Apache ShardingSphere document

v5.1.0

Apache ShardingSphere

Feb 16,2022

Contents

1 Overview 1
1.1 IntroduCtion v v v v v i it et e e e e e e e e e e e e e e e e e e 1
1.1.1 ShardingSphere-JDBC i i i it e e e e e e e e 2

1.1.2 ShardingSphere-Proxy o vt v v v i it it e e e e e e 2

1.1.3 ShardingSphere-Sidecar(TODO) v v v vt v vttt vt v oo v v 3

1.1.4 Hybrid Architecture e e e e e 4

1.2 SOIUtION . . v v v o e e e e e e e e e e e e e e e e e e e 5
1.3 Roadmap o vt i e e e e e e e e e e e e e e e e e e e 6

2 Quick Start 7
2.1 ShardingSphere-JDBC i i e e e e e e e e e e e e 7
2.1.1 ImportMavenDependency v v v v v v ittt it 7

2.1.2 RulesConfiguration v v vttt vttt e e e e e e 7

2.1.3 3.CreateDataSource v it i it e 7

2.2 ShardingSphere-Proxy i i v i i i e e e e e e e e e e e e 8
2.2.1 RuleConfigurationt ittt e e e 8

2.2.2 ImportDependencies v v v i it it e e e e e e e e 8

2,23 StartServer e e e e e e e e e e e e 8

2.2.4 Use ShardingSphere-Proxy o v v i v v i i vt v i i e un. 8

2.3 ShardingSphere-Scaling (Experimental) 8
2.3.1 RuleConfiguration i e e e e 8

2.3.2 ImportDependencies v v v v vttt e e e e e e e e e e e e e e e e 9

2.3.3 StartServer e e e e e e e e e 9

2.3.4 CreateMigrationJob 9

2.3.5 Relateddocuments it e e e e e e 9

3 Concepts 10
31 Adaptor e 10
3.1.1 ShardingSphere-JDBC o v i i e e e e e e e e e e e e e e e e e e 10

3.1.2 ShardingSphere-Proxy. o v v v i i v i it e e e e e e e e 11

3.1.3 Hybrid Adaptors i e e e e e e e e e 12

32 MOAe . oh i e e e e e e e e e e e e e e e e e 13
3.2.1 Background e e e e e e e e e e e e 13

322 Memorymode it e 14

3.2.3 Standalonemode it e 14

324 Clustermode. . . . v v v ittt e e e e e e e e e e e e e e e e 14

3.3 DESESOL & v v e 14
3.3.1 Background e e e e e e e 14

332 Challenges . . . v v v v v i i e 14

3333 Goal .. e e e e e e e e e e 15

334 NOtCE . v v v i it e e e e e e e e e e e e e e e 15

3.4 Pluggable Architecture e e e e e e 15
3.4.1 Background e e e e e e 15

342 Challenges . . . v v v v v i e 15

343 Goal .. e e e e e e e e 15

3.4.4 Implementationt it e e e e e e e e 16
L1KernelLayer v v v v v vttt e e e e e e e e e e e e e e e e e e 16
L2FeatureLayer @ @ i i i it i e e e e 16
L3EcosystemLayer o i i i i e e e e e e e e e e e 17

4 Features 18
4.1 DBCompatibility oo e e e e e 18
4.1.1 Background e e e e e e e e 18

4.1.2 Challenges« v v i it i it e e e e e e e e 18

4.1.3 0 Goal .o e 19

4.1.4 SQL PATSer . o v v v it e 19
MySQL . . o o e e e e e e e e e e e 19

OPENGAUSS « v v v v v v vt e 19

PostgreSQL o i e e e e e e e e 20

SOLSerVer . v i e 21

Oracle . . . v v v i e e e e e e 21

SQLO2 & . i e e e e e e e 21

4.1.5 DBProtocol . . . v i it e 21

4.1.6 Feature SUPPOTt v i i e e e e e e e e e e e e e e e e 21
MYSOL &« v v e e e e e e e e e e 21

PostgreSQL o L i e e e e e e e e 22

SQLSErver v v i e 22

Oracle . . . o o i i e e e e e e e e 23

0] 1 7P 23

4.2 Management i it h i e 23
4.2.1 Background e e e e e e e e e e e 23

422 Challenges v v v i i e i e 23

4.2.3 Goal ... e e e e e e e e 23

4.2.4 CoreConcept . . . v v v i i i e e e e e e e e e e e e e e 24
Circuit Breaker v v i v v i i i s i e e e e e e e e e e e e e e e e e 24

Request Limit o L i i i e e e e e e e e e e e 24

4.3

4.4

4.5

Sharding o o e 24

4.3.1 Background e e e e e e e e e e 24
Vertical Sharding oo o i ittt i e 25
Horizontal Sharding i i it e 26

4.3.2 Challenges v v v i i i i e 26

4.3.3 Goal .. e e e e e e e 27

4.3.4 CoreConcept . . . v v v i i i e e e e e e e e e e e e e 27
OVEIVIEW . o i v vt i e 27
Table . . . o e e e e e e e e e 27
DataNode o v i it e e e e e e e e e e e e 29
Sharding L e e e e e e e e e e e 30
Inline EXPression v v v v v v vttt e e e e e e e e e e e e e 31
Distributed Primary Key o i it e e e 34
Hint Sharding Route i i i i i i it ettt et 36

4.3.5 UseNOIrms v i i i i i e e e e e e e e e e e e e e 37
Background e e e e e e e e 37
SOL . o e e e e e e e e e e e e 37
Pagination o i i e 41

Distributed Transaction v v v v vttt e e e e e 43

4.4.1 Background e e e e e 43
Local Transaction v v v v v v v i e e e e e e e e e e e e e e 44
2PCTransaction . o v v v v v v v v v e e e e e e e e e e e e e e e e e 44
BASETransaction v v v v v v i it i ettt e e e e 44

442 Challenge i i i i i e e e e e e e e e e e e 45

443 Goal ... e 45

4.4.4 CoreConcept . . v v v vt i e e e e e e e e e e e e e e e e e e 46
Navigation v ¢ v v i i e 46
XA e e e e e 46
BASE . .o e e e e e e e e e e e e e e e e e e e 46

445 UseNOrms 0 i i i i i it e e e e e e e e e e e e 47
Background e e e e e e e e e e e e 47
Local Transaction v v v v v i i it et et e e e e e e e e e e e 47
XA e 47
BASE . . e e e e e e e e e e e e e e e e 51

Readwrite-splitting L e e e e e e e e e e 51

4.5.1 Background e e e e e e e 51

4.5.2 Challenges v v v i i i e e e e e e e e e e e e e e 52

4.5.3 Goal ... e e e e e e e e e e 53

4.5.4 CoreConcept . . v v v vt i e e e e e e e e e e e e e e e e 53
PrimaryDatabase e e e e 53
ReplicaDatabase it i i it it e e e e e e 53
Primary Replica Replication ittt 54
Load Balance Strategy v v v v v v i it e e e e 54

4.5.5 UseNOIrms v i i i i it e e e e e e e e e e e e 54
Supportedo o e e e 54

4.6

4.7

4.8

4.9

HA e 54
4.6.1 Background e e e e e e e e e 54
4.6.2 Challenges v vt i i i i e e e e e e e e e e e e e 55
4.6.3 Goal ... e e e e e e e e e e 55
4.6.4 CoreConcept . . . v v v i i it e e e e e e e e e e e e e e e e e e 55
high Availability Type« . . 0 o it e e e e e e e e 55
Dynamic Readwrite-Splitting o o i e 55
4.6.5 UseNorms i i i i i it e e e e e e e e e 55
Supported e e e e e e e e e e e e e e e e e e e 55
Unsupported o i it e e e e e e e e e e e e e e e e e 56
Scaling . . v v o e e e e e 56
4.7.1 Background e e e e e e e e e e e e e e e e e 56
4.7.2 Challenges o i i i i e e e e e e e e e e e e e e e e e e 56
4.7.3 Goal ..o e e e e e e e 56
4.7.4 Status . . . o L e e e e e e e e e e e e e e e e e 56
4.7.5 CoreConcept . . . v i i i i e e e e e e e e e e e e e e e e e e 56
ScalingJob e e e e e e e e e e e e 56
InventoryData 0 i i e e e e 57
Incremental Data e e e e e e e e e e e 57
4.7.6 User NOTMS o o v i i it et e e e e e e e e e e e e e 57
Supported e 57
Unsupported o i i i e e e e e e e e e e e e e e e e e 57
Encryption i o i i e e e e e e e e e e e e e e e e 57
4.8.1 Background e e e e e e e e e 57
4.8.2 Challenges v v i v i i e 58
4.8.3 Goal ..o e e e e e 58
4.8.4 CoreConcept o v v i i it e e e e e e e e e e e e 58
LogicColumn v v v vt it e et e e e e e e e e e e e e e e 58
CipherColumn i i i i i e e e e e e e e e e et 58
Query AssistantColumno e e e e e e e 58
Plain Colummn o v v v e i e e e e e e e e e e e e e e e e e 59
4.8.5 UseNOImMS . . . o v v v i i i e 59
Supported e 59
Unsupported o i i e 59
Shadow DB o i e e e e e e e 59
49.1 Background o e e e 59
4.9.2 Challenges v v v i i i i e 60
4.9.3 Goal ..o e e e e e 60
4.9.4 CoreConcept . . . v v v v i i i i e e e e e e e e e e e e 60
Production Database v v v v i i e 60
Shadow Database i i e e 60
Shadow Algorithm e 60
4.9.5 UseNOImMS v v i i it it e e e e e e e e e e e e e e 61
Supportedo o e e e 61

Unsupported v i e 61

4.10 Observability o v v i e e e e e 62
4.10.1 Backgroundo e e e e e e e e e e e 62
4.10.2 Challenges . . . v v v v i i it e e e e e e e e e e e e e e e e e 63
4.10.3 Goal ... e e e e e e e e e e e e 63
4.10.4 CoreConcept . .« v v v v v i e 63

Agent . L. L e e e e e e e e e e e e 63

APM & o e 63

Tracing o o e 64

MeEtriCS . v v v v v e i e e e e e e e e e e e e e e e e e e 64

4.10.5 USeNOIMS . . . v v v i i it et et e e e e e e e e e e e e e e e 64
Compilesourcecode o v v v i ittt e e e e e e 64
Agentconfiguration L e e e e e e e e e e e 64

Used in ShardingSphere-Proxy v v v v v v i v it i 67

5 User Manual 68

5.1 ShardingSphere-JDBC i i i e e e e e e e e e e e e e e e 68

5.1.1 Java APL . . . e 69
OVEIVIEW v v v vt e 69
USage . . v v i e 69
Mode Configuration v v v v v v v e e e e e e e e e e e e e e e e e e 70
DataSource e e e e 72
Rules . . . o o i e e e 72
5.1.2 YAML Configuration v v v ittt e e e e e e e e e 86
OVEIVIEW + v v v vt e 86
USage . v v v v i e 86
YAML Syntax Explanation e 87
Mode Configuration v v v v i it e e e e e e e e e e e e 87
DataSource 0 i i i e e e e e e e e 88
Rules . . v v v i e e e e 89
5.1.3 SpringBootStarter e 95
OVEIVIEW . . v v i e i e 95
USage . . v v i i e 95
Use ShardingSphere Data Source in Springo oo v v v v v 95
Mode Configuration« v v v v e e e e e e e e e e e 95
DataSource i i i e e e e e e e e e e e e e e e 97
Rules . . . o ot e e e e e 98
5.1.4 Spring NameSPaCe . . v« v v v v v v v e e e e e e e e e e e e e e e e e e 106
OVEIVIEW . v v v v i e 106
Usage . . . v i i i e e e e e e e e e e e e 106
Configure SpringBean 0t i i i it e e e e e e 106
Use ShardingSphere Data Source in Springo oo v v v v v 107
Mode Configuration v v v v v i e e e e e e e e e e e e 107
DataSource o i i i e e e e e e e e e e e e e e e e e e 111
Rules . . . o o e e e e e e e 112

5.1.5 Properties Configuration v i v vt e it 124

Configuration Item Explanation, 125

5.1.6 Builtin Algorithm e 126
Introduction« v v i v e 126

USage . . v v i e 126

Metadata Repository v v v vt i e e e e e e e e 126

Sharding Algorithm i e e e e 127

Key Generate Algorithm L e 132

Load Balance Algorithm e 133

Encryption Algorithm oo i i e 133

Shadow Algorithm e 135

5.1.7 Special APT o i e e e e 136
Sharding o i e 136
Transaction . . . v v v v v e e e e e e e e e e e e e e e e e e 140
Observability o o i i e e e e 148

5.1.8 UnsupportedItems ot it ittt e e e e 151
DataSource Interface o v i i ittt e e e e e 151
ConnectionInterface e 152

Statement and PreparedStatement Interface 152

ResultSet Interface o i i i i i it et e e e e 152

JDBC 4.1 . o o e 152

5.2 ShardingSphere-Proxy v v v v v i i i i e e e e e e e e e 152
5.2 Startup . .. ov e 153
UseBinaryTar. v v v v v i i e e e e e e e e e e e e e e e 153

Use Docker i i i ittt e e e e e e e e e e e e e e e e e e e 155

5.2.2 Yaml Configuration v v v v v i ittt e e e e e e e e e e e e e 156
Authority o e e e e e e e e e e e 156

Properties v i v i it e e e e e e e e e e e e e e e e 157

523 DiStSOL . & v v v e e e e e e e e e e e 160
Syntax e e e e e e e e e e e e e e e e e 160

Usage . . o v i i e 198

5.3 ShardingSphere-Sidecar 205
5.3.1 IntroduCtion v v v v v v i e 205

5.3.2 COmMPATiSOMN « v v v v v v e 206

5.4 ShardingSphere-Scaling e e e e 206
5.4.1 Introduction o i i e e e e e e e e e e e e e 206

54.2 Build e e e e e e e e e e e e e e e e e e e 207
Build&Deployment i it i e e e e e 207

Shutdown o i i i e e e e e 210

543 Manual e e e e 210
Manual. v e 210

6 Dev Manual 218
6.1 Mode . . v i e 218
6.1.1 StandalonePersistRepository i it e 218

Vi

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.1.2 ClusterPersistRepository v v v v v i it i e e e e e 218

6.1.3 GovernanceWatcher o i e e e e 219
Configuration v v vt e 219
6.2.1 RuleBuilder 219
6.2.2 YamlRuleConfigurationSwapper v v v v v v v v v v v v v e e e 220
6.2.3 ShardingSphereYamlConstruct vt 221
Kernel o 0 0 i e e e e e e e 222
6.3.1 SQLROUtEr v i i it e 222
6.3.2 SQLRewriteContextDecorator. v v v v v v v v v e e e e e e e 222
6.3.3 SQLExecutionHOOK v v v v i v it i e et e e e e e e e e e e e 222
6.3.4 ResultProcessEngine it it e e 223
6.3.5 StoragePrivilegeHandler 223
DataSource o v i i e e e e e e e e e e e e e e e 223
6.4.1 DatabaseType . . . v v v v i it e e e e e e e e e e e e e e 223
6.4.2 DialectTableMetaDataLoadero v v v vt i it 224
6.4.3 DataSourcePoolMetaData v ittt i e e e e e e e e e e e 224
6.4.4 DataSourcePoolDestroyer v v v v v vt vt e e e e e e e e e e 224
SOQL Parser . . . v i i e 225
6.5.1 DatabaseTypedSQLParserFacade 225
6.5.2 SQLVisitorFacade oo v i v ittt e e e e e e e e 225
Proxy . . . @ e e e e e e e e e e 225
6.6.1 DatabaseProtocolFrontendEngine, 225
6.6.2 JDBCDriverURLRECOZNIZET+« o v v v i ittt e e e e e e e e e et 226
6.6.3 AuthorityProvideAlgorithm 226
DataSharding« v v v it i it e e e e e e e e e e e e e e 227
6.7.1 ShardingAlgorithm e 227
6.7.2 KeyGenerateAlgorithm 227
6.7.3 DatetimeServiCe v v i v v i i e e e e e e e e e e e e e e 227
6.7.4 DatabaseSQLENtIy v v v v v e e e e e e e e e e e e e e 228
Readwrite-splitting i e e e e e e e e e e e e 228
6.8.1 ReadwriteSplittingType i i e e e e 228
6.8.2 ReplicaLoadBalanceAlgorithm 228
HA o o e 229
6.9.1 DatabaseDiSCOVErYTYPE . « « v v v v v v v vt et e e e e e e e e e e e e 229
Distributed Transaction o v v v v v i it e e e e e e 229
6.10.1 ShardingSphereTransactionManager v v v v v v v v v v v v v v v v 229
6.10.2 XATransactionManagerProvider 229
6.10.3 XADataSourceDefinition i 230
6.10.4 DataSourcePropertyProvider i e 230
Scaling L e e e e e e e e e e e 230
6.11.1 ScalingEntry o v e e e e e e e e e e 230
6.11.2 JobCompletionDetectAlgorithm 231
6.11.3 DataConsistencyCheckAlgorithm o oo, 231
6.11.4 SingleTableDataCalculator 231
SQL Checker i i i i i e e e e e e e e e e e e e e e e 232

vii

6.12.1 SQLChecker i i i i i i i i e e e e e e e e e e e e e 232

6.13 ENCryption . . . v v v v v i i i e e e e e e e e e e e e e e e e 232
6.13.1 EncryptAlgorithm e 232
6.13.2 QueryAssistedEncryptAlgorithm L o oo 232

6.14 ShadowW DB i i i e 233
6.14.1 ShadowAlgorithm e 233

6.15 Observability o e e e e e e e e e e e e 233
6.15.1 PluginDefinitionService i it e e e e e e e e 233
6.15.2 PluginBootService v v i it e e e e e e e e e e e e e e e 233

Reference 235

7.1 Management i h i i e 235
7.1.1 DataStructurein RegistryCenter oot 235

JTULES . v e 236
IPTOPS v v v v e e e e e e e e e e e e e e e 236
/metadata/${schemaName}/dataSources v v v v i it bt e e 237
/metadata/${schemaName}/rules. o i i i i i e e e e 237
/metadata/${schemaName}/tables i i i i i e 238
/nodes/compute_nodes e e e e e e e e e e e e e 238
/nodes/storage_nodeso u Ll e e e e e e e e e e e e e 238

7.2 Sharding i e 238
7.2.1 SQLPArsing v i i e 239
7.2.2 SQLRoute i i i e 239
7.2.3 SQLReWrite v v i v i i i e e e e e e e e 239
7.24 SQLEXECUtION . & v v v v v i e 240
7.2.5 ResultMerger i i e e e e e e e e e e e e e 240
7.2.6 Query Optimizationt v it ittt 240
7.27 ParseEngine o i i i e e e e e e e e e e e e e 240

Abstract SyntaxTree v v v v v i e e e e e e e e e e e 240
SQL Parser v v i e 241
7.2.8 RouteEngine. e e 245
Sharding Route o i i i i i i e e e e e e e e e e 245
BroadcastRoute v v i i e e e e e e 247
7.29 Rewrite Engine e e e e e e e e 249
Correctness Rewrite i i e 249
Identifier REWTIItE . . . v v v v v it i e 249
Column Derivation v v v v v i e e e e e e e e e e e e e e e e e 251
Pagination Revision i i i i i e e e e e e e e 253
Batch Split o o e e e e e e e e 254
Optimization Rewrite o . o o o i i e 255
7.2.10 Execute Engine i i i i i e e e e e e e e e e e e 256
ConnectionMode i L i e e e e e e e e 256
Automatic Execution Engine Lo o oo 258
7.2.11 MergerEngine L e 261
Iteration Merger. i i i i e e e e e e e e e e e e e 262

viii

7.3

7.4

7.5

7.6

Order-by Merger v v v v v i ittt e e e et e e e e 262

Group-by Merger v v v i i i e e e e e e e 264
AggregatioNn Merger v v v v v vt i e e e e e e e e e e e e e 267
Pagination Merger o v v i i it i e e e e e e 267
Transaction v v v v vt e 268
7.3. 1 Navigation . . . v v v v vt e 268
7.3.2 XATransaction v v v v v vt it i e e e e e e e e e e 269
TransactionBegin L e 269
Execute actual sharding SQL i i e e e e 269
CommitorRollback v v v it e 270
7.3.3 Seata BASEtransactionttt 270
InitSeata Engine e e e 271
TransactionBegin L L e e e e e e 271
Execute actual sharding SQL e 271
CommitorRollback oo v i e 272
Scaling . . v v i e e e 272
7.4.1 Principle DesCription v v v v i i e e e e e e e e e e e e e e e e e 272
7.4.2 Phase DesCription v v v v v v i e e e e e e e e e e e e e e e e e e e 272
PreparingPhase e e e e 272
InventoryPhase v it e e e e e e e e 273
Incremental Phase o i it e e e 273
Switching Phase i i e e e e e e e e e 273
Encryption ot i e e e e e e e e e e e e e e e e e e 273
7.5.1 ProcessDetails L e e e e e e e e e e e e e 273
Overall Architecture i v i i i i i e e e e e e e e e e e 274
EncryptionRule o oo e 274
Encryption Process o o i i e e e e e e e e e 276
7.5.2 DetailedSolution e e e e e e e 277
NeWw BUSITIESS . & & v v v v e 277
Online Business Transformation 278
7.5.3 The advantages of Middleware encryption service 283
7.54 Solution e e e e e e e e e e e e e e e e 283
EncryptAlgorithm 0o e 283
QueryAssistedEncryptAlgorithm oo o oo 284
Shadow . . . v v e e e e e e e e 284
7.6.1 Overall Architecture i i i i e e e e e e e e e 284
7.6.2 ShadowRule i i i e e e e e e e e e e e e e e e 285
7.6.3 ROULING PrOCESS . & v v v v v i e e e e e e e e et e e e e e e e e e e 287
7.6.4 Shadow Judgment Process o i i ittt 287
DML Statement 0 o e e e e e 287
DDL Statement v v i e 287
7.6.5 Shadow Algorithm 0 i i e e e e e 288
7.6.6 UseExample i i i i e e e e e e e e e e e e e e e e 288
SCenario i e e e e e e e e e 288
Shadow DB configuration vt u i e e e e e e e e 288

7.7

7.8

7.7.6

7.7.7

FAQ
7.8.1

7.8.2

7.8.3

7.8.4

7.8.5

7.8.6

7.8.7

7.8.8

7.8.9
7.8.10

7.8.11

7.8.12

7.8.13

IntegrationTest o e 292
Module Test v v v i e 292
Performance TeSt . . . v v v v v i i e e e e e e e e e e e e e e e e e e e 292
Sysbench Test v i i i i e e e e e e e e e e e 293
IntegrationTest o o i e e 293
Process . . . o e e e e e e e e e e e e e e e e 293
NOtICE . & v v i i e 296
Performance Test o v v i i i i e e e e e e e e e e e e e e 296
Performance TeSt v v v v i v e i e e e e e e e e e e e e e e e e e e e 296
Sysbench Test o o v i i i it e e e e e e 306
Module Test o v v i i i i e e e e e e e e e e e e e e 337
SQL ParserTest o i i i i it e e e e e e e e e e e e e e e e e e 337
SQLRewrite Test v v v i i i e e e e e e e e e e e 339
... 340

[JDBC] Why there may be an error when configure both shardingsphere-jdbc-
spring-boot-starter and a spring-boot-starter of certain datasource pool(such as
druid)? . . . e 340

[JDBC] Found a JtaTransactionManager in spring boot project when integrating
with transactionof XA i e e e e e 341

[Proxy] In Windows environment, could not find or load main class

[Proxy] How to add a new logic schema dynamically when use ShardingSphere-
Proxy? e e e e e e 341
[Proxy] How to use a suitable database tools connecting ShardingSphere-Proxy? 342
[Proxy] When using a client such as Navicat to connect to Sharding Sphere-Proxy,
if Sharding Sphere-Proxy does not create a Schema or does not add a Resource,
the client connectionwill fail> L., 342
[Sharding] How to solve Cloud not resolve placeholder --in string
value " error?. v v it i e e e e e e e e e e e 343
[Sharding] Why does float number appear in the return result of inline expression?343
[Sharding] If sharding database is partial, should tables without sharding

[Sharding] When generic Long type SingleKeyTableShardingAlgorithm
is used, why doesClassCastException: Integer can not cast to

[Sharding:raw-latex:PROXY] When implementing the StandardShardingAl-
gorithm custom algorithm, the specific type of Comparab'le is specified as
Long, and the field type in the database table is bigint, a ClassCastExcep-
tion: Integer can not cast to Longexceptionoccurs. 343
[Sharding] Why are the default distributed auto-augment key strategy provided

by ShardingSphere not continuous and most of them end with even numbers? . 344

7.8.14 [Sharding] How to allow range query with using inline sharding strat-
egy(BETWEEN AND, >, <, >=,<2)2 . . 0 vt v i e et et e e 344

7.8.15 [Sharding] Why does my custom distributed primary key do not work after im-
plementing KeyGenerateAlgorithminterface and configuring type property?344

7.8.16 [Sharding] In addition to internal distributed primary key, does ShardingSphere
support other native auto-incrementkeys? 345
7.8.17 [Encryption] How to solve that data encryptioncan’ tworkwith JPA? . .. 345

7.8.18 [DistSQL] How to set custom JDBC connection properties or connection pool
properties when adding a data source using DistSQL? 345

7.8.19 [DistSQL] How to solve Resource [xxx] 1is still used by [Sin-
gleTableRule] . exception when dropping a data source using DistSQL? . . . 346

7.8.20 [DistSQL] How to solve Failed to get driver -+dnstance for jd-
bcURL=xxx . exception when adding a data source using DistSQL? 346
7.8.21 [Other] How to debug when SQL can not be executed rightly in ShardingSphere? 346

7.8.22 [Other] Why do some compiling errors appear? Why did not the IDEA index the
generated codes?o e e e e e e e e 346

7.8.23 [Other] In SQLSever and PostgreSQL, why does the aggregation column without
aliasthrow exception? i i i i i i e e e e e e e e 347

7.8.24 [Other] Why does Oracle database throw “Order by value mustimplements Com-
parable” exception when using Timestamp Order By? 347

7.8.25 [Other] In Windows environment,when cloning ShardingSphere source code
through Git, why prompt filename too long and how to solveit? 348
7.8.26 [Other] How to solve Type is requirederror? 349
7.8.27 [Other] How to speed up the metadata loading when service startsup? 349

7.8.28 [Other] The ANTLR plugin generates codes in the same level directory as src,
which is easy to commit by mistake. How to avoidit? 349
7.8.29 [Other] Why is the database sharding result not correct when using Proxool? . 350

7.8.30 [Other] The property settings in the configuration file do not take effect when
integrating ShardingSphere with Spring Boot2.x? 351
7.9 APIChange Histories. v v v v i i i e e e e e e e e e e e e e e e e e e 352
7.9.1 ShardingSphere-JDBC i i i e e e e e e e e e 352
YAML configuration v v v v v e e e e e e e e e e e e e e e e e e 352
JAVAAPT © o v o e e e e e e e e 367
Spring namespace configuration change history 394
Spring Boot Starter Configuration v v v v v ittt 415
7.9.2 ShardingSphere-ProxXy. o o v v v v i i it e e e e e e e e e e e e e 431
5.0.0-Deta e 431
5.0.0-alpha o e e 433
ShardingSphere-4.X i e e e e e e e e e e e 435
ShardingSphere-3.X vt i i i e e e e e e e e e e e e e 437
8 Downloads 439
8.1 LatestReleases o i i i i i e e e e e e e e e e e e 439
8.1.1 Apache ShardingSphere - Version: 5.0.0 (Release Date: Nov 10th, 2021) 439
8.2 AllReleases . . v v v v v i i e e e e e e e e e e e e e e e e e e e 439

Xi

8.3 VerifytheReleases L i i i i e e e e e e e e e e e e 439

Xii

Overview

Stargazers Over Time
Contributors Over Time

Apache ShardingSphere is positioned as a Database Plus, and aims at building a standard layer and
ecosystem above heterogeneous databases. It focuses on how to reuse existing databases and their
respective upper layer, rather than creating a new database. The goal is to minimize or eliminate the

challenges caused by underlying databases fragmentation.
The concepts at the core of the project are Connect, Enhance and Pluggable.

« Connect: Flexible adaptation of database protocol, SQL dialect and database storage. It can

quickly connect applications and heterogeneous databases quickly.

« Enhance: Capture database access entry to provide additional features transparently, such as:
redirect (sharding, readwrite-splitting and shadow), transform (data encrypt and mask), authen-
tication (security, audit and authority), governance (circuit breaker and access limitation and an-

alyze, QoS and observability).

« Pluggable: Leveraging the micro kernel and 3 layers pluggable mode, features and database
ecosystem can be embedded flexibily. Developers can customize their ShardingSphere just like
building with LEGO blocks.

ShardingSphere became an Apache Top-Level Project on April 16, 2020.

Welcome to interact with community via the official mail list and the ShardingSphere Slack.

1.1 Introduction

Apache ShardingSphere including 3 independent products: JDBC, Proxy & Sidecar (Planning). They all
provide functions of data scale-out, distributed transaction and distributed governance, applicable in a
variety of situations such as Java isomorphism, heterogeneous language and Cloud-Native.

Asthe cornerstone of enterprises, the relational database has a huge market share. Therefore, we prefer

to focus on its incrementation instead of a total overturn.

https://apache.org/index.html#projects-list
mailto:dev@shardingsphere.apache.org
https://app.slack.com/client/T026JKU2DPF/C026MLH7F34

Apache ShardingSphere document, v5.1.0

1.1.1 ShardingSphere-JDBC

ShardingSphere-JDBC defines itself as a lightweight Java framework that provides extra services at the
Java JDBC layer. With the client end connecting directly to the database, it provides services in the form
of a jar and requires no extra deployment and dependence. It can be considered as an enhanced JDBC
driver, which is fully compatible with JDBC and all kinds of ORM frameworks.

« Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC
Template or direct use of JDBC;

« Supports any third-party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP;

« Support any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any

JDBC adapted databases.

| = — |
Java Application Java Application

|

| Business Code r GDV;;([HCE Cz;:r* —l Business Code
ShardingSphere-JDBC iJ . - ShardingSphere-JDBC

|

L -

1.1.2 ShardingSphere-Proxy

ShardingSphere-Proxy defines itself as a transparent database proxy, providing a database server that
encapsulates database binary protocol to support heterogeneous languages. Currently, MySQL and
PostgreSQL (compatible with PostgreSQL-based databases, such as openGauss) versions are provided.
It can use any kind of terminal (such as MySQL Command Client, MySQL Workbench, etc.) that is com-
patible of MySQL or PostgreSQL protocol to operate data, which is friendlier to DBAs.

« Transparent towards applications, it can be used directly as MySQL and PostgreSQL servers;

« Applicable to any kind of terminal that is compatible with MySQL and PostgreSQL protocol.

1.1. Introduction 2

Apache ShardingSphere document, v5.1.0

— _—
: Application Application q
| - i B

Business Code [» Business Code 1
Governance Center —|<——— ShardingSphere-Proxy MySQL/PostgreSQL Cli J
(—— —_| = — __
T MySQL/PostgreSQL GUL
—]

L

1.1.3 ShardingSphere-Sidecar(TODO)

ShardingSphere-Sidecar (TODO) defines itself as a cloud-native database agent of the Kubernetes envi-
ronment, in charge of all database access in the form of a sidecar. It provides a mesh layer interacting
with the database, we call this Database Mesh.

Database Mesh emphasizes how to connect distributed data-access applications with the databases.
Focusing on interaction, it effectively organizes the interaction between messy applications and
databases. The applications and databases that use Database Mesh to visit databases will form a large
grid system, where they just need to be put into the right positions accordingly. They are all governed

by the mesh layer.

1.1. Introduction 3

Apache ShardingSphere document, v5.1.0

...

Node B

Pod D

|

Pod A Pod B Pod €

| Service Mesh Sidecar

|
Sharding-Sidecar |
: — 1

Service Mesh Sidecar

Sharding-Sidecar
I S

Data Panel

Control Panel

52509040

Registry Center
’7 -] . MySQL/Postgre SQL Cli ‘
Sharding-Proxy I‘i— Y osigre !
— -) -
]
— I
Sharding-Console I MySQL/PostgreSQL 6UT

p—

ShardingSphere-JDBC | Shardin gSphere-Proxy | Sharding$S phere-Sidecar
Database Any My SQL/PostgreSQL | My SQL/PostgreSQL
Connections Count Cost | High Low High
Supported Languages Java Only Any Any
Performance Low loss Relatively High loss | Low loss
De centralization Yes No No
Static Entry No Yes No

1.1.4 Hybrid Architecture

ShardingSphere-JDBC adopts a decentralized architecture, applicable to high-performance light-weight

OLTP application

developed with Java. ShardingSphere-Proxy provides static entry and all languages

support, applicable for OLAP application and the sharding databases management and operation situ-

ation.

ShardingSphere is an ecosystem consisting of multiple endpoints together. Through a mixed use of
ShardingSphere-JDBC and ShardingSphere-Proxy and a unified sharding strategy by the same registry
center, ShardingSphere can build an application system that is applicable to all kinds of scenarios. Ar-

chitects can adjust the system architecture to the most applicable one to their needs to conduct business

more freely.

1.1. Introduction

Apache ShardingSphere document, v5.1.0

_—

(. |
Java Application | Java Application

Business Code Business Code

/T ShardingSphere-JDBC
|; Governance Center T
_ _|

ShardingSphere-JDBC “

| 4p

Runtime or Lightweight

Admin or Heavyweight

&

W
~— % ShardingSphere-Proxy MySQL/Postgres Cli

1

: MySQL/Postgres GUL J

I Application " [Application]
- Aestin g
Business Code Business Code ‘
| _ |
1.2 Solution
S olutions/ Fea- . Data Security Database Gateway | Stress T esting
tures Distributed
Database*
Data Sharding Data Encrypt Heterogeneous Shadow D
Databases Sup- | atabase
ported
Readwrit e- | Row Authority | SQL Dialect | Observ ability
splitting (TODO) Translate (TODO)
Distributed SQL Audit
Transaction (TODO)
Elastic Scale-out | SQL Firewall
(TODO)
Highly Available

1.2. Solution 5

Apache ShardingSphere document, v5.1.0

1.3 Roadmap

1.3. Roadmap 6

Quick Start

In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere.

2.1 ShardingSphere-JDBC

2.1.1 Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

Notice: Please change ${latest.release.version} to the actual version.

2.1.2 Rules Configuration

ShardingSphere-JDBC can be configured by four methods, Java, YAML, Spring namespace and
Spring boot starter. Developers can choose the suitable method according to different situa-
tions. Please refer to User Manual for more details.

2.1.3 3. Create Data Source

Use ShardingSphereDataSourceFactory and rule configurations to create ShardingSphere-
DataSource, which implements DataSource interface of JDBC. It can be used for native JDBC or JPA,
Hibernate, MyBatis and other ORM frameworks.

DataSource dataSource = ShardingSphereDataSourceFactory.

createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/

Apache ShardingSphere document, v5.1.0

2.2 ShardingSphere-Proxy

2.2.1 Rule Configuration

Edit %SHARDINGSPHERE_PROXY_HOME%/conf/config-xxx.yaml.
Edit %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the shardingsphere proxy extract path. for ex-
ample: /opt/shardingsphere-proxy-bin/

Please refer to Configuration Manual for more details.

2.2.2 Import Dependencies

If the backend database is PostgreSQL, there’ s no need for additional dependencies.

If the backend database is MySQL, please download mysqgl-connector-java-5.1.47.jar or mysql-
connector-java-8.0.11.jar and put it into $SHARDINGSPHERE _PROXY_HOME%/ext-11b directory.

2.2.3 Start Server

« Use default configuration to start

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

Default port is 3307, default profile directory is $SHARDINGSPHERE _PROXY_HOME%/conf/ .

+ Customize port and profile directory

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${port} ${proxy_conf_directory}

2.2.4 Use ShardingSphere-Proxy

Use MySQL or PostgreSQL client to connect ShardingSphere-Proxy. For example with MySQL:

mysql -u${proxy_username} -p${proxy_password} -h${proxy_host} -P${proxy_port}

2.3 ShardingSphere-Scaling (Experimental)

2.3.1 Rule Configuration

Edit %$SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml.

%SHARDINGSPHERE_PROXY_HOME% is the shardingsphere proxy extract path. for ex-
ample: /opt/shardingsphere-proxy-bin/

2.2. ShardingSphere-Proxy 8

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document, v5.1.0

Please refer to Build Manual for more details.

2.3.2 Import Dependencies

If the backend database is PostgreSQL, there’ s no need for additional dependencies.

If the backend database is MySQL, please download mysql-connector-java-5.1.47.jar and put it into
%SHARDINGSPHERE_PROXY_HOME%/ 11ib directory.

2.3.3 Start Server

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

2.3.4 Create Migration Job

Use DistSQL interface to manage the migration jobs.

Please refer to Usage Manual for more details.

2.3.5 Related documents

+ Features#Scaling : Core Concept, User Norms
+ User Manual#Scaling : Build, Manual
« RAL#Scaling : DistSQL for Scaling

+ Dev Manual#Scaling : SPI interfaces and implementations

2.3. ShardingSphere-Scaling (Experimental) 9

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-scaling/build/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-scaling/usage/
https://shardingsphere.apache.org/document/current/en/features/scaling/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-scaling/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling
https://shardingsphere.apache.org/document/current/en/dev-manual/scaling/

Concepts

The functions of Apache ShardingSphere are pretty complex with hundreds of modules, but the con-
cepts are very simple and clear. Most modules are horizontal extensions faced to these concepts.

The concepts include: adaptor faced to independent products, runtime mode faced to startup, DistSQL
faced to users and pluggable architecture faced to developers.

This chapter describes concepts about Apache ShardingSphere.

3.1 Adaptor

Apache ShardingSphere including 2 independent products: ShardingSphere-JDBC & ShardingSphere-
Proxy. They all provide functions of data scale-out, distributed transaction and distributed governance,
applicable in a variety of situations such as Java isomorphism, heterogeneous language and Cloud-
Native.

3.1.1 ShardingSphere-JDBC

As the first product and the predecessor of Apache ShardingSphere, ShardingSphere-JDBC defines itself
as a lightweight Java framework that provides extra service at Java JDBC layer. With the client end con-
necting directly to the database, it provides service in the form of jar and requires no extra deployment
and dependence. It can be considered as an enhanced JDBC driver, which is fully compatible with JDBC
and all kinds of ORM frameworks.

+ Applicable in any ORM framework based on JDBC, such as JPA, Hibernate, Mybatis, Spring JDBC
Template or direct use of JDBC;

« Support any third-party database connection pool, such as DBCP, C3P0, BoneCP, HikariCP;

« Support any kind of JDBC standard database: MySQL, PostgreSQL, Oracle, SQLServer and any
JDBC adapted databases.

10

Apache ShardingSphere document, v5.1.0

|

Java Application Java Application

| Business Code Business Code

[—DI
ShardingSphere-JDBC ——

ShardingSphere-JDBC

L I
ShardingSphere-JDBC | ShardingSphere-Proxy

Database Any MySQL/PostgreSQL
Connections Count Cost | More Less
Supported Languages Java Only Any
Performance Low loss Relatively High loss
Decentralization Yes No
Static Entry No Yes

ShardingSphere-JDBC is suitable for java application.

3.1.2 ShardingSphere-Proxy

ShardingSphere-Proxy is the second product of Apache ShardingSphere. It defines itself as a trans-
parent database proxy, providing a database server that encapsulates database binary protocol to sup-
port heterogeneous languages. Currently, MySQL and PostgreSQL (compatible with PostgreSQL-based
databases, such as openGauss) versions are provided. It can use any kind of terminal (such as MySQL
Command Client, MySQL Workbench, etc.) that is compatible of MySQL or PostgreSQL protocol to op-
erate data, which is friendlier to DBAs

« Totally transparent to applications, it can be used directly as MySQL/PostgreSQL;

« Applicable to any kind of client end that is compatible with MySQL/PostgreSQL protocol.

3.1. Adaptor 11

Apache ShardingSphere document, v5.1.0

Application Application

Business Code Business Code

r‘* o e q{
|

T

\ P /
Governance Center —|d——— ShardingSphere-Proxy MySQL/PostgreSQL Cli
| | L . S -]
%""ﬂ WySQLPostgresQLEUT |
f"x : 1

ShardingSphere-JDBC | ShardingSphere-Proxy
Database Any MySQL/PostgreSQL
Connections Count Cost | High Low
Supported Languages Java Only Any
Performance Low loss Relatively high loss
Decentralization Yes No
Static Entry No Yes

The advantages of ShardingSphere-Proxy lie in supporting heterogeneous languages and providing op-

erational entries for DBA.

3.1.3 Hybrid Adaptors

ShardingSphere-JDBC adopts a decentralized architecture, applicable to high-performance light-weight
OLTP application developed with Java. ShardingSphere-Proxy provides static entry and all languages
support, applicable for OLAP application and the sharding databases management and operation situ-

ation.

ShardingSphere is an ecosystem consisting of multiple endpoints together. Through a mixed use of
ShardingSphere-JDBC and ShardingSphere-Proxy and a unified sharding strategy by the same registry
center, ShardingSphere can build an application system that is applicable to all kinds of scenarios. Ar-

chitects can adjust the system architecture to the most applicable one to their needs to conduct business

3.1. Adaptor 12

Apache ShardingSphere document, v5.1.0

more freely.

Java Application Java Application
S - I —— S
’7 Business Code j | Business Code |
|
ShardingSphere-TDBC ShardingSphere-JDBC ‘
' \ ﬁ F
!

Runtime or Lightweight

Governance Center

Admin or Heavyweight

ShardingSphere-Proxy MySQL/Postgres Cli
MySQL/Postgres GUL

|
Application 4‘
] [

Business Code | 1 Business Code J
|

Application

—

. . S

3.2 Mode

3.2.1 Background

In order to meet the different needs of users for quick test startup, stand-alone running and cluster
running, Apache shardingsphere provides various mode such as memory, stand-alone and cluster.

3.2. Mode 13

Apache ShardingSphere document, v5.1.0

3.2.2 Memory mode

Suitable for fast integration testing, which is convenient for testing, such as for developers looking to
perform fast integration function testing. This is the default mode of Apache ShardingSphere.

3.2.3 Standalone mode

Suitable in a standalone environment, through which data sources, rules, and metadata can be per-
sisted. Will create a . shardingsphere file in the root directory to store configuration data by default.

3.2.4 Cluster mode

Suitable for use in distributed scenarios which provides metadata sharing and state coordination among
multiple computing nodes. It is necessary to provide registry center for distributed coordination, such
as ZooKeeper or Etcd.

3.3 DistSQL

3.3.1 Background

DistSQL (Distributed SQL) is Apache ShardingSphere specific SQL, which provide added-on operation
capability beside standard SQL.

3.3.2 Challenges

When using ShardingSphere-Proxy, developers can operate data just like using database, but they need
to configure resources and rules through YAML file (or registry center). However, the format of YAML
and habits changed by using registry center are not friendly to DBA.

DistSQL enables users to operate Apache ShardingSphere like a database, transforming it from a frame-

work and middleware for developers to a database product for DBAs.

DistSQL is divided into RDL, RQL and RAL.
+ RDL (Resource & Rule Definition Language) responsible for the definition of resources and rules;
« RQL (Resource & Rule Query Language) responsible for the query of resources and rules;

+ RAL (Resource & Rule Administration Language) responsible for the added-on administrator fea-
ture of hint, transaction type switch, sharding execute planning and so on.

3.3. DistSQL 14

Apache ShardingSphere document, v5.1.0

3.3.3 Goal

It is the design goal of DistSQL to break the boundary between middleware and database and let
developers use Apache ShardingSphere just like database.

3.3.4 Notice

DistSQL can use for ShardingSphere-Proxy only, not for ShardingSphere-JDBC now.

3.4 Pluggable Architecture

3.4.1 Background

In Apache ShardingSphere, many functionality implementations are uploaded through SPI (Service
Provider Interface), which is a kind of API for the third party to implement or expand, and can be

applied in framework expansion or component replacement.

3.4.2 Challenges

Pluggable architecture is very difficult to design for the project architecture. It needs to make each mod-
ule decouple to independent and imperceptible to each other totally, and enables appendable functions
in a way of superposition through a pluggable kernel. Design an architecture to completely isolate each
function, not only can stimulate the enthusiasm of the open source community, but also can guarantee
the quality of the project.

Apache ShardingSphere begin to focus on pluggable architecture from version 5.x, features can be
embedded into project flexibility. Currently, the features such as data sharding, readwrite-splitting,
data encrypt, shadow database, and SQL dialects / database protocols such as MySQL, PostgreSQL,
SQLServer, Oracle supported are all weaved by plugins. Developers can customize their own Shard-
ingSphere just like building lego blocks. There are lots of SPI extensions for Apache ShardingSphere

now and increase continuously.

3.4.3 Goal

It is the design goal of Apache shardingsphere pluggable architecture to enable developers to cus-
tomize their own unique systems just like building blocks.

3.4. Pluggable Architecture 15

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

Apache ShardingSphere document, v5.1.0

-
rRL.IiE; Configurations Database Adaptors Database Protocols
R 44

__ MySQL Pastgres

SQL Dialect Parser Infra :
1 1
i H Others,.
: 7 ; 7
MYSQL Oracle : 5QL Parser | E
D o snaes. ;
Postgres SQLServer i E '_ ________ Merger Decorator !
i : I i
: T e e
5QL92 Others... A" SQL Router Result Merger |<—— | | Sharding | l Encrypt II

A
[Others...

L]
"
i]
i H]
: Route Decorator ' i " E— i
s SQL Rewriter e — -
Vol ' E
: el
L DoSsEEsR
.
L]
L] 1
: s,
L]
L]
L]
1
1

3.4.4 Implementation

The pluggable architecture of Apache ShardingSphere are composed by L1 Kernel Layer, L2 Feature
Layer and L3 Ecosystem Layer.

L1 Kernel Layer

An abstraction of basic capabilities of database. All components are required and the specific imple-
mentation can be replaced by pluggable way. It includes query optimizer, distributed transaction en-
gine, distributed execution engine, authority engine and scheduling engine.

L2 Feature Layer

Used to provide enhanced capability. All components are optional and can contain zero or multiple
components. Components isolate each other and multiple components can be used together super-
imposed. It includes data sharding, readwrite-splitting, database highly availability, data encryption,
shadow database and so on. The user-defined feature can be fully customized and extended for the
top-level interface defined by Apache ShardingSphere without changing kernel codes.

3.4. Pluggable Architecture 16

Apache ShardingSphere document, v5.1.0

L3 Ecosystem Layer

Used to integrate into the current database ecosystem. It includes database protocol, SQL parser and
storage adapter.

3.4. Pluggable Architecture 17

Features

Apache ShardingSphere provides a variety of features, from database kernel and database distributed

solution to applications closed features.

There is no boundary for these features, warmly welcome more open source engineers to join the com-
munity and provide exciting ideas and features.

4.1 DB Compatibility

4.1.1 Background

With information technology innovating, more and more applications established in the new fields,
prompt and push evolution of human society’ s cooperation mode. Data is increasing explosively, the
data storage and computing method are facing innovation all the time.

Transaction, big data, association analysis, Internet of things and other scenarios subdivided quickly,
a single database can not apply to all application scenarios anymore. At the same time, the internal of
scenario is becoming more and more detailed, and it has become normal for similar scenarios to use

different databases.

The trend of database fragmentation is coming.

4.1.2 Challenges

There is no unified database access protocol and SQL dialect, as well as the maintenance and monitoring
methods differences by various databases, learning and maintenance cost of developers and DBAs are
increasing rapidly. Improving the compatibility with the original database is the premise of providing

incremental services on it.

The compatibility between SQL dialect and database protocol is the key point to improve database com-

patibility.

18

Apache ShardingSphere document, v5.1.0

4.1.3 Goal

The goal of database compatibility for Apache ShardingSphere is make user feel nothing changed
among various original databases.

4.1.4 SQL Parser

SQL is the standard operation language between users and databases. SQL Parse engine used to parse
SQL into an abstract syntax tree to provide Apache ShardingSphere understand and implement the add-
on features.

It supports SQL dialect for MySQL, PostgreSQL, SQLServer, Oracle, openGauss and SQL that conform to
the SQL92 specification. However, due to the complexity of SQL syntax, there are still a little of SQL do
not support yet.

This chapter has listed unsupported SQLs reference for users.

There are some unsupported SQLs maybe missing, welcome to finish them. We will try best to support
the unavailable SQLs in future versions.

MySQL

The unsupported SQL list for MySQL are as follows:

SQL
CLONE LOCAL DATA DIRECTORY = ‘clone_dir’

INSTALL COMPONENT ‘file://componentl’ , ‘file://component2’
UNINSTALL COMPONENT ‘file://componentl’ , ‘file://component2’
REPAIR TABLE t_order

OPTIMIZE TABLE t_order

CHECKSUM TABLE t_order

CHECK TABLE t_order

SET RESOURCE GROUP group_name

DROP RESOURCE GROUP group_name

CREATE RESOURCE GROUP group_name TYPE = SYSTEM

ALTER RESOURCE GROUP rgl VCPU = 0-63

openGauss

The unsupported SQL list for openGauss are as follows:

4.1. DB Compatibility 19

file://component1
file://component2
file://component1
file://component2

Apache ShardingSphere document, v5.1.0

SQL
CREATE type avg_state AS (total bigint, count bigint);

CREATE AGGREGATE my_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;

CREATE SCHEMA alt_nsp];

ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;

CREATE CONVERSION alt_convl FOR ‘LATIN1’ TO ‘UTF8 FROM is08859_1_to_utf8;

CREATE FOREIGN DATA WRAPPER alt_fdw1

CREATE SERVER alt_fservl FOREIGN DATA WRAPPER alt_fdw1

CREATE LANGUAGE alt_langl HANDLER plpgsql_call_handler

CREATE STATISTICS alt_statl ON a, b FROM alt_regress_1

CREATE TEXT SEARCH DICTIONARY alt_ts_dictl (template=simple)

CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO
def_test SELECT new

ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)

CREATE PUBLICATION publ FOR TABLE alter1.t1l, ALL TABLES IN SCHEMA alter2

PostgreSQL

The unsupported SQL list for PostgreSQL are as follows:

SQL

CREATE type avg_state AS (total bigint, count bigint);

CREATE AGGREGATE my_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;

CREATE SCHEMA alt_nspl;

ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;

CREATE CONVERSION alt_convl FOR ‘LATIN1’ TO ‘UTF8’ FROM is08859_1_to_utf8;

CREATE FOREIGN DATA WRAPPER alt_fdw1

CREATE SERVER alt_fservl FOREIGN DATA WRAPPER alt_fdw1

CREATE LANGUAGE alt_langl HANDLER plpgsql_call_handler

CREATE STATISTICS alt_statl ON a, b FROM alt_regress_1

CREATE TEXT SEARCH DICTIONARY alt_ts_dictl (template=simple)

CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO
def_test SELECT new™

ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)

CREATE PUBLICATION publ FOR TABLE alter1.t1, ALL TABLES IN SCHEMA alter2

4.1. DB Compatibility 20

Apache ShardingSphere document, v5.1.0

SQLServer

The unsupported SQL list for SQLServer are as follows:
TODO

Oracle

The unsupported SQL list for Oracle are as follows:
TODO

SQL92

The unsupported SQL list for SQL92 are as follows:

TODO

4.1.5 DB Protocol

Apache ShardingSphere implements MySQL and PostgreSQL Protocol.

