6_${id % 100}

table_inline_7:
type: INLINE
props:
algorithm-expression: sbtest7_${id % 100}

table_inline_8:
type: INLINE
props:
algorithm-expression: sbtest8_${id % 100}

table_inline_9:
type: INLINE
props:
algorithm-expression: sbtest9_${id % 100}

table_inline_10:
type: INLINE
props:
algorithm-expression: sbtest10_${id % 100}

keyGenerators:
snowflake:
type: SNOWFLAKE

- !READWRITE_SPLITTING
dataSources:

ds_0:
primaryDataSourceName: primary_ds_0
replicaDataSourceNames:
- primary_ds_0
- primary_ds_0

ds_1:
name: ds_1
primaryDataSourceName: primary_ds_1
replicaDataSourceNames:
- primary_ds_1
- primary_ds_1

7.7. Test 325



Apache ShardingSphere document, v5.1.1

config‐encrypt.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256
minPoolSize: 256

rules:
- !ENCRYPT

encryptors:
md5_encryptor:
type: MD5

tables:
sbtest1:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest2:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest3:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest4:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest5:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest6:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

7.7. Test 326



Apache ShardingSphere document, v5.1.1

sbtest7:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest8:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest9:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

sbtest10:
columns:
pad:

cipherColumn: pad
encryptorName: md5_encryptor

config‐database‐discovery.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:postgresql://127.0.0.1:5432/demo_primary_ds
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

ds_1:
url: jdbc:postgresql://127.0.0.1:5432/demo_replica_ds_0
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

ds_2:
url: jdbc:postgresql://127.0.0.1:5432/demo_replica_ds_1
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000

7.7. Test 327



Apache ShardingSphere document, v5.1.1

idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1

rules:
- !DB_DISCOVERY

dataSources:
readwrite_ds:
dataSourceNames:
- ds_0
- ds_1
- ds_2

discoveryHeartbeatName: mgr-heartbeat
discoveryTypeName: mgr

discoveryHeartbeats:
mgr-heartbeat:
props:

keep-alive-cron: '0/5 * * * * ?'
discoveryTypes:

mgr:
type: MGR
props:
group-name: 92504d5b-6dec-11e8-91ea-246e9612aaf1

4.1.1 version

server.yaml

authentication:
users:

root:
password: root

sharding:
password: sharding
authorizedSchemas: sharding_db

props:
max.connections.size.per.query: 10
acceptor.size: 256 # The default value is available processors count * 2.
executor.size: 128 # Infinite by default.
proxy.frontend.flush.threshold: 128 # The default value is 128.

# LOCAL: Proxy will run with LOCAL transaction.
# XA: Proxy will run with XA transaction.
# BASE: Proxy will run with B.A.S.E transaction.

proxy.transaction.type: LOCAL
proxy.opentracing.enabled: false
proxy.hint.enabled: false
query.with.cipher.column: true

7.7. Test 328



Apache ShardingSphere document, v5.1.1

sql.show: false
allow.range.query.with.inline.sharding: false

config‐sharding.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256

ds_1:
url: jdbc:mysql://${host-mysql-2}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256

shardingRule:
tables:

sbtest1:
actualDataNodes: ds_${0..1}.sbtest1_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest1_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest2:
actualDataNodes: ds_${0..1}.sbtest2_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest2_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest3:
actualDataNodes: ds_${0..1}.sbtest3_${0..99}
tableStrategy:
inline:

shardingColumn: id

7.7. Test 329



Apache ShardingSphere document, v5.1.1

algorithmExpression: sbtest3_${id % 100}
keyGenerator:
type: SNOWFLAKE
column: id

sbtest4:
actualDataNodes: ds_${0..1}.sbtest4_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest4_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest5:
actualDataNodes: ds_${0..1}.sbtest5_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest5_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest6:
actualDataNodes: ds_${0..1}.sbtest6_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest6_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest7:
actualDataNodes: ds_${0..1}.sbtest7_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest7_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest8:
actualDataNodes: ds_${0..1}.sbtest8_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest8_${id % 100}

keyGenerator:
type: SNOWFLAKE

7.7. Test 330



Apache ShardingSphere document, v5.1.1

column: id
sbtest9:
actualDataNodes: ds_${0..1}.sbtest9_${0..99}
tableStrategy:

inline:
shardingColumn: id
algorithmExpression: sbtest9_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest10:
actualDataNodes: ds_${0..1}.sbtest10_${0..99}
tableStrategy:

inline:
shardingColumn: id
algorithmExpression: sbtest10_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

defaultDatabaseStrategy:
inline:
shardingColumn: id
algorithmExpression: ds_${id % 2}

config‐master_slave.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256

masterSlaveRule:
name: ms_ds
masterDataSourceName: ds_0
slaveDataSourceNames:

- ds_0
- ds_0

config‐sharding‐master_slave.yaml

schemaName: sbtest
dataSources:
primary_ds_0:

7.7. Test 331



Apache ShardingSphere document, v5.1.1

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256

primary_ds_1:
url: jdbc:mysql://${host-mysql-2}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256

shardingRule:
tables:

sbtest1:
actualDataNodes: ds_${0..1}.sbtest1_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest1_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest2:
actualDataNodes: ds_${0..1}.sbtest2_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest2_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest3:
actualDataNodes: ds_${0..1}.sbtest3_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest3_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest4:
actualDataNodes: ds_${0..1}.sbtest4_${0..99}
tableStrategy:
inline:

7.7. Test 332



Apache ShardingSphere document, v5.1.1

shardingColumn: id
algorithmExpression: sbtest4_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest5:
actualDataNodes: ds_${0..1}.sbtest5_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest5_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest6:
actualDataNodes: ds_${0..1}.sbtest6_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest6_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest7:
actualDataNodes: ds_${0..1}.sbtest7_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest7_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest8:
actualDataNodes: ds_${0..1}.sbtest8_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest8_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

sbtest9:
actualDataNodes: ds_${0..1}.sbtest9_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest9_${id % 100}

keyGenerator:

7.7. Test 333



Apache ShardingSphere document, v5.1.1

type: SNOWFLAKE
column: id

sbtest10:
actualDataNodes: ds_${0..1}.sbtest10_${0..99}
tableStrategy:

inline:
shardingColumn: id
algorithmExpression: sbtest10_${id % 100}

keyGenerator:
type: SNOWFLAKE
column: id

defaultDatabaseStrategy:
inline:
shardingColumn: id
algorithmExpression: ds_${id % 2}

masterSlaveRules:
ds_0:
masterDataSourceName: primary_ds_0
slaveDataSourceNames: [primary_ds_0, primary_ds_0]
loadBalanceAlgorithmType: ROUND_ROBIN

ds_1:
masterDataSourceName: primary_ds_1
slaveDataSourceNames: [primary_ds_1, primary_ds_1]
loadBalanceAlgorithmType: ROUND_ROBIN

config‐encrypt.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 256

encryptRule:
encryptors:

encryptor_md5:
type: md5

tables:
sbtest1:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest2:

7.7. Test 334



Apache ShardingSphere document, v5.1.1

columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest3:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest4:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest5:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest6:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest7:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest8:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest9:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

sbtest10:
columns:
pad:

cipherColumn: pad
encryptor: encryptor_md5

7.7. Test 335



Apache ShardingSphere document, v5.1.1

3.0.0 version

server.yaml

authentication:
username: root
password: root

props:
max.connections.size.per.query: 10
acceptor.size: 256 # The default value is available processors count * 2.
executor.size: 128 # Infinite by default.
proxy.frontend.flush.threshold: 128 # The default value is 128.

# LOCAL: Proxy will run with LOCAL transaction.
# XA: Proxy will run with XA transaction.
# BASE: Proxy will run with B.A.S.E transaction.

proxy.transaction.type: LOCAL
proxy.opentracing.enabled: false
sql.show: false

config‐sharding.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
autoCommit: true
connectionTimeout: 30000
idleTimeout: 60000
maxLifetime: 1800000
maximumPoolSize: 256

ds_1:
url: jdbc:mysql://${host-mysql-2}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
autoCommit: true
connectionTimeout: 30000
idleTimeout: 60000
maxLifetime: 1800000
maximumPoolSize: 256

shardingRule:
tables:

sbtest1:
actualDataNodes: ds_${0..1}.sbtest1_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest1_${id % 100}

7.7. Test 336



Apache ShardingSphere document, v5.1.1

sbtest2:
actualDataNodes: ds_${0..1}.sbtest2_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest2_${id % 100}

sbtest3:
actualDataNodes: ds_${0..1}.sbtest3_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest3_${id % 100}

sbtest4:
actualDataNodes: ds_${0..1}.sbtest4_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest4_${id % 100}

sbtest5:
actualDataNodes: ds_${0..1}.sbtest5_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest5_${id % 100}

sbtest6:
actualDataNodes: ds_${0..1}.sbtest6_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest6_${id % 100}

sbtest7:
actualDataNodes: ds_${0..1}.sbtest7_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest7_${id % 100}

sbtest8:
actualDataNodes: ds_${0..1}.sbtest8_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest8_${id % 100}

sbtest9:
actualDataNodes: ds_${0..1}.sbtest9_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest9_${id % 100}

7.7. Test 337



Apache ShardingSphere document, v5.1.1

sbtest10:
actualDataNodes: ds_${0..1}.sbtest10_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest10_${id % 100}

defaultDatabaseStrategy:
inline:
shardingColumn: id
algorithmExpression: ds_${id % 2}

config‐master_slave.yaml

schemaName: sbtest
dataSources:
ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
autoCommit: true
connectionTimeout: 30000
idleTimeout: 60000
maxLifetime: 1800000
maximumPoolSize: 256

masterSlaveRule:
name: ms_ds
masterDataSourceName: ds_0
slaveDataSourceNames:

- ds_0
- ds_0

config‐sharding‐master_slave.yaml

schemaName: sbtest
dataSources:
primary_ds_0:

url: jdbc:mysql://${host-mysql-1}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:
autoCommit: true
connectionTimeout: 30000
idleTimeout: 60000
maxLifetime: 1800000
maximumPoolSize: 256

primary_ds_1:
url: jdbc:mysql://${host-mysql-2}:3306/sbtest?serverTimezone=UTC&useSSL=false
username: root
password:

7.7. Test 338



Apache ShardingSphere document, v5.1.1

autoCommit: true
connectionTimeout: 30000
idleTimeout: 60000
maxLifetime: 1800000
maximumPoolSize: 256

shardingRule:
tables:

sbtest1:
actualDataNodes: ds_${0..1}.sbtest1_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest1_${id % 100}

sbtest2:
actualDataNodes: ds_${0..1}.sbtest2_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest2_${id % 100}

sbtest3:
actualDataNodes: ds_${0..1}.sbtest3_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest3_${id % 100}

sbtest4:
actualDataNodes: ds_${0..1}.sbtest4_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest4_${id % 100}

sbtest5:
actualDataNodes: ds_${0..1}.sbtest5_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest5_${id % 100}

sbtest6:
actualDataNodes: ds_${0..1}.sbtest6_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest6_${id % 100}

sbtest7:
actualDataNodes: ds_${0..1}.sbtest7_${0..99}
tableStrategy:
inline:

shardingColumn: id

7.7. Test 339



Apache ShardingSphere document, v5.1.1

algorithmExpression: sbtest7_${id % 100}
sbtest8:
actualDataNodes: ds_${0..1}.sbtest8_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest8_${id % 100}

sbtest9:
actualDataNodes: ds_${0..1}.sbtest9_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest9_${id % 100}

sbtest10:
actualDataNodes: ds_${0..1}.sbtest10_${0..99}
tableStrategy:
inline:

shardingColumn: id
algorithmExpression: sbtest10_${id % 100}

defaultDatabaseStrategy:
inline:
shardingColumn: id
algorithmExpression: ds_${id % 2}

masterSlaveRules:
ds_0:
masterDataSourceName: primary_ds_0
slaveDataSourceNames: [primary_ds_0, primary_ds_0]
loadBalanceAlgorithmType: ROUND_ROBIN

ds_1:
masterDataSourceName: primary_ds_1
slaveDataSourceNames: [primary_ds_1, primary_ds_1]
loadBalanceAlgorithmType: ROUND_ROBIN

config‐encrypt.yaml

Unsupported

Appendix 2

plot_graph.py

import sys
import matplotlib.pyplot as plt
import numpy as np
def generate_graph(path, case_name):

dataset = {
'build_num': [],

7.7. Test 340



Apache ShardingSphere document, v5.1.1

'master_version': [],
'master_xa': [],
'4.1.1_version': [],
'3.0.0_version': [],
'mysql_server': []

}
with open(path + '/.build_number.txt') as builds:

for line in builds:
dataset['build_num'].append(int(line))

generate_data(path, case_name, dataset)
print(dataset)
fig, ax = plt.subplots()
ax.grid(True)
plt.title(case_name)
data = [dataset['master_version'][-7:], dataset['master_xa'][-7:], dataset['4.

1.1_version'][-7:], dataset['3.0.0_version'][-7:], dataset['mysql_server'][-7:]]
columns = dataset['build_num'][-7:]
rows = ['master', 'xa', '4.1.1', '3.0.0', 'mysql']
rcolors = plt.cm.BuPu(np.full(len(rows), 0.1))
ccolors = plt.cm.BuPu(np.full(len(columns), 0.1))
the_table = plt.table(cellText=data, rowLabels=rows, colLabels=columns,

rowColours=rcolors, colColours=ccolors,
loc='bottom', bbox=[0.0, -0.50, 1, .28])

plt.subplots_adjust(left=0.15, bottom=0.3, right=0.98)
plt.xticks(range(14))
ax.set_xticklabels(dataset['build_num'])
plt.plot(dataset['master_version'], 'o-', color='magenta', label='master_

version')
plt.plot(dataset['master_xa'], 'o-', color='darkviolet', label='master_xa')
plt.plot(dataset['4.1.1_version'], 'r--', color='blue', label='4.1.1_version')
plt.plot(dataset['3.0.0_version'], 'r--', color='orange', label='3.0.0_version

')
plt.plot(dataset['mysql_server'], 'r--', color='lime', label='mysql_server')
plt.xlim()
plt.legend()
plt.xlabel('build_num')
plt.ylabel('transactions per second')
plt.savefig('graph/' + path + '/' + case_name)
plt.show()

def generate_data(path, case_name, dataset):
for build in dataset['build_num']:

fill_dataset(build, case_name, dataset, path, 'master_version', '.master.
txt')

fill_dataset(build, case_name, dataset, path, 'master_xa', '.xa.txt')
fill_dataset(build, case_name, dataset, path, '4.1.1_version', '.4_1_1.txt

')
fill_dataset(build, case_name, dataset, path, '3.0.0_version', '.3_0_0.txt

')

7.7. Test 341



Apache ShardingSphere document, v5.1.1

fill_dataset(build, case_name, dataset, path, 'mysql_server', '.mysql.txt')
def fill_dataset(build, case_name, dataset, path, version, suffix):

try:
with open(path + '/' + str(build) + '/' + case_name + suffix) as version_

master:
value = 0
for line in version_master:

if 'transactions:' in line:
items = line.split('(')
value = float(items[1][:-10])

dataset[version].append(value)
except FileNotFoundError:

dataset[version].append(0)
if __name__ == '__main__':

path = sys.argv[1]
generate_graph(path, 'oltp_point_select')
generate_graph(path, 'oltp_read_only')
generate_graph(path, 'oltp_write_only')
generate_graph(path, 'oltp_read_write')
generate_graph(path, 'oltp_update_index')
generate_graph(path, 'oltp_update_non_index')
generate_graph(path, 'oltp_delete')

7.7.7 Module Test

Provides test engine with each complex modules.

SQL Parser Test

Prepare Data

Not like Integration test, SQL parse test does not need a specific database environment, just define the
sql to parse, and the assert data:

SQL Data

As mentioned sql-case-id in Integration test，test‐case‐id could be shared in different module
to test, and the file is at shardingsphere-sql-parser/shardingsphere-sql-parser-test/
src/main/resources/sql/supported/${SQL-TYPE}/*.xml

7.7. Test 342



Apache ShardingSphere document, v5.1.1

Assert Data

The assert data is atshardingsphere-sql-parser/shardingsphere-sql-parser-test/src/
main/resources/case/${SQL-TYPE}/*.xml in that xml file, it could assert against the table
name, token or sql condition and so on. For example:

<parser-result-sets>
<parser-result sql-case-id="insert_with_multiple_values">

<tables>
<table name="t_order" />

</tables>
<tokens>

<table-token start-index="12" table-name="t_order" length="7" />
</tokens>
<sharding-conditions>

<and-condition>
<condition column-name="order_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
</and-condition>
<and-condition>

<condition column-name="order_id" table-name="t_order" operator=
"EQUAL">

<value literal="2" type="int" />
</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="2" type="int" />

</condition>
</and-condition>

</sharding-conditions>
</parser-result>

</parser-result-sets>

When these configs are ready, launch the test engine in shardingsphere-sql-parser/
shardingsphere-sql-parser-test to test SQL parse.

7.7. Test 343



Apache ShardingSphere document, v5.1.1

SQL Rewrite Test

Target

Facing logic databases and tables cannot be executed directly in actual databases. SQL rewrite is used
to rewrite logic SQL into rightly executable ones in actual databases, including two parts, correctness
rewrite and optimization rewrite. rewrite tests are for these targets.

Test

The rewrite tests are in the test folder under sharding-core/sharding-core-rewrite . Follow‐
ings are the main part for rewrite tests:

• test engine

• environment configuration

• assert data

Test engine is the entrance of rewrite tests, just like other test engines, through Junit Parameterized,
read every and each data in the xml file under the target test type in test\resources, and then assert
by the engine one by one

Environment configuration is the yaml file under test type under test\resources\yaml. The con‐
figuration file contains dataSources，shardingRule，encryptRule and other info. for example:

dataSources:
db: !!com.zaxxer.hikari.HikariDataSource

driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:db;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:

## sharding Rules
rules:
- !SHARDING
tables:

t_account:
actualDataNodes: db.t_account_${0..1}
tableStrategy:
standard:

shardingColumn: account_id
shardingAlgorithmName: account_table_inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

t_account_detail:
actualDataNodes: db.t_account_detail_${0..1}
tableStrategy:
standard:

7.7. Test 344

https://github.com/junit-team/junit4/wiki/Parameterized-tests


Apache ShardingSphere document, v5.1.1

shardingColumn: order_id
shardingAlgorithmName: account_detail_table_inline

bindingTables:
- t_account, t_account_detail

shardingAlgorithms:
account_table_inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

account_detail_table_inline:
type: INLINE
props:
algorithm-expression: t_account_detail_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

Assert data are in the xml under test type in test\resources. In the xml file, yaml-rulemeans the
environment configuration file path, input contains the target SQL and parameters, output contains
the expected SQL and parameters. The db-type described the type for SQL parse, default is SQL92.
For example:

<rewrite-assertions yaml-rule="yaml/sharding/sharding-rule.yaml">
<!-- to change SQL parse type, change db-type -->
<rewrite-assertion id="create_index_for_mysql" db-type="MySQL">

<input sql="CREATE INDEX index_name ON t_account ('status')" />
<output sql="CREATE INDEX index_name ON t_account_0 ('status')" />
<output sql="CREATE INDEX index_name ON t_account_1 ('status')" />

</rewrite-assertion>
</rewrite-assertions>

After set up the assert data and environment configuration, rewrite test engine will assert the corre‐
sponding SQL without any Java code modification.

7.8 FAQ

7.8.1 [JDBC] Why there may be an error when configure both shardingsphere-jdbc-
spring-boot-starter and a spring-boot-starter of certain datasource pool(such as
druid)?

Answer:

1. Because the spring‐boot‐starter of certain datasource pool (such as druid) will be configured be‐
fore shardingsphere‐jdbc‐spring‐boot‐starter and create a default datasource, then conflict occur
when ShardingSphere‐JDBC create datasources.

7.8. FAQ 345



Apache ShardingSphere document, v5.1.1

2. A simple way to solve this issue is removing the spring‐boot‐starter of certain datasource pool,
shardingsphere‐jdbc create datasources with suitable pools.

7.8.2 [JDBC] Why is xsd unable to be foundwhen Spring Namespace is used?

Answer:

The use norm of Spring Namespace does not require to deploy xsd files to the official website. But
considering some users’needs, we will deploy them to ShardingSphere’s official website.

Actually, META‐INF:raw‐latex:spring.schemas in the jar package of shardingsphere‐jdbc‐spring‐
namespace has been configured with the position of xsd files: META‐INF:raw‐latex:namespace:raw‐
latex:ˋ\shardingˋ.xsd and META‐INF:raw‐latex:namespace:raw‐latex:ˋ\replicaˋ‐query.xsd, so you only
need to make sure that the file is in the jar package.

7.8.3 [JDBC] Found a JtaTransactionManager in spring boot project when integrating
with transaction of XA

Answer:

1. shardingsphere-transaction-xa-core include atomikos, it will trigger auto‐configuration
mechanism in spring‐boot, add @SpringBootApplication(exclude = JtaAutoConfigu-
ration.class) will solve it.

7.8.4 [Proxy] In Windows environment, could not find or load main class
org.apache.shardingsphere.proxy.Bootstrap, how to solve it?

Answer:

Some decompression toolsmay truncate the file namewhen decompressing the ShardingSphere‐Proxy
binary package, resulting in some classes not being found.

The solutions:

Open cmd.exe and execute the following command:

tar zxvf apache-shardingsphere-${RELEASE.VERSION}-shardingsphere-proxy-bin.tar.gz

7.8.5 [Proxy] How to add a new logic schema dynamically when use ShardingSphere-
Proxy?

Answer:

When using ShardingSphere‐Proxy, users can dynamically create or drop logic schema through Dist-
SQL, the syntax is as follows:

7.8. FAQ 346



Apache ShardingSphere document, v5.1.1

CREATE (DATABASE | SCHEMA) [IF NOT EXISTS] schemaName;

DROP (DATABASE | SCHEMA) [IF EXISTS] schemaName;

Example:

CREATE DATABASE sharding_db;

DROP SCHEMA sharding_db;

7.8.6 [Proxy] How to use a suitable database tools connecting ShardingSphere-Proxy?

Answer:

1. ShardingSphere‐Proxy could be considered as amysql sever, so we recommend usingmysql com‐
mand line tool to connect to and operate it.

2. If users would like use a third‐party database tool, there may be some errors cause of the certain
implementation/options.

3. The currently tested third‐party database tools are as follows:

• Navicat：11.1.13、15.0.20.

• DataGrip：2020.1、2021.1 (turn on“introspect using jdbc metadata”in idea or datagrip).

• WorkBench：8.0.25.

7.8.7 [Proxy]When using a client such as Navicat to connect to ShardingSphere-Proxy,
if ShardingSphere-Proxy does not create a Schema or does not add a Resource,
the client connection will fail?

Answer:

1. Third‐party database tools will send some SQL query metadata when connecting to
ShardingSphere‐Proxy. When ShardingSphere‐Proxy does not create a schema or does not
add a resource, ShardingSphere‐Proxy cannot execute SQL.

2. It is recommended to create schema and resource first, and then use third‐party database tools
to connect.

3. Please refer to Related introduction the details about resource.

7.8. FAQ 347

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/


Apache ShardingSphere document, v5.1.1

7.8.8 [Sharding] How to solve Cloud not resolve placeholder ⋯in string
value ⋯ error?

Answer:

${...} or $->{...} can be used in inline expression identifiers, but the former one clashes with
place holders in Spring property files, so $->{...} is recommended to be used in Spring as inline
expression identifiers.

