
Apache ShardingSphere document
v5.1.0

Apache ShardingSphere

2022年 02月 16日

Contents

1 概览 1
1.1 简介 . 1

1.1.1 ShardingSphere‐JDBC . 2
1.1.2 ShardingSphere‐Proxy . 2
1.1.3 ShardingSphere‐Sidecar（TODO） . 3
1.1.4 混合架构 . 4

1.2 解决方案 . 5
1.3 线路规划 . 6

2 快速入门 7
2.1 ShardingSphere‐JDBC . 7

2.1.1 引入maven依赖 . 7
2.1.2 规则配置 . 7
2.1.3 创建数据源 . 7

2.2 ShardingSphere‐Proxy . 8
2.2.1 规则配置 . 8
2.2.2 引入依赖 . 8
2.2.3 启动服务 . 8
2.2.4 使用 ShardingSphere‐Proxy . 8

2.3 ShardingSphere‐Scaling (Experimental) . 8
2.3.1 规则配置 . 8
2.3.2 引入依赖 . 9
2.3.3 启动服务 . 9
2.3.4 任务管理 . 9
2.3.5 相关文档 . 9

3 概念 10
3.1 接入端 . 10

3.1.1 ShardingSphere‐JDBC . 10
3.1.2 ShardingSphere‐Proxy . 11
3.1.3 混合架构 . 12

i

3.2 运行模式 . 13
3.2.1 背景 . 13
3.2.2 内存模式 . 13
3.2.3 单机模式 . 14
3.2.4 集群模式 . 14

3.3 DistSQL . 14
3.3.1 背景 . 14
3.3.2 挑战 . 14
3.3.3 目标 . 14
3.3.4 注意事项 . 15

3.4 可插拔架构 . 15
3.4.1 背景 . 15
3.4.2 挑战 . 15
3.4.3 目标 . 15
3.4.4 实现 . 16

L1内核层 . 16
L2功能层 . 17
L3生态层 . 17

4 功能 18
4.1 数据库兼容 . 18

4.1.1 背景 . 18
4.1.2 挑战 . 18
4.1.3 目标 . 19
4.1.4 SQL解析 . 19

MySQL . 19
openGauss . 19
PostgreSQL . 20
SQLServer . 21
Oracle . 21
SQL92 . 21

4.1.5 数据库协议 . 21
4.1.6 特性支持 . 21

MySQL . 21
PostgreSQL . 22
SQLServer . 22
Oracle . 23
SQL92 . 23

4.2 管控 . 23
4.2.1 背景 . 23
4.2.2 挑战 . 23
4.2.3 目标 . 23
4.2.4 核心概念 . 23

熔断 . 23
限流 . 24

ii

4.3 数据分片 . 24
4.3.1 背景 . 24

垂直分片 . 24
水平分片 . 25

4.3.2 挑战 . 26
4.3.3 目标 . 27
4.3.4 核心概念 . 27

导览 . 27
表 . 27
数据节点 . 28
分片 . 29
行表达式 . 30
分布式主键 . 33
强制分片路由 . 35

4.3.5 使用规范 . 36
背景 . 36
SQL . 36
分页 . 40

4.4 分布式事务 . 42
4.4.1 背景 . 42

本地事务 . 43
两阶段提交 . 43
柔性事务 . 43

4.4.2 挑战 . 44
4.4.3 目标 . 44
4.4.4 核心概念 . 44

导览 . 44
XA事务 . 44
柔性事务 . 45

4.4.5 使用规范 . 45
背景 . 45
本地事务 . 45
XA事务 . 45
柔性事务 . 49

4.5 读写分离 . 49
4.5.1 背景 . 49
4.5.2 挑战 . 50
4.5.3 目标 . 51
4.5.4 核心概念 . 51

主库 . 51
从库 . 51
主从同步 . 52
负载均衡策略 . 52

4.5.5 使用规范 . 52
支持项 . 52

iii

不支持项 . 52
4.6 高可用 . 52

4.6.1 背景 . 52
4.6.2 挑战 . 53
4.6.3 目标 . 53
4.6.4 核心概念 . 53

高可用类型 . 53
动态读写分离 . 53

4.6.5 使用规范 . 53
支持项 . 53
不支持项 . 53

4.7 弹性伸缩 . 53
4.7.1 背景 . 53
4.7.2 挑战 . 54
4.7.3 目标 . 54
4.7.4 状态 . 54
4.7.5 核心概念 . 54