4.1.6 Feature Support
Apache ShardingSphere provides the ability of distributed collaboration for the database, and abstracts
part of the database features to the upper layer for unified management to reduce the difficulty of users.

Therefore, for the unified provided features, the native SQL will no longer be transferred to the
database, and it will be prompted that the operation is not supported. User can use the feature pro-

vided by ShardingSphere to replace it.

This chapter has listed unsupported database features and related SQLs reference for users.
There are some unsupported SQLs maybe missing, welcome to finish them.

MySQL

The unsupported SQL list for MySQL are as follows:

4.1. DB Compatibility 21

Apache ShardingSphere document, v5.1.0

User & Role

SQL

CREATE USER ‘finley’ @ ‘localhost’ IDENTIFIED BY ‘password’

ALTER USER ‘finley’ @ ‘localhost’ IDENTIFIED BY ‘new_password’

DROP USER ‘finley’ @ ‘localhost’ ;

CREATE ROLE ‘app_read’

DROP ROLE ‘app_read’

SHOW CREATE USER finley

SET PASSWORD = ‘auth_string’

SET ROLE DEFAULT;

Authorization

SQL

GRANT ALL ON db1*TO ‘jeffrey’ @ ‘localhost’

GRANT SELECT ON world* TO ‘role3’ ;

GRANT ‘rolel’ , ‘role2’ TO ‘userl’ @ ‘localhost’
REVOKE INSERT ON . FROM ‘jeffrey’ @ ‘localhost’
REVOKE ‘rolel’ , ‘role2’ FROM ‘userl’ @ ‘localhost’
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user_or_role
SHOW GRANTS FOR ‘jeffrey’ @ ‘localhost’

SHOW GRANTS FOR CURRENT_USER

FLUSH PRIVILEGES

PostgreSQL

The unsupported SQL list for PostgreSQL are as follows:
TODO

SQLServer

The unsupported SQL list for SQLServer are as follows:

TODO

4.1. DB Compatibility

22

Apache ShardingSphere document, v5.1.0

Oracle

The unsupported SQL list for Oracle are as follows:

TODO

SQL92

The unsupported SQL list for SQL92 are as follows:

TODO

4.2 Management

4.2.1 Background

As the scale of data continues to expand, a distributed database has become a trend gradually. The
unified management ability of cluster perspective, and control ability of individual components are
necessary ability in modern database system.

4.2.2 Challenges

The challenge is ability which are unified management of centralized management, and operation in

case of single node in failure.

Centralized management is to uniformly manage the state of database storage nodes and middleware
computing nodes, and can detect the latest updates in the distributed environment in real time, further

provide information with control and scheduling.

In the overload traffic scenario, circuit breaker and request limiting for a node to ensure whole database
cluster can run continuously is a challenge to control ability of a single node.

4.2.3 Goal

The goal of Apache ShardingSphere management module is to realize the integrated management
ability from database to computing node, and provide control ability for components in case of fail-
ure.

4.2, Management 23

Apache ShardingSphere document, v5.1.0

4.2.4 Core Concept
Circuit Breaker

Fuse connection between Apache ShardingSphere and the database. When an Apache ShardingSphere
node exceeds the max load, stop the node’ s access to the database, so that the database can ensure
sufficient resources to provide services for other Apache ShardingSphere nodes.

Request Limit

In the face of overload requests, open request limiting to protect some requests can still respond quickly.

4.3 Sharding

4.3.1 Background

The traditional solution that stores all the data in one concentrated node has hardly satisfied the re-

quirement of massive data scenario in three aspects, performance, availability and operation cost.

In performance, the relational database mostly uses B+ tree index. When the data amount exceeds the
threshold, deeper index will increase the disk IO access number, and thereby, weaken the performance
of query. In the same time, high concurrency requests also make the centralized database to be the
greatest limitation of the system.

In availability, capacity can be expanded at a relatively low cost and any extent with stateless service,
which can make all the pressure, atlast, fall on the database. But the single data node or simple primary-
replica structure has been harder and harder to take these pressures. Therefore, database availability
has become the key to the whole system.

From the aspect of operation costs, when the data in a database instance has reached above the thresh-
old, DBA’ s operation pressure will also increase. The time cost of data backup and data recovery will
be more uncontrollable with increasing amount of data. Generally, it is a relatively reasonable range
for the data in single database case to be within 1TB.

Under the circumstance that traditional relational databases cannot satisfy the requirement of the In-
ternet, there are more and more attempts to store the data in native distributed NoSQL. But its incom-
patibility with SQL and imperfection in ecosystem block it from defeating the relational database in the

competition, so the relational database still holds an unshakable position.

Sharding refers to splitting the data in one database and storing them in multiple tables and databases
according to some certain standard, so that the performance and availability can be improved. Both
methods can effectively avoid the query limitation caused by data exceeding affordable threshold.
What' s more, database sharding can also effectively disperse TPS. Table sharding, though cannot ease
the database pressure, can provide possibilities to transfer distributed transactions to local transac-
tions, since cross-database upgrades are once involved, distributed transactions can turn pretty tricky
sometimes. The use of multiple primary-replica sharding method can effectively avoid the data con-

centrating on one node and increase the architecture availability.

4.3. Sharding 24

Apache ShardingSphere document, v5.1.0

Splitting data through database sharding and table sharding is an effective method to deal with high
TPS and mass amount data system, because it can keep the data amount lower than the threshold and
evacuate the traffic. Sharding method can be divided into vertical sharding and horizontal sharding.

Vertical Sharding

According to business sharding method, it is called vertical sharding, or longitudinal sharding, the core
concept of which is to specialize databases for different uses. Before sharding, a database consists of
many tables corresponding to different businesses. But after sharding, tables are categorized into dif-
ferent databases according to business, and the pressure is also separated into different databases. The
diagram below has presented the solution to assign user tables and order tables to different databases
by vertical sharding according to business need.

SELECT * FROM t_user

SELECT ™ FROM t_order

SELECT * FROM t_user

SELECT * FROM t_order

Vertical sharding requires to adjust the architecture and design from time to time. Generally speaking,
it is not soon enough to deal with fast changing needs from Internet business and not able to really
solve the single-node problem. it can ease problems brought by the high data amount and concurrency
amount, but cannot solve them completely. After vertical sharding, if the data amount in the table still
exceeds the single node threshold, it should be further processed by horizontal sharding.

4.3. Sharding 25

Apache ShardingSphere document, v5.1.0

Horizontal Sharding

Horizontal sharding is also called transverse sharding. Compared with the categorization method
according to business logic of vertical sharding, horizontal sharding categorizes data to multiple
databases or tables according to some certain rules through certain fields, with each sharding con-
taining only part of the data. For example, according to primary key sharding, even primary keys are
put into the 0 database (or table) and odd primary keys are put into the 1 database (or table), which is
illustrated as the following diagram.

SELECT * FROM t_user WHERE id=1

SELECT * FROM t_user WHERE id=2

SELECT * FROM +_user WHERE id=t [iqo2z1

SELECT * FROM t_user WHERE id=2 id%2=0

Theoretically, horizontal sharding has overcome the limitation of data processing volume in single ma-
chine and can be extended relatively freely, so it can be taken as a standard solution to database sharding
and table sharding.

4.3.2 Challenges

Though sharding has solved problems such as performance, availability and single-node backup and
recovery, its distributed architecture has also introduced some new problems as acquiring profits.

One problem is that application development engineers and database administrators’ operations be-
come exceptionally laborious, when facing such scattered databases and tables. They should know
exactly which database table is the one to acquire data from.

Another challenge is that, the SQL that runs rightly in single-node databases may not be right in the
sharding database. The change of table name after sharding, or misconducts caused by operations

such as pagination, order by or aggregated group by are just the case in point.

4.3. Sharding 26

Apache ShardingSphere document, v5.1.0

Cross-database transaction is also a tricky thing that distributed databases need to deal. Fair use of
sharding tables can also lead to the full use of local transactions when single-table data amount de-
creases. Troubles brought by distributed transactions can be avoided by the wise use of different tables
in the same database. When cross-database transactions cannot be avoided, some businesses still need
to keep transactions consistent. Internet giants have not massively adopted XA based distributed trans-
actions since they are not able to ensure its performance in high-concurrency situations. They usually
replace strongly consistent transactions with eventually consistent soft state.

4.3.3 Goal

The main design goal of the data sharding modular of Apache ShardingSphere is to try to reduce the
influence of sharding, in order to let users use horizontal sharding database group like one database.

4.3.4 Core Concept

Overview

This chapter is to introduce core concepts of data sharding.

Table

Table is the core concept of data sharding transparently. There are diversified tables provided for dif-
ferent data sharding requirements by Apache ShardingSphere.

Logic Table

The logical name of the horizontal sharding databases (tables) with the same schema, it is the logical
table identification in SQL. For instance, the data of order is divided into 10 tables according to the
last number of the primary key, and they are from t_order_0 to t_order_9, whose logic name is

t_order.

Actual Table

The physical table that really exists in the horizontal sharding database, i.e., t_order_0tot_order_9

in the instance above.

4.3. Sharding 27

Apache ShardingSphere document, v5.1.0

Binding Table

It refers to the primary table and the joiner table with the same sharding rules. When using binding
tables in multi-table correlating query, you must use the sharding key for correlation, otherwise Carte-
sian product correlation or cross-database correlation will appear, which will affect query efficiency.
For example, t_order and t_order_1itemare both sharded by order_-id, and use order_-id to cor-
relate, so they are binding tables with each other. Cartesian product correlation will not appear in the
multi-tables correlating query, so the query efficiency will increase greatly. Take this one for example,
if SQL is:

SELECT 1i.*x FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

When binding table relations are not configured, suppose the sharding key order_1id routes value 10
to sharding 0 and value 11 to sharding 1, there will be 4 SQLs in Cartesian product after routing:

SELECT i.%* FROM t_order_0® o JOIN t_order_item_O i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.%* FROM t_order_0® o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.%* FROM t_order_1 o JOIN t_order_item_O® i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.%* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=1i.order_id WHERE o.
order_id in (10, 11);

With binding table configuration and use order_1id to correlate, there should be 2 SQLs after routing:

SELECT i.%* FROM t_order_0® o JOIN t_order_item_O® i ON o.order_id=1i.order_id WHERE o.
order_id in (10, 11);

SELECT i.% FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

In them, table t_order in the left end of FROM will be taken by ShardingSphere as the primary table
of query. In a similar way, ShardingSphere will also take table t_order in the left end of FROM as
the primary table of the whole binding table. All the route computations will only use the sharding
strategy of the primary table, so sharding computation of t_order_7temtable will use the conditions
of t_order. Due to this, sharding keys in binding tables should be totally identical.

4.3. Sharding 28

Apache ShardingSphere document, v5.1.0

Broadcast Table
It refers to tables that exist in all sharding database sources. The schema and data must consist in each

database. It can be applied to the small data volume that needs to correlate with big data tables to query,
dictionary table for example.

Single Table

It refers to only one table that exists in all sharding database sources. Itis suitable for little data in table
without sharding.

Data Node

As the atomic unit of sharding, it consists of data source name and actual table name, e.g. ds_0.
t_order_0.

Mapping relationship between logic tables and actual tables and can be divided into two kinds: uniform
topology and user-defined topology.

Uniform topology

It means that tables are evenly distributed in each data source, for example:

dbo

I—— t_ordero

L= t_orderl
db1l

I— t_ordero0

L= t_orderl

The data node configurations will be as follows:

db0.t_ordero, dbO.t_orderl, dbl.t_order®, dbl.t_orderl

User-defined topology

It means that tables are distributed with certain rules, for example:

dbo
I— t_ordero0
L— t_orderl
db1

I— t_order2
|— t_order3

— t_order4

4.3. Sharding 29

Apache ShardingSphere document, v5.1.0

The data node configurations will be as follows:

db0.t_order0®, dbo.t_orderl, dbl.t_order2, dbl.t_order3, dbl.t_order4

Sharding

Sharding Key

Column used to determine database (table) sharding. For example, in last number modulo of order
ID sharding, order ID is taken as the sharding key. The full route executed when there is no sharding
column in SQL has a poor performance. Besides single sharding column, Apache ShardingSphere also

supports multiple sharding columns.

Sharding Algorithm

Data sharding can be achieved by sharding algorithms through =, >=, <=, >, <, BETWEEN and IN. It can
be implemented by developers themselves, or using built-in syntactic sugar of Apache ShardingSphere,
with high flexibility.

Auto Sharding Algorithm

It provides syntactic sugar for sharding algorithm. It used to manage all data nodes automatically, user
do not care about the topology of physical data nodes. It includes lots of implementation for Mod, Hash,
Range and Time Interval etc.

User-Defined Sharding Algorithm

It provides interfaces for developers to implement the sharding algorithm related to business imple-
mentation, and allows users to manage the physical topology physical data nodes by themselves. It
includes:

« Standard Sharding Algorithm

It is to process the sharding case in which single sharding keys =, IN, BETWEEN AND, >, <, >=, <= are
used.

+ Complex Keys Sharding Algorithm

It is to process the sharding case in which multiple sharding keys are used. It has a relatively complex
logic that requires developers to deal by themselves.

+ Hint Sharding Algorithm

It is to process the sharding case in which Hint is used.

4.3. Sharding 30

Apache ShardingSphere document, v5.1.0

Sharding Strategy

It includes the sharding key and the sharding algorithm, and the latter one is extracted out for its inde-
pendence. Only sharding key + sharding algorithm can be used in sharding operation.

SQL Hint

In the case that the sharding column is not decide by SQL but other external conditions, SQL hint can be
used to inject sharding value. For example, databases are shard according to the staff’ s ID, but column
does not exist in the database. SQL Hint can be used by two ways, Java API and SQL comment (TODO).
Please refer to Hint for more details.

Inline Expression

Motivation

Configuration simplicity and unity are two main problems that inline expression intends to solve.

In complex sharding rules, with more data nodes, a large number of configuration repetitions make
configurations difficult to maintain. Inline expressions can simplify data node configuration work.

Java codes are not helpful in the unified management of common configurations. Writing sharding
algorithms with inline expressions, users can store rules together, making them easier to be browsed
and stored.

Syntax Explanation

The use of inline expressions is really direct. Users only need to configure ${ expression } or
$->{ expression } toidentify them. ShardingSphere currently supports the configurations of data
nodes and sharding algorithms. Inline expressions use Groovy syntax, which can support all kinds of

operations, including inline expressions. For example:
${begin..end} meansrange
${[unitl, unit2, unit_x]} meansenumeration

If there are many continuous ${ expression }or $->{ expression } expressions, according to
each sub-expression result, the ultimate result of the whole expression will be in cartesian combination.

For example, the following inline expression:

${['online', 'offline']}_tables${1..3}

Will be parsed as:

online_tablel, online_table2, online_table3, offline_tablel, offline_table2,
offline_table3

4.3. Sharding 31

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/hint/

Apache ShardingSphere document, v5.1.0

Configuration

Data Node

For evenly distributed data nodes, if the data structure is as follow:

dbo

|— t_order®

. t_orderl
db1l

I—— t_ordero

L= t_orderl

It can be simplified by inline expression as:

db${0..1}.t_orders${o..1}

Or

dbs$->{0..1}.t_orders$->{0..1}

For self-defined data nodes, if the data structure is:

dbo
|— t_ordero0
L= t_orderl
dbl

I— t_order2
|— t_order3

— t_order4

It can be simplified by inline expression as:

db0.t_order${0..1},dbl.t_order${2..4}

Or

db0.t_order$->{0..1},dbl.t_order$->{2..4}

For data nodes with prefixes, inline expression can also be used to configure them flexibly, if the data

structure is:

dbo
I—— t_order_00

|— t_order_01
|— t_order_02
I—— t_order_03
I— t_order_04
|— t_order_05

4.3. Sharding

32

Apache ShardingSphere document, v5.1.0

I— t_order_06
|— t_order_07
|— t_order_08
|— t_order_09
|— t_order_10
I—— t_order_11
|— t_order_12
|— t_order_13
|—— t_order_14
I— t_order_15
|— t_order_16
I— t_order_17
I— t_order_18
|— t_order_19

L= t_order_20
db1l
I— t_order_00

|— t_order_01
|— t_order_02
— t_order_o3
|— t_order_04
|— t_order_05
I— t_order_06
I— t_order_07
|— t_order_08
I— t_order_09
|— t_order_10
|— t_order_11
|— t_order_12
|— t_order_13
|—— t_order_14
|— t_order_15
|— t_order_16
I—— t_order_17
I— t_order_18
|— t_order_19

L= t_order_20

Users can configure separately, data nodes with prefixes first, those without prefixes later, and auto-

matically combine them with the cartesian product feature of inline expressions. The example above

can be simplified by inline expression as:

db${0..1}.t_order_05{0..9}, db${0..1}.t_order_${10..20}

Or

db$->{0..1}.t_order_0%$->{0..9}, db$->{0..1}.t_order_s$->{10..20}

4.3. Sharding

33

Apache ShardingSphere document, v5.1.0

Sharding Algorithm

For single sharding SQL that uses = and IN, inline expression can replace codes in configuration.

Inline expression is a piece of Groovy code in essence, which can return the corresponding real data

source or table name according to the computation method of sharding keys.

For example, sharding keys with the last number 0 are routed to the data source with the suffix of 0,
those with the last number 1 are routed to the data source with the suffix of 1, the rest goes on in the
same way. The inline expression used to indicate sharding algorithm is:

ds${id % 10}

Or

ds$->{id % 10}

Distributed Primary Key

Motivation

In the development of traditional database software, the automatic sequence generation technology is
abasic requirement. All kinds of databases have provided corresponding support for this requirement,
such as MySQL auto-increment key, Oracle auto-increment sequence and so on. It is a tricky problem
that there is only one sequence generated by different data nodes after sharding. Auto-increment keys
in different physical tables in the same logic table can not perceive each other and thereby generate
repeated sequences. It is possible to avoid clashes by restricting the initiative value and increasing the
step of auto-increment key. But introducing extra operation rules can make the solution lack integrity
and scalability.

Currently, there are many third-party solutions that can solve this problem perfectly, (such as UUID and
others) relying on some particular algorithms to generate unrepeated keys or introducing sequence
generation services. We have provided several built-in key generators, such as UUID, SNOWFLAKE.
Besides, we have also extracted a key generator interface to make users implement self-defined key
generator.

Built-In Key Generator

uuiD

Use UUID.randomUUID () to generate the distributed key.

4.3. Sharding 34

Apache ShardingSphere document, v5.1.0

SNOWFLAKE

Users can configure the strategy of each table in sharding rule configuration module, with default
snowflake algorithm generating 64bit long integral data.

Asthe distributed sequence generation algorithm published by Twitter, snowflake algorithm can ensure
sequences of different processes do not repeat and those of the same process are ordered.

Principle

In the same process, it makes sure that IDs do not repeat through time, or through order if the time is
identical. In the same timewith monotonously increasing time, if servers are generally synchronized,
generated sequences are generally assumed to be ordered in a distributed environment. This can guar-

antee the effectiveness in index field insertion, like the sequence of MySQL Innodb storage engine.

In the sequence generated with snowflake algorithm, binary form has 4 parts, 1 bit sign, 41bit times-
tamp, 10bit work ID and 12bit sequence number from high to low.

« sign bit (1bit)
Reserved sign bit, constantly to be zero.
« timestamp bit (41bit)

41bit timestamp can contain 2 to the power of 41 milliseconds. One year can use 365 * 24 * 60 *
60 * 1000 milliseconds. We can see from the calculation:

Math.pow(2, 41) / (365 % 24 %x 60 x 60 x 1000L);

The result is approximately equal to 69.73 years. Apache ShardingSphere snowflake algorithm starts
from November 1st, 2016, and can be used until 2086, which we believe can satisfy the requirement of

most systems.
+ work ID bit (10bit)

The sign is the only one in Java process. If applied in distributed deployment, each work ID should be

different. The default value is 0 and can be set through properties.
« sequence number bit (12bit)

The sequence number is used to generate different IDs in a millisecond. If the number generated in
that millisecond exceeds 4,096 (2 to the power of 12), the generator will wait till the next millisecond to

continue.

Please refer to the following picture for the detailed structure of snowflake algorithm sequence.

4.3. Sharding 35

Apache ShardingSphere document, v5.1.0

41bit timestamp 12bit sequence

A
| |

0 0000000000 0000000000 0000000000 0000000000 0 0000000000 COOOOO000O 00

I ——

1bit sign 10bit workerld

Time duration: 241 /(365 * 24 * 60 * 60 * 1000L) = 69.73 years
Working applications count: 210 = 1024
TPS of sequence generated: 212 * 1000 = 4,096k

Clock-Back

The clock-back of server can generate repeated sequence, so the default distributed sequence generator
has provided a maximum clock-back millisecond. If the clock-back time has exceeded it, the program
will report error. If it is within the tolerance range, the generator will wait till after the last generation
time and then continue to work. The default maximum clock-back millisecond is 0 and can be set
through properties.

Hint Sharding Route

Motivation

Apache ShardingSphere can be compatible with SQL in way of parsing SQL statements and extracting
columns and values to shard. If SQL does not have sharding conditions, it is impossible to shard without
full data node route.

In some applications, sharding conditions are not in SQL but in external business logic. So it requires
to designate sharding result externally, which is referred to as Hint in ShardingSphere.

Mechanism

Apache ShardingSphere uses ThreadLocal to manage sharding key values. Users can program to add

sharding conditions to HintManager, but the condition is only effective within the current thread.

In addition to the programming method, Apache ShardingSphere is able to cite Hint through special
notation in SQL, so that users can use that function in a more transparent way.

The SQL designated with sharding hint will ignore the former sharding logic but directly route to the
designated node.

4.3. Sharding 36

Apache ShardingSphere document, v5.1.0

4.3.5 Use Norms

Background

Though Apache ShardingSphere intends to be compatible with all the SQLs and stand-alone databases,
the distributed scenario has brought more complex situations to the database. Apache ShardingSphere
wants to solve massive data OLTP problem first and complete relevant OLAP support problem little by
little.

SQL
SQL Supporting Status
Compatible with all regular SQL when routing to single data node; The SQL routing to multiple data

nodes is pretty complex, it divides the scenarios as totally supported, experimental supported and un-
supported.

Totally Supported

Fully support DML, DDL, DCL, TCL and most regular DAL. Support complex query with pagination,
DISTINCT, ORDER BY, GROUP BY, aggregation and table JOIN.

Regular Query

« SELECT Clause

SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE predicates]

[GROUP BY {col_name | position} [ASC | DESC], ...]

[ORDER BY {col_name | position} [ASC | DESC], ...]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]

« select_expr

*

| [DISTINCT] COLUMN_NAME [AS] [alias]

| (MAX | MIN | SUM | AVG)(COLUMN_NAME | alias) [AS] [alias]
| COUNT(* | COLUMN_NAME | alias) [AS] [alias]

« table_reference

tbl_name [AS] alias] [index_hint_T1list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON
conditional_expr | USING (column_list)]

4.3. Sharding 37

Apache ShardingSphere document, v5.1.0

Subquery

Stable supported when sharding keys are using in both subquery and outer query, and values of sharding
keys are the same.

For example:

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 1;

Stable supported for subquery with pagination.

For example:

SELECT x* FROM (SELECT row_.*, rownum rownum_ FROM (SELECT x FROM t_order) row_
WHERE rownum <= ?) WHERE rownum > ?;

Sharding value in expression

Sharding value in calculated expressions will lead to full routing.

For example, if create_t1ime is sharding value:

SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01"';

Experimental Supported

Experimental support specifically refers to use of Federation execution engine. The engine
still in rapid development, basically available to users, but it still needs lots of optimization. It is an

experimental product.

Subquery

Experimental supported when sharding keys are not using for both subquery and outer query, or values
of sharding keys are not the same.

For example:

SELECT * FROM (SELECT * FROM t_order) o;

SELECT x* FROM (SELECT * FROM t_order) o WHERE o.order_id = 1;

SELECT * FROM (SELECT * FROM t_order WHERE order_-id

1) o;

*

SELECT * FROM (SELECT FROM t_order WHERE order_qd 1) o WHERE o.order_id = 2;

4.3. Sharding 38

https://shardingsphere.apache.org/document/current/en/features/sharding/usage-standard/pagination

Apache ShardingSphere document, v5.1.0

Join with cross databases

When tables in a join query are distributed on different database instances, sql statement will be sup-
ported by Federation execution engine. Assuming that t_order and t_order_item are
sharding tables with multiple data nodes, and no binding table rules are configured, t_user and
t_user_role are single tables that distributed on different database instances. Federation ex-
ecution engine can support the following commonly used join query:

SELECT * FROM t_order o INNER JOIN t_order_item i ON o.order_id = 1i.order_id WHERE
o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user u ON o.user_id = u.user_id WHERE o.user_
id = 1;

SELECT * FROM t_order o LEFT JOIN t_user_role r ON o.user_id
user_id = 1;

r.user_id WHERE o.

SELECT * FROM t_order_+item i LEFT JOIN t_user u ON 1i.user_id = u.user_id WHERE 1.

user_id = 1;

SELECT * FROM t_order_item i RIGHT JOIN t_user_role r ON i.user_id = r.user_id
WHERE i.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role r ON u.user_id = r.user_id WHERE u.

user_id = 1;

Unsupported

CASE WHEN can not support as following:
« CASE WHEN containing sub-query

« CASE WHEN containing logical-table (instead of table alias)

4.3. Sharding 39

Apache ShardingSphere document, v5.1.0

SQL Example

Stable supported SQL

Necessary conditions

SELECT * FROM tbl_name

SELECT * FROM tbl_name WHERE (coll =? or col2 =?) and
col3=?

SELECT * FROM tbl_name WHERE coll = ? ORDER BY col2
DESC LIMIT ?

SELECT COUNT(*), SUM(coll), MIN(coll), MAX(coll),
AVG(coll) FROM tbl_name WHERE coll =?

SELECT COUNT(coll) FROM tbl_name WHERE col2 = ?
GROUP BY coll ORDER BY col3 DESC LIMIT 2, ?

SELECT DISTINCT * FROM tbl_name WHERE coll =?

SELECT COUNT(DISTINCT coll), SUM(DISTINCT coll)
FROM tbl_name

(SELECT * FROM tbl_name)

SELECT * FROM (SELECT * FROM tbl_name WHERE coll =
?) o WHERE o.coll =?

Subquery and outer query in same

sharded data node after route

INSERT INTO tbl_name (coll, col2,---) VALUES (3, 2, *.)

INSERT INTO tbl_name VALUES (2, 2,"*.)

INSERT INTO thl_name (coll, col2, ---) VALUES(L + 2, ?, **)

INSERT INTO tbl_name (coll, col2, ---) VALUES (3, 2, ---.), (3,
20
AR

INSERT INTO tbl_name (coll, col2, --+) SELECT coll, col2,
--*FROM tbhl_name WHERE col3 =?

Inserted and selected table must be

the same or binding tables

REPLACE INTO tbl_name (coll, col2, ---) SELECT coll, col2,
--FROM tbhl_name WHERE col3 =?

Replaced and selected table must be

the same or binding tables

UPDATE tbl_name SET coll =? WHERE col2 =?

DELETE FROM tbl_name WHERE coll =?

CREATE TABLE tbl_name (coll int, *--)

ALTER TABLE tbl_name ADD coll varchar(10)

DROP TABLE tbl_name

TRUNCATE TABLE tbl_name

CREATE INDEX idx_name ON tbl_name

DROP INDEX idx_name ON tbl_name

DROP INDEX idx_name

4.3. Sharding

40

Apache ShardingSphere document, v5.1.0

Experimental supported SQL

Necessary conditions

SELECT * FROM (SELECT * FROM tbl_name) o

SELECT * FROM (SELECT * FROM tbl_name) o
WHERE o.coll =?

SELECT * FROM (SELECT * FROM tbl_name WHERE

coll=?)o

SELECT * FROM (SELECT * FROM tbl_name WHERE
coll =?) o WHERE o.coll =?

Subquery and outer query in different
sharded data node after route

SELECT (SELECT MAX(coll) FROM tbl_name) a, col2

from tbl_name

SELECT SUM(DISTINCT coll),
tbl_name

SUM(coll) FROM

SELECT coll, SUM(col2) FROM tbl_name GROUP BY
coll HAVING SUM(col2) > ?

SELECT coll, col2 FROM tbl_name UNION SELECT
coll, col2 FROM tbl_name

SELECT coll, col2 FROM tbhl_name UNION ALL SE-
LECT coll, col2 FROM tbl_name

Slow SQL

Reason

SELECT * FROM
to_date(create_time, ‘yyyy-mm-dd’)=?

tbl_name

WHERE

Full route because of sharding value in cal-

culate expression

Unsupported SQL

Reason

So lution

INSERT INTO tbl_name (coll,
col2, --) SELECT * FROM
tbl_name WHERE col3=?

SELECT clause does not sup-
port *-shorthand and built-in

key generator

REPLACE INTO tbl_name
(coll, col2, --*) SELECT * FROM
tbl_name WHERE col3="?

SELECT clause does not sup-
port *-shorthand and built-in

key generator

SELECT MAX(tbl_name.coll)
FROM tbl_name

Use table name as column

owner in function

I nstead of table alias

Pagination

Totally support pagination queries of MySQL, PostgreSQL and Oracle; partly support SQLServer pagi-

nation query due to its complexity.

4.3. Sharding

41

Apache ShardingSphere document, v5.1.0

Pagination Performance

Performance Bottleneck

Pagination with query offset too high can lead to a low data accessibility, take MySQL as an example:

SELECT * FROM t_order ORDER BY id LIMIT 1000000, 10

This SQL will make MySQL acquire another 10 records after skipping 1,000,000 records when it is not
able to use indexes. Its performance can thus be deduced. In sharding databases and sharding tables
(suppose there are two databases), to ensure the data correctness, the SQL will be rewritten as this:

SELECT * FROM t_order ORDER BY id LIMIT 0, 1000010

It also means taking out all the records prior to the offset and only acquire the last 10 records after
ordering. It will further aggravate the performance bottleneck effect when the database is already slow
in execution. The reason for that is the former SQL only needs to transmit 10 records to the user end,

but now it will transmit 1,000,010 * 2 records after the rewrite.

Optimization of ShardingSphere

ShardingSphere has optimized in two ways.

Firstly, it adopts stream process + merger ordering to avoid excessive memory occupation. SQL rewrite
unavoidably occupies extra bandwidth, but it will not lead to sharp increase of memory occupation.
Most people may assume that ShardingSphere would upload all the 1,000,010 * 2 records to the
memory and occupy a large amount of it, which can lead to memory overflow. But each ShardingSphere
comparison only acquires current result set record of each shard, since result set records have their own
order. The record stored in the memory is only the current position pointed by the cursor in the result
set of the shard routed to. For the item to be sorted which has its own order, merger ordering only has

the time complexity of 0 (nlogn), with a very low performance consumption.

Secondly, ShardingSphere further optimizes the query that only falls into single shards. Requests of
this kind can guarantee the correctness of records without rewriting SQLs. Under this kind of situation,

ShardingSphere will not do that in order to save the bandwidth.

Pagination Solution Optimization

For LIMIT cannot search for data through indexes, if the ID continuity can be guaranteed, pagination

by ID is a better solution:

SELECT * FROM t_order WHERE id > 100000 AND 1id <= 100010 ORDER BY -id

Or use the ID of last record of the former query result to query the next page:

SELECT * FROM t_order WHERE id > 100000 LIMIT 10

4.3. Sharding 42

Apache ShardingSphere document, v5.1.0

Pagination Sub-query

Both Oracle and SQLServer pagination need to be processed by sub-query, ShardingSphere supports
pagination related sub-query.

» Oracle

Support rownum pagination:

SELECT x FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id
FROM t_order o JOIN t_order_item i ON o.order_id = i.order_id) row_ WHERE rownum <=
?) WHERE rownum > ?

Do not support rownum + BETWEEN pagination for now.
* SQLServer

Support TOP + ROW_NUMBER() OVER pagination:

SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS
rownum, * FROM t_order o) AS temp WHERE temp.rownum > ? ORDER BY temp.order_id

Support OFFSET FETCH pagination after SQLServer 2012:

SELECT * FROM t_order o ORDER BY id OFFSET ? ROW FETCH NEXT ? ROWS ONLY

Do not support WITH xxx AS (SELECT ...) pagination. Because SQLServer automatically gen-
erated by Hibernate uses WITH statements, Hibernate SQLServer pagination or two TOP + sub-query

pagination is not available now.
* MySQL, PostgreSQL

Both MySQL and PostgreSQL support LIMIT pagination, no need for sub-query:

SELECT * FROM t_order o ORDER BY id LIMIT ? OFFSET ?

4.4 Distributed Transaction

4.4.1 Background

Database transactions should satisfy the features of ACID (atomicity, consistency, isolation and dura-
bility).

+ Atomicity guarantees that each transaction is treated as a single unit, which either succeeds com-
pletely, or fails completely;

- Consistency ensures that a transaction can only bring the database from one valid state to another,
maintaining database invariants;

« Isolation ensures that concurrent execution of transactions leaves the database in the same state

that would have been obtained if the transactions were executed sequentially;

4.4, Distributed Transaction 43

Apache ShardingSphere document, v5.1.0

« Durability guarantees that once a transaction has been committed, it will remain committed even
in the case of a system failure (e.g., power outage or crash).

In single data node, transactions are only restricted to the access and control of single database re-
sources, called local transactions. Almost all the mature relational databases have provided native sup-
port for local transactions. But in distributed application situations based on micro-services, more and
more of them require to include multiple accesses to services and the corresponding database resources
in the same transaction. As a result, distributed transactions appear.

Though the relational database has provided perfect native ACID support, it can become an obstacle to
the system performance under distributed situations. How to make databases satisfy ACID features un-
der distributed situations or find a corresponding substitute solution, is the priority work of distributed

transactions.

Local Transaction

It means let each data node to manage their own transactions on the premise that any distributed trans-
action manager is not on. They do not have any coordination and communication ability, or know other
datanodes have succeeded or not. Though without any consumption in performance, local transactions
are not capable enough in high consistency and eventual consistency.

2PC Transaction

The earliest distributed transaction model of XA standard is X/Open Distributed Transaction
Processing (DTP) model brought up by X/Open, XA for short.

Distributed transaction based on XA standard has little intrusion to businesses. Its biggest advantage
is the transparency to users, who can use distributed transactions based on XA standard just as local

transactions. XA standard can strictly guarantee ACID features of transactions.

That guarantee can be a double-edged sword. It is more proper in the implementation of short transac-
tions with fixed time, because it will lock all the resources needed during the implementation process.
For long transactions, data monopolization during its implementation will lead to an obvious concur-
rency performance recession for business systems depend on hot spot data. Therefore, in high concur-
rency situations that take performance as the highest, distributed transaction based on XA standard is

not the best choice.

BASE Transaction

If we call transactions that satisfy ACID features as hard transactions, then transactions based on BASE
features are called soft transactions. BASE is the abbreviation of basically available, soft state and even-

tually consistent those there factors.

« Basically available feature means not all the participants of distributed transactions have to be
online at the same time.

+ Soft state feature permits some time delay in system renewal, which may not be noticed by users.

- Eventually consistent feature of systems is usually guaranteed by message availability.

4.4, Distributed Transaction 44

Apache ShardingSphere document, v5.1.0

There is a high requirement for isolation in ACID transactions: all the resources must be locked during
the transaction implementation process. The concept of BASE transactions is uplifting mutex opera-
tion from resource level to business level through business logic. Broaden the requirement for high

consistency to exchange the rise in system throughput.

Highly consistent transactions based on ACID and eventually consistent transactions based on BASE
are not silver bullets, and they can only take the most effect in the most appropriate situations. The
detailed distinctions between them are illustrated in the following table to help developers to choose

technically:
Local transaction 2PC (3PC) transaction BASE transaction
Business trans | None None Relevant interface
formation
Co nsistency Not support Support Eventual consistency
Isolation Not support Support Business-side guarantee
Co ncurrency pe | No influence Serious recession Minor recession
rformance
Situation Inconsistent operation at | Short transaction & low | Long transaction & high
business side concurrency concurrency

4.4.2 Challenge

For different application situations, developers need to reasonably weight the performance and the
function between all kinds of distributed transactions.

Highly consistent transactions do not have totally the same API and functions as soft transactions, and
they cannot switch between each other freely and invisibly. The choice between highly consistent trans-
actions and soft transactions as early as development decision-making phase has sharply increased the

design and development cost.

Highly consistent transactions based on XA is relatively easy to use, but is not good at dealing with long
transaction and high concurrency situation of the Internet. With a high access cost, soft transactions
require developers to transform the application and realize resources lock and backward compensa-

tion.

4.4.3 Goal

The main design goal of the distributed transaction modular of Apache ShardingSphere is to inte-
grate existing mature transaction cases to provide an unified distributed transaction interface for
local transactions, 2PC transactions and soft transactions; compensate for the deficiencies of cur-
rent solutions to provide a one-stop distributed transaction solution.

4.4, Distributed Transaction 45

Apache ShardingSphere document, v5.1.0

4.4.4 Core Concept

Navigation

This chapter mainly introduces the core concepts of distributed transactions, including:
+ XA transaction

« BASE transaction

XA

2PC transaction submit uses the DTP Model defined by X/OPEN, in which created AP (Application Pro-
gram), TM (Transaction Manager) and RM (Resource Manager) can guarantee a high transaction con-
sistency. TM and RM use XA protocol for bidirectional streaming. Compared with traditional local
transactions, XA transactions have a prepared phase, where the database cannot only passively receive
commands, but also notify the submitter whether the transaction can be accepted. TM can collect all
the prepared results of branch transactions before submitting all of them together, which has guaran-

teed the distributed consistency.

Java implements the XA model through defining a JTA interface, in which ResourceManager requires
an XA driver provided by database manufacturers and TransactionManager is provided by trans-
action manager manufacturers. Traditional transaction managers need to be bound with application
server, which poises a high use cost. Built-in transaction managers have already been able to provide
services through jar packages. Integrated with Apache ShardingSphere, it can guarantee the high con-

sistency in cross-database transactions after sharding.

Usually, to use XA transaction, users must use its connection pool provided by transaction manager
manufacturers. However, when Apache ShardingSphere integrates XA transactions, it has separated
the management of XA transaction and its connection pool, so XA will not invade the applications.

BASE

A paper published in 2008 first mentioned on BASE transaction, it advocates the use of eventual consis-

tency to instead of consistency when improve concurrency of transaction processing.

TCC and Saga are two regular implementations. They use reverse operation implemented by developers
themselves to ensure the eventual consistency when data rollback. SEATA implements SQL reverse
operation automatically, so that BASE transaction can be used without the intervention of developers.

Apache ShardingSphere integrates SEATA as solution of BASE transaction.

4.4, Distributed Transaction 46

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://queue.acm.org/detail.cfm?id=1394128
https://github.com/seata/seata

Apache ShardingSphere document, v5.1.0

4.4.5 Use Norms
Background
Though Apache ShardingSphere intends to be compatible with all distributed scenario and best perfor-

mance, under CAP theorem guidance, there is no sliver bullet with distributed transaction solution.

Apache ShardingSphere wants to give the user choice of distributed transaction type and use the most

suitable solution in different scenarios.

Local Transaction

Supported

« Supportnone-cross-database transactions. For example, sharding table or sharding database with

its route result in same database;

« Support cross-database transactions caused by logic exceptions. For example, update two
databases in transaction with exception thrown, data can rollback in both databases.

Unsupported

+ Do not support the cross-database transactions caused by network or hardware crash. For exam-
ple, when update two databases in transaction, if one database crashes before commit, then only
the data of the other database can commit.

XA

Supported

+ Support cross-database transactions after sharding;
 Operation atomicity and high data consistency in 2PC transactions;

« When service is down and restarted, commit and rollback transactions can be recovered auto-
matically;

« Support use XA and non-XA connection pool together.

4.4, Distributed Transaction 47

Apache ShardingSphere document, v5.1.0

Unsupported

+ Recover committing and rolling back in other machines after the service is down.

XA Transaction managed by XA Statement

« When using XA START to open a XA Transaction, ShardingSphere will pass it to backend database
directly, you have to manage this transaction by yourself;

« When recover from a crush, you have to call XA RECOVER to check unfinished transaction, and

choose to commit or rollback using xid. Or you can use ONE PHASE commit without PREPARE.

MySQL [(none)]> use testl
|MySQL [(none)]> use test2
Reading table information for completion of table and column names
|Reading table information for completion of table and column
names
You can turn off this feature to get a quicker startup with -A

|You can turn off this feature to get a quicker startup with -A

|Database changed
MySQL [testl]> XA START '61c052438d3eb';

|MySQL [test2]> XA START '61c0524390927';
Query OK, 0 rows affected (0.030 sec)

|Query OK, 0 rows affected (0.009 sec)

MySQL [testl]> update test set val = 'xatestl' where 1id 1;

|MySQL [test2]> update test set val = 'xatest2' where 1id = 1;
Query OK, 1 row affected (0.077 sec)

|Query OK, 1 row affected (0.010 sec)

MySQL [testl]> XA END '61c052438d3eb';

|MysQL [test2]> XA END '61c0524390927';
Query OK, 0 rows affected (0.006 sec)

|Query OK, 0 rows affected (0.008 sec)

MySQL [testl]> XA PREPARE '61c052438d3eb';

|MySQL [test2]> XA PREPARE '61c0524390927';
Query OK, 0 rows affected (0.018 sec)

|Query OK, 0 rows affected (0.011 sec)

MySQL [testl]> XA COMMIT '61c052438d3eb';

Database changed

4.4, Distributed Transaction 48

Apache ShardingSphere document, v5.1.0

|MysSQL [test2]> XA COMMIT '61c0524390927';
Query OK, 0 rows affected (0.011 sec)
|Query OK, 0 rows affected (0.018 sec)

MySQL [testl]> select * from test where 1id = 1;
|MySQL [test2]> select x from test where 1id = 1;

1 row in set (0.016 sec)
|l row in set (0.129 sec)

MySQL [testl]> XA START '61c05243994c3';

|MySQL [test2]> XA START '61c052439bd7b';
Query OK, 0 rows affected (0.047 sec)

|Query OK, 0 rows affected (0.006 sec)

MySQL [testl]> update test set val = 'xarollback' where id = 1;
|MySQL [test2]> update test set val = 'xarollback' where 1id =

Query OK, 1 row affected (0.175 sec)
|Query OK, 1 row affected (0.008 sec)

MySQL [testl]> XA END '61c05243994c3';

|MySQL [test2]> XA END '61c052439bd7b';
Query OK, 0 rows affected (0.007 sec)

|Query OK, 0 rows affected (0.014 sec)

MySQL [testl]> XA PREPARE '61c05243994c3';

|MySQL [test2]> XA PREPARE '61c052439bd7b';
Query OK, 0 rows affected (0.013 sec)

|Query OK, 0 rows affected (0.019 sec)

MySQL [testl]> XA ROLLBACK '61c05243994c3';
|MySQL [test2]> XA ROLLBACK '61c052439bd7b';
Query OK, 0 rows affected (0.010 sec)

4.4, Distributed Transaction 49

Apache ShardingSphere document, v5.1.0

|Query OK, 0 rows affected (0.010 sec)

MySQL [testl]> select x* from test where 1id = 1;
|MySQL [test2]> select * from test where 1id = 1;

1 row in set (0.009 sec)
|1 row in set (0.083 sec)

MySQL [testl]> XA START '61c052438d3eb';
Query OK, 0 rows affected (0.030 sec)

MySQL [testl]> update test set val = 'recover' where 1id = 1;
Query OK, 1 row affected (0.072 sec)

MySQL [testl]> select * from test where 1id = 1;

1 row in set (0.039 sec)

MySQL [testl]> XA END '61c052438d3eb';
Query OK, 0 rows affected (0.005 sec)

MySQL [testl]> XA PREPARE '61c052438d3eb';
Query OK, 0 rows affected (0.020 sec)

MySQL [testl]> XA RECOVER;

domm o Fom e dom +
| formatID | gtrid_length | bqual_length | data |

o ——— o o ————— o +

| 1| 13 | 0 | 61c652438d3eb |

fo——————— o —— o —— Fom +

1 row in set (0.010 sec)

MySQL [testl]> XA RECOVER CONVERT XID;

o ——— o ——— o ————— o +

4.4, Distributed Transaction 50

Apache ShardingSphere document, v5.1.0

| formatID | gtrid_length

bqual_length | data |

1 row in set (0.011 sec)

MySQL [testl]> XA COMMIT 0x36316330353234333864336562;
Query OK, 0 rows affected (0.029 sec)

MySQL [testl]> XA RECOVER;
Empty set (0.011 sec)

BASE

Supported

« Support cross-database transactions after sharding;
« Support RC isolation level;
« Rollback transaction according to undo log;

« Support recovery committing transaction automatically after the service is down.

Unsupported

+ Do not support other isolation level except RC.

To Be Optimized

 SQL parsed twice by Apache ShardingSphere and SEATA.

4.5 Readwrite-splitting

4.5.1 Background

Database throughput has faced the bottleneck with increasing TPS. For the application with massive
concurrence read but less write in the same time, we can divide the database into a primary database
and a replica database. The primary database is responsible for the insert, delete and update of trans-
actions, while the replica database is responsible for queries. It can significantly improve the query

performance of the whole system by effectively avoiding row locks.

One primary database with multiple replica databases can further enhance processing capacity by dis-
tributing queries evenly into multiple data replicas. Multiple primary databases with multiple replica

4.5. Readwrite-splitting 51

Apache ShardingSphere document, v5.1.0

databases can enhance not only throughput but also availability. Therefore, the system can still run
normally, even though any database is down or physical disk destroyed.

Different from the sharding that separates data to all nodes according to sharding keys, readwrite-
splitting routes read and write separately to primary database and replica databases according SQL

analysis.

UPDATE t_user SET status='OK' WHERE id=1

SELECT * FROM t_user WHERE id-1

J L
UPDATE t_user SET status='OK' WHERE id=1 e
¥
SELECT * FROM t_user WHERE id=1 Replica

Data in readwrite-splitting nodes are consistent, whereas that in shards is not. The combined use of

sharding and readwrite-splitting will effectively enhance the system performance.

4.5.2 Challenges

Though readwrite-splitting can enhance system throughput and availability, it also brings inconsis-
tent data, including that among multiple primary databases and among primary databases and replica
databases. What’ s more, it also brings the same problem as data sharding, complicating developer and
operator’ s maintenance and operation. The following diagram has shown the complex topological rela-
tions between applications and database groups when sharding used together with readwrite-splitting.

4.5. Readwrite-splitting 52

Apache ShardingSphere document, v5.1.0

t_order_0 +_order_1 +_order_2
13 "

t_order_3 || ™ t_order 4 || ™, +_onder_5 | %
\ N

i

read

e

Application 1 Application n

l: sync

write

t_order_ 0) +_order_1 || +_order_2 ||

t_order_3 i_order_4 +_order_B

4.,5.3 Goal
The main design goal of readwrite-splitting of Apache ShardingSphere is to try to reduce the in-

fluence of readwrite-splitting, in order to let users use primary-replica database group like one
database.

4.5.4 Core Concept

Primary Database

It refers to the database used in data insertion, update and deletion. It only supports single primary

database for now.

Replica Database

It refers to the database used in data query. It supports multiple replica databases.

4.5. Readwrite-splitting 53

Apache ShardingSphere document, v5.1.0

Primary Replica Replication

It refers to the operation to asynchronously replicate data from the primary database to the replica
database. Because of the asynchrony of primary-replica synchronization, there may be short-time data

inconsistency between them.

Load Balance Strategy

Through this strategy, queries separated to different replica databases.

4.5.5 Use Norms

Supported
+ Provide the readwrite-splitting configuration of one primary database with multiple replica
databases, which can be used alone or with sharding table and database;
+ Primary nodes need to be used for both reading and writing in the transaction;

« Forcible primary database route based on SQL Hint;

Unsupported

« Data replication between the primary and the replica databases;
+ Data inconsistency caused by replication delay between databases;
« Double or multiple primary databases to provide write operation;

+ The data for transaction across primary and replica nodes are inconsistent; In the readwrite-
splitting model, primary nodes need to be used for both reading and writing in the transaction.

4.6 HA

4.6.1 Background

High availability is the most basic requirement of modern systems. As the cornerstone of the system,
the database is also essential for high availability.

In the distributed database system with storage-compute splitting, the high availability solution of stor-
age node and compute node are different. The stateful storage nodes need to pay attention to data
consistency, health detection, primary node election and so on; The stateless compute nodes need to
detect the changes of storage nodes, they also need to set up an independent load balancer and have

the ability of service discovery and request distribution.

4.6. HA 54

Apache ShardingSphere document, v5.1.0

Apache ShardingSphere provides compute nodes and reuse database as storage nodes. Therefore, the
high availability solution it adopts is to use the high availability solution of the database itself as the
high availability of the storage node, and detect the changes automatically.

4.6.2 Challenges

Apache ShardingSphere needs to detect high availability solution of diversified storage nodes automat-
ically, and can also integrate the readwrite splitting dynamically, which is the main challenge of imple-

mentation.

4.6.3 Goal

The main goal of Apache ShardingSphere high availability module which is ensuring 7 * 24-hour
uninterrupted database service as much as possible.

4.6.4 Core Concept
high Availability Type

Apache ShardingSphere does not provide high availability solution of database, it reuses 3rd party high
availability solution and auto-detect switch of primary and replica databases. Specifically, the ability
of Apache ShardingSphere provided is database discovery, detect the primary and replica databases
automatically, and updates the connection of compute nodes to the databases.