7.8.9 [Sharding] Why does float number appear in the return result of inline expres-
sion?

Answer:

The division result of Java integers is also integer, but in Groovy syntax of inline expression, the divi‐
sion result of integers is float number. To obtain integer division result, A/B needs to be modified as
A.intdiv(B).

7.8.10 [Sharding] If sharding database is partial, should tables without sharding
database & table configured in sharding rules?

Answer:

No, ShardingSphere will recognize it automatically.

7.8.11 [Sharding] When generic Long type SingleKeyTableShardingAlgorithm
is used, why doesClassCastException: Integer can not cast to
Long exception appear?

Answer:

Youmustmake sure thefield in database table consistentwith that in sharding algorithms. For example,
the field type in database is int(11) and the sharding type corresponds to genetic type is Integer, if you
want to configure Long type, please make sure the field type in the database is bigint.

7.8.12 [Sharding:raw-latex:PROXY] When implementing the Standard-
ShardingAlgorithm custom algorithm, the specific type of Compara-
ble is specified as Long, and the field type in the database table is bigint, a
ClassCastException: Integer can not cast to Long exception
occurs.

Answer：

7.8. FAQ 348



Apache ShardingSphere document, v5.1.1

When implementing the doSharding method, it is not recommended to specify the specific type
of Comparable in the method declaration, but to convert the type in the implementation of the
doShardingmethod. You can refer to the ModShardingAlgorithm#doShardingmethod.

7.8.13 [Sharding]Why are the default distributed auto-augment key strategy provided
by ShardingSphere not continuous andmost of them endwith even numbers?

Answer:

ShardingSphere uses snowflake algorithms as the default distributed auto‐augment key strategy to
make sure unrepeated and decentralized auto‐augment sequence is generated under the distributed
situations. Therefore, auto‐augment keys can be incremental but not continuous.

But the last four numbers of snowflake algorithm are incremental value within one millisecond. Thus,
if concurrency degree in one millisecond is not high, the last four numbers are likely to be zero, which
explains why the rate of even end number is higher.

In 3.1.0 version, the problem of ending with even numbers has been totally solved, please refer to:
https://github.com/apache/shardingsphere/issues/1617

7.8.14 [Sharding] How to allow range query with using inline sharding strat-
egy(BETWEEN AND, >, <, >=, <=)?

Answer:

1. Update to 4.1.0 above.

2. Configure(A tip here: then each range query will be broadcast to every sharding table):

• Version 4.x: allow.range.query.with.inline.sharding totrue (Default value isfalse).

• Version 5.x: allow-range-query-with-inline-sharding to true in InlineShardingStrat‐
egy (Default value is false).

7.8.15 [Sharding] Why does my custom distributed primary key do not work after im-
plementing KeyGenerateAlgorithm interface and configuring type prop-
erty?

Answer:

Service Provider Interface (SPI) is a kind of API for the third party to implement or expand. Except
implementing interface, you also need to create a corresponding file in META-INF/services tomake
the JVM load these SPI implementations.

More detail for SPI usage, please search by yourself.

Other ShardingSphere functionality implementation will take effect in the same way.

7.8. FAQ 349

https://github.com/apache/shardingsphere/issues/1617
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://shardingsphere.apache.org/document/current/en/concepts/pluggable/


Apache ShardingSphere document, v5.1.1

7.8.16 [Sharding] Inaddition to internaldistributedprimarykey, doesShardingSphere
support other native auto-increment keys?

Answer:

Yes. But there is restriction to the use of native auto‐increment keys, whichmeans they cannot be used
as sharding keys at the same time.

Since ShardingSphere does not have the database table structure and native auto‐increment key is not
included in original SQL, it cannot parse that field to the sharding field. If the auto‐increment key is not
sharding key, it can be returned normally and is needless to be cared. But if the auto‐increment key is
also used as sharding key, ShardingSphere cannot parse its sharding value, which will make SQL routed
to multiple tables and influence the rightness of the application.

The premise for returning native auto‐increment key is that INSERT SQL is eventually routed to one
table. Therefore, auto‐increment key will return zero when INSERT SQL returns multiple tables.

7.8.17 [Encryption] How to solve that data encryption can’t work with JPA?

Answer:

Because DDL for data encryption has not yet finished, JPA Entity cannot meet the DDL and DML at the
same time, when JPA that automatically generates DDL is used with data encryption.

The solutions are as follows:

1. Create JPA Entity with logicColumn which needs to encrypt.

2. Disable JPA auto‐ddl, For example setting auto‐ddl=none.

3. Create table manually. Table structure should use cipherColumn,plainColumn and assist-
edQueryColumn to replace the logicColumn.

7.8.18 [DistSQL] How to set custom JDBC connection properties or connection pool
properties when adding a data source using DistSQL?

Answer:

1. If you need to customize JDBC connection properties, please take the urlSource way to define
dataSource.

2. ShardingSphere presets necessary connection pool properties, such as maxPoolSize, idle-
Timeout, etc. If you need to add or overwrite the properties, please specify it with PROPERTIES
in the dataSource.

3. Please refer to Related introduction for above rules.

7.8. FAQ 350

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/


Apache ShardingSphere document, v5.1.1

7.8.19 [DistSQL] How to solve Resource [xxx] is still used by [Sin-
gleTableRule]. exception when dropping a data source using DistSQL?

Answer：
1. Resources referenced by rules cannot be deleted

2. If the resource is only referenced by single table rule, and the user confirms that the restriction
can be ignored, the optional parameter ignore single tables can be added to perform forced dele‐
tion

DROP RESOURCE dataSourceName [, dataSourceName] ... [ignore single tables]

7.8.20 [DistSQL] How to solve Failed to get driver instance for jd-
bcURL=xxx. exception when adding a data source using DistSQL?

Answer：
ShardingSphere Proxy do not have jdbc driver during deployment. Some example of this include
mysql-connector. To use it otherwise following syntax can be used:

ADD RESOURCE dataSourceName [..., dataSourceName]

7.8.21 [Other]How todebugwhenSQL cannot be executed rightly in ShardingSphere?

Answer:

sql.show configuration is provided in ShardingSphere‐Proxy and post‐1.5.0 version of
ShardingSphere‐JDBC, enabling the context parsing, rewritten SQL and the routed data source
printed to info log. sql.show configuration is off in default, and users can turn it on in configurations.

A Tip: Property sql.show has changed to sql-show in version 5.x.

7.8.22 [Other] Why do some compiling errors appear? Why did not the IDEA index the
generated codes?

Answer:

ShardingSphere uses lombok to enable minimal coding. For more details about using and installment,
please refer to the official website of lombok.

The codes under the package org.apache.shardingsphere.sql.parser.autogen are gener‐
ated by ANTLR. You may execute the following command to generate codes:

./mvnw -Dcheckstyle.skip=true -Drat.skip=true -Dmaven.javadoc.skip=true -Djacoco.
skip=true -DskipITs -DskipTests install -T1C

7.8. FAQ 351

https://projectlombok.org/download.html


Apache ShardingSphere document, v5.1.1

The generated codes such as org.apache.shardingsphere.sql.parser.autogen.
PostgreSQLStatementParsermay be too large to be indexed by the IDEA. You may configure the
IDEA’s property idea.max.intellisense.filesize=10000.

7.8.23 [Other] In SQLSever andPostgreSQL,whydoes the aggregation columnwithout
alias throw exception?

Answer:

SQLServer and PostgreSQLwill rename aggregation columns acquiredwithout alias, such as the follow‐
ing SQL:

SELECT SUM(num), SUM(num2) FROM tablexxx;

Columns acquired by SQLServer are empty string and (2); columns acquired by PostgreSQL are empty
sum and sum(2). It will cause error because ShardingSphere is unable to find the corresponding col‐
umn.

The right SQL should be written as:

SELECT SUM(num) AS sum_num, SUM(num2) AS sum_num2 FROM tablexxx;

7.8.24 [Other] Why does Oracle database throw “Order by value must implements
Comparable”exception when using Timestamp Order By?

Answer:

There are two solutions for the above problem: 1. Configure JVM parameter “‐
oracle.jdbc.J2EE13Compliant=true”2. Set System.getProperties().setProperty(“ora‐
cle.jdbc.J2EE13Compliant”,“true”) codes in the initialization of the project.

Reasons:

org.apache.shardingsphere.sharding.merge.dql.orderby.OrderByValue#getOrderValues():

private List<Comparable<?>> getOrderValues() throws SQLException {
List<Comparable<?>> result = new ArrayList<>(orderByItems.size());
for (OrderByItem each : orderByItems) {

Object value = queryResult.getValue(each.getIndex(), Object.class);
Preconditions.checkState(null == value || value instanceof Comparable,

"Order by value must implements Comparable");
result.add((Comparable<?>) value);

}
return result;

}

After using resultSet.getObject(int index), for TimeStamp oracle, the system will decide whether
to return java.sql.TimeStamp or define oralce.sql.TIMESTAMP according to the property of ora‐

7.8. FAQ 352



Apache ShardingSphere document, v5.1.1

cle.jdbc.J2EE13Compliant. See oracle.jdbc.driver.TimestampAccessor#getObject(int var1) method in
ojdbc codes for more detail:

Object getObject(int var1) throws SQLException {
Object var2 = null;
if(this.rowSpaceIndicator == null) {

DatabaseError.throwSqlException(21);
}

if(this.rowSpaceIndicator[this.indicatorIndex + var1] != -1) {
if(this.externalType != 0) {

switch(this.externalType) {
case 93:

return this.getTimestamp(var1);
default:

DatabaseError.throwSqlException(4);
return null;

}
}

if(this.statement.connection.j2ee13Compliant) {
var2 = this.getTimestamp(var1);

} else {
var2 = this.getTIMESTAMP(var1);

}
}

return var2;
}

7.8.25 [Other] In Windows environment,when cloning ShardingSphere source code
through Git, why prompt filename too long and how to solve it?

Answer:

To ensure the readability of source code,the ShardingSphere Coding Specification requires that the
naming of classes,methods and variables be literal and avoid abbreviations,which may result in Some
source files have long names.

Since theGit version ofWindows is compiled usingmsys,it uses the old version ofWindowsApi,limiting
the file name to no more than 260 characters.

The solutions are as follows:

Open cmd.exe (you need to add git to environment variables) and execute the following command to
allow git supporting log paths:

git config --global core.longpaths true

7.8. FAQ 353



Apache ShardingSphere document, v5.1.1

Ifweusewindows 10, also need enablewin32 log paths in registry editor or group strategy(need reboot):
> Create the registry keyHKLM\SYSTEM\CurrentControlSet\Control\FileSystem LongPath-
sEnabled (Type: REG_DWORD) in registry editor, and be set to 1. > Or click“setting”button in system
menu, print“Group Policy”to open a new window“Edit Group Policy”, and then click‘Computer
Configuration’>‘Administrative Templates’>‘System’>‘Filesystem’, and then turn on‘Enable
Win32 long paths’option.

Reference material:

https://docs.microsoft.com/zh‐cn/windows/desktop/FileIO/naming‐a‐file https://ourcodeworld.com
/articles/read/109/how‐to‐solve‐filename‐too‐long‐error‐in‐git‐powershell‐and‐github‐application‐f
or‐windows

7.8.26 [Other] How to solve Type is required error?

Answer:

In Apache ShardingSphere, many functionality implementation are uploaded through SPI, such as Dis‐
tributed Primary Key. These functions load SPI implementation by configuring the type，so the type
must be specified in the configuration file.

7.8.27 [Other] How to speed up themetadata loading when service starts up?

Answer:

1. Update to 4.0.1 above, which helps speed up the process of loading table metadata.

2. Configure:

• max.connections.size.per.query(Default value is 1) higher referring to connection pool
you adopt(Version >= 3.0.0.M3 & Version < 5.0.0).

• max-connections-size-per-query(Default value is 1) higher referring to connection pool
you adopt(Version >= 5.0.0).

7.8.28 [Other] The ANTLR plugin generates codes in the same level directory as src,
which is easy to commit bymistake. How to avoid it?

Answer:

Goto Settings ‐> Languages& Frameworks ‐> ANTLR v4 default project settings and configure the output
directory of the generated code as target/gen as shown:

7.8. FAQ 354

https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://shardingsphere.apache.org/document/current/en/concepts/pluggable/
jetbrains://idea/settings?name=Languages+%26+Frameworks--ANTLR+v4+default+project+settings


Apache ShardingSphere document, v5.1.1

7.8.29 [Other] Why is the database sharding result not correct when using Proxool?

Answer:

When using Proxool to configure multiple data sources, each one of them should be configured with
alias. It is because Proxool would check whether existing alias is included in the connection pool or
not when acquiring connections, so without alias, each connectionwill be acquired from the same data
source.

The followings are core codes from ProxoolDataSource getConnection method in Proxool:

if(!ConnectionPoolManager.getInstance().isPoolExists(this.alias)) {
this.registerPool();

}

For more alias usages, please refer to Proxool official website.

7.8. FAQ 355

http://proxool.sourceforge.net/configure.html


Apache ShardingSphere document, v5.1.1

7.8.30 [Other] The property settings in the configuration file do not take effect when
integrating ShardingSphere with Spring Boot 2.x ?

Answer:

Note that the property name in the Spring Boot 2.x environment is constrained to allow only lowercase
letters, numbers and short transverse lines, [a-z][0-9] and -.

Reasons:

In the Spring Boot 2.x environment, ShardingSphere binds the properties through Binder, and the un‐
satisfied property name (such as camel case or underscore.) can throw a NullPointerException
exception when the property setting does not work to check the property value. Refer to the following
error examples:

Underscore case: database_inline

spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.props.
algorithm-expression=ds-$->{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'database_inline': Initialization of bean failed; nested exception
is java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)
at org.apache.shardingsphere.spring.boot.registry.

AbstractAlgorithmProvidedBeanRegistry.
postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)

at org.springframework.beans.factory.support.
AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

Camel case：databaseInline

spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.props.
algorithm-expression=ds-$->{user_id % 2}

7.8. FAQ 356



Apache ShardingSphere document, v5.1.1

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'databaseInline': Initialization of bean failed; nested exception is
java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)
at org.apache.shardingsphere.spring.boot.registry.

AbstractAlgorithmProvidedBeanRegistry.
postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)

at org.springframework.beans.factory.support.
AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

From the exception stack, the AbstractAlgorithmProvidedBeanRegistry.registerBean
method calls PropertyUtil.containPropertyPrefix (environment, prefix) , and Prop-
ertyUtil.containPropertyPrefix (environment, prefix) determines that the configura‐
tion of the specified prefix does not exist, while themethod uses Binder in an unsatisfied property name
(such as camelcase or underscore) causing property settings does not to take effect.

7.9 API Change Histories

This chapter contains a section of API change histories of different projects of Apache ShardingSphere:
ShardingSphere‐JDBC, ShardingSphere‐Proxy and ShardingSphere‐Sidecar.

7.9.1 ShardingSphere-JDBC

This chapter contains a section of API change histories of Apache ShardingSphere‐JDBC.

YAML configuration

5.0.0-alpha

Data Sharding

7.9. API Change Histories 357



Apache ShardingSphere document, v5.1.1

Configuration Item Explanation

dataSources: # Omit the data source configuration, please refer to the usage

rules:
- !SHARDING
tables: # Sharding table configuration

<logic-table-name> (+): # Logic table name
actualDataNodes (?): # Describe data source names and actual tables (refer to

Inline syntax rules)
databaseStrategy (?): # Databases sharding strategy, use default databases

sharding strategy if absent. sharding strategy below can choose only one.
standard: # For single sharding column scenario

shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name

complex: # For multiple sharding columns scenario
shardingColumns: # Sharding column names, multiple columns separated with

comma
shardingAlgorithmName: # Sharding algorithm name

hint: # Sharding by hint
shardingAlgorithmName: # Sharding algorithm name

none: # Do not sharding
tableStrategy: # Tables sharding strategy, same as database sharding strategy
keyGenerateStrategy: # Key generator strategy
column: # Column name of key generator
keyGeneratorName: # Key generator name

autoTables: # Auto Sharding table configuration
t_order_auto: # Logic table name
actualDataSources (?): # Data source names
shardingStrategy: # Sharding strategy
standard: # For single sharding column scenario

shardingColumn: # Sharding column name
shardingAlgorithmName: # Auto sharding algorithm name

bindingTables (+): # Binding tables
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>

broadcastTables (+): # Broadcast tables
- <table-name>
- <table-name>

defaultDatabaseStrategy: # Default strategy for database sharding
defaultTableStrategy: # Default strategy for table sharding
defaultKeyGenerateStrategy: # Default Key generator strategy

# Sharding algorithm configuration
shardingAlgorithms:

<sharding-algorithm-name> (+): # Sharding algorithm name
type: # Sharding algorithm type
props: # Sharding algorithm properties

7.9. API Change Histories 358



Apache ShardingSphere document, v5.1.1

# ...

# Key generate algorithm configuration
keyGenerators:

<key-generate-algorithm-name> (+): # Key generate algorithm name
type: # Key generate algorithm type
props: # Key generate algorithm properties
# ...

props:
# ...

Replica Query

Configuration Item Explanation

dataSources: # Omit the data source configuration, please refer to the usage

rules:
- !REPLICA_QUERY
dataSources:

<data-source-name> (+): # Logic data source name of replica query
primaryDataSourceName: # Primary data source name
replicaDataSourceNames:
- <replica-data_source-name> (+) # Replica data source name

loadBalancerName: # Load balance algorithm name

# Load balance algorithm configuration
loadBalancers:

<load-balancer-name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
# ...

props:
# ...

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm.

7.9. API Change Histories 359

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance


Apache ShardingSphere document, v5.1.1

Encryption

Configuration Item Explanation

dataSource: # Omit the data source configuration, please refer to the usage

rules:
- !ENCRYPT
tables:

<table-name> (+): # Encrypt table name
columns:
<column-name> (+): # Encrypt logic column name

cipherColumn: # Cipher column name
assistedQueryColumn (?): # Assisted query column name
plainColumn (?): # Plain column name
encryptorName: # Encrypt algorithm name

# Encrypt algorithm configuration
encryptors:

<encrypt-algorithm-name> (+): # Encrypt algorithm name
type: # Encrypt algorithm type
props: # Encrypt algorithm properties
# ...

queryWithCipherColumn: # Whether query with cipher column for data encrypt. User
you can use plaintext to query if have

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

dataSources: # Omit the data source configuration, please refer to the usage

rules:
- !SHADOW
column: # Shadow column name
sourceDataSourceNames: # Source Data Source names

# ...
shadowDataSourceNames: # Shadow Data Source names

# ...

props:
# ...

7.9. API Change Histories 360

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt


Apache ShardingSphere document, v5.1.1

Governance

Configuration Item Explanation

governance:
name: # Governance name
registryCenter: # Registry center

type: # Governance instance type. Example:Zookeeper, etcd
serverLists: # The list of servers that connect to governance instance,

including IP and port number; use commas to separate
overwrite: # Whether to overwrite local configurations with config center

configurations; if it can, each initialization should refer to local configurations

ShardingSphere-4.x

Data Sharding

Configuration Item Explanation

dataSources: # Data sources configuration, multiple `data_source_name` available
<data_source_name>: # <!!Data source pool implementation class> `!!` means class

instantiation
driverClassName: # Class name of database driver
url: # Database URL
username: # Database username
password: # Database password
# ... Other properties for data source pool

shardingRule:
tables: # Sharding rule configuration, multiple `logic_table_name` available

<logic_table_name>: # Name of logic table
actualDataNodes: # Describe data source names and actual tables, delimiter as

point, multiple data nodes separated with comma, support inline expression. Absent
means sharding databases only. Example: ds${0..7}.tbl${0..7}

databaseStrategy: # Databases sharding strategy, use default databases
sharding strategy if absent. sharding strategy below can choose only one

standard: # Standard sharding scenario for single sharding column
shardingColumn: # Name of sharding column
preciseAlgorithmClassName: # Precise algorithm class name used for `=`

and `IN`. This class need to implements PreciseShardingAlgorithm, and require a no
argument constructor

rangeAlgorithmClassName: # Range algorithm class name used for
`BETWEEN`. This class need to implements RangeShardingAlgorithm, and require a no
argument constructor

complex: # Complex sharding scenario for multiple sharding columns

7.9. API Change Histories 361



Apache ShardingSphere document, v5.1.1

shardingColumns: # Names of sharding columns. Multiple columns
separated with comma

algorithmClassName: # Complex sharding algorithm class name. This class
need to implements ComplexKeysShardingAlgorithm, and require a no argument
constructor

inline: # Inline expression sharding scenario for single sharding column
shardingColumn: # Name of sharding column
algorithmInlineExpression: # Inline expression for sharding algorithm

hint: # Hint sharding strategy
algorithmClassName: # Hint sharding algorithm class name. This class

need to implements HintShardingAlgorithm, and require a no argument constructor
none: # Do not sharding

tableStrategy: # Tables sharding strategy, Same as databases sharding
strategy

keyGenerator:
column: # Column name of key generator
type: # Type of key generator, use default key generator if absent, and

there are three types to choose, that is, SNOWFLAKE/UUID
props: # Properties, Notice: when use SNOWFLAKE, `max.tolerate.time.

difference.milliseconds` for `SNOWFLAKE` need to be set. To use the generated value
of this algorithm as sharding value, it is recommended to configure `max.vibration.
offset`

bindingTables: # Binding table rule configurations
- <logic_table_name1, logic_table_name2, ...>
- <logic_table_name3, logic_table_name4, ...>
- <logic_table_name_x, logic_table_name_y, ...>

broadcastTables: # Broadcast table rule configurations
- table_name1
- table_name2
- table_name_x

defaultDataSourceName: # If table not configure at table rule, will route to
defaultDataSourceName
defaultDatabaseStrategy: # Default strategy for sharding databases, same as

databases sharding strategy
defaultTableStrategy: # Default strategy for sharding tables, same as tables

sharding strategy
defaultKeyGenerator:

type: # Type of default key generator, use user-defined ones or built-in ones,
e.g. SNOWFLAKE, UUID. Default key generator is `org.apache.shardingsphere.core.
keygen.generator.impl.SnowflakeKeyGenerator`

column: # Column name of default key generator
props: # Properties of default key generator, e.g. `max.tolerate.time.

difference.milliseconds` for `SNOWFLAKE`

masterSlaveRules: # Read-write splitting rule configuration, more details can
reference Read-write splitting part

7.9. API Change Histories 362



Apache ShardingSphere document, v5.1.1

<data_source_name>: # Data sources configuration, need consist with data source
map, multiple `data_source_name` available

masterDataSourceName: # more details can reference Read-write splitting part
slaveDataSourceNames: # more details can reference Read-write splitting part
loadBalanceAlgorithmType: # more details can reference Read-write splitting

part
props: # Properties configuration of load balance algorithm
<property-name>: # property key value pair

props: # Properties
sql.show: # To show SQLS or not, default value: false
executor.size: # The number of working threads, default value: CPU count
check.table.metadata.enabled: # To check the metadata consistency of all the

tables or not, default value : false
max.connections.size.per.query: # The maximum connection number allocated by each

query of each physical database. default value: 1

Read-Write Split

Configuration Item Explanation

dataSources: # Omit data source configurations; keep it consistent with data
sharding

masterSlaveRule:
name: # Read-write split data source name
masterDataSourceName: # Master data source name
slaveDataSourceNames: # Slave data source name

- <data_source_name1>
- <data_source_name2>
- <data_source_name_x>

loadBalanceAlgorithmType: # Slave database load balance algorithm type; optional
value, ROUND_ROBIN and RANDOM, can be omitted if `loadBalanceAlgorithmClassName`
exists
props: # Properties configuration of load balance algorithm