弹性伸缩作业 . 54
存量数据 . 54
增量数据 . 54

4.7.6 使用规范 . 54
支持项 . 54
不支持项 . 55

4.8 数据加密 . 55
4.8.1 背景 . 55
4.8.2 挑战 . 55
4.8.3 目标 . 56
4.8.4 核心概念 . 56

逻辑列 . 56
密文列 . 56
查询辅助列 . 56
明文列 . 56

4.8.5 使用规范 . 56
支持项 . 56
不支持项 . 56

4.9 影子库压测 . 57
4.9.1 背景 . 57
4.9.2 挑战 . 57
4.9.3 目标 . 57
4.9.4 核心概念 . 57

生产库 . 57
影子库 . 57
影子算法 . 57

4.9.5 使用规范 . 58
支持项 . 58

iv

不支持项 . 58
4.10 可观察性 . 59

4.10.1 背景 . 59
4.10.2 挑战 . 60
4.10.3 目标 . 60
4.10.4 核心概念 . 60

代理 . 60
APM . 60
Tracing . 60
Metrics . 61

4.10.5 使用规范 . 61
源码编译 . 61
agent配置 . 61
ShardingSphere‐Proxy中使用 . 63

5 用户手册 65
5.1 ShardingSphere‐JDBC . 65

5.1.1 Java API . 65
简介 . 65
使用步骤 . 66
模式配置 . 67
数据源配置 . 68
规则配置 . 68

5.1.2 YAML配置 . 79
简介 . 79
使用步骤 . 79
语法说明 . 80
模式配置 . 80
数据源配置 . 81
规则配置 . 82

5.1.3 Spring Boot Starter . 88
简介 . 88
使用步骤 . 88
在 Spring中使用 ShardingSphere数据源 . 88
模式配置 . 88
数据源配置 . 89
规则配置 . 91

5.1.4 Spring命名空间 . 98
简介 . 98
使用步骤 . 98
配置 Spring Bean . 98
在 Spring中使用 ShardingSphere数据源 . 100
模式配置 . 100
数据源配置 . 103
规则配置 . 104

v

5.1.5 属性配置 . 114
配置项说明 . 114

5.1.6 内置算法 . 114
简介 . 114
使用方式 . 114
元数据持久化仓库 . 114
分片算法 . 115
分布式序列算法 . 118
负载均衡算法 . 118
加密算法 . 119
影子算法 . 120

5.1.7 特殊 API . 121
数据分片 . 121
分布式事务 . 126
可观察性 . 134

5.1.8 不支持项 . 137
DataSource接口 . 137
Connection接口 . 137
Statement和 PreparedStatement接口 . 138
ResultSet接口 . 138
JDBC 4.1 . 138

5.2 ShardingSphere‐Proxy . 138
5.2.1 启动手册 . 138

使用二进制发布包 . 139
使用 Docker . 140

5.2.2 YAML配置 . 142
权限 . 142
属性配置 . 143

5.2.3 DistSQL . 143
语法 . 143
使用 . 181

5.3 ShardingSphere‐Sidecar . 189
5.3.1 简介 . 189
5.3.2 对比 . 189

5.4 ShardingSphere‐Scaling . 190
5.4.1 简介 . 190
5.4.2 运行部署 . 190

部署启动 . 190
结束 . 193

5.4.3 使用手册 . 193
使用手册 . 193

6 开发者手册 201
6.1 运行模式 . 201

6.1.1 StandalonePersistRepository . 201

vi

6.1.2 ClusterPersistRepository . 201
6.1.3 GovernanceWatcher . 202

6.2 配置 . 202
6.2.1 RuleBuilder . 202
6.2.2 YamlRuleConfigurationSwapper . 203
6.2.3 ShardingSphereYamlConstruct . 204

6.3 内核 . 204
6.3.1 SQLRouter . 204
6.3.2 SQLRewriteContextDecorator . 204
6.3.3 SQLExecutionHook . 205
6.3.4 ResultProcessEngine . 205
6.3.5 StoragePrivilegeHandler . 205

6.4 数据源 . 205
6.4.1 DatabaseType . 205
6.4.2 DialectTableMetaDataLoader . 206
6.4.3 DataSourcePoolMetaData . 206
6.4.4 DataSourcePoolDestroyer . 207

6.5 SQL解析 . 207
6.5.1 DatabaseTypedSQLParserFacade . 207
6.5.2 SQLVisitorFacade . 207

6.6 代理端 . 208
6.6.1 DatabaseProtocolFrontendEngine . 208
6.6.2 JDBCDriverURLRecognizer . 208
6.6.3 AuthorityProvideAlgorithm . 208

6.7 数据分片 . 209
6.7.1 ShardingAlgorithm . 209
6.7.2 KeyGenerateAlgorithm . 209
6.7.3 DatetimeService . 210
6.7.4 DatabaseSQLEntry . 210

6.8 读写分离 . 210
6.8.1 ReadwriteSplittingType . 210
6.8.2 ReplicaLoadBalanceAlgorithm . 211

6.9 高可用 . 211
6.9.1 DatabaseDiscoveryType . 211

6.10 分布式事务 . 211
6.10.1 ShardingSphereTransactionManager . 211
6.10.2 XATransactionManagerProvider . 212
6.10.3 XADataSourceDefinition . 212
6.10.4 DataSourcePropertyProvider . 212

6.11 弹性伸缩 . 213
6.11.1 ScalingEntry . 213
6.11.2 JobCompletionDetectAlgorithm . 213
6.11.3 DataConsistencyCheckAlgorithm . 213
6.11.4 SingleTableDataCalculator . 214

6.12 SQL检查 . 214

vii

6.12.1 SQLChecker . 214
6.13 数据加密 . 214

6.13.1 EncryptAlgorithm . 214
6.13.2 QueryAssistedEncryptAlgorithm . 215

6.14 影子库 . 215
6.14.1 ShadowAlgorithm . 215

6.15 可观察性 . 215
6.15.1 PluginDefinitionService . 215
6.15.2 PluginBootService . 216

7 技术参考 217
7.1 管控 . 217

7.1.1 注册中心数据结构 . 217
/rules . 218
/props . 218
/metadata/${schemaName}/dataSources . 219
/metadata/${schemaName}/rules . 219
/metadata/${schemaName}/tables . 220
/nodes/compute_nodes . 220
/nodes/storage_nodes . 220