Dynamic Readwrite-Splitting

When high availability and readwrite-splitting are used together, there is unnecessary to configure spe-
cific primary and replica databases for readwrite-splitting. Highly available data sources will update the
primary and replica databases of readwrite-splitting dynamically, and route the query and update SQL

correctly.

4.6.5 Use Norms

Supported

+ MySQL MGR single-primary mode.

4.6. HA 55

Apache ShardingSphere document, v5.1.0

Unsupported

« MySQL MGR multi-primary mode.

4.7 Scaling

4.7.1 Background

There is a problem which how to migrate data from stand-alone database to sharding data nodes safely
and simply; For applications which have used Apache ShardingSphere, scale out elastically is a manda-

tory requirement.

4.7.2 Challenges

Apache ShardingSphere provides great flexibility in sharding algorithms, but it gives a great challenge
to scaling out. Soit’ s the first challenge that how to find a way can support kinds of sharding algorithms
and scale data nodes efficiently.

What’ s more, During the scaling process, it should not affect the running applications. So It is another
big challenge for scaling to reduce the time window of data unavailability during the scaling as much
as possible, or even completely unaware.

Finally, scaling should not affect the existing data. How to ensure the availability and correctness of
data is the third challenge of scaling.

ShardingSphere-Scaling is a common solution for migrating or scaling data.

4.7.3 Goal

The main design goal of ShardingSphere-Scaling is providing common solution which can support
kinds of sharding algorithm and reduce the impact as much as possible during scaling.

4.7.4 Status

ShardingSphere-Scaling since version 4.1.0. Current status is in alpha development.

4.7.5 Core Concept

Scaling Job

It refers one complete process of scaling data from old rule to new rule.

4.7. Scaling 56

Apache ShardingSphere document, v5.1.0

Inventory Data

It refers all existing data stored in data nodes before the scaling job started.

Incremental Data

It refers the new data generated by application during scaling job.

4.7.6 User Norms

Supported

+ Migrate data outside into databases which managed by Apache ShardingSphere;

+ Scale out data between data nodes of Apache ShardingSphere.

Unsupported

« Scale table without primary key, primary key can not be composite;
+ Scale table with composite primary key;

« Do not support scale on in used databases, need to prepare a new database cluster for target.

4.8 Encryption

4.8.1 Background

Security control has always been a crucial link of data governance, data encryption falls into this cat-
egory. For both Internet enterprises and traditional sectors, data security has always been a highly
valued and sensitive topic. Data encryption refers to transforming some sensitive information through
encrypt rules to safely protect the private data. Data involves client’ s security or business sensibil-
ity, such as ID number, phone number, card number, client number and other personal information,
requires data encryption according to relevant regulations.

The demand for data encryption is generally divided into two situations in real business scenarios:

1. When the new business start to launch, and the security department stipulates that the sensitive
information related to users, such as banks and mobile phone numbers, should be encrypted and
stored in the database, and then decrypted when used. Because it is a brand new system, there is

no inventory data cleaning problem, so the implementation is relatively simple.

2. For the service has been launched, and plaintext has been stored in the database before. The
relevant department suddenly needs to encrypt the data from the on-line business. This scenario
generally needs to deal with three issues as followings:

« How to encrypt the historical data, a.k.a.s data clean.

4.8. Encryption 57

Apache ShardingSphere document, v5.1.0

« How to encrypt the newly added data and store it in the database without changing the business
SQL and logic; then decrypt the taken out data when use it.

« How to securely, seamlessly and transparently migrate plaintext and ciphertext data between
business systems.

4.8.2 Challenges

In the real business scenario, the relevant business development team often needs to implement and
maintain a set of encryption and decryption system according to the needs of the company’ s secu-
rity department. When the encryption scenario changes, the encryption system often faces the risk of
reconstruction or modification. In addition, for the online business system, it is relatively complex to
realize seamless encryption transformation with transparency, security and low risk without modifying
the business logic and SQL.

4.8.3 Goal

Provides a security and transparent data encryption solution, which is the main design goal of
Apache ShardingSphere data encryption module.

4.8.4 Core Concept

Logic Column

Column name used to encryption, it is the logical column identification in SQL. It includes cipher col-
umn(required), query assistant column(optional) and plain column(optional).

Cipher Column

Encrypted data column.

Query Assistant Column

Column used to assistant for query. For non-idempotent encryption algorithms with higher security
level, irreversible idempotent columns provided for query.

4.8. Encryption 58

Apache ShardingSphere document, v5.1.0

Plain Column

Column used to persist plain column, for service provided during data encrypting. Should remove them
after data clean.

4.8.5 Use Norms

Supported

 Encrypt/decrypt one or more columns in the database table;

« Compatible with all regular SQL.

Unsupported

+ Need to process original inventory data before encryption;

+ The value of encryption columns cannot support comparison, such as: >, <, ORDER BY, BE-
TWEEN, LIKE, etc;

+ The value of encryption columns cannot support calculation, such as AVG, SUM, and calculation

expressions.

4.9 Shadow DB

4.9.1 Background

Under the distributed application architecture based on microservices, business requires multiple ser-
vices to be completed through a series of services and middleware calls. The pressure testing of a single
service can no longer reflect the real scenario.

In the test environment, the cost of rebuild complete set of pressure test environment similar to the
production environment is too high. It is usually impossible to simulate the complexity and data of the

production environment.

So, it is the better way to use the production environment for pressure test. The test results obtained
real capacity and performance of the system accurately.

4.9. Shadow DB 59

Apache ShardingSphere document, v5.1.0

4.9.2 Challenges

pressure testing on production environment is a complex and huge task. Coordination and adjustments
between microservices and middlewares required to cope with the transparent transmission of differ-
ent flow rates and pressure test tags. Usually we will build a complete set of pressure testing platform
for different test plans.

Data isolation have to be done at the database-level, in order to ensure the reliability and integrity of
the production data, data generated by pressure testing routed to test database. Prevent test data from

polluting the real data in the production database.

This requires business applications to perform data classification based on the transparently transmit-
ted pressure test identification before executing SQL, and route the corresponding SQL to the corre-
sponding data source.

4.9.3 Goal

**Apache ShardingSphere focuses on data solutions in pressure testing on production environment.

The main goal of the Apache ShardingSphere shadow Database module is routing pressure testing data
to user defined database automatically**

4.9.4 Core Concept

Production Database

The database used for production data.

Shadow Database

The database for pressure testing data isolation.

Shadow Algorithm

The shadow algorithms are closely related to business, there are 2 types of shadow algorithms provided.
+ Column based shadow algorithm

Recognize data from SQL and route to shadow databases. Suitable for test data driven scenario.
 Hint based shadow algorithm

Recognize comment from SQL and route to shadow databases. Suitable for identify passed by upstream
system scenario.

4.9. Shadow DB 60

Apache ShardingSphere document, v5.1.0

4.9.5 Use Norms

Supported

« Hint based shadow algorithm support all SQL;

+ Column based shadow algorithm support part of SQL.

Unsupported

Hint based shadow algorithm

* None

Column based shadow algorithm

* Does not support DDL;

+ Does not support range, group and subquery, for example: BETWEEN, GROUP BY ---HAVING-*;

SQL support list:
« INSERT
SQL Supp orted
INSERT INTO table (column,---) VALUES (value,--*) Y
INSERT INTO table (column,---) VALUES (value,--),(value, "), Y
INSERT INTO table (column,--) SELECT columnl from tablel where columnl = valuel | N

+ SELECT/UPDATE/DELETE

4.9. Shadow DB 61

Apache ShardingSphere document, v5.1.0

SQL Supported

Condition*
= SELECT/UPDATE/DELETE - | Y
WHERE column = value
LIKE/NOT LIKE SELECT/UPDATE/DELETE - | Y
WHERE column LIKE/NOT
LIKE value

IN/NOT IN SELECT/UPDATE/DELETE - | Y
WHERE column IN/NOT IN
(valuel,value2,---)

BETWEEN SELECT/UPDATE/DELETE -+ | N
WHERE column BETWEEN
valuel AND value2

GROUP BY -*HAVING" - SELECT/UPDATE/DELETE -+ | N
WHERE --:GROUP BY column
HAVING column > value
Subquery SELECT/UPDATE/DELETE -+ | N
WHERE column = (SELECT
column FROM table WHERE

column = value)

4.10 Observability

4.10.1 Background

In order to grasp the distributed system status, observe running state of the cluster is a new challenge.
The point-to-point operation mode of logging in to a specific server cannot suite to large number of dis-
tributed servers. Telemetry through observable data is the recommended operation and maintenance
mode for them. Tracking, metrics and logging are important ways to obtain observable data of system
status.

APM (application performance monitoring) is to monitor and diagnose the performance of the system
by collecting, storing and analyzing the observable data of the system. Its main functions include per-

formance index monitoring, call stack analysis, service topology, etc.

Apache ShardingSphere is not responsible for gathering, storing and demonstrating APM data, but pro-
vides the necessary information for the APM. In other words, Apache ShardingSphere is only respon-
sible for generating valuable data and submitting it to relevant systems through standard protocols or
plug-ins. Tracing is to obtain the tracking information of SQL parsing and SQL execution. Apache
ShardingSphere provides support for SkyWalking, Zipkin, Jaeger and OpenTelemetry by default. It also
supports users to develop customized components through plug-in.

« Use Zipkin or Jaeger

Just provides correct Zipkin or Jaeger server information in the agent configuration file.

4.10. Observability 62

Apache ShardingSphere document, v5.1.0

+ Use OpenTelemetry

OpenTelemetry was merged by OpenTracing and OpenCencus in 2019. In this way, you only need to
fill in the appropriate configuration in the agent configuration file according to OpenTelemetry SDK

Autoconfigure Guide.
+ Use SkyWalking

Enable the SkyWalking plug-in in configuration file and need to configure the SkyWalking apm-toolKkit.
+ Use SkyWalking’ s automatic monitor probe

Cooperating with Apache SkyWalking team, Apache ShardingSphere team has realized Sharding-
Sphere automatic monitor probe to automatically send performance data to SkyWalking. Note that
automatic probe in this way cannot be used together with Apache ShardingSphere plug-in probe.

Metrics used to collect and display statistical indicator of cluster. Apache ShardingSphere supports
Prometheus by default.

4.10.2 Challenges

Tracing and metrics need to collect system information through event tracking. Lots of events tracking

make kernel code mess, difficult to maintain, and difficult to customize extend.

4.10.3 Goal

The goal of Apache ShardingSphere observability module is providing as many performance and
statistical indicators as possible and isolating kernel code and embedded code.

4.10.4 Core Concept
Agent

Based on bytecode enhance and plug-in design to provide tracing, metrics and logging features. Enable
the plugin in agent to collect data and send data to the integrated 3rd APM system.

APM

APM is the abbreviation for application performance monitoring. It works for performance diagnosis
of distributed systems, including chain demonstration, service topology analysis and so on.

4.10. Observability 63

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://skywalking.apache.org/

Apache ShardingSphere document, v5.1.0

Tracing

Tracing data between distributed services or internal processes will be collected by agent. It then will

be sent to APM system.

Metrics

System statistical indicator which collected from agent. Write to time series databases periodically. 3rd

party Ul can display the metrics data simply.

4.10.5 Use Norms

Compile source code

Download Apache ShardingSphere from GitHub,Then compile.

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true

-Djacoco.skip=true -DskipITs -DskipTests -Prelease

Output directory: shardingsphere-agent/shardingsphere-agent-distribution/target/apache-

shardingsphere-${latest.release.version}-shardingsphere-agent-bin.tar.gz

Agent configuration

+ Directory structure

Create agent directory, and unzip agent distribution package to the directory. **“shell mkdir agent

tar -zxvf apache-shardingsphere-latest.release.version — shardingsphere — agent — bin.tar.gz —

Cagentcdagenttree. BRRcon fR KRRagent.yamiI® BERIlogback.cmIXR-plugins® RR®shardingsphere—

agent — logging — base—{latest.releaseversion}.jar R BRX shardingsphere-agent-
metrics-prometheus-latest.release.version.jari KXNshardingsphere — agent —
tracing — jaeger—{latest.releaseversion}.jar & WR® shardingsphere-agent-tracing-
opentelemetry-latest.release.version.jar® WR®shardingsphere — agent — tracing —
opentracing—{latest.releaseversion}.jar K BRX shardingsphere-agent-tracing-zipkin-

${latest.release.version}.jar KXK shardingsphere-agent.jar

* Configuration file
agent.yaml is a configuration file. The plug-ins include Jaeger, opentracing,

Zipkin, opentelemetry, logging and Prometheus.
Remove the corresponding plug-in in ignoredpluginnames to start the plug-in.

*yaml

4.10. Observability 64

Apache ShardingSphere document, v5.1.0

applicationName: shardingsphere-agent
ignoredPluginNames:

Jaeger

OpenTracing
- Zipkin
OpenTelemetry
Logging
Prometheus

plugins:
Prometheus:
host: '"localhost"
port: 9090
props:
JVM_INFORMATION_COLLECTOR_ENABLED :
Jaeger:
host: "localhost"
port: 5775
props:
SERVICE_NAME: "shardingsphere-agent"
JAEGER_SAMPLER_TYPE:
JAEGER_SAMPLER_PARAM:
Zipkin:
host: "localhost"
port: 9411
props:
SERVICE_NAME: "shardingsphere-agent"
URL_VERSION: "/api/v2/spans"
SAMPLER_TYPE:
SAMPLER_PARAM:
OpenTracing:

"const"
lllll

"const"
Illll

props:
OPENTRACING_TRACER_CLASS_NAME:
opentracing.SkywalkingTracer"
OpenTelemetry:
props:
otel.resource.attributes:

otel.traces.exporter: "zipkin"
Logging:
props:
LEVEL: "INFO"

"true"

"org.apache.skywalking.apm.toolkit.

"service.name=shardingsphere-agent"

« Parameter description:

4.10. Observability

65

Apache ShardingSphere document, v5.1.0

Name Descrip- Value range Default
tion value
JVM _IN- | Start JVM | true. false true
FORMA- collector
TION_CO
LLEC-
TOR_ENABLED
SER- Tracking Custom shardi
VICE_NAME | service ngsphere-
name agent
JAEG Jaeger const, proba bilistic, ratel imiting, remote const
ER_SAMPLER | Ts¥Piple
rate type
JAEGE Jaeger const:0, 1, pr obabilistic:0.0 - 1.0, ratelimiting: > 0, | 1 (const
R_SAMPLER_PARAM Customize the number of acquisitions per secon d, re- | type)
ple rate | mote: need to customize the remote service addres,JA
parameter | EGER_SAMPLER_MA NAGER_HOST_PORT
SAM- Zipkin const, counting, ratelim iting, boundary const
PLER_TYPE | sample
rate type
SAM- Zipkin const:0, 1, counting:0.01 - 1.0, ratelimiting: > 0, bound- | 1 (const
PLER_PARAM| sam- ary:0.0001-1.0 type)
pling rate
parameter
otel.reso open- String key value pair (, split) servi
urce.attributes telemetry ce.name=sh
properties ngsphere-
agent
otel. Tracing zipkin, jaeger zipkin
traces.exportelr expoter
otel Open- alway s_on. always_of f. traceidratio always_on
traces.sampler telemetry
sample
rate type
otel.tra Open- tr aceidratio: 0.0-1.0 1.0
ces.sampler.argtelemetry
sam-
ple rate
parameter
4.10. Observability 66

ardi

Apache ShardingSphere document, v5.1.0

Used in ShardingSphere-Proxy

« Startup script

Configure the absolute path of shardingsphere-agent.jar to the start.sh startup script of shardingsphere
proxy.

nohup java ${JAVA_OPTS} ${JAVA_MEM_OPTS} \
-javaagent: /xxxxx/agent/shardingsphere-agent.jar \
-classpath ${CLASS_PATH} S${MAIN_CLASS} >> ${STDOUT_FILE} 2>&1 &

+ Launch plugin

bin/start.sh

After normal startup, you can view the startup log of the plugin in the shardingsphere proxy log, and
you can view the data at the configured address.

4.10. Observability 67

User Manual

This chapter describes how to use projects of Apache ShardingSphere.

5.1 ShardingSphere-JDBC

Configuration is the only module in ShardingSphere-JDBC that interacts with application devel-
opers, through which developers can quickly and clearly understand the functions provided by
ShardingSphere-JDBC.

This chapter is a configuration manual for ShardingSphere-JDBC, which can also be referred to as a
dictionary if necessary.

ShardingSphere-JDBC has provided 4 kinds of configuration methods for different situations. By con-
figuration, application developers can flexibly use data sharding, readwrite-splitting, data encryption,

shadow database or the combination of them.

Mixed rule configurations are very similar to single rule configuration, except for the differences from
single rule to multiple rules.

It should be noted that the superposition between rules are data source and table name related. If
the previous rule is data source oriented aggregation, the next rule needs to use the aggregated logical
data source name configured by the previous rule when configuring the data source; Similarly, if the
previous rule is table oriented aggregation, the next rule needs to use the aggregated logical table name
configured by the previous rule when configuring the table.

Please refer to Example for more details.

68

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example

Apache ShardingSphere document, v5.1.0

5.1.1 Java API

Overview

Java API is the basic configuration methods in ShardingSphere-JDBC, and other configurations will
eventually be transformed into Java API configuration methods.

The Java API is the most complex and flexible configuration method, which is suitable for the scenarios

requiring dynamic configuration through programming.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

Create Data Source

ShardingSphere-JDBC Java API consists of schema name, mode configuration, data source map, rule
configurations and properties.

The ShardingSphereDataSource created by ShardingSphereDataSourceFactory implements the stan-
dard JDBC DataSource interface.

String schemaName = "foo_schema"; // Indicate logic schema name
ModeConfiguration modeConfig = ... // Build mode configuration
Map<String, DataSource> dataSourceMap = ... // Build actual data sources
Collection<RuleConfiguration> ruleConfigs = ... // Build concentrate rule
configurations

Properties props = ... // Build properties

DataSource dataSource = ShardingSphereDataSourceFactory.

createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

Please refer to Mode Confiugration for more mode details.
Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

5.1. ShardingSphere-JDBC 69

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/java-api/rules

Apache ShardingSphere document, v5.1.0

Use Data Source

Developer can choose to use native JDBC or ORM frameworks such as JPA, Hibernate or MyBatis through
the DataSource.

Take native JDBC usage as an example:

// Create ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.

createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

String sql = "SELECT i.%* FROM t_order o JOIN t_order_item i ON o.order_id=1i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (
Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {
ps.setInt(l, 10);
ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {
while(rs.next()) {
/1l

Mode Configuration

Root Configuration

Class name: org.apache.shardingsphere.infra.config.mode.ModeConfiguration

Attributes:

5.1. ShardingSphere-JDBC 70

Apache ShardingSphere document, v5.1.0

Name”*

Data Type

Description

DefaultValue*

type

String

Type of mode configu-
rationValues could be:
Memory, Standalone,

Cluster

Memory

repository

PersistRep ositoryCon | Persist repository

figur ation

configurationMem-
ory type does not
need persist, could be
nullStandalone type
uses StandalonePer-
sistRepositoryCon-
figurationCluster
type uses ClusterPer-
sistRepositoryConfig-

uration

overwrite

bo ole

an

Whether overwrite
persistent config-

uration with local

configuration

false

Standalone Persist Configuration

Class name: org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepositoryConfiguration

Attributes:

Name | DataType Description
type | String Type of persist repository
props | Properties | Properties of persist repository

Cluster Persist Configuration

Classname: org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration

Attributes:

Name DataType Description

type String Type of persist repository
namespace | String Namespace of registry center
serverLists | String Server lists of registry center
props Properties | Properties of persist repository

5.1. ShardingSphere-JDBC

71

Apache ShardingSphere document, v5.1.0

Please refer to Builtin Persist Repository List for more details about type of repository.

Data Source

ShardingSphere-JDBC Supports all JDBC drivers and database connection pools.

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced

with other database drivers and connection pools.

Map<String, DataSource> dataSourceMap = new HashMap<>();

// Configure the 1st data source

HikariDataSource dataSourcel = new HikariDataSource();
dataSourcel.setDriverClassName("com.mysql.jdbc.Driver");
dataSourcel.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSourcel.setUsername("root");
dataSourcel.setPassword("");

dataSourceMap.put("ds_1", dataSourcel);

// Configure the 2nd data source

HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");

dataSourceMap.put("ds_2", dataSource2);

// Configure other data sources

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a java rule configuration manual
for ShardingSphere-JDBC.

Sharding

Root Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

Attributes:

5.1. ShardingSphere-JDBC 72

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

Name DataType Description Def ault Va lue
tables (+) Collec- Sharding table rules .
tion<ShardingTa
bleRuleConfigura-
tion>
autoTables (+) Coll ec- | Sharding automatic ta- .
tion<ShardingAutoTa | ble rules
bleRuleConfigura-
tion>
bind ingTableGroups | Collection<String> Binding table rules E mpty
*)
b roadcastTables (*) Collection<String> Broadcast table rules E mpty
def aultDatabaseSh | Sharding StrategyCon- | Default database | Not shar ding
ardingStrategy (?) figuration sharding strategy
defaultTableSh ard- | Sharding StrategyCon- | Default table sharding | Not shar ding
ingStrategy (?) figuration strategy
defaultKeyGe nerateS- | KeyG eneratorConfig- | Default key generator | S nowf lake
trategy (?) uration
default ShardingCol- | String Default sharding col- | None
umn (?) umn name
shar dingAlgorithms | Map<String, Sharding- | Sharding algorithm | None
(+) SphereAl gorithmCon- | name and configura-
figuration> tions
keyGenerators (?) Map<String, Sharding- | Key generate algo- | None
SphereAl gorithmCon- | rithm name and
figuration> configurations

Sharding Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

Attributes:

5.1. ShardingSphere-JDBC 73

Apache ShardingSphere document, v5.1.0

point. Multiple data
nodes split by comma,

support inline expres-

. Dat aType Description Default Value
Name*
logic Table String Name of sharding .
logic table
actua 1Data Nodes (?) String Describe data source | Broadcast table or
names and actual | databases sharding
tables, delimiter as | only

sion
data baseS hardi ngStr | Shard ingStr ategyC | Databases sharding | Use default databases
ategy (?) onfigu ration strategy sharding strategy
t ableS hardi ngStr at- | Shard ingStr ategyC | Tables sharding strat- | Use default tables
egy (?) onfigu ration egy sharding strategy

keyG enera teStr ategy
®)

K eyGene ratorC on-
figu ration

Key generator configu-

ration

Use default key gener-
ator

Sharding Automatic Table Configuration

Class name: org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

Attributes:

Name DataType Description Default Value

lo gicTable String Name of sharding .
logic table

a ctualDat aSources (?) | String Data source names. | Useall configured data
Multiple data nodes | sources
split by comma

sharding Strategy (?) Shardin gStrategyCo | Sharding strategy Use default sharding

nfiguration strategy
key Generate Strategy | Key GeneratorCo nfig- | Key generator configu- | Use default key gener-
) uration ration ator

5.1. ShardingSphere-JDBC

74

Apache ShardingSphere document, v5.1.0

Sharding Strategy Configuration

Standard Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration

Attributes:

Name DataType | Description
shardingColumn String Sharding column name
shardingAlgorithmName | String Sharding algorithm name

Complex Sharding Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

Attributes:
Name DataType | Description
shardingColumns String Sharding column name, separated by commas
shardingAlgorithmName | String Sharding algorithm name

Hint Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding. HintShardingStrategyConfiguration

Attributes:

Name DataType | Description

shardingAlgorithmName | String Sharding algorithm name

None Sharding Strategy Configuration

Classname: org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration
Attributes: None

Please refer to Built-in Sharding Algorithm List for more details about type of algorithm.

5.1. ShardingSphere-JDBC 75

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding

Apache ShardingSphere document, v5.1.0

Key Generate Strategy Configuration

Class name: org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration

Attributes:

Name DataType | Description
column String Column name of key generate
keyGeneratorName | String key generate algorithm name

Please refer to Built-in Key Generate Algorithm List for more details about type of algorithm.

Readwrite-splitting

Root Configuration

Class name: org.apache.shardingsphere.readwritesplitting.api.ReadwriteSplittingRuleConfiguration

Attributes:
. DataType Description

Name*

d ataSo urces (+) Collectio Data sources of write and reads
n<ReadwriteSplittingData
SourceRuleConfiguration>

loa dBala ncers (*) Map<String, ShardingSpher | Load balance algorithm name
eAlgorithmConfiguration> and configurations of replica

data sources

5.1. ShardingSphere-JDBC 76

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen

Apache ShardingSphere document, v5.1.0

Readwrite-splitting Data Source Configuration

Classname: org.apache.shardingsphere.readwritesplitting.api.rule.ReadwriteSplittingDataSourceRuleConfiguration

Attributes:

Name D ataType Description Default Value

name String Readwrite-splitting

data source name

type String Readwrite-splitting
type, such as: Static.
Dynamic

props Pr operties Readwrite-splitting
required properties.
Static: write-data-
source-name, read-
data-source-names,
Dynamic: aut o-aware-

data-source-name

loadB alancerName (?) | String Load balance algo- | Round robin load bal-
rithm name of replica | ance algorithm

sources

Please refer to Built-in Load Balance Algorithm List for more details about type of algorithm. Please

refer to Use Norms for more details about query consistent routing.

HA

Root Configuration

Class name: org.apache.shardingsphere.dbdiscovery.api.config.DatabaseDiscoveryRuleConfiguration

Attributes:
Name DataType Description
dataSources (+) Collection<DatabaseDisc overyData- | Data source configuration

SourceRuleConfiguration>

discover yHeart- | Map<String, Databas eDiscoveryHeartBeat- | Detect heartbeat configura-
beats (+) Configuration> tion

dis coveryTypes | Map<String, Shar dingSphereAlgorithmCon- | Database discovery type con-
(+) figuration> figuration

5.1. ShardingSphere-JDBC 77

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms

Apache ShardingSphere document, v5.1.0

Data Source Configuration

Class name:org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryDataSourceRuleConfiguration

Attributes:

Name Dat aType Description D efa ult Val ue

groupName (+) String Database discovery .
group name

dataSo urceNames (+) | Collec tion<S tring> Data source names, .
multiple data source
names separated with
comma. Such as:
ds_0,ds_1

disc overyHear tbeat- | String Detect heartbeat name .

Name (+)

discover yTypeName | String Database discovery .

(+) type name

Detect Heartbeat Configuration

Class name:org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryHeartBeatConfiguration

Attributes:
Name Dat aType Description DefaultValue
props (+) Prop erties Detect heartbeat .

attribute configura-
tion, keep-alive-cron
configuration, cron
expression. Such as:

‘0/5****?’

Database Discovery Type Configuration

Class name:org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

Attributes:

5.1. ShardingSphere-JDBC 78

Apache ShardingSphere document, v5.1.0

Name D ataType Description D efa ult Val ue
type (+) String Database discovery .
type, such as: MGR.
openGauss
props (?) Pr operties Required parameters .
for high-availability
types, such as MGR’ s
group-name
Encryption

Root Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

Attributes:
Name DataType Description Defau
tValu
e
tables (+) Collectio Encrypt table rule configurations
n<EncryptTableRu
leConfiguration>
encr yptors | Map<String, Encrypt algorithm name and configurations
(+) ingSphereAlgorit hmCon-
figuration>
que ryWith | boolean Whether query with cipher column for data | tr ue
Cipher Col- encrypt. User you can use plaintext to query
umn (?) if have
5.1. ShardingSphere-JDBC 79

Apache ShardingSphere document, v5.1.0

Encrypt Table Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

Attributes:
. DataType Description

Name*

name String Table name

co lumns (+) Collection <EncryptColumn- | Encrypt column rule configura-

RuleConfiguration> tions

q ueryW ithCi pherC olumn (?) | boolean The current table whether
query with cipher column for
data encrypt.

Encrypt Column Rule Configuration

Class name: org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

Attributes:
Name DataType | Description
logicColumn String Logic column name
cipherColumn String Cipher column name
assistedQueryColumn (?) | String Assisted query column name
plainColumn (?) String Plain column name
encryptorName String Encrypt algorithm name

Encrypt Algorithm Configuration

Class name: org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

Attributes:
Name DataType Description
name String Encrypt algorithm name
type String Encrypt algorithm type
properties | Properties | Encrypt algorithm properties

Please refer to Built-in Encrypt Algorithm List for more details about type of algorithm.

5.1. ShardingSphere-JDBC 80

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

Shadow DB

Root Configuration

Class name: org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

Attributes:
Name DataType Description Def ault
Va lue

d ataSources Map<String, = ShadowD ata- | Shadow data source mapping
SourceConfiguration> name and configuration

tables Map<String, Sh adowTableCon- | Shadow table name and config-
figuration> uration

defaul tShadowAlg | String Default shadow algorithm name

orithmName

shadow Algo- | Map<String, ShardingSphere Al- | Shadow algorithm name and

rithms gorithmConfiguration> configuration

Shadow Data Source Configuration

Classname: org.apache.shardingsphere.shadow.api.config.datasource.ShadowDataSourceConfiguration

Attributes:
Name DataType | Description
sourceDataSourceName | String Production data source name
shadowDataSourceName | String Shadow data source name

Shadow Table Configuration

Class name: org.apache.shardingsphere.shadow.api.config.table.ShadowTableConfiguration

Attributes:
Name DataType Description
da taSourceNames Colle Shadow table location shadow data source mapping
ction<String> names
shadowA lgorithm- | Colle Shadow table location shadow algorithm names
Names ction<String>

5.1. ShardingSphere-JDBC 81

Apache ShardingSphere document, v5.1.0

Shadow Algorithm Configuration

Please refer to Built-in Shadow Algorithm List.

SQL Parser

Root Configuration

Class: org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration

Attributes:
name DataType Description
sqlCommentParseEnabled (?) | boolean Whether to parse SQL comments
parseTreeCache (?) CacheOption | Parse syntax tree local cache configuration
sqlStatementCache (?) CacheOption | sql statement local cache configuration

Cache option Configuration

Class: org.apache.shardingsphere.sql.parser.api.CacheOption

Attributes:
name . Description Default Value
DataType™
initial Capacity int Initial capacity of local | parser syntax tree lo-
cache cal cache default value
128, SQL statement
cache default value
2000
ma xi mu mS iz e(?) long Maximum capacity of | The default value of
local cache local cache for pars-
ing syntax tree is 1024,
and the default value
of sql statement cache
is 65535
concurrencylLevel |int Local cache con- | 4
currency level, the

maximum number of
concurrent updates

allowed by threads

5.1. ShardingSphere-JDBC

82

Apache ShardingSphere document, v5.1.0

Mixed Rules

Configuration Item Explanation

/* Data source configuration x/

HikariDataSource writeDataSource® = new HikariDataSource();
writeDataSource0.setDriverClassName("com.mysql.jdbc.Driver");
writeDataSource@.setJdbcUrl("jdbc:mysql://localhost:3306/db0?serverTimezone=UTC&
useSSL=false&useUnicode=true&characterkEncoding=UTF-8");
writeDataSource0.setUsername("root");

writeDataSource0.setPassword("");

HikariDataSource writeDataSourcel = new HikariDataSource();

// ...0mit specific configuration.

HikariDataSource read@OfwriteDataSource® new HikariDataSource();

// ...0mit specific configuration.

HikariDataSource readlOfwriteDataSource® = new HikariDataSource();
// ...0mit specific configuration.

HikariDataSource read@OfwriteDataSourcel = new HikariDataSource();
// ...0mit specific configuration.

HikariDataSource readlOfwriteDataSourcel new HikariDataSource();

// ...0mit specific configuration.

Map<String, DataSource> datasourceMaps = new HashMap<>(6);

datasourceMaps.put("write_ds@", writeDataSource0);
datasourceMaps.put("write_ds0_read0d", readd0OfwriteDataSource0);

datasourceMaps.put("write_dsO_readl", readlOfwriteDataSource®);

datasourceMaps.put("write_dsl", writeDataSourcel);
datasourceMaps.put("write_dsl_read0d", read0OfwriteDataSourcel);

datasourceMaps.put("write_dsl_readl", readlOfwriteDataSourcel);

/* Sharding rule configuration */

// The enumeration value of ‘ds_$->{0..1}" 1is the name of the logical data source
configured with read-query

ShardingTableRuleConfiguration tOrderRuleConfiguration = new
ShardingTableRuleConfiguration("t_order", "ds_${0..1}.t_order_s{[0, 1]}");
tOrderRuleConfiguration.setKeyGenerateStrategy (new
KeyGenerateStrategyConfiguration("order_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy (new
StandardShardingStrategyConfiguration("order_id", "tOrderInlineShardingAlgorithm
"))

Properties tOrderShardingInlineProps = new Properties();

5.1. ShardingSphere-JDBC 83

Apache ShardingSphere document, v5.1.0

tOrderShardingInlineProps.setProperty("algorithm-expression", "t_order_${order_id %
231") 5

tOrderRuleConfiguration.getShardingAlgorithms () .putIfAbsent(
"tOrderInlineShardingAlgorithm", new ShardingSphereAlgorithmConfiguration("INLINE",
tOrderShardingInlineProps));

ShardingTableRuleConfiguration tOrderItemRuleConfiguration = new
ShardingTableRuleConfiguration("t_order_item", "ds_${0..1}.t_order_item_${[0, 1]}
")

tOrderItemRuleConfiguration.setKeyGenerateStrategy (new
KeyGenerateStrategyConfiguration("order_item_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy (new
StandardShardingStrategyConfiguration("order_item_id",
"tOrderItemInlineShardingAlgorithm"));

Properties tOrderItemShardingInlineProps = new Properties();
tOrderItemShardingInlineProps.setProperty("algorithm-expression", "t_order_item_$
{order_item_id % 23}");
tOrderRuleConfiguration.getShardingAlgorithms () .putIfAbsent(
"tOrderItemInlineShardingAlgorithm", new ShardingSphereAlgorithmConfiguration(
"INLINE",tOrderItemShardingInlineProps));

ShardingRuleConfiguration shardingRuleConfiguration = new
ShardingRuleConfiguration();
shardingRuleConfiguration.getTables().add(tOrderRuleConfiguration);
shardingRuleConfiguration.getTables().add(tOrderItemRuleConfiguration);
shardingRuleConfiguration.getBindingTableGroups().add("t_order, t_order_item");
shardingRuleConfiguration.getBroadcastTables().add("t_bank");

// Default database strategy configuration
shardingRuleConfiguration.setDefaultDatabaseShardingStrategy (new
StandardShardingStrategyConfiguration("user_id", '"default_db_strategy_inline"));
Properties defaultDatabaseStrategyInlineProps = new Properties();
defaultDatabaseStrategyInlineProps.setProperty("algorithm-expression", "ds_${user_
id % 23}");
shardingRuleConfiguration.getShardingAlgorithms().put("default_db_strategy_inline",
new ShardingSphereAlgorithmConfiguration("INLINE",
defaultDatabaseStrategyInlineProps));

// Key generate algorithm configuration

Properties snowflakeProperties = new Properties();
shardingRuleConfiguration.getKeyGenerators().put("snowflake", new
ShardingSphereAlgorithmConfiguration("SNOWFLAKE", snowflakeProperties));

/* Data encrypt rule configuration */

Properties encryptProperties = new Properties();
encryptProperties.setProperty("aes-key-value'", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new
EncryptColumnRuleConfiguration("username", "username", "", "username_plain", "name_
encryptor");

5.1. ShardingSphere-JDBC 84

Apache ShardingSphere document, v5.1.0

EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_pwd", "", "pwd_
encryptor");

EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest));

// Data encrypt algorithm configuration

Map<String, ShardingSphereAlgorithmConfiguration> encryptAlgorithmConfigs = new
LinkedHashMap<> (2, 1);

encryptAlgorithmConfigs.put("name_encryptor", new
ShardingSphereAlgorithmConfiguration("AES", encryptProperties));
encryptAlgorithmConfigs.put("pwd_encryptor", new
ShardingSphereAlgorithmConfiguration("assistedTest", encryptProperties));
EncryptRuleConfiguration encryptRuleConfiguration = new
EncryptRuleConfiguration(Collections.singleton(encryptTableRuleConfig),
encryptAlgorithmConfigs);

/* Readwrite-splitting rule configuration */

Properties readwritePropsl = new Properties();
readwritePropsl.setProperty("write-data-source-name", "write_ds0");
readwritePropsl.setProperty("read-data-source-names", "write_dsO_read®, write_ds0O_
readl");

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfigurationl = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_0", "Static", readwritePropsl,
"roundRobin") ;

Properties readwriteProps2 = new Properties();
readwriteProps2.setProperty("write-data-source-name", "write_ds0");
readwriteProps2.setProperty("read-data-source-names", "write_dsl_read0, write_dsl_
readl");

ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_1", "Static", readwriteProps2,

"roundRobin'") ;

// Load balance algorithm configuration

Map<String, ShardingSphereAlgorithmConfiguration> loadBalanceMaps = new HashMap<>
(1)

loadBalanceMaps.put("roundRobin", new ShardingSphereAlgorithmConfiguration("ROUND_
ROBIN", new Properties()));

ReadwriteSplittingRuleConfiguration readWriteSplittingRuleConfiguration = new
ReadwriteSplittingRuleConfiguration(Arrays.asList(dataSourceConfigurationl,
dataSourceConfiguration2), loadBalanceMaps);

/* Other Properties configuration */
Properties otherProperties = new Properties();

otherProperties.setProperty("sql-show", "true");

/* The variable “shardingDataSource’ s the logic data source referenced by other

5.1. ShardingSphere-JDBC 85

Apache ShardingSphere document, v5.1.0

frameworks(such as ORM, JPA, etc.) x/
DataSource shardingDataSource = ShardingSphereDataSourceFactory.
createDataSource(datasourceMaps, Arrays.aslList(shardingRuleConfiguration,

readWriteSplittingRuleConfiguration, encryptRuleConfiguration), otherProperties);

5.1.2 YAML Configuration
Overview

YAML configuration provides interaction with ShardingSphere JDBC through configuration files. When
used with the governance module together, the configuration of persistence in the configuration center
is YAML format.

YAML configuration is the most common configuration mode, which can omit the complexity of pro-

gramming and simplify user configuration.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

YAML Format

ShardingSphere-JDBC YAML file consists of schema name, mode configuration, data source map, rule
configurations and properties.

Note: The example connection pool is HikariCP, which can be replaced with other connection pools

according to business scenarios.

Alias of the datasource in JDBC.
Through this parameter to connect, ShardingSphere-JDBC and ShardingSphere-Proxy.
Default value: logic_db

schemaName (?):

mode:

dataSources:

rules:
- IFOO_XXX

5.1. ShardingSphere-JDBC 86

Apache ShardingSphere document, v5.1.0

- IBAR_XXX

props:
key_1: value_1
key_2: value_2

Please refer to Mode Confiugration for more mode details.
Please refer to Data Source Confiugration for more data source details.

Please refer to Rules Confiugration for more rule details.

Create Data Source

The ShardingSphereDataSource created by YamlShardingSphereDataSourceFactory implements the

standard JDBC DataSource interface.

File yamlFile = // Indicate YAML file
DataSource dataSource = YamlShardingSphereDataSourceFactory.

createDataSource(yamlFile);

Use Data Source

Same with Java API.

YAML Syntax Explanation

! | means instantiation of that class
| means self-defined alias
- means one or multiple can be included

[] means array, can substitutable with - each other

Mode Configuration

Configuration Item Explanation

mode (?): # Default value is Memory
type: # Type of mode configuration. Values could be: Memory, Standalone, Cluster
repository (?): # Persist repository configuration. Memory type does not need
persist

overwrite: # Whether overwrite persistent configuration with local configuration

5.1. ShardingSphere-JDBC 87

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/data-source
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules

Apache ShardingSphere document, v5.1.0

Memory Mode

mode:

type: Memory

Standalone Mode

mode:
type: Standalone
repository:
type: # Type of persist repository
props: # Properties of persist repository
foo_key: foo_value
bar_key: bar_value
overwrite: # Whether overwrite persistent configuration with local configuration

Cluster Mode

mode:
type: Cluster
repository:
type: # Type of persist repository
props: # Properties of persist repository
namespace: # Namespace of registry center
server-lists: # Server lists of registry center
foo_key: foo_value
bar_key: bar_value
overwrite: # Whether overwrite persistent configuration with local configuration

Please refer to Builtin Persist Repository List for more details about type of repository.

Data Source
It is divided into single data source configuration and multi data source configuration. ShardingSphere-
JDBC Supports all JDBC drivers and database connection pools.

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced

with other database drivers and connection pools.

5.1. ShardingSphere-JDBC 88

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

Configuration Item Explanation

dataSources: # Data sources configuration, multiple <data-source-name> available
<data-source-name>: # Data source name
dataSourceClassName: # Data source class name
driverClassName: # Class name of database driver, ref property of connection
pool
jdbcUrl: # Database URL, ref property of connection pool
username: # Database username, ref property of connection pool

password: # Database password, ref property of connection pool

... Other properties for data source pool
Example
dataSources:
ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:
ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root

password:

Configure other data sources

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a YAML rule configuration manual
for ShardingSphere-JDBC.

Sharding

Configuration Item Explanation

rules:
- ISHARDING
tables: # Sharding table configuration
<logic-table-name> (+): # Logic table name

actualDataNodes (?): # Describe data source names and actual tables (refer to

5.1. ShardingSphere-JDBC 89

Apache ShardingSphere document, v5.1.0

Inline syntax rules)
databaseStrategy (?): # Databases sharding strategy, use default databases
sharding strategy if absent. sharding strategy below can choose only one.
standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Sharding algorithm name
complex: # For multiple sharding columns scenario
shardingColumns: # Sharding column names, multiple columns separated with
comma
shardingAlgorithmName: # Sharding algorithm name
hint: # Sharding by hint
shardingAlgorithmName: # Sharding algorithm name
none: # Do not sharding
tableStrategy: # Tables sharding strategy, same as database sharding strategy
keyGenerateStrategy: # Key generator strategy
column: # Column name of key generator
keyGeneratorName: # Key generator name
autoTables: # Auto Sharding table configuration
t_order_auto: # Logic table name
actualDataSources (?): # Data source names
shardingStrategy: # Sharding strategy
standard: # For single sharding column scenario
shardingColumn: # Sharding column name
shardingAlgorithmName: # Auto sharding algorithm name
bindingTables (+): # Binding tables
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>
broadcastTables (+): # Broadcast tables
- <table-name>
- <table-name>
defaultDatabaseStrategy: # Default strategy for database sharding
defaultTableStrategy: # Default strategy for table sharding
defaultKeyGenerateStrategy: # Default Key generator strategy
defaultShardingColumn: # Default sharding column name

Sharding algorithm configuration
shardingAlgorithms:
<sharding-algorithm-name> (+): # Sharding algorithm name
type: # Sharding algorithm type
props: # Sharding algorithm properties
#

Key generate algorithm configuration
keyGenerators:
<key-generate-algorithm-name> (+): # Key generate algorithm name
type: # Key generate algorithm type
props: # Key generate algorithm properties
#

5.1. ShardingSphere-JDBC 90

Apache ShardingSphere document, v5.1.0

Readwrite-splitting

Configuration Item Explanation

rules:
- !READWRITE_SPLITTING
dataSources:
<data-source-name> (+): # Logic data source name of readwrite-splitting
type: # Readwrite-splitting type, such as: Static, Dynamic
props:
auto-aware-data-source-name: # Auto aware data source name(Use with
database discovery)
write-data-source-name: # Write data source name
read-data-source-names: # Read data source names, multiple data source
names separated with comma

loadBalancerName: # Load balance algorithm name

Load balance algorithm configuration
loadBalancers:
<load-balancer-name> (+): # Load balance algorithm name
type: # Load balance algorithm type
props: # Load balance algorithm properties
#

Please refer to Built-in Load Balance Algorithm List for more details about type of algorithm. Please
refer to Use Norms for more details about query consistent routing.

HA

rules:
- !DB_DISCOVERY
dataSources:
<data-source-name> (+): # Logic data source name
dataSourceNames: # Data source names
- <data-source>
- <data-source>
discoveryHeartbeatName: # Detect heartbeat name

discoveryTypeName: # Database discovery type name

Heartbeat Configuration
discoveryHeartbeats:
<discovery-heartbeat-name> (+): # heartbeat name
props:

keep-alive-cron: # This is cron expression, such as: '0/5 * * x % 2!

Database Discovery Configuration
discoveryTypes:

5.1. ShardingSphere-JDBC 91

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms

Apache ShardingSphere document, v5.1

.0

<discovery-type-name> (+): # Database discovery type name
type: # Database discovery type, such as: MGR. openGauss
props (?):
group—name: 92504d5b-6dec-11e8-91ea-246e9612aafl # Required parameters for

database discovery types, such as MGR's group-name

Encryption

Configuration Item Explanation

rules:
— IENCRYPT
tables:
<table-name> (+): # Encrypt table name
columns:
<column-name> (+): # Encrypt logic column name
cipherColumn: # Cipher column name
assistedQueryColumn (?): # Assisted query column name
plainColumn (?): # Plain column name
encryptorName: # Encrypt algorithm name
queryWithCipherColumn(?): # The current table whether query with cipher column
for data encrypt.

Encrypt algorithm configuration
encryptors:
<encrypt-algorithm-name> (+): # Encrypt algorithm name
type: # Encrypt algorithm type
props: # Encrypt algorithm properties
#

queryWithCipherColumn: # Whether query with cipher column for data encrypt. User

you can use plaintext to query if have

Please refer to Built-in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

rules:
- ! SHADOW
dataSources:
shadowDataSource:
sourceDataSourceName: # Production data source name

shadowDataSourceName: # Shadow data source name

5.1. ShardingSphere-JDBC

92

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

tables:
<table-name>:
dataSourceNames: # Shadow table location shadow data source names
- <shadow-data-source>
shadowAlgorithmNames: # Shadow table location shadow algorithm names
- <shadow-algorithm-name>
defaultShadowAlgorithmName: # Default shadow algorithm name
shadowAlgorithms:
<shadow-algorithm-name> (+): # Shadow algorithm name
type: # Shadow algorithm type
props: # Shadow algorithm property configuration
#

Mixed Rules

The overlay between rule items in a mixed configuration is associated by the data source name and the

table name.

If the previous rule is aggregation-oriented, the next rule needs to use the aggregated logical data source
name configured by the previous rule when configuring the data source. Similarly, if the previous rule
is table aggregation-oriented, the next rule needs to use the aggregated logical table name configured

by the previous rule when configuring the table.

Configuration Item Explanation

dataSources: # Configure the real data source name.
write_ds:
...0mit specific configuration.
read_ds_0:
...0mit specific configuration.
read_ds_1:
...0mit specific configuration.

rules:
- ISHARDING # Configure data sharding rules.
tables:
t_user:
actualDataNodes: ds.t_user_${0..1} # Data source name 'ds' uses the logical
data source name of the readwrite-splitting configuration.
tableStrategy:
standard:
shardingColumn: user_id
shardingAlgorithmName: t_user_inline
shardingAlgorithms:
t_user_inline:
type: INLINE

5.1. ShardingSphere-JDBC 93

Apache ShardingSphere document, v5.1.0

props:
algorithm-expression: t_user_S${user_id % 2}

- IENCRYPT # Configure data encryption rules.
tables:
t_user: # Table “t_user’ 1is the name of the logical table that uses the data
sharding configuration.
columns:
pwd :
plainColumn: plain_pwd
cipherColumn: cipher_pwd
encryptorName: encryptor_aes
encryptors:
encryptor_aes:
type: aes
props:
aes-key-value: 123456abc

- !READWRITE_SPLITTING # Configure readwrite-splitting rules.
dataSources:
ds: # The logical data source name 'ds' for readwrite-splitting is used 1in
data sharding.
type: Static
props:
write-data-source-name: write_ds # Use the real data source name 'write_
ds'.
read-data-source-names: read_ds_0, read_ds_1 # Use the real data source
name 'read_ds_0', 'read_ds_1'.
loadBalancerName: roundRobin
loadBalancers:
roundRobin:
type: ROUND_ROBIN

props:
sql-show: true

SQL-parser

Configuration Item Explanation

rules:
- ISQL_PARSER
sqlCommentParseEnabled: # Whether to parse SQL comments
sqlStatementCache: # SQL statement local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache

5.1. ShardingSphere-JDBC 94

Apache ShardingSphere document, v5.1.0

concurrencylLevel: # Local cache concurrency level, the maximum number of
concurrent updates allowed by threads
parseTreeCache: # Parse tree local cache
initialCapacity: # Initial capacity of local cache
maximumSize: # Maximum capacity of local cache
concurrencylLevel: # Local cache concurrency level, the maximum number of

concurrent updates allowed by threads

5.1.3 Spring Boot Starter

Overview

ShardingSphere-JDBC provides official Spring Boot Starter to make convenient for developers to inte-

grate ShardingSphere-JDBC and Spring Boot.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Use ShardingSphere Data Source in Spring

Developer can inject to use native JDBC or ORM frameworks such as JPA, Hibernate or MyBatis through

the DataSource.

Take native J]DBC usage as an example:

@Resource
private DataSource dataSource;

Mode Configuration

Default is Memory mode.

5.1. ShardingSphere-JDBC 95

Apache ShardingSphere document, v5.1.0

Configuration Item Explanation

spring.shardingsphere.mode.type= # Type of mode configuration. Values could be:

Memory, Standalone, Cluster

spring.shardingsphere.mode.repository= # Persist repository configuration. Memory

type does not need persist

spring.shardingsphere.mode.overwrite= # Whether overwrite persistent configuration

with local configuration

Memory Mode

spring.shardingsphere.

mode.

type=Memory

Standalone Mode

spring.shardingsphere.
spring.shardingsphere.

spring.shardingsphere.

repository

spring.shardingsphere.

mode.
mode.
mode.

mode.

with local configuration

type=Standalone
repository.type= # Type of persist repository
repository.props.<key>= # Properties of persist

overwrite= # Whether overwrite persistent configuration

Cluster Mode

spring.shardingsphere.
spring.shardingsphere.

spring.shardingsphere.

center

spring.shardingsphere.

registry center

spring.shardingsphere.

repository

spring.shardingsphere.

mode.

mode.

mode.

mode.

mode.

mode.

with local configuration

type=Cluster

repository.type= # Type of persist repository
repository.props.namespace= # Namespace of registry
repository.props.server-lists= # Server lists of

repository.props.<key>= # Properties of persist

overwrite= # Whether overwrite persistent configuration

Please refer to Builtin Persist Repository List for more details about type of repository.