<property-name>: # property key value pair

props: # Property configuration
sql.show: # Show SQL or not; default value: false
executor.size: # Executing thread number; default value: CPU core number
check.table.metadata.enabled: # Whether to check table metadata consistency when

it initializes; default value: false
max.connections.size.per.query: # The maximum connection number allocated by each

query of each physical database. default value: 1

Create a DataSource through the YamlMasterSlaveDataSourceFactory factory class:

7.9. API Change Histories 363



Apache ShardingSphere document, v5.1.1

DataSource dataSource = YamlMasterSlaveDataSourceFactory.
createDataSource(yamlFile);

Data Masking

Configuration Item Explanation

dataSource: # Ignore data sources configuration

encryptRule:
encryptors:

<encryptor-name>:
type: # Encryptor type
props: # Properties, e.g. `aes.key.value` for AES encryptor
aes.key.value:

tables:
<table-name>:
columns:

<logic-column-name>:
plainColumn: # Plaintext column name
cipherColumn: # Ciphertext column name
assistedQueryColumn: # AssistedColumns for query，when use

ShardingQueryAssistedEncryptor, it can help query encrypted data
encryptor: # Encrypt name

Orchestration

Configuration Item Explanation

dataSources: # Omit data source configurations
shardingRule: # Omit sharding rule configurations
masterSlaveRule: # Omit read-write split rule configurations
encryptRule: # Omit encrypt rule configurations

orchestration:
name: # Orchestration instance name
overwrite: # Whether to overwrite local configurations with registry center

configurations; if it can, each initialization should refer to local configurations
registry: # Registry center configuration

type: # Registry center type. Example:zookeeper
serverLists: # The list of servers that connect to registry center, including

IP and port number; use commas to seperate addresses, such as: host1:2181,
host2:2181

namespace: # Registry center namespace

7.9. API Change Histories 364



Apache ShardingSphere document, v5.1.1

digest: # The token that connects to the registry center; default means there
is no need for authentication

operationTimeoutMilliseconds: # Default value: 500 milliseconds
maxRetries: # Maximum retry time after failing; default value: 3 times
retryIntervalMilliseconds: # Interval time to retry; default value: 500

milliseconds
timeToLiveSeconds: # Living time of temporary nodes; default value: 60 seconds

ShardingSphere-3.x

Data Sharding

Configuration Item Explanation

dataSources: # Data sources configuration, multiple `data_source_name` available
<data_source_name>: # <!!Data source pool implementation class> `!!` means class

instantiation
driverClassName: # Class name of database driver
url: # Database URL
username: # Database username
password: # Database password
# ... Other properties for data source pool

shardingRule:
tables: # Sharding rule configuration, multiple `logic_table_name` available

<logic_table_name>: # Name of logic table
actualDataNodes: # Describe data source names and actual tables, delimiter as

point, multiple data nodes separated with comma, support inline expression. Absent
means sharding databases only. Example: ds${0..7}.tbl${0..7}

databaseStrategy: # Databases sharding strategy, use default databases
sharding strategy if absent. sharding strategy below can choose only one

standard: # Standard sharding scenario for single sharding column
shardingColumn: # Name of sharding column
preciseAlgorithmClassName: # Precise algorithm class name used for `=`

and `IN`. This class need to implements PreciseShardingAlgorithm, and require a no
argument constructor

rangeAlgorithmClassName: # Range algorithm class name used for
`BETWEEN`. This class need to implements RangeShardingAlgorithm, and require a no
argument constructor

complex: # Complex sharding scenario for multiple sharding columns
shardingColumns: # Names of sharding columns. Multiple columns

separated with comma
algorithmClassName: # Complex sharding algorithm class name. This class

need to implements ComplexKeysShardingAlgorithm, and require a no argument
constructor

7.9. API Change Histories 365



Apache ShardingSphere document, v5.1.1

inline: # Inline expression sharding scenario for single sharding column
shardingColumn: # Name of sharding column
algorithmInlineExpression: # Inline expression for sharding algorithm

hint: # Hint sharding strategy
algorithmClassName: # Hint sharding algorithm class name. This class

need to implements HintShardingAlgorithm, and require a no argument constructor
none: # Do not sharding

tableStrategy: # Tables sharding strategy, Same as databases sharding
strategy

keyGeneratorColumnName: # Column name of key generator, do not use Key
generator if absent

keyGeneratorClassName: # Key generator, use default key generator if absent.
This class need to implements KeyGenerator, and require a no argument constructor

logicIndex: # Name if logic index. If use `DROP INDEX XXX` SQL in Oracle/
PostgreSQL, This property needs to be set for finding the actual tables
bindingTables: # Binding table rule configurations

- <logic_table_name1, logic_table_name2, ...>
- <logic_table_name3, logic_table_name4, ...>
- <logic_table_name_x, logic_table_name_y, ...>

bindingTables: # Broadcast table rule configurations
- table_name1
- table_name2
- table_name_x

defaultDataSourceName: # If table not configure at table rule, will route to
defaultDataSourceName
defaultDatabaseStrategy: # Default strategy for sharding databases, same as

databases sharding strategy
defaultTableStrategy: # Default strategy for sharding tables, same as tables

sharding strategy
defaultKeyGeneratorClassName: # Default key generator class name, default value

is `io.shardingsphere.core.keygen.DefaultKeyGenerator`. This class need to
implements KeyGenerator, and require a no argument constructor

masterSlaveRules: # Read-write splitting rule configuration, more details can
reference Read-write splitting part

<data_source_name>: # Data sources configuration, need consist with data source
map, multiple `data_source_name` available

masterDataSourceName: # more details can reference Read-write splitting part
slaveDataSourceNames: # more details can reference Read-write splitting part
loadBalanceAlgorithmType: # more details can reference Read-write splitting

part
loadBalanceAlgorithmClassName: # more details can reference Read-write

splitting part
configMap: # User-defined arguments
key1: value1

7.9. API Change Histories 366



Apache ShardingSphere document, v5.1.1

key2: value2
keyx: valuex

props: # Properties
sql.show: # To show SQLS or not, default value: false
executor.size: # The number of working threads, default value: CPU count
check.table.metadata.enabled: #T o check the metadata consistency of all the

tables or not, default value : false

configMap: # User-defined arguments
key1: value1
key2: value2
keyx: valuex

Read-Write Split

Configuration Item Explanation

dataSources: # Ignore data sources configuration, same as sharding

masterSlaveRule:
name: # Name of master slave data source
masterDataSourceName: # Name of master data source
slaveDataSourceNames: # Names of Slave data sources

- <data_source_name1>
- <data_source_name2>
- <data_source_name_x>

loadBalanceAlgorithmClassName: # Load balance algorithm class name. This class
need to implements MasterSlaveLoadBalanceAlgorithm, and require a no argument
constructor
loadBalanceAlgorithmType: # Load balance algorithm type, values should be:

`ROUND_ROBIN` or `RANDOM`. Ignore if `loadBalanceAlgorithmClassName` is present

props: # Properties
sql.show: # To show SQLS or not, default value: false
executor.size: # The number of working threads, default value: CPU count
check.table.metadata.enabled: # To check the metadata consistency of all the

tables or not, default value : false

configMap: # User-defined arguments
key1: value1
key2: value2
keyx: valuex

Create a DataSource through the YamlMasterSlaveDataSourceFactory factory class:

7.9. API Change Histories 367



Apache ShardingSphere document, v5.1.1

DataSource dataSource = MasterSlaveDataSourceFactory.createDataSource(yamlFile);

Orchestration

Configuration Item Explanation

dataSources: # Ignore data sources configuration
shardingRule: # Ignore sharding rule configuration
masterSlaveRule: # Ignore master slave rule configuration

orchestration:
name: # Name of orchestration instance
overwrite: # Use local configuration to overwrite registry center or not
registry: # Registry configuration

serverLists: # Registry servers list, multiple split as comma. Example:
host1:2181,host2:2181

namespace: # Namespace of registry
digest: # Digest for registry. Default is not need digest.
operationTimeoutMilliseconds: # Operation timeout time in milliseconds, default

value is 500 milliseconds
maxRetries: # Max number of times to retry, default value is 3
retryIntervalMilliseconds: # Time interval in milliseconds on each retry,

default value is 500 milliseconds
timeToLiveSeconds: # Time to live in seconds of ephemeral keys, default value

is 60 seconds

ShardingSphere-2.x

Data Sharding

Configuration Item Explanation

dataSources:
db0: !!org.apache.commons.dbcp.BasicDataSource

driverClassName: org.h2.Driver
url: jdbc:h2:mem:db0;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:
maxActive: 100

db1: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: org.h2.Driver
url: jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:

7.9. API Change Histories 368



Apache ShardingSphere document, v5.1.1

maxActive: 100

shardingRule:
tables:

config:
actualDataNodes: db${0..1}.t_config

t_order:
actualDataNodes: db${0..1}.t_order_${0..1}
databaseStrategy:
standard:

shardingColumn: user_id
preciseAlgorithmClassName: io.shardingjdbc.core.yaml.fixture.

SingleAlgorithm
tableStrategy:
inline:

shardingColumn: order_id
algorithmInlineExpression: t_order_${order_id % 2}

keyGeneratorColumnName: order_id
keyGeneratorClass: io.shardingjdbc.core.yaml.fixture.IncrementKeyGenerator

t_order_item:
actualDataNodes: db${0..1}.t_order_item_${0..1}
# The strategy of binding the rest of the tables in the table is the same as

the strategy of the first table
databaseStrategy:
standard:

shardingColumn: user_id
preciseAlgorithmClassName: io.shardingjdbc.core.yaml.fixture.

SingleAlgorithm
tableStrategy:
inline:

shardingColumn: order_id
algorithmInlineExpression: t_order_item_${order_id % 2}

bindingTables:
- t_order,t_order_item

# Default database sharding strategy
defaultDatabaseStrategy:

none:
defaultTableStrategy:

complex:
shardingColumns: id, order_id
algorithmClassName: io.shardingjdbc.core.yaml.fixture.MultiAlgorithm

props:
sql.show: true

7.9. API Change Histories 369



Apache ShardingSphere document, v5.1.1

Read-Write Split

concept

In order to relieve the pressure on the database, the write and read operations are separated into differ‐
ent data sources. The write library is called the master library, and the read library is called the slave
library. One master library can be configured with multiple slave libraries.

Supported

1. Provides a read‐write separation configurationwith onemaster andmultiple slaves, which can be
used independently or with sub‐databases and sub‐meters.

2. Independent use of read‐write separation to support SQL transparent transmission.

3. In the same thread and the same database connection, if there is a write operation, subsequent
read operations will be read from the main library to ensure data consistency.

4. Spring namespace.

5. Hint‐based mandatory main library routing.

Unsupported

1. Data synchronization between the master library and the slave library.

2. Data inconsistency caused by the data synchronization delay of the master library and the slave
library.

3. Double writing or multiple writing in the main library.

rule configuration

dataSources:
db_master: !!org.apache.commons.dbcp.BasicDataSource

driverClassName: org.h2.Driver
url: jdbc:h2:mem:db_master;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:
maxActive: 100

db_slave_0: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: org.h2.Driver
url: jdbc:h2:mem:db_slave_0;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;

MODE=MYSQL
username: sa
password:
maxActive: 100

db_slave_1: !!org.apache.commons.dbcp.BasicDataSource

7.9. API Change Histories 370



Apache ShardingSphere document, v5.1.1

driverClassName: org.h2.Driver
url: jdbc:h2:mem:db_slave_1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;

MODE=MYSQL
username: sa
password:
maxActive: 100

masterSlaveRule:
name: db_ms
masterDataSourceName: db_master
slaveDataSourceNames: [db_slave_0, db_slave_1]
configMap:

key1: value1

Create a DataSource through the MasterSlaveDataSourceFactory factory class:

DataSource dataSource = MasterSlaveDataSourceFactory.createDataSource(yamlFile);

Orchestration

Configuration Item Explanation

Zookeeper sharding table and database Orchestration Configuration Item Explanation

dataSources: Data sources configuration

shardingRule: Sharding rule configuration

orchestration: Zookeeper Orchestration Configuration
name: Orchestration name
overwrite: Whether to overwrite local configurations with config center

configurations; if it can, each initialization should refer to local configurations
zookeeper: Registry center Configuration

namespace: Registry center namespace
serverLists: The list of servers that connect to governance instance, including

IP and port number, use commas to separate, such as: host1:2181,host2:2181
baseSleepTimeMilliseconds: The initial millisecond value of the interval to

wait for retry
maxSleepTimeMilliseconds: The maximum millisecond value of the interval to wait

for retry
maxRetries: The maximum retry count
sessionTimeoutMilliseconds: The session timeout milliseconds
connectionTimeoutMilliseconds: The connecton timeout milliseconds
digest: Permission token to connect to Zookeeper. default no authorization is

required

Etcd sharding table and database Orchestration Configuration Item Explanation

7.9. API Change Histories 371



Apache ShardingSphere document, v5.1.1

dataSources: Data sources configuration

shardingRule: Sharding rule configuration

orchestration: Etcd Orchestration Configuration
name: Orchestration name
overwrite: Whether to overwrite local configurations with config center

configurations; if it can, each initialization should refer to local configurations
etcd: Registry center Configuration

serverLists: The list of servers that connect to governance instance, including
IP and port number, use commas to separate, such as: http://host1:2379,http://
host2:2379

timeToLiveSeconds: Time to live seconds for ephemeral nodes
timeoutMilliseconds: The request timeout milliseconds
maxRetries: The maximum retry count
retryIntervalMilliseconds: The retry interval milliseconds

Sharding table and database Data source construction method

DataSource dataSource = OrchestrationShardingDataSourceFactory.
createDataSource(yamlFile);

Read‐Write split Data source construction method

DataSource dataSource = OrchestrationMasterSlaveDataSourceFactory.
createDataSource(yamlFile);

Java API

5.0.0-beta

Sharding

Root Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

Attributes:

7.9. API Change Histories 372



Apache ShardingSphere document, v5.1.1

Name DataType Description Def ault Va lue

tables (+) Collec‐
tion<ShardingTa
bleRuleConfigura‐
tion>

Sharding table rules •

autoTables (+) Coll ec‐
tion<ShardingAutoTa
bleRuleConfigura‐
tion>

Sharding automatic ta‐
ble rules

•

bind ingTableGroups
(*)

Collection<String> Binding table rules E mpty

b roadcastTables (*) Collection<String> Broadcast table rules E mpty
def aultDatabaseSh
ardingStrategy (?)

Sharding StrategyCon‐
figuration

Default database
sharding strategy

Not shar ding

defaultTableSh ard‐
ingStrategy (?)

Sharding StrategyCon‐
figuration

Default table sharding
strategy

Not shar ding

defaultKeyGe nerateS‐
trategy (?)

KeyG eneratorConfig‐
uration

Default key generator S nowf lake

shar dingAlgorithms
(+)

Map<String, Sharding‐
SphereAl gorithmCon‐
figuration>

Sharding algorithm
name and configura‐
tions

None

keyGenerators (?) Map<String, Sharding‐
SphereAl gorithmCon‐
figuration>

Key generate algo‐
rithm name and
configurations

None

Sharding Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

Attributes:

7.9. API Change Histories 373



Apache ShardingSphere document, v5.1.1

•
Name*

Dat aType Description Default Value

logic Table String Name of sharding
logic table

•

actua lData Nodes (?) String Describe data source
names and actual
tables, delimiter as
point. Multiple data
nodes split by comma,
support inline expres‐
sion

Broadcast table or
databases sharding
only

data baseS hardi ngStr
ategy (?)

Shard ingStr ategyC
onfigu ration

Databases sharding
strategy

Use default databases
sharding strategy

t ableS hardi ngStr at‐
egy (?)

Shard ingStr ategyC
onfigu ration

Tables sharding strat‐
egy

Use default tables
sharding strategy

keyG enera teStr ategy
(?)

K eyGene ratorC on‐
figu ration

Key generator configu‐
ration

Use default key gener‐
ator

Sharding Automatic Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

Attributes:

Name DataType Description Default Value

lo gicTable String Name of sharding
logic table

•

a ctualDat aSources (?) String Data source names.
Multiple data nodes
split by comma

Use all configured data
sources

sharding Strategy (?) Shardin gStrategyCo
nfiguration

Sharding strategy Use default sharding
strategy

key Generate Strategy
(?)

Key GeneratorCo nfig‐
uration

Key generator configu‐
ration

Use default key gener‐
ator

7.9. API Change Histories 374



Apache ShardingSphere document, v5.1.1

Sharding Strategy Configuration

Standard Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumn String Sharding column name
shardingAlgorithmName String Sharding algorithm name

Complex Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingColumns String Sharding column name, separated by commas
shardingAlgorithmName String Sharding algorithm name

Hint Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration

Attributes:

Name DataType Description

shardingAlgorithmName String Sharding algorithm name

None Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration

Attributes: None

Please refer to Built‐in Sharding Algorithm List for more details about type of algorithm.

7.9. API Change Histories 375

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding


Apache ShardingSphere document, v5.1.1

Key Generate Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration

Attributes:

Name DataType Description

column String Column name of key generate
keyGeneratorName String key generate algorithm name

Please refer to Built‐in Key Generate Algorithm List for more details about type of algorithm.

Readwrite-splitting

Root Configuration

Class name: ReadwriteSplittingRuleConfiguration

Attributes:

•
Name*

DataType Description

d ataSo urces (+) Collectio
n<ReadwriteSplittingData
SourceRuleConfiguration>

Data sources of write and reads

loa dBala ncers (*) Map<String, ShardingSpher
eAlgorithmConfiguration>

Load balance algorithm name
and configurations of replica
data sources

7.9. API Change Histories 376

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen


Apache ShardingSphere document, v5.1.1

Readwrite-splitting Data Source Configuration

Class name: ReadwriteSplittingDataSourceRuleConfiguration

Attributes:

Name D ataType Description Default Value

name String Readwrite‐splitting
data source name

•

writeDat aSource‐
Name

String Write sources source
name

•

readData Source‐
Names (+)

Co llection <String> Read sources source
name list

•

loadB alancerName (?) String Load balance algo‐
rithm name of replica
sources

Round robin load bal‐
ance algorithm

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm.

Encryption

Root Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

Attributes:

Name DataType Description D ef au
lt Va lu
e

tables (+) Collectio
n<EncryptTableRu
leConfiguration>

Encrypt table rule configurations

encr yptors
(+)

Map<String, Shard
ingSphereAlgorit hmCon‐
figuration>

Encrypt algorithm name and configurations

que ryWith
Cipher Col‐
umn (?)

boolean Whether query with cipher column for data
encrypt. User you can use plaintext to query
if have

tr ue

7.9. API Change Histories 377

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance


Apache ShardingSphere document, v5.1.1

Encrypt Table Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

Attributes:

•
Name*

DataType Description

name String Table name
co lumns (+) Collection <EncryptColumn‐

RuleConfiguration>
Encrypt column rule configura‐
tions

Encrypt Column Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

Attributes:

Name DataType Description

logicColumn String Logic column name
cipherColumn String Cipher column name
assistedQueryColumn (?) String Assisted query column name
plainColumn (?) String Plain column name
encryptorName String Encrypt algorithm name

Encrypt Algorithm Configuration

Classname: org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

Attributes:

Name DataType Description

name String Encrypt algorithm name
type String Encrypt algorithm type
properties Properties Encrypt algorithm properties

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

7.9. API Change Histories 378

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt


Apache ShardingSphere document, v5.1.1

Shadow DB

Root Configuration

Class name: org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

Attributes:

N am e D ataT
ype

Description

co lu mn St ring Shadow field name in SQL, SQL with a value of true will be routed
to the shadow database for execution

s ou rc eD at aS ou rc
eN am es

List <Str
ing>

Source data source names

s ha do wD at aS ou
rc eN am es

List <Str
ing>

Shadow data source names

Governance

Configuration Item Explanation

Management

Configuration Entrance

Class name: org.apache.shardingsphere.governance.repository.api.config.GovernanceConfiguration

Attributes:

Name Data Type Description

name String Governance instance name
regist ryCenterConfiguration Regis tryCenterConfiguration Config of registry‐center

The type of registryCenter could be Zookeeper or Etcd.

Governance Instance Configuration

Classname: org.apache.shardingsphere.governance.repository.api.config.ClusterPersistRepositoryConfiguration

Attributes:

7.9. API Change Histories 379



Apache ShardingSphere document, v5.1.1

•
N am e *

•
D a t a T y p e *

Description

t y p e S t r i n g Governance instance type,
such as: Zookeeper, etcd

s e r v e r L i s t s S t r i n g The list of servers that connect
to governance instance, includ‐
ing IP and port number, use
commas to separate, such as:
host1:2181,host2:2181

p r o p s P r o p e r t i e s Properties for center instance
config, such as options of
zookeeper

o v e r w r i t e b o o l e a n Local configurations overwrite
config center configurations or
not; if they overwrite, each
start takes reference of local
configurations

ZooKeeper Properties Configuration

Name •
Data T ype*

Description Default Value

digest (?) St ring Connect to authority
tokens in registry cen‐
ter

No need for authority

operationTi meoutMil‐
liseconds (?)

int The operation timeout
milliseconds

500 mi lliseconds

maxRetries (?) int The maximum retry
count

3

retryInt ervalMillisec‐
onds (?)

int The retry interval mil‐
liseconds

500 mi lliseconds

timeToLiveSeconds (?) int Time to live seconds
for ephemeral nodes

60 seconds

Etcd Properties Configuration

Name Data Type Description Default Value

ti meToLiveSeconds (?) long Time to live seconds for data persist 30 seconds

7.9. API Change Histories 380



Apache ShardingSphere document, v5.1.1

ShardingSphere-4.x

Sharding

ShardingDataSourceFactory

Name DataType Explanation

dataSourceMap Map<String, DataSource> Data sources configuration
sha rdingRuleConfig Shar dingRuleConfiguration Data sharding configuration rule
props (?) Properties Property configurations

ShardingRuleConfiguration

Name DataType Explanation

t ableRule‐
Configs

Collec‐
tion

Sharding rule list

bin
dingTable‐
Groups (?)

Collec‐
tion

Binding table rule list

broadcastTa‐
bles (?)

Collec‐
tion

Broadcast table rule list

defaul tData‐
SourceName
(?)

String Tables not configured with sharding rules will locate according to de‐
fault data sources

default
Database‐
Shardin
gStrategy‐
Config (?)

Sharding
Strategy‐
Configu‐
ration

Default database sharding strategy

defa ultTa‐
bleShardin
gStrategy‐
Config (?)

Sharding
Strategy‐
Configu‐
ration

Default table sharding strategy

defaultKey
Genera‐
torConfig
(?)

KeyG
enerator‐
Configu‐
ration

Default key generator configuration, use user‐defined ones or built‐
in ones, e.g. SNOWFLAKE/UUID. Default key generator is o rg.
apache.shardingsphere. core.keygen.generator.imp l.
SnowflakeKeyGenerator

masterS
laveRuleCon‐
figs (?)

Collec‐
tion

Read‐write split rules, default indicates not using read‐write split

7.9. API Change Histories 381



Apache ShardingSphere document, v5.1.1

TableRuleConfiguration

Name DataType Explanation

logicTable String Name of logic table
actual‐
DataNodes
(?)

String Describe data source names and actual tables, delimiter as point, mul‐
tiple data nodes split by comma, support inline expression. Absent
means sharding databases only. Example: ds: math:{0..7}.tbl{0..7}

database‐
Shardin
gStrate‐
gyConfig
(?)