7.2 数据分片 . 220
7.2.1 SQL解析 . 221
7.2.2 SQL路由 . 221
7.2.3 SQL改写 . 221
7.2.4 SQL执行 . 221
7.2.5 结果归并 . 222
7.2.6 查询优化 . 222
7.2.7 解析引擎 . 222

抽象语法树 . 222
SQL解析引擎 . 223

7.2.8 路由引擎 . 227
分片路由 . 227
广播路由 . 229

7.2.9 改写引擎 . 231
正确性改写 . 231
优化改写 . 236

7.2.10 执行引擎 . 237
连接模式 . 237
自动化执行引擎 . 238

7.2.11 归并引擎 . 241
遍历归并 . 242
排序归并 . 242
分组归并 . 243
聚合归并 . 246
分页归并 . 246

viii

7.3 分布式事务 . 247
7.3.1 导览 . 247
7.3.2 XA事务 . 247

开启全局事务 . 248
执行真实分片 SQL . 248
提交或回滚事务 . 249

7.3.3 Seata柔性事务 . 249
引擎初始化 . 250
开启全局事务 . 250
执行真实分片 SQL . 250
提交或回滚事务 . 251

7.4 弹性伸缩 . 251
7.4.1 原理说明 . 251
7.4.2 执行阶段说明 . 251

准备阶段 . 251
存量数据迁移阶段 . 252
增量数据同步阶段 . 252
规则切换阶段 . 252

7.5 数据加密 . 252
7.5.1 处理流程详解 . 252

整体架构 . 253
加密规则 . 253
加密处理过程 . 255

7.5.2 解决方案详解 . 256
新上线业务 . 256
已上线业务改造 . 257

7.5.3 中间件加密服务优势 . 260
7.5.4 加密算法解析 . 260

EncryptAlgorithm . 261
QueryAssistedEncryptAlgorithm . 261

7.6 影子库 . 261
7.6.1 整体架构 . 261
7.6.2 影子规则 . 262
7.6.3 路由过程 . 263
7.6.4 影子判定流程 . 264

DML语句 . 264
DDL语句 . 264

7.6.5 影子算法 . 264
7.6.6 使用案例 . 264

场景需求 . 264
影子库配置 . 264
影子库环境 . 265
影子算法使用 . 266

7.7 测试 . 269
7.7.1 整合测试 . 269

ix

7.7.2 模块测试 . 269
7.7.3 性能测试 . 269
7.7.4 集成测试 . 269

设计 . 269
使用指南 . 270

7.7.5 性能测试 . 273
Sysbench性能测试 . 273
BenchmarkSQL性能测试 . 283

7.7.6 模块测试 . 297
SQL解析测试 . 297
SQL改写测试 . 298

7.8 FAQ . 300
7.8.1 [JDBC] 为什么配置了某个数据连接池的 spring‐boot‐starter（比如 druid）和

shardingsphere‐jdbc‐spring‐boot‐starter时，系统启动会报错？ 300
7.8.2 [JDBC]使用 Spring命名空间时找不到 xsd? . 300
7.8.3 [JDBC]引入 shardingsphere-transaction-xa-core后，如何避免 spring‐

boot自动加载默认的 JtaTransactionManager？ 301
7.8.4 [Proxy] Windows环境下，运行 ShardingSphere‐Proxy，找不到或无法加载主类

org.apache.shardingsphere.proxy.Bootstrap，如何解决？ 301
7.8.5 [Proxy] 在使用 ShardingSphere‐Proxy 的时候，如何动态在添加新的 logic

schema？ . 301
7.8.6 [Proxy] 在使用 ShardingSphere‐Proxy 时，怎么使用合适的工具连接到

ShardingSphere‐Proxy？ . 301
7.8.7 [Proxy]使用 Navicat等第三方数据库工具连接 ShardingSphere‐Proxy时，如果

ShardingSphere‐Proxy没有创建 Schema或者没有添加 Resource，连接失败？ . 302
7.8.8 [分片] Cloud not resolve placeholder⋯in string value⋯异常的解决方法? 302
7.8.9 [分片] inline表达式返回结果为何出现浮点数？ 302
7.8.10 [分片]如果只有部分数据库分库分表，是否需要将不分库分表的表也配置在分片

规则中？ . 302
7.8.11 [分片] 指定了泛型为 Long 的 SingleKeyTableShardingAlgorithm，遇到

ClassCastException: Integer can not cast to Long? 303
7.8.12 [分片、PROXY] 实现 StandardShardingAlgorithm 自定义算法时，指定

了 Comparable 的具体类型为 Long, 且数据库表中字段类型为 bigint，出现
ClassCastException: Integer can not cast to Long异常。 303

7.8.13 [分片] ShardingSphere提供的默认分布式自增主键策略为什么是不连续的，且尾
数大多为偶数？ . 303

7.8.14 [分片]如何在 inline分表策略时，允许执行范围查询操作（BETWEEN AND、>、
<、>=、<=）？ . 303

7.8.15 [分片]为什么我实现了 KeyGenerateAlgorithm接口，也配置了 Type，但是自
定义的分布式主键依然不生效？ . 304

7.8.16 [分片] ShardingSphere除了支持自带的分布式自增主键之外，还能否支持原生的
自增主键？ . 304

7.8.17 [数据加密] JPA和数据加密无法一起使用，如何解决？ 304
7.8.18 [DistSQL]使用 DistSQL添加数据源时，如何设置自定义的 JDBC连接参数或连接