5.1. ShardingSphere-JDBC

96

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

Data Source

Use Native Data Source

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Actual data source name, multiple split
by *,°

<actual-data-source-name> indicate name of data source name
spring.shardingsphere.datasource.<actual-data-source-name>.type= # Full class name
of database connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.driver-class-name= #
Class name of database driver, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.jdbc-url= # Database
URL, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.username= # Database
username, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.password= # Database
password, ref property of connection pool
spring.shardingsphere.datasource.<actual-data-source-name>.<xxx>= # ... Other
properties for data source pool

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced
with other database drivers and connection pools.

Configure actual data sources

spring.shardingsphere.datasource.names=ds1l,ds2

Configure the 1lst data source
spring.shardingsphere.datasource.dsl.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.dsl.driver-class—-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.dsl.jdbc-url=jdbc:mysql://localhost:3306/dsl
spring.shardingsphere.datasource.dsl.username=root
spring.shardingsphere.datasource.dsl.password=

Configure the 2nd data source
spring.shardingsphere.datasource.ds2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds2.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds2.jdbc-url=jdbc:mysql://localhost:3306/ds2
spring.shardingsphere.datasource.ds2.username=root

spring.shardingsphere.datasource.ds2.password=

5.1. ShardingSphere-JDBC 97

Apache ShardingSphere document, v5.1.0

Use JNDI Data Source

If developer plan to use ShardingSphere-JDBC in Web Server (such as Tomcat) with JNDI data source,
spring.shardingsphere.datasource.${datasourceName}.jndiName can be used as an al-
ternative to series of configuration of data source.

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Actual data source name, multiple split
by *,°

<actual-data-source-name> indicate name of data source name
spring.shardingsphere.datasource.<actual-data-source-name>.jndi-name= # INDI of
data source

Example

Configure actual data sources

spring.shardingsphere.datasource.names=ds1,ds2

Configure the 1st data source
spring.shardingsphere.datasource.dsl.jndi-name=java:comp/env/jdbc/dsl
Configure the 2nd data source
spring.shardingsphere.datasource.ds2.jndi-name=java:comp/env/jdbc/ds2

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a Spring Boot Starter rule configu-
ration manual for ShardingSphere-JDBC.

Sharding

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,

please refer to the usage

Standard sharding table configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= #
Describe data source names and actual tables, delimiter as point, multiple data
nodes separated with comma, support inline expression. Absent means sharding
databases only.

5.1. ShardingSphere-JDBC 98

Apache ShardingSphere document, v5.1.0

Databases sharding strategy, use default databases sharding strategy if absent.

sharding strategy below can choose only one.

For single sharding column scenario
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-algorithm-name= # Sharding algorithm name

For multiple sharding columns scenario
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-columns= # Sharding column names, multiple columns separated with comma
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-algorithm-name= # Sharding algorithm name

Sharding by hint
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.hint.
sharding-algorithm-name= # Sharding algorithm name

Tables sharding strategy, same as database sharding strategy
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= #
Omitted

Auto sharding table configuraiton
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.actual-data-

sources= # data source names

spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-column= # Sharding column name
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-algorithm-name= # Auto sharding algorithm name

Key generator strategy configuration
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # Column name of key generator
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-

generator-name= # Key generator name

spring.shardingsphere.rules.sharding.binding-tables[0]= # Binding table name
spring.shardingsphere.rules.sharding.binding-tables[1]= # Binding table name

spring.shardingsphere.rules.sharding.binding-tables[x]= # Binding table name

spring.shardingsphere.rules.sharding.broadcast-tables[0]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[1]= # Broadcast tables
spring.shardingsphere.rules.sharding.broadcast-tables[x]= # Broadcast tables

spring.shardingsphere.sharding.default-database-strategy.xxx= # Default strategy
for database sharding

5.1. ShardingSphere-JDBC 99

Apache ShardingSphere document, v5.1.0

spring.shardingsphere.sharding.default-table-strategy.xxx= # Default strategy for
table sharding

spring.shardingsphere.sharding.default-key-generate-strategy.xxx= # Default Key
generator strategy

spring.shardingsphere.sharding.default-sharding-column= # Default sharding column

name

Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # Sharding algorithm type
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx=# Sharding algorithm properties

Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # Key generate algorithm type
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # Key generate algorithm properties

Please refer to Built-in Sharding Algorithm List and Built-in Key Generate Algorithm List for more de-
tails about type of algorithm.

Attention

Inline expression identifier can use ${...} or $->{...}, but ${...} is conflict with spring place-

holder of properties, so use $->{. ..} on spring environment is better.

Readwrite splitting

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,
please refer to the usage

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.type= # Readwrite-splitting type, such as: Static, Dynamic
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.auto-aware-data-source-name= # Auto aware data source

name (Use with database discovery)
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.write-data-source-name= # Write data source name
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.read-data-source-names= # Read data source names, multiple
data source names separated with comma
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # Load balance algorithm name

5.1. ShardingSphere-JDBC 100

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen

Apache ShardingSphere document, v5.1.0

Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # Load balance algorithm type
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-

algorithm-name>.props.xxx= # Load balance algorithm properties

Please refer to Built-in Load Balance Algorithm List for more details about type of algorithm. Please

refer to Use Norms for more details about query consistent routing.

HA

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,

please refer to the usage

spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.data-source-names= # Data source names, multiple data source
names separated with comma. Such as: ds_0, ds_1
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-heartbeat-name= # Detect heartbeat name
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-

data-source-name>.discovery-type-name= # Database discovery type name

spring.shardingsphere.rules.database-discovery.discovery-heartbeats.<discovery-
heartbeat-name>.props.keep-alive-cron= # This is cron expression, such as: '0/5 * x

* x 2!

spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type= # Database discovery type, such as: MGR. openGauss
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.group-name= # Required parameters for database discovery types, such as

MGR's group—-name

Encryption

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,

please refer to the usage

spring.shardingsphere.rules.encrypt.tables.<table-name>.query-with-cipher-column= #
Whether the table uses cipher columns for query
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.

5.1. ShardingSphere-JDBC 101

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms

Apache ShardingSphere document, v5.1.0

cipher-column= # Cipher column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # Assisted query column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # Plain column name
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.

encryptor—-name= # Encrypt algorithm name

Encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= #
Encrypt algorithm type
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=

Encrypt algorithm properties

spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # Whether query with

cipher column for data encrypt. User you can use plaintext to query if have

Please refer to Built-in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

spring.shardingsphere.datasource.names= # Omit the data source configuration,

please refer to the usage

spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.source-data-
source-name= # Production data source name
spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.shadow-data-

source-name= # Shadow data source name

spring.shardingsphere.rules.shadow.tables.<table-name>.data-source-names= # Shadow
table location shadow data source names (multiple values are separated by ",")
spring.shardingsphere.rules.shadow.tables.<table-name>.shadow-algorithm-names= #

Shadow table location shadow algorithm names (multiple values are separated by ",")

spring.shardingsphere.rules.shadow.defaultShadowAlgorithmName= # Default shadow

algorithm name, optional item.

spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.type=
Shadow algorithm type
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.props.

xxx= # Shadow algorithm property configuration

5.1. ShardingSphere-JDBC 102

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

Mixed Rules

Configuration Item Explanation

data source configuration
spring.shardingsphere.datasource.names= write-ds0O,write-dsl,write-ds0-read0,write-
dsl-read0

spring.shardingsphere.datasource.write-ds0@.url= # Database URL connection
spring.shardingsphere.datasource.write-ds0.type= # Database connection pool type
name

spring.shardingsphere.datasource.write-ds0.driver-class-name= # Database driver
class name

spring.shardingsphere.datasource.write-ds@.username= # Database username
spring.shardingsphere.datasource.write-ds0.password= # Database password
spring.shardingsphere.datasource.write-ds0.xxx= # Other properties of database
connection pool

spring.shardingsphere.datasource.write-dsl.url= # Database URL connection
...0mit specific configuration.

spring.shardingsphere.datasource.write-ds@-read0.url= # Database URL connection
...0mit specific configuration.

spring.shardingsphere.datasource.write-dsl-read®.url= # Database URL connection
...0mit specific configuration.

Sharding rules configuration

Databases sharding strategy
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
column=user_1id
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
algorithm-name=default-database-strategy-inline

Binding table rules configuration ,and multiple groups of binding-tables
configured with arrays
spring.shardingsphere.rules.sharding.binding-tables[0]=t_user,t_user_detail
spring.shardingsphere.rules.sharding.binding-tables[1]= # Binding table names,
multiple table name are separated by commas
spring.shardingsphere.rules.sharding.binding-tables[x]= # Binding table names,
multiple table name are separated by commas

Broadcast table rules configuration
spring.shardingsphere.rules.sharding.broadcast-tables= # Broadcast table names,

multiple table name are separated by commas

Table sharding strategy
The enumeration value of "ds_$->{0..1} 1is the name of the logical data source
configured with readwrite-splitting

spring.shardingsphere.rules.sharding.tables.t_user.actual-data-nodes=ds_s$->{0..1}.

5.1. ShardingSphere-JDBC 103

Apache ShardingSphere document, v5.1.0

t_user_s$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-column=user_1id
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-algorithm-name=user-table-strategy-inline

Data encrypt configuration

Table “t_user’ 1is the name of the logical table that uses for data sharding
configuration.
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor

Data encrypt algorithm configuration
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc

Key generate strategy configuration
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.
column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.key-
generator—-name=snowflake

Sharding algorithm configuration
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-
inline.type=INLINE

The enumeration value of "ds_s$->{user_id % 2} s the name of the logical data
source configured with readwrite-splitting
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-
inline.algorithm-expression=ds$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.algorithm-expression=t_user_$->{user_id % 2}

Key generate algorithm configuration
spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE

read query configuration

ds_0,ds_1 is the logical data source name of the readwrite-splitting

5.1. ShardingSphere-JDBC 104

Apache ShardingSphere document, v5.1.0

spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.type=Static
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.props.write-data-
source-name=write-ds0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.props.read-data-
source-names=write-ds0-read0®
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.load-balancer-
name=read-random
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.type=Static
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.props.write-data-
source-name=write-dsl
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.props.read-data-
source-names=write-dsl-read0®
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.load-balancer-
name=read-random

Load balance algorithm configuration
spring.shardingsphere.rules.readwrite-splitting.load-balancers.read-random.
type=RANDOM

SQL Parser

Configuration Item Explanation

spring.shardingsphere.rules.sql-parser.sql-comment-parse-enabled= # Whether to

parse SQL comments

spring.shardingsphere.rules.sql-parser.sql-statement-cache.initial-capacity= #
Initial capacity of SQL statement local cache
spring.shardingsphere.rules.sql-parser.sql-statement-cache.maximum-size= # Maximum
capacity of SQL statement local cache
spring.shardingsphere.rules.sql-parser.sql-statement-cache.concurrency-level= # SQL
statement local cache concurrency level, the maximum number of concurrent updates
allowed by threads

spring.shardingsphere.rules.sql-parser.parse-tree-cache.initial-capacity= # Initial
capacity of parse tree local cache
spring.shardingsphere.rules.sql-parser.parse-tree-cache.maximum-size= # Maximum
local cache capacity of parse tree
spring.shardingsphere.rules.sql-parser.parse-tree-cache.concurrency-level= # The
local cache concurrency level of the parse tree. The maximum number of concurrent
updates allowed by threads

5.1. ShardingSphere-JDBC 105

Apache ShardingSphere document, v5.1.0

5.1.4 Spring Namespace
Overview

ShardingSphere-JDBC provides official Spring Namespace to make convenient for developers to inte-
grate ShardingSphere-JDBC and Spring.

Usage

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Spring Bean

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.
xsd

<shardingsphere:data-source />

Name . Description
Type”
id Attribute Spring Bean Id
sch ema- name (?) Attribute JDBC data source alias
d ata- sour ce-n ames Attribute Data source name, multiple

data source names are sepa-

rated by commas

r ule- refs Attribute Rule name, multiple rule
names are separated by com-

mas
mode (?) Tag Mode configuration
p rops (?) Tag Properties configuration,

Please refer to Properties

Configurat ion for more details

5.1. ShardingSphere-JDBC 106

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.xsd
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/configuration/props
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/configuration/props

Apache ShardingSphere document, v5.1.0

Example

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/
shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/
datasource
http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd
">

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=

"..." rule-refs="...">
<shardingsphere:mode type="..." />
<props>

<prop key="xxx.xxx">${xxx.xxx}</prop>
</props>
</shardingsphere:data-source>

</beans>

Use ShardingSphere Data Source in Spring

Same with Spring Boot Starter.

Mode Configuration

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.

xsd

<shardingsphere:mode />

Name Ty pe Description D efault
Value
type Att rib | Type of mode configuration. Values could be: Memory,
ute Standalone, Cluster

reposi tory- | Att rib | Persist repository configuration. Memory type does not

ref (?) ute need persist

overwrite (?) | Att rib | Whether overwrite persistent configuration with local con- | false

ute figuration

5.1. ShardingSphere-JDBC 107

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

Memory Mode

It is the default value.

Example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/
shardingsphere/datasource"
xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-

beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/

datasource

http://shardingsphere.apache.org/schema/shardingsphere/

datasource/datasource.xsd">

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=

"..." rule-refs="..." />

</beans>

Standalone Mode

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone

/repository-5.0.0.xsd

Name Type Description

id Attribute | Name of persist repository bean
type Attribute | Type of persist repository

props (?) | Tag Properties of persist repository

Example

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:standalone="http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone"

5.1. ShardingSphere-JDBC

108

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

xsi:schemalLocation="http

http
beans.xsd

http
datasource

http
datasource/datasource.xsd

http

mode-repository/standalone

://www.springframework.org/schema/beans
://www.springframework.org/schema/beans/spring-

://shardingsphere.apache.org/schema/shardingsphere/

://shardingsphere.apache.org/schema/shardingsphere/

://shardingsphere.apache.org/schema/shardingsphere/

http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone/repository.xsd">

<standalone:repository 1id="standaloneRepository" type="File'">

<props>

<prop key="path'">target</prop>

</props>

</standalone:repository>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=

"..." rule-refs="..." >

<shardingsphere:mode type="Standalone" repository-ref="standaloneRepository

" overwrite="true" />

</shardingsphere:data-source>

</beans>

Cluster Mode

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/re

pository-5.0.0.xsd

Name Type Description

id Attribute | Name of persist repository bean
type Attribute | Type of persist repository
namespace | Attribute | Namespace of registry center
server-lists | Attribute | Server lists of registry center
props (?) Tag Properties of persist repository

5.1. ShardingSphere-JDBC

109

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

Example

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/
shardingsphere/datasource"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode-
repository/cluster"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/
datasource
http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster
http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster/repository.xsd">
<cluster:repository id="clusterRepository" type="Zookeeper" namespace=
"regCenter" server-lists="localhost:3182">
<props>
<prop key="max-retries'">3</prop>
<prop key="operation-timeout-milliseconds">1000</prop>
</props>
</cluster:repository>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"..." rule-refs="...">
<shardingsphere:mode type="Cluster" repository-ref="clusterRepository"
overwrite="true" />
</shardingsphere:data-source>
</beans>

Please refer to Builtin Persist Repository List for more details about type of repository.

5.1. ShardingSphere-JDBC 110

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

Data Source

Any data source configured as spring bean can be cooperated with spring namespace.

Example

In this example, the database driver is MySQL, and connection pool is HikariCP, which can be replaced
with other database drivers and connection pools.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/
shardingsphere/datasource"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/
datasource
http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd
">

<bean id="dsl1" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close

TS
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name='"password" value="" />
</bean>
<bean id="ds2" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close
>
<property name="driverClassName" value='"com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds2" />
<property name="username" value='"root" />
<property name='"password" value="" />
</bean>
<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"dsl,ds2" rule-refs="..." />
</beans>

5.1. ShardingSphere-JDBC 111

Apache ShardingSphere document, v5.1.0

Rules

Rules are pluggable part of Apache ShardingSphere. This chapter is a Spring namespace rule configu-

ration manual for ShardingSphere-JDBC.

Sharding

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.1.0.xsd

<sharding:rule />

Name Type Description

id A ttri bute | Spring Bean Id

table-rules (?) Tag Sharding table rule configuration
auto-table-rules (?) Tag Automatic sharding table rule configuration
binding-table-rules (?) Tag Binding table rule configuration
broadcast-table-rules (?) Tag Broadcast table rule configuration

def ault-database-strategy-ref (?) A ttri bute | Default database strategy name
default-table-strategy-ref (?) A ttri bute | Default table strategy name

default -key-generate-strategy-ref (?) | A ttri bute | Default key generate strategy name
default-sharding-column (?) A ttri bute | Default sharding column name

<sharding:table-rule />

5.1. ShardingSphere-JDBC

112

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

Name Type | Description
logic-table | At Logic table name
trib-
ute
actual- At Describe data source names and actual tables, delimiter as point, multiple data

data-nodes | trib- | nodes separated with comma, support inline expression. Absent means shard-
ute | ing databases only.

actual- At Data source names for auto sharding table

data- trib-

sources ute

database- At Database strategy name for standard sharding table
strategy- trib-

ref ute

table- At Table strategy name for standard sharding table
strategy- trib-

ref ute

sharding- At sharding strategy name for auto sharding table

strategy- trib-

ref ute

key- At Key generate strategy name
generate- trib-

strategy- ute

ref

<sharding:binding-table-rules />

Name Type | Description

binding-table-rule (+) | Tag | Binding table rule configuration

<sharding:binding-table-rule />

Name . Description
Type*
logi c-tables Attr ibute Binding table name, multiple
tables separated with comma

<sharding:broadcast-table-rules />

Name Type | Description

broadcast-table-rule (+) | Tag | Broadcast table rule configuration

<sharding:broadcast-table-rule />

5.1. ShardingSphere-JDBC 113

Apache ShardingSphere document, v5.1.0

Name | Type Description
table | Attribute | Broadcast table name
<sharding:standard-strategy />
Name Type Description
id Attribute | Standard sharding strategy name
sharding-column | Attribute | Sharding column name
algorithm-ref Attribute | Sharding algorithm name
<sharding:complex-strategy />
Name T ype Description
id Attribute | Complex sharding strategy name
shardi ng- | Attribute | Sharding column names, multiple columns separated with
columns comma
alg orithm-ref Attribute | Sharding algorithm name
<sharding:hint-strategy />
Name Type Description
id Attribute | Hint sharding strategy name

algorithm-ref

Attribute | Sharding algorithm name

<sharding:none-strategy />

Name | Type Description
id Attribute | Sharding strategy name
<sharding:key-generate-strategy />
Name Type Description
id Attribute | Key generate strategy name
column Attribute | Key generate column name
algorithm-ref | Attribute | Key generate algorithm name
<sharding:sharding-algorithm />
Name Type Description
id Attribute | Sharding algorithm name
type Attribute | Sharding algorithm type
props (?) | Tag Sharding algorithm properties

5.1. ShardingSphere-JDBC

114

Apache ShardingSphere document, v5.1.0

<sharding:key-generate-algorithm />

Name Type Description

id Attribute | Key generate algorithm name
type Attribute | Key generate algorithm type
props (?) | Tag Key generate algorithm properties

Please refer to Built-in Sharding Algorithm List and Built-in Key Generate Algorithm List for more de-

tails about type of algorithm.

Attention

Inline expression identifier can use ${...} or $->{...}, but ${...} is conflict with spring place-

holder of properties, so use $->{. ..} on spring environment is better.

Readwrite-splitting

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrit

e-splitting-5.1.0.xsd

<readwrite-splitting:rule />

Name . Description
Type*
id Attr ibute Spring Bean Id
data-source-rule (+) Tag Readwrite-splitting data source
rule configuration

<readwrite-splitting:data-source-rule />

Name Ty pe | Description
id Att Readwrite-splitting data source rule name
rib
ute
type Att Readwrite-splitting type, such as: Static. Dynamic
rib
ute
props Tag Readwrite-splitting required properties. Static: wri te-data-source-name.

read-data-source-names, Dynamic: auto-aware-data-source-name

load-balance -
algorithm-ref

Att Load balance algorithm name

rib

ute

5.1. ShardingSphere-JDBC

115

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

<readwrite-splitting:load-balance-algorithm />

Name Type Description

id Attribute | Load balance algorithm name
type Attribute | Load balance algorithm type
props (?) | Tag Load balance algorithm properties

Please refer to Built-in Load Balance Algorithm List for more details about type of algorithm. Please

refer to Use Norms for more details about query consistent routing.

HA

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/databas

e-discovery-5.1.0.xsd

<database-discovery:rule />

Name Type Description
id Attribute | Spring Bean Id
data-source-rule (+) tag Data source rule configuration
discovery-heartbeat (+) | tag Detect heartbeat rule configuration
<database-discovery:data-source-rule />
Name Type Description
id A tt ri | Data source rule Id
bute
data- source-names | A tt ri | Data source names, multiple data source names separated with
bute comma. Such as: ds_0, ds_1
discovery-he A tt ri | Detect heartbeat name
artbeat-name bute
discove ry-type- | A tt ri | Database discovery type name
name bute

<database-discovery:discovery-heartbeat />

5.1. ShardingSphere-JDBC

116

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/en/features/readwrite-splitting/use-norms
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

Name . Description
Type*
id Attr ibute Detect heartbeat Id
props tag Detect heartbeat attribute

configuration, keep-alive-cron

configuration, cron expres-

sion. Such as: ‘0/5 * * * *
?’
<database-discovery:discovery-type />
Name . Description
Type*

id Attr ibute Database discovery type Id

type Attr ibute Database discovery type, such
as: MGR. openGauss

p rops (?) tag Required parameters for
database discovery types, such
as MGR’ s group-name

Encryption

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.1.0.xsd

<encrypt:rule />

Name . Description Def ault Va lue
Type~™

id Attribute Spring Bean Id

que ryWithCip herCol- | Attribute Whether querywith ci- | true

umn (?) pher column for data

encrypt. User you can
use plaintext to query

if have

table (+) Tag Encrypt table configu-

ration

<encrypt:table />

5.1. ShardingSphere-JDBC 117

http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

Name . Description
Type~
name Attribute Encrypt table name
column (+) Tag Encrypt column configuration
que ry-with-ciph er-column(?) | Attribute Whether the table query with

®)

cipher column for data en-
crypt. User you can use plain-

text to query if have

<encrypt:column />

Name Type Description
logic-column Attribute | Column logic name
cipher-column Attribute | Cipher column name
assisted-query-column (?) | Attribute | Assisted query column name
plain-column (?) Attribute | Plain column name
encrypt-algorithm-ref Attribute | Encrypt algorithm name
<encrypt:encrypt-algorithm />

Name Type Description

id Attribute | Encrypt algorithm name

type Attribute | Encrypt algorithm type

props (?) | Tag Encrypt algorithm properties

Please refer to Built-in Encrypt Algorithm List for more details about type of algorithm.

Shadow DB

Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow-5.1.0.xsd

<shadow:rule />

Name Type Description

id Attribute | Spring Bean Id

d ata-source(?) Tag Shadow data source configuration
defaul t-shadow-algo rithm-name(?) | Tag Default shadow algorithm configuration
sh adow-table(?) Tag Shadow table configuration

<shadow:data-source />

5.1. ShardingSphere-JDBC

118

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt
http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

Name Type Description
id Attribute | Spring Bean Id

source-data-source-name Attribute | Production data source name

shadow-data-source-name | Attribute | Shadow data source name

<shadow:default-shadow-algorithm-name />

Name | Type Description

name | Attribute | Default shadow algorithm name

<shadow:shadow-table />

Name Type Description
name At- Shadow table name
tribute
data- At- Shadow table location shadow data source names (multiple values are sep-
sources tribute | arated by “,”)
algorithm | Tag Shadow table location shadow algorithm configuration
()

<shadow:algorithm />

Name Type Description

shadow-algorithm-ref | Attribute | Shadow table location shadow algorithm name

<shadow:shadow-algorithm />

Name Type Description

id Attribute | Shadow algorithm name

type Attribute | Shadow algorithm type

props (?) | Attribute | Shadow algorithm property configuration

SQL Parser
Configuration Item Explanation

Namespace: http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.1.0.

xsd

<sql-parser:rule />

5.1. ShardingSphere-JDBC 119

http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

Name Type Description

id Attribute | Spring Bean Id
sql-comment-parse-enable | Attribute | Whether to parse SQL comments
parse-tree-cache-ref Attribute | Parse tree local cache name
sql-statement-cache-ref Attribute | SQL statement local cache name

<sql-parser:cache-option />

Name Ty pe Description
id Att rib | Local cache configuration item name
ute
initial- Att rib | Initial capacity of local cache
capacity ute
maximum- Att rib | Maximum capacity of local cache
size ute
concurrency- | Att rib | Local cache concurrency level, the maximum number of concurrent up-
level ute dates allowed by threads
Mixed Rules

Configuration Item Explanation

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/
shardingsphere/datasource"
xmlns:readwrite-splitting="http://shardingsphere.apache.org/schema/
shardingsphere/readwrite-splitting"
xmlns:encrypt="http://shardingsphere.apache.org/schema/shardingsphere/
encrypt"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd
http://shardingsphere.apache.org/schema/shardingsphere/
datasource
http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd
http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting
http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting/readwrite-splitting.xsd
http://shardingsphere.apache.org/schema/shardingsphere/
encrypt
http://shardingsphere.apache.org/schema/shardingsphere/

5.1. ShardingSphere-JDBC 120

Apache ShardingSphere document, v5.1.0

encrypt/encrypt.xsd
">
<bean id="write_ds0" class=" com.zaxxer.hikari.HikariDataSource" -init-method=
"init" destroy-method="close'">
<property name="driverClassName" value='"com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/write_ds?
useSSL=false&useUnicode=true&characterEncoding=UTF-8" />

<property name="username" value="root" />

<property name="password" value="" />
</bean>
<bean id="read_ds0_0" class=" com.zaxxer.hikari.HikariDataSource" -init-method=

"init" destroy-method="close'">

<!-- ...0mit specific configuration. -->
</bean>
<bean id="read_ds0_1" class=" com.zaxxer.hikari.HikariDataSource" 1init-method=

"init" destroy-method="close'">

<!--— ...0mit specific configuration. -->
</bean>
<bean id="write_dsl" class=" com.zaxxer.hikari.HikariDataSource" 1init-method=

"init" destroy-method="close'">

<!-- ...0mit specific configuration. -->
</bean>
<bean id="read_dsl_0" class=" com.zaxxer.hikari.HikariDataSource" -1init-method=

"init" destroy-method="close">

<l-- ...0mit specific configuration. -->
</bean>
<bean id="read_dsl_1" class=" com.zaxxer.hikari.HikariDataSource" 1init-method=

"init" destroy-method="close'">
<!-- ...0mit specific configuration. -->
</bean>

<!-- load balance algorithm configuration for readwrite-splitting -->
<readwrite-splitting:load-balance-algorithm id="randomStrategy" type="RANDOM" /

<!-- readwrite-splitting rule configuration -->
<readwrite-splitting:rule id="readWriteSplittingRule">
<readwrite-splitting:data-source-rule id="ds_0" type="Static" load-balance-
algorithm-ref="randomStrategy">
<props>
<prop key="write-data-source-name">write_ds0</prop>
<prop key="read-data-source-names">read_ds0_0, read_dsO_1</prop>

</props>

5.1. ShardingSphere-JDBC 121

Apache ShardingSphere document, v5.1.0

</readwrite-splitting:data-source-rule>
<readwrite-splitting:data-source-rule id="ds_1" type="Static" load-balance-
algorithm-ref="randomStrategy'">
<props>
<prop key="write-data-source-name">write_dsl</prop>
<prop key="read-data-source-names">read_dsl1_0, read_dsl_1</prop>
</props>
</readwrite-splitting:data-source-rule>
</readwrite-splitting:rule>

<!-- sharding strategy configuration -->

<sharding:standard-strategy id="databaseStrategy" sharding-column="user_id"
algorithm-ref="inlineDatabaseStrategyAlgorithm" />

<sharding:standard-strategy id="orderTableStrategy" sharding-column="order_id"
algorithm-ref="inlineOrderTableStrategyAlgorithm" />

<sharding:standard-strategy id="orderItemTableStrategy" sharding-column="order_
item_id" algorithm-ref="inlineOrderItemTableStrategyAlgorithm" />

<sharding:sharding-algorithm id="1inlineDatabaseStrategyAlgorithm" type="INLINE
">
<props>
<!-- the expression enumeration is the logical data source name of the
readwrite-splitting configuration -->
<prop key="algorithm-expression">ds_${user_id % 2}</prop>
</props>
</sharding:sharding-algorithm>
<sharding:sharding-algorithm id="1inlineOrderTableStrategyAlgorithm" type=
"INLINE">
<props>
<prop key="algorithm-expression">t_order_s${order_id % 2}</prop>
</props>
</sharding:sharding-algorithm>
<sharding:sharding-algorithm id="1inlineOrderItemTableStrategyAlgorithm" type=
"INLINE">
<props>
<prop key="algorithm-expression">t_order_item_s${order_item_id % 2}</
prop>
</props>
</sharding:sharding-algorithm>

<!-- sharding rule configuration -->
<sharding:rule id="shardingRule">
<sharding:table-rules>
<!-- the expression 'ds_${0..1}' enumeration is the logical data source
name of the readwrite-splitting configuration -->
<sharding:table-rule logic-table="t_order" actual-data-nodes="ds_s${0..
1}.t_order_s${0..1}" database-strategy-ref="databaseStrategy" table-strategy-ref=
"orderTableStrategy" key-generate-strategy-ref="orderKeyGenerator"/>

5.1. ShardingSphere-JDBC 122

Apache ShardingSphere document, v5.1.0

<sharding:table-rule logic-table="t_order_item" actual-data-nodes="ds_$
{0..1}.t_order_item_${0..1}" database-strategy-ref="databaseStrategy" table-
strategy-ref="orderItemTableStrategy" key-generate-strategy-ref="1itemKeyGenerator"/
>
</sharding:table-rules>
<sharding:binding-table-rules>

<sharding:binding-table-rule logic-tables="t_order, t_order_item"/>
</sharding:binding-table-rules>
<sharding:broadcast-table-rules>

<sharding:broadcast-table-rule table="t_address'"/>
</sharding:broadcast-table-rules>

</sharding:rule>

<!-- data encrypt configuration -->
<encrypt:encrypt-algorithm id="name_encryptor" type="AES">
<props>
<prop key="aes-key-value'>123456</prop>
</props>
</encrypt:encrypt-algorithm>
<encrypt:encrypt-algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user'">
<encrypt:column logic-column="username" cipher-column="username" plain-
column="username_plain" encrypt-algorithm-ref="name_encryptor" />
<encrypt:column logic-column="pwd" cipher-column="pwd" assisted-query-
column="assisted_query_pwd" encrypt-algorithm-ref="pwd_encryptor" />
</encrypt:table>
</encrypt:rule>

<!-- datasource configuration -->
<!-- the element data-source-names's value 1is all of the datasource name -->
<shardingsphere:data-source id="readQueryDataSource" data-source-names="write_
dsO, read_ds0_0, read_ds0_1, write_dsl, read_dsl_0, read_ds1_1"
rule-refs="readWriteSplittingRule, shardingRule, encryptRule" >
<props>
<prop key='"sql-show">true</prop>
</props>
</shardingsphere:data-source>

</beans>

5.1. ShardingSphere-JDBC 123

Apache ShardingSphere document, v5.1.0

5.1.5 Properties Configuration

Apache ShardingSphere provides the way of property configuration to configure system level configu-

ration.

5.1. ShardingSphere-JDBC 124

Apache ShardingSphere document, v5.1.0

Configuration Item Explanation

Name

*

DataType

Description

DefaultValue*

sql- show (?) boolean

Whether show SQL
or not in log. Print
SQL details can help
developers debug
easier. The log details
include: logic SQL,
actual SQL and SQL
parse result. Enable
this property will log
into log topic Shard-
ingSphere-SQL, log
level is INFO

false

sq I-si mple (?) boolean

Whether show SQL de-
tails in simple style

false

kern el-e xecu tor-size | int

®)

The max thread size
of worker group to
execute SQL. One
ShardingSphereData-

Source will use a
independent thread
pool, it does not share
thread pool even dif-
ferent data source in
same JVM

infinite

ma x-co nnec tion s-si | int

ze-p er-q uery (?)

Max opened connec-
tion size for each

query

chec k-ta ble- meta | boolean
data -ena bled (?)

Whether validate table
meta data consistency
when application
startup or updated

false

¢ heck -dup lica te-t | boolean
able -ena bled (?)

Whether validate du-
plicate table when ap-
plication startup or up-
dated

false

sq l-fe dera tion -ena | boolean

bled (?)

Whether enable SQL
federation

false

5.1. ShardingSphere-JDBC

125

Apache ShardingSphere document, v5.1.0

5.1.6 Builtin Algorithm

Introduction

Apache ShardingSphere allows developers to implement algorithms via SPI; At the same time, Apache

ShardingSphere also provides a couple of builtin algorithms for simplify developers.

Usage

The builtin algorithms are configured by type and props. Type is defined by the algorithm in SPI, and

props is used to deliver the customized parameters of the algorithm.

No matter which configuration type is used, the configured algorithm is named and passed to the cor-

responding rule configuration. This chapter distinguishes and lists all the builtin algorithms of Apache

ShardingSphere according to its functions for developers’ reference.

Metadata Repository

File Repository

Type: File

Mode: Standalone

Attributes:

Name | Type

Description

Default Value

path | String

Path for metadata persist

.shardingsphere

ZooKeeper Repository

Type: ZooKeeper

Mode: Cluster

Attributes:
Name Type Description Default Value
retrylnte rvalMilliseconds int Milliseconds of retry interval 500
maxRetries int Max retries of client connection 3
timeToLiveSeconds int Seconds of ephemeral data live 60
operationTim eoutMilliseconds | int Milliseconds of operation timeout | 500
digest String | Password of login

5.1. ShardingSphere-JDBC 126

Apache ShardingSphere document, v5.1.0

Etcd Repository

Type: Etcd

Mode: Cluster

Attributes:
Name Type | Description Default Value
timeToLiveSeconds | long | Seconds of ephemeral data live | 30
connectionTimeout | long | Seconds of connection timeout | 30
Sharding Algorithm
Auto Sharding Algorithm
Modulo Sharding Algorithm
Type: MOD
Attributes:
Name DataType | Description
sharding-count | int Sharding count
Hash Modulo Sharding Algorithm
Type: HASH_MOD
Attributes:
Name DataType | Description
sharding-count | int Sharding count
Volume Based Range Sharding Algorithm
Type: VOLUME_RANGE
Attributes:
Name DataType | Description
range-lower long Range lower bound, throw exception if lower than bound
range-upper long Range upper bound, throw exception if upper than bound
sharding-volume | long Sharding volume

5.1. ShardingSphere-JDBC

127

Apache ShardingSphere document, v5.1.0

Boundary Based Range Sharding Algorithm

Type: BOUNDARY_RANGE

Attributes:
Name Data Description
Type
shardi ng- | String Range of sharding border, multiple boundaries separated by commas
ranges

Auto Interval Sharding Algorithm

Type: AUTO_INTERVAL

Attributes:

Na me Description

*

DataType

da tet ime -lo wer String Shard datetime begin bound-
ary, pattern: yyyy-MM-dd

HH:mm:ss

da tet ime -up per String Shard datetime end bound-
ary, pattern: yyyy-MM-dd
HH:mm:ss

s har din g-s eco nds long Max seconds for the data in
one shard, allows sharding
key timestamp format seconds
with time precision, but time

precision after seconds is

automatically erased

5.1. ShardingSphere-JDBC 128

Apache ShardingSphere document, v5.1.0

Standard Sharding Algorithm

Apache ShardingSphere built-in standard sharding algorithm are:

Inline Sharding Algorithm

With Groovy expressions, InlineShardingStrategy provides single-key support for the sharding

operation of = and IN in SQL. Simple sharding algorithms can be used through a simple configuration

to avoid laborious Java code developments. For example, t_user_$->{u_i

% 8} means table t_user

is divided into 8 tables according to u_id, with table names from t_user_0to t_user_7. Please refer

to Inline Expression for more details.

Type: INLINE
Attributes:
Name . Description D efa ult Val ue
DataType”
algori thm-expression | String Inline expression .
sharding algorithm
allow-rang e-query- | boolean Whether range query | false

with-i nline-sharding

®)

is allowed. Note:
range query will
ignore sharding strat-
egy and conduct full

routing

Interval Sharding Algorithm

Type: INTERVAL

Attributes:

5.1. ShardingSphere-JDBC

129

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/inline-expression/

Apache ShardingSphere document, v5.1.0

Name Description

DataType” DefaultValue*

date time-p attern String Timestamp pattern of .
sharding value, must
can be transformed to
Java LocalDateTime.
For example: yyyy-

MM-dd HH:mm:ss

da tetime -lower String Datetime sharding
lower boundary,
pattern is defined
datetime-pattern

da tetime -upper (?) String Datetime sharding | Now
upper boundary,
pattern is defined
datetime-pattern

shard ing-su ffix-p at- | String Suffix pattern of
tern sharding data sources
or tables, must can
be transformed to
Java LocalDateTime,
must be consis-
tent with date-
time-interval-unit.

For example: yyyyMM

dateti me-int erval- | int Interval of sharding | 1
amount (?) value

date time-i nterva l- | String Unit of sharding value | DAYS
unit (?) interval, must can be

transformed to Java
ChronoUnit’ s Enum
value. For example:
MONTHS

Complex Sharding Algorithm

Complex Inline Sharding Algorithm

Please refer to Inline Expression for more details.

Type: COMPLEX_INLINE

5.1. ShardingSphere-JDBC 130

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/inline-expression/

Apache ShardingSphere document, v5.1.0

Name . Description D efa ult Val ue
DataType”
sh arding-columns (?) | String sharing column names .
algori thm-expression | String Inline expression .
sharding algorithm
allow-rang e-query- | boolean Whether range query | false
with-i nline-sharding is allowed. Note:
() range query will
ignore sharding strat-
egy and conduct full
routing
Hint Sharding Algorithm
Hint Inline Sharding Algorithm
Please refer to Inline Expression for more details.
Type: COMPLEX_INLINE
Name DataType | Description Default Value
algor ithm-expression | String Inline expression sharding algorithm | ${value}

Class Based Sharding Algorithm

Realize custom extension by configuring the sharding strategy type and algorithm class name.

Type: CLASS_BASED

Attributes:
Name Data Description
Type
strategy String | Sharding strategy type, support STANDARD, COMPLEX or HINT

(case insensitive)

Name

algor ithmClass- | String | Fully qualified name of sharding algorithm

5.1. ShardingSphere-JDBC

131

https://shardingsphere.apache.org/document/current/en/features/sharding/concept/inline-expression/

Apache ShardingSphere document, v5.1.0

Key Generate Algorithm

Snowflake

Type: SNOWFLAKE

Attributes:
Name . Description Default Va lue
DataType™
max -tolerate-time-diff | long The max tolerate time | 10 mill isec onds
erence-milliseconds for different server’ s
6] time difference in mil-
liseconds
m ax-vibration-offset | int The max upper limit | 1

®)

value of vibrate
number, range [0,
4096). Notice: To use
the generated value
of this algorithm as
sharding value, it is
recommended to con-
figure this property.
The algorithm gener-
ates keymod 2*n (2*n
is usually the sharding
amount of tables or
databases) in different
milliseconds and the
result is always 0 or 1.
To prevent the above
sharding problem, it is
recommended to con-
figure this property,
its value is (2An)-1

uuiD

Type: UUID

Attributes: None

5.1. ShardingSphere-JDBC

132

Apache ShardingSphere document, v5.1.0

Load Balance Algorithm

Round Robin Algorithm

Type: ROUND_ROBIN

Attributes: None

Random Algorithm

Type: RANDOM

Attributes: None

Weight Algorithm

Type: WEIGHT

Attributes:

All read data in use must be configured with weights

Name

Data Type

Description

+ (4)

d ouble

The attribute name uses the
read database name, and
the parameter fills in the
weight value corresponding
to the read database.The min-
imum value of the weight
parameter range>0,the total
<=Double. MAX_VALUE.

Encryption Algorithm

MD5 Encrypt Algorithm

Type: MD5

Attributes: None

5.1. ShardingSphere-JDBC

133

Apache ShardingSphere document, v5.1.0

AES Encrypt Algorithm

Type: AES

Attributes:

RC4 Encrypt Algorithm

Type: RC4

Attributes:

SM3 Encrypt Algorithm

Name DataType | Description
aes-key-value | String AES KEY

Name DataType | Description
rc4-key-value | String RC4 KEY

Type: SM3
Attributes:
Name DataType | Description
sm3-salt | String SM3 SALT (should be blank or 8 bytes long)
SM4 Encrypt Algorithm
Type: SM4
Attributes:
Name DataType | Description
sm4-key String SM4 KEY (should be 16 bytes)
sm4-mode String SM4 MODE (should be CBC or ECB)
sm4-iv String SM4 1V (should be specified on CBC, 16 bytes long)
sm4- String SM4 PADDING (should be PKCS5Padding or PKCS7Padding, NoPadding ex-
padding cepted)

5.1. ShardingSphere-JDBC

134

Apache ShardingSphere document, v5.1.0

Shadow Algorithm

Column Shadow Algorithm

Column Value Match Shadow Algorithm

Type: VALUE_MATCH

Attributes:

Name Data

Type | Description

column String

Shadow column

operation | String

SQL operation type (INSERT, UPDATE, DELETE, SELECT)

value String

Shadow column matching value

Column Regex Match Shadow Algorithm

Type: REGEX_MATCH

Attributes:
Name DataType | Description
column String Shadow column
operation | String SQL operation type (insert, update, delete, select)
regex String Shadow column matching regular expression

Hint Shadow Algorithm

Simple Hint Shadow Algorithm

Type: SIMPLE_HINT

Attributes:

Configure at least a set of arbitrary key-value pairs. For example: foo:bar

Name | DataType | Description

foo String bar

5.1. ShardingSphere-JDBC

135

Apache ShardingSphere document, v5.1.0

5.1.7 Special API

This chapter will introduce the special API of ShardingSphere-JDBC.

Sharding

This chapter will introduce the Sharding API of ShardingSphere-JDBC.

Hint
Introduction

Apache ShardingSphere uses ThreadLocal to manage sharding key value or hint route. Users can add
sharding values to HintManager, and those values only take effect within the current thread.

Apache ShardingSphere is able to add special comments in SQL to hint route too.

Usage of hint:
+ Sharding columns are not in SQL and table definition, but in external business logic.
 Some operations forced to do in the primary database.

+ Some operations forced to do in the database chosen by yourself.

Usage

Sharding with Hint

Hint Configuration

Hint algorithms require users to implement the interface of org.apache.shardingsphere.api.

sharding.hint.HintShardingAlgorithm. Apache ShardingSphere will acquire sharding values
from HintManager to route.

Take the following configurations for reference:

rules:
- !'SHARDING
tables:
t_order:
actualDataNodes: demo_ds_s${0..1}.t_order_s{0..1}
databaseStrategy:
hint:
algorithmClassName: xxx.xxX.xxX.HintXXXAlgorithm
tableStrategy:
hint:

5.1. ShardingSphere-JDBC 136

Apache ShardingSphere document, v5.1.0

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
defaultTableStrategy:
none:
defaultKeyGenerateStrategy:
type: SNOWFLAKE

column: order_id

props:
sql-show: true

Get HintManager

HintManager hintManager = HintManager.getInstance();

Add Sharding Value

+ Use hintManager.addDatabaseShardingValue to add sharding key value of data source.
« Use hintManager.addTableShardingValue to add sharding key value of table.

Users can use hintManager .setDatabaseShardingValuetoadd shardingin hint route

to some certain sharding database without sharding tables.

Clean Hint Values

Sharding values are saved in ThreadLocal, so it is necessary to use hintManager.close () to clean
ThreadLocal.

‘*HintManager' " has implemented ' AutoCloseable’ . We recommend to close it automatically with

“*try with resource’".

Codes:

// Sharding database and table with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();

PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
/]

5.1. ShardingSphere-JDBC 137

Apache ShardingSphere document, v5.1.0

// Sharding database and one database route with HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();

PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {
//

Primary Route with Hint

Use manual programming

Get HintManager

Be the same as sharding based on hint.

Configure Primary Database Route

+ Use hintManager.setWriteRouteOnly to configure primary database route.

Clean Hint Value

Be the same as data sharding based on hint.

Codes:

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.setWriteRouteOnly();
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {
//

5.1. ShardingSphere-JDBC 138

Apache ShardingSphere document, v5.1.0

Use special SQL comments
Terms of Use
To use SQL Hint function, users need to set sqlCommentParseEnabled to true. The comment for-

mat only supports /* */ for now. The content needs to start with ShardingSphere hint:, and the

attribute name needs to be writeRouteOnly.

Codes:

/* ShardingSphere hint: writeRouteOnly=true x/
SELECT * FROM t_order;

Route to the specified database with Hint

Use manual programming

Get HintManager

Be the same as sharding based on hint.

Configure Database Route

« Use hintManager.setDataSourceName to configure database route.

Codes:

String sql = "SELECT x FROM t_order";
try (HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
hintManager.setDataSourceName("ds_0");
try (ResultSet rs = preparedStatement.executeQuery()) {
while (rs.next()) {

/1

5.1. ShardingSphere-JDBC 139

Apache ShardingSphere document, v5.1.0

Use special SQL comments
Terms of Use
To use SQL Hint function, users need to set sqlCommentParseEnabled to true. Currently, only

support routing to one data source. The comment format only supports /* */ for now. The content
needs to start with ShardingSphere hint:, and the attribute name needs to be dataSourceName.

Codes:

/* ShardingSphere hint: dataSourceName=ds_0 x/
SELECT * FROM t_order;

Transaction

Using distributed transaction through Apache ShardingSphere is no different from local transaction. In
addition to transparent use of distributed transaction, Apache ShardingSphere can switch distributed

transaction types every time the database accesses.

Supported transaction types include local, XA and BASE. It can be set before creating a database con-
nection, and default value can be set when Apache ShardingSphere startup.

Use Java API

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

<!--= dmport if using XA transaction -->

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- dmport if using BASE transaction -->

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

5.1. ShardingSphere-JDBC 140

Apache ShardingSphere document, v5.1.0

Use Distributed Transaction

TransactionTypeHolder.set(TransactionType.XA); // Support TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
try (Connection conn = dataSource.getConnection()) { // Use
ShardingSphereDataSource

conn.setAutoCommit(false);

PreparedStatement ps = conn.prepareStatement("INSERT INTO t_order (user_id,
status) VALUES (?, ?2)");

ps.setObject(l, 1000);

ps.setObject(2, "init");

ps.executeUpdate();

conn.commit();

Use Spring Boot Starter

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- dmport if using XA transaction -->

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!--= dmport if using BASE transaction -->

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

5.1. ShardingSphere-JDBC 141

Apache ShardingSphere document, v5.1.0

Configure Transaction Manager

@Configuration
@EnableTransactionManagement

public class TransactionConfiguration {

@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {
return new DataSourceTransactionManager (dataSource);

@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {
return new JdbcTemplate(dataSource);

Use Distributed Transaction

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // Support TransactionType.
LOCAL, TransactionType.XA, TransactionType.BASE
public void insert() {
jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {
ps.setObject(1l, 1);
ps.setObject(2, "init");
ps.executeUpdate();
s

Use Spring Namespace

Import Maven Dependency

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- dmport if using XA transaction -->
<dependency>
<groupIld>org.apache.shardingsphere</groupIld>

<artifactId>shardingsphere-transaction-xa-core</artifactId>

5.1. ShardingSphere-JDBC 142

Apache ShardingSphere document, v5.1.0

<version>${shardingsphere.version}</version>
</dependency>

<!-- dmport if using BASE transaction -->

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

Configure Transaction Manager

<!-- ShardingDataSource configuration -->
Q== 500 ==2

<bean id="transactionManager" class="org.springframework.jdbc.datasource.

DataSourceTransactionManager'">
<property name="dataSource" ref="shardingDataSource" />

</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate'">
<property name="dataSource" ref="shardingDataSource" />

</bean>

<tx:annotation-driven />

<!-- Enable auto scan @ShardingSphereTransactionType annotation to inject the
transaction type before connection created -->

<sharding:tx-type-annotation-driven />

Use Distributed Transaction

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // Support TransactionType.
LOCAL, TransactionType.XA, TransactionType.BASE
public void insert() {
jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {
ps.setObject(1, 1);
ps.setObject(2, "init");
ps.executeUpdate();
1)

5.1. ShardingSphere-JDBC 143

Apache ShardingSphere document, v5.1.0

Atomikos Transaction

The default XA transaction manager of Apache ShardingSphere is Atomikos.

Data Recovery

xa_tx. log generated in the project Logs folder is necessary for the recovery when XA crashes. Please
keep it.

Update Configuration

Developer can add jta.properties in classpath of the application to customize Atomikos configura-
tion. For detailed configuration rules.

Please refer to Atomikos official documentation for more details.

Bitronix Transaction

Import Maven Dependency

<properties>
<btm.version>2.1.3</btm.version>
</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-transaction-xa-bitronix</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.codehaus.btm</groupId>
<artifactId>btm</artifactId>

5.1. ShardingSphere-JDBC 144

https://www.atomikos.com/Documentation/JtaProperties

Apache ShardingSphere document, v5.1.0

<version>${btm.version}</version>
</dependency>

Customize Configuration Items

Please refer to Bitronix official documentation for more details.

Configure XA Transaction Manager Type

Yaml:

- !TRANSACTION
defaultType: XA

providerType: Bitronix

SpringBoot:

spring:
shardingsphere:
props:

xa-transaction-manager-type: Bitronix

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>
<prop key="xa-transaction-manager-type">Bitronix</prop>
</props>

</shardingsphere:data-source>

Narayana Transaction

Import Maven Dependency

<properties>
<narayana.version>5.9.1.Final</narayana.version>
<jboss-transaction-spi.version>7.6.0.Final</jboss-transaction-spi.version>
<jboss-logging.version>3.2.1.Final</jboss-logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>
</dependency>

5.1. ShardingSphere-JDBC 145

https://github.com/bitronix/btm/wiki

Apache ShardingSphere document, v5.1.0

<!--= Import if using XA transaction -->

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.jboss.narayana.jta</groupId>
<artifactId>jta</artifactId>
<version>${narayana.version}</version>

</dependency>

<dependency>
<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana-jts-integration</artifactId>
<version>${narayana.version}</version>

</dependency>

<dependency>
<groupId>org.jboss</groupId>
<artifactId>jboss-transaction-spi</artifactId>
<version>${jboss-transaction-spi.version}</version>

</dependency>

<dependency>
<groupId>org.jboss.logging</groupIld>
<artifactId>jboss-logging</artifactId>
<version>${jboss-logging.version}</version>

</dependency>

Customize Configuration Items

Add jbossts-properties.xmlin classpath of the application to customize Narayana configuration.