Sharding
Strategy‐
Configura‐
tion

Databases sharding strategy, use default databases sharding strategy if
absent

table‐
Shardin
gStrate‐
gyConfig
(?)

Sharding
Strategy‐
Configura‐
tion

Tables sharding strategy, use default databases sharding strategy if ab‐
sent

key Genera‐
torConfig (?)

KeyG en‐
eratorCon‐
figuration

Key generator configuration, use default key generator if absent

encrypt
orConfig‐
uration
(?)

E ncryp‐
torConfig‐
uration

Encrypt generator configuration

StandardShardingStrategyConfiguration

Subclass of ShardingStrategyConfiguration.

Name DataType Explanation

shardingColumn String Sharding column name
preciseSh ardingAlgo‐
rithm

Pre ciseShardingAlgo‐
rithm

Precise sharding algorithm used in = and
IN

rangeSh ardingAlgorithm
(?)

R angeShardingAlgo‐
rithm

Range sharding algorithm used in BE-
TWEEN

7.9. API Change Histories 382



Apache ShardingSphere document, v5.1.1

ComplexShardingStrategyConfiguration

The implementation class of ShardingStrategyConfiguration, used in complex sharding situa‐
tions with multiple sharding keys.

Name DataType Explanation

shardingColumns String Sharding column name, separated by com‐
mas

shardingAlgo‐
rithm

Complex KeysShardingAlgo‐
rithm

Complex sharding algorithm

InlineShardingStrategyConfiguration

The implementation class ofShardingStrategyConfiguration, used in sharding strategy of inline
expression.

Name DataTypeExplanation

sharding‐
Columns

String Sharding column name, separated by commas

algo rithmEx‐
pression

String Inline expression of sharding strategies, should conform to groovy syntax;
refer to Inline expression for more details

HintShardingStrategyConfiguration

The implementation class of ShardingStrategyConfiguration, used to configure hint sharding
strategies.

Name DataType Description

shardingAlgorithm HintShardingAlgorithm Hint sharding algorithm

NoneShardingStrategyConfiguration

The implementation class of ShardingStrategyConfiguration, used to configure none‐sharding
strategies.

7.9. API Change Histories 383



Apache ShardingSphere document, v5.1.1

KeyGeneratorConfiguration

Name DataType Description

col‐
umn

String Column name of key generator

type String Type of key generator, use user‐defined ones or built‐in ones,
e.g. SNOWFLAKE, UUID

props Proper‐
ties

The Property configuration of key generators

Properties

Property configuration that can include these properties of these key generators.

SNOWFLAKE

Name •
Data T ype*

Explanation

m ax.tolerate.time.dif fer‐
ence.milliseconds (?)

long The max tolerate time for dif‐
ferent server’s time differ‐
ence in milliseconds, the de‐
fault value is 10

max.vibration.offset (?) int The max upper limit value of
vibrate number, range [0,
4096), the default value is
1. Notice: To use the gener‐
ated value of this algorithm
as sharding value, it is rec‐
ommended to configure this
property. The algorithm gen‐
erates key mod 2^n (2^n is
usually the sharding amount
of tables or databases) in dif‐
ferent milliseconds and the
result is always 0 or 1. To
prevent the above sharding
problem, it is recommended
to configure this property, its
value is (2^n)-1

7.9. API Change Histories 384



Apache ShardingSphere document, v5.1.1

Readwrite-splitting

MasterSlaveDataSourceFactory

Name DataType Explanation

dataSourceMap Map<String, DataSource> Mapping of data source and its name
master SlaveRuleConfig MasterS laveRuleConfiguration Master slave rule configuration
props (?) Properties Property configurations

MasterSlaveRuleConfiguration

Name DataType Explanation

name String Readwrite‐splitting data source
name

maste rDataSource‐
Name

String Master database source name

slave DataSourceNames Collection Slave database source name list
loadB alanceAlgorithm
(?)

MasterSlav eLoadBalanceAlgo‐
rithm

Slave database load balance

Properties

Property configuration items, can be of the following properties.

Name •
Data T ype*

Explanation

sql.show (?) boo lean Print SQL parse and rewrite log
or not, default value: false

executor.size (?) int Be used inwork thread number
implemented by SQL; no limits
if it is 0. default value: 0

max.connec
tions.size.per.query (?)

int The maximum connec‐
tion number allocated by
each query of each physical
database, default value: 1

check.ta ble.metadata.enabled
(?)

boo lean Check meta‐data consistency
or not in initialization, default
value: false

7.9. API Change Histories 385



Apache ShardingSphere document, v5.1.1

Data Masking

EncryptDataSourceFactory

Name DataType Explanation

dataSource DataSource Data source
encryptRuleConfig EncryptRuleConfiguration encrypt rule configuration
props (?) Properties Property configurations

EncryptRuleConfiguration

Name DataType Explanation

encryp‐
tors

Map<String, Encryp torRuleConfiguration> Encryptor names and encryptors

tables Map<String, EncryptTa bleRuleConfigura‐
tion>

Encrypt table names and encrypt ta‐
bles

Properties

Property configuration items, can be of the following properties.

Name •
Data T ype*

Explanation

sql.show (?) boo lean Print SQL parse and rewrite log
or not, default value: false

quer y.with.cipher.column (?) boo lean When there is a plainColumn,
use cipherColumn or not to
query, default value: true

Orchestration

OrchestrationShardingDataSourceFactory

Name DataType Explanation

dataSourceMap Map<String, DataSource> Same as ˋˋ ShardingDataSourceFactoryˋˋ
sha rdingRuleConfig Shar dingRuleConfiguration Same as ˋˋ ShardingDataSourceFactoryˋˋ
props (?) Properties Same as ˋˋ ShardingDataSourceFactoryˋˋ
orch estrationConfig Orche strationConfiguration Orchestration rule configurations

7.9. API Change Histories 386



Apache ShardingSphere document, v5.1.1

OrchestrationMasterSlaveDataSourceFactory

Name DataType Explanation

dataSourceMap Map<String, DataSource> Same as Mas terSlaveDataSourceFac-
tory

master SlaveRule‐
Config

MasterS laveRuleConfigura‐
tion

Same as Mas terSlaveDataSourceFac-
tory

configMap (?) Map<String, Object> Same as Mas terSlaveDataSourceFac-
tory

props (?) Properties Same as ˋˋ ShardingDataSourceFactoryˋˋ
orch estrationConfig Orche strationConfiguration Orchestration rule configurations

OrchestrationEncryptDataSourceFactory

Name DataType Explanation

dataSource DataSource Same as ˋ EncryptDataSourceFactory`

en cryptRuleConfig Enc ryptRuleConfiguration Same as ˋ EncryptDataSourceFactory`

props (?) Properties Same as ˋ EncryptDataSourceFactory`

orch estrationConfig Orche strationConfiguration Orchestration rule configurations

OrchestrationConfiguration

Name DataType Explanation

instanceC
onfiguration‐
Map

Map<String,
CenterConfigura‐
tion>

configmapof config‐ center&registry‐center，the key is center’
s name，the value is the co nfig‐center/registry‐center

7.9. API Change Histories 387



Apache ShardingSphere document, v5.1.1

CenterConfiguration

Name DataTypeExplanation

type String The type of center instance(z ookeeper/etcd/apollo/nacos)
proper‐
ties

String Properties for center instance config, such as options of zookeeper

or ches‐
tra‐
tionType

String The type of orchestration center: config‐center or registry‐center, if both, use
“s etOrchestrationType(“regist ry_center,config_center”);”

serverLists String Connect to server lists in center, including IP address and port number; ad‐
dresses are separated by commas, such as host1:2181,host2:2181

names‐
pace
(?)

String Namespace of center instance

Properties

Property configuration items, can be of the following properties.

Name •
Data T ype*

Explanation

overwrite boo lean Local configurations overwrite
center configurations or not; if
they overwrite, each start takes
reference of local configura‐
tions

If type of center is zookeeper with config‐center&registry‐center, properties could be set with the
follow options:

7.9. API Change Histories 388



Apache ShardingSphere document, v5.1.1

Name •
Data T ype*

Explanation

digest (?) St ring Connect to authority tokens in
registry center; default indi‐
cates no need for authority

operatio nTimeoutMillisec‐
onds (?)

int Theoperation timeoutmillisec‐
ond number, default to be 500
milliseconds

maxRetries (?) int The maximum retry count, de‐
fault to be 3 times

retry IntervalMilliseconds (?) int The retry interval millisecond
number, default to be 500 mil‐
liseconds

timeToLiveSeconds (?) int The living time for temporary
nodes, default to be 60 seconds

If type of center is etcd with config‐center&registry‐center, properties could be set with the follow
options:

Name •
Data T ype*

Explanation

timeToLiveSeconds (?) long The etcd TTL in seconds, de‐
fault to be 30 seconds

If type of center is apollo with config‐center&registry‐center, properties could be set with the follow
options:

Name •
Data T ype*

Explanation

appId (?) St ring Apollo appId, default to be
“APOLLO_SHARDINGSPHERE”

env (?) St ring Apollo env, default to be“DEV”
clusterName (?) St ring Apollo clusterName, default to

be“default”
administrator (?) St ring Apollo administrator, default to

be“”
token (?) St ring Apollo token, default to be“”
portalUrl (?) St ring Apollo portalUrl, default to be

“”
connectTimeout (?) int Apollo connectTimeout, de‐

fault to be 1000 milliseconds
readTimeout (?) int Apollo readTimeout, default to

be 5000 milliseconds

7.9. API Change Histories 389



Apache ShardingSphere document, v5.1.1

If type of center is nacos with config‐center&registry‐center, properties could be set with the follow
options:

Name Data Type Explanation

group (?) String Nacos group,“SHARDING_SPHERE_DEFAULT_GROUP”in default
timeout (?) long Nacos timeout, default to be 3000 milliseconds

ShardingSphere-3.x

Sharding

ShardingDataSourceFactory

Name DataType Explanation

dataSourceMap Map<String, DataSource> Data sources configuration
sha rdingRuleConfig Shar dingRuleConfiguration Data sharding configuration rule
configMap (?) Map<String, Object> Config map
props (?) Properties Property configurations

ShardingRuleConfiguration

Name DataType Explanation

t ableRuleConfigs Collection Table rule configuration
bin dingTableGroups
(?)

Collection Binding table groups

broadcastTables (?) Collection Broadcast table groups
defaul tDataSource‐
Name (?)

String Tables not configuredwith sharding ruleswill locate ac‐
cording to default data sources

default Database‐
Shardin gStrategyCon‐
fig (?)

Sharding Strat‐
egyConfigura‐
tion

Default database sharding strategy

defa ultTableShardin
gStrategyConfig (?)

Sharding Strat‐
egyConfigura‐
tion

Default table sharding strategy

defaultKey Generator‐
Config (?)

KeyGenerator Default key generator, default value is i
o.shardingsphere.core.key gen.
DefaultKeyGenerator

masterS laveRuleCon‐
figs (?)

Collection Read‐write splitting rule configuration

7.9. API Change Histories 390



Apache ShardingSphere document, v5.1.1

TableRuleConfiguration

Name DataType Explanation

logicTable String Name of logic table
actual‐
DataNodes
(?)

String Describe data source names and actual tables, delimiter as point, mul‐
tiple data nodes split by comma, support inline expression. Absent
means sharding databases only. Example: ds: math:{0..7}.tbl{0..7}

database‐
Shardin
gStrate‐
gyConfig
(?)

Sharding
Strategy‐
Configura‐
tion

Databases sharding strategy, use default databases sharding strategy if
absent

table‐
Shardin
gStrate‐
gyConfig
(?)

Sharding
Strategy‐
Configura‐
tion

Tables sharding strategy, use default databases sharding strategy if ab‐
sent

logicIndex
(?)

String Name if logic index. If use DROP INDEX XXX SQL in Ora‐
cle/PostgreSQL, This property needs to be set for finding the actual ta‐
bles

key Genera‐
torConfig (?)

String Key generator column name, do not use Key generator if absent

keyGenera‐
tor (?)

KeyGener‐
ator

Key generator, use default key generator if absent

StandardShardingStrategyConfiguration

Subclass of ShardingStrategyConfiguration.

Name DataType Explanation

shardingColumn String Sharding column name
preciseSh ardingAlgo‐
rithm

Pre ciseShardingAlgo‐
rithm

Precise sharding algorithm used in = and
IN

rangeSh ardingAlgorithm
(?)

R angeShardingAlgo‐
rithm

Range sharding algorithm used in BE-
TWEEN

7.9. API Change Histories 391



Apache ShardingSphere document, v5.1.1

ComplexShardingStrategyConfiguration

Subclass of ShardingStrategyConfiguration.

Name DataType Explanation

shardingColumns String Sharding column name, separated by com‐
mas

shardingAlgo‐
rithm

Complex KeysShardingAlgo‐
rithm

Complex sharding algorithm

InlineShardingStrategyConfiguration

Subclass of ShardingStrategyConfiguration.

Name DataTypeExplanation

sharding‐
Columns

String Sharding column name, separated by commas

algo rithmEx‐
pression

String Inline expression of sharding strategies, should conform to groovy syntax;
refer to Inline expression for more details

HintShardingStrategyConfiguration

Subclass of ShardingStrategyConfiguration.

Name DataType Description

shardingAlgorithm HintShardingAlgorithm Hint sharding algorithm

NoneShardingStrategyConfiguration

Subclass of ShardingStrategyConfiguration.

Properties

Enumeration of properties.

7.9. API Change Histories 392



Apache ShardingSphere document, v5.1.1

Name •
Data T ype*

Explanation

sql.show (?) boo lean Print SQLparse and rewrite log,
default value: false

executor.size (?) int The number of SQL execution
threads, zero means no limit.
default value: 0

max.connec
tions.size.per.query (?)

int Max connection size for every
query to every actual database.
default value: 1

check.ta ble.metadata.enabled
(?)

boo lean Check the metadata consis‐
tency of all the tables, default
value : false

configMap

User‐defined arguments.

Readwrite-splitting

MasterSlaveDataSourceFactory

Name DataType Description

dataSourceMap Map<String, DataSource> Map of data sources and their names
master SlaveRuleConfig MasterS laveRuleConfiguration Master slave rule configuration
configMap (?) Map<String, Object> Config map
props (?) Properties Properties

MasterSlaveRuleConfiguration

Name DataType Description

name String Name ofmaster slave data source
mast erDataSourceName String Name of master data source
slav eDataSourceNames Collection Names of Slave data sources
load BalanceAlgorithm
(?)

MasterSla veLoadBalanceAlgo‐
rithm

Load balance algorithm

7.9. API Change Histories 393



Apache ShardingSphere document, v5.1.1

configMap

User‐defined arguments.

PropertiesConstant

Enumeration of properties.

Name •
Dat aTy pe*

Description

sql.show (?) b ool ean To show SQLS or not, default
value: false

executor.size (?) int The number of working
threads, default value: CPU
count

max.connec
tions.size.per.query (?)

int Max connection size for every
query to every actual database.
default value: 1

check.ta ble.metadata.enabled
(?)

b ool ean Check the metadata consis‐
tency of all the tables, default
value : false

Orchestration

OrchestrationShardingDataSourceFactory

Name DataType Explanation

dataSourceMap Map<String, DataSource> Same as ˋˋ ShardingDataSourceFactoryˋˋ
sha rdingRuleConfig Shar dingRuleConfiguration Same as ˋˋ ShardingDataSourceFactoryˋˋ
configMap (?) Map<String, Object> Same with ˋˋ ShardingDataSourceFactoryˋˋ
props (?) Properties Same as ˋˋ ShardingDataSourceFactoryˋˋ
orch estrationConfig Orche strationConfiguration Orchestration rule configurations

7.9. API Change Histories 394



Apache ShardingSphere document, v5.1.1

OrchestrationMasterSlaveDataSourceFactory

Name DataType Explanation

dataSourceMap Map<String, DataSource> Same as Mas terSlaveDataSourceFac-
tory

master SlaveRule‐
Config

MasterS laveRuleConfigura‐
tion

Same as Mas terSlaveDataSourceFac-
tory

configMap (?) Map<String, Object> Same as Mas terSlaveDataSourceFac-
tory

props (?) Properties Same as ˋˋ ShardingDataSourceFactoryˋˋ
orch estrationConfig Orche strationConfiguration Orchestration configurations

OrchestrationConfiguration

Name DataType Explanation

name String Name of orchestration instance
overwrite boolean Use local configuration to overwrite registry center

or not
regCenterCon‐
fig

Regist ryCenterConfigura‐
tion

Registry center configuration

RegistryCenterConfiguration

Name DataType Explanation

serverLists String Registry servers list, multiple split as comma. Example:
host1:2181,host2:2181

namespace (?) String Namespace of registry
digest (?) String Digest for registry. Default is not need digest.
operationTime outMil‐
liseconds (?)

int Operation timeout time in milliseconds. Default value is 500
milliseconds.

maxRetries (?) int Max number of times to retry. Default value is 3
retryInter valMilliseconds
(?)

int Time interval in milliseconds on each retry. Default value is
500 milliseconds.

ti meToLiveSeconds (?) int Time to live in seconds of ephemeral keys. Default value is
60 seconds.

7.9. API Change Histories 395



Apache ShardingSphere document, v5.1.1

ShardingSphere-2.x

Readwrite-splitting

concept

In order to relieve the pressure on the database, the write and read operations are separated into differ‐
ent data sources. The write library is called the master library, and the read library is called the slave
library. One master library can be configured with multiple slave libraries.

Supported

1. Provides a readwrite‐splitting configuration with one master and multiple slaves, which can be
used independently or with sub‐databases and sub‐meters.

2. Independent use of readwrite‐splitting to support SQL transparent transmission.

3. In the same thread and the same database connection, if there is a write operation, subsequent
read operations will be read from the main library to ensure data consistency.

4. Spring namespace.

5. Hint‐based mandatory main library routing.

Unsupported

1. Data synchronization between the master library and the slave library.

2. Data inconsistency caused by the data synchronization delay of the master library and the slave
library.

3. Double writing or multiple writing in the main library.

Code development example

only readwrite-splitting

// Constructing a readwrite-splitting data source, the readwrite-splitting data
source implements the DataSource interface, which can be directly processed as a
data source. masterDataSource, slaveDataSource0, slaveDataSource1, etc. are real
data sources configured using connection pools such as DBCP
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("masterDataSource", masterDataSource);
dataSourceMap.put("slaveDataSource0", slaveDataSource0);
dataSourceMap.put("slaveDataSource1", slaveDataSource1);

// Constructing readwrite-splitting configuration

7.9. API Change Histories 396



Apache ShardingSphere document, v5.1.1

MasterSlaveRuleConfiguration masterSlaveRuleConfig = new
MasterSlaveRuleConfiguration();
masterSlaveRuleConfig.setName("ms_ds");
masterSlaveRuleConfig.setMasterDataSourceName("masterDataSource");
masterSlaveRuleConfig.getSlaveDataSourceNames().add("slaveDataSource0");
masterSlaveRuleConfig.getSlaveDataSourceNames().add("slaveDataSource1");

DataSource dataSource = MasterSlaveDataSourceFactory.
createDataSource(dataSourceMap, masterSlaveRuleConfig);

sharding table and database + readwrite-splitting

// Constructing a readwrite-splitting data source, the readwrite-splitting data
source implements the DataSource interface, which can be directly processed as a
data source. masterDataSource, slaveDataSource0, slaveDataSource1, etc. are real
data sources configured using connection pools such as DBCP
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("masterDataSource0", masterDataSource0);
dataSourceMap.put("slaveDataSource00", slaveDataSource00);
dataSourceMap.put("slaveDataSource01", slaveDataSource01);

dataSourceMap.put("masterDataSource1", masterDataSource1);
dataSourceMap.put("slaveDataSource10", slaveDataSource10);
dataSourceMap.put("slaveDataSource11", slaveDataSource11);

// Constructing readwrite-splitting configuration
MasterSlaveRuleConfiguration masterSlaveRuleConfig0 = new
MasterSlaveRuleConfiguration();
masterSlaveRuleConfig0.setName("ds_0");
masterSlaveRuleConfig0.setMasterDataSourceName("masterDataSource0");
masterSlaveRuleConfig0.getSlaveDataSourceNames().add("slaveDataSource00");
masterSlaveRuleConfig0.getSlaveDataSourceNames().add("slaveDataSource01");

MasterSlaveRuleConfiguration masterSlaveRuleConfig1 = new
MasterSlaveRuleConfiguration();
masterSlaveRuleConfig1.setName("ds_1");
masterSlaveRuleConfig1.setMasterDataSourceName("masterDataSource1");
masterSlaveRuleConfig1.getSlaveDataSourceNames().add("slaveDataSource10");
masterSlaveRuleConfig1.getSlaveDataSourceNames().add("slaveDataSource11");

// Continue to create ShardingDataSource through ShardingSlaveDataSourceFactory
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
shardingRuleConfig.getMasterSlaveRuleConfigs().add(masterSlaveRuleConfig0);
shardingRuleConfig.getMasterSlaveRuleConfigs().add(masterSlaveRuleConfig1);

DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap,

7.9. API Change Histories 397



Apache ShardingSphere document, v5.1.1

shardingRuleConfig);

ShardingSphere-1.x

Readwrite-splitting

concept

In order to relieve the pressure on the database, the write and read operations are separated into differ‐
ent data sources. The write library is called the master library, and the read library is called the slave
library. One master library can be configured with multiple slave libraries.

Supported

1. Provides a readwrite‐splitting configuration with one master and multiple slaves, which can be
used independently or with sub‐databases and sub‐meters.

2. In the same thread and the same database connection, if there is a write operation, subsequent
read operations will be read from the main library to ensure data consistency.