池属性？ . 305

x

7.8.19 [DistSQL]使用DistSQL删除资源时，出现Resource [xxx] is still used
by [SingleTableRule]。 . 305

7.8.20 [DistSQL] 使用 DistSQL 添加资源时，出现 Failed to get driver
instance for jdbcURL=xxx。 . 305

7.8.21 [其他]如果 SQL在 ShardingSphere中执行不正确，该如何调试？ 305
7.8.22 [其他]阅读源码时为什么会出现编译错误? IDEA不索引生成的代码？ 306
7.8.23 [其他]使用 SQLSever和 PostgreSQL时，聚合列不加别名会抛异常？ 306
7.8.24 [其他] Oracle数据库使用 Timestamp类型的Order By语句抛出异常提示“Order

by value must implements Comparable”? . 306
7.8.25 [其他] Windows环境下，通过Git克隆 ShardingSphere源码时为什么提示文件名

过长，如何解决？ . 307
7.8.26 [其他] Type is required异常的解决方法? . 308
7.8.27 [其他]服务启动时如何加快 metadata加载速度？ 308
7.8.28 [其他] ANTLR插件在 src同级目录下生成代码，容易误提交，如何避免？ 308
7.8.29 [其他]使用 Proxool时分库结果不正确？ . 309
7.8.30 [其他]使用 Spring Boot 2.x集成 ShardingSphere时，配置文件中的属性设置不

生效？ . 310
7.9 API变更历史 . 311

7.9.1 ShardingSphere‐JDBC . 311
YAML配置 . 311
Java API . 327
Spring命名空间配置 . 349
Spring Boot Start配置 . 373

7.9.2 ShardingSphere‐Proxy . 386
5.0.0‐beta . 386
5.0.0‐alpha . 387
ShardingSphere‐4.x . 389
ShardingSphere‐3.x . 391

8 下载 393
8.1 最新版本 . 393

8.1.1 Apache ShardingSphere ‐版本: 5.0.0 (发布日期: Nov 10th, 2021) 393
8.2 全部版本 . 393
8.3 校验版本 . 393

xi

1
概览

星评增长时间线
贡献者增长时间线
Apache ShardingSphere产品定位为 Database Plus，旨在构建异构数据库上层的标准和生态。它关
注如何充分合理地利用数据库的计算和存储能力，而并非实现一个全新的数据库。ShardingSphere站在
数据库的上层视角，关注他们之间的协作多于数据库自身。
连接、增量和可插拔是 Apache ShardingSphere的核心概念。

• 连接：通过对数据库协议、SQL方言以及数据库存储的灵活适配，快速的连接应用与多模式的异构
数据库；

• 增量：获取数据库的访问流量，并提供流量重定向（数据分片、读写分离、影子库）、流量变形（数
据加密、数据脱敏）、流量鉴权（安全、审计、权限）、流量治理（熔断、限流）以及流量分析（服
务质量分析、可观察性）等透明化增量功能；

• 可插拔：项目采用微内核 +三层可插拔模型，使内核、功能组件以及生态对接完全能够灵活的方式
进行插拔式扩展，开发者能够像使用积木一样定制属于自己的独特系统。

ShardingSphere已于 2020年 4月 16日成为 Apache软件基金会的顶级项目。欢迎通过邮件列表参与讨
论。

1.1 简介

Apache ShardingSphere由 JDBC、Proxy和 Sidecar（规划中）这 3款既能够独立部署，又支持混合部署
配合使用的产品组成。它们均提供标准化的基于数据库作为存储节点的增量功能，可适用于如 Java同构、
异构语言、云原生等各种多样化的应用场景。
关系型数据库当今依然占有巨大市场份额，是企业核心系统的基石，未来也难于撼动，我们更加注重在
原有基础上提供增量，而非颠覆。

1

https://apache.org/index.html#projects-list
mailto:dev@shardingsphere.apache.org

Apache ShardingSphere document, v5.1.0

1.1.1 ShardingSphere-JDBC

定位为轻量级 Java框架，在 Java的 JDBC层提供的额外服务。它使用客户端直连数据库，以 jar包形式
提供服务，无需额外部署和依赖，可理解为增强版的 JDBC驱动，完全兼容 JDBC和各种 ORM框架。

• 适用于任何基于 JDBC的 ORM框架，如：JPA, Hibernate, Mybatis, Spring JDBC Template或直接
使用 JDBC；

• 支持任何第三方的数据库连接池，如：DBCP, C3P0, BoneCP, HikariCP等；
• 支持任意实现 JDBC规范的数据库，目前支持MySQL，PostgreSQL，Oracle，SQLServer以及任何
可使用 JDBC访问的数据库。

1.1.2 ShardingSphere-Proxy

定位为透明化的数据库代理端，提供封装了数据库二进制协议的服务端版本，用于完成对异构语言的支
持。目前提供MySQL和 PostgreSQL（兼容 openGauss等基于 PostgreSQL的数据库）版本，它可以使
用任何兼容MySQL/PostgreSQL协议的访问客户端（如：MySQL Command Client, MySQLWorkbench,
Navicat等）操作数据，对 DBA更加友好。