Please refer to Narayana official documentation for more details.

5.1. ShardingSphere-JDBC 146

https://narayana.io/documentation/index.html

Apache ShardingSphere document, v5.1.0

Configure XA Transaction Manager Type

Yaml:

- !TRANSACTION
defaultType: XA

providerType: Narayana

SpringBoot:

spring:
shardingsphere:
props:
xa-transaction-manager-type: Narayana

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>
<prop key="xa-transaction-manager-type'">Narayana</prop>
</props>
</shardingsphere:data-source>

Seata Transaction

Startup Seata Server

Download seata server according to seata-work-shop.

Create Undo Log Table

Create undo_Tlog table in each physical database (sample for MySQL).

CREATE TABLE IF NOT EXISTS “undo_log’

(
tHid” BIGINT(20) NOT NULL AUTO_INCREMENT COMMENT 'dincrement id',
“branch_id® BIGINT(20) NOT NULL COMMENT 'branch transaction 1id',
“xid® VARCHAR(100) NOT NULL COMMENT 'global transaction id',
‘context’ VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as
serialization',
‘rollback_info' LONGBLOB NOT NULL COMMENT 'rollback info',
‘log_status’ INT(11) NOT NULL COMMENT '®:normal status,l:defense status',
“log_created’ DATETIME NOT NULL COMMENT 'create datetime',
‘log_modified® DATETIME NOT NULL COMMENT 'modify datetime',

PRIMARY KEY (‘id‘),
UNIQUE KEY “ux_undo_log® ('xid", “branch_id")
) ENGINE = InnoDB

5.1. ShardingSphere-JDBC 147

https://github.com/seata/seata-workshop

Apache ShardingSphere document, v5.1.0

AUTO_INCREMENT = 1
DEFAULT CHARSET = utf8 COMMENT ='AT transaction mode undo table';

Update Configuration

Configure seata. conf file in classpath.

client {
application.id = example ## application unique ID

transaction.service.group = my_test_tx_group ## transaction group

Modify file.conf and registry.conf if needed.

Observability

Introduce how to use agent and integrate 3rd party with observability.

Use Agent

Build

Local Build

> cd shardingsphere/shardingsphere-agent
> mvn clean install

Download (Not Released Yet)

> weget http://xxxxx/shardingsphere-agent.tar.gz
> tar -zxvcf shardingsphere-agent.tar.gz

Configuration

Found agent.yaml file:

applicationName: shardingsphere-agent
ignoredPluginNames: # A collection of -dignored plugins
- Opentracing
- Jaeger
- Zipkin

Prometheus

5.1. ShardingSphere-JDBC 148

Apache ShardingSphere document, v5.1.0

- OpenTelemetry
- Logging

plugins:
Prometheus:
host: "localhost"
port: 9090
props:
JVM_INFORMATION_COLLECTOR_ENABLED : "true"
Jaeger:
host: "localhost"
port: 5775
props:
SERVICE_NAME: "shardingsphere-agent"
JAEGER_SAMPLER_TYPE: '"const"
JAEGER_SAMPLER_PARAM: "1"
JAEGER_REPORTER_LOG_SPANS: "true"
JAEGER_REPORTER_FLUSH_INTERVAL: "1"

Zipkin:
host: "localhost"
port: 9411
props:

SERVICE_NAME: "shardingsphere-agent"
URL_VERSION: "/api/v2/spans"
Opentracing:
props:
OPENTRACING_TRACER_CLASS_NAME: "org.apache.skywalking.apm.toolkit.
opentracing.SkywalkingTracer"
OpenTelemetry:
props:
otel.resource.attributes: "service.name=shardingsphere-agent" # Multiple
configurations can be split by ','
otel.traces.exporter: "zipkin"
Logging:
props:
LEVEL: "INFO"

5.1. ShardingSphere-JDBC 149

Apache ShardingSphere document, v5.1.0

Startup

Add arguments in startup script.

-javaagent:\absolute path\shardingsphere-agent.jar

APM Integration

Usage

Use OpenTracing

« Method 1: inject Tracer provided by APM system through reading system parameters

Add startup arguments

-Dorg.apache.shardingsphere.tracing.opentracing.tracer.class=org.apache.skywalking.
apm.toolkit.opentracing.SkywalkingTracer

Call initialization method.

ShardingTracer.init();

« Method 2: inject Tracer provided by APM through parameter.

ShardingTracer.init(new SkywalkingTracer());

Notice: when using SkyWalking OpenTracing agent, the OpenTracing plug-in of Apache ShardingSphere Agent
cannot be used at the same time to prevent the two plug-ins from conflicting with each other.

Use SkyWalking’ s Automatic Agent

Please refer to SkyWalking Manual.

Use OpenTelemetry

Just fill in the configuration in agent.yaml. For example, export Traces data to Zipkin.

OpenTelemetry:
props:
otel.resource.attributes: "service.name=shardingsphere-agent"
otel.traces.exporter: "zipkin"
otel.exporter.zipkin.endpoint: "http://127.0.0.1:9411/api/v2/spans"

5.1. ShardingSphere-JDBC 150

https://github.com/apache/skywalking/blob/5.x/docs/en/Quick-start.md

Apache ShardingSphere document, v5.1.0

Result Demonstration

No matter in which way, it is convenient to demonstrate APM information in the connected system.
Take SkyWalking for example:

Application Architecture

Use ShardingSphere-Proxy to visit two databases, 192.168.0.1:3306and 192.168.0.2:3306,
and there are two tables in each one of them.

Topology
It can be seen from the picture that the user has accessed ShardingSphere-Proxy 18 times, with each

database twice each time. It is because two tables in each database are accessed each time, so there are
totally four tables accessed each time.

Tracking Data

SQL parsing and implementation can be seen from the tracing diagram.
/Sharding-Sphere/parseSQL/ indicates the SQL parsing performance this time.

/Sharding-Sphere/executeSQL/ indicates the SQL parsing performance in actual execution.

Exception

Exception nodes can be seen from the tracing diagram.
/Sharding-Sphere/executeSQL/ indicates the exception results of SQL.

/Sharding-Sphere/executeSQL/ indicates the exception log of SQL execution.

5.1.8 Unsupported Items

DataSource Interface

« Do not support timeout related operations

5.1. ShardingSphere-JDBC 151

Apache ShardingSphere document, v5.1.0

Connection Interface

+ Do not support operations of stored procedure, function and cursor
+ Do not support native SQL

+ Do not support savepoint related operations

+ Do not support Schema/Catalog operation

+ Do not support self-defined type mapping

Statement and PreparedStatement Interface
- Do not support statements that return multiple result sets (stored procedures, multiple pieces of
non-SELECT data)

« Do not support the operation of international characters

ResultSet Interface

« Do not support getting result set pointer position

+ Do not support changing result pointer position through none-next method
+ Do not support revising the content of result set

Do not support acquiring international characters

+ Do not support getting Array

JDBC4.1

+ Do not support new functions of JDBC 4.1 interface

For all the unsupported methods, please read org.apache.shardingsphere.driver.jdbc.
unsupported package.

5.2 ShardingSphere-Proxy

Configuration is the only module in ShardingSphere-Proxy that interacts with application devel-
opers, through which developer can quickly and clearly understand the functions provided by
ShardingSphere-Proxy.

This chapter is a configuration manual for ShardingSphere-Proxy, which can also be referred to as a
dictionary if necessary.

ShardingSphere-Proxy provided YAML configuration, and used DistSQL to communicate. By config-
uration, application developers can flexibly use data sharding, readwrite-splitting, data encryption,

shadow database or the combination of them.

5.2. ShardingSphere-Proxy 152

Apache ShardingSphere document, v5.1.0

Rule configuration keeps consist with YAML configuration of ShardingSphere-JDBC. DistSQL and YAML

can be replaced each other.

Please refer to Example for more details.

5.2.1 Startup

This chapter will introduce the deployment and startup of ShardingSphere-Proxy.

Use Binary Tar

Startup Steps

1. Download the latest version of ShardingSphere-Proxy.

2. After the decompression, revise conf/server.yaml and documents begin with config- pre-
fix, conf/config-xxx.yaml for example, to configure sharding rules and readwrite-splitting
rules. Please refer to Configuration Manual for the configuration method.

3. Please run bin/start.sh for Linux operating system; run bin/start.bat for Windows op-
erating system to start ShardingSphere-Proxy. To configure start port and document location,

please refer to Quick Start.

Using database protocol
Using PostgreSQL

1. Use any PostgreSQL terminal to connect, such as psql -U root -h 127.0.0.1 -p 3307.

Using MySQL

1. Copy MySQL’ s]JDBC driver to folder ext-11ib/.

2. Use any MySQL terminal to connect, such asmysql -u root -h 127.0.0.1 -P 3307.

Using openGauss

1. Copy openGauss’ s JDBC driver whose package prefixed with org.opengauss to folder
ext-1lib/.

2. Use any openGauss terminal to connect, such as gsql -U root -h 127.0.0.1 -p 3307.

5.2. ShardingSphere-Proxy 153

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://shardingsphere.apache.org/document/current/en/quick-start/shardingsphere-proxy-quick-start/

Apache ShardingSphere document, v5.1.0

Using metadata persist repository
Using ZooKeeper

Integrated ZooKeeper Curator client by default.

Using Etcd

1. Copy Etcd’ s client driver to folder ext-11ib/.

Using Distributed Transaction

Same with ShardingSphere-JDBC. please refer to Distributed Transaction for more details.

Using user-defined algorithm

When developer need to use user-defined algorithm, should use the way below to configure algorithm,
use sharding algorithm as example.

1. Implement ShardingAlgorithm interface.
2. Create META-INF/serv-ices directory in the resources directory.

3. Create a new file org.apache.shardingsphere.sharding.spi.ShardingAlgorithmin
the META-INF/services directory.

4. Absolute path of the implementation class are write to the file org. apache.shardingsphere.
sharding.spi.ShardingAlgorithm

5. Package Java file to jar.
6. Copy jar to ShardingSphere-Proxy’ s ext-1ib/ folder.

7. Configure user-defined Java class into YAML file. Please refer to Configuration Manual for more
details.

Notices

1. ShardingSphere-Proxy uses 3307 port in default. Users can start the script parameter as the start
port number, like bin/start.sh 3308.

2. ShardingSphere-Proxy uses conf/server.yaml to configure the registry center, authentication
information and public properties.

3. ShardingSphere-Proxy supports multi-logic data sources, with each yaml configuration document

named by config- prefix as a logic data source.

5.2. ShardingSphere-Proxy 154

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/special-api/transaction/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/

Apache ShardingSphere document, v5.1.0

Use Docker

Pull Official Docker Image

docker pull apache/shardingsphere-proxy

Build Docker Image Manually (Optional)

git clone https://github.com/apache/shardingsphere
mvn clean install
cd shardingsphere-distribution/shardingsphere-proxy-distribution

mvn clean package -Prelease,docker

Configure ShardingSphere-Proxy

Create server.yaml and config-xxx.yaml to configure sharding rules and server rule in /

${your_work_dir}/conf/. Please refer to Configuration Manual. Please refer to Example.

Run Docker

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -e PORT=3308
-pl13308:3308 apache/shardingsphere-proxy:latest

Notice

* You can define port 3308 and 13308 by yourself. 3308 refers to docker port; 13308 refers to the
host port.

* You have to volume conf dir to /opt/shardingsphere-proxy/conf.

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -e JVM_OPTS=
"-Djava.awt.headless=true" -e PORT=3308 -pl13308:3308 apache/shardingsphere-
proxy:latest

Notice

+ You can define JVM related parameters to environment variable JVM_OPTS.

docker run -d -v /S${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -v /${your_
work_dir}/ext-1lib:/opt/shardingsphere-proxy/ext-1lib -p13308:3308 apache/
shardingsphere-proxy:latest

Notice

« If you need to import external jar packages (such as MySQL/openGauss JDBC driver, custom algo-
rithm, etc.), you may bind mount a volume to /opt/shardingsphere-proxy/ext-1lib.

5.2. ShardingSphere-Proxy 155

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/
https://github.com/apache/shardingsphere/tree/master/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf

Apache ShardingSphere document, v5.1.0

Access ShardingSphere-Proxy

It is in the same way as connecting to PostgreSQL.

psql -U ${your_username} -h ${your_host} -p 13308

FAQ

Question 1: there is I/O exception (java.io.IOException) when process request to {}->unix://
localhost:80: Connection isrefused.

Answer: before building image, please make sure docker daemon thread is running.
Question 2: there is error report of being unable to connect to the database.

Answer: please make sure the designated PostgreSQL’ s IP in /${your_work_dir}/conf/

config-xxx.yaml configuration is accessible to Docker container.
Question 3: How to start ShardingSphere-Proxy whose backend databases are MySQL or openGauss.

Answer: Mount the directory where mysql-connector.jar or opengauss-jdbc. jar storesto /
opt/shardingsphere-proxy/ext-T1ib.

Question 4: How to import user-defined sharding strategy?

Answer: Volume the directory where shardingsphere-strategy.jar stores to /opt/
shardingsphere-proxy/ext-1-ib.

5.2.2 Yaml Configuration

The YAML configuration of ShardingSphere-JDBC is the subset of ShardingSphere-Proxy. In server.
yaml file, ShardingSphere-Proxy can configure authority feature and more properties for Proxy only.

This chapter will introduce the extra YAML configuration of ShardingSphere-Proxy.

Authority

It is used to set up initial user to login compute node, and authority data of storage node.

Configuration Item Explanation

rules:
- IAUTHORITY
users:
- # Username, authorized host and password for compute node. Format:
<username>@<hostname>:<password>, hostname 1is % or empty string means do not care
about authorized host

provider:

5.2. ShardingSphere-Proxy 156

Apache ShardingSphere document, v5.1.0

type: # authority provider for storage node, the default value is ALL_
PRIVILEGES_PERMITTED

Example

ALL_PRIVILEGES_PERMITTED

rules:
— IAUTHORITY
users:
- root@localhost:root
- my_user@:pwd
provider:
type: ALL_PRIVILEGES_PERMITTED

SCHEMA_PRIVILEGES_PERMITTED

rules:
— IAUTHORITY
users:
- root@:root
- my_user@:pwd
provider:
type: SCHEMA_PRIVILEGES_PERMITTED
props:
user-schema-mappings: root@=sharding_db, root@=test_db, my_user@l27.0.0.
1=sharding_db

The above configuration means: - The user root can access sharding_db when connecting from any
host - The user root can access test_db when connecting from any host - The user my_user can

access sharding_db only when connected from 127.0.0.1
Refer to Authority Provider for more implementations.
Properties

Introduction

Apache ShardingSphere provides the way of property configuration to configure system level configu-

ration.

5.2. ShardingSphere-Proxy 157

https://shardingsphere.apache.org/document/current/en/dev-manual/proxy

Apache ShardingSphere document, v5.1.0

5.2. ShardingSphere-Proxy 158

Apache ShardingSphere document, v5.1.0

Configuration Item Explanation

Na me

DataType”

Description

DefaultValue

*

DynamicUpda
te”

sq I-s how (?)

boolean

Whether
SQL or not in log.
Print SQL details
can help develop-

show

ers debug easier.
The log details
include: logic
SQL, actual SQL
and SQL parse
Enable

this property will

result.

log into log topic
Sharding-
Sphere-SQL,
log level is INFO.

false

true

s ql- sim ple (?)

boolean

Whether
SQL details in
simple style.

show

false

true

ke rne l-e xec uto

r-size (?)

The max thread
size of worker
group to
cute SQL. One
ShardingSphere-

exe-

DataSource will
use a indepen-
dent thread pool,
it does not share
thread pool even
different data
source in same
JVM.

infinite

false

max -co nne cti
ons -si ze- per -qu

ery (?)

Max opened con-
nection size for

each query.

true

¢ hec k-t abl e-m
etadata-enabled

®)

boolean

Whether vali-
date table meta
data consistency
when applica-
tion startup or

updated.

false

false

5 2soSlyafdingsphére-Proxy

flu sh- thr esh old
®

Flush
old for

records from

a4 . ~

thresh-

every

128

true 159

Apache ShardingSphere document, v5.1.0

Properties can be updated by DistSQL#RAL. Dynamic update can take effect immediately, static update
can take effect after restarted.

5.2.3 DistSQL

This chapter will introduce the detailed syntax of DistSQL.

Syntax

This chapter describes the syntax of DistSQL in detail, and introduces use of DistSQL with practical

examples.

RDL Syntax

RDL (Resource & Rule Definition Language) responsible for definition of resources/rules.

Resource Definition

Syntax

ADD RESOURCE dataSource [, dataSource]

ALTER RESOURCE dataSource [, dataSource]

DROP RESOURCE dataSourceName [, dataSourceName] ... [ignore single tables]

dataSource:

simpleSource | urlSource

simpleSource:
dataSourceName (HOST=hostname, PORT=port,DB=dbName,USER=user [,PASSWORD=password]
[,PROPERTIES (poolProperty [,poolProperty] ...)]1)

urlSource:
dataSourceName (URL=ur1l,USER=user [,PASSWORD=password] [,PROPERTIES(poolProperty
[,poolProperty]) ...1)

poolProperty:
"key"= ("value" | value)

« Before adding resources, please confirm that a distributed database has been created, and execute
the use command to successfully select a database

+ Confirm that the added resource can be connected normally, otherwise it will not be added suc-
cessfully

5.2. ShardingSphere-Proxy 160

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/
https://shardingsphere.apache.org/document/current/en/concepts/distsql/

Apache ShardingSphere document, v5.1.0

Duplicate dataSourceName is not allowed to be added

In the definition of a dataSource, the syntax of simpleSource and urlSource cannot be

mixed

poolProperty is used to customize connection pool properties, key must be the same as the
connection pool property name, value supports int and String types

ALTER RESOURCE will switch the connection pool. This operation may affect the ongoing busi-

ness, please use it with caution
DROP RESOURCE will only delete logical resources, not real data sources
Resources referenced by rules cannot be deleted

If the resource is only referenced by single table rule, andthe user confirms that the restric-
tion can be ignored, the optional parameter ignore single tables can be added to perform
forced deletion

Example

ADD RESOURCE resource_0 (

HOST=127.0.0.1,
PORT=3306,
DB=dbo,
USER=root,
PASSWORD=root

),resource_1 (

HOST=127.0.0.1,
PORT=3306,
DB=db1,
USER=root

) ,resource_2 (

HOST=127.0.0.1,

PORT=3306,

DB=db2,

USER=root,

PROPERTIES ("maximumPoolSize"=10)

),resource_3 (

s

URL="jdbc:mysql://127.0.0.1:3306/db3?serverTimezone=UTC&useSSL=false",
USER=root,

PASSWORD=root,

PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

ALTER RESOURCE resource_0 (

HOST=127.0.0.1,
PORT=3309,
DB=dbo,
USER=root,

5.2. ShardingSphere-Proxy 161

Apache ShardingSphere document, v5.1.0

PASSWORD=root

),resource_1 (

URL="jdbc:mysql://127.0.0.1:3309/dbl?serverTimezone=UTC&useSSL=false",

USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

s

DROP RESOURCE resource_0, resource_1l;
DROP RESOURCE resource_2, resource_3 tignore single tables;

Rule Definition

This chapter describes the syntax of rule definition.

Sharding

Syntax

Sharding Table Rule

CREATE SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition]

ALTER SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition]

DROP SHARDING TABLE RULE tableName [, tableName]

CREATE DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

ALTER DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

DROP DEFAULT SHARDING shardingScope STRATEGY;

CREATE SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition]

ALTER SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition]

DROP SHARDING ALGORITHM algorithmName [, algorithmName]

CREATE SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition]

5.2. ShardingSphere-Proxy

162

Apache ShardingSphere document, v5.1.0

ALTER SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition]

DROP SHARDING KEY GENERATOR keyGeneratorName [, keyGeneratorName]

shardingTableRuleDefinition:
shardingAutoTableRule | shardingTableRule

shardingAutoTableRule:
tableName(resources, shardingColumn, algorithmDefinition [,

keyGenerateDeclaration])

shardingTableRule:
tableName (dataNodes [, databaseStrategy] [, tableStrategy] [,
keyGenerateDeclaration])

resources:
RESOURCES (resource [, resource] ...)
dataNodes:
DATANODES (dataNode [, dataNode] ...)
resource:

resourceName | inlineExpression

dataNode:

resourceName | inlineExpression

shardingColumn:
SHARDING_COLUMN=columnName

algorithmDefinition:
TYPE (NAME=shardingAlgorithmType [, PROPERTIES([algorithmProperties])])

keyGenerateDeclaration:

keyGenerateDefinition | keyGenerateConstruction

keyGenerateDefinition:
KEY_GENERATE_STRATEGY (COLUMN=columnName, strategyDefinition)

shardingScope:
DATABASE | TABLE

databaseStrategy:
DATABASE_STRATEGY (shardingStrategy)

tableStrategy:
TABLE_STRATEGY (shardingStrategy)

5.2. ShardingSphere-Proxy 163

Apache ShardingSphere document, v5.1.0

keyGenerateConstruction
KEY_GENERATE_STRATEGY (COLUMN=columnName, KEY_
GENERATOR=keyGenerateAlgorithmName)

shardingStrategy:
TYPE=strategyType, shardingColumn, shardingAlgorithm

shardingAlgorithm:
existingAlgorithm | autoCreativeAlgorithm

existingAlgorithm:
SHARDING_ALGORITHM=shardingAlgorithmName

autoCreativeAlgorithm:
SHARDING_ALGORITHM (algorithmDefinition)

strategyDefinition:
TYPE (NAME=keyGenerateStrategyType [, PROPERTIES([algorithmProperties])])

shardingAlgorithmDefinition:
shardingAlgorithmName (algorithmDefinition)

algorithmProperties:
algorithmProperty [, algorithmProperty]

algorithmProperty:

key=value

keyGeneratorDefinition:

keyGeneratorName (algorithmDefinition)

RESOURCES needs to use data source resources managed by RDL

« shardingAlgorithmType specifies the type of automatic sharding algorithm, please refer to

Auto Sharding Algorithm

« keyGenerateStrategyType specifies the distributed primary key generation strategy, please

refer to Key Generate Algorithm

Duplicate tableName will not be created

« shardingAlgorithm can be reused by different Sharding Table Rule, so when executing
DROP SHARDING TABLE RULE, the corresponding shardingAlgorithm will not be removed

« To remove shardingAlgorithm, please execute DROP SHARDING ALGORITHM

strategyType specifies the sharding strategy, please refer toSharding Strategy

« Sharding Table Rulesupportsboth Auto Table and Table at the same time. The two types

are different in syntax. For the corresponding configuration file, please refer to Sharding

« When using the autoCreativeAlgorithm way to specify shardingStrategy, a new

5.2. ShardingSphere-Proxy

164

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#sharding-strategy
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/

Apache ShardingSphere document, v5.1.0

sharding algorithm will be created automatically. The algorithm naming rule is table-
Name_strategyType_shardingAlgorithmType, such as t_order_database_inline

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition]

ALTER SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition]

DROP SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition]

bindTableRulesDefinition:
(tableName [, tableName] ...)

« ALTER will overwrite the binding table configuration in the database with the new configuration

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

ALTER SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

DROP SHARDING BROADCAST TABLE RULES

« ALTERwill overwrite the broadcast table configuration in the database with the new configuration

Sharding Scaling Rule

CREATE SHARDING SCALING RULE scalingName [scalingRuleDefinition]
DROP SHARDING SCALING RULE scalingName
ENABLE SHARDING SCALING RULE scalingName
DISABLE SHARDING SCALING RULE scalingName
scalingRuleDefinition:
[inputDefinition] [, outputDefinition] [, streamChannel] [, completionDetector]

[, dataConsistencyChecker]

inputDefinition:
INPUT (workerThread, batchSize, rateLimiter)

5.2. ShardingSphere-Proxy 165

Apache ShardingSphere document, v5.1.0

outputDefinition:
INPUT (workerThread, batchSize, rateLimiter)

completionDetector:
COMPLETION_DETECTOR (algorithmDefinition)

dataConsistencyChecker:
DATA_CONSISTENCY_CHECKER (algorithmDefinition)

rateLimiter:
RATE_LIMITER (algorithmDefinition)

streamChannel:
STREAM_CHANNEL (algorithmDefinition)

workerThread:
WORKER_THREAD=1intValue

batchSize:
BATCH_SIZE=1intValue

intValue:
INT

« ENABLE is used to set which sharding scaling rule is enabled
« DISABLE will disable the sharding scaling rule currently in use

+ Enabled by default when creating the first sharding scaling rule in a schema

Example
Sharding Table Rule

Key Generator

CREATE SHARDING KEY GENERATOR snowflake_key_generator (
TYPE (NAME=SNOWFLAKE)

)5

ALTER SHARDING KEY GENERATOR snowflake_key_generator (
TYPE (NAME=SNOWFLAKE))

)3

DROP SHARDING KEY GENERATOR snowflake_key_generator;

Auto Table

5.2. ShardingSphere-Proxy 166

Apache ShardingSphere document, v5.1.0

CREATE SHARDING TABLE RULE t_order (

RESOURCES (resource_0,resource_1),
SHARDING_COLUMN=order_id,TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=4)),
KEY_GENERATE_STRATEGY (COLUMN=another_id,TYPE (NAME=snowflake))

)3

ALTER SHARDING TABLE RULE t_order (

RESOURCES (resource_0,resource_1l,resource_2,resource_3),
SHARDING_COLUMN=order_id, TYPE(NAME=hash_mod,PROPERTIES ("sharding-count"=16)),
KEY_GENERATE_STRATEGY (COLUMN=another_id, TYPE (NAME=snowflake))

)3

DROP SHARDING TABLE RULE t_order;

DROP SHARDING ALGORITHM t_order_hash_mod;

Table

CREATE SHARDING ALGORITHM table_inline (
TYPE (NAME=1inline,PROPERTIES("algorithm-expression"="t_order_item_${order_id % 2}"))
s

CREATE SHARDING TABLE RULE t_order_item (

DATANODES ("resource_${0..1}.t_order_item_${0..1}"),

DATABASE_STRATEGY (TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_

ALGORITHM(TYPE (NAME=1inline,PROPERTIES("algorithm-expression"="resource_${user_id %
23")))),

TABLE_STRATEGY (TYPE=standard, SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),

KEY_GENERATE_STRATEGY (COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator)

)

ALTER SHARDING ALGORITHM database_qinline (

TYPE (NAME=1inline,PROPERTIES ("algorithm-expression"="resource_sS${user_id % 4}"))
),table_inline (

TYPE (NAME=1inline,PROPERTIES ("algorithm-expression"="t_order_item_${order_id % 4}"))
)3

ALTER SHARDING TABLE RULE t_order_item (

DATANODES ("resource_${0..3}.t_order_item${0..3}"),

DATABASE_STRATEGY (TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),

TABLE_STRATEGY (TYPE=standard, SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),

KEY_GENERATE_STRATEGY (COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator)
)

DROP SHARDING TABLE RULE t_order_item;

5.2. ShardingSphere-Proxy 167

Apache ShardingSphere document, v5.1.0

DROP SHARDING ALGORITHM database_inline;

CREATE DEFAULT SHARDING DATABASE STRATEGY (
TYPE = standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=database_inline

)3

ALTER DEFAULT SHARDING DATABASE STRATEGY (
TYPE = standard,SHARDING_COLUMN=another_id,SHARDING_ALGORITHM=database_inline

)5

DROP DEFAULT SHARDING DATABASE STRATEGY;

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item), (t_1,t_2);

ALTER SHARDING BINDING TABLE RULES (t_order,t_order_item);

DROP SHARDING BINDING TABLE RULES;

DROP SHARDING BINDING TABLE RULES (t_order,t_order_item);

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (t_b,t_a);

ALTER SHARDING BROADCAST TABLE RULES (t_b,t_a,t_3);

DROP SHARDING BROADCAST TABLE RULES;

Sharding Scaling Rule

CREATE SHARDING SCALING RULE sharding_scaling(
INPUT(
WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER(TYPE (NAME=QPS, PROPERTIES("qps"=50)))
)7
OUTPUT(
WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER(TYPE (NAME=TPS, PROPERTIES("tps'"=2000)))

5.2. ShardingSphere-Proxy

168

Apache ShardingSphere document, v5.1.0

)
STREAM_CHANNEL (TYPE (NAME=MEMORY, PROPERTIES("block-queue-size'"=10000))),

COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-minute-
threshold"=30))),
DATA_CONSISTENCY_CHECKER(TYPE (NAME=DATA_MATCH, PROPERTIES('"chunk-size"=1000)))

)3
ENABLE SHARDING SCALING RULE sharding_scaling;

DISABLE SHARDING SCALING RULE sharding_scaling;

DROP SHARDING SCALING RULE sharding_scaling;

Single Table

Definition

CREATE DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

ALTER DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

DROP DEFAULT SINGLE TABLE RULE

singleTableRuleDefinition:
RESOURCE = resourceName

« RESOURCE needs to use data source resource managed by RDL

Example

Single Table Rule

CREATE DEFAULT SINGLE TABLE RULE RESOURCE = ds_0

ALTER DEFAULT SINGLE TABLE RULE RESOURCE = ds_1

DROP DEFAULT SINGLE TABLE RULE

5.2. ShardingSphere-Proxy 169

Apache ShardingSphere document, v5.1.0

Readwrite-Splitting

Syntax

CREATE READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition]

ALTER READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition]

DROP READWRITE_SPLITTING RULE ruleName [, ruleName]

readwriteSplittingRuleDefinition:
ruleName ([staticReadwriteSplittingRuleDefinition |
dynamicReadwriteSplittingRuleDefinition]
[, loadBanlancerDefinition])

staticReadwriteSplittingRuleDefinition:
WRITE_RESOURCE=writeResourceName, READ_RESOURCES(resourceName [, resourceName]
)

dynamicReadwriteSplittingRuleDefinition:
AUTO_AWARE_RESOURCE=resourceName

loadBanlancerDefinition:
TYPE (NAME=loadBanlancerType [, PROPERTIES([algorithmProperties])])

algorithmProperties:
algorithmProperty [, algorithmProperty]

algorithmProperty:

key=value

« Support the creation of static readwrite-splitting rules and dynamic readwrite-splitting rules
 Dynamic readwrite-splitting rules rely on database discovery rules

« loadBanlancerType specifies the load balancing algorithm type, please refer to Load Balance
Algorithm

+ Duplicate ruleName will not be created

5.2. ShardingSphere-Proxy 170

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance/

Apache ShardingSphere document, v5.1.0

Example

// Static

CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1),

TYPE (NAME=random)

)3

// Dynamic

CREATE READWRITE_SPLITTING RULE ms_group_1 (
AUTO_AWARE_RESOURCE=group_0,

TYPE (NAME=random,PROPERTIES (read_weight='2:1"))

)3

ALTER READWRITE_SPLITTING RULE ms_group_1 (
WRITE_RESOURCE=write_ds,

READ_RESOURCES (read_ds_0,read_ds_1,read_ds_2),
TYPE (NAME=random,PROPERTIES (read_weight='2:0"))
)3

DROP READWRITE_SPLITTING RULE ms_group_1;

DB Discovery

Syntax

CREATE DB_DISCOVERY RULE ruleDefinition [, ruleDefinition]

ALTER DB_DISCOVERY RULE ruleDefinition [, ruleDefinition]

DROP DB_DISCOVERY RULE ruleName [, ruleName]

CREATE DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,

databaseDiscoveryTypeDefinition]

ALTER DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,

databaseDiscoveryTypeDefinition]

DROP DB_DISCOVERY TYPE discoveryTypeName [, discoveryTypeName]

CREATE DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition]

ALTER DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,

databaseDiscoveryHeartbaetDefinition]

5.2. ShardingSphere-Proxy 171

Apache ShardingSphere document, v5.1.0

DROP DB_DISCOVERY HEARTBEAT discoveryHeartbeatName [, discoveryHeartbeatName]

ruleDefinition:
(databaseDiscoveryRuleDefinition | databaseDiscoveryRuleConstruction)

databaseDiscoveryRuleDefinition
ruleName (resources, typeDefinition, heartbeatDefinition)

databaseDiscoveryRuleConstruction
ruleName (resources, TYPE = discoveryTypeName, HEARTBEAT =

discoveryHeartbeatName)

databaseDiscoveryTypeDefinition
discoveryTypeName (typeDefinition)

databaseDiscoveryHeartbaetDefinition
discoveryHeartbeatName (PROPERTIES (properties))

resources:
RESOURCES (resourceName [, resourceName] ...)

typeDefinition:
TYPE (NAME=typeName [, PROPERTIES([properties])])

heartbeatDefinition
HEARTBEAT (PROPERTIES (properties))

properties:
property [, property]

property:
key=value

« discoveryType specifies the database discovery service type, ShardingSphere has built-in

support for MGR
« Duplicate ruleName will not be created
« The discoveryType and discoveryHeartbeat being used cannot be deleted
+ Names with - need touse " " when changing

« When removing the discoveryRule, the discoveryType and discoveryHeartbeat used
by the discoveryRule will not be removed

5.2. ShardingSphere-Proxy 172

Apache ShardingSphere document, v5.1.0

Example

When creating a discoveryRule, create bothdiscoveryType and discoveryHeartbeat

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES (ds_0, ds_1, ds_2),

TYPE (NAME=mgr ,PROPERTIES('group-name'="'92504d5b-6dec')),
HEARTBEAT (PROPERTIES ('keep-alive-cron'='0/5 * x * x 2'))

s
ALTER DB_DISCOVERY RULE db_d'iscovery_group_O (
RESOURCES(ds_0, ds_1, ds_2),

TYPE (NAME=mgr ,PROPERTIES ('group-name'="'246e9612-aafl')),
HEARTBEAT (PROPERTIES('keep-alive-cron'='0/5 * x * x 2'))

)
DROP DB_DISCOVERY RULE db_discovery_group_0;

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

Use the existing discoveryType and discoveryHeartbeat to create adiscoveryRule

CREATE DB_DISCOVERY TYPE db_discovery_group_1_mgr (
TYPE (NAME=mgr ,PROPERTIES('group-name'="'92504d5b-6dec"))
)

CREATE DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/5 * % % % ?2'")
)5

CREATE DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES (ds_0, ds_1, ds_2),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat

)3

ALTER DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE (NAME=mgr ,PROPERTIES('group-name'="'246e9612-aafl'))

)3

ALTER DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/10 * * * % ?')
)5

5.2. ShardingSphere-Proxy 173

Apache ShardingSphere document, v5.1.0

ALTER DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES (ds_0, ds_1),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat

)3

DROP DB_DISCOVERY RULE db_discovery_group_1;

DROP DB_DISCOVERY TYPE db_discovery_group_1l_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_1l_heartbeat;

Encrypt

Syntax

CREATE ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition]

ALTER ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition]

DROP ENCRYPT RULE tableName [, tableName]

encryptRuleDefinition:

tableName (COLUMNS (columnDefinition [, columnDefinition] ...), QUERY_WITH_

CIPHER_COLUMN=queryWithCipherColumn)

columnDefinition:

(NAME=columnName [, PLAIN=plainColumnName] , CIPHER=cipherColumnName,

encryptAlgorithm)

encryptAlgorithm:

TYPE (NAME=encryptAlgorithmType [, PROPERTIES([algorithmProperties])])

algorithmProperties:

algorithmProperty [, algorithmProperty]

algorithmProperty:

key=value

PLAIN specifies the plain column, CIPHER specifies the cipher column

encryptAlgorithmType specifies the encryption algorithm type, please refer to Encryption
Algorithm

Duplicate tableName will not be created

queryWithCipherColumn support uppercase or lowercase true or false

5.2. ShardingSphere-Proxy 174

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt/

Apache ShardingSphere document, v5.1.0

Example

CREATE ENCRYPT RULE t_encrypt (

COLUMNS (
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher, TYPE (NAME=AES,PROPERTIES('aes-
key-value'="'123456abc'))),

(NAME=order_id, CIPHER =order_cipher,TYPE(NAME=MD5))

), QUERY_WITH_CIPHER_COLUMN=true),

t_encrypt_2 (

COLUMNS (

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher, TYPE(NAME=AES,PROPERTIES('aes-
key-value'="'123456abc'))),

(NAME=order_id, CIPHER=order_cipher,TYPE(NAME=MD5))

), QUERY_WITH_CIPHER_COLUMN=FALSE) ;

ALTER ENCRYPT RULE t_encrypt (

COLUMNS (

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher, TYPE(NAME=AES,PROPERTIES('aes-
key-value'="'123456abc'))),

(NAME=order_id,CIPHER=order_cipher,TYPE(NAME=MD5))

), QUERY_WITH_CIPHER_COLUMN=TRUE) ;

DROP ENCRYPT RULE t_encrypt,t_encrypt_2;

Shadow

Syntax

CREATE SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition]

ALTER SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition]

CREATE SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm]

ALTER SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm]

DROP SHADOW RULE ruleName [, ruleName]

DROP SHADOW ALGORITHM algorithmName [, algorithmName]

CREATE DEFAULT SHADOW ALGORITHM NAME = algorithmName

shadowRuleDefinition: ruleName(resourceMapping, shadowTableRule [, shadowTableRule]

-)

resourceMapping: SOURCE=resourceName, SHADOW=resourceName

5.2. ShardingSphere-Proxy 175

Apache ShardingSphere document, v5.1.0

shadowTableRule: tableName(shadowAlgorithm [, shadowAlgorithm] ...)

shadowAlgorithm: ([algorithmName,] TYPE(NAME=shadowAlgorithmType,
PROPERTIES([algorithmProperties] ...)))

algorithmProperties: algorithmProperty [, algorithmProperty]

algorithmProperty: key=value

« Duplicate ruleName cannot be created

» resourceMapping specifies the mapping relationship between the source database and the
shadow library. You need to use the resource managed by RDL, please refer to resource

« shadowAlgorithm can act on multiple shadowTableRule at the same time

« If algorithmName is not specified, it will be automatically generated according to ruleName,
tableName and shadowAlgorithmType

« shadowAlgorithmType currently supports VALUE_MATCH, REGEX_MATCH and SIMPLE_HINT

« shadowTableRule can be reused by different shadowRuleDefinition, so when executing
DROP SHADOW RULE, the corresponding shadowTableRule will not be removed

« shadowAlgorithm can be reused by different shadowTableRule, so when executing ALTER
SHADOW RULE, the corresponding shadowAlgorithm will not be removed

Example

CREATE SHADOW RULE shadow_rule(

SOURCE=demo_ds,

SHADOW=demo_ds_shadow,

t_order((simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES('"shadow"="true",
foo="bar"))), (TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "regex"='[1]")))),

t_order_item((TYPE(NAME=VALUE_MATCH, PROPERTIES("operation"="insert","column'"=

"user_id", "value"='1')))));

ALTER SHADOW RULE shadow_rule(

SOURCE=demo_ds,

SHADOW=demo_ds_shadow,

t_order((simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true'",
foo="bar"))), (TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "regex"='[1]")))),

t_order_item((TYPE(NAME=VALUE_MATCH, PROPERTIES("operation"="insert","column'"=
"user_id", "value"='1")))));

CREATE SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true", "foo'"=

5.2. ShardingSphere-Proxy 176

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.1.0

"bar"))),
(user_id_match_algorithm, TYPE(NAME=REGEX_MATCH,PROPERTIES("operation"="insert",
"column"="user_id", "regex"='[1]"')));

ALTER SHADOW ALGORITHM

(simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="false", "foo'"=
"bar"))),

(user_id_match_algorithm, TYPE(NAME=VALUE_MATCH,PROPERTIES("operation"="1insert",
"column"="user_id", "value"='1")));

DROP SHADOW RULE shadow_rule;

DROP SHADOW ALGORITHM simple_note_algorithm;

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

RQL Syntax

RQL (Resource & Rule Query Language) responsible for resources/rules query.

Resource Query

Syntax

SHOW SCHEMA RESOURCES [FROM schemaName]

Return Value Description

Column Description

name Data source name
type Data source type
host Data source host
port Data source port

db Database name
attribute | Data source attribute

5.2. ShardingSphere-Proxy 177

Apache ShardingSphere document, v5.1.0

Example

mysql> show schema resources;

| ds_@ | MysSQL | 127.0.0.1 | 3306 | ds_0 | {"minPoolSize":1,
"connectionTimeoutMilliseconds":30000,"maxLifetimeMilliseconds":1800000,"readOnly
":false,"idleTimeoutMilliseconds":60000, " maxPoolSize":50} |

| ds_1 | MysSQL | 127.0.0.1 | 3306 | ds_1 | {"minPoolSize":1,
"connectionTimeoutMilliseconds":30000,"maxLifetimeMilliseconds":1800000,"readOnly
":false,"idleTimeoutMilliseconds":60000, " maxPoolSize":50} |

2 rows in set (0.84 sec)

Rule Query

This chapter describes the syntax of rule query.

Sharding

Syntax

Sharding Table Rule

SHOW SHARDING TABLE tableRule | RULES [FROM schemaName]

SHOW SHARDING ALGORITHMS [FROM schemaName]

SHOW UNUSED SHARDING ALGORITHMS [FROM schemaName]

SHOW SHARDING KEY GENERATORS [FROM schemaName]

SHOW UNUSED SHARDING KEY GENERATORS [FROM schemaName]

SHOW DEFAULT SHARDING STRATEGY

5.2. ShardingSphere-Proxy 178

Apache ShardingSphere document, v5.1.0

SHOW SHARDING TABLE NODES;

tableRule:
RULE tableName

« Support query all data fragmentation rules and specified table query

« Support query all sharding algorithms

Sharding Binding Table Rule

SHOW SHARDING BINDING TABLE RULES [FROM schemaName]

Sharding Broadcast Table Rule

SHOW SHARDING BROADCAST TABLE RULES [FROM schemaName]

Sharding Scaling Rule

SHOW SHARDING SCALING RULES [FROM schemaName]

Return Value Description

Sharding Table Rule

Column

Description

table

Logical table name

actual_data_nodes

Actual data node

actual_data_sources

Actual data source (Displayed when creating rules by RDL)

database_strategy_type

Database sharding strategy type

d atabase_sharding_column

Database sharding column

database_ sharding_algorithm_type

Database sharding algorithm type

database_s harding_algorithm_props

Database sharding algorithm properties

table_strategy_type

Table sharding strategy type

table_sharding_column

Table sharding column

table_ sharding_algorithm_type

Table sharding algorithm type

table_s harding_algorithm_props

Table sharding algorithm properties

key_generate_column

Sharding key generator column

key_generator_type

Sharding key generator type

key_generator_props

Sharding key generator properties

5.2. ShardingSphere-Proxy

179

Apache ShardingSphere document, v5.1.0

Sharding Algorithms

Column | Description

name Sharding algorithm name

type Sharding algorithm type

props Sharding algorithm properties

Unused Sharding Algorithms

Column | Description

name Sharding algorithm name

type Sharding algorithm type

props Sharding algorithm properties

Sharding key generators

Column | Description

name Sharding key generator name

type Sharding key generator type

props Sharding key generator properties

Unused Sharding Key Generators

Column | Description

name Sharding key generator name

type Sharding key generator type

props Sharding key generator properties

Default Sharding Strategy

Column Description
name Strategy name
type Sharding strategy type

sharding_column

Sharding column

sharding_algorithm_name

Sharding algorithm name

sharding_algorithm_type

Sharding algorithm type

sharding_algorithm_props

Sharding algorithm properties

5.2. ShardingSphere-Proxy

180

Apache ShardingSphere document, v5.1.0

Sharding Table Nodes

Column | Description

name Sharding rule name

nodes | Sharding nodes

Sharding Binding Table Rule

Column Description

sharding_binding_tables | sharding Binding Table list

Sharding Broadcast Table Rule

Column Description

sharding_broadcast_tables | sharding Broadcast Table list

Sharding Scaling Rule

Column Description

name name of sharding scaling rule

input data read configuration

output data write configuration
stream_channel algorithm of stream channel
completion_detector algorithm of completion detecting
data_consistency_checker | algorithm of data consistency checking

Example

Sharding Table Rule

SHOW SHARDING TABLE RULES

mysql> SHOW SHARDING TABLE RULES;

Fomm e et et L e e Fom Fom e
————————— B T T T T
———————————————————————— T B
____________ S E————
e e +

| table | actual_data_nodes | actual_data_sources | database_

5.2. ShardingSphere-Proxy 181

Apache ShardingSphere document, v5.1.0

strategy_type | database_sharding_column | database_sharding_algorithm_type |
database_sharding_algorithm_props | table_strategy_type | table_sharding_
column | table_sharding_algorithm_type | table_sharding_algorithm_props

| key_generate_column | key_generator_type | key_generator_props |

Fom e e R ittt BT e e Fom
————————— T T T i Tt
———————————————————————— e et B e i Tt e
____________ e
T B +
| t_order | ds_s${0..1}.t_order_s${0..1} | | INLINE
| user_did | INLINE | algorithm-
expression:ds_${user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_${order_id % 2} | order_did
| SNOWFLAKE | |
| t_order_item | ds_s${0..1}.t_order_item_s${0..1} | | INLINE
| user_did | INLINE | algorithm-
expression:ds_${user_id % 2} | INLINE | order_did | INLINE
| algorithm-expression:t_order_item_${order_id % 2} | order_item_id
| SNOWFLAKE | |
| t2 | | ds_0,ds_1 |

| mod | did | mod

| sharding-count:10 |

3 rows 1in set (0.02 sec)

SHOW SHARDING TABLE RULE tableName

mysql> SHOW SHARDING TABLE RULE t_order;

fom——— e o o
R T Bt Tt B
——————————————— i e T
B Tttt Fmm Fom——————
—————— B 1

| table | actual_data_nodes | actual_data_sources | database_strategy_

type | database_sharding_column | database_sharding_algorithm_type | database_
sharding_algorithm_props | table_strategy_type | table_sharding_column |
table_sharding_algorithm_type | table_sharding_algorithm_props |
key_generate_column | key_generator_type | key_generator_props |

5.2. ShardingSphere-Proxy 182

Apache ShardingSphere document, v5.1.0

—————— o ¢

| t_order | ds_s${0..1}.t_order_${0..1} | | INLINE |
user_-id | INLINE | algorithm-expression:ds_$
{user_id % 2} | INLINE | order_1id | INLINE

| algorithm-expression:t_order_${order_id % 2} | order_id | SNOWFLAKE
I I

dom——————— o o o
o o o
——————————————— Bt s el e
e et ettt T T e e Fom domm e
—————— o4

1 row 1in set (0.01 sec)

SHOW SHARDING ALGORITHMS

mysql> SHOW SHARDING ALGORITHMS;

o o o
—————— +
| name | type | props

|
o t———— e
—————— +
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
21|
o o o
—————— +

2 row in set (0.01 sec)

SHOW UNUSED SHARDING ALGORITHMS

mysql> SHOW UNUSED SHARDING ALGORITHMS;

Fom o e +
| name | type | props |
Fom e o e et +
| ti_inline | INLINE | algorithm-expression=t_order_s${order_id % 2} |
o o — B T Tt +

1 row in set (0.01 sec)

SHOW SHARDING KEY GENERATORS

mysql> SHOW SHARDING KEY GENERATORS;

t_order_snowflake	snowflake	
t_order_item_snowflake	snowflake	
uuid_key_generator	uuid	

5.2. ShardingSphere-Proxy 183

Apache ShardingSphere document, v5.1.0

o Fom e —— o +

3 row in set (0.01 sec)

SHOW UNUSED SHARDING KEY GENERATORS

mysql> SHOW UNUSED SHARDING KEY GENERATORS;

o Fom o +
| name | type | props |
o o ——— o +
| uuid_key_generator | uuid | |
o o ————— o +

1 row in set (0.01 sec)

SHOW DEFAULT SHARDING STRATEGY

mysql> SHOW DEFAULT SHARDING STRATEGY ;

| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |

o ——— o —— o o o
——————————— B ettt LT
| TABLE | NONE | | |

| |
| DATABASE | STANDARD| order_id | database_inline | INLINE

| {algorithm-expression=ds_${user_id % 2}} |
o —— o e e o ————
——————————— B ettt

2 rows 1in set (0.07 sec)

SHOW SHARDING TABLE NODES

mysql> SHOW SHARDING TABLE NODES;

o o +
| name | nodes |
d——— B ettt i e +
| t_order | ds_0.t_order_0, ds_1.t_order_1, ds_0.t_order_2, ds_1l.t_order_3 |
- e +

1 row in set (0.02 sec)

5.2. ShardingSphere-Proxy 184

Apache ShardingSphere document, v5.1.0

Sharding Binding Table Rule

mysql> SHOW SHARDING BINDING TABLE RULES;

| t_order,t_order_item |
| t1,t2 |

2 rows 1in set (0.00 sec)

Sharding Broadcast Table Rule

mysql> SHOW SHARDING BROADCAST TABLE RULES;

2 rows in set (0.00 sec)

Sharding Scaling Rule

mysql> SHOW SHARDING SCALING RULES;

T T et e
_________________________ o
_________________________________ o
_______ O
__ +

name | dinput

| output
| stream_channel
| completion_detector

data_consistency_checker
Fom o
_________________________ e
_________________________________ e
_______ o
__ +

| sharding_scaling | {"workerThread":40,"batchSize":1000,"rateLimiter":{"type":"QPS
", "props":{"gps":"50"}}} | {"workerThread":40,"batchSize":1000,"rateLimiter":{"type
""TPS", "props": {"tps":"2000"}}} | {"type":"MEMORY","props":{"block-queue-size":
"10000"}} | {"type":"IDLE","props":{"incremental-task-idle-minute-threshold":"30"}}
| {"type":"DATA_MATCH","props":{"chunk-size":"1000"}} |

5.2. ShardingSphere-Proxy 185

Apache ShardingSphere document, v5.1.0

1 row in set (0.00 sec)

Single Table

Syntax

SHOW SINGLE TABLE (tableRule | RULES) [FROM schemaName]
SHOW SINGLE TABLES

tableRule:
RULE tableName

Return Value Description

Single Table Rule
Column Description
name Rule name
resource_name | Data source name
Single Table
Column Description
table_name Single table name
resource_name | The resource name where the single table is located

Example

single table rules

sql> show single table rules;

| default | ds_1 |

5.2. ShardingSphere-Proxy 186

Apache ShardingSphere document, v5.1.0

o ———— o +

1 row in set (0.01 sec)

single tables

mysql> show single tables;

o o +

| table_name | resource_name |
o —— Fom +
| t_single_0 | ds_0 |
| t_single_1 | ds_1 |
o —— o +