3. Spring namespace.

4. Hint‐based mandatory main library routing.

Unsupported

1. Data synchronization between the master library and the slave library.

2. Data inconsistency caused by the data synchronization delay of the master library and the slave
library.

3. Double writing or multiple writing in the main library.

Code development example

// Constructing a readwrite-splitting data source, the readwrite-splitting data
source implements the DataSource interface, which can be directly processed as a
data source. masterDataSource, slaveDataSource0, slaveDataSource1, etc. are real
data sources configured using connection pools such as DBCP
Map<String, DataSource> slaveDataSourceMap0 = new HashMap<>();
slaveDataSourceMap0.put("slaveDataSource00", slaveDataSource00);
slaveDataSourceMap0.put("slaveDataSource01", slaveDataSource01);
// You can choose the master-slave library load balancing strategy, the default is
ROUND_ROBIN, and there is RANDOM to choose from, or customize the load strategy
DataSource masterSlaveDs0 = MasterSlaveDataSourceFactory.createDataSource("ms_0",
"masterDataSource0", masterDataSource0, slaveDataSourceMap0,

7.9. API Change Histories 398



Apache ShardingSphere document, v5.1.1

MasterSlaveLoadBalanceStrategyType.ROUND_ROBIN);

Map<String, DataSource> slaveDataSourceMap1 = new HashMap<>();
slaveDataSourceMap1.put("slaveDataSource10", slaveDataSource10);
slaveDataSourceMap1.put("slaveDataSource11", slaveDataSource11);
DataSource masterSlaveDs1 = MasterSlaveDataSourceFactory.createDataSource("ms_1",
"masterDataSource1", masterDataSource1, slaveDataSourceMap1,
MasterSlaveLoadBalanceStrategyType.ROUND_ROBIN);

// Constructing readwrite-splitting configuration
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("ms_0", masterSlaveDs0);
dataSourceMap.put("ms_1", masterSlaveDs1);

Spring namespace configuration change history

ShardingSphere-5.0.0-beta

Sharding

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‐5.0.0.xsd

<sharding:rule />

Name T ype Description

id A ttri bute Spring Bean Id
table‐rules (?) Tag Sharding table rule configuration
auto‐table‐rules (?) Tag Automatic sharding table rule configuration
binding‐table‐rules (?) Tag Binding table rule configuration
broadcast‐table‐rules (?) Tag Broadcast table rule configuration
def ault‐database‐strategy‐ref (?) A ttri bute Default database strategy name
default‐table‐strategy‐ref (?) A ttri bute Default table strategy name
default ‐key‐generate‐strategy‐ref (?) A ttri bute Default key generate strategy name
default‐sharding‐column (?) A ttri bute Default sharding column name

<sharding:table‐rule />

7.9. API Change Histories 399

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.0.0.xsd


Apache ShardingSphere document, v5.1.1

Name Type Description

logic‐table At
trib‐
ute

Logic table name

actual‐
data‐nodes

At
trib‐
ute

Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means shard‐
ing databases only.

actual‐
data‐
sources

At
trib‐
ute

Data source names for auto sharding table

database‐
strategy‐
ref

At
trib‐
ute

Database strategy name for standard sharding table

table‐
strategy‐
ref

At
trib‐
ute

Table strategy name for standard sharding table

sharding‐
strategy‐
ref

At
trib‐
ute

sharding strategy name for auto sharding table

key‐
generate‐
strategy‐
ref

At
trib‐
ute

Key generate strategy name

<sharding:binding‐table‐rules />

Name Type Description

binding‐table‐rule (+) Tag Binding table rule configuration

<sharding:binding‐table‐rule />

Name •
Type*

Description

logi c‐tables Attr ibute Binding table name, multiple
tables separated with comma

<sharding:broadcast‐table‐rules />

Name Type Description

broadcast‐table‐rule (+) Tag Broadcast table rule configuration

<sharding:broadcast‐table‐rule />

7.9. API Change Histories 400



Apache ShardingSphere document, v5.1.1

Name Type Description

table Attribute Broadcast table name

<sharding:standard‐strategy />

Name Type Description

id Attribute Standard sharding strategy name
sharding‐column Attribute Sharding column name
algorithm‐ref Attribute Sharding algorithm name

<sharding:complex‐strategy />

Name T ype Description

id A ttri bute Complex sharding strategy name
shardi ng‐
columns

A ttri bute Sharding column names, multiple columns separated with
comma

alg orithm‐ref A ttri bute Sharding algorithm name

<sharding:hint‐strategy />

Name Type Description

id Attribute Hint sharding strategy name
algorithm‐ref Attribute Sharding algorithm name

<sharding:none‐strategy />

Name Type Description

id Attribute Sharding strategy name

<sharding:key‐generate‐strategy />

Name Type Description

id Attribute Key generate strategy name
column Attribute Key generate column name
algorithm‐ref Attribute Key generate algorithm name

<sharding:sharding‐algorithm />

Name Type Description

id Attribute Sharding algorithm name
type Attribute Sharding algorithm type
props (?) Tag Sharding algorithm properties

7.9. API Change Histories 401



Apache ShardingSphere document, v5.1.1

<sharding:key‐generate‐algorithm />

Name Type Description

id Attribute Key generate algorithm name
type Attribute Key generate algorithm type
props (?) Tag Key generate algorithm properties

Please refer to Built‐in Sharding Algorithm List and Built‐in Key Generate Algorithm List for more de‐
tails about type of algorithm.

Attention

Inline expression identifier can use ${...} or $->{...}, but ${...} is conflict with spring place‐
holder of properties, so use $->{...} on spring environment is better.

Readwrite-Splitting

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/readwrite‐splitting/readwrit
e‐splitting‐5.0.0.xsd

<readwrite‐splitting:rule />

Name •
Type*

Description

id Attr ibute Spring Bean Id
data‐source‐rule (+) Tag Readwrite‐splitting data source

rule configuration

<readwrite‐splitting:data‐source‐rule />

Name Ty pe Description

id Att rib
ute

Readwrite‐splitting data source rule name

write‐da ta‐source‐
name

Att rib
ute

Write data source name

read‐dat a‐source‐
names

Att rib
ute

Read data source names, multiple data source names separated
with comma

load‐balance ‐
algorithm‐ref

Att rib
ute

Load balance algorithm name

<readwrite‐splitting:load‐balance‐algorithm />

7.9. API Change Histories 402

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.0.0.xsd


Apache ShardingSphere document, v5.1.1

Name Type Description

id Attribute Load balance algorithm name
type Attribute Load balance algorithm type
props (?) Tag Load balance algorithm properties

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Use Norms for more details about query consistent routing.

Encryption

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt‐5.0.0.xsd

<encrypt:rule />

Name •
T y p e *

Description Def ault Va lue

id A t t r i b u t e Spring Bean Id
que ryWithCip herCol‐
umn (?)

A t t r i b u t e Whether querywith ci‐
pher column for data
encrypt. User you can
use plaintext to query
if have

true

table (+) T a g Encrypt table configu‐
ration

<encrypt:table />

Name Type Description

name Attribute Encrypt table name
column (+) Tag Encrypt column configuration

<encrypt:column />

Name Type Description

logic‐column Attribute Column logic name
cipher‐column Attribute Cipher column name
assisted‐query‐column (?) Attribute Assisted query column name
plain‐column (?) Attribute Plain column name
encrypt‐algorithm‐ref Attribute Encrypt algorithm name

<encrypt:encrypt‐algorithm />

7.9. API Change Histories 403

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms
http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.0.0.xsd


Apache ShardingSphere document, v5.1.1

Name Type Description

id Attribute Encrypt algorithm name
type Attribute Encrypt algorithm type
props (?) Tag Encrypt algorithm properties

Please refer to Built‐in Encrypt Algorithm List for more details about type of algorithm.

Shadow-DB

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow‐5.0.0.xsd

<shadow:rule />

Name Type Description

id At‐
tribute

Spring Bean Id

column At‐
tribute

Shadow column name

map‐
pings(?)

Tag Mapping relationship betweenproductiondatabase and shadowdatabase

<shadow:mapping />

Name Type Description

product‐data‐source‐name Attribute Production database name
shadow‐data‐source‐name Attribute Shadow database name

4.x

Sharding

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding.xsd

<sharding:data‐source />

Name Type Description

id Attribute Spring Bean Id
sharding‐rule Tag Sharding rule configuration
props (?) Tag Properties

7.9. API Change Histories 404

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt
http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding.xsd


Apache ShardingSphere document, v5.1.1

<sharding:sharding‐rule />

Name T
ype

Description

data‐
source‐
names

A
ttri
bute

Data source Bean list with comma separating multiple Beans

table‐rules Tag Configuration objects of table sharding rules
binding‐
table‐rules
(?)

Tag Binding table rule list

broadcast‐
table‐rules
(?)

Tag Broadcast table rule list

default‐
data‐
source‐
name
(?)

A
ttri
bute

Tables without sharding rules will be located through default data source

def ault‐
database‐
strategy‐
ref (?)

A
ttri
bute

Default database sharding strategy, which corresponds to id of ; default means
the database is not split

default‐
table‐
strategy‐
ref (?)

A
ttri
bute

Default table sharding strategy,which corresponds to id of ; default means the
database is not split

default‐
key‐
generator
(?)

A
ttri
bute

Default key generator configuration, use user‐defined ones or built‐in ones,
e.g. SNOWFLAKE/UUID. Default key generator is org.apache.sha rding-
sphere.core.keygen.generat or.impl.SnowflakeKeyGenerator

encrypt‐
rule (?)

Tag Encrypt rule

<sharding:table‐rules />

Name Type Description

table‐rule (+) Tag Configuration objects of table sharding rules

<sharding:table‐rule />

7.9. API Change Histories 405



Apache ShardingSphere document, v5.1.1

Name Type Description

logic‐table At
trib‐
ute

Logic table name

actual‐
data‐nodes
(?)

At
trib‐
ute

Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means shard‐
ing databases only.

database‐
strategy‐
ref

At
trib‐
ute

Database strategy name for standard sharding table

table‐
strategy‐
ref

At
trib‐
ute

Table strategy name for standard sharding table

key‐
generate‐
strategy‐
ref

At
trib‐
ute

Key generate strategy name

<sharding:binding‐table‐rules />

Name Type Description

binding‐table‐rule (+) Tag Binding table rule configuration

<sharding:binding‐table‐rule />

Name •
Type*

Description

logi c‐tables Attr ibute Binding table name, multiple
tables separated with comma

<sharding:broadcast‐table‐rules />

Name Type Description

broadcast‐table‐rule (+) Tag Broadcast table rule configuration

<sharding:broadcast‐table‐rule />

Name Type Description

table Attribute Broadcast table name

<sharding:standard‐strategy />

7.9. API Change Histories 406



Apache ShardingSphere document, v5.1.1

Name Type Description

id A
ttribute

Standard sharding strategy name

sharding‐
column

A
ttribute

Sharding column name

preci se‐
algorithm‐ref
(?)

A
ttribute

Precise algorithm reference, applied in = and IN; the class needs to im‐
plement PreciseShardingAlgorithm interface

ran ge‐
algorithm‐ref
(?)

A
ttribute

Range algorithm reference, applied in BETWEEN; the class needs to imple‐
ment RangeShardingAlgorithm interface

<sharding:complex‐strategy />

Name T ype Description

id A ttri
bute

Complex sharding strategy name

shardi
ng‐columns

A ttri
bute

Sharding column names, multiple columns separated with comma

alg orithm‐
ref

A ttri
bute

Complex sharding algorithm reference; the class needs to implement Com-
plexKeysShardingAlgorithm interface

<sharding:inline‐strategy />

Name T ype Description

id A ttri
bute

Spring Bean Id

shardi ng‐
columns

A ttri
bute

Sharding column names, multiple columns separated with comma

alg orithm‐ref A ttri
bute

Sharding algorithm inline expression, which needs to conform to
groovy statements

<sharding:hint‐database‐strategy />

Name Type Description

id At‐
tribute

Hint sharding strategy name

algorithm‐
ref

At‐
tribute

Hint sharding algorithm; the class needs to implement HintShardingAl-
gorithm interface

<sharding:none‐strategy />

Name Type Description

id Attribute Spring Bean Id

7.9. API Change Histories 407



Apache ShardingSphere document, v5.1.1

<sharding:key‐generator />

Name Type Description

col‐
umn

At‐
tribute

Auto‐increment column name

type At‐
tribute

Auto‐increment key generator Type; self‐defined generator or internal Type gen‐
erator (SNOWFLAKE/UUID) can both be selected

props‐
ref

At‐
tribute

The Property configuration reference of key generators

Properties Property configuration that can include these properties of these key generators.

SNOWFLAKE | Name | Data Type | Explanation | | ————‐ | ———| —————————| |
max.tolerate.time.difference.milliseconds (?) | long | The max tolerate time for different server’
s time difference in milliseconds, the default value is 10 | | max.vibration.offset (?) | int | The max
upper limit value of vibrate number, range [0, 4096), the default value is 1. Notice: To use the
generated value of this algorithm as sharding value, it is recommended to configure this property.
The algorithm generates key mod 2^n (2^n is usually the sharding amount of tables or databases) in
different milliseconds and the result is always 0 or 1. To prevent the above sharding problem, it is
recommended to configure this property, its value is (2^n)-1 |

<sharding:encrypt‐rules />

Name Type Description

encryptor‐rule (+) Tag Encryptor rule

<sharding:encrypt‐rule />

Name Type Description

encrypt:encrypt‐rule(?) Tag Encrypt rule

<sharding:props />

Name Type Description

sql.show (?) At‐
tribute

Show SQL or not; default value: false

exec utor.size (?) At‐
tribute

Executing thread number; default value: CPU core number

max .connecti ons.size.
per.query (?)

At‐
tribute

The maximum connection number that each physical database
allocates to each query; default value: 1

c heck.tabl e.metadat
a.enabled (?)

At‐
tribute

Whether to check meta‐data consistency of sharding table when
it initializes; default value: false

query. with.ciph
er.column (?)

At‐
tribute

When there is a plainColumn, use cipherColumn or not to query,
default value: true

7.9. API Change Histories 408



Apache ShardingSphere document, v5.1.1

Readwrite-Splitting

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/masterslave/master‐slave.x
sd

<master‐slave:data‐source />

Name T
ype

Explanation

id A
ttri
bute

Spring Bean id

master‐d
ata‐source‐
name

A
ttri
bute

Bean id of data source in master database

slave‐da
ta‐source‐
names

A
ttri
bute

Bean id list of data source in slave database; multiple Beans are separated by
commas

strategy‐
ref (?)

A
ttri
bute

Slave database load balance algorithm reference; the class needs to implement
MasterSlaveLoadBalanceAlgorithm interface

strategy‐
type (?)

A
ttri
bute

Load balance algorithm type of slave database; optional value: ROUND_ROBIN
and RANDOM; if there is load-balance-algorithm-class-name, the
configuration can be omitted

config‐
map (?)

Tag Users’self‐defined configurations

props (?) Tag Attribute configurations

<master‐slave:props />

Name Ty pe Explanation

sql.show (?) Att rib
ute

Show SQL or not; default value: false

executor.size (?) Att rib
ute

Executing thread number; default value: CPU core number

max.connec
tions.size.per.query
(?)

Att rib
ute

The maximum connection number that each physical database
allocates to each query; default value: 1

check.ta
ble.metadata.enabled
(?)

Att rib
ute

Whether to check meta‐data consistency of sharding table when
it initializes; default value: false

<master‐slave:load‐balance‐algorithm />

7.9. API Change Histories 409

http://shardingsphere.apache.org/schema/shardingsphere/masterslave/master-slave.xsd
http://shardingsphere.apache.org/schema/shardingsphere/masterslave/master-slave.xsd


Apache ShardingSphere document, v5.1.1

4.0.0‐RC2 version added

Name T ype Explanation

id A ttri
bute

Spring Bean Id

type A ttri
bute

Type of load balance algorithm,‘RANDOM’或’ROUND_ROBIN’, support
custom extension

p rops‐ref
(?)

A ttri
bute

Properties of load balance algorithm

Data Masking

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt.xsd

<encrypt:data‐source />

Name Type Type

id Attribute Spring Bean Id
data‐source‐name Attribute Encrypt data source Bean Id
props (?) Tag Attribute configurations

<encrypt:encryptors />

Name Type Type

encryptor(+) Tag Encryptor configuration

<encrypt:encryptor />

Name Type Type

id Attribute Names of Encryptor
type Attribute Types of Encryptor, including MD5/AES or customize type
props‐re Attribute Attribute configurations

<encrypt:tables />

Name Type Type

table(+) Tag Encrypt table configuration

<encrypt:table />

Name Type Type

column(+) Tag Encrypt column configuration

7.9. API Change Histories 410

http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt.xsd


Apache ShardingSphere document, v5.1.1

<encrypt:column />

Name Type Description

logic‐column Attribute Column logic name
cipher‐column Attribute Cipher column name
assisted‐query‐column (?) Attribute Assisted query column name
plain‐column (?) Attribute Plain column name

<encrypt:props />

Name Type Description

sql.show (?) At‐
tribute

Show SQL or not; default value: false

quer y.with.cip
her.column (?)

At‐
tribute

When there is a plainColumn, use cipherColumn or not to query,
default value: true

Orchestration

Data Sharding + Orchestration

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.
xsd

<orchestration:master‐slave‐data‐source />

Name Type Description

id At‐
tribute

Id

dat a‐
source‐
ref (?)

At‐
tribute

Orchestrated database Id

registr y‐
center‐
ref

At‐
tribute

Registry center Id

over‐
write

At‐
tribute

Whether to overwrite local configurations with registry center configurations; if
it can, each initialization should refer to local configurations; default means not
to overwrite

7.9. API Change Histories 411

http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd


Apache ShardingSphere document, v5.1.1

Read-Write Split + Orchestration

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.
xsd

<orchestration:sharding‐data‐source />

Name Type Description

id Attribute Id
dat a‐source‐ref (?) Attribute Orchestrated database Id
registr y‐center‐ref Attribute Registry center Id
overwrite Attribute Use local configuration to overwrite registry center or not

Data Masking + Orchestration

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.
xsd

<orchestration:encrypt‐data‐source />

Name Type Description

id Attribute Id
dat a‐source‐ref (?) Attribute Orchestrated database Id
registr y‐center‐ref Attribute Registry center Id
overwrite Attribute Use local configuration to overwrite registry center or not

Orchestration registry center

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.
xsd

<orchestration:registry‐center />

7.9. API Change Histories 412

http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd


Apache ShardingSphere document, v5.1.1

Name Type Description

id At‐
tribute

Spring Bean Id of registry center

type At‐
tribute

Registry center type. Example:zookeeper

server‐lists At‐
tribute

Registry servers list, multiple split as comma. Example:
host1:2181,host2:2181

namespace (?) At‐
tribute

Namespace of registry

digest (?) At‐
tribute

Digest for registry. Default is not need digest

operat ion‐timeout‐ mil‐
liseconds (?)

At‐
tribute

Operation timeout time in milliseconds, default value is 500
seconds

max‐retries (?) At‐
tribute

Max number of times to retry, default value is 3

ret ry‐interval‐ millisec‐
onds (?)

At‐
tribute

Time interval in milliseconds on each retry, default value is
500 milliseconds

time‐to‐ live‐seconds (?) At‐
tribute

Living time of temporary nodes; default value: 60 seconds

props‐ref (?) At‐
tribute

Other customize properties of registry center

3.x

Attention Inline expression identifier can use ${...} or $->{...}, but ${...} is conflict with spring
placeholder of properties, so use $->{...} on spring environment is better.

Sharding

Configuration Item Explanation

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:sharding="http://shardingsphere.io/schema/shardingsphere/sharding"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.
xsd

http://shardingsphere.io/schema/shardingsphere/sharding
http://shardingsphere.io/schema/shardingsphere/sharding/

7.9. API Change Histories 413



Apache ShardingSphere document, v5.1.1

sharding.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-

context.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd">

<context:annotation-config />
<context:component-scan base-package="io.shardingsphere.example.spring.

namespace.jpa" />

<bean id="entityManagerFactory" class="org.springframework.orm.jpa.
LocalContainerEntityManagerFactoryBean">

<property name="dataSource" ref="shardingDataSource" />
<property name="jpaVendorAdapter">

<bean class="org.springframework.orm.jpa.vendor.
HibernateJpaVendorAdapter" p:database="MYSQL" />

</property>
<property name="packagesToScan" value="io.shardingsphere.example.spring.

namespace.jpa.entity" />
<property name="jpaProperties">

<props>
<prop key="hibernate.dialect">org.hibernate.dialect.MySQLDialect</

prop>
<prop key="hibernate.hbm2ddl.auto">create</prop>
<prop key="hibernate.show_sql">true</prop>

</props>
</property>

</bean>
<bean id="transactionManager" class="org.springframework.orm.jpa.

JpaTransactionManager" p:entityManagerFactory-ref="entityManagerFactory" />
<tx:annotation-driven />

<bean id="ds0" class="org.apache.commons.dbcp.BasicDataSource" destroy-method=
"close">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds0" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="ds1" class="org.apache.commons.dbcp.BasicDataSource" destroy-method=
"close">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

7.9. API Change Histories 414



Apache ShardingSphere document, v5.1.1

<bean id="preciseModuloDatabaseShardingAlgorithm" class="io.shardingsphere.
example.spring.namespace.jpa.algorithm.PreciseModuloDatabaseShardingAlgorithm" />

<bean id="preciseModuloTableShardingAlgorithm" class="io.shardingsphere.
example.spring.namespace.jpa.algorithm.PreciseModuloTableShardingAlgorithm" />

<sharding:standard-strategy id="databaseShardingStrategy" sharding-column=
"user_id" precise-algorithm-ref="preciseModuloDatabaseShardingAlgorithm" />

<sharding:standard-strategy id="tableShardingStrategy" sharding-column="order_
id" precise-algorithm-ref="preciseModuloTableShardingAlgorithm" />

<sharding:data-source id="shardingDataSource">
<sharding:sharding-rule data-source-names="ds0,ds1">

<sharding:table-rules>
<sharding:table-rule logic-table="t_order" actual-data-nodes="ds$->

{0..1}.t_order$->{0..1}" database-strategy-ref="databaseShardingStrategy" table-
strategy-ref="tableShardingStrategy" generate-key-column-name="order_id" />

<sharding:table-rule logic-table="t_order_item" actual-data-nodes=
"ds$->{0..1}.t_order_item$->{0..1}" database-strategy-ref="databaseShardingStrategy
" table-strategy-ref="tableShardingStrategy" generate-key-column-name="order_item_
id" />

</sharding:table-rules>
<sharding:binding-table-rules>

<sharding:binding-table-rule logic-tables="t_order, t_order_item" /
>

</sharding:binding-table-rules>
<sharding:broadcast-table-rules>

<sharding:broadcast-table-rule table="t_config" />
</sharding:broadcast-table-rules>

</sharding:sharding-rule>
</sharding:data-source>

</beans>

Readwrite-splitting

Configuration Item Explanation

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:master-slave="http://shardingsphere.io/schema/shardingsphere/

masterslave"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.

7.9. API Change Histories 415



Apache ShardingSphere document, v5.1.1

xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-

context.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://shardingsphere.io/schema/shardingsphere/masterslave
http://shardingsphere.io/schema/shardingsphere/masterslave/

master-slave.xsd">
<context:annotation-config />
<context:component-scan base-package="io.shardingsphere.example.spring.

namespace.jpa" />

<bean id="entityManagerFactory" class="org.springframework.orm.jpa.
LocalContainerEntityManagerFactoryBean">

<property name="dataSource" ref="masterSlaveDataSource" />
<property name="jpaVendorAdapter">

<bean class="org.springframework.orm.jpa.vendor.
HibernateJpaVendorAdapter" p:database="MYSQL" />

</property>
<property name="packagesToScan" value="io.shardingsphere.example.spring.

namespace.jpa.entity" />
<property name="jpaProperties">

<props>
<prop key="hibernate.dialect">org.hibernate.dialect.MySQLDialect</

prop>
<prop key="hibernate.hbm2ddl.auto">create</prop>
<prop key="hibernate.show_sql">true</prop>

</props>
</property>

</bean>
<bean id="transactionManager" class="org.springframework.orm.jpa.