• 向应用程序完全透明，可直接当做MySQL/PostgreSQL使用；
• 适用于任何兼容MySQL/PostgreSQL协议的的客户端。

1.1. 简介 2

Apache ShardingSphere document, v5.1.0

1.1.3 ShardingSphere-Sidecar（TODO）

定位为 Kubernetes的云原生数据库代理，以 Sidecar的形式代理所有对数据库的访问。通过无中心、零
侵入的方案提供与数据库交互的啮合层，即 Database Mesh，又可称数据库网格。
Database Mesh的关注重点在于如何将分布式的数据访问应用与数据库有机串联起来，它更加关注的是
交互，是将杂乱无章的应用与数据库之间的交互进行有效地梳理。使用 Database Mesh，访问数据库的
应用和数据库终将形成一个巨大的网格体系，应用和数据库只需在网格体系中对号入座即可，它们都是
被啮合层所治理的对象。

1.1. 简介 3

Apache ShardingSphere document, v5.1.0

Shard ingSphere-JDBC Shardi ngSphere-Proxy Sharding Sphere-Sidecar

数据库 任意 M ySQL/PostgreSQL M ySQL/PostgreSQL
连接消耗数 高 低 高
异构语言 仅 Java 任意 任意
性能 损耗低 损耗略高 损耗低
无中心化 是 否 是
静态入口 无 有 无

1.1.4 混合架构

ShardingSphere‐JDBC 采用无中心化架构，与应用程序共享资源，适用于 Java 开发的高性能的轻量级
OLTP应用；ShardingSphere‐Proxy提供静态入口以及异构语言的支持，独立于应用程序部署，适用于
OLAP应用以及对分片数据库进行管理和运维的场景。
Apache ShardingSphere 是多接入端共同组成的生态圈。通过混合使用 ShardingSphere‐JDBC 和
ShardingSphere‐Proxy，并采用同一注册中心统一配置分片策略，能够灵活的搭建适用于各种场景的应
用系统，使得架构师更加自由地调整适合于当前业务的最佳系统架构。

1.1. 简介 4

Apache ShardingSphere document, v5.1.0

1.2 解决方案

解决方案/功能 分布式数据库 数据安全 •
数据库网关 *

•
全链路压测 *

数据分片 数据加密 异构数据库支持 影子库
读写分离 行级权限（TODO） SQL 方言转换

（TODO）
可观测性

分布式事务 SQL审计（TODO）
弹性伸缩 SQL 防 火 墙

（TODO）
高可用

1.2. 解决方案 5

Apache ShardingSphere document, v5.1.0

1.3 线路规划

1.3. 线路规划 6

2
快速入门

本章节以尽量短的时间，为使用者提供最简单的 Apache ShardingSphere的快速入门。

2.1 ShardingSphere-JDBC

2.1.1 引入maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${latest.release.version}</version>

</dependency>

注意：请将 ${latest.release.version}更改为实际的版本号。

2.1.2 规则配置

ShardingSphere‐JDBC可以通过 Java，YAML，Spring 命名空间和 Spring Boot Starter这 4种
方式进行配置，开发者可根据场景选择适合的配置方式。详情请参见用户手册。

2.1.3 创建数据源

通 过 ShardingSphereDataSourceFactory 工 厂 和 规 则 配 置 对 象 获 取
ShardingSphereDataSource。该对象实现自 JDBC 的标准 DataSource 接口，可用于原生 JDBC
开发，或使用 JPA, Hibernate, MyBatis等 ORM类库。

DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

7

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/

Apache ShardingSphere document, v5.1.0

2.2 ShardingSphere-Proxy

2.2.1 规则配置

编辑%SHARDINGSPHERE_PROXY_HOME%/conf/config-xxx.yaml。
编辑%SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml。

%SHARDINGSPHERE_PROXY_HOME%为 Proxy解压后的路径，例：/opt/shardingsphere‐
proxy‐bin/

详情请参见配置手册。

2.2.2 引入依赖

如果后端连接 PostgreSQL数据库，不需要引入额外依赖。
如果后端连接 MySQL 数据库，请下载 mysql‐connector‐java‐5.1.47.jar 或者 mysql‐connector‐java‐
8.0.11.jar，并将其放入 %SHARDINGSPHERE_PROXY_HOME%/ext-lib目录。

2.2.3 启动服务

• 使用默认配置项

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

默认启动端口为 3307，默认配置文件目录为：%SHARDINGSPHERE_PROXY_HOME%/conf/。
• 自定义端口和配置文件目录

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh ${proxy_port} ${proxy_conf_directory}

2.2.4 使用 ShardingSphere-Proxy

执行MySQL或 PostgreSQL的客户端命令直接操作 ShardingSphere‐Proxy即可。以MySQL举例：

mysql -u${proxy_username} -p${proxy_password} -h${proxy_host} -P${proxy_port}

2.3 ShardingSphere-Scaling (Experimental)

2.3.1 规则配置

编辑 %SHARDINGSPHERE_PROXY_HOME%/conf/server.yaml。
%SHARDINGSPHERE_PROXY_HOME%为 Proxy解压后的路径，例：/opt/shardingsphere‐
proxy‐bin/

2.2. ShardingSphere-Proxy 8

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar
https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.11/mysql-connector-java-8.0.11.jar

Apache ShardingSphere document, v5.1.0

详情请参见运行部署。

2.3.2 引入依赖

如果后端连接 PostgreSQL数据库，不需要引入额外依赖。
如 果 后 端 连 接 MySQL 数 据 库， 请 下 载 mysql‐connector‐java‐5.1.47.jar， 并 将 其 放 入
%SHARDINGSPHERE_PROXY_HOME%/lib目录。