2 rows in set (0.02 sec)

Readwrite-Splitting

Syntax

SHOW READWRITE_SPLITTING RULES [FROM schemaName]

Return Value Description

Column Description

name Rule name

auto_aware_data_source| martie Aware discovery data source name (Display configuration dynamic

readwrite splitting rules)

write_data_source_name Write data source name

read_data_source_names Read data source name list

load_balancer_type Load balance algorithm type
load_balancer_props Load balance algorithm parameter
Example

Static Readwrite Splitting Rules

mysql> show readwrite_splitting rules;

name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |

| ms_group_0 | NULL | ds_primary | ds_slave_0,

5.2. ShardingSphere-Proxy 187

Apache ShardingSphere document, v5.1.0

ds_slave_1 | random

1 row in set (0.00 sec)

Dynamic Readwrite Splitting Rules

mysql> show readwrite_splitting rules from readwrite_splitting_db;

=
)
W)
lD_
o
Q
+
Q

|

name | auto_aware_data_source_name | write_data_source_name

source_names | load_balancer_type | load_balancer_props |

| readwrite_ds | ms_group_0 | NULL
| random | read_weight=2:1 |

1 row in set (0.01 sec)

Static Readwrite Splitting Rules And Dynamic Readwrite Splitting Rules

mysql> show readwrite_splitting rules from readwrite_splitting_db;

S
)
Q
IQ_
o
Q
+
Q)
|

name | auto_aware_data_source_name | write_data_source_name
source_names | load_balancer_type | load_balancer_props |

| readwrite_ds | ms_group_0 | write_ds | read_ds_o0,
read_ds_1 | random | read_weight=2:1 |

1 row in set (0.00 sec)

DB Discovery

Syntax

SHOW DB_DISCOVERY RULES [FROM schemaName]

SHOW DB_DISCOVERY TYPES [FROM schemaName]

SHOW DB_DISCOVERY HEARTBEATS [FROM schemaName]

5.2. ShardingSphere-Proxy 188

Apache ShardingSphere document, v5.1.0

Return Value Description

DB Discovery Rule

Column Description
group_name Rule name
data_source_names Data source name list

primary_data_source_name | Primary data source name

discovery_type Database discovery service type

discovery_heartbeat Database discovery service heartbeat

DB Discovery Type

Column | Description

name Type name

type Type category
props Type properties

DB Discovery Heartbeat

Column | Description

name Heartbeat name

props Heartbeat properties

Example

DB Discovery Rule

mysql> show db_discovery rules;

e e T Fmm
___ e
___ n

| group_name | data_source_names | primary_data_source_name | discovery_
type | discovery_
heartbeat |

Fm Fom o tomm -
___ e
___ +

| db_discovery_group_0 | ds_0,ds_1,ds_2 | ds_0 | {name=db_

discovery_group_0_mgr, type=mgr, props={group-name=92504d5b-6dec}} | {name=db_
discovery_group_0_heartbeat, props={keep-alive-cron=0/5 * * * x 2?}} |

5.2. ShardingSphere-Proxy 189

Apache ShardingSphere document, v5.1.0

1 row in set (0.20 sec)

DB Discovery Type

mysql> show db_discovery types;

| db_discovery_group_6_mgr | mgr | {group-name=92504d5b-6dec} |

Fm to———— o +

1 row in set (0.01 sec)

DB Discovery Heartbeat

mysql> show db_discovery heartbeats;

| db_discovery_group_0_heartbeat | {keep-alive-cron=0/5 *x x x x ?} |

o o +

1 row in set (0.01 sec)

Encrypt

Syntax

SHOW ENCRYPT RULES [FROM schemaName]

SHOW ENCRYPT TABLE RULE tableName [from schemaName]

« Support to query all data encryption rules and specify logical table name query

Return Value Description

Column Description

table Logical table name
logic_column Logical column name
cipher_column Ciphertext column name
plain_column Plaintext column name
encryptor_type Encryption algorithm type
encryptor_props | Encryption algorithm parameter

5.2. ShardingSphere-Proxy 190

Apache ShardingSphere document, v5.1.0

Example

Show Encrypt Rules

mysql> show encrypt rules from encrypt_db;

| table | logic_column | cipher_column | plain_column | encryptor_type |
encryptor_props |

o ——— fom e —— Fom e Fom Fom to————
__________________ +
| t_encrypt | order_id | order_cipher | NULL | MD5 |

|
| t_encrypt | user_id | user_cipher | user_plain | AES | aes-
key-value=123456abc |
| t_order | item_id | order_cipher | NULL | MD5 |

|
| t_order | order_did | user_cipher | user_plain | AES | aes-
key-value=123456abc |
domm e it Fom e e Fom e tom—————
__________________ +

4 rows 1in set (0.01 sec)

Show Encrypt Table Rule Table Name

mysql> show encrypt table rule t_encrypt;

| table | logic_column | cipher_column | plain_column | encryptor_type |
encryptor_props |

o o o ——— o o ——— o
__________________ +
| t_encrypt | order_id | order_cipher | NULL | MD5 |

|
| t_encrypt | user_did | user_cipher | user_plain | AES | aes-
key-value=123456abc |
dom e Fom et Fom e tom—————
__________________ +

2 rows in set (0.00 sec)

mysql> show encrypt table rule t_encrypt from encrypt_db;

| table | logic_column | cipher_column | plain_column | encryptor_type |
encryptor_props |

| t_encrypt | order_id | order_cipher | NULL | MD5

5.2. ShardingSphere-Proxy 191

Apache ShardingSphere document, v5.1.0

| t_encrypt | user_id user_cipher user_plain | AES aes-—
key-value=123456abc |

2 rows 1in set (0.00 sec)

Shadow

Syntax

SHOW SHADOW shadowRule | RULES [FROM schemaName]

SHOW SHADOW TABLE RULES [FROM schemaName]

SHOW SHADOW ALGORITHMS [FROM schemaName]

shadowRule:
RULE ruleName

+ Support querying all shadow rules and specified table query
« Support querying all shadow table rules

« Support querying all shadow algorithms

Return Value Description

Shadow Rule
Column Description
rule_name Rule name
source_name Source database
shadow_name | Shadow database
shadow_table | Shadow table
Shadow Table Rule

Column Description
shadow_table Shadow table

shadow_algorithm_name | Shadow algorithm name

5.2. ShardingSphere-Proxy 192

Apache ShardingSphere document, v5.1.0

Shadow Algorithms

Column Description

shadow_algorithm_name | Shadow algorithm name

type Shadow algorithm type
props Shadow algorithm properties
is_default Default

Shadow Rule status

Column | Description

status Enable

Example

SHOW SHADOW RULES

mysql> show shadow rules;

Fom Fom e Fom e — Fom e +
| rule_name | source_name | shadow_name | shadow_table |
o o o ——— o ——— +
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
| shadow_rule_2 | ds_2 | ds_shadow_2 | t_order_item |
e o o —— o —— +

2 rows 1in set (0.02 sec)

SHOW SHADOW RULE ruleName

mysql> show shadow rule shadow_rule_1;

o ——— o o o +
| rule_name | source_name | shadow_name | shadow_table |
o o o o —— +
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
o fom e fom e oo +

1 rows in set (0.01 sec)

SHOW SHADOW TABLE RULES

mysql> show shadow table rules;

5.2. ShardingSphere-Proxy 193

Apache ShardingSphere document, v5.1.0

1 rows in set (0.01 sec)

SHOW SHADOW ALGORITHMS

mysql> show shadow algorithms;

| shadow_algorithm_name | type | props
| is_default |

| user_id_match_algorithm | COLUMN_REGEX_MATCH | operation=insert,column=user_id,
regex=[1] | false |
| simple_note_algorithm_1 | SIMPLE_NOTE | shadow=true, foo=bar

| false |

2 rows in set (0.01 sec)

RAL Syntax

RAL (Resource & Rule Administration Language) responsible for the added-on feature of hint, transac-

tion type switch, scaling, sharding execute planning and so on.

5.2. ShardingSphere-Proxy 194

Apache ShardingSphere document, v5.1.0

Hint
Statement Function Example
set read write_splitting | For current connection, set readwrite splitting | set readwr
hint source = [auto / | routing strategy (automatic or forced to write | ite_splitting hint

write] data source) source = write

set sharding hint | For current connection, set sharding value for | set sharding hint d

database_value = yy database sharding only, yy: sharding value atabase_value = 100

add sharding hint | For current connection, add sharding value for | add sharding hint d

database_value xx=yy | table, xx: logictable, yy: database sharding value | atabase_value t_order
=100

add sharding hint ta- | For current connection, add sharding value for | add sharding hint

ble_value xx = yy

table, xx: logic table, yy: table sharding value

table_value t_order =
100

clear hint

For current connection, clear all hint settings

clear hint

clear [sharding hint
/ read write_splitting

hint]

For current connection, clear hint settings of
sharding or readwrite splitting

clear readwr

ite_splitting hint

show [sharding / readw | For current connection, query hint settings of | show readwr
rite_splitting] hint sta- | sharding or readwrite splitting ite_splitting hint
tus status

Scaling
Statement Function Example

show scaling list

Query running list

show scaling list

show scaling status xx

Query scaling status, xx: jobId

show scaling status 1234

start scaling xx

Start scaling, xx: jobId

start scaling 1234

stop scaling xx

Stop scaling, xx: jobld

stop scaling 1234

drop scaling xx

Drop scaling, xx: jobId

drop scaling 1234

reset scaling xx

reset progress, xx: jobId

reset scaling 1234

check scaling xx

Data consistency check with algo-
rithm in server.yaml, xx: jobId

check scaling 1234

show scaling check algorithms

Show available consistency check al-
gorithms

show scaling check algo-

rithms

check scaling {jobld} by type(n
ame={algorithmType})

Data consistency check with defined
algorithm

check scaling 1234 by typ
e(name=DEFAULT)

stop scaling source writing xx

The

source is discontinued, xx: jobId

source ShardingSphere data

stop scaling source writ-
ing 1234

apply scaling xx

Switch to target ShardingSphere meta-
data, xx: jobId

apply scaling 1234

5.2. ShardingSphere-Proxy

195

Apache ShardingSphere document, v5.1.0

Circuit Breaker

Statement

Function

Example

[enable / disable] readwrite_splitting read

xxX [from schemal]

data source

Enable or disable read

enable readwrite_splitting

read resource_0

[enable / disable]
PORT=xxx / instanceld]

instance

[[P=xxx,

instance

Enable or disable proxy

disable
127.0.0.1@3307

instance

show instance list

information

Query proxy instance

show instance list

show readwrite_splitting read resources

[from schemal]

Query all read

sources status

re- | show

readwrite_splitting

read resources

Global Rule
Statement Function Example
SHOW AUTHORITY RULE Query authority rule config- | SHOW AUTHORITY RULE
uration
SHOW TRANSACTION RULE Query transaction rule con- | SHOW TRANSACTION RULE

figuration

SHOW SQL_PARSER RULE

Query SQL parser rule con-
figuration

SHOW SQL_PARSER RULE

ALTER TRANSAC-
TION RULE(DEFAU
LT=xx,TYPE(NAME=xxX,
PROPER TIES(“keyl” = “valuel”
, “key2” = “value2” --)))

Alter transaction rule con-
ation, DEFAULT:
default transaction type,
support LOCAL. XA, BASE;

NAME: name of transac-

figur

ALTER TRANSACTION
RULE(DEFAULT=XA

TYPE(NAME=Narayana, PROP-
ERTIES(“datab
“jbossts” , “host” = “127.0.0.1”

aseName” =

tion manager, support |)))

Atomikos, Narayana and

Bitronix
ALTER SQL_PARSER | Alter SQL parser rule | ALTER SQL_PARSER
RULE SQL_COMM | configuration, SQL_CO | RULE SQL_COMMENT
ENT_PARSE_ENABLE=xx, MMENT_PARSE_ENABLE: _PARSE_ENABLE=false,
PARSE_TREE_CACHE(INI- | whether to parse | PARSE_TREE_CACHE(INI-
TIAL_CAPACITY=xx, MAX- | the SQL comment, | TIAL_CAPACITY=10, MAX-
IMUM_SIZE=xx, CO NCUR- | PARSE_TREE_CACHE: IMUM_SIZE=11, C ON-
RENCY_LEVEL=xx), S | local cache configura- | CURRENCY_LEVEL=1),
QL_STATEMENT_CACHE(I tion of syntax tree, S | SQL_STATEMENT_CACHE(
NITIAL_CAPACITY=xxx, MAX- | QL_STATEMENT_CACHE: INITIAL_CAPACITY=11, MAX-
IMUM_SIZE=xxx, CO NCUR- | local cache of SQL state- | IMUM_SIZE=11, CO NCUR-
RENCY_LEVEL=xxx) ment RENCY_LEVEL=100)

5.2. ShardingSphere-Proxy 196

mailto:127.0.0.1@3307

Apache ShardingSphere document, v5.1.0

Other

Statement

Function

Example

show instance mode

Query the mode configuration of the
proxy

show instance mode

count schema rules [from | Querythe number of rulesin a schema | count schema rules
schema]
set variable | proxy_property_name is one of prop- | set variable sql_show

proxy_property_name = Xx

erties configuration of proxy, name is

split by underscore

=true

setvariable transaction_type =xx

Modify transaction_type of the current
connection, supports LOCAL, XA, BASE

set variable tran sac-
tion_type = XA

set variable
agent_plugins_enabled = [true /
false]

Set whether the agent plugins are en-
abled, the default value is false

set variable
agent_plu
gins_enabled =
true

show all variables

Query proxy all properties configura-

show all variables

tion
show variable variable_name Query proxy variable, name is split by | show variable
underscore sql_show
preview SQL Preview the actual SQLs preview select * from
t_order
parse SQL Parse SQL and output abstract syntax | parse select * from
tree t_order
refresh table metadata Refresh the metadata of all tables refresh table meta-
data
refresh table metadata [table- | Refresh the metadata of a table refresh table meta-
Name / tableName from re- data t_order from

source resourceName]

resource ds_1

show table metadata tableName
[, tableName] ---

Query table metadata

show table metadata
t_order

export schema config [from
schema_name] [, file=

“file_path”]

Query / export resources and rule con-

figuration in schema

export schema con-
fig from readwrite_
splitting_db

5.2. ShardingSphere-Proxy

197

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/yaml-config/props/

Apache ShardingSphere document, v5.1.0

Notice

ShardingSphere-Proxy does not support hint by default, to support it, set proxy-hint-enabled to

true in conf/server.yaml.

Usage

This chapter will introduce how to use DistSQL to manage resources and rules in a distributed database.

Pre-work

Use MySQL as example, can replace to other databases.

1.

2.

3.

4.

Start the MySQL service;

Create to be registered MySQL databases;

Create role and user in MySQL with creation permission for ShardingSphere-Proxy;
Start Zookeeper service;

Add mode and authentication configurations to server.yaml;

Start ShardingSphere-Proxy;

Use SDK or terminal connect to ShardingSphere-Proxy.

Create Logic Database

1.

Create logic database

CREATE DATABASE foo_db;

2.

Use newly created logic database

USE foo_db;

Resource Operation

More details please see concentrate rule examples.

5.2. ShardingSphere-Proxy 198

Apache ShardingSphere document, v5.1.0

Rule Operation

More details please see concentrate rule examples.

Notice

1. Currently, DROP DATABASE will only remove the logical distributed database, notthe
user s actual database;

2. DROP TABLE will delete all logical fragmented tables and actual tables in the database;

3. CREATE DATABASE will only create a logical distributed database, so users need to
create actual databases in advance.

Sharding
Resource Operation

- Configure data source information

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,

DB=ds_1,

USER=root,
PASSWORD=root

)5

ADD RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,

DB=ds_2,

USER=root,
PASSWORD=root

)5

Rule Operation

+ Create sharding rule

CREATE SHARDING TABLE RULE t_order(

RESOURCES (ds_0,ds_1),

SHARDING_COLUMN=order_1id,

TYPE (NAME=hash_mod,PROPERTIES ("sharding-count"=4)),
KEY_GENERATE_STRATEGY (COLUMN=order_id, TYPE (NAME=snowflake))
)

5.2. ShardingSphere-Proxy 199

Apache ShardingSphere document, v5.1.0

¢ Create sharding table

CREATE TABLE “t_order™ (
‘order_id® dint NOT NULL,
‘user_id® int NOT NULL,
‘status’ varchar(45) DEFAULT NULL,
PRIMARY KEY (' order_id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

« Drop sharding table

DROP TABLE t_order;

« Drop sharding rule

DROP SHARDING TABLE RULE t_order;

+ Drop resource

DROP RESOURCE ds_0, ds_1;

« Drop distributed database

DROP DATABASE foo_db;

readwrite_splitting

Resource Operation

ADD RESOURCE write_ds (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root

) ,read_ds (
HOST=127.0.0.1,
PORT=3307,
DB=ds_0,
USER=root,
PASSWORD=root

)3

5.2. ShardingSphere-Proxy 200

Apache ShardingSphere document, v5.1.0

Rule Operation

« Create readwrite_splitting rule

CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,

READ_RESOURCES (read_ds),

TYPE (NAME=random)

)3

« Alter readwrite_splitting rule

ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,

READ_RESOURCES (read_ds),

TYPE (NAME=random,PROPERTIES (read_weight='2:0"))

)3

 Drop readwrite_splitting rule

DROP READWRITE_SPLITTING RULE group_0;

» Drop resource

DROP RESOURCE write_ds,read_ds;

« Drop distributed database

DROP DATABASE readwrite_splitting_db;

Encrypt

Resource Operation

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root

)3

5.2. ShardingSphere-Proxy 201

Apache ShardingSphere document, v5.1.0

Rule Operation

« Create encrypt rule

CREATE ENCRYPT RULE t_encrypt (
COLUMNS (
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE (NAME=AES,PROPERTIES (
'aes-key-value'="'123456abc'))),
(NAME=order_id,PLAIN=order_plain,CIPHER =order_cipher,TYPE(NAME=RC4,
PROPERTIES('rc4-key-value'='123456abc')))

D) g

« Create encrypt table

CREATE TABLE ‘t_encrypt’ (
“id® 9nt(11) NOT NULL,
‘user_id® varchar(45) DEFAULT NULL,
‘order_id"® varchar(45) DEFAULT NULL,
PRIMARY KEY ('4d’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

« Alter encrypt rule

ALTER ENCRYPT RULE t_encrypt (
COLUMNS (
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE (NAME=AES,PROPERTIES (
'aes-key-value'="'123456abc'))),
))5

« Drop encrypt rule

DROP ENCRYPT RULE t_encrypt;

» Drop resource

DROP RESOURCE ds_0;

« Drop distributed database

DROP DATABASE encrypt_db;

5.2. ShardingSphere-Proxy 202

Apache ShardingSphere document, v5.1.0

DB Discovery

Resource Operation

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root

) ,RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root

) ,RESOURCE ds_2 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root

)5

Rule Operation

+ Create DB discovery rule

CREATE DB_DISCOVERY RULE ha_group_0 (

RESOURCES (ds_0, ds_1),

TYPE (NAME=mgr ,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT (PROPERTIES ('keep-alive-cron'='0/5 * x * x 2'))
)3

« Alter DB discovery rule

ALTER DB_DISCOVERY RULE ha_group_0 (

RESOURCES (ds_0, ds_1, ds_2),

TYPE (NAME=mgr ,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT (PROPERTIES('keep-alive-cron'='0/5 * x * x 2'))
)3

+ Drop db_discovery rule

DROP DB_DISCOVERY RULE ha_group_0;

« Drop db_discovery type

5.2. ShardingSphere-Proxy 203

Apache ShardingSphere document, v5.1.0

DROP DB_DISCOVERY TYPE ha_group_0_mgr;

« Drop db_discovery heartbeat

DROP DB_DISCOVERY HEARTBEAT ha_group_0_heartbeat;

* Drop resource

DROP RESOURCE ds_0,ds_1,ds_2;

« Drop distributed database

DROP DATABASE discovery_db;

Shadow

Resource Operation

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root
),ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root
),ds_2 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root

)3

5.2. ShardingSphere-Proxy

204

Apache ShardingSphere document, v5.1.0

Rule Operation

« Create shadow rule

CREATE SHADOW RULE group_0(

SOURCE=ds_0,

SHADOW=ds_1,

t_order((simple_note_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES('"foo"="bar'"))),
(TYPE (NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"="user_id", "regex
"='[11")))),

t_order_item((TYPE (NAME=SIMPLE_HINT, PROPERTIES("foo"="bar")))));

« Alter shadow rule

ALTER SHADOW RULE group_0(

SOURCE=ds_0,

SHADOW=ds_2,

t_order_item((TYPE (NAME=SIMPLE_HINT, PROPERTIES("foo"="bar")))));

« Drop shadow rule

DROP SHADOW RULE group_0;

* Drop resource

DROP RESOURCE ds_0,ds_1,ds_2;

+ Drop distributed database

DROP DATABASE foo_db;

5.3 ShardingSphere-Sidecar

5.3.1 Introduction

ShardingSphere-Sidecar (TODO) defines itself as a cloud native database agent of the Kubernetes envi-
ronment, in charge of all the access to the database in the form of sidecar.

It provides a mesh layer interacting with the database, we call this as Database Mesh.

5.3. ShardingSphere-Sidecar 205

Apache ShardingSphere document, v5.1.0

..

Pod €

) Service Mesh Sidecar J
L Sharding-Sidecar

Pod A Pod B Pod D

Service Mesh Sidecar

—_—
L Sharding-Sidecar
i

Data Panel

Control Panel

Registry Center

Sharding-Proxy

[

}F MySQL/PostgreSQL Cli

I
S

Sharding-Console MySQL/PostgreSQL 6UT J

5.3.2 Comparison

ShardingSphere-JDBC | Shardin gSphere-Proxy | Sharding$S phere-Sidecar
Database Any My SQL/PostgreSQL | MySQL
Connections Count Cost | High Low High
Supported Languages Java Only Any Any
Performance Low loss Relatively High loss Low loss
De centralization Yes No Yes
Static Entry No Yes No

The advantage of ShardingSphere-Sidecar lies in its cloud native support for Kubernetes and Mesos.

5.4 ShardingSphere-Scaling

5.4.1 Introduction

ShardingSphere-Scaling is a common solution for migrating data to ShardingSphere or scaling data in
Apache ShardingSphere since 4.1.0, current state is Experimental version.

5.4. ShardingSphere-Scaling 206

Apache ShardingSphere document, v5.1.0

5.4.2 Build

Build&Deployment

1. Execute the following command to compile and generate the ShardingSphere-Proxy binary pack-
age:

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true

-Djacoco.skip=true -DskipITs -DskipTests -Prelease

The binary packages: - /shardingsphere-distribution/shardingsphere-proxy-
distribution/target/apache-shardingsphere-${latest.release.version}-shardingsphere-proxy-bin.tar.gz

Or get binary package from download page.

Scaling is an experimental feature, if scaling job fail, you could try nightly version, click here

to download nightly build.

2. Unzip the proxy distribution package, modify the configuration file conf/config-sharding.
yaml. Please refer to proxy startup manual for more details.

3. Modify the configuration file conf/server.yaml. Please refer to Mode Configuration for more
details. Type of mode must be Cluster for now, please start the registry center before running

proxy.

Configuration Example:

mode:
type: Cluster
repository:
type: ZooKeeper
props:
namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeTolLiveSeconds: 60
maxRetries: 3
operationTimeoutMilliseconds: 500
overwrite: false

4. Enable scaling
Way 1. Modify scalingName and scaling configuration in conf/config-sharding.yaml.

Configuration Items Explanation:

rules:
- !SHARDING

dgnored configuration

5.4. ShardingSphere-Scaling 207

https://shardingsphere.apache.org/document/current/en/downloads/
https://github.com/apache/shardingsphere#nightly-builds
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/mode/

Apache ShardingSphere document, v5.1.0

scalingName: # Enabled scaling action config name
scaling:
<scaling-action-config-name> (+):
input: # Data read configuration. If it's not configured, then part of its
configuration will take effect.
workerThread: # Worker thread pool size for inventory data ingestion from
source. If it's not configured, then use system default value.
batchSize: # Maximum records count of a DML select operation. If it's not
configured, then use system default value.
rateLimiter: # Rate limit algorithm. If it's not configured, then system
will skip rate limit.
type: # Algorithm type. Options: QPS
props: # Algorithm properties
gps: # QPS property. Available for types: QPS
output: # Data write configuration. If it's not configured, then part of 1its
configuration will take effect.
workerThread: # Worker thread pool size for data importing to target. If it
's not configured, then use system default value.
batchSize: # Maximum records count of a DML insert/delete/update operation.
If it's not configured, then use system default value.
rateLimiter: # Rate limit algorithm. If it's not configured, then system
will skip rate limit.
type: # Algorithm type. Options: TPS
props: # Algorithm properties
tps: # TPS property. Available for types: TPS
streamChannel: # Algorithm of channel that connect producer and consumer,
used for 1input and output. If it's not configured, then system will use MEMORY type
type: # Algorithm type. Options: MEMORY
props: # Algorithm properties
block-queue-size: # Property: data channel block queue size. Available
for types: MEMORY
completionDetector: # Completion detect algorithm. If it's not configured,
then system won't continue to do next steps automatically.
type: # Algorithm type. Options: IDLE
props: # Algorithm properties
incremental-task-idle-minute-threshold: # If incremental tasks is didle
more than so much minutes, then it could be considered as almost completed.
Available for types: IDLE
dataConsistencyChecker: # Data consistency check algorithm. If [dit's not
configured, then system will skip this step.
type: # Algorithm type. Options: DATA_MATCH, CRC32_MATCH
props: # Algorithm properties
chunk-size: # Maximum records count of a query operation for check

Configuration Example:

rules:
- ISHARDING

5.4. ShardingSphere-Scaling 208

Apache ShardingSphere document, v5.1.0

tdgnored configuration

scalingName: default_scaling
scaling:
default_scaling:
input:
workerThread: 40
batchSize: 1000

rateLimiter:

type: QPS
props:
qps: 50
output:

workerThread: 40
batchSize: 1000
rateLimiter:
type: TPS
props:
tps: 2000
streamChannel:
type: MEMORY
props:
block-queue-size: 10000
completionDetector:
type: IDLE
props:
incremental-task-idle-minute-threshold: 30
dataConsistencyChecker:
type: DATA_MATCH
props:
chunk-size: 1000

You could customize completionDetector, dataConsistencyChecker algorithm by implement-

ing SPI. Current implementation could be referenced, please refer to Dev Manual#Scaling for more
details.

Way 2: Configure scaling by DistSQL

Create scaling configuration example:

CREATE SHARDING SCALING RULE default_scaling (
INPUT(

WORKER_THREAD=40,

BATCH_SIZE=1000,

RATE_LIMITER(TYPE (NAME=QPS, PROPERTIES("qps"=50)))

)s
OUTPUT(

WORKER_THREAD=40,
BATCH_SIZE=1000,

5.4. ShardingSphere-Scaling 209

https://shardingsphere.apache.org/document/current/en/dev-manual/scaling/

Apache ShardingSphere document, v5.1.0

RATE_LIMITER(TYPE(NAME=TPS, PROPERTIES("tps'"=2000)))
)5
STREAM_CHANNEL (TYPE (NAME=MEMORY, PROPERTIES("block-queue-size"=10000))),
COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-minute-
threshold"=3))),
DATA_CONSISTENCY_CHECKER(TYPE (NAME=DATA_MATCH, PROPERTIES('"chunk-size'"=1000)))

s

Please refer to RDL#Sharding for more details.

5. Start up ShardingSphere-Proxy:

sh bin/start.sh

6. Check proxy log logs/stdout. log:

[INFO] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy start

success

It means proxy start up successfully.

Shutdown

sh bin/stop.sh

5.4.3 Manual
Manual

Environment

JAVA, JDK 1.8+.

The migration scene we support:

Source Target

MySQL(5.1.15 ~ 5.7.x)

MySQL(5.1.15 ~ 5.7.x)

PostgreSQL(9.4 ~)

PostgreSQL(9.4 ~)

openGauss(2.1.0)

openGauss(2.1.0)

Attention:

If the backend database is in following table, please download JDBC driver jar and putitinto ${shard-

ingsphere-proxy}/1lib directory.

5.4. ShardingSphere-Scaling

210

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/

Apache ShardingSphere document, v5.1.0

RDBMS| JDBC driver

Reference

MySQL “mysql-co nnector-java-5.1.47.jar

< https://repol.maven.org/m | Con-

aven2/mysql/mysql-connect or-java/5.1.47/mysql-conn

ector-java- | nector/J

5.1.47.jar>"__ Versions
open- | opengauss-jd bc-2.0.1-compatibility.ja r
Gauss
Supported features:

Feature MySQL PostgreSQL openGauss
Inventory migration Supported | Supported Supported
Incremental migration Supported | Supported Supported
Create table automatically Supported | Unsupported | Supported
DATA_MATCH data consistency check | Supported | Supported Supported
CRC32_MATCH data consistency check | Supported | Unsupported | Unsupported

Attention:

For RDBMS which Create table automatically featureis not supported, we need to create shard-

ing tables manually.

Privileges

MySQL

1. Enable binlog

Configuration Example of MySQL 5.7 my . cnf:

[mysqld]

server-id=1
log-bin=mysql-bin
binlog-format=row
binlog-row-image=full

max_connections=600

Execute the following SQL to confirm whether binlog is turned on or not:

show variables like '%log_bin%';

show variables like '%binlog%';

As shown below, it means binlog has been turned on:

5.4. ShardingSphere-Scaling

211

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/2.0.1-compatibility/opengauss-jdbc-2.0.1-compatibility.jar

Apache ShardingSphere document, v5.1.0

log_bin	ON
binlog_format	ROW
binlog_row_image	FULL
oo o +

2. Privileges of account that scaling use should include Replication privileges.

Execute the following SQL to confirm whether the user has migration permission or not:

SHOW GRANTS 'user';

Result Example:

PostgreSQL

1. Enable test_decoding feature.
2. Adjust WAL configuration

Configuration Example of postgresql.conf:

wal_level = logical
max_replication_slots = 10

Please refer to Write Ahead Log and Replication for more details.

DistSQL API for auto mode

Preview current sharding rule

Example:

preview select count(l) from t_order;

Response:

mysql> preview select count(l) from t_order;

Fmm Fmm - +

| data_source_name | sql |

Fomm e o +

| ds_o | select count(l) from t_order_0 |

5.4. ShardingSphere-Scaling 212

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html

Apache ShardingSphere document, v5.1.0

ds_o	select count(l) from t_order_1
ds_1	select count(1l) from t_order_0
ds_1	select count(l) from t_order_1
i e oo +

4 rows in set (0.00 sec)

Start scaling job

1. Add new data source resources
Please refer to RDL#Data Source for more details.
Create database on underlying RDBMS first, it will be used in following DistSQL.

Example:

ADD RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_2?serverTimezone=UTC&useSSL=false",
USER=root,

PASSWORD=root,
PROPERTIES ("maximumPoolSize"=10,"idleTimeout"="30000")

), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_3?serverTimezone=UTC&useSSL=false",
USER=root,

PASSWORD=root,
PROPERTIES ("maximumPoolSize"=10,"idleTimeout"="30000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_4?serverTimezone=UTC&useSSL=false",
USER=root,

PASSWORD=root,
PROPERTIES ("maximumPoolSize"=10,"idleTimeout"="30000")

)3

2. Alter all sharding table rule
Currently, scaling job could only be emitted by executing ALTER SHARDING TABLE RULE DistSQL.
Please refer to RDL#Sharding for more details.

SHARDING TABLE RULE support two types: TableRule and AutoTableRule. Following is a com-

parison of the two sharding rule types:

Type | Au- TableRule

toTableRule
Def- | Auto ‘User-Defined Sharding Algorithm < https://shardingsphere.ap
ini- | Sharding ache.org/document/current /en/features/sharding/con
tion | Algorithm | cept/sharding/#user-defin ed-sharding-algorithm>"__

5.4. ShardingSphere-Scaling 213

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#auto-sharding-algorithm
https://shardingsphere.apache.org/document/current/en/features/sharding/concept/sharding/#auto-sharding-algorithm

Apache ShardingSphere document, v5.1.0

Meaning of fields in DistSQL is the same as YAML configuration, please refer to YAML Configura-
tion#Sharding for more details.

Example of alter AutoTableRule:

ALTER SHARDING TABLE RULE t_order (

RESOURCES (ds_2, ds_3, ds_4),

SHARDING_COLUMN=order_id,

TYPE (NAME=hash_mod,PROPERTIES ("sharding-count"=6)),
KEY_GENERATE_STRATEGY (COLUMN=order_id, TYPE (NAME=snowflake))

)3

RESOURCES is altered from (ds_0, ds_1) to (ds_2, ds_3, ds_4), and sharding-count is
altered from 4 to 6, it will emit scaling job.

Uncompleted example of alter TableRule:

ALTER SHARDING ALGORITHM database_inline (
TYPE (NAME=INLINE,PROPERTIES("algorithm-expression"="ds_${user_id % 3 + 2}"))

)5

ALTER SHARDING TABLE RULE t_order (

DATANODES ("ds_${2..4}.t_order_${0..1}"),

DATABASE_STRATEGY (TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),

TABLE_STRATEGY (TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=t_order_
inline),

KEY_GENERATE_STRATEGY (COLUMN=order_id, TYPE (NAME=snowflake))

), t_order_item (

DATANODES ("ds_${2..4}.t_order_item_${0..1}"),

DATABASE_STRATEGY (TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),

TABLE_STRATEGY (TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=t_order_
item_inline),

KEY_GENERATE_STRATEGY (COLUMN=order_item_id,TYPE(NAME=snowflake))

)

algorithm-expression of database_inline is alerted from ds_S${user_id % 2} to
ds_${user_id % 3 + 2}, and DATANODES of t_order is alerted from ds_${0..1}.
t_order_${0..1}tods_${2..4}.t_order_${0..1}, it will emit scaling job.

Currently, ALTER SHARDING ALGORITHM will take effect immediately, but table rule will not, it might
cause inserting data into source side failure, so alter sharding table rule to AutoTableRule is recom-
mended for now.

5.4. ShardingSphere-Scaling 214

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/

Apache ShardingSphere document, v5.1.0

List scaling jobs

Please refer to RAL#Scaling for more details.

Example:

show scaling list;

Response:

mysql> show scaling list;

e o o o R
———————————————— B et e P e

| did | tables | sharding_total_count | active |
create_time | stop_time |

Fom oo o tomm————— +————-
———————————————— o4

| 659853312085983232 | t_order_item, t_order | 2 | false |
2021-10-26 20:21:31 | 2021-10-26 20:24:01 |

| 660152090995195904 | t_order_item, t_order | 2 | false |
2021-10-27 16:08:43 | 2021-10-27 16:11:00 |

e it Fom o Fo—————— t————=
———————————————— o4

2 rows in set (0.04 sec)

Get scaling progress

Example:

show scaling status {jobId};

Response:

mysql> show scaling status 660152090995195904;

R o ———— o ——— o o
———————— +
| item | data_source | status inventory_finished_percentage | incremental_idle_
minutes |
t——— Fom e domm o o
———————— +
| o | ds_1 | FINISHED | 100 | 2834

I
| 1 | ds_0 | FINISHED | 100 | 2834

|
o Fom o o o
———————— +

2 rows in set (0.00 sec)

5.4. ShardingSphere-Scaling 215

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling

Apache ShardingSphere document, v5.1.0

Current scaling job is finished, new sharding rule should take effect, and not if scaling job is failed.

status values:

CUTE_INCREMENTAL_TASK_FAILLURE

Value Description

PREPARING preparing

RUNNING running

EXECUTE_INVENTORY_TASK inventory task running

EXE- incremental task running

CUTE_INCREMENTAL_TASK

ALMOST_FINISHED almost finished

FINISHED finished (The whole process is completed, and the new rules
have been taken effect)

PREPARING_FAILURE preparation failed

E XE- | inventory task failed

CUTE_INVENTORY_TASK_FAILURE

EXE incremental task failed

If status fails, you can check the log of proxy to view the error stack and analyze the problem.

Preview new sharding rule

Example:

preview select count(l) from t_order;

Response:

mysql> preview select count(l) from t_order;
= o +
| data_source_name | sql |

Fom o +

select count(l) from t_order_0 |

| |

ds_2	select count(l) from t_order_1
ds_3	select count(l) from t_order_0
ds_3	select count(l) from t_order_1
ds_4	select count(l) from t_order_0
ds_4	select count(l) from t_order_1
Fom o +

6 rows in set (0.01 sec)

5.4. ShardingSphere-Scaling

216

Apache ShardingSphere document, v5.1.0

Other DistSQL

Please refer to RAL#Scaling for more details.

DistSQL API for manual mode

Data consistency check and switch configuration could be emitted manually. Please refer to
RAL#Scaling for more details.

Attention: It’ s still under development.

5.4. ShardingSphere-Scaling 217

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling
https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-proxy/distsql/syntax/ral/#scaling

Dev Manual

Apache ShardingSphere provides dozens of SPI based extensions. it is very convenient to customize the

functions for developers.

This chapter lists all SPI extensions of Apache ShardingSphere. If there is no special requirement, users

can use the built-in implementation provided by Apache ShardingSphere; advanced users can refer to

the interfaces for customized implementation.

Apache ShardingSphere community welcomes developers to feed back their implementations to the

open-source community, so that more users can benefit from it.

6.1 Mode

6.1.1 StandalonePersistRepository

SPI Name

Description

StandalonePersistRepository

Standalone mode Configuration persistence

Implementation Class | Description

FileRepository File persistence

6.1.2 ClusterPersistRepository

SPI Name

Description

ClusterPersistRepository | Registry center repository

Implementation Class

Description

CuratorZookeeperRepository | ZooKeeper registry center repository

EtcdRepository

Etcd registry center repository

218

https://github.com/apache/shardingsphere/pulls

Apache ShardingSphere document, v5.1.0

6.1.3 GovernanceWatcher

SPI Name

Description

GovernanceWatcher

Governance watcher

Implementation Class

Description

StorageNodeStateChangedWatcher

Storage node changed watcher

ComputeNodeStateChangedWatcher

Compute node changed watcher

PropertiesChangedWatcher

Properties changed watcher

PrivilegeNodeChangedWatcher

Privilege changed watcher

GlobalRuleChangedWatcher

Global rule changed watcher

MetaDataChangedWatcher

Meta data changed watcher

6.2 Configuration

6.2.1 RuleBuilder

SPI Name

Description

RuleBuilder

Used to convert user configurations to rule objects

6.2. Configuration

219

Apache ShardingSphere document, v5.1.0

Implementation Class Description

AlgorithmPro videdRead- | Used to convert algorithm-based read-write separation user config-
writeSpl ittingRuleBuilder uration into read-write separation rule objects

AlgorithmPr ovided- | Used to convert algorithm-based database discovery user configu-
DatabaseDis coveryRule- | ration into database discovery rule objects

Builder

Al gorithmProvidedSh ard- | Used to convert algorithm-based sharding user configuration into

ingRuleBuilder

sharding rule objects

A lgorithmProvidedE ncryp-
tRuleBuilder

Used to convert algorithm-based encryption user configuration
into encryption rule objects

AlgorithmProvided Shad- | Used to convert algorithm-based shadow database user configura-
owRuleBuilder tion into shadow database rule objects

ReadwriteSpl ittingRule- | Used to convert read-write separation user configuration into read-
Builder write separation rule objects

DatabaseDis coveryRule- | Used to convert database discovery user configuration into
Builder database discovery rule objects

Singl eTableRuleBuilder

Used to convert single-table user configuration into a single-table
rule objects

Aut horityRuleBuilder Used to convert permission user configuration into permission rule
objects

Sh ardingRuleBuilder Used to convert sharding user configuration into sharding rule ob-
jects

E ncryptRuleBuilder Used to convert encrypted user configuration into encryption rule
objects

ShadowRuleBuilder Used to convert shadow database user configuration into shadow

database rule objects

Trans actionRuleBuilder

Used to convert transaction user configuration into transaction

rule objects

SQL ParserRuleBuilder

Used to convert SQL parser user configuration into SQL parser rule

objects

6.2.2 YamlRuleConfigurationSwapper

SPI Name

Description

YamlRul eConfigurationSwap-

per

Used to convert YAML configuration to standard user configura-

tion

6.2. Configuration

220

Apache ShardingSphere document, v5.1.0

Implementation Class

Description

ReadwriteSplittingRul eAlgorithm-
ProviderCon figurationYamlSwap-
per

Used to convert algorithm-based read-write separation con-
figuration into read-write separation standard configuration

DatabaseDiscoveryRul eAlgorithm-
ProviderCon figurationYamlSwap-
per

Used to convert algorithm-based database discovery configu-
ration into database discovery standard configuration

ShardingRul

Con figurationYamlSwapper

eAlgorithmProvider-

Used to convert algorithm-based sharding configuration into

sharding standard configuration

EncryptRul eAlgorithmProvider-

Con figurationYamlSwapper

Used to convert algorithm-based encryption configuration
into encryption standard configuration

ShadowRul eAlgorithmProviderCon
figurationYamlISwapper

Used to convert algorithm-based shadow database configura-
tion into shadow database standard configuration

Read writeSplittingRuleCon figura-
tionYamlSwapper

Used to convert the YAML configuration of read-write separa-
tion into the standard configuration of read-write separation

Dat abaseDiscoveryRuleCon figura-

Used to convert the YAML configuration of database discov-

tionYamlSwapper ery into the standard configuration of database discovery
AuthorityRuleCon figurationYaml- | Used to convert the YAML configuration of permission rules
Swapper into standard configuration of permission rules
ShardingRuleCon figurationYaml- | Used to convert the YAML configuration of the shard into the
Swapper standard configuration of the shard
EncryptRuleCon figurationYaml- | Used to convert encrypted YAML configuration into en-
Swapper crypted standard configuration
ShadowRuleCon figurationYaml- | Used to convert the YAML configuration of the shadow
Swapper database into the standard configuration of the shadow
database
TransactionRuleCon figura- | Used to convert the YAML configuration of the transaction
tionYamlSwapper into the standard configuration of the transaction
SingleTableRuleCon figura- | Used to convert the YAML configuration of the single table
tionYamlSwapper into the standard configuration of the single table

SQLParserRuleCon figurationYaml-
Swapper

Used to convert the YAML configuration of the SQL parser
into the standard configuration of the SQL parser

6.2.3 ShardingSphereYamlConstruct

SPI Name

Description

ShardingSphereYamlConstruct

Used to convert customized objects and YAML to each other

Implementation Class

Description

NoneShardingStrate gyConfigurationYaml-

Construct

Used to convert non sharding strategy and YAML to
each other

6.2. Configuration

221

Apache ShardingSphere document, v5.1.0

6.3 Kernel

6.3.1 SQLRouter

SPI Name Description

SQLRouter | Used t:

0 process routing results

Implementation Class Description

Re adwriteSplittingSQLRouter | Used to

process read-write separation routing results

D atabaseDiscoverySQLRouter | Used to

process database discovery routing results

SingleTableSQLRouter Used to

process single-table routing results

ShardingSQLRouter Used to

process sharding routing results

ShadowSQLRouter Used to

process shadow database routing results

6.3.2 SQLRewriteContextDecorator

SPI Name

Description

SQLRewriteContextDecorator

Used to process SQL rewrite results

SPI Name

Description

Shardin gSQLRewriteContextDecorator

Used to process sharding SQL rewrite results

Encryp tSQLRewriteContextDecorator

Used to process encryption SQL rewrite results

6.3.3 SQLExecutionHook

SPI Name

Description

SQLExecutionHook

Hook of SQL execution

Implementation Class

Description

TransactionalSQLExecutionHook

Transaction hook of SQL execution

6.3. Kernel

222

Apache ShardingSphere document, v5.1.0

6.3.4 ResultProcessEngine

SPI Name Description

ResultProcessEngine | Used by merge engine to process result set

Implementation Class Description

Shard ingResultMergerEngine Used by merge engine to process sharding result set

Encrypt ResultDecoratorEngine | Used by merge engine to process encryption result set

6.3.5 StoragePrivilegeHandler

SPI Name Description

StoragePrivilegeHandler | Use SQL dialect to process privilege metadata

Implementation Class Description

Postg reSQLPrivilegeHandler | Use PostgreSQL dialect to process privilege metadata

SQLS erverPrivilegeHandler | Use SQLServer dialect to process privilege metadata

O raclePrivilegeHandler Use Oracle dialect to process privilege metadata

MySQLPrivilegeHandler Use MySQL dialect to process privilege metadata

6.4 DataSource

6.4.1 DatabaseType

SPI Name Description

DatabaseType | Supported database type

Implementation Class Description
SQL92DatabaseType SQL92 database type
MySQLDatabaseType MySQL database

MariaDBDatabaseType MariaDB database
PostgreSQLDatabaseType | PostgreSQL database

OracleDatabaseType Oracle database
SQLServerDatabaseType | SQLServer database
H2DatabaseType H2 database

OpenGaussDatabaseType | OpenGauss database

6.4. DataSource 223

Apache ShardingSphere document, v5.1.0

6.4.2 DialectTableMetaDatalLoader

SPI Name

Description

DialectTableMetaDatalL.oader

Use SQL dialect to load meta data rapidly

Implementation Class

Description

MySQLTableMetaDataLoader

Use MySQL dialect to load meta data

OracleTableMetaDataLoader

Use Oracle dialect to load meta data

PostgreSQLTableMetaDataLoader

Use PostgreSQL dialect to load meta data

SQLServerTableMetaDataLoader

Use SQLServer dialect to load meta data

H2TableMetaDataLoader

Use H2 dialect to load meta data

OpenGaussTableMetaDataLoader

Use OpenGauss dialect to load meta data

6.4.3 DataSourcePoolMetaData

SPI Name

Description

DataSourcePoolMetaData

Data source pool meta data

Implementation Class

Description

DBCPDataSourcePoolMetaData

DBCP data source pool meta data

HikariDataSourcePoolMetaData

Hikari data source pool meta data

TomcatDBCPDataSourcePoolMetaData

Tomcat DBCP data source pool meta data

6.4.4 DataSourcePoolDestroyer

SPI Name

Description

DataSourcePoolDestroyer

Data source pool destroyer

Implementation Class

Description

DefaultDataSourcePoolDestroyer

Default data source pool destroyer

HikariDataSourcePoolDestroyer

Hikari data source pool destroyer

6.4. DataSource

224

Apache ShardingSphere document, v5.1.0

6.5 SQL Parser

6.5.1 DatabaseTypedSQLParserFacade

SPI Name Description

DatabaseTypedSQLParserFacade | SQL parser facade for lexer and parser

Implementation Class Description
MySQLParserFacade SQL parser facade for MySQL
PostgreSQLParserFacade | SQL parser facade for PostgreSQL

SQLServerParserFacade | SQL parser facade for SQLServer

OracleParserFacade SQL parser facade for Oracle
SQL92ParserFacade SQL parser facade for SQL92

OpenGaussParserFacade | SQL parser facade for openGauss

6.5.2 SQLVisitorFacade

SPI Name Description
SQLVisitorFacade | SQL AST visitor facade

Implementation Class Description
MySQLS tatementSQLVisitorFacade SQL visitor of statement extracted facade for MySQL
PostgreSQLS tatementSQLVisitorFacade | SQL visitor of statement extracted facade for PostgreSQL

SQLServerS tatementSQLVisitorFacade | SQL visitor of statement extracted facade for SQLServer

OracleS tatementSQLVisitorFacade SQL visitor of statement extracted facade for Oracle
SQL92S tatementSQLVisitorFacade SQL visitor of statement extracted facade for SQL92
6.6 Proxy

6.6.1 DatabaseProtocolFrontendEngine

SPI Name Description
DatabaseProto colFron- | Regulate parse and adapter protocol of database access for
tendEngine ShardingSphere-Proxy

6.5. SQL Parser 225

Apache ShardingSphere document, v5.1.0

Implementation Class

Description

MySQLFrontendEngine

Base on MySQL database protocol

PostgreSQLFrontendEngine

Base on PostgreSQL database protocol

OpenGaussFrontendEngine

Base on openGauss database protocol

6.6.2 JDBCDriverURLRecognizer

SPI Name

Description

JDBCDriverURLRecognizer | Use JDBC driver to execute SQL

Implementation Class

Description

MySQLRecognizer Use MySQL JDBC driver to execute SQL
PostgreSQLRecognizer | Use PostgreSQL JDBC driver to execute SQL
OracleRecognizer Use Oracle JDBC driver to execute SQL
SQLServerRecognizer Use SQLServer JDBC driver to execute SQL
H2Recognizer Use H2 JDBC driver to execute SQL

P6SpyDriverRecognizer

Use P6Spy JDBC driver to execute SQL

OpenGaussRecognizer

Use openGauss JDBC driver to execute SQL

6.6.3 AuthorityProvideAlgorithm

SPI Name

Description

AuthorityProvideAlgorithm | User authority loading logic

Implementation Class

Type

Description

NativeAuthorityP
roviderAlgorithm (Dep-

recated)

NATIVE

Persist user authority defined in server.yaml into
the backend database. An admin user will be cre-
ated if not existed.

AllPrivilegesPer mit-
tedAuthorityP roviderAl-
gorithm

ALL_PR IVILEG
ES_PER MITTED

All privileges granted to user by default (No authen-
tication). Will not interact with the actual database.

Sch emaPrivileges-
Per mittedAuthorityP
roviderAlgorithm

SCH EMA_PR
IVILEG ES_PER
MITTED

Permissions configured through the attribute user-
schema-mappings.