JpaTransactionManager" p:entityManagerFactory-ref="entityManagerFactory" />
<tx:annotation-driven />

<bean id="ds_master" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds_master" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="ds_slave0" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds_slave0" />
<property name="username" value="root" />

7.9. API Change Histories 416



Apache ShardingSphere document, v5.1.1

<property name="password" value="" />
</bean>

<bean id="ds_slave1" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds_slave1" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="randomStrategy" class="io.shardingsphere.api.algorithm.masterslave.
RandomMasterSlaveLoadBalanceAlgorithm" />

<master-slave:data-source id="masterSlaveDataSource" master-data-source-name=
"ds_master" slave-data-source-names="ds_slave0, ds_slave1" strategy-ref=
"randomStrategy">

<master-slave:props>
<prop key="sql.show">${sql_show}</prop>
<prop key="executor.size">10</prop>
<prop key="foo">bar</prop>

</master-slave:props>
</master-slave:data-source>

</beans>

Orchestration

Configuration Item Explanation

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sharding="http://shardingsphere.io/schema/shardingsphere/

orchestration/sharding"
xmlns:master-slave="http://shardingsphere.io/schema/shardingsphere/

orchestration/masterslave"
xmlns:reg="http://shardingsphere.io/schema/shardingsphere/orchestration/reg"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.io/schema/shardingsphere/
orchestration/reg

http://shardingsphere.io/schema/shardingsphere/
orchestration/reg/reg.xsd

http://shardingsphere.io/schema/shardingsphere/
orchestration/sharding

http://shardingsphere.io/schema/shardingsphere/

7.9. API Change Histories 417



Apache ShardingSphere document, v5.1.1

orchestration/sharding/sharding.xsd
http://shardingsphere.io/schema/shardingsphere/

orchestration/masterslave
http://shardingsphere.io/schema/shardingsphere/

orchestration/masterslave/master-slave.xsd">

<reg:registry-center id="regCenter" server-lists="localhost:2181" namespace=
"orchestration-spring-namespace-demo" overwtite="false" />

<sharding:data-source id="shardingMasterSlaveDataSource" registry-center-ref=
"regCenter" />

<master-slave:data-source id="masterSlaveDataSource" registry-center-ref=
"regCenter" />
</beans>

2.x

Readwrite-splitting

The configuration example for Spring namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:sharding="http://shardingsphere.io/schema/shardingjdbc/sharding"
xmlns:masterslave="http://shardingsphere.io/schema/shardingjdbc/masterslave"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.
xsd

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-

context.xsd
http://shardingsphere.io/schema/shardingjdbc/sharding
http://shardingsphere.io/schema/shardingjdbc/sharding/

sharding.xsd
http://shardingsphere.io/schema/shardingjdbc/masterslave
http://shardingsphere.io/schema/shardingjdbc/masterslave/

master-slave.xsd
">

<!-- Actual source data Configuration -->
<bean id="dbtbl_0_master" class="org.apache.commons.dbcp.BasicDataSource"

destroy-method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/dbtbl_0_master"/>
<property name="username" value="root"/>
<property name="password" value=""/>

7.9. API Change Histories 418



Apache ShardingSphere document, v5.1.1

</bean>

<bean id="dbtbl_0_slave_0" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/dbtbl_0_slave_0"/>
<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<bean id="dbtbl_0_slave_1" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/dbtbl_0_slave_1"/>
<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<bean id="dbtbl_1_master" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/dbtbl_1_master"/>
<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<bean id="dbtbl_1_slave_0" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/dbtbl_1_slave_0"/>
<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<bean id="dbtbl_1_slave_1" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/dbtbl_1_slave_1"/>
<property name="username" value="root"/>
<property name="password" value=""/>

</bean>

<!-- Readwrite-splitting DataSource Configuration -->
<master-slave:data-source id="dbtbl_0" master-data-source-name="dbtbl_0_master"

slave-data-source-names="dbtbl_0_slave_0, dbtbl_0_slave_1" strategy-type="ROUND_
ROBIN" />

<master-slave:data-source id="dbtbl_1" master-data-source-name="dbtbl_1_master"
slave-data-source-names="dbtbl_1_slave_0, dbtbl_1_slave_1" strategy-type="ROUND_

7.9. API Change Histories 419



Apache ShardingSphere document, v5.1.1

ROBIN" />

<sharding:inline-strategy id="databaseStrategy" sharding-column="user_id"
algorithm-expression="dbtbl_${user_id % 2}" />

<sharding:inline-strategy id="orderTableStrategy" sharding-column="order_id"
algorithm-expression="t_order_${order_id % 4}" />

<sharding:data-source id="shardingDataSource">
<sharding:sharding-rule data-source-names="dbtbl_0, dbtbl_1">

<sharding:table-rules>
<sharding:table-rule logic-table="t_order" actual-data-nodes=

"dbtbl_${0..1}.t_order_${0..3}" database-strategy-ref="databaseStrategy" table-
strategy-ref="orderTableStrategy"/>

</sharding:table-rules>
</sharding:sharding-rule>

</sharding:data-source>
</beans>

Spring Boot Starter Configuration

5.0.0-beta

Sharding

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

# Standard sharding table configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= #
Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means sharding
databases only.

# Databases sharding strategy, use default databases sharding strategy if absent.
sharding strategy below can choose only one.

# For single sharding column scenario
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.<sharding-algorithm-name>.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.<sharding-algorithm-name>.sharding-algorithm-name= # Sharding algorithm
name

# For multiple sharding columns scenario

7.9. API Change Histories 420



Apache ShardingSphere document, v5.1.1

spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
<sharding-algorithm-name>.sharding-columns= # Sharding column names, multiple
columns separated with comma
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
<sharding-algorithm-name>.sharding-algorithm-name= # Sharding algorithm name

# Sharding by hint
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.hint.
<sharding-algorithm-name>.sharding-algorithm-name= # Sharding algorithm name

# Tables sharding strategy, same as database sharding strategy
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= #
Omitted

# Auto sharding table configuraiton
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.actual-data-
sources= # data source names

spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-algorithm= # Auto sharding algorithm name

# Key generator strategy configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # Column name of key generator
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # Key generator name

spring.shardingsphere.rules.sharding.binding-tables[0]= # Binding table name
spring.shardingsphere.rules.sharding.binding-tables[1]= # Binding table name
spring.shardingsphere.rules.sharding.binding-tables[x]= # Binding table name

spring.shardingsphere.rules.sharding.broadcast-tables[0]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[1]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[x]= # Broadcast tables

spring.shardingsphere.sharding.default-database-strategy.xxx= # Default strategy
for database sharding
spring.shardingsphere.sharding.default-table-strategy.xxx= # Default strategy for
table sharding
spring.shardingsphere.sharding.default-key-generate-strategy.xxx= # Default Key
generator strategy

# Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # Sharding algorithm type
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.

7.9. API Change Histories 421



Apache ShardingSphere document, v5.1.1

props.xxx=# Sharding algorithm properties

# Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # Key generate algorithm type
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # Key generate algorithm properties

Please refer to Built‐in sharding Algorithm List and Built‐in keygen Algorithm List。

Readwrite-splitting

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.primary-data-source-name= # Write data source name
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.replica-data-source-names= # Read data source names, multiple
data source names separated with comma
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # Load balance algorithm name

# Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # Load balance algorithm type
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx= # Load balance algorithm properties

Please refer to Built‐in Load Balance Algorithm List for more details about type of algorithm.

Encryption

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
cipher-column= # Cipher column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # Assisted query column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.

7.9. API Change Histories 422

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance


Apache ShardingSphere document, v5.1.1

plain-column= # Plain column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # Encrypt algorithm name

# Encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= #
Encrypt algorithm type
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
# Encrypt algorithm properties

Shadow DB

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.shadow.column= # Shadow column name
spring.shardingsphere.rules.shadow.shadow-mappings.<product-data-source-name>= #
Shadow data source name

Governance

Configuration Item Explanation

Management

spring.shardingsphere.governance.name= # Governance name
spring.shardingsphere.governance.registry-center.type= # Governance instance type.
Example:Zookeeper, etcd, Apollo, Nacos
spring.shardingsphere.governance.registry-center.server-lists= # The list of
servers that connect to governance instance, including IP and port number; use
commas to separate
spring.shardingsphere.governance.registry-center.props= # Other properties
spring.shardingsphere.governance.overwrite= # Whether to overwrite local
configurations with config center configurations; if it can, each initialization
should refer to local configurations

7.9. API Change Histories 423



Apache ShardingSphere document, v5.1.1

Mixed Rules

Configuration Item Explanation

# data source configuration
spring.shardingsphere.datasource.names= write-ds0,write-ds1,write-ds0-read0,write-
ds1-read0

spring.shardingsphere.datasource.write-ds0.url= # Database URL connection
spring.shardingsphere.datasource.write-ds0.type= # Database connection pool type
name
spring.shardingsphere.datasource.write-ds0.driver-class-name= # Database driver
class name
spring.shardingsphere.datasource.write-ds0.username= # Database username
spring.shardingsphere.datasource.write-ds0.password= # Database password
spring.shardingsphere.datasource.write-ds0.xxx= # Other properties of database
connection pool

spring.shardingsphere.datasource.write-ds1.url= # Database URL connection
# ...Omit specific configuration.

spring.shardingsphere.datasource.write-ds0-read0.url= # Database URL connection
# ...Omit specific configuration.

spring.shardingsphere.datasource.write-ds1-read0.url= # Database URL connection
# ...Omit specific configuration.

# Sharding rules configuration
# Databases sharding strategy
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
column=user_id
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
algorithm-name=default-database-strategy-inline
# Binding table rules configuration ,and multiple groups of binding-tables
configured with arrays
spring.shardingsphere.rules.sharding.binding-tables[0]=t_user,t_user_detail
spring.shardingsphere.rules.sharding.binding-tables[1]= # Binding table names,
multiple table name are separated by commas
spring.shardingsphere.rules.sharding.binding-tables[x]= # Binding table names,
multiple table name are separated by commas
# Broadcast table rules configuration
spring.shardingsphere.rules.sharding.broadcast-tables= # Broadcast table names,
multiple table name are separated by commas

# Table sharding strategy
# The enumeration value of `ds_$->{0..1}` is the name of the logical data source
configured with readwrite-splitting
spring.shardingsphere.rules.sharding.tables.t_user.actual-data-nodes=ds_$->{0..1}.

7.9. API Change Histories 424



Apache ShardingSphere document, v5.1.1

t_user_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-algorithm-name=user-table-strategy-inline

# Data encrypt configuration
# Table `t_user` is the name of the logical table that uses for data sharding
configuration.
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor

# Data encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc

# Key generate strategy configuration
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.
column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.key-
generator-name=snowflake

# Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-
inline.type=INLINE
# The enumeration value of `ds_$->{user_id % 2}` is the name of the logical data
source configured with readwrite-splitting
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-
inline.algorithm-expression=ds$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.props.algorithm-expression=t_user_$->{user_id % 2}

# Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE

# read query configuration
# ds_0,ds_1 is the logical data source name of the readwrite-splitting

7.9. API Change Histories 425



Apache ShardingSphere document, v5.1.1

spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.write-data-
source-name=write-ds0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.read-data-source-
names=write-ds0-read0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.load-balancer-
name=read-random
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.write-data-
source-name=write-ds1
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.read-data-source-
names=write-ds1-read0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.load-balancer-
name=read-random

# Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.read-random.
type=RANDOM

Shardingsphere-4.x

Data Sharding

Configuration Item Explanation

spring.shardingsphere.datasource.names= #Data source name; multiple data sources
are separated by commas

spring.shardingsphere.datasource.<data-source-name>.type= #Database connection pool
type name
spring.shardingsphere.datasource.<data-source-name>.driver-class-name= #Database
driver class name
spring.shardingsphere.datasource.<data-source-name>.url= #Database url connection
spring.shardingsphere.datasource.<data-source-name>.username= #Database username
spring.shardingsphere.datasource.<data-source-name>.password= #Database password
spring.shardingsphere.datasource.<data-source-name>.xxx= #Other properties of
database connection pool

spring.shardingsphere.sharding.tables.<logic-table-name>.actual-data-nodes= #It is
consisted of data source name + table name, separated by decimal points; multiple
tables are separated by commas and support inline expressions; default means using
existing data sources and logic table names to generate data nodes; it can be
applied in broadcast tables (each database needs a same table for relevance query,
dictionary table mostly) or the situation with sharding database but without
sharding table (table structures of all the databases are consistent)

#Database sharding strategy; default means using default database sharding
strategy; it can only choose one of the following sharding strategies

7.9. API Change Histories 426



Apache ShardingSphere document, v5.1.1

#It is applied in standard sharding situation of single-sharding key
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.
standard.sharding-column= #Sharding column name
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.
standard.precise-algorithm-class-name= #Precise algorithm class name, applied in =
and IN; the class needs to implement PreciseShardingAlgorithm interface and provide
parameter-free constructor
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.
standard.range-algorithm-class-name= #Range sharding algorithm class name, applied
in BETWEEN, optional; the class should implement RangeShardingAlgorithm interface
and provide parameter-free constructor

#It is applied in complex sharding situations with multiple sharding keys
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.
sharding-columns= #Sharding column name, with multiple columns separated by commas
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.
algorithm-class-name= #Complex sharding algorithm class name; the class needs to
implement ComplexKeysShardingAlgorithm interface and provide parameter-free
constructor

#Inline expression sharding strategy
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.
sharding-column= #Sharding column name
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.
algorithm-expression= #Inline expression of sharding algorithm, which needs to
conform to groovy statements

#Hint Sharding Strategy
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.hint.
algorithm-class-name= #Hint algorithm class name; the class needs to implement
HintShardingAlgorithm interface and provide parameter-free constructor

#Table sharding strategy, same as database sharding strategy
spring.shardingsphere.sharding.tables.<logic-table-name>.table-strategy.xxx=
#Omitted

spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.column=
#Auto-increment column name; default means not using auto-increment key generator
spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.type= #Auto-
increament key generator type; default means using default auto-increament key
generator; user defined generator or internal generator (SNOWFLAKE, UUID) can both
be selected
spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.props.
<property-name>= #Properties, Notice: when use SNOWFLAKE, `max.tolerate.time.
difference.milliseconds` for `SNOWFLAKE` need to be set. To use the generated value
of this algorithm as sharding value, it is recommended to configure `max.vibration.
offset`

7.9. API Change Histories 427



Apache ShardingSphere document, v5.1.1

spring.shardingsphere.sharding.binding-tables[0]= #Binding table rule list
spring.shardingsphere.sharding.binding-tables[1]= #Binding table rule list
spring.shardingsphere.sharding.binding-tables[x]= #Binding table rule list

spring.shardingsphere.sharding.broadcast-tables[0]= #Broadcast table rule list
spring.shardingsphere.sharding.broadcast-tables[1]= #Broadcast table rule list
spring.shardingsphere.sharding.broadcast-tables[x]= #Broadcast table rule list

spring.shardingsphere.sharding.default-data-source-name= #Tables without sharding
rules will be located through default data source
spring.shardingsphere.sharding.default-database-strategy.xxx= #Default database
sharding strategy
spring.shardingsphere.sharding.default-table-strategy.xxx= #Default table sharding
strategy
spring.shardingsphere.sharding.default-key-generator.type= #Default auto-increament
key generator of type; it will use org.apache.shardingsphere.core.keygen.generator.
impl.SnowflakeKeyGenerator in default; user defined generator or internal generator
(SNOWFLAKE or UUID) can both be used
spring.shardingsphere.sharding.default-key-generator.props.<property-name>= #Auto-
increament key generator property configuration, such as max.tolerate.time.
difference.milliseconds of SNOWFLAKE algorithm

spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= #Refer to readwrite-splitting part for more details
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= #Refer to readwrite-splitting part for more details
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= #Refer to readwrite-splitting part for more details
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= #Refer to readwrite-splitting part for more details
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= #Refer to readwrite-splitting part for more
details
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= #Refer to readwrite-splitting part for more details

spring.shardingsphere.props.sql.show= #Show SQL or not; default value: false
spring.shardingsphere.props.executor.size= #Executing thread number; default value:
CPU core number

7.9. API Change Histories 428



Apache ShardingSphere document, v5.1.1

Readwrite Split

Configuration Item Explanation

#Omit data source configurations; keep it consistent with data sharding

spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= #Data source name of master database
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= #Data source name list of slave database
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= #Data source name list of slave database
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= #Data source name list of slave database
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= #Load balance algorithm class name; the class
needs to implement MasterSlaveLoadBalanceAlgorithm interface and provide parameter-
free constructor
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= #Load balance algorithm class of slave database;
optional value: ROUND_ROBIN and RANDOM; if there is load-balance-algorithm-class-
name, the configuration can be omitted

spring.shardingsphere.props.sql.show= #Show SQL or not; default value: false
spring.shardingsphere.props.executor.size= #Executing thread number; default value:
CPU core number
spring.shardingsphere.props.check.table.metadata.enabled= #Whether to check meta-
data consistency of sharding table when it initializes; default value: false

Data Masking

Configuration Item Explanation

#Omit data source configurations; keep it consistent with data sharding

spring.shardingsphere.encrypt.encryptors.<encryptor-name>.type= #Type of encryptor，
use user-defined ones or built-in ones, e.g. MD5/AES
spring.shardingsphere.encrypt.encryptors.<encryptor-name>.props.<property-name>=
#Properties, Notice: when use AES encryptor, `aes.key.value` for AES encryptor need
to be set
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
plainColumn= #Plain column name
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
cipherColumn= #Cipher column name
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
assistedQueryColumn= #AssistedColumns for query，when use

7.9. API Change Histories 429



Apache ShardingSphere document, v5.1.1

ShardingQueryAssistedEncryptor, it can help query encrypted data
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
encryptor= #Encryptor name

Orchestration

Configuration Item Explanation

#Omit data source, data sharding, readwrite split and data masking configurations

spring.shardingsphere.orchestration.name= #Orchestration instance name
spring.shardingsphere.orchestration.overwrite= #Whether to overwrite local
configurations with registry center configurations; if it can, each initialization
should refer to local configurations
spring.shardingsphere.orchestration.registry.type= #Registry center type.
Example:zookeeper
spring.shardingsphere.orchestration.registry.server-lists= #The list of servers
that connect to registry center, including IP and port number; use commas to
separate
spring.shardingsphere.orchestration.registry.namespace= #Registry center namespace
spring.shardingsphere.orchestration.registry.digest= #The token that connects to
the registry center; default means there is no need for authentication
spring.shardingsphere.orchestration.registry.operation-timeout-milliseconds= #The
millisecond number for operation timeout; default value: 500 milliseconds
spring.shardingsphere.orchestration.registry.max-retries= #Maximum retry time after
failing; default value: 3 times
spring.shardingsphere.orchestration.registry.retry-interval-milliseconds= #Interval
time to retry; default value: 500 milliseconds
spring.shardingsphere.orchestration.registry.time-to-live-seconds= #Living time of
temporary nodes; default value: 60 seconds
spring.shardingsphere.orchestration.registry.props= #Customize registry center
props.

shardingsphere-3.x

Sharding

Configuration Item Explanation

sharding.jdbc.datasource.names= #Names of data sources. Multiple data sources
separated with comma

sharding.jdbc.datasource.<data-source-name>.type= #Class name of data source pool
sharding.jdbc.datasource.<data-source-name>.driver-class-name= #Class name of

7.9. API Change Histories 430



Apache ShardingSphere document, v5.1.1

database driver
sharding.jdbc.datasource.<data-source-name>.url= #Database URL
sharding.jdbc.datasource.<data-source-name>.username= #Database username
sharding.jdbc.datasource.<data-source-name>.password= #Database password
sharding.jdbc.datasource.<data-source-name>.xxx= #Other properties for data source
pool

sharding.jdbc.config.sharding.tables.<logic-table-name>.actual-data-nodes=
#Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means sharding
databases only. Example: ds${0..7}.tbl${0..7}

#Databases sharding strategy, use default databases sharding strategy if absent.
sharding strategy below can choose only one.

#Standard sharding scenario for single sharding column
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.standard.
sharding-column= #Name of sharding column
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.standard.
precise-algorithm-class-name= #Precise algorithm class name used for `=` and `IN`.
This class need to implements PreciseShardingAlgorithm, and require a no argument
constructor
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.standard.
range-algorithm-class-name= #Range algorithm class name used for `BETWEEN`. This
class need to implements RangeShardingAlgorithm, and require a no argument
constructor

#Complex sharding scenario for multiple sharding columns
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.complex.
sharding-columns= #Names of sharding columns. Multiple columns separated with comma
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.complex.
algorithm-class-name= #Complex sharding algorithm class name. This class need to
implements ComplexKeysShardingAlgorithm, and require a no argument constructor

#Inline expression sharding scenario for si-gle s-arding column
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.inline.
sharding-column= #Name of sharding column
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.inline.
algorithm-expression= #Inline expression for sharding algorithm

#Hint sharding strategy
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.hint.
algorithm-class-name= #Hint sharding algorithm class name. This class need to
implements HintShardingAlgorithm, and require a no argument constructor

#Tables sharding strategy, Same as database- shar-ing strategy
sharding.jdbc.config.sharding.tables.<logic-table-name>.table-strategy.xxx= #Ignore

7.9. API Change Histories 431



Apache ShardingSphere document, v5.1.1

sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-column-name=
#Column name of key generator, do not use Key generator if absent
sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-class-name=
#Key generator, use default key generator if absent. This class need to implements
KeyGenerator, and require a no argument constructor

sharding.jdbc.config.sharding.tables.<logic-table-name>.logic-index= #Name if logic
index. If use `DROP INDEX XXX` SQL in Oracle/PostgreSQL, This property needs to be
set for finding the actual tables

sharding.jdbc.config.sharding.binding-tables[0]= #Binding table rule configurations
sharding.jdbc.config.sharding.binding-tables[1]= #Binding table rule configurations
sharding.jdbc.config.sharding.binding-tables[x]= #Binding table rule configurations

sharding.jdbc.config.sharding.broadcast-tables[0]= #Broadcast table rule
configurations
sharding.jdbc.config.sharding.broadcast-tables[1]= #Broadcast table rule
configurations
sharding.jdbc.config.sharding.broadcast-tables[x]= #Broadcast table rule
configurations

sharding.jdbc.config.sharding.default-data-source-name= #If table not configure at
table rule, will route to defaultDataSourceName
sharding.jdbc.config.sharding.default-database-strategy.xxx= #Default strategy for
sharding databases, same as databases sharding strategy
sharding.jdbc.config.sharding.default-table-strategy.xxx= #Default strategy for
sharding tables, same as tables sharding strategy
sharding.jdbc.config.sharding.default-key-generator-class-name= #Default key
generator class name, default value is `io.shardingsphere.core.keygen.
DefaultKeyGenerator`. This class need to implements KeyGenerator, and require a no
argument constructor

sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= #more details can reference readwrite-splitting part
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= #more details can reference readwrite-splitting part
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= #more details can reference readwrite-splitting part
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= #more details can reference readwrite-splitting part
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= #more details can reference readwrite-splitting
part
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= #more details can reference readwrite-splitting part
sharding.jdbc.config.config.map.key1= #more details can reference Readwrite-
splitting part
sharding.jdbc.config.config.map.key2= #more details can reference Readwrite-

7.9. API Change Histories 432



Apache ShardingSphere document, v5.1.1

splitting part
sharding.jdbc.config.config.map.keyx= #more details can reference Readwrite-
splitting part

sharding.jdbc.config.props.sql.show= #To show SQLS or not, default value: false
sharding.jdbc.config.props.executor.size= #The number of working threads, default
value: CPU count

sharding.jdbc.config.config.map.key1= #User-defined arguments
sharding.jdbc.config.config.map.key2= #User-defined arguments
sharding.jdbc.config.config.map.keyx= #User-defined arguments

Readwrite-splitting

Configuration Item Explanation

#Ignore data sources configuration, same as sharding

sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= #Name of master data source
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= #Name of master data source
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= #Names of Slave data sources
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= #Names of Slave data sources
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= #Load balance algorithm class name. This class
need to implements MasterSlaveLoadBalanceAlgorithm, and require a no argument
constructor
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= #Load balance algorithm type, values should be:
`ROUND_ROBIN` or `RANDOM`. Ignore if `load-balance-algorithm-class-name` is present

sharding.jdbc.config.config.map.key1= #User-defined arguments
sharding.jdbc.config.config.map.key2= #User-defined arguments
sharding.jdbc.config.config.map.keyx= #User-defined arguments

sharding.jdbc.config.props.sql.show= #To show SQLS or not, default value: false
sharding.jdbc.config.props.executor.size= #The number of working threads, default
value: CPU count
sharding.jdbc.config.props.check.table.metadata.enabled= #Check the metadata
consistency of all the tables, default value: false