2.3.3 启动服务

sh %SHARDINGSPHERE_PROXY_HOME%/bin/start.sh

2.3.4 任务管理

通过相应的 DistSQL接口管理迁移任务。
详情请参见使用手册。

2.3.5 相关文档

• 功能 #弹性伸缩：核心概念、使用规范
• 用户手册 #弹性伸缩：运行部署、使用手册
• RAL#弹性伸缩：弹性伸缩的 DistSQL

• 开发者手册 #弹性伸缩：SPI接口及实现类

2.3. ShardingSphere-Scaling (Experimental) 9

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-scaling/build/
https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.47/mysql-connector-java-5.1.47.jar
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-scaling/usage/
https://shardingsphere.apache.org/document/current/cn/features/scaling/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-scaling/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/#%E5%BC%B9%E6%80%A7%E4%BC%B8%E7%BC%A9
https://shardingsphere.apache.org/document/current/cn/dev-manual/scaling/

3
概念

Apache ShardingSphere功能十分复杂，有数百模块之多，但众多模块间的概念却简单明了。大部分模块
都是面向这几个概念的横向扩展。
它的概念主要包括：面向独立产品的接入端、面向启动的运行模式、面向使用者操作的 DistSQL以及面
向开发者的可插拔架构。
本章节将详细阐述 Apache ShardingSphere相关的概念。

3.1 接入端

Apache ShardingSphere由 ShardingSphere‐JDBC和 ShardingSphere‐Proxy这 2款既能够独立部署，又
支持混合部署配合使用的产品组成。它们均提供标准化的基于数据库作为存储节点的增量功能，可适用
于如 Java同构、异构语言、云原生等各种多样化的应用场景。

3.1.1 ShardingSphere-JDBC

ShardingSphere‐JDBC是 Apache ShardingSphere的第一个产品，也是 Apache ShardingSphere的前身。
定位为轻量级 Java框架，在 Java的 JDBC层提供的额外服务。它使用客户端直连数据库，以 jar包形式
提供服务，无需额外部署和依赖，可理解为增强版的 JDBC驱动，完全兼容 JDBC和各种 ORM框架。

• 适用于任何基于 JDBC的 ORM框架，如：JPA, Hibernate, Mybatis, Spring JDBC Template或直接
使用 JDBC；

• 支持任何第三方的数据库连接池，如：DBCP, C3P0, BoneCP, HikariCP等；
• 支持任意实现 JDBC规范的数据库，目前支持MySQL，PostgreSQL，Oracle，SQLServer以及任何
可使用 JDBC访问的数据库。

10

Apache ShardingSphere document, v5.1.0

ShardingSphere-JDBC ShardingSphere-Proxy

数据库 任意 MySQL/PostgreSQL
连接消耗数 高 低
异构语言 仅 Java 任意
性能 损耗低 损耗略高
无中心化 是 否
静态入口 无 有

ShardingSphere‐JDBC的优势在于对 Java应用的友好度。

3.1.2 ShardingSphere-Proxy

ShardingSphere‐Proxy是 Apache ShardingSphere的第二个产品。它定位为透明化的数据库代理端，提
供封装了数据库二进制协议的服务端版本，用于完成对异构语言的支持。目前提供MySQL和 PostgreSQL
（兼容 openGauss等基于 PostgreSQL的数据库）版本，它可以使用任何兼容MySQL/PostgreSQL协议的
访问客户端（如：MySQL Command Client, MySQLWorkbench, Navicat等）操作数据，对 DBA更加友
好。

• 向应用程序完全透明，可直接当做MySQL/PostgreSQL使用；
• 适用于任何兼容MySQL/PostgreSQL协议的的客户端。

3.1. 接入端 11

Apache ShardingSphere document, v5.1.0

ShardingSphere-JDBC ShardingSphere-Proxy

数据库 任意 MySQL/PostgreSQL
连接消耗数 高 低
异构语言 仅 Java 任意
性能 损耗低 损耗略高
无中心化 是 否
静态入口 无 有

ShardingSphere‐Proxy的优势在于对异构语言的支持，以及为 DBA提供可操作入口。

3.1.3 混合架构

ShardingSphere‐JDBC 采用无中心化架构，与应用程序共享资源，适用于 Java 开发的高性能的轻量级
OLTP应用；ShardingSphere‐Proxy提供静态入口以及异构语言的支持，独立于应用程序部署，适用于
OLAP应用以及对分片数据库进行管理和运维的场景。
Apache ShardingSphere 是多接入端共同组成的生态圈。通过混合使用 ShardingSphere‐JDBC 和
ShardingSphere‐Proxy，并采用同一注册中心统一配置分片策略，能够灵活的搭建适用于各种场景的应
用系统，使得架构师更加自由地调整适合于当前业务的最佳系统架构。

3.1. 接入端 12

Apache ShardingSphere document, v5.1.0

3.2 运行模式

3.2.1 背景

Apache ShardingSphere是一套完善的产品，使用场景非常广泛。除生产环境的集群部署之外，还为工程
师在开发和自动化测试等场景提供相应的运行模式。Apache ShardingSphere提供的 3种运行模式分别
是内存模式、单机模式和集群模式。

3.2.2 内存模式

初始化配置或执行 SQL等造成的元数据结果变更的操作，仅在当前进程中生效。适用于集成测试的环境
启动，方便开发人员在整合功能测试中集成 Apache ShardingSphere而无需清理运行痕迹。