6.6. Proxy

226

Apache ShardingSphere document, v5.1.0

6.7 Data Sharding

6.7.1 ShardingAlgorithm

6.7.2

6.7.3

SPI Name Description
ShardingAlgorithm | Sharding algorithm
Implementation Class Description

Boundar yBasedRangeShardingAlgorithm

Boundary based range sharding algorithm

Volum eBasedRangeShardingAlgorithm

Volume based range sharding algorithm

Co mplexInlineShardingAlgorithm

Complex inline sharding algorithm

A utolntervalShardingAlgorithm

Mutable interval sharding algorithm

ClassBasedShardingAlgorithm

Class based sharding algorithm

HintInlineShardingAlgorithm

Hint inline sharding algorithm

IntervalShardingAlgorithm

Fixed interval sharding algorithm

HashModShardingAlgorithm

Hash modulo sharding algorithm

InlineShardingAlgorithm

Inline sharding algorithm

ModShardingAlgorithm Modulo sharding algorithm
KeyGenerateAlgorithm
SPI Name Description
KeyGenerateAlgorithm | Key generate algorithm

Implementation Class

Description

SnowflakeKeyGenerateAlgorithm

Snowflake key generate algorithm

UUIDKeyGenerateAlgorithm

UUID key generate algorithm

DatetimeService

SPI Name

Description

DatetimeService

Use current time for routing

Implementation Class

Description

DatabaseDa tetimeServiceDelegate

Get the current time from the database for routing

SystemDatetimeService

Get the current time from the application system for routing

6.7. Data Sharding

227

Apache ShardingSphere document, v5.1.0

6.7.4 DatabaseSQLEntry

SPI Name Description

DatabaseSQLEntry | Database dialect for get current time

Implementation Class Description
MySQLDatabaseSQLEntry MySQL dialect for get current time
PostgreSQLDatabaseSQLEntry | PostgreSQL dialect for get current time

OracleDatabaseSQLEntry Oracle dialect for get current time

SQLServerDatabaseSQLEntry | SQLServer dialect for get current time

6.8 Readwrite-splitting

6.8.1 ReadwriteSplittingType

SPI 44 F% A
ReadwriteSplittingType | Readwrite-splitting type

CUAISEIIE TR
StaticReadwriteSplittingType Static readwrite-splitting type

DynamicReadwriteSplittingType | Dynamic readwrite-splitting type

6.8.2 ReplicaLoadBalanceAlgorithm

SPI Name Description

ReplicaLoadBalanceAlgorithm | Load balance algorithm of replica databases

Implementation Class Description

RoundRobinRe plicaloadBalanceAlgo- | Round robin load balance algorithm of replica

rithm databases
RandomRe plicaLoadBalanceAlgorithm Random load balance algorithm of replica databases
WeightRe plical.oadBalanceAlgorithm Weight load balance algorithm of replica databases

6.8. Readwrite-splitting 228

Apache ShardingSphere document, v5.1.0

6.9 HA

6.9.1 DatabaseDiscoveryType

SPI Name Description

DatabaseDiscoveryType | Database discovery type

Implementation Class Description
MGRDatabaseDiscoveryType Database discovery of MySQL’ s MGR

OpenGaussDatabaseDiscoveryType | Database discovery of openGauss

6.10 Distributed Transaction

6.10.1 ShardingSphereTransactionManager

SPIName Description

ShardingSphereTransactionManager | Distributed transaction manager

Implementation Class Description

X AShardingSphereTransactionManager XA distributed transaction manager

SeataA TShardingSphereTransactionManager | Seata distributed transaction manager

6.10.2 XATransactionManagerProvider

SPI Name Description

XATransactionManagerProvider | XA distributed transaction manager

Implementation Class Description

Atomikos TransactionManagerProvider XA distributed transaction manager based on Atomikos
NarayanaXA TransactionManager- | XA distributed transaction manager based on Narayana
Provider

BitronixXA TransactionManagerProvider | XA distributed transaction manager based on Bitronix

6.9. HA 229

Apache ShardingSphere document, v5.1.0

6.10.3 XADataSourceDefinition

SPI Name

Description

XADataSourceDefinition | Auto convert Non XA data source to XA data source

Implementation Class

Description

MySQLXAD ataSourceDefini-

tion

Auto convert Non XA MySQL data source to XA MySQL data source

MariaDBXAD ataSourceDefini-

tion

Auto convert Non XA MariaDB data source to XA MariaDB data

source

PostgreSQLXAD ataSourceDefi-

nition

Auto convert Non XA PostgreSQL data source to XA PostgreSQL
data source

OracleXAD ataSourceDefinition

Auto convert Non XA Oracle data source to XA Oracle data source

SQLServerXAD ataSourceDefi-

nition

Auto convert Non XA SQLServer data source to XA SQLServer data

source

H2XAD ataSourceDefinition

Auto convert Non XA H2 data source to XA H2 data source

6.10.4 DataSourcePropertyProvider

SPI Name

Description

DataS ourcePropertyProvider | Used to get standard properties of data source pool

Implementation Class

Description

HikariCPPropertyProvider | Used to get standard properties of HikariCP

6.11 Scaling

6.11.1 ScalingEntry

SPI Name Description

ScalingEntry | Entry of scaling

Implementation Class Description

MySQLScalingEntry MySQL entry of scaling

PostgreSQLScalingEntry | PostgreSQL entry of scaling

OpenGaussScalingEntry | openGauss entry of scaling

6.11. Scaling

230

Apache ShardingSphere document, v5.1.0

6.11.2 JobCompletionDetectAlgorithm

SPI Name Description

JobCompletionDetectAlgorithm | Job completion check algorithm

Implementation Class Description

IdleRuleAl teredJobCompletionDetectAlgorithm | Incremental task idle time based algorithm

6.11.3 DataConsistencyCheckAlgorithm

SPI Name Description

DataConsistencyCheckAlgo- Data consistency check algorithm on source and target database
rithm cluster

Implementation Class Description

DataMatchDataC onsistencyCheck- | Records content match implementation. Type name:

Algorithm DATA_MATCH.
CRC32MatchDataC onsistencyCheck- | Records CRC32 match implementation. Type name:
Algorithm CRC32_MATCH.

6.11.4 SingleTableDataCalculator

SPIName Description

S ingleTableDataCalculator | Single table data calculator for data consistency check

Implementation Class Description

DataMatchS ingleTableDataCalculator | Single table data calculator for DATA_MATCH data consis-
tency check

CRC32MatchMySQLS ingleTableData- | Single table data calculator for CRC32_MATCH data con-

Calculator sistency check

6.11. Scaling 231

Apache ShardingSphere document, v5.1.0

6.12 SQL Checker

6.12.1 SQLChecker

SPI Name Description
SQLChecker | SQL checker

Implementation Class | Description
AuthorityChecker Authority checker

6.13 Encryption

6.13.1 EncryptAlgorithm

SPIName Description

EncryptAlgorithm | Data encrypt algorithm

Implementation Class Description

MD5EncryptAlgorithm | MD5 data encrypt algorithm

AESEncryptAlgorithm | AES data encrypt algorithm

RC4EncryptAlgorithm | RC4 data encrypt algorithm

SM3EncryptAlgorithm | SM3 data encrypt algorithm

SM4EncryptAlgorithm | SM4 data encrypt algorithm

6.13.2 QueryAssistedEncryptAlgorithm

SPI Name Description

QueryAss istedEncryptAlgorithm | Data encrypt algorithm which include query assisted column

Implementation Class | Description

None

6.12. SQL Checker 232

Apache ShardingSphere document, v5.1.0

6.14 Shadow DB

6.14.1 ShadowAlgorithm

SPI Name Description

ShadowAlgorithm | shadow routing algorithm

Implementation Class

Description

ColumnValueMatchShadowAlgorithm

Column value match shadow algorithm

ColumnRegexMatchShadowAlgorithm

Column regex match shadow algorithm

SimpleHintShadowAlgorithm

Simple hint shadow algorithm

6.15 Observability

6.15.1 PluginDefinitionService

SPI Name Description
PluginDefinitionService | Agent plugin definition
Implementation Class Description

PrometheusPluginDefinitionService

Prometheus plugin

BaseLoggingPluginDefinitionService

Logging plugin

JaegerPluginDefinitionService

Jaeger plugin

OpenTelemetryTracingPluginDefinitionService | OpenTelemetryTracing plugin

OpenTracingPluginDefinitionService

OpenTracing plugin

ZipkinPluginDefinitionService

Zipkin plugin

6.15.2 PluginBootService

SPI Name Description

PluginBootService | Plugin startup service definition

6.14. Shadow DB

233

Apache ShardingSphere document, v5.1.0

Implementation Class

Description

PrometheusPluginBootService

Prometheus plugin startup class

BaseLoggingPluginBootService

Logging plugin startup class

JaegerTracingPluginBootService

Jaeger plugin startup class

OpenTelemetryTracingPluginBootService

OpenTelemetryTracing plugin startup class

OpenTracingPluginBootService

OpenTracing plugin startup class

ZipkinTracingPluginBootService

Zipkin plugin startup class

6.15. Observability

234

Reference

This chapter contains a section of technical implementation and test process with Apache Sharding-

Sphere, which provide the reference with users and developers.

7.1 Management

7.1.1 Data Structure in Registry Center

Under defined namespace, rules, props and metadata nodes persist in YAML, modifying nodes can

dynamically refresh configurations. nodes node persist the runtime node of database access object, to

distinguish different database access instances.

namespace

I—rules

|—props

F——metadata

F——${schema_l}

P F——dataSources
|— |—rules

P F——tables

S S e
S R
F——${schema_2}

P F——dataSources
|- I—rules

P F——tables

e

I—compute_nodes

|— |—onl‘i ne

F F F—proxy
P

i

)

_I__I__I__I__I__I_T_I__I__I__I__I__I__I__I__I__I_
>
o
o

L

H O H O H O H O H O H H

H H H H

Global rule configuration
Properties configuration
Metadata configuration
Schema name 1

Datasource configuration
Rule configuration

Table configuration

Schema name 2
Datasource configuration
Rule configuration

Table configuration

|— |— |—${your_'instance_‘ip_a}@${your_‘instance_port_x}
|— |— |—${your_'instance_‘ip_b}@${your_1’nstance_port_y}

235

Apache ShardingSphere document, v5.1.0

F—dbc

P F——${your_instance_ﬁp_a}@${your_instance_pid_x}

F F——${your_instance_ip_b}@${your_instance_pid_y}
attributies

F——${your_instance_ip_a}@${your_instance_port_x}

P F——status

F F—tabel
F——${your_instance_ip_b}@${your_instance_pid_y}
P F——status

I

storage_nodes

—disable

F F——${schema_l.ds_0}
f F——${schema_l.ds_l}
A

F——primary

P F——${schema_2.ds_0}
P F——${schema_2.ds_l}

[i B B B B B B R B R R B R B R B R B B R
_I__I__I__I__I__I__I__I_—I__I__I__I__I__I__I__I__I__I__I__I_

A ——

[rules

global rule configurations, including configure the username and password for ShardingSphere-Proxy.

- !AUTHORITY
users:

- root@%:root

- sharding@l27.0.0.1:sharding
provider:

type: ALL_PRIVILEGES_PERMITTED

[props

Properties configuration. Please refer to Configuration Manual for more details.

kernel-executor-size: 20
sql-show: true

7.1. Management 236

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/props/

Apache ShardingSphere document, v5.1.0

/metadata/${schemaName}/dataSources

A collection of multiple database connection pools, whose properties (e.g. DBCP, C3P0, Druid and

HikariCP) are configured by users themselves.

ds_0:

initializationFailTimeout: 1

validationTimeout: 5000

maxLifetime: 1800000

leakDetectionThreshold: @

minimumIdle: 1

password: root

idleTimeout: 60000

jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50

connectionTimeout: 30000

username: root

poolName: HikariPool-1

ds_1:

initializationFailTimeout: 1

validationTimeout: 5000

maxLifetime: 1800000

leakDetectionThreshold: @

minimumIdle: 1

password: root

idleTimeout: 60000

jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_1?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50

connectionTimeout: 30000

username: root

poolName: HikariPool-2

/metadata/${schemaName}/rules

Rule configurations, including sharding, readwrite-splitting, data encryption, shadow DB configura-

tions.

- ISHARDING

XXX

- !READWRITE_SPLITTING

XXX

- 'ENCRYPT

XXX

7.1. Management

237

Apache ShardingSphere document, v5.1.0

/metadata/${schemaName}/tables

Use separate node storage for each table, dynamic modification of metadata content is not supported

currently.
name: t_order # Table name
columns: # Columns

id: # Column name

caseSensitive: false
dataType: 0
generated: false
name: -1id
primaryKey: trues
order_did:
caseSensitive: false
dataType: 0
generated: false
name: order_1id
primaryKey: false
indexs: # Index
t_user_order_id_index: # Index name
name: t_user_order_id_index

[nodes/compute_nodes

It includes running instance information of database access object, with sub-nodes as the identifiers
of currently running instance, which consist of IP and PORT. Those identifiers are temporary nodes,
which are registered when instances are on-line and cleared when instances are off-line. The registry
center monitors the change of those nodes to govern the database access of running instances and other
things.

[nodes/storage_nodes

It is able to orchestrate replica database, delete or disable data dynamically.

7.2 Sharding

The major sharding processes of all the three ShardingSphere products are identical. According to
whether query optimization is performed, they can be divided into standard kernel process and feder-
ation executor engine process. The standard kernel process consists of SQL Parse => SQL Route
=> SQL Rewrite => SQL Execute => Result Merge, which is used to process SQL execution
in standard sharding scenarios. The federation executor engine process consists of SQL Parse =>
Logical Plan Optimize => Physical Plan Optimize => Plan Execute => Standard
Kernel Process. The federation executor engine perform logical plan optimization and physical

7.2. Sharding 238

Apache ShardingSphere document, v5.1.0

plan optimization. In the optimization execution phase, it relies on the standard kernel process to
route, rewrite, execute, and merge the optimized logical SQL.

g

)

%/’/ ’%;

7 , %
7 7 A

7.2.1 SQL Parsing

It is divided into lexical parsing and syntactic parsing. The lexical parser will split SQL into inseparable
words, and then the syntactic parser will analyze SQL and extract the parsing context, which can include
tables, options, ordering items, grouping items, aggregation functions, pagination information, query
conditions and placeholders that may be revised.

7.2.2 SQL Route

It is the sharding strategy that matches users’ configurations according to the parsing context and the

route path can be generated. It supports sharding route and broadcast route currently.

7.2.3 SQL Rewrite

It rewrites SQL as statement that can be rightly executed in the real database, and can be divided into

correctness rewrite and optimization rewrite.

7.2. Sharding 239

Apache ShardingSphere document, v5.1.0

7.2.4 SQL Execution

Through multi-thread executor, it executes asynchronously.

7.2.5 Result Merger

It merges multiple execution result sets to output through unified JDBC interface. Result merger in-

cludes methods as stream merger, memory merger and addition merger using decorator merger.

7.2.6 Query Optimization

Supported by federation executor engine(under development), optimization is performed on complex
query such as join query and subquery. It also supports distributed query across multiple database
instances. It uses relational algebra internally to optimize query plan, and then get query result through
the best query plan.

7.2.7 Parse Engine

Compared to other programming languages, SQL is relatively simple, but it is still a complete set of
programming language, so there is no essential difference between parsing SQL grammar and parsing
other languages (Java, C and Go, etc.).

Abstract Syntax Tree

The parsing process can be divided into lexical parsing and syntactic parsing. Lexical parser is used to
divide SQL into indivisible atomic signs, i.e., Token. According to the dictionary provided by different
database dialect, it is categorized into keyword, expression, literal value and operator. SQL is then
converted into abstract syntax tree by syntactic parser.

For example, the following SQL:

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

Its parsing AST (Abstract Syntax Tree) is this:

7.2. Sharding 240

Apache ShardingSphere document, v5.1.0

:r Root T
| —

J,

SELECT

TABLES WHERE CONDITIONS

|7 i.d T I m;il AND

To better understand, the Token of keywords in abstract syntax tree is shown in green; that of variables

is shown in red; what’ s to be further divided is shown in grey.

At last, through traversing the abstract syntax tree, the context needed by sharding is extracted and the
place that may need to be rewritten is also marked out. Parsing context for the use of sharding includes
select items, table information, sharding conditions, auto-increment primary key information, Order
By information, Group By information, and pagination information (Limit, Rownum and Top). One-
time SQL parsing process is irreversible, each Token is parsed according to the original order of SQL
in a high performance. Considering similarities and differences between SQL of all kinds of database

dialect, SQL dialect dictionaries of different types of databases are provided in the parsing module.

SQL Parser

History

Asthe core of database sharding and table sharding, SQL parser takes the performance and compatibil-
ity as its most important index. ShardingSphere SQL parser has undergone the upgrade and iteration
of 3 generations of products.

To pursue good performance and quick achievement, the first generation of SQL parser uses Dru-id
before 1.4.x version. As tested in practice, its performance exceeds other parsers a lot.

The second generation of SQL parsing engine begins from 1.5.x version, ShardingSphere has adopted
fully self-developed parsing engine ever since. Due to different purposes, ShardingSphere does not
need to transform SQL into a totally abstract syntax tree or traverse twice through visitor. Using half

7.2. Sharding 241

Apache ShardingSphere document, v5.1.0

parsing method, it only extracts the context required by data sharding, so the performance and com-
patibility of SQL parsing is further improved.

The third generation of SQL parsing engine begins from 3.0.x version. ShardingSphere tries to adopts
ANTLR as a generator for the SQL parsing engine, and uses Visit to obtain SQL Statement from AST.
Starting from version 5.0.x, the architecture of the parsing engine has been refactored. At the same
time, it is convenient to directly obtain the parsing results of the same SQL to improve parsing effi-
ciency by putting the AST obtained from the first parsing into the cache. Therefore, we recommend that
users adopt PreparedStatement this SQL pre-compilation method to improve performance. Cur-
rently, users can also use ShardingSphere’ s SQL parsing engine independently to obtain AST and SQL
Statements for a variety of mainstream relational databases. In the future, the SQL parsing engine will
continue to provide powerful functions such as SQL formatting and SQL templating.

Features

« Independent SQL parsing engine
« The syntax rules can be easily expanded and modified (using ANTLR)

+ Support multiple dialects

DB Status
MySQL supported
PostgreSQL | supported

SQLServer | supported

Oracle supported
SQL92 supported

openGauss | supported

 SQL format (developing)

+ SQL parameterize (developing)

APl Usage

Maven config

<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-sql-parser-engine</artifactId>
<version>${project.version}</version>
</dependency>
// According to the needs, introduce the parsing module of the specified dialect
(take MySQL as an example), you can add all the supported dialects, or just what
you need
<dependency>
<groupId>org.apache.shardingsphere</groupIld>
<artifactId>shardingsphere-sql-parser-mysql</artifactId>

7.2. Sharding 242

Apache ShardingSphere document, v5.1.0

<version>${project.version}</version>

</dependency>

demo:

* Get AST

[**

* databaseType type:String values: MySQL, Oracle, PostgreSQL, SQL92, SQLServer,
openGauss

* sql type:String SQL to be parsed

* useCache type:boolean whether use cache

* @return parse context

*/

ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache)

* GET SQLStatement

[**

* databaseType type:String values: MySQL, Oracle, PostgreSQL, SQL92, SQLServer,
openGauss

* useCache type:boolean whether use cache

* @return SQLStatement

*/

ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "STATEMENT
")s

SQLStatement sqlStatement = sqlVisitorEngine.visit(parseContext);

+ SQL Format

[**

* databaseType type:String values MySQL

* useCache type:boolean whether use cache

* @return String

x/

ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "FORMAT",
new Properties());
String formatedSql = sqlVisitorEngine.visit(parseContext);

example:

7.2. Sharding 243

Apache ShardingSphere document, v5.1.0

sql

formatedSql

select a+1 as b, name n from tablel join ta-
ble2 where id=1 and name= ‘lu’ ;

SELECT a + 1 AS b, name nFROM tablel JOIN ta-
ble2WHERE id=1 andname= ‘lu’

)

select id, name, age, sex, ss, yy from tablel

SELECT id , name, age, sex , ss, yy FROM

where id=1; tablelWHERE id=1;
select id, name, age, count(*) as n, (selectid, | SELECT id , name , age , COUNT(*)
name, age, sex from table2 where id=2) as | AS n, (SELECT id
sid, yyyy from tablel where id=1; , nhame , age , sex
FROM ta-

ble2 WHERE
id = 2) AS

sid, yyyy FROM tablelWHERE id=1;

select id, name, age, sex, ss, yy from tablel

SELECT id , name, age, sex , ss, yy FROM

where id=1 and name=1 and a=1 and b=2 and | tablelWHERE id=1 and name =

¢=4 and d=3; 1 anda=1 and b =2 and ¢
=4 and d = 3;

ALTER TABLE t_order ADD column4 | ALTER TABLE t_order ADD col-

DATE, ADD column5 DATETIME, engine | umn4 DATE, ADD column5 DATE-

ss max_rows 10,min_rows 2, ADD columné6 | TIME, ENGINE Ss MAX_ROWS

TIMESTAMP, ADD column?7 TIME; 10, MIN_ROWS 2, ADD columné6
TIMESTAMP, ADD column?7 TIME

CREATE TABLE IF NOT EX-
ISTS runoob_tbl" " (runoob_-d
INT UNSIGNED AUTO_ INCRE-
MENT,runoob_title VARCHAR(100)
NOT NULL,runoob_author VARCHAR(40)
NOT NULL,runoob_test NATIONAL CH
AR(40),submission_date DATE,PRIMARY
KEY (runoob_1id))ENGINE=InnoDB DE-

FAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS runoob_tbl
INT UNSIGNED
runoob_title VAR-

runoob_author

(runoob_1id
AUTO_INCREMENT,
CHAR(100) NOT NULL,
VARCHAR(40) NOT NULL,
NATIONAL CHAR(40),
DATE, PRIMARY KEY (runoob_id)) EN-
GINE = InnoDB DEFAULT CHARSET = utf8;

runoob_test
submission_date

INSERT INTO
user_id, status, creation_date) values (1, 1,
2017-08-08), (2, 2,
2017-08-08") ON DUPLICATE KEY UPDATE

t_order_item(order_id,

Ce b Ce b
insert , insert ,

INSERT INTO t_order_item (order_id , user_id , sta-
tus, creation_date)VALUES
2017-08-08’), (2,2, ‘insert’ , ‘2017-08-08
YON DUPLICATE KEY UPDATE status = ‘init’ ;

(1,1, ‘insert’ ,

b

status= ‘init’ ;

INSERT INTO t_order SET order_id | INSERT INTO t_order SET order_id =
= 1, wuser.id = 1, status = conv | 1, user_id = 1, status = CON-
ert(to_base64(aes_encrypt(l, ‘key’)) | VERT(to_base64(aes_encrypt(l , ‘key)) USING

USING utf8) ON DUPLICATE KEY UPDATE
status = VALUES(status);

utf8)ON DUPLICATE KEY UPDATE status = VAL-
UES(status);

INSERT INTO t_order (order_id, user_id, sta-
tus) SELECT order_id, user_id, status FROM
t_order WHERE order_id =1;

INSERT INTO t_order (order_id , user_id , sta-
tus) SELECT order_id , user_id , status FROM

t_orderWHERE order_id = 1;

7.2. Sharding

244

Apache ShardingSphere document, v5.1.0

7.2.8 Route Engine

It refers to the sharding strategy that matches databases and tables according to the parsing context and
generates route path. SQL with sharding keys can be divided into single-sharding route (equal mark as
the operator of sharding key), multiple-sharding route (IN as the operator of sharding key) and range
sharding route (BETWEEN as the operator of sharding key). SQL without sharding key adopts broadcast

route.

Sharding strategies can usually be set in the database or by users. Strategies built in the database are
relatively simple and can generally be divided into last number modulo, hash, range, tag, time and so
on. More flexible, sharding strategies set by users can be customized according to their needs. Together
with automatic data migration, database middle layer can automatically shard and balance the data
without users paying attention to sharding strategies, and thereby the distributed database can have
the elastic scaling-out ability. In ShardingSphere’ s roadmap, elastic scaling-out ability will start from

4.x version.

Sharding Route

It is used in the situation to route according to the sharding key, and can be sub-divided into 3 types,

direct route, standard route and Cartesian product route.

Direct Route

The conditions for direct route are relatively strict. It requires to shard through Hint (use HintAPI to
appoint the route to databases and tables directly). On the premise of having database sharding but
not table sharding, SQL parsing and the following result merging can be avoided. Therefore, with the
highest compatibility, it can execute any SQL in complex situations, including sub-queries, self-defined
functions. Direct route can also be used in the situation where sharding keys are not in SQL. For exam-

ple, set sharding key as 3.

hintManager.setDatabaseShardingValue(3);

If the routing algorithm is value % 2, when alogical database t_order corresponds to two physical
databasest_order_0 and t_order_1, the SQL will be executed on t_order_1 after routing. The

following is a sample code using the API.

String sql = "SELECT * FROM t_order";
try (
HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {
hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {
while (rs.next()) {
/...

7.2. Sharding 245

Apache ShardingSphere document, v5.1.0

Standard Route

Standard route is ShardingSphere’ s most recommended sharding method. Its application range is the
SQL that does not include joint query or only includes joint query between binding tables. When the
sharding operator is equal mark, the route result will fall into a single database (table); when sharding
operators are BETWEEN or IN, the route result will not necessarily fall into the only database (table). So
one logic SQL can finally be split into multiple real SQL to execute. For example, if sharding is according
to the odd number or even number of order _id, a single table query SQL is as the following:

SELECT * FROM t_order WHERE order_id IN (1, 2);

The route result will be:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

The complexity and performance of the joint query are comparable with those of single-table query.
For instance, if a joint query SQL that contains binding tables is as this:

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_
id IN (1, 2);

Then, the route result will be:

SELECT * FROM t_order_0 o JOIN t_order_item_0O i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);

It can be seen that, the number of divided SQL is the same as the number of single tables.

Cartesian Route

Cartesian route has the most complex situation, it cannot locate sharding rules according to the binding
table relationship, so the joint query between non-binding tables needs to be split into Cartesian product
combination to execute. If SQL in the last case is not configured with binding table relationship, the

route result will be:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0O i ON o.order_id=1i.order_id WHERE

7.2. Sharding 246

Apache ShardingSphere document, v5.1.0

order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=1i.order_id WHERE
order_id IN (1, 2);

Cartesian product route has a relatively low performance, so it should be careful to use.

Broadcast Route

For SQL without sharding key, broadcast route is used. According to SQL types, it can be divided into
five types, schema & table route, database schema route, database instance route, unicast route and

ignore route.

Schema & Table Route

Schema & table route is used to deal with all the operations of physical tables related to its logic table,
including DQL and DML without sharding key and DDL, etc. For example.

SELECT * FROM t_order WHERE good_prority IN (1, 10);

It will traverse all the tables in all the databases, match the logical table and the physical table name

one by one and execute them if succeeded. After routing, they are:

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

Database Schema Route

Database schema route is used to deal with database operations, including the SET database manage-
ment order used to set the database and transaction control statement as TCL. In this case, all physical
databases matched with the name are traversed according to logical database name, and the command
is executed in the physical database. For example:

SET autocommit=0;

If this command is executed in t_order, t_order will have 2 physical databases. And it will actually
be executed in both t_order_0 and t_order_1.

7.2. Sharding 247

Apache ShardingSphere document, v5.1.0

Database Instance Route

Database instance route is used in DCL operation, whose authorization statement aims at database
instances. No matter how many schemas are included in one instance, each one of them can only be

executed once. For example:

CREATE USER customer@l27.0.0.1 identified BY '123';

This command will be executed in all the physical database instances to ensure customer users have

access to each instance.

Unicast Route

Unicast route is used in the scenario of acquiring the information from some certain physical table. It
only requires to acquire data from any physical table in any database. For example:

DESCRIBE t_order;

The descriptions of the two physical tables, t_order_0 and t_order_1 of t_order have the same structure,
so this command is executed once on any physical table.

Ignore Route

Ignore route is used to block the operation of SQL to the database. For example:

USE order_db;

This command will not be executed in physical database. Because ShardingSphere uses logic Schema,

there is no need to send the Schema shift order to the database.

The overall structure of route engine is as the following:

7.2. Sharding 248

Apache ShardingSphere document, v5.1.0

Hint

> Direct

With sharding key With Binding Tables
Sharding Route Standard

Without Binding Tables

— — . Cartesian

Route Engine
g N SET for DAL & TCL

L

Database Schemas

DQL & DML & DDL

Schemas & Tables

| bCL
Broadcast Route Database Instances

Without shading key

Query for DAL

Unicast

USE database

Ignore

7.2.9 Rewrite Engine

The SQL written by engineers facing logic databases and tables cannot be executed directly in actual
databases. SQL rewrite is used to rewrite logic SQL into rightly executable ones in actual databases,
including two parts, correctness rewrite and optimization rewrite.

Correctness Rewrite

In situation with sharding tables, it requires to rewrite logic table names in sharding settings into actual
table names acquired after routing. Database sharding does not require to rewrite table names. In

addition to that, there are also column derivation, pagination information revision and other content.

Identifier Rewrite

Identifiers that need to be rewritten include table name, index name and schema name. Table name
rewrite refers to the process to locate the position of logic tables in the original SQL and rewrite it as
the physical table. Table name rewrite is one typical situation that requires to parse SQL. From a most
plain case, if the logic SQL is as follow:

SELECT order_id FROM t_order WHERE order_-id=1;

If the SQL is configured with sharding key order_id=1, it will be routed to Sharding Table 1. Then, the
SQL after rewrite should be:

7.2. Sharding 249

Apache ShardingSphere document, v5.1.0

SELECT order_id FROM t_order_1 WHERE order_-id=1;

In this most simple kind of SQL, whether parsing SQL to abstract syntax tree seems unimportant, SQL
can be rewritten only by searching for and substituting characters. But in the following situation, it is
unable to rewrite SQL rightly merely by searching for and substituting characters:

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

The SQL rightly rewritten is supposed to be:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

Rather than:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

Because there may be similar characters besides the table name, the simple character substitute
method cannot be used to rewrite SQL. Here is another more complex SQL rewrite situation:

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order

XXX "3

The SQL above takes table name as the identifier of the field, so it should also be revised when SQL is

rewritten:

SELECT t_order_1l.order_id FROM t_order_1 WHERE t_order_1l.order_id=1 AND remarks='

t_order xxx';

But if there is another table name defined in SQL, it is not necessary to revise that, even though that
name is the same as the table name. For example:

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

SQL rewrite only requires to revise its table name:

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND

remarks=' t_order xxx';

Index name is another identifier that can be rewritten. In some databases (such as MySQL/SQLServer),
the index is created according to the table dimension, and its names in different tables can repeat.
In some other databases (such as PostgreSQL/Oracle), however, the index is created according to the
database dimension, index names in different tables are required to be one and the only.

In ShardingSphere, schema management method is similar to that of the table. It uses logic schema
to manage a set of data sources, so it requires to replace the logic schema written by users in SQL with
physical database schema.

ShardingSphere only supports to use schema in database management statements but not in DQL and

DML statements, for example:

7.2. Sharding 250

Apache ShardingSphere document, v5.1.0

SHOW COLUMNS FROM t_order FROM order_ds;

Schema rewrite refers to rewriting logic schema as a right and real schema found arbitrarily with unicast

route.

Column Derivation

Column derivation in query statements usually results from two situations. First, ShardingSphere needs
to acquire the corresponding data when merging results, but it is not returned through the query SQL.
This kind of situation aims mainly at GROUP BY and ORDER BY. Result merger requires sorting and
ranking according to items of GROUP BY and ORDER BYfield. But if sorting and ranking items are not
included in the original SQL, it should be rewritten. Look at the situation where the original SQL has

the information required by result merger:

SELECT order_id, user_id FROM t_order ORDER BY user_id;

Since user_id is used in ranking, the result merger needs the data able to acquire user_id. The SQL
above is able to acquire user_id data, so there is no need to add columns.

If the selected item does not contain the column required by result merger, it will need to add column,
as the following SQL:

SELECT order_id FROM t_order ORDER BY user_id;

Since the original SQL does not contain user_id needed by result merger, the SQL needs to be rewritten
by adding columns, and after that, it will be:

SELECT order_id, user_id AS ORDER_BY_DERIVED_O FROM t_order ORDER BY user_id;

What™ s to be mentioned, column derivation will only add the missing column rather than all of them;
the SQL that includes * in SELECT will also selectively add columns according to the meta-data infor-

mation of tables. Here is a relatively complex SQL column derivation case:

SELECT o.* FROM t_order o, t_order_item i WHERE o.order_id=1i.order_id ORDER BY

user_id, order_item_id;

Suppose only t_order_item table contains order_item_id column, according to the meta-data informa-
tion of tables, the user_id in sorting item exists in table t_order as merging result, but order_item_id
does not exist in t_order, so it needs to add columns. The SQL after that will be:

SELECT o.*, order_item_id AS ORDER_BY_DERIVED_O FROM t_order o, t_order_item i
WHERE o.order_id=1i.order_id ORDER BY user_id, order_item_id;

Another situation of column derivation is using AVG aggregation function. In distributed situations, it
is not right to calculate the average value with avgl + avg2 + avg3/ 3, and it should be rewritten as (sum1l
+sum?2 +sum3) / (countl + count2 + count3). This requires to rewrite the SQL that contains AVG as SUM

and COUNT and recalculate the average value in result merger. Such as the following SQL:

7.2. Sharding 251

Apache ShardingSphere document, v5.1.0

SELECT AVG(price) FROM t_order WHERE user_id=1;

Should be rewritten as:

SELECT COUNT(price) AS AVG_DERIVED_COUNT_O, SUM(price) AS AVG_DERIVED_SUM_@ FROM t_
order WHERE user_id=1;

Then it can calculate the right average value through result merger.

The last kind of column derivation is in SQL with INSERT. With database auto-increment key, there is
no need to fill in primary key field. But database auto-increment key cannot satisfy the requirement of
only one primary key being in the distributed situation. So ShardingSphere provides a distributed auto-
increment key generation strategy, enabling users to replace the current auto-increment key invisibly
with a distributed one without changing existing codes through column derivation. Distributed auto-
increment key generation strategy will be expounded in the following part, here we only explain the
content related to SQL rewrite. For example, if the primary key of t_order is order_id, and the original
SQL is:

INSERT INTO t_order (' fieldl', ‘field2') VALUES (10, 1);

It can be seen that the SQL above does not include an auto-increment key, which will be filled by the
database itself. After ShardingSphere set an auto-increment key, the SQL will be rewritten as:

INSERT INTO t_order (" fieldl®, "field2', order_id) VALUES (10, 1, XXXXX)};

Rewritten SQL will add auto-increment key name and its value generated automatically in the last part
of INSERT FIELD and INSERT VALUE. xxxxx in the SQL above stands for the latter one.

If INSERT SQL does not contain the column name of the table, ShardingSphere can also automatically
generate auto-increment key by comparing the number of parameter and column in the table meta-

information. For example, the original SQL is:

INSERT INTO t_order VALUES (10, 1);

The rewritten SQL only needs to add an auto-increment key in the column where the primary key is:

INSERT INTO t_order VALUES (xxxxx, 10, 1);

When auto-increment key derives column, if the user writes SQL with placeholder, he only needs to
rewrite parameter list but not SQL itself.

7.2. Sharding 252

Apache ShardingSphere document, v5.1.0

Pagination Revision

The scenarios of acquiring pagination data from multiple databases is different from that of one single
database. If every 10 pieces of data are taken as one page, the user wants to take the second page of
data. It is not right to take, acquire LIMIT 10, 10 under sharding situations, and take out the first 10

pieces of data according to sorting conditions after merging. For example, if the SQL is:

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

The following picture shows the pagination execution results without SQL rewrite.

score| _score_

+ 0 score t+ 1 score
100 95
90 85
30 75

Query Result

score score
T_score_0 T_score_1
S0 85
80 75
Merged Result

score
85
80

As shown in the picture, if you want to acquire the second and the third piece of data ordered by score
common in both tables, and they are supposed to be 95 and 90. Since the executed SQL can only acquire
the second and the third piece of data from each table, i.e., 90 and 80 from t_score_0, 85 and 75 from
t_score_1. When merging results, it can only merge from 90, 80, 85 and 75 already acquired, so the
right result cannot be acquired anyway.

The right way is to rewrite pagination conditions as LIMIT 0, 3, take out all the data from the first
two pages and combine sorting conditions to calculate the right data. The following picture shows the
execution of pagination results after SQL rewrite.

7.2. Sharding 253

Apache ShardingSphere document, v5.1.0

SELECT score FROM t score ORDER BY score DESC LIMIT O, 3

Query Result

score score

T_score_0 tT_score_1
100 95
90 85
80 75

Merged Result

score
95
20

The latter the offset position is, the lower the efficiency of using LIMIT pagination will be. There are
many ways to avoid using LIMIT as pagination method, such as constructing a secondary index to record
line record number and line offset amount, or using the tail ID of last pagination data as the pagination
method of conditions of the next query.

When revising pagination information, if the user uses placeholder method to write SQL, he only needs

to rewrite parameter list rather than SQL itself.

Batch Split

When using batch inserted SQL, if the inserted data crosses sharding, the user needs to rewrite SQL
to avoid writing excessive data into the database. The differences between insert operation and query
operation are: though the query sentence has used sharding keys that do not exist in current sharding,
they will not have any influence on data, but insert operation has to delete extra sharding keys. Take
the following SQL for example:

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, "xxx');

If the database is still divided into two parts according to odd and even number of order_id, this SQL
will be executed after its table name is revised. Then, both shards will be written with the same record.
Though only the data that satisfies sharding conditions can be taken out from query statement, it is not
reasonable for the schema to have excessive data. So the SQL should be rewritten as:

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

7.2. Sharding 254

Apache ShardingSphere document, v5.1.0

IN query is similar to batch insertion, but IN operation will not lead to wrong data query result. Through
rewriting IN query, the query performance can be further improved. Like the following SQL:

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

Is rewritten as:

SELECT * FROM t_order_0 WHERE order_id IN (2);
SELECT x* FROM t_order_1 WHERE order_id IN (1, 3);

The query performance will be further improved. For now, ShardingSphere has not realized this rewrite
strategy, so the current rewrite result is:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

Though the execution result of SQL is right, but it has not achieved the most optimized query efficiency.

Optimization Rewrite

Its purpose is to effectively improve the performance without influencing the correctness of the query.

It can be divided into single node optimization and stream merger optimization.

Single Node Optimization

It refers to the optimization that stops the SQL rewrite from the route to the single node. After acquiring
one route result, if it is routed to a single data node, result merging is unnecessary to be involved, so
there is no need for rewrites as derived column, pagination information and others. In particular, there
is no need to read from the first piece of information, which reduces the pressure for the database to a
large extent and saves meaningless consumption of the network bandwidth.

Stream Merger Optimization

It only adds sorting items and sorting orders identical with grouping items and ORDER BY to GROUP BY
SQL, and they are used to transfer memory merger to stream merger. In the result merger part, stream
merger and memory merger will be explained in detail.

The overall structure of rewrite engine is shown in the following picture.

7.2. Sharding 255

Apache ShardingSphere document, v5.1.0

— Table
4‘; Identifier i—'ﬂ Index
S]
I—D Schema
Correctness Rewrite = Order By Item
& Group By Item
Derived Column 1
I R Aggregation Item
[] Brfl —* Auto Increment
Rewrite Engine — Pagination
— = Batch Insert
e Batch Split i—
| S

—> IN Query

—* Single Node

————>| Optimization Rewrite |—-

— Streaming

7.2.10 Execute Engine

ShardingSphere adopts a set of automatic execution engine, responsible for sending the true SQL, which
has been routed and rewritten, to execute in the underlying data source safely and effectively. It does
not simply send the SQL through JDBC to directly execute in the underlying data source, or put execu-
tion requests directly to the thread pool to concurrently execute, but focuses more on the creation of
a balanced data source connection, the consumption generated by the memory usage, the maximum
utilization of the concurrency and other problems. The objective of the execution engine is to automat-
ically balance between the resource control and the execution efficiency.

Connection Mode

From the perspective of resource control, the connection number of the business side’ s visit of the
database should be limited. It can effectively prevent some certain business from occupying exces-
sive resource, exhausting database connection resources and influencing the normal use of other busi-
nesses. Especially when one database contains many tables, a logic SQL that does not contain any
sharding key will produce a large amount of physical SQLs that fall into different tables in one database.
If each physical SQL takes an independent connection, a query will undoubtedly take up excessive re-

sources.

From the perspective of execution efficiency, holding an independent database connection for each
sharding query can make effective use of multi-thread to improve execution efficiency. Opening an
independent thread for each database connection can parallelize I0 produced consumption. Holding

7.2. Sharding 256

Apache ShardingSphere document, v5.1.0

an independent database connection for each sharding query can also avoid loading the query result
to the memory too early. It is enough for independent database connections to maintain result set
quotation and cursor position, and move the cursor when acquiring corresponding data.

Merging result set by moving down its cursor is called stream merger. It does not require to load all
the query results to the memory. Thus, it is able to save memory resource effectively and reduce trash
recycle frequency. When it is not able to make sure each sharding query holds an independent database
connection, it requires to load all the current query results to the memory before reusing that database
connection to acquire the query result from the next sharding table. Therefore, though the stream
merger can be used, under this kind of circumstances, it will also degenerate to the memory merger.

The control and protection of database connection resources is one thing, adopting better merging
model to save the memory resources of middleware is another thing. How to deal with the relationship
between them is a problem that ShardingSphere execution engine should solve. To be accurate, if a
sharding SQL needs to operate 200 tables under some database case, should we choose to create 200
parallel connection executions or a serial connection execution? Or to say, how to choose between

efficiency and resource control?

Aiming at the above situation, ShardingSphere has provided a solution. It has put forward a Connection
Mode concept divided into two types, MEMORY_STRICTLY mode and CONNECTION_STRICTLY mode.

MEMORY_STRICTLY Mode

The prerequisite to use this mode is that ShardingSphere does not restrict the connection number of
one operation. If the actual executed SQL needs to operate 200 tables in some database instance, it will
create a new database connection for each table and deal with them concurrently through multi-thread
to maximize the execution efficiency. When the SQL is up to standard, it will choose stream merger in

priority to avoid memory overflow or frequent garbage recycle.

CONNECTION_STRICTLY Mode

The prerequisite to use this mode is that ShardingSphere strictly restricts the connection consumption
number of one operation. If the SQL to be executed needs to operate 200 tables in database instance,
it will create one database connection and operate them serially. If shards exist in different databases,
it will still be multi-thread operations for different databases, but with only one database connection
being created for each operation in each database. It can prevent the problem brought by excessive

occupation of database connection from one request. The mode chooses memory merger all the time.

The MEMORY_STRICTLY mode is applicable to OLAP operation and can increase the system capacity by
removing database connection restrictions. It is also applicable to OLTP operation, which usually has
sharding keys and can be routed to a single shard. So it is a wise choice to control database connection

strictly to make sure resources of online system databases can be used by more applications.

7.2. Sharding 257

Apache ShardingSphere document, v5.1.0

Automatic Execution Engine

ShardingSphere uses which mode at first is up to users’ setting and they can choose to use MEM-
ORY_STRICTLY mode or CONNECTION_STRICTLY mode according to their actual business scenarios.

The solution gives users the right to choose, requiring them to know the advantages and disadvantages
of both modes and make decision according to the actual business situations. No doubt, it is not the
best solution due to increasing users’ study cost and use cost.

This kind of dichotomy solution lacks flexible coping ability to switch between two modes with static
initialization. In practical situations, route results of each time may differ with different SQL and place-
holder indexes. It means some operations may need to use memory merger, while others are better to
use stream merger. Connection modes should not be set by users before initializing ShardingSphere,
but should be decided dynamically by the situation of SQL and placeholder indexes.

To reduce users’ use cost and solve the dynamic connection mode problem, ShardingSphere has ex-
tracted the thought of automatic execution engine in order to eliminate the connection mode con-
cept inside. Users do not need to know what are so called MEMORY_STRICTLY mode and CONNEC-
TION_STRICTLY mode, but let the execution engine to choose the best solution according to current

situations.

Automatic execution engine has narrowed the selection scale of connection mode to each SQL opera-
tion. Aiming at each SQL request, automatic execution engine will do real-time calculations and evalua-
tions according to its route result and execute the appropriate connection mode automatically to strike
the most optimized balance between resource control and efficiency. For automatic execution engine,
users only need to configure maxConnectionSizePerQuery, which represents the maximum con-
nection number allowed by each database for one query.

The execution engine can be divided into two phases: preparation and execution.

Preparation Phrase

As indicated by its name, this phrase is used to prepare the data to be executed. It can be divided into
two steps: result set grouping and unit creation.

Result set grouping is the key to realize the internal connection model concept. According to the config-
uration option of maxConnectionSizePerQuery, execution engine will choose an appropriate con-

nection mode combined with current route result.
Detailed steps are as follow:
1. Group SQL route results according to data source names.

2. Through the equation in the following picture, users can acquire the SQL route result group to be
executed by each database case within the maxConnectionSizePerQuery permission range
and calculate the most optimized connection mode of this request.

7.2. Sharding 258

Apache ShardingSphere document, v5.1.0

Route result for this data source

|

SQL count to be executed per SQL num to be executed per database

connection —
| maxConnectionSizePerQuery

1:Oor1 >11

B ' 0 T — User configuration
MEMORY_STRICTLY | | CONNECTION_STRICTLY |
L |

Within the range that maxConnectionSizePerQuery permits, when the request number that one con-
nection needs to execute is more than 1, meaning current database connection cannot hold the corre-
sponding data result set, it must uses memory merger. On the contrary, when it equals to 1, meaning
current database connection can hold the according data result set, it can use stream merger.

Each choice of connection mode aims at each physical database; that is to say, if it is routed to more
than one databases, the connection mode of each database may mix with each other and not be the

same in one query.

Users can use the route group result acquired from the last step to create the execution unit. When
the data source uses technologies, such as database connection pool, to control database connection
number, there is some chance for deadlock, if it has not dealt with concurrency properly. As multiple
requests waiting for each other to release database connection resources, it will generate hunger wait
and cause the crossing deadlock problem.

For example, suppose one query needs to acquire two database connections from a data source and
apply them in two table sharding queries routed to one database. It is possible that Query A has already
acquired a database connection from that data source and waits to acquire another connection; but in
the same time, Query B has also finished it and waits. If the maximum connection number that the
connection pool permits is 2, those two query requests will wait forever. The following picture has
illustrated the deadlock situation:

7.2. Sharding 259

Apache ShardingSphere document, v5.1.0

!7' — _
1 Query A Feal
L . 1 ~
Hold Connectionl .
\
Wait for Connection2
[}
1
[
1
— 1
[[
i
Cennectionl | /
— s— /
_ — _® Deadlock
| Connection2 "
| I 1
Woait for Connectionl
Hold Connection2
Query B I

To avoid the deadlock, ShardingSphere will go through synchronous processing when acquiring
database connection. When creating execution units, it acquires all the database connections that this
SQL requires for once with atomic method and reduces the possibility of acquiring only part of the re-
sources. Due to the high operation frequency, locking the connection each time when acquiring it can

decrease ShardingSphere’ s concurrency. Therefore, it has improved two aspects here:

1. Avoid the setting that locking only takes one database connection each time. Because under this
kind of circumstance, two requests waiting for each other will not happen, so there is no need
for locking. Most OLTP operations use sharding keys to route to the only data node, which will
make the system in a totally unlocked state, thereby improve the concurrency efficiency further.

In addition to routing to a single shard, readwrite-splitting also belongs to this category.

2. Only aim at MEMORY_STRICTLY mode to lock resources. When using CONNECTION_STRICTLY
mode, all the query result sets will release database connection resources after loading them to
the memory, so deadlock wait will not appear.

Execution Phrase

Applied in actually SQL execution, this phrase can be divided into two steps: group execution and
merger result generation.

Group execution can distribute execution unit groups generated in preparation phrase to the underly-
ing concurrency engine and send events according to each key steps during the execution process, such
as starting, successful and failed execution events. Execution engine only focuses on message send-
ing rather than subscribers of the event. Other ShardingSphere modules, such as distributed transac-

7.2. Sharding 260

Apache ShardingSphere document, v5.1.0

tions, invoked chain tracing and so on, will subscribe focusing events and do corresponding operations.
Through the connection mode acquired in preparation phrase, ShardingSphere will generate memory
merger result set or stream merger result set, and transfer it to the result merger engine for the next

step.

The overall structure of execution engine is shown as the following picture:

The number of SQL needed to
be executed in each connection

| Route Result 1
=Oorl »1 : 1

1
: | . .
Memory Strictly Connection Strictly| | Execution E"Q“"EJ

o
=
-\E Group ResultSet —» Get Connection —» Create Execution Unit
g |—-¢“ f
5 L Synchronized
: Size 1= 1 & Data Source |
3 Memory Strictly [————— |
w
(2]
2" l [
l
=0
ge Group Event Send | Geﬂer-afe_Quer'y Result H
8 = Execute | (Streaming||Memory) i
] $ L RS
) I
Transaction Listener | LOpenTmcing Listener |

7.2.11 Merger Engine

Result merger refers to merging multi-data result set acquired from all the data nodes as one result set

and returning it to the request end rightly.

In function, the result merger supported by ShardingSphere can be divided into five kinds, iteration,
order-by, group-by, pagination and aggregation, which are in composition relation rather than clash
relation. In structure, it can be divided into stream merger, memory merger and decorator merger,
among which, stream merger and memory merger clash with each other; decorator merger can be

further processed based on stream merger and memory merger.

Since the result set is returned from database line by line instead of being loaded to the memory all at
once, the most prior choice of merger method is to follow the database returned result set, for it is able

to reduce the memory consumption to a large extend.

Stream merger means, each time, the data acquired from the result set is able to return the single piece

of right data line by line.

It is the most suitable one for the method that the database returns original result set. Iteration, order-

7.2. Sharding 261

Apache ShardingSphere document, v5.1.0

by, and stream group-by belong to stream merger.

Memory merger needs to iterate all the data in the result set and store it in the memory first. after uni-
fied grouping, ordering, aggregation and other computations, it will pack it into data result set, which
is visited line by line, and return that result set.

Decorator merger merges and reinforces all the result sets function uniformly. Currently, decorator
merger has pagination merger and aggregation merger these two kinds.

Iteration Merger

As the simplest merger method, iteration merger only requires the combination of multiple data result
sets into a single-direction chain table. After iterating current data result sets in the chain table, it only

needs to move the element of chain table to the next position and iterate the next data result set.

Order-by Merger

Because there is ORDER BY statement in SQL, each data result has its own order. So it is enough only
to order data value that the result set cursor currently points to, which is equal to sequencing multiple
already ordered arrays, and therefore, order-by merger is the most suitable ordering algorithm in this

situation.

When merging order inquiries, ShardingSphere will compare current data values in each result set
(which is realized by Java Comparable interface) and put them into the priority queue. Each time when
acquiring the next piece of data, it only needs to move down the result set in the top end of the line,

renter the priority order according to the new cursor and relocate its own position.

Here is an instance to explain ShardingSphere’ s order-by merger. The following picture is an illus-
tration of ordering by the score. Data result sets returned by 3 tables are shown in the example and
each one of them has already been ordered according to the score, but there is no order between 3 data
result sets. Order the data value that the result set cursor currently points to in these 3 result sets. Then
put them into the priority queue. the data value of t_score_0 is the biggest, followed by that of t_score_2
and t_score_1 in sequence. Thus, the priority queue is ordered by the sequence of t_score_0, t_score_2
and t_score_1.