7.9. API Change Histories 433



Apache ShardingSphere document, v5.1.1

Orchestration

Configuration Item Explanation

#Ignore data sources, sharding and readwrite splitting configuration

sharding.jdbc.config.sharding.orchestration.name= #Name of orchestration instance
sharding.jdbc.config.sharding.orchestration.overwrite= #Use local configuration to
overwrite registry center or not
sharding.jdbc.config.sharding.orchestration.registry.server-lists= #Rgistry servers
list, multiple split as comma. Example: host1:2181,host2:2181
sharding.jdbc.config.sharding.orchestration.registry.namespace= #Namespace of
registry
sharding.jdbc.config.sharding.orchestration.registry.digest= #Digest for registry.
Default is not need digest.
sharding.jdbc.config.sharding.orchestration.registry.operation-timeout-
milliseconds= #Operation timeout time in milliseconds, default value is 500
milliseconds
sharding.jdbc.config.sharding.orchestration.registry.max-retries= #Max number of
times to retry, default value is 3
sharding.jdbc.config.sharding.orchestration.registry.retry-interval-milliseconds=
#Time interval in milliseconds on each retry, default value is 500 milliseconds
sharding.jdbc.config.sharding.orchestration.registry.time-to-live-seconds= #Time to
live in seconds of ephemeral keys, default value is 60 seconds

Shardingsphere-2.x

Sharding

Configuration Item Explanation

# Ignore data sources configuration
sharding.jdbc.config.sharding.default-data-source-name= #Tables without sharding
rules will be located through default data source
sharding.jdbc.config.sharding.default-database-strategy.inline.sharding-column=
#Name of database sharding column
sharding.jdbc.config.sharding.default-database-strategy.inline.algorithm-
expression= #Inline expression for database sharding algorithm
sharding.jdbc.config.sharding.tables.t_order.actualDataNodes= #Describe data source
names and actual tables, delimiter as point, multiple data nodes separated with
comma, support inline expression. Absent means sharding databases only. Example: ds
${0..7}.tbl${0..7}
sharding.jdbc.config.sharding.tables.t_order.tableStrategy.inline.shardingColumn=
#Name of table sharding column
sharding.jdbc.config.sharding.tables.t_order.tableStrategy.inline.
algorithmInlineExpression= #Inline expression for table sharding algorithm

7.9. API Change Histories 434



Apache ShardingSphere document, v5.1.1

sharding.jdbc.config.sharding.tables.t_order.keyGeneratorColumnName= #Column name
of key generator, do not use Key generator if absent

sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-column-name=
#Column name of key generator, do not use Key generator if absent
sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-class-name=
#Key generator, use default key generator if absent. This class need to implements
KeyGenerator, and require a no argument constructor

Readwrite-splitting

Configuration Item Explanation

# Ignore data sources configuration

sharding.jdbc.config.masterslave.load-balance-algorithm-type= #Load balance
algorithm class of slave database; optional value: ROUND_ROBIN and RANDOM; if there
is load-balance-algorithm-class-name, the configuration can be omitted
sharding.jdbc.config.masterslave.name= # master name
sharding.jdbc.config.masterslave.master-data-source-name= #Name of master data
source
sharding.jdbc.config.masterslave.slave-data-source-names= #Name of master data
source

Orchestration

Configuration Item Explanation

# Ignore data sources configuration
sharding.jdbc.config.orchestration.name= #Name of orchestration instance
sharding.jdbc.config.orchestration.overwrite= #Use local configuration to overwrite
registry center or not

sharding.jdbc.config.sharding.orchestration.name= #Name of orchestration instance
sharding.jdbc.config.sharding.orchestration.overwrite= #Use local configuration to
overwrite registry center or not
sharding.jdbc.config.sharding.orchestration.registry.server-lists= #Rgistry servers
list, multiple split as comma. Example: host1:2181,host2:2181
sharding.jdbc.config.sharding.orchestration.registry.namespace= #Namespace of
registry
sharding.jdbc.config.sharding.orchestration.registry.digest= #Digest for registry.
Default is not need digest.

7.9. API Change Histories 435



Apache ShardingSphere document, v5.1.1

sharding.jdbc.config.sharding.orchestration.registry.operation-timeout-
milliseconds= #Operation timeout time in milliseconds, default value is 500
milliseconds
sharding.jdbc.config.sharding.orchestration.registry.max-retries= #Max number of
times to retry, default value is 3
sharding.jdbc.config.sharding.orchestration.registry.retry-interval-milliseconds=
#Time interval in milliseconds on each retry, default value is 500 milliseconds
sharding.jdbc.config.sharding.orchestration.registry.time-to-live-seconds= #Time to
live in seconds of ephemeral keys, default value is 60 seconds

# The configuration in Zookeeper
sharding.jdbc.config.orchestration.zookeeper.namespace= #Namespace of zookeeper
registry
sharding.jdbc.config.orchestration.zookeeper.server-lists= #Zookeeper Rgistry
servers list, multiple split as comma. Example: host1:2181,host2:2181

# The configuration in Etcd
sharding.jdbc.config.orchestration.etcd.server-lists= #Etcd Rgistry servers list,
multiple split as comma. Example: host1:2181,host2:2181

7.9.2 ShardingSphere-Proxy

5.0.0-beta

Data Source Configuration Item Explanation

schemaName: # Logic schema name.

dataSources: # Data sources configuration, multiple <data-source-name> available.
<data-source-name>: # Different from ShardingSphere-JDBC configuration, it does

not need to be configured with database connection pool.
url: # Database URL.
username: # Database username.
password: # Database password.
connectionTimeoutMilliseconds: # Connection timeout milliseconds.
idleTimeoutMilliseconds: # Idle timeout milliseconds.
maxLifetimeMilliseconds: # Maximum life milliseconds.
maxPoolSize: 50 # Maximum connection count in the pool.
minPoolSize: 1 # Minimum connection count in the pool.

rules: # Keep consist with ShardingSphere-JDBC configuration.
# ...

7.9. API Change Histories 436



Apache ShardingSphere document, v5.1.1

Authentication

It is used to verify the authentication to log in ShardingSphere‐Proxy, whichmust use correct user name
and password after the configuration of them.

rules:
- !AUTHORITY

users:
- root@localhost:root # <username>@<hostname>:<password>
- sharding@:sharding

provider:
type: NATIVE # Must be explicitly specified.

If the hostname is % or empty, it means no restrict to the user’s host.

The type of the provider must be explicitly specified. Refer to 5.11 Proxy for more implementations.

Proxy Properties

props:
sql-show: # Whether show SQL or not in log. Print SQL details can help developers

debug easier. The log details include: logic SQL, actual SQL and SQL parse result.
Enable this property will log into log topic ShardingSphere-SQL, log level is INFO.
sql-simple: # Whether show SQL details in simple style.
executor-size: # The max thread size of worker group to execute SQL. One

ShardingSphereDataSource will use a independent thread pool, it does not share
thread pool even different data source in same JVM.
max-connections-size-per-query: # Max opened connection size for each query.
check-table-metadata-enabled: # Whether validate table meta data consistency when

application startup or updated.
proxy-frontend-flush-threshold: # Flush threshold for every records from

databases for ShardingSphere-Proxy.
proxy-transaction-type: # Default transaction type of ShardingSphere-Proxy.

Include: LOCAL, XA and BASE.
proxy-opentracing-enabled: # Whether enable opentracing for ShardingSphere-Proxy.
proxy-hint-enabled: # Whether enable hint for ShardingSphere-Proxy. Using Hint

will switch proxy thread mode from IO multiplexing to per connection per thread,
which will reduce system throughput.
xa-transaction-manager-type: # XA Transaction manager type. Include: Atomikos,

Narayana and Bitronix.

7.9. API Change Histories 437

https://shardingsphere.apache.org/document/5.0.0-beta/en/dev-manual/proxy/


Apache ShardingSphere document, v5.1.1

5.0.0-alpha

Data Source Configuration Item Explanation

schemaName: # Logic schema name.

dataSourceCommon:
username: # Database username.
password: # Database password.
connectionTimeoutMilliseconds: # Connection timeout milliseconds.
idleTimeoutMilliseconds: # Idle timeout milliseconds.
maxLifetimeMilliseconds: # Maximum life milliseconds.
maxPoolSize: 50 # Maximum connection count in the pool.
minPoolSize: 1 # Minimum connection count in the pool.

dataSources: # Data sources configuration, multiple <data-source-name> available.
<data-source-name>: # Different from ShardingSphere-JDBC configuration, it does

not need to be configured with database connection pool.
url: # Database URL.

rules: # Keep consist with ShardingSphere-JDBC configuration.
# ...

Override dataSourceCommon Configuration

If youwant to override the‘dataSourceCommon’property, configure it separately for each data source.

dataSources: # Data sources configuration, multiple <data-source-name> available.
<data-source-name>: # Different from ShardingSphere-JDBC configuration, it does

not need to be configured with database connection pool.
url: # Database URL.
username: # Database username, Override dataSourceCommon username property.
password: # Database password, Override dataSourceCommon password property.
connectionTimeoutMilliseconds: # Connection timeout milliseconds, Override

dataSourceCommon connectionTimeoutMilliseconds property.
idleTimeoutMilliseconds: # Idle timeout milliseconds, Override dataSourceCommon

idleTimeoutMilliseconds property.
maxLifetimeMilliseconds: # Maximum life milliseconds, Override dataSourceCommon

maxLifetimeMilliseconds property.
maxPoolSize: 50 # Maximum connection count in the pool, Override

dataSourceCommon maxPoolSize property.
minPoolSize: 1 # Minimum connection count in the pool, Override

dataSourceCommon minPoolSize property.

7.9. API Change Histories 438



Apache ShardingSphere document, v5.1.1

Authentication

It is used to verify the authentication to log in ShardingSphere‐Proxy, whichmust use correct user name
and password after the configuration of them.

authentication:
users:

root: # Self-defined username.
password: root # Self-defined password.

sharding: # Self-defined username.
password: sharding # Self-defined password.
authorizedSchemas: sharding_db, replica_query_db # Schemas authorized to this

user, please use commas to connect multiple schemas. Default authorized schemas is
all of the schemas.

Proxy Properties

props:
sql-show: # Whether show SQL or not in log. Print SQL details can help developers

debug easier. The log details include: logic SQL, actual SQL and SQL parse result.
Enable this property will log into log topic ShardingSphere-SQL, log level is INFO.
sql-simple: # Whether show SQL details in simple style.
acceptor-size: # The max thread size of accepter group to accept TCP connections.
executor-size: # The max thread size of worker group to execute SQL. One

ShardingSphereDataSource will use a independent thread pool, it does not share
thread pool even different data source in same JVM.
max-connections-size-per-query: # Max opened connection size for each query.
check-table-metadata-enabled: # Whether validate table meta data consistency when

application startup or updated.
query-with-cipher-column: # Whether query with cipher column for data encrypt.

User you can use plaintext to query if have.
proxy-frontend-flush-threshold: # Flush threshold for every records from

databases for ShardingSphere-Proxy.
proxy-transaction-type: # Default transaction type of ShardingSphere-Proxy.

Include: LOCAL, XA and BASE.
proxy-opentracing-enabled: # Whether enable opentracing for ShardingSphere-Proxy.
proxy-hint-enabled: # Whether enable hint for ShardingSphere-Proxy. Using Hint

will switch proxy thread mode from IO multiplexing to per connection per thread,
which will reduce system throughput.

7.9. API Change Histories 439



Apache ShardingSphere document, v5.1.1

ShardingSphere-4.x

Data Source and Sharding Configuration Item Explanation

Data Sharding

schemaName: # Logic data schema name.

dataSources: # Data source configuration, which can be multiple data_source_name.
<data_source_name>: # Different from Sharding-JDBC configuration, it does not

need to be configured with database connection pool.
url: # Database url connection.
username: # Database username.
password: # Database password.
connectionTimeoutMilliseconds: 30000 # Connection timeout.
idleTimeoutMilliseconds: 60000 # Idle timeout setting.
maxLifetimeMilliseconds: 1800000 # Maximum lifetime.
maxPoolSize: 65 # Maximum connection number in the pool.

shardingRule: #Omit data sharding configuration and be consistent with Sharding-
JDBC configuration.

Read-write splitting

schemaName: # Logic data schema name.

dataSources: # Omit data source configurations; keep it consistent with data
sharding.

masterSlaveRule: # Omit data source configurations; keep it consistent with
Sharding-JDBC.

Data Masking

dataSource: # Ignore data sources configuration.

encryptRule:
encryptors:

<encryptor-name>:
type: # encryptor type.
props: # Properties, e.g. `aes.key.value` for AES encryptor.
aes.key.value:

tables:
<table-name>:
columns:

7.9. API Change Histories 440



Apache ShardingSphere document, v5.1.1

<logic-column-name>:
plainColumn: # plaintext column name.
cipherColumn: # ciphertext column name.
assistedQueryColumn: # AssistedColumns for query，when use

ShardingQueryAssistedEncryptor, it can help query encrypted data.
encryptor: # encrypt name.

props:
query.with.cipher.column: true #Whether use cipherColumn to query or not

Overall Configuration Explanation

Orchestration

It is the same with Sharding‐JDBC configuration.

Proxy Properties

# Omit configurations that are the same with Sharding-JDBC.

props:
acceptor.size: # The thread number of accept connection; default to be 2 times of

cpu core.
proxy.transaction.type: # Support LOCAL, XA, BASE; Default is LOCAL transaction,

for BASE type you should copy ShardingTransactionManager associated jar to lib
directory.
proxy.opentracing.enabled: # Whether to enable opentracing, default not to

enable; refer to [APM](https://shardingsphere.apache.org/document/current/en/
features/orchestration/apm/) for more details.
check.table.metadata.enabled: # Whether to check metadata consistency of sharding

table when it initializes; default value: false.

Authentication

It is used to verify the authentication to log in Sharding‐Proxy, which must use correct user name and
password after the configuration of them.

authentication:
users:

root: # self-defined username.
password: root # self-defined password.

sharding: # self-defined username.
password: sharding # self-defined password.
authorizedSchemas: sharding_db, masterslave_db # schemas authorized to this

7.9. API Change Histories 441



Apache ShardingSphere document, v5.1.1

user, please use commas to connect multiple schemas. Default authorizedSchemas is
all of the schemas.

ShardingSphere-3.x

Data sources and sharding rule configuration reference

Data Sharding

schemaName: # Logic database schema name.

dataSources: # Data sources configuration, multiple `data_source_name` available.
<data_source_name>: # Different with Sharding-JDBC, do not need configure data

source pool here.
url: # Database URL.
username: # Database username.
password: # Database password.
autoCommit: true # The default config of hikari connection pool.
connectionTimeout: 30000 # The default config of hikari connection pool.
idleTimeout: 60000 # The default config of hikari connection pool.
maxLifetime: 1800000 # The default config of hikari connection pool.
maximumPoolSize: 65 # The default config of hikari connection pool.

shardingRule: # Ignore sharding rule configuration, same as Sharding-JDBC.

Read-write splitting

schemaName: # Logic database schema name.

dataSources: # Ignore data source configuration, same as sharding.

masterSlaveRule: # Ignore read-write splitting rule configuration, same as
Sharding-JDBC.

Global configuration reference

Orchestration

Same as configuration of Sharding‐JDBC.

7.9. API Change Histories 442



Apache ShardingSphere document, v5.1.1

Proxy Properties

# Ignore configuration which same as Sharding-JDBC.

props:
acceptor.size: # Max thread count to handle client's requests, default value is

CPU*2.
proxy.transaction.enabled: # Enable transaction, only support XA now, default

value is false.
proxy.opentracing.enabled: # Enable open tracing, default value is false. More

details please reference[APM](https://shardingsphere.apache.org/document/current/
en/features/orchestration/apm/).
check.table.metadata.enabled: # To check the metadata consistency of all the

tables or not, default value : false.

Authorization

To perform Authorization for Sharding Proxy when login in. After configuring the username and pass‐
word, you must use the correct username and password to login into the Proxy.

authentication:
username: root
password:

7.9. API Change Histories 443



8
Downloads

8.1 Latest Releases

Apache ShardingSphere is released as source code tarballs with corresponding binary tarballs for con‐
venience. The downloads are distributed via mirror sites and should be checked for tampering using
GPG or SHA‐512.

8.1.1 Apache ShardingSphere - Version: 5.1.0 ( Release Date: Feb 16th, 2022 )

• Source Codes: [ SRC ] [ ASC ] [ SHA512 ]

• ShardingSphere‐JDBC Binary Distribution: [ TAR ] [ ASC ] [ SHA512 ]

• ShardingSphere‐Proxy Binary Distribution: [ TAR ] [ ASC ] [ SHA512 ]

• ShardingSphere‐Agent Binary Distribution: [ TAR ] [ ASC ] [ SHA512 ]

8.2 All Releases

Find all releases in the Archive repository. Find all incubator releases in the Archive incubator reposi‐
tory.

8.3 Verify the Releases

PGP signatures KEYS

It is essential that you verify the integrity of the downloaded files using the PGP or SHA signatures. The
PGP signatures can be verified using GPG or PGP. Please download the KEYS as well as the asc signature
files for relevant distribution. It is recommended to get these files from themain distribution directory
and not from the mirrors.

444

https://www.apache.org/dyn/closer.lua/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-src.zip
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-src.zip.asc
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-src.zip.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-jdbc-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-jdbc-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-jdbc-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-proxy-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-proxy-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-proxy-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.lua/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-agent-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-agent-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.1.0/apache-shardingsphere-5.1.0-shardingsphere-agent-bin.tar.gz.sha512
https://archive.apache.org/dist/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://downloads.apache.org/shardingsphere/KEYS


Apache ShardingSphere document, v5.1.1

gpg -i KEYS

or

pgpk -a KEYS

or

pgp -ka KEYS

To verify the binaries/sources you can download the relevant asc files for it from main distribution
directory and follow the below guide.

gpg --verify apache-shardingsphere-********.asc apache-shardingsphere-*********

or

pgpv apache-shardingsphere-********.asc

or

pgp apache-shardingsphere-********.asc

8.3. Verify the Releases 445


	Overview
	Introduction
	ShardingSphere-JDBC
	ShardingSphere-Proxy
	ShardingSphere-Sidecar(TODO)
	Hybrid Architecture

	Solution
	Roadmap

	Quick Start
	ShardingSphere-JDBC
	Import Maven Dependency
	Rules Configuration
	3. Create Data Source

	ShardingSphere-Proxy
	Rule Configuration
	Import Dependencies
	Start Server
	Use ShardingSphere-Proxy

	ShardingSphere-Scaling (Experimental)
	Rule Configuration
	Import Dependencies
	Start Server
	Create Migration Job
	Related documents


	Concepts
	Adaptor
	ShardingSphere-JDBC
	ShardingSphere-Proxy
	Hybrid Adaptors

	Mode
	Background
	Memory mode
	Standalone mode
	Cluster mode

	DistSQL
	Background
	Challenges
	Goal
	Notice

	Pluggable Architecture
	Background
	Challenges
	Goal
	Implementation
	L1 Kernel Layer
	L2 Feature Layer
	L3 Ecosystem Layer



	Features
	DB Compatibility
	Background
	Challenges
	Goal
	SQL Parser
	MySQL
	openGauss
	PostgreSQL
	SQLServer
	Oracle
	SQL92

	DB Protocol
	Feature Support
	MySQL
	User & Role
	Authorization

	PostgreSQL
	SQLServer
	Oracle
	SQL92


	Management
	Background
	Challenges
	Goal
	Core Concept
	Circuit Breaker
	Request Limit


	Sharding
	Background
	Vertical Sharding
	Horizontal Sharding

	Challenges
	Goal
	Core Concept
	Overview
	Table
	Logic Table
	Actual Table
	Binding Table
	Broadcast Table
	Single Table

	Data Node
	Uniform topology
	User-defined topology

	Sharding
	Sharding Key
	Sharding Algorithm
	Auto Sharding Algorithm
	User-Defined Sharding Algorithm

	Sharding Strategy
	SQL Hint

	Inline Expression
	Motivation
	Syntax Explanation
	Configuration
	Data Node
	Sharding Algorithm


	Distributed Primary Key
	Motivation
	Built-In Key Generator
	UUID
	SNOWFLAKE
	Principle
	Clock-Back


	Hint Sharding Route
	Motivation
	Mechanism


	Use Norms
	Background
	SQL
	SQL Supporting Status
	Totally Supported
	Regular Query
	Subquery
	Sharding value in expression
	Experimental Supported
	Subquery
	Join with cross databases
	Unsupported
	SQL Example


	Pagination
	Pagination Performance
	Performance Bottleneck
	Optimization of ShardingSphere

	Pagination Solution Optimization
	Pagination Sub-query



	Distributed Transaction
	Background
	Local Transaction
	2PC Transaction
	BASE Transaction

	Challenge
	Goal
	Core Concept
	Navigation
	XA
	BASE

	Use Norms
	Background
	Local Transaction
	Supported
	Unsupported

	XA
	Supported
	Unsupported
	XA Transaction managed by XA Statement

	BASE
	Supported
	Unsupported
	To Be Optimized



	Readwrite-splitting
	Background
	Challenges
	Goal
	Core Concept
	Primary Database
	Replica Database
	Primary Replica Replication
	Load Balance Strategy

	Use Norms
	Supported
	Unsupported


	HA
	Background
	Challenges
	Goal
	Core Concept
	high Availability Type
	Dynamic Readwrite-Splitting

	Use Norms
	Supported
	Unsupported


	Scaling
	Background
	Challenges
	Goal
	Status
	Core Concept
	Scaling Job
	Inventory Data
	Incremental Data

	User Norms
	Supported
	Unsupported


	Encryption
	Background
	Challenges
	Goal
	Core Concept
	Logic Column
	Cipher Column
	Query Assistant Column
	Plain Column

	Use Norms
	Supported
	Unsupported


	Shadow DB
	Background
	Challenges
	Goal
	Core Concept
	Production Database
	Shadow Database
	Shadow Algorithm

	Use Norms
	Supported
	Unsupported
	Hint based shadow algorithm
	Column based shadow algorithm



	Observability
	Background
	Challenges
	Goal
	Core Concept
	Agent
	APM
	Tracing
	Metrics

	Use Norms
	Compile source code
	Agent configuration
	Used in ShardingSphere-Proxy



	User Manual
	ShardingSphere-JDBC
	Java API
	Overview
	Usage
	Import Maven Dependency
	Create Data Source
	Use Data Source

	Mode Configuration
	Root Configuration
	Standalone Persist Configuration
	Cluster Persist Configuration

	Data Source
	Example

	Rules
	Sharding
	Root Configuration
	Sharding Table Configuration
	Sharding Automatic Table Configuration
	Sharding Strategy Configuration
	Standard Sharding Strategy Configuration
	Complex Sharding Strategy Configuration
	Hint Sharding Strategy Configuration
	None Sharding Strategy Configuration
	Key Generate Strategy Configuration

	Readwrite-splitting
	Root Configuration
	Readwrite-splitting Data Source Configuration

	HA
	Root Configuration
	Data Source Configuration
	Detect Heartbeat Configuration
	Database Discovery Type Configuration

	Encryption
	Root Configuration
	Encrypt Table Rule Configuration
	Encrypt Column Rule Configuration
	Encrypt Algorithm Configuration

	Shadow DB
	Root Configuration
	Shadow Data Source Configuration
	Shadow Table Configuration
	Shadow Algorithm Configuration