3.2. 运行模式 13

Apache ShardingSphere document, v5.1.0

3.2.3 单机模式

能够将数据源和规则等元数据信息持久化，但无法将元数据同步至多个Apache ShardingSphere实例，无
法在集群环境中相互感知。通过某一实例更新元数据之后，会导致其他实例由于获取不到最新的元数据
而产生不一致的错误。适用于工程师在本地搭建 Apache ShardingSphere环境。

3.2.4 集群模式

提供了多个 Apache ShardingSphere实例之间的元数据共享和分布式场景下状态协调的能力。在真实部
署上线的生产环境，必须使用集群模式。它能够提供计算能力水平扩展和高可用等分布式系统必备的能
力。集群环境需要通过独立部署的注册中心来存储元数据和协调节点状态。

3.3 DistSQL

3.3.1 背景

DistSQL（Distributed SQL）是 Apache ShardingSphere特有的操作语言。它与标准 SQL的使用方式完
全一致，用于提供增量功能的 SQL级别操作能力。

3.3.2 挑战

灵活的规则配置和资源管控能力是 Apache ShardingSphere的特点之一。在使用 4.x及其之前版本时，开
发者虽然可以像使用原生数据库一样操作数据，但却需要通过本地文件或注册中心配置资源和规则。然
而，操作习惯变更，对于运维工程师并不友好。
DistSQL让用户可以像操作数据库一样操作 Apache ShardingSphere，使其从面向开发人员的框架和中间
件转变为面向运维人员的数据库产品。
DistSQL细分为 RDL、RQL和 RAL三种类型。

• RDL（Resource & Rule Definition Language）负责资源和规则的创建、修改和删除；
• RQL（Resource & Rule Query Language）负责资源和规则的查询和展现；
• RAL（Resource & Rule Administration Language）负责Hint、事务类型切换、分片执行计划查询
等管理功能。

3.3.3 目标

打破中间件和数据库之间的界限，让开发者像使用数据库一样使用Apache ShardingSphere，是DistSQL
的设计目标。

3.3. DistSQL 14

Apache ShardingSphere document, v5.1.0

3.3.4 注意事项

DistSQL只能用于 ShardingSphere‐Proxy，ShardingSphere‐JDBC暂不提供。

3.4 可插拔架构

3.4.1 背景

在 Apache ShardingSphere中，很多功能实现类的加载方式是通过 SPI（Service Provider Interface）注
入的方式完成的。SPI是一种为了被第三方实现或扩展的 API，它可以用于实现框架扩展或组件替换。

3.4.2 挑战

可插拔架构对程序架构设计的要求非常高，需要将各个模块相互独立，互不感知，并且通过一个可插拔
内核，以叠加的方式将各种功能组合使用。设计一套将功能开发完全隔离的架构体系，既可以最大限度
的将开源社区的活力激发出来，也能够保障项目的质量。
Apache ShardingSphere 5.x版本开始致力于可插拔架构，项目的功能组件能够灵活的以可插拔的方式进
行扩展。目前，数据分片、读写分离、数据库高可用、数据加密、影子库压测等功能，以及对MySQL、Post‐
greSQL、SQLServer、Oracle等 SQL与协议的支持，均通过插件的方式织入项目。Apache ShardingSphere
目前已提供数十个 SPI作为系统的扩展点，而且仍在不断增加中。

3.4.3 目标

让开发者能够像使用积木一样定制属于自己的独特系统，是Apache ShardingSphere可插拔架构的设计
目标。

3.4. 可插拔架构 15

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

Apache ShardingSphere document, v5.1.0

3.4.4 实现

Apache ShardingSphere的可插拔架构划分为 3层，它们是：L1内核层、L2功能层、L3生态层。

L1内核层

是数据库基本能力的抽象，其所有组件均必须存在，但具体实现方式可通过可插拔的方式更换。主要包
括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。

3.4. 可插拔架构 16

Apache ShardingSphere document, v5.1.0

L2功能层

用于提供增量能力，其所有组件均是可选的，可以包含零至多个组件。组件之间完全隔离，互无感知，多
组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据库高可用、数据加密、影子库
等。用户自定义功能可完全面向 Apache ShardingSphere定义的顶层接口进行定制化扩展，而无需改动
内核代码。

L3生态层

用于对接和融入现有数据库生态，包括数据库协议、SQL解析器和存储适配器，分别对应于Apache Shard‐
ingSphere以数据库协议提供服务的方式、SQL方言操作数据的方式以及对接存储节点的数据库类型。

3.4. 可插拔架构 17

4
功能

Apache ShardingSphere提供了多样化的功能，涵盖范围从数据库内核、数据库分布式到贴近数据库上
层的应用，为用户提供了大量的功能池。
功能并无边界，只要满足数据库服务和生态的共性需求即可，期待更多的开源工程师参与 Apache Shard‐
ingSphere社区，提供新颖思路和令人兴奋的功能。

4.1 数据库兼容

4.1.1 背景

随着通信技术的革新，全新领域的应用层出不穷，推动和颠覆整个人类社会协作模式的革新。数据存量
随着应用的探索不断增加，数据的存储和计算模式无时无刻面临着创新。
面向交易、大数据、关联分析、物联网等场景越来越细分，单一数据库再也无法适用于所有的应用场景。
与此同时，场景内部也愈加细化，相似场景使用不同数据库已成为常态。由此可见，数据库碎片化的趋
势已经不可逆转。