7.2. Sharding 262

Apache ShardingSphere document, v5.1.0

score score score
T _score 0 T _score_1 T_score_2

100 95 99

20 a5 a9

80 75 70

Priority Queue

T_score 0 T _score 2 T _score_1
=——x>100 =% =—"> %5

S0 89 85

80 70 75

This diagram illustrates how the order-by merger works when using next invocation. We can see from
the diagram that when using next invocation, t_score_0 at the first of the queue will be popped out.
After returning the data value currently pointed by the cursor (i.e., 100) to the client end, the cursor
will be moved down and t_score_0 will be put back to the queue.

While the priority queue will also be ordered according to the t_score_0 data value (90 here) pointed by
the cursor of current data result set. According to the current value, t_score_0 is at the last of the queue,
and in the second place of the queue formerly, the data result set of t_score_2, automatically moves to
the first place of the queue.

In the second next operation, t_score_2 in the first position is popped out of the queue. Its value pointed
by the cursor of the data result set is returned to the client end, with its cursor moved down to rejoin the
queue, and the following will be in the same way. If there is no data in the result set, it will not rejoin
the queue.

7.2. Sharding 263

Apache ShardingSphere document, v5.1.0

T_score 0 T _score_2 t_score_1
f— :Dl 00 :D 99 |:"> 95
90 89 85
80 70 I
next
T _score_2 T_score_1 t_secore 0
[—"395 100
89 85 =%
70 75 80
next
T _score_1 T _score 0 t score 2
95 100 99
85 =30 —p
75 80 70

It can be seen that, under the circumstance that data in each result set is ordered while result sets are
disordered, ShardingSphere does not need to upload all the data to the memory to order. In the order-
by merger method, each next operation only acquires the right piece of data each time, which saves the

memory consumption to a large extent.

On the other hand, the order-by merger has maintained the orderliness on horizontal axis and vertical
axis of the data result set. Naturally ordered, vertical axis refers to each data result set itself, which is
acquired by SQL with ORDER BY. Horizontal axis refers to the current value pointed by each data result
set, and its order needs to be maintained by the priority queue.Each time when the current cursor
moves down, it requires to put the result set in the priority order again, which means only the cursor

of the first data result set can be moved down.

Group-by Merger

With the most complicated situation, group-by merger can be divided into stream group-by merger
and memory group-by merger. Stream group-by merger requires SQL field and order item type (ASC
or DESC) to be the same with group-by item. Otherwise, its data accuracy can only be maintained by

memory merget.

For instance, if it is sharded by subject, table structure contains examinees’ name (to simplify, name
repetition is not taken into consideration) and score. The SQL used to acquire each examinee’ s total

score is as follow:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

7.2. Sharding 264

Apache ShardingSphere document, v5.1.0

When order-by item and group-by item are totally consistent, the data obtained is continuous. The data
to group are all stored in the data value that data result set cursor currently points to, stream group-by
merger can be used, as illustrated by the diagram:

T_score_java T_score_go T_score_pythen
name score name score name score
Tom 100 Jerry 95 John 99
Jerry 90 Tom 85 Mary 89
Mary 80 John 75 Tom 70

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name:

PricrityQueue

T_score_java T_score_go T_score_python
name score name score name score
Jerry 90 Jerry 95 John 99
Mary 80 John 75 Mary 89
Tom 100 Tom 85 Tom 70

The merging logic is similar to that of order-by merger. The following picture shows how stream group-
by merger works in next invocation.

7.2. Sharding 265

Apache ShardingSphere document, v5.1.0

T_score_java T_score_go T_score_python
name score name score name score
= >(Terry 20 = Terry 95 =" Tohn 99
Mary 80 John 75 Mary 89
Tom 100 Tom 85 Tom 70
get next
name score
Jerry 185
T_score_go T_score_python T_score_java
name score name score name score
Jerry 95 !—_:>.Tohn 99 Jerry 90
::> TJohn 75 Mary 89 = —_:> Mary 30
Tom 85 Tom 70 Tom 100
name score get next
Jerry 185
Tohn 174 T_score_java T_score_python T_score_go
name score name score name score
Jerry 90 John 99 Jerry 95
== Mary 80 =—=>{Mary 89 Tohn 75
Tom 100 Tom 70 = Tem 85

We can see from the picture, in the first next invocation, t_score_java in the first position, along with
other result set data also having the grouping value of “Jerry” , will be popped out of the queue. After
acquiring all the students’ scores with the name of “Jerry” , the accumulation operation will be pro-
ceeded. Hence, after the first next invocation is finished, the result set acquired is the sum of Jerry s
scores. In the same time, all the cursors in data result sets will be moved down to a different data value
nextto “Jerry” and rearranged according to current result set value. Thus, the data that contains the

second name “John” will be put at the beginning of the queue.

Stream group-by merger is different from order-by merger only in two points:
1. It will take out all the data with the same group item from multiple data result sets for once.
2. It does the aggregation calculation according to aggregation function type.

For the inconsistency between the group item and the order item, it requires to upload all the data to
the memory to group and aggregate, since the relevant data value needed to acquire group information
is not continuous, and stream merger is not able to use. For example, acquire each examinee’ s total
score through the following SQL and order them from the highest to the lowest:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

Then, stream merger is not able to use, for the data taken out from each result set is the same as the

original data of the diagram ordered by score in the upper half part structure.

When SQL only contains group-by statement, according to different database implementation, its se-
quencing order may not be the same as the group order. The lack of ordering statement indicates the

order is not important in this SQL. Therefore, through SQL optimization re-write, ShardingSphere can

7.2. Sharding 266

Apache ShardingSphere document, v5.1.0

automatically add the ordering item same as grouping item, converting it from the memory merger

that consumes memory to stream merger.

Aggregation Merger

Whether stream group-by merger or memory group-by merger processes the aggregation function in
the same way. Therefore, aggregation merger is an additional merging ability based on what have been
introduced above, i.e., the decorator mode. The aggregation function can be categorized into three
types, comparison, sum and average.

Comparison aggregation function refers to MAX and MIN. They need to compare all the result set data

and return its maximum or minimum value directly.
Sum aggregation function refers to SUM and COUNT. They need to sum up all the result set data.

Average aggregation function refers only to AVG. It must be calculated through SUM and COUNT of SQL

re-write, which has been mentioned in SQL re-write, so we will state no more here.

Pagination Merger

All the merger types above can be paginated. Pagination is the decorator added on other kinds of merg-
ers. ShardingSphere augments its ability to paginate the data result set through the decorator mode.
Pagination merger is responsible for filtering the data unnecessary to acquire.

ShardingSphere’ s pagination function can be misleading to users in that they may think it will take a
large amount of memory. In distributed scenarios, it can only guarantee the data accuracy by rewriting
LIMIT 10000000, 10 to LIMIT O, 10000010. Users can easily have the misconception that
ShardingSphere uploads a large amount of meaningless data to the memory and has the risk of memory
overflow. Actually, it can be known from the principle of stream merger, only memory group-by merger
will upload all the data to the memory. Generally speaking, however, SQL used for OLAP grouping, is
applied more frequently to massive calculation or small result generation rather than vast result data
generation. Except for memory group-by merger, other cases use stream merger to acquire data result
set. So ShardingSphere would skip unnecessary data through next method in result set, rather than

storing them in the memory.

What’ s to be noticed, pagination with LIMIT is not the best practice actually, because a large amount
of data still needs to be transmitted to ShardingSphere’ s memory space for ordering. LIMIT cannot
search for data by index, so paginating with ID is a better solution on the premise that the ID continuity
can be guaranteed. For example:

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY -1d;

Or search the next page through the ID of the last query result, for example:

SELECT * FROM t_order WHERE id > 10000000 LIMIT 10;

The overall structure of merger engine is shown in the following diagram:

7.2. Sharding 267

Apache ShardingSphere document, v5.1.0

Streaming Group By

Same group by
& order by items

Query Result ‘
(Streaming || Me.mcry)J

With
Pagination

Pagination

7.3 Transaction

7.3.1 Navigation

| Order by only Order By

With group by -
Group By

Memory Group By

Different group by
& order by items

Merger Result

Withoat Iteration

Order by & group by

'] Streamin Memo
(9 H_ ry)

Aggregation

aggregation

COUNTASUM

Accumulate

AVG BitXor MAXSMIN

Average BitXor Comparisen

This chapter mainly introduces the principles of the distributed transactions:

« 2PC transaction with XA

« BASE transaction with Seata

7.3. Transaction

268

Apache ShardingSphere document, v5.1.0

7.3.2 XA Transaction

XAShardingSphereTransactionManager is XA transaction manager of Apache ShardingSphere.
Its main responsibility is manage and adapt multiple data sources, and sent corresponding transactions

to concrete XA transaction manager.

Access Layer

ShardingSphere- ShardingSphere- ! hqrdlngSpherz

TOBC Proxy ‘ Tr'qnsac‘h?:\ Manage.r‘
config SPT
DataSource XA DataSource "_XA ShardingSphere
Pool Pool Transaction Manager
Ac‘l‘ual DafaSour‘ce
B]
wrap enlist | XA |

Connection ——> XA connection —% XA Resource ——» 4
Transaction Manager
]

B S

XA Connec‘hon Wrapper : JTA Transaction Manager

MySQL Oracle Atomikos L Bitronix

PostgreSQL SQLServer] quyann

Transaction Begin

When receiving set autoCommit=0 from client, XAShardingSphereTransactionManager will
use XA transaction managers to start overall XA transactions, which is marked by XID.

Execute actual sharding SQL

After XAShardingSphereTransactionManager register the corresponding XAResource to the cur-
rent XA transaction, transaction manager will send XAResource.start command to databases. After
databases received XAResource.end command, all SQL operator will mark as XA transaction.

For example:

XAResourcel.start ## execute in the enlist phase
statement.execute("sqll");
statement.execute("sql2");

XAResourcel.end ## execute in the commit phase

sql1 and sq12 in example will be marked as XA transaction.

7.3. Transaction 269

Apache ShardingSphere document, v5.1.0

Commit or Rollback

After XAShardingSphereTransactionManager receives the commit command in the access, it will
delegate it to the actual XA manager. It will collect all the registered XAResource in the thread, before
sending XAResource.end to mark the boundary for the XA transaction. Then it will send prepare
command one by one to collect votes from XAResource. If all the XAResource feedback is OK, it will
send commit command to finally finish it; If there is any No XAResource feedback, it will send roll-
back command to roll back. After sending the commit command, all XAResource exceptions will be

submitted again according to the recovery log to ensure the atomicity and high consistency.

For example:

XAResourcel.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResourcel.commit
XAResource2.commit

XAResourcel.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResourcel.rollback
XAResource2.rollback

7.3.3 Seata BASE transaction

When integrating Seata AT transaction, we need to integrate TM, RM and TC component into Shard-
ingSphere transaction manager. Seata have proxied DataSource interface in order to RPC with TC.
Similarly, Apache ShardingSphere faced to DataSource interface to aggregate data sources too. After
Seata DataSource encapsulation, it is easy to put Seata AT transaction into Apache ShardingSphere
sharding ecosystem.

7.3. Transaction 270

Apache ShardingSphere document, v5.1.0

Using Seata AT transaction in ShardingSphere Apache ShardingSphere
Transaction SPI impl

(e B -1 E
| SeataATAPL | !

Handle single/multiple logic SQL

Linit 2.begin 3.sharding 4.execute 5.commit/rollback

SeataATShardingSphere TransactionManager

. H Sharding |3 |
Proxy DS ETM begin B | :
i el il I | Rms

Wrap actual ds

Init Seata Engine

When an application containing ShardingSphereTransactionBaseSeataAT startup, the user-
configured DataSource will be wrapped into seata DataSourceProxy through seata. conf, then reg-
istered into RM.

Transaction Begin

TM controls the boundaries of global transactions. TM obtains the global transaction ID by sending Be-
gin instructions to TC. All branch transactions participate in the global transaction through this global
transaction ID. The context of the global transaction ID will be stored in the thread local variable.

Execute actual sharding SQL

Actual SQL in Seata global transaction will be intercepted to generate undo snapshots by RM and sends
participate instructions to TC to join global transaction. Since actual sharding SQLs executed in multi-
threads, global transaction context should transfer from main thread to child thread, which is exactly
the same as context transfer between services.

7.3. Transaction 271

Apache ShardingSphere document, v5.1.0

Commit or Rollback

When submitting a seata transaction, TM sends TC the commit and rollback instructions of the global
transaction. TC coordinates all branch transactions for commit and rollback according to the global

transaction ID.

7.4 Scaling

7.4.1 Principle Description
Consider about these challenges of ShardingSphere-Scaling, the solution is: Use two database clusters
temporarily, and switch after the scaling is completed.
Advantages:
1. No effect for origin data during scaling.
2. No risk for scaling failure.
3. No limited by sharding strategies.
Disadvantages:
1. Redundant servers during scaling.
2. All data needs to be moved.

ShardingSphere-Scaling will analyze the sharding rules and extract information like datasource and
data nodes. According the sharding rules, ShardingSphere-Scaling create a scaling job with 4 main

phases.
1. Preparing Phase.
2. Inventory Phase.
3. Incremental Phase.

4. Switching Phase.

7.4.2 Phase Description

Preparing Phase

ShardingSphere-Scaling will check the datasource connectivity and permissions, statistic the amount
of inventory data, record position of log, shard tasks based on amount of inventory data and the paral-

lelism set by the user.

7.4. Scaling 272

Apache ShardingSphere document, v5.1.0

Inventory Phase

Executing the Inventory data migration tasks sharded in preparing phase. ShardingSphere-Scaling uses
JDBC to query inventory data directly from data nodes and write to the new cluster using new rules.

Incremental Phase

The data in data nodes is still changing during the inventory phase, so ShardingSphere-Scaling need to
synchronize these incremental data to new data nodes. Different databases have different implemen-
tations, but generally implemented by change data capture function based on replication protocols or
WAL logs.

« MySQL: subscribe and parse binlog.
« PostgreSQL: official logic replication test_decoding.

These captured incremental data, Apache ShardingSphere also write to the new cluster using new rules.

Switching Phase

In this phase, there may be a temporary read only time, make the data in old data nodes static so that
the incremental phase complete fully. The read only time is range seconds to minutes, it depends on
the amount of data and the checking data. After finished, Apache ShardingSphere can switch the con-
figuration by register-center and config-center, make application use new sharding rule and new data

nodes.

7.5 Encryption

7.5.1 Process Details

Apache ShardingSphere can encrypt the plaintext by parsing and rewriting SQL according to the en-
cryption rule, and store the plaintext (optional) and ciphertext data to the database at the same time.
Queries data only extracts the ciphertext data from database and decrypts it, and finally returns the
plaintext to user. Apache ShardingSphere transparently process of data encryption, so that users do
not need to know to the implementation details of it, use encrypted data just like as regular data. In
addition, Apache ShardingSphere can provide a relatively complete set of solutions whether the online

business system has been encrypted or the new online business system uses the encryption function.

7.5. Encryption 273

https://www.postgresql.org/docs/9.4/test-decoding.html

Apache ShardingSphere document, v5.1.0

Overall Architecture

App
Business APP ; Business APP Encryption Rule
| 7 i o m|
Encrypt-JDBC Proxy
| S _ == = |

r Kernel

— _
JDBC Adaptor W\
_|

VS

SQ)L Parse J

J1

N

v

- —
SQL Rewrite

| IS

—
SGQL Execute W
L |

Encrypt module intercepts SQL initiated by user, analyzes and understands SQL behavior through the
SQL syntax parser. According to the encryption rules passed by the user, find out the fields that need
to be encrypted/decrypted and the encryptor/decryptor used to encrypt/decrypt the target fields, and
then interact with the underlying database. ShardingSphere will encrypt the plaintext requested by the
user and store it in the underlying database; and when the user queries, the ciphertext will be taken
out of the database for decryption and returned to the end user. ShardingSphere shields the encryption
of data, so that users do not need to perceive the process of parsing SQL, data encryption, and data

decryption, just like using ordinary data.

Encryption Rule

Before explaining the whole process in detail, we need to understand the encryption rules and configu-
ration, which is the basis of understanding the whole process. The encryption configuration is mainly
divided into four parts: data source configuration, encrypt algorithm configuration, encryption table

rule configuration, and query attribute configuration. The details are shown in the following figure:

7.5. Encryption 274

Apache ShardingSphere document, v5.1.0

Datasource
Config |

L |

Build-int
- —> AES/MD5
/RC4/SM3/5M4
Encrypter
| Config
L |
S Customized
S -
. Logical column
E”crzz:;i" Rule — logicColumn ——— (virtual column)
g Mandator
e 1 L S S—
. F Plaintext column
5| Eneryption — plainColumn — (true column) |
Table Config L Optional
— _

| Ciphertext eolumn
44 (+rue column)

| Mandatory

B

cipherColumn

. —
Query Attribute ‘
Cenfig J

[
Assisted query column

—— assistedQueryColumn —— (true column)
| Optional ‘
L_ |

—
| encrypted

—® column query

L True as default

query.with.ciph
er.column

Datasource Configuration: The configuration of DataSource.

Encrypt Algorithm Configuration: What kind of encryption strategy to use for encryption and decryp-
tion. Currently ShardingSphere has three built-in encryption/decryption strategies: AES, MD5, RC4.
Users can also implement a set of encryption/decryption algorithms by implementing the interface
provided by Apache ShardingSphere.

Encryption Table Configuration: Show the ShardingSphere data table which column is used to store
cipher column data (cipherColumn), which column is used to store plain text data (plainColumn), and

which column users want to use for SQL writing (logicColumn)

How to understand Which column do users want to use to write SQL (log-

icColumn)?

We can understand according to the meaning of Apache ShardingSphere. The ultimate goal
of Apache ShardingSphere is to shield the encryption of the underlying data, that is, we do
not want users to know how the data is encrypted/decrypted, how to store plaintext data in
plainColumn, and ciphertext data in cipherColumn. In other words, we do not even want
users to know the existence and use of plainColumn and cipherColumn. Therefore, we need
to provide users with a column in conceptual. This column can be separated from the real
column of the underlying database. It can be a real column in the database table or not, so
that the user can freely change the plainColumn and The column name of cipherColumn.
Or delete plainColumn and choose to never store plain text and only store cipher text. As
long as the user’ s SQL is written according to this logical column, and the correct mapping
relationship between logicColumn and plainColumn, cipherColumn is given in the encryp-

tion rule.

7.5. Encryption 275

Apache ShardingSphere document, v5.1.0

Why do you do this? The answer is at the end of the article, that is, to enable the online

services to seamlessly, transparently, and safely carry out data encryption migration.

Query Attribute configuration: When the plaintext data and ciphertext data are stored in the under-
lying database table at the same time, this attribute switch is used to decide whether to directly query
the plaintext data in the database table to return, or to query the ciphertext data and decrypt it through
Apache ShardingSphere to return.

Encryption Process

For example, if there is a table in the database called t_user, there are actually two fields pwd_plain
in this table, used to store plain text data, pwd_cipher, used to store cipher text data, and define logic-
Column as pwd. Then, when writing SQL, users should write to logicColumn, that is, INSERT INTO
t_user SET pwd = '123'. Apache ShardingSphere receives the SQL, and through the encryption
configuration provided by the user, finds that pwd is a logicColumn, so it decrypt the logical column
and its corresponding plaintext data. As can be seen that ** Apache ShardingSphere has carried out the
column-sensitive and data-sensitive mapping conversion of the logical column facing the user and the
plaintext and ciphertext columns facing the underlying database. As shown below:

Model Example
Application Application
Interaction Interaction
logicColumn : | wd
[|| [
ShardingSphere ‘: t_user
Mapping Mapping
h 4
!— plainColumn pwd_plain
cipherColumn pwd_cipher
Real Data Table +_user

This is also the core meaning of Apache ShardingSphere, which is to separate user SQL from the un-
derlying data table structure according to the encryption rules provided by the user, so that the SQL
writer by user no longer depends on the actual database table structure. The connection, mapping,
and conversion between the user and the underlying database are handled by Apache ShardingSphere.
Why should we do this? It is still the same : in order to enable the online business to seamlessly, trans-
parently and safely perform data encryption migration.

7.5. Encryption 276

Apache ShardingSphere document, v5.1.0

In order to make the reader more clearly understand the core processing flow of Apache Sharding-
Sphere, the following picture shows the processing flow and conversion logic when using Apache Shard-
ingSphere to add, delete, modify and check, as shown in the following figure.

Insert-use logical column Update-use logical column
O
Send SQL </>| sendsaL
j INSERT INTO t_user(pwd) values("123") UUPDATE t_user SET pwd = "456" WHERE id =1
“ Parse SQL N Parse SQL
. Rewrite SQL <— Encryption rule . Rewrite SQL <———— Eneryption rule
~tl Send SQL ~t Send SQL
l INSERT INTO t_user(pwd plain, pwd cipher) values("123","xxx") UUPDATE t_user SET pwd plain= "456", pwd_cipher=" xxx" WHERE id =1
Execute SQL Execute SQL
Query-use plaintext Column Query-use ciphertext Column
[eee) e)
Send SQL Send SQL
1 SELECT pwd FROM t_user WHERE pwd = "123"; l SELECT pwd FROM t_user WHERE pwd = "123";
“ Parse SQL “ Parse SQL
» Rewrite SQL +~— Query.with.cipher. column=false D Rewrite SQL *+— Query.with.cipher. column=false
—~’ Send SQL —~ Send SQL
l SELECT pwd_plain FROM t_user WHERE pwd_plain ="123"; J SELECT pwd_cipher FROM t_user WHERE pwd_cipher ="xxx";
Execute SQL Execute SQL

7.5.2 Detailed Solution

After understanding the Apache ShardingSphere encryption process, you can combine the encryption
configuration and encryption process with the actual scenario. All design and development are to solve
the problems encountered in business scenarios. So for the business scenario requirements mentioned

earlier, how should ShardingSphere be used to achieve business requirements?

New Business

Business scenario analysis: The newly launched business is relatively simple because everything starts
from scratch and there is no historical data cleaning problem.

Solution description: After selecting the appropriate encrypt algorithm, such as AES, you only need to
configure the logical column (write SQL for users) and the ciphertext column (the data table stores the
ciphertext data). It can also be different **. The recommended configuration is as follows (shown in
Yaml format):

- ENCRYPT
encryptors:

aes_encryptor:

7.5. Encryption 277

Apache ShardingSphere document, v5.1.0

type: AES
props:
aes-key-value: 123456abc
tables:
t_user:
columns:
pwd:
cipherColumn: pwd

encryptorName: aes_encryptor

With this configuration, Apache ShardingSphere only needs to convertlogicColumn and cipherColumn.
The underlying data table does not store plain text, only cipher text. This is also a requirement of the
security audit part. If users want to store plain text and cipher text together in the database, they just

need to add plainColumn configuration. The overall processing flow is shown below:

New online service

el K_
v
;_' —— ‘
Insert Plaintext Insert Ciphertext 1
Plaintext Data | Data Encryption ‘ Ciphertext Data |
|
— 1
T Return Plaintext Return Ciphertext

Data Decryption

Online Business Transformation

Business scenario analysis: As the business is already running online, there must be a large amount of
plain text historical data stored in the database. The current challenges are how to enable historical
data to be encrypted and cleaned, how to enable incremental data to be encrypted, and how to allow

businesses to seamlessly and transparently migrate between the old and new data systems.

Solution description: Before providing a solution, let’ s brainstorm: First, if the old business needs to

be desensitized, it must have stored very important and sensitive information. This information has a

7.5. Encryption 278

Apache ShardingSphere document, v5.1.0

high gold content and the business is relatively important. If it is broken, the whole team KPI is over.
Therefore, it is impossible to suspend business immediately, prohibit writing of new data, encrypt and
clean all historical data with an encrypt algorithm, and then deploy the previously reconstructed code
online, so that it can encrypt and decrypt online and incremental data. Such a simple and rough way,
based on historical experience, will definitely not work.

Then another relatively safe approach is to rebuild a pre-release environment exactly like the pro-
duction environment, and then encrypt the Inventory plaintext data of the production environment
through the relevant migration and washing tools and store it in the pre-release environment. The
Increment data is encrypted by tools such as MySQL replica query and the business party = s own
development, encrypted and stored in the database of the pre-release environment, and then the refac-
tored code can be deployed to the pre-release environment. In this way, the production environment
is a set of environment for modified/queries with plain text as the core; the pre-release environment
is a set of encrypt/decrypt queries modified with ciphertext as the core. After comparing for a pe-
riod of time, the production flow can be cut into the pre-release environment at night. This solution is
relatively safe and reliable, but it takes more time, manpower, capital, and costs. It mainly includes:
pre-release environment construction, production code rectification, and related auxiliary tool devel-

opment. Unless there is no way to go, business developers generally go from getting started to giving
up.

Business developers must hope: reduce the burden of capital costs, do not modify the business code,
and be able to safely and smoothly migrate the system. So, the encryption function module of Shard-
ingSphere was born. It can be divided into three steps:

1. Before system migration

Assuming that the system needs to encrypt the pwd field of t_user, the business side uses Apache Shard-
ingSphere to replace the standardized JDBC interface, which basically requires no additional modifi-
cation (we also provide Spring Boot Starter, Spring Namespace, YAML and other access methods to
achieve different services demand). In addition, demonstrate a set of encryption configuration rules,

as follows:

- ENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes-key-value: 123456abc
tables:
t_user:
columns:
pwd :
plainColumn: pwd
cipherColumn: pwd_cipher
encryptorName: aes_encryptor
queryWithCipherColumn: false

According to the above encryption rules, we need to add a column called pwd_cipher in the t_user table,

that is, cipherColumn, which is used to store ciphertext data. At the same time, we set plainColumn to

7.5. Encryption 279

Apache ShardingSphere document, v5.1.0

pwd, which is used to store plaintext data, and logicColumn is also set to pwd. Because the previous SQL
was written using pwd, that is, the SQL was written for logical columns, so the business code did not
need to be changed. Through Apache ShardingSphere, for the incremental data, the plain text will be
written to the pwd column, and the plain text will be encrypted and stored in the pwd_cipher column.
At this time, because queryWithCipherColumn is set to false, for business applications, the plain
text column of pwd is still used for query storage, but the cipher text data of the new data is additionally
stored on the underlying database table pwd_cipher. The processing flow is shown below:

Online Service Refactor - before migration

ses [4

e
Insert/Delete/Update Insert/Delete/Update
use plaintext use ciphertext
I___ T Data Encryption Ciphertext Data l
Logical column
Data
| I — —» Transparent Plaintext Data
Transmission

Insert/Delete/Update
use plaintext

Data
Logical column Transparent Plaintext Data

Transmissien

Query: return plaintext Query: get plaintext

When the newly added data is inserted, it is encrypted as ciphertext data through Apache Sharding-
Sphere and stored in the cipherColumn. Now it is necessary to process historical plaintext inventory
data. As Apache ShardingSphere currently does not provide the corresponding migration and wash-
ing tools, the business party needs to encrypt and store the plain text data in pwd to pwd_cipher.

2. During system migration

The incremental data has been stored by Apache ShardingSphere in the ciphertext column and the
plaintext is stored in the plaintext column; after the historical data is encrypted and cleaned by the
business party itself, the ciphertext is also stored in the ciphertext column. That is to say, the plaintext
and the ciphertext are stored in the current database. Since the queryWithCipherColumn = false
in the configuration item, the ciphertext has never been used. Now we need to set the queryWith-
CipherColumn in the encryption configuration to true in order for the system to cut the ciphertext
data for query. After restarting the system, we found that the system business is normal, but Apache
ShardingSphere has started to extract the ciphertext data from the database, decrypt it and return it to
the user; and for the user’ s insert, delete and update requirements, the original data will still be stored
The plaintext column, the encrypted ciphertext data is stored in the ciphertext column.

7.5. Encryption 280

Apache ShardingSphere document, v5.1.0

Although the business system extracts the data in the ciphertext column and returns it after decryption;
however, it will still save a copy of the original data to the plaintext column during storage. Why? The
answer is: in order to be able to roll back the system. Because as long as the ciphertext and plaintext
always exist at the same time, we can freely switch the business query to cipherColumn or plain-
Column through the configuration of the switch item. In other words, if the system is switched to
the ciphertext column for query, the system reports an error and needs to be rolled back. Then just
set queryWithCipherColumn = false, Apache ShardingSphere will restore, that is, start using

plainColumn to query again. The processing flow is shown in the following figure:

Online Service Refactor - during migration

I [§

o
Insert/Delete/Update Insert/Delete/Update
use plaintext use ciphertext
e Data Encryption J Ciphertext Data
| |
Logical column |
Data
— Transparent » Plaintext Data
Transmission
Insert/Delete/Update B
use plaintext
Logical column - Data Decryption < [Ciphertext Data
Query: return plaintext Query: get ciphertext

3. After system migration

Due to the requirements of the security audit department, it is generally impossible for the business
system to keep the plaintext and ciphertext columns of the database permanently synchronized. We
need to delete the plaintext data after the system is stable. That is, we need to delete plainColumn
(ie pwd) after system migration. The problem is that now the business code is written for pwd SQL,
delete the pwd in the underlying data table stored in plain text, and use pwd_cipher to decrypt to get
the original data, does that mean that the business side needs to rectify all SQL, thus Do not use the pwd

column that is about to be deleted? Remember the core meaning of our encrypt module?

This is also the core meaning of encrypt module. According to the encryption rules pro-
vided by the user, the user SQL is separated from the underlying database table structure,
so that the user’ s SQL writing no longer depends on the actual database table structure.
The connection, mapping, and conversion between the user and the underlying database
are handled by ShardingSphere.

Yes, because of the existence of logicColumn, users write SQL for this virtual column. Apache Shard-

7.5. Encryption 281

Apache ShardingSphere document, v5.1.0

ingSphere can map this logical column and the ciphertext column in the underlying data table. So the

encryption configuration after migration is:

- !ENCRYPT
encryptors:
aes_encryptor:
type: AES
props:
aes—-key-value: 123456abc
tables:
t_user:
columns:
pwd: # pwd and pwd_cipher transformation mapping
cipherColumn: pwd_cipher

encryptorName: aes_encryptor

The processing flow is as follows:

Online Service Refactor - after migration

Insert/Delete/Update Insert/Delete/Update
use plaintext use ciphertext
Logical column Data Encryption ={ Ciphertext Data

Logical column p— Data Decryption Ciphertext Data

ﬂ

Query: return plaintext Query: get ciphertext

So far, the online service encryption and rectification solutions have all been demonstrated. We provide
Java, YAML, Spring Boot Starter, Spring Namespace multiple ways for users to choose to use, and strive
to fulfill business requirements. The solution has been continuously launched on JD Digits, providing

internal basic service support.

7.5. Encryption 282

Apache ShardingSphere document, v5.1.0

7.5.3 The advantages of Middleware encryption service

1. Transparent data encryption process, users do not need to pay attention to the implementation

details of encryption.

2. Provide a variety of built-in, third-party (AKS) encryption strategies, users only need to modify

the configuration to use.

3. Provides a encryption strategy API interface, users can implement the interface to use a custom
encryption strategy for data encryption.

4. Support switching different encryption strategies.

5. For online services, it is possible to store plaintext data and ciphertext data synchronously, and
decide whether to use plaintext or ciphertext columns for query through configuration. Without
changing the business query SQL, the on-line system can safely and transparently migrate data

before and after encryption.

7.5.4 Solution

Apache ShardingSphere has provided two data encryption solutions, corresponding to two Shard-
ingSphere encryption and decryption interfaces, i.e., EncryptAlgorithm and QueryAssistedEn-
cryptAlgorithm.

On the one hand, Apache ShardingSphere has provided internal encryption and decryption implemen-
tations for users, which can be used by them only after configuration. On the other hand, to satisfy
users’ requirements for different scenarios, we have also opened relevant encryption and decryption
interfaces, according to which, users can provide specific implementation types. Then, after simple
configurations, Apache ShardingSphere can use encryption and decryption solutions defined by users

themselves to desensitize data.

EncryptAlgorithm

The solution has provided two methods encrypt () and decrypt() to encrypt/decrypt data for en-
cryption.

When users INSERT, DELETE and UPDATE, ShardingSphere will parse, rewrite and route SQL according
to the configuration. It will also use encrypt () to encrypt data and store them in the database. When
using SELECT, they will decrypt sensitive data from the database with decrypt () reversely and return
them to users at last.

Currently, Apache ShardingSphere has provided three types of implementations for this kind of encrypt
solution, MD5 (irreversible), AES (reversible) and RC4 (reversible), which can be used after configura-

tion.

7.5. Encryption 283

Apache ShardingSphere document, v5.1.0

QueryAssistedEncryptAlgorithm

Compared with the first encrypt scheme, this one is more secure and complex. Its concept is: even the
same data, two same user passwords for example, should not be stored as the same desensitized form
in the database. It can help to protect user information and avoid credential stuffing.

This scheme provides three functions to implement, encrypt (), decrypt() and queryAssiste-
dEncrypt (). Inencrypt () phase, users can set some variable, timestamp for example, and encrypt
a combination of original data + variable. This method can make sure the encrypted data of the same
original data are different, due to the existence of variables. In decrypt () phase, users can use vari-
able data to decrypt according to the encryption algorithms set formerly.

Though this method can indeed increase data security, another problem can appear with it: as the same
data is stored in the database in different content, users may not be able to find out all the same original
data with equivalent query (SELECT FROM table WHERE encryptedColumnn = ?)according to
this encryption column. Because of it, we have brought out assistant query column, which is generated
by queryAssistedEncrypt (). Different from decrypt (), this method uses another way to encrypt
the original data; but for the same original data, it can generate consistent encryption data. Users can
store data processed by queryAssistedEncrypt () to assist the query of original data. So there may
be one more assistant query column in the table.

queryAssistedEncrypt () and encrypt() can generate and store different encryption data; de-
crypt() isreversible and queryAssistedEncrypt () isirreversible. So when querying the original
data, we will parse, rewrite and route SQL automatically. We will also use assistant query column to
do WHERE queries and use decrypt () to decrypt encrypt () data and return them to users. All these
can not be felt by users.

For now, ShardingSphere has abstracted the concept to be an interface for users to develop rather than
providing accurate implementation for this kind of encrypt solution. ShardingSphere will use the ac-

curate implementation of this solution provided by users to desensitize data.

7.6 Shadow

7.6.1 Overall Architecture

Apache ShardingSphere makes shadow judgments on incoming SQL by parsing SQL, according to the
shadow rules set by the user in the configuration file, route to production DB or shadow DB.

7.6. Shadow 284

Apache ShardingSphere document, v5.1.0

Logic SQL

7.6.2 Shadow Rule

Shadow rules include shadow data source mapping, shadow tables, and shadow algorithms.

.
(

| SQL Route !

L]

s

\; S5QL Execute
E—

ShardingSphere-Shadew

be

7.6. Shadow

285

Apache ShardingSphere document, v5.1.0

Production data source name
Mandatory

data-sources

Shadow data source name
ELTETSY

Shadow table location shadow data
source names
Mandatory

tables

Shadow table location shadow
algorithm names
Mandatory

Shadow Rule Config

Shadow algorithm name
Mandatory

shadow-algorithms

Shadow algorithm type
Mandatory

Shadow algorithm props
Mandatory

default-shadow- Default shadow algorithm
algorithm- name name, Option item

data-sources: Production data source name and shadow data source name mappings.

tables: Shadow tables related to stress testing. Shadow tables must exist in the specified shadow DB,
and the shadow algorithm needs to be specified.

shadow-algorithms: SQL routing shadow algorithm.

default-shadow-algorithm-name: Default shadow algorithm. Optional item, the default matching al-
gorithm for tables that not configured with the shadow algorithm.

7.6. Shadow 286

Apache ShardingSphere document, v5.1.0

7.6.3 Routing Process
Take the INSERT statement as an example. When writing data Apache ShardingSphere will parse the
SQL, and then construct a routing chain according to the rules in the configuration file.

In the current version of the function, the shadow function is the last execution unit in the routing
chain, that is, if there are other rules that require routing, such as sharding, Apache ShardingSphere
will first route to a certain database according to the sharding rules, and then perform the shadow

routing decision process.

It determined that the execution of SQL satisfies the configuration of the shadow rule, the data routed
to the corresponding shadow database, and the production data remains unchanged.

7.6.4 Shadow Judgment Process

The Shadow DB performs shadow judgment on the executed SQL statements.

Shadow judgment supports two types of algorithms, users can choose one or combine them according
to actual business needs.

DML Statement

Support two type shadow algorithms.

The shadow judgment first judges whether there is an intersection between SQL related tables and con-
figured shadow tables.

If there is an intersection, determine the shadow algorithm associated with the shadow table of the
intersection in turn, and any one of them was successful. SQL statement executed shadow DB.

If shadow tables have no intersection, or shadow algorithms are unsuccessful, SQL statement executed
production DB.

DDL Statement

Only support note shadow algorithm.

In the pressure testing scenarios, DDL statements are not need tested generally. It is mainly used when
initializing or modifying the shadow table in the shadow DB.

The shadow judgment first judges whether the executed SQL contains notes.

If contains notes, determine the note shadow algorithms in the shadow rule in turn, and any one of
them was successful. SQL statement executed shadow DB.

The executed SQL does not contain notes, or shadow algorithms are unsuccessful, SQL statement exe-

cuted production DB.

7.6. Shadow 287

Apache ShardingSphere document, v5.1.0

7.6.5 Shadow Algorithm

Shadow algorithm details, please refer to List of built-in shadow algorithms

7.6.6 Use Example

Scenario

Assume that the e-commerce website wants to perform pressure testing on the order business,

the pressure testing related table t_order is a shadow table, the production data executed to the ds
production DB, and the pressure testing data executed to the database ds_shadow shadow DB.

Shadow DB configuration

The shadow configuration for example(YAML):

data-sources:
shadow-data-source:
source-data-source-name: ds
shadow-data-source-name: ds-shadow
tables:
t_order:
data-source-names: shadow-data-source
shadow-algorithm-names:
- simple-hint-algorithm
- user-id-value-match-algorithm
shadow-algorithms:
simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar
user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id

value: 0

sql-parser:
sql-comment-parse-enabled: true

Note: If you use the Hint shadow algorithm, the parse SQL comment configuration item
sql-comment-parse-enabled: true need to be turned on. turned off by default. please refer
to SQL-PARSER Configuration

7.6. Shadow 288

https://shardingsphere.apache.org/document/current/en/user-manual/shardingsphere-jdbc/builtin-algorithm/shadow
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/

Apache ShardingSphere document, v5.1.0

Shadow DB environment

» Create the shadow DB ds_shadow.

+ Create shadow tables, tables structure must be consistent with the production environment. As-
sume that the t_order table created in the shadow DB. Create table statement need to add SQL
comment /xfoo:bar,.. .x/.

CREATE TABLE t_order (order_id INT(11) primary key, user_id int(11) not null, ...)

/*foo:bar,...x/

Execute to the shadow DB.

Note: If use the MySQL client for testing, the link needs to use the parameter -c, for example:

mysql> mysql -u root -h127.0.0.1 -P3306 -proot -c

Parameter description: keep the comment, send the comment to the server

Execute SQL containing annotations, for example:

SELECT x* FROM table_name /xshadow:true,foo:barx/;

Comment statement will be intercepted by the MySQL client if parameter —c not be used, for example:

SELECT * FROM table_name;

Affect test results.

Shadow algorithm example

1. Column shadow algorithm example

Assume that the t_order table contains a list of user_-1d to store the order user ID. The data of the
order created by the user whose user ID is 0 executed to shadow DB, other data executed to production
DB.

INSERT INTO t_order (order_id, user_id, ...) VALUES (XxXX..., 0, ...)

No need to modify any SQL or code, only need to control the data of the testing to realize the pressure

testing.

Column Shadow algorithm configuration (YAML):

shadow-algorithms:
user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_1id
value: 0

7.6. Shadow 289

Apache ShardingSphere document, v5.1.0

Note: When the shadow table uses the column shadow algorithm, the same type of shadow operation
(INSERT, UPDATE, DELETE, SELECT) currently only supports a single column.

2. Hint shadow algorithm example

Assume that the t_order table does not contain columns that can matching. Executed SQL statement
need to add SQL note /*foo:bar,.. .x/

SELECT * FROM t_order WHERE order_id = xxx /*foo:bar,...x*/

SQL executed to shadow DB, other data executed to production DB.

Note Shadow algorithm configuration (YAML):

shadow-algorithms:
simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

3. Hybrid two shadow algorithm example

Assume that the pressure testing of the t_order gauge needs to cover the above two scenarios.

INSERT INTO t_order (order_id, user_id, ...) VALUES (XXX..., 0, ...);

SELECT * FROM t_order WHERE order_id = xxx /xfoo:bar,...x/;

Both will be executed to shadow DB, other data executed to production DB.

2 type of shadow algorithm example (YAML):

shadow-algorithms:
user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: fdinsert
column: user_1id
value: 0
simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

4. Default shadow algorithm example

Assume that the column shadow algorithm used for the t_order, all other shadow tables need to use
the note shadow algorithm.

INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...);

INSERT INTO t_xxx_1 (order_item_id, order_id, ...) VALUES (XXX..., XXX:euy oo.) /

7.6. Shadow 290

Apache ShardingSphere document, v5.1.0

xfoo:bar,...x/;

SELECT * FROM t_xxx_2 WHERE order_id = xxx /xfoo:bar,...x/;

SELECT * FROM t_xxx_3 WHERE order_id = xxx /*xfoo:bar,...x/;

Both will be executed to shadow DB, other data executed to production DB.

Default shadow algorithm configuration (YAML):

data-sources:
shadow-data-source:
source-data-source-name: ds
shadow-data-source-name: ds-shadow
tables:
t_order:
data-source-names: shadow-data-source
shadow-algorithm-names:
- simple-hint-algorithm
- user-id-value-match-algorithm
default-shadow-algorithm-name: simple-note-algorithm
shadow-algorithms:
simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar
user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id

value: 0

sql-parser:
sql-comment-parse-enabled: true

Note: The default shadow algorithm only supports Hint shadow algorithm. When using ensure that
the configuration items of props in the configuration file are less than or equal to those in the SQL
comment, And the specific configuration of the configuration file should same as the configuration
written in the SQL comment. The fewer configuration items in the configuration file, the looser the

matching conditions

simple-note-algorithm:
type: SIMPLE_HINT

props:
foo: bar
fool: barl

For example, the ‘props’ item have 2 configure, the following syntax can be used in SQL:

7.6. Shadow 291

Apache ShardingSphere document, v5.1.0

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:bar, fool:barlx*/

SELECT x* FROM t_xxx_2 WHERE order_id = xxx /*foo:bar, fool:barl, foo2:bar2, ...x/

simple-note-algorithm:
type: SIMPLE_HINT
props:
foo: bar

For example, the ‘props’ item have 1 configure, the following syntax can be used in SQL:

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:foox/

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:foo, fool:barl, ...x/

7.7 Test

Apache ShardingSphere provides test engines for integration, module and performance.

7.7.1 Integration Test

Provide point to point test which connect real ShardingSphere and database instances.

They define SQLs in XML files, engine run for each database independently. All test engines designed
to modify the configuration files to execute all assertions without any Java code modification. It does
not depend on any third-party environment, ShardingSphere-Proxy and database used for testing are
provided by docker image.

7.7.2 Module Test

Provide module test engine for complex modules.

They define SQLs in XML files, engine run for each database independently too It includes SQL parser

and SQL rewriter modules.

7.7.3 Performance Test

Provide multiple performance test methods, includes Sysbench, JMH or TPCC and so on.

7.7. Test 292

Apache ShardingSphere document, v5.1.0

7.7.4 Sysbench Test

7.7.5 Integration Test

The SQL parsing unit test covers both SQL placeholder and literal dimension. Integration test can be fur-
ther divided into two dimensions of strategy and JDBC; the former one includes strategies as Sharding,
table Sharding, database Sharding, and readwrite-splitting while the latter one includes Statement
and PreparedStatement.

Therefore, one SQL can drive 5 kinds of database parsing * 2 kinds of parameter transmission modes +
5 kinds of databases * 5 kinds of Sharding strategies * 2 kinds of JDBC operation modes = 60 test cases,
to enable ShardingSphere to achieve the pursuit of high quality.

Process

The Parameterized in JUnit will collect all test data, and pass to test method to assert one by one.
The process of handling test data is just like a leaking hourglass:

Configuration

 environment type
- /shardingsphere-integration-test-suite/src/test/resources/env-native.properties
- /shardingsphere-integration-test-suite/src/test/resources/env/SQL-TYPE/dataset.xml
- /shardingsphere-integration-test-suite/src/test/resources/env/SQL-TYPE/schema.xml
- test case type

- /shardingsphere-integration-test-suite/src/test/resources/cases/SQL-TYPE/SQL-TYPE-

integration-test-cases.xml
- /shardingsphere-integration-test-suite/src/test/resources/cases/SQL-TYPE/dataset/FEATURE-TYPE/*.xml
« sql-case

- /sharding-sql-test/src/main/resources/sql/sharding/SQL-TYPE/*.xml

Environment Configuration

Integration test depends on existed database environment, developer need to setup the configuration
file for corresponding database to test:

Firstly, setup configuration file /shardingsphere-integration-test-suite/src/test/
resources/env-native.properties, for example:

the switch for PK, concurrent, column index testing and so on
it.run.additional.cases=false

7.7. Test 293

Apache ShardingSphere document,

v5.1.0

test scenarios, could define multiple rules

it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

database type, could define multiple databases(H2,MySQL,Oracle,SQLServer,

PostgreSQL)
it.databases=MySQL,PostgreSQL

MySQL configuration
it.mysql.host=127.0.0.1
it.mysql.port=13306
it.mysql.username=root

it.mysql.password=root

PostgreSQL configuration
it.postgresql.host=db.psql
it.postgresql.port=5432
it.postgresql.username=postgres

it.postgresql.password=postgres

SQLServer configuration
it.sqlserver.host=db.mssql
it.sqlserver.port=1433
it.sqlserver.username=sa

it.sqlserver.password=Jdbcl1234

Oracle configuration
it.oracle.host=db.oracle
it.oracle.port=1521

it.oracle.username=jdbc

it.oracle.password=jdbc

Secondly, setup configuration file /shardingsphere-integration-test-suite/src/test/

resources/env/SQL-TYPE/dataset.xml. Developer can set up metadata and expected data to

start the data initialization in dataset.xml. For example:

<dataset>

<metadata data-nodes="tbl.t_order_s${0..9}">
<column name="order_id" type='"numeric" />
<column name="user_id" type="numeric" />
<column name="status" type='"varchar" />

</metadata>

<row data-node="tbl.t_order_0" values="1000,

<row data-node="tbl.t_order_1" values="1001,

<row data-node="tbl.t_order_2" values="1002,

<row data-node="tbl.t_order_3" values="1003,

<row data-node="tbl.t_order_4" values="1004,

<row data-node="tbl.t_order_5" values="1005,

<row data-node="tbl.t_order_6" values="1006,

10,
10,
10,
10,
10,
10,
10,

init"
init"
init"
init"
init"
init"

init"

/>
/>
/>
/>
/>
/>
/>

7.7. Test

294

Apache ShardingSphere document, v5.1.0

<row data-node="tbl.t_order_7" values="1007, 10, 1init" />

<row data-node="tbl.t_order_8" values="1008, 10, 1init" />

<row data-node="tbl.t_order_9" values="1009, 10, init" />
</dataset>

Developer can customize DDL to create databases and tables in schema.xm1l.

Assertion Configuration

So far have confirmed what kind of sql execute in which environment in upon configura-
tion, here define the data for assert. There are two kinds of config for assert, one is
at /shardingsphere-integration-test-suite/src/test/resources/cases/SQL-TYPE/
SQL-TYPE-integration-test-cases.xml. This filejustlike an index, defined the sql, parameters

and expected index position for execution. the SQL is the value for sql-case-1id. For example:

<integration-test-cases>
<dml-test-case sql-case-id="1insert_with_all_placeholders">
<assertion parameters="1:int, 1l:int, insert:String" expected-data-file=
"insert_for_order_1.xml" />
<assertion parameters="2:int, 2:int, insert:String" expected-data-file=
"insert_for_order_2.xml" />
</dml-test-case>

</integration-test-cases>

Another kind of config for assert is the data, as known as the corresponding expected-data-file in
SQL-TYPE-integration-test-cases.xml, which is at /shardingsphere-integration-test-suite/
src/test/resources/cases/SQL-TYPE/dataset/FEATURE-TYPE/*.xml.

This file is very like the dataset.xml mentioned before, and the difference is that expected-data-file
contains some other assert data, such as the return value after a sql execution. For examples:

<dataset update-count="1">
<metadata data-nodes="db_${0..9}.t_order">
<column name="order_id" type="numeric" />
<column name="user_id" type="numeric" />
<column name="status" type='"varchar" />
</metadata>
<row data-node="db_0.t_order" values="1000, 10, update" />
<row data-node="db_0.t_order" values="1001, 10, init" />
<row data-node="db_0.t_order" values="2000, 20, init" />
<row data-node="db_0.t_order" values="2001, 20, init" />
</dataset>

Util now, all config files are ready, just launch the corresponding test case is fine.With no need to modify
any Java code, only set up some config files. This will reduce the difficulty for ShardingSphere testing.

7.7. Test 295

Apache ShardingSphere document, v5.1.0

Notice

1. If Oracle needs to be tested, please add Oracle driver dependencies to the pom.xml.

2. 10 splitting-databases and 10 splitting-tables are used in the integrated test to ensure the test data
is full, so it will take a relatively long time to run the test cases.

7.7.6 Performance Test

Provides result for each performance test tools.

Performance Test

Target

The performance of ShardingSphere-JDBC, ShardingSphere-Proxy and MySQL would be compared
here. INSERT & UPDATE & DELETE which regarded as a set of associated operation and SELECT which
focus on sharding optimization are used to evaluate performance for the basic scenarios (single route,
readwrite-splitting & encrypt & sharding, full route). While another set of associated operation, IN-
SERT & SELECT & DELETE, is used to evaluate performance for readwrite-splitting. To achieve the
result better, these tests are performed with jmeter which based on a certain amount of data with 20
concurrent threads for 30 minutes, and one MySQL has been deployed on one machine, while the sce-

nario of MySQL used for comparison is deployed on one machine with one instance.

Test Scenarios

Single Route

On the basis of one thousand data volume, four databases that are deployed on the same machine and
each contains 1024 tables with id used for database sharding and k used for table sharding are designed
for this scenario, single route select sql statement is chosen here. While as a comparison, MySQL runs
with INSERT & UPDATE & DELETE statement and single route select sql statement on the basis of one
thousand d