	SQL Parser
	Root Configuration
	Cache option Configuration

	Mixed Rules
	Configuration Item Explanation



	YAML Configuration
	Overview
	Usage
	Import Maven Dependency
	YAML Format
	Create Data Source
	Use Data Source

	YAML Syntax Explanation
	Mode Configuration
	Configuration Item Explanation
	Memory Mode
	Standalone Mode
	Cluster Mode


	Data Source
	Configuration Item Explanation
	Example

	Rules
	Sharding
	Configuration Item Explanation

	Readwrite-splitting
	Configuration Item Explanation

	HA
	Encryption
	Configuration Item Explanation

	Shadow DB
	Configuration Item Explanation

	Mixed Rules
	Configuration Item Explanation

	SQL-parser
	Configuration Item Explanation



	Spring Boot Starter
	Overview
	Usage
	Import Maven Dependency

	Use ShardingSphere Data Source in Spring
	Mode Configuration
	Configuration Item Explanation
	Memory Mode
	Standalone Mode
	Cluster Mode

	Data Source
	Use Native Data Source
	Configuration Item Explanation
	Example

	Use JNDI Data Source
	Configuration Item Explanation
	Example


	Rules
	Sharding
	Configuration Item Explanation
	Attention

	Readwrite splitting
	Configuration Item Explanation

	HA
	Configuration Item Explanation

	Encryption
	Configuration Item Explanation

	Shadow DB
	Configuration Item Explanation

	Mixed Rules
	Configuration Item Explanation

	SQL Parser
	Configuration Item Explanation



	Spring Namespace
	Overview
	Usage
	Import Maven Dependency

	Configure Spring Bean
	Configuration Item Explanation
	Example

	Use ShardingSphere Data Source in Spring
	Mode Configuration
	Configuration Item Explanation
	Memory Mode
	Example
	Standalone Mode
	Configuration Item Explanation
	Example
	Cluster Mode
	Configuration Item Explanation
	Example


	Data Source
	Example

	Rules
	Sharding
	Configuration Item Explanation
	Attention

	Readwrite-splitting
	Configuration Item Explanation

	HA
	Configuration Item Explanation

	Encryption
	Configuration Item Explanation

	Shadow DB
	Configuration Item Explanation

	SQL Parser
	Configuration Item Explanation

	Mixed Rules
	Configuration Item Explanation



	Properties Configuration
	Configuration Item Explanation

	Builtin Algorithm
	Introduction
	Usage
	Metadata Repository
	File Repository
	ZooKeeper Repository
	Etcd Repository

	Sharding Algorithm
	Auto Sharding Algorithm
	Modulo Sharding Algorithm
	Hash Modulo Sharding Algorithm
	Volume Based Range Sharding Algorithm
	Boundary Based Range Sharding Algorithm
	Auto Interval Sharding Algorithm

	Standard Sharding Algorithm
	Inline Sharding Algorithm
	Interval Sharding Algorithm

	Complex Sharding Algorithm
	Complex Inline Sharding Algorithm

	Hint Sharding Algorithm
	Hint Inline Sharding Algorithm

	Class Based Sharding Algorithm

	Key Generate Algorithm
	Snowflake
	UUID

	Load Balance Algorithm
	Round Robin Algorithm
	Random Algorithm
	Weight Algorithm

	Encryption Algorithm
	MD5 Encrypt Algorithm
	AES Encrypt Algorithm
	RC4 Encrypt Algorithm
	SM3 Encrypt Algorithm
	SM4 Encrypt Algorithm

	Shadow Algorithm
	Column Shadow Algorithm
	Column Value Match Shadow Algorithm
	Column Regex Match Shadow Algorithm

	Hint Shadow Algorithm
	Simple Hint Shadow Algorithm



	Special API
	Sharding
	Hint
	Introduction
	Usage
	Sharding with Hint
	Hint Configuration
	Get HintManager
	Add Sharding Value
	Clean Hint Values
	Codes:
	Primary Route with Hint
	Use manual programming
	Get HintManager
	Configure Primary Database Route
	Clean Hint Value
	Codes:
	Use special SQL comments
	Terms of Use
	Codes:
	Route to the specified database with Hint
	Use manual programming
	Get HintManager
	Configure Database Route
	Codes:
	Use special SQL comments
	Terms of Use
	Codes:


	Transaction
	Use Java API
	Import Maven Dependency
	Use Distributed Transaction

	Use Spring Boot Starter
	Import Maven Dependency
	Configure Transaction Manager
	Use Distributed Transaction

	Use Spring Namespace
	Import Maven Dependency
	Configure Transaction Manager
	Use Distributed Transaction

	Atomikos Transaction
	Data Recovery
	Update Configuration

	Bitronix Transaction
	Import Maven Dependency
	Customize Configuration Items
	Configure XA Transaction Manager Type

	Narayana Transaction
	Import Maven Dependency
	Customize Configuration Items
	Configure XA Transaction Manager Type

	Seata Transaction
	Startup Seata Server
	Create Undo Log Table
	Update Configuration


	Observability
	Use Agent
	Build
	Local Build
	Download（Not Released Yet）
	Configuration
	Startup

	APM Integration
	Usage
	Use OpenTracing
	Use SkyWalking’s Automatic Agent
	Use OpenTelemetry
	Result Demonstration
	Application Architecture
	Topology
	Tracking Data
	Exception



	Unsupported Items
	DataSource Interface
	Connection Interface
	Statement and PreparedStatement Interface
	ResultSet Interface
	JDBC 4.1


	ShardingSphere-Proxy
	Startup
	Use Binary Tar
	Startup Steps
	Using database protocol
	Using PostgreSQL
	Using MySQL
	Using openGauss

	Using metadata persist repository
	Using ZooKeeper
	Using Etcd

	Using Distributed Transaction
	Using user-defined algorithm
	Notices

	Use Docker
	Pull Official Docker Image
	Build Docker Image Manually (Optional)
	Configure ShardingSphere-Proxy
	Run Docker
	Access ShardingSphere-Proxy
	FAQ

	Use Helm
	ShardingSphere-Proxy Helm Chart
	TL;DR
	Introduction to ShardingSphere-Proxy
	Requirements
	Install ShardingSphere-Proxy chart
	Uninstall
	Configuration Items’ Description
	Parameters
	Global parameters
	MySQL parameters
	ZooKeeper parameters
	ShardingSphere-Proxy parameters
	ShardingSphere-Proxy config.yaml && server.yaml configuration



	Yaml Configuration
	Authority
	Configuration Item Explanation
	Example
	ALL_PRIVILEGES_PERMITTED
	SCHEMA_PRIVILEGES_PERMITTED


	Properties
	Introduction
	Configuration Item Explanation


	DistSQL
	Syntax
	RDL Syntax
	Resource Definition
	Syntax
	Example
	Rule Definition
	Sharding
	Syntax
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	Example
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	Single Table
	Definition
	Example
	Single Table Rule
	Readwrite-Splitting
	Syntax
	Example
	DB Discovery
	Syntax
	Example
	When creating a discoveryRule, create both discoveryType and discoveryHeartbeat
	Use the existing discoveryType and discoveryHeartbeat to create a discoveryRule
	Encrypt
	Syntax
	Example
	Shadow
	Syntax
	Example

	RQL Syntax
	Resource Query
	Syntax
	Return Value Description
	Example
	Rule Query
	Sharding
	Syntax
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	Return Value Description
	Sharding Table Rule
	Sharding Algorithms
	Unused Sharding Algorithms
	Sharding key generators
	Unused Sharding Key Generators
	Default Sharding Strategy
	Sharding Table Nodes
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	Example
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	Single Table
	Syntax
	Return Value Description
	Single Table Rule
	Single Table
	Example
	Readwrite-Splitting
	Syntax
	Return Value Description
	Example
	DB Discovery
	Syntax
	Return Value Description
	DB Discovery Rule
	DB Discovery Type
	DB Discovery Heartbeat
	Example
	Encrypt
	Syntax
	Return Value Description
	Example
	Shadow
	Syntax
	Return Value Description
	Shadow Rule
	Shadow Table Rule
	Shadow Algorithms
	Shadow Rule status
	Example

	RAL Syntax
	Hint
	Scaling
	Circuit Breaker
	Global Rule
	Other
	Notice


	Usage
	Pre-work
	Create Logic Database
	Resource Operation
	Rule Operation
	Notice

	Sharding
	Resource Operation
	Rule Operation

	readwrite_splitting
	Resource Operation
	Rule Operation

	Encrypt
	Resource Operation
	Rule Operation

	DB Discovery
	Resource Operation
	Rule Operation

	Shadow
	Resource Operation
	Rule Operation




	ShardingSphere-Sidecar
	Introduction
	Comparison

	ShardingSphere-Scaling
	Introduction
	Build
	Build&Deployment
	Shutdown

	Manual
	Manual
	Environment
	Privileges
	MySQL
	PostgreSQL

	DistSQL API for auto mode
	Preview current sharding rule
	Start scaling job
	List scaling jobs
	Get scaling progress
	Preview new sharding rule
	Other DistSQL

	DistSQL API for manual mode




	Dev Manual
	Mode
	StandalonePersistRepository
	ClusterPersistRepository
	GovernanceWatcher

	Configuration
	RuleBuilder
	YamlRuleConfigurationSwapper
	ShardingSphereYamlConstruct

	Kernel
	SQLRouter
	SQLRewriteContextDecorator
	SQLExecutionHook
	ResultProcessEngine
	StoragePrivilegeHandler

	DataSource
	DatabaseType
	DialectTableMetaDataLoader
	DataSourcePoolMetaData
	DataSourcePoolActiveDetector

	SQL Parser
	DatabaseTypedSQLParserFacade
	SQLVisitorFacade

	Proxy
	DatabaseProtocolFrontendEngine
	JDBCDriverURLRecognizer
	AuthorityProvideAlgorithm

	Data Sharding
	ShardingAlgorithm
	KeyGenerateAlgorithm
	DatetimeService
	DatabaseSQLEntry

	Readwrite-splitting
	ReadwriteSplittingType
	ReplicaLoadBalanceAlgorithm

	HA
	DatabaseDiscoveryType

	Distributed Transaction
	ShardingSphereTransactionManager
	XATransactionManagerProvider
	XADataSourceDefinition
	DataSourcePropertyProvider

	Scaling
	ScalingEntry
	JobCompletionDetectAlgorithm
	DataConsistencyCheckAlgorithm
	SingleTableDataCalculator

	SQL Checker
	SQLChecker

	Encryption
	EncryptAlgorithm
	QueryAssistedEncryptAlgorithm

	Shadow DB
	ShadowAlgorithm

	Observability
	PluginDefinitionService
	PluginBootService


	Reference
	Management
	Data Structure in Registry Center
	/rules
	/props
	/metadata/${schemaName}/dataSources
	/metadata/${schemaName}/rules
	/metadata/${schemaName}/tables
	/nodes/compute_nodes
	/nodes/storage_nodes


	Sharding
	SQL Parsing
	SQL Route
	SQL Rewrite
	SQL Execution
	Result Merger
	Query Optimization
	Parse Engine
	Abstract Syntax Tree
	SQL Parser
	History
	Features
	API Usage


	Route Engine
	Sharding Route
	Direct Route
	Standard Route
	Cartesian Route

	Broadcast Route
	Schema & Table Route
	Database Schema Route
	Database Instance Route
	Unicast Route
	Ignore Route


	Rewrite Engine
	Correctness Rewrite
	Identifier Rewrite
	Column Derivation
	Pagination Revision
	Batch Split
	Optimization Rewrite
	Single Node Optimization
	Stream Merger Optimization


	Execute Engine
	Connection Mode
	MEMORY_STRICTLY Mode
	CONNECTION_STRICTLY Mode

	Automatic Execution Engine
	Preparation Phrase
	Execution Phrase


	Merger Engine
	Iteration Merger
	Order-by Merger
	Group-by Merger
	Aggregation Merger
	Pagination Merger


	Transaction
	Navigation
	XA Transaction
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback

	Seata BASE transaction
	Init Seata Engine
	Transaction Begin
	Execute actual sharding SQL
	Commit or Rollback


	Scaling
	Principle Description
	Phase Description
	Preparing Phase
	Inventory Phase
	Incremental Phase
	Switching Phase


	Encryption
	Process Details
	Overall Architecture
	Encryption Rule
	Encryption Process

	Detailed Solution
	New Business
	Online Business Transformation

	The advantages of Middleware encryption service
	Solution
	EncryptAlgorithm
	QueryAssistedEncryptAlgorithm


	Shadow
	Overall Architecture
	Shadow Rule
	Routing Process
	Shadow Judgment Process
	DML Statement
	DDL Statement

	Shadow Algorithm
	Use Example
	Scenario
	Shadow DB configuration
	Shadow DB environment
	Shadow algorithm example


	Test
	Integration Test
	Module Test
	Performance Test
	Sysbench Test
	Integration Test
	Process
	Configuration
	Environment Configuration
	Assertion Configuration

	Notice

	Performance Test
	Performance Test
	Target
	Test Scenarios
	Single Route
	Readwrite-splitting
	Readwrite-splitting & Encrypt & Sharding
	Full Route

	Testing Environment
	Table Structure of Database
	Test Scenarios Configuration
	Single Route Configuration
	Readwrite-splitting Configuration
	Readwrite-splitting & Encrypt & Sharding Configuration
	Full Route Configuration

	Test Result Verification
	SQL Statement
	Jmeter Class
	Compile & Build
	Perform Test
	Process Result Data
	Display of Historical Performance Test Data


	Sysbench Test
	Software Environment
	Test Program

	ShardingSphere-Proxy Configuration
	MySQL Server Configuration
	Jenkins Configuration
	Testing Process

	Enter the Sysbench pressure test result directory
	Create the folder for this build
	Take the last 14 builds and save them in a hidden file
	Deployment and stress testing
	Execute stop proxy script
	Generate pressure test curve picture
	Use Jenkins Publish HTML reports plugin to publish pictures to the page
	sysbench test case describe

	oltp_point_select
	oltp_read_only
	oltp_write_only
	oltp_read_write
	oltp_update_index
	oltp_update_non_index
	oltp_delete
	Appendix 1

	Master branch version
	4.1.1 version
	3.0.0 version
	Appendix 2



	Module Test
	SQL Parser Test
	Prepare Data
	SQL Data
	Assert Data


	SQL Rewrite Test
	Target
	Test




	FAQ
	[JDBC] Why there may be an error when configure both shardingsphere-jdbc-spring-boot-starter and a spring-boot-starter of certain datasource pool(such as druid)?
	[JDBC] Why is xsd unable to be found when Spring Namespace is used?
	[JDBC] Found a JtaTransactionManager in spring boot project when integrating with transaction of XA
	[Proxy] In Windows environment, could not find or load main class org.apache.shardingsphere.proxy.Bootstrap, how to solve it?
	[Proxy] How to add a new logic schema dynamically when use ShardingSphere-Proxy?
	[Proxy] How to use a suitable database tools connecting ShardingSphere-Proxy?
	[Proxy] When using a client such as Navicat to connect to ShardingSphere-Proxy, if ShardingSphere-Proxy does not create a Schema or does not add a Resource, the client connection will fail?
	[Sharding] How to solve Cloud not resolve placeholder … in string value … error?
	[Sharding] Why does float number appear in the return result of inline expression?
	[Sharding] If sharding database is partial, should tables without sharding database & table configured in sharding rules?
	[Sharding] When generic Long type SingleKeyTableShardingAlgorithm is used, why doesClassCastException: Integer can not cast to Long exception appear?
	[Sharding:raw-latex:PROXY] When implementing the StandardShardingAlgorithm custom algorithm, the specific type of Comparable is specified as Long, and the field type in the database table is bigint, a ClassCastException: Integer can not cast to Long exception occurs.
	[Sharding] Why are the default distributed auto-augment key strategy provided by ShardingSphere not continuous and most of them end with even numbers?
	[Sharding] How to allow range query with using inline sharding strategy(BETWEEN AND, >, <, >=, <=)?
	[Sharding] Why does my custom distributed primary key do not work after implementing KeyGenerateAlgorithm interface and configuring type property?
	[Sharding] In addition to internal distributed primary key, does ShardingSphere support other native auto-increment keys?
	[Encryption] How to solve that data encryption can’t work with JPA?
	[DistSQL] How to set custom JDBC connection properties or connection pool properties when adding a data source using DistSQL?
	[DistSQL] How to solve Resource [xxx] is still used by [SingleTableRule]. exception when dropping a data source using DistSQL?
	[DistSQL] How to solve Failed to get driver instance for jdbcURL=xxx. exception when adding a data source using DistSQL?
	[Other] How to debug when SQL can not be executed rightly in ShardingSphere?
	[Other] Why do some compiling errors appear? Why did not the IDEA index the generated codes?
	[Other] In SQLSever and PostgreSQL, why does the aggregation column without alias throw exception?
	[Other] Why does Oracle database throw “Order by value must implements Comparable” exception when using Timestamp Order By?
	[Other] In Windows environment,when cloning ShardingSphere source code through Git, why prompt filename too long and how to solve it?
	[Other] How to solve Type is required error?
	[Other] How to speed up the metadata loading when service starts up?
	[Other] The ANTLR plugin generates codes in the same level directory as src, which is easy to commit by mistake. How to avoid it?
	[Other] Why is the database sharding result not correct when using Proxool?
	[Other] The property settings in the configuration file do not take effect when integrating ShardingSphere with Spring Boot 2.x ?

	API Change Histories
	ShardingSphere-JDBC
	YAML configuration
	5.0.0-alpha
	Data Sharding
	Configuration Item Explanation
	Replica Query
	Configuration Item Explanation
	Encryption
	Configuration Item Explanation
	Shadow DB
	Configuration Item Explanation
	Governance
	Configuration Item Explanation

	ShardingSphere-4.x
	Data Sharding
	Configuration Item Explanation
	Read-Write Split
	Configuration Item Explanation
	Data Masking
	Configuration Item Explanation
	Orchestration
	Configuration Item Explanation

	ShardingSphere-3.x
	Data Sharding
	Configuration Item Explanation
	Read-Write Split
	Configuration Item Explanation
	Orchestration
	Configuration Item Explanation

	ShardingSphere-2.x
	Data Sharding
	Configuration Item Explanation
	Read-Write Split
	concept
	Supported
	Unsupported
	rule configuration
	Orchestration
	Configuration Item Explanation


	Java API
	5.0.0-beta
	Sharding
	Root Configuration
	Sharding Table Configuration
	Sharding Automatic Table Configuration
	Sharding Strategy Configuration
	Standard Sharding Strategy Configuration
	Complex Sharding Strategy Configuration
	Hint Sharding Strategy Configuration
	None Sharding Strategy Configuration
	Key Generate Strategy Configuration
	Readwrite-splitting
	Root Configuration
	Readwrite-splitting Data Source Configuration
	Encryption
	Root Configuration
	Encrypt Table Rule Configuration
	Encrypt Column Rule Configuration
	Encrypt Algorithm Configuration
	Shadow DB
	Root Configuration
	Governance
	Configuration Item Explanation
	Management

	ShardingSphere-4.x
	Sharding
	ShardingDataSourceFactory
	ShardingRuleConfiguration
	TableRuleConfiguration
	StandardShardingStrategyConfiguration
	Subclass of ShardingStrategyConfiguration.
	ComplexShardingStrategyConfiguration
	InlineShardingStrategyConfiguration
	HintShardingStrategyConfiguration
	NoneShardingStrategyConfiguration
	KeyGeneratorConfiguration
	Properties
	Readwrite-splitting
	MasterSlaveDataSourceFactory
	MasterSlaveRuleConfiguration
	Properties
	Data Masking
	EncryptDataSourceFactory
	EncryptRuleConfiguration
	Properties
	Orchestration
	OrchestrationShardingDataSourceFactory
	OrchestrationMasterSlaveDataSourceFactory
	OrchestrationEncryptDataSourceFactory
	OrchestrationConfiguration
	CenterConfiguration
	Properties

	ShardingSphere-3.x
	Sharding
	ShardingDataSourceFactory
	ShardingRuleConfiguration
	TableRuleConfiguration
	StandardShardingStrategyConfiguration
	ComplexShardingStrategyConfiguration
	InlineShardingStrategyConfiguration
	HintShardingStrategyConfiguration
	NoneShardingStrategyConfiguration
	Properties
	configMap
	Readwrite-splitting
	MasterSlaveDataSourceFactory
	MasterSlaveRuleConfiguration
	configMap
	PropertiesConstant
	Orchestration
	OrchestrationShardingDataSourceFactory
	OrchestrationMasterSlaveDataSourceFactory
	OrchestrationConfiguration
	RegistryCenterConfiguration

	ShardingSphere-2.x
	Readwrite-splitting
	concept
	Supported
	Unsupported
	Code development example
	only readwrite-splitting
	sharding table and database + readwrite-splitting

	ShardingSphere-1.x
	Readwrite-splitting
	concept
	Supported
	Unsupported
	Code development example


	Spring namespace configuration change history
	ShardingSphere-5.0.0-beta
	Sharding
	Configuration Item Explanation
	Attention
	Readwrite-Splitting
	Configuration Item Explanation
	Encryption
	Configuration Item Explanation
	Shadow-DB
	Configuration Item Explanation

	4.x
	Sharding
	Configuration Item Explanation
	Readwrite-Splitting
	Configuration Item Explanation
	Data Masking
	Configuration Item Explanation
	Orchestration
	Data Sharding + Orchestration
	Read-Write Split + Orchestration
	Data Masking + Orchestration
	Orchestration registry center

	3.x
	Sharding
	Configuration Item Explanation
	Readwrite-splitting
	Configuration Item Explanation
	Orchestration
	Configuration Item Explanation

	2.x
	Readwrite-splitting
	The configuration example for Spring namespace


	Spring Boot Starter Configuration
	5.0.0-beta
	Sharding
	Configuration Item Explanation
	Readwrite-splitting
	Configuration Item Explanation
	Encryption
	Configuration Item Explanation
	Shadow DB
	Configuration Item Explanation
	Governance
	Configuration Item Explanation
	Management
	Mixed Rules
	Configuration Item Explanation

	Shardingsphere-4.x
	Data Sharding
	Configuration Item Explanation
	Readwrite Split
	Configuration Item Explanation
	Data Masking
	Configuration Item Explanation
	Orchestration
	Configuration Item Explanation

	shardingsphere-3.x
	Sharding
	Configuration Item Explanation
	Readwrite-splitting
	Configuration Item Explanation
	Orchestration
	Configuration Item Explanation

	Shardingsphere-2.x
	Sharding
	Configuration Item Explanation
	Readwrite-splitting
	Configuration Item Explanation
	Orchestration
	Configuration Item Explanation



	ShardingSphere-Proxy
	5.0.0-beta
	Data Source Configuration Item Explanation
	Authentication
	Proxy Properties


	5.0.0-alpha
	Data Source Configuration Item Explanation
	Override dataSourceCommon Configuration
	Authentication
	Proxy Properties


	ShardingSphere-4.x
	Data Source and Sharding Configuration Item Explanation
	Data Sharding
	Read-write splitting
	Data Masking

	Overall Configuration Explanation
	Orchestration
	Proxy Properties
	Authentication


	ShardingSphere-3.x
	Data sources and sharding rule configuration reference
	Data Sharding
	Read-write splitting

	Global configuration reference
	Orchestration
	Proxy Properties
	Authorization





	Downloads
	Latest Releases
	Apache ShardingSphere - Version: 5.1.0 ( Release Date: Feb 16th, 2022 )

	All Releases
	Verify the Releases