4.1.2 挑战

并无统一标准的数据库的访问协议和 SQL方言，以及各种数据库带来的不同运维方法和监控工具的异同，
让开发者的学习成本和 DBA的运维成本不断增加。提升与原有数据库兼容度，是在其之上提供增量服务
的前提。
SQL方言和数据库协议的兼容，是数据库兼容度提升的关键点。

18

Apache ShardingSphere document, v5.1.0

4.1.3 目标

尽量多的兼容各种数据库，让用户零使用成本，是 Apache ShardingSphere数据库兼容度希望达成的主
要目标。

4.1.4 SQL解析

SQL是使用者与数据库交流的标准语言。SQL解析引擎负责将 SQL字符串解析为抽象语法树，供 Apache
ShardingSphere理解并实现其增量功能。
目前支持 MySQL, PostgreSQL, SQLServer, Oracle, openGauss以及符合 SQL92规范的 SQL方言。由于
SQL语法的复杂性，目前仍然存在少量不支持的 SQL。
本章节详细罗列出目前不支持的 SQL种类，供使用者参考。
其中有未涉及到的 SQL欢迎补充，未支持的 SQL也尽量会在未来的版本中支持。

MySQL

MySQL不支持的 SQL清单如下：

SQL

CLONE LOCAL DATA DIRECTORY =‘clone_dir’
INSTALL COMPONENT‘file://component1’,‘file://component2’
UNINSTALL COMPONENT‘file://component1’,‘file://component2’
REPAIR TABLE t_order
OPTIMIZE TABLE t_order
CHECKSUM TABLE t_order
CHECK TABLE t_order
SET RESOURCE GROUP group_name
DROP RESOURCE GROUP group_name
CREATE RESOURCE GROUP group_name TYPE = SYSTEM
ALTER RESOURCE GROUP rg1 VCPU = 0‐63

openGauss

openGauss不支持的 SQL清单如下：

4.1. 数据库兼容 19

file://component1
file://component2
file://component1
file://component2

Apache ShardingSphere document, v5.1.0

SQL

CREATE type avg_state AS (total bigint, count bigint);
CREATE AGGREGATE my_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;
CREATE SCHEMA alt_nsp1;
ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;
CREATE CONVERSION alt_conv1 FOR‘LATIN1’TO‘UTF8’FROM iso8859_1_to_utf8;
CREATE FOREIGN DATAWRAPPER alt_fdw1
CREATE SERVER alt_fserv1 FOREIGN DATAWRAPPER alt_fdw1
CREATE LANGUAGE alt_lang1 HANDLER plpgsql_call_handler
CREATE STATISTICS alt_stat1 ON a, b FROM alt_regress_1
CREATE TEXT SEARCH DICTIONARY alt_ts_dict1 (template=simple)
CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO
def_test SELECT new.*
ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)
CREATE PUBLICATION pub1 FOR TABLE alter1.t1, ALL TABLES IN SCHEMA alter2

PostgreSQL

PostgreSQL不支持的 SQL清单如下：

SQL

CREATE type avg_state AS (total bigint, count bigint);
CREATE AGGREGATE my_avg(int4) (stype = avg_state, sfunc = avg_transfn, finalfunc = avg_finalfn)
CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g;
CREATE SCHEMA alt_nsp1;
ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2;
CREATE CONVERSION alt_conv1 FOR‘LATIN1’TO‘UTF8’FROM iso8859_1_to_utf8;
CREATE FOREIGN DATAWRAPPER alt_fdw1
CREATE SERVER alt_fserv1 FOREIGN DATAWRAPPER alt_fdw1
CREATE LANGUAGE alt_lang1 HANDLER plpgsql_call_handler
CREATE STATISTICS alt_stat1 ON a, b FROM alt_regress_1
CREATE TEXT SEARCH DICTIONARY alt_ts_dict1 (template=simple)
CREATE RULE def_view_test_ins AS ON INSERT TO def_view_test DO INSTEAD INSERT INTO
def_test SELECT new.*
ALTER TABLE alterlock SET (toast.autovacuum_enabled = off)
CREATE PUBLICATION pub1 FOR TABLE alter1.t1, ALL TABLES IN SCHEMA alter2

4.1. 数据库兼容 20

Apache ShardingSphere document, v5.1.0

SQLServer

SQLServer不支持的 SQL清单如下：
TODO

Oracle

Oracle不支持的 SQL清单如下：
TODO

SQL92

SQL92不支持的 SQL清单如下：
TODO

4.1.5 数据库协议

Apache ShardingSphere目前实现了MySQL和 PostgreSQL协议。

4.1.6 特性支持

Apache ShardingSphere为数据库提供了分布式协作的能力，同时将一部分数据库特性抽象到了上层，进
行统一管理，以降低用户的使用难度。
因此，对于统一提供的特性，原生的 SQL 将不再下发到数据库，并提示该操作不被支持，用户可使用
ShardingSphere提供的的方式进行代替。
本章节详细罗列出目前不支持的数据库特性和相关的 SQL语句，供使用者参考。
其中有未涉及到的 SQL欢迎补充。

MySQL

MySQL不支持的 SQL清单如下：

4.1. 数据库兼容 21

Apache ShardingSphere document, v5.1.0

用户和角色

SQL

CREATE USER‘finley’@‘localhost’IDENTIFIED BY‘password’
ALTER USER‘finley’@‘localhost’IDENTIFIED BY‘new_password’
DROP USER‘finley’@‘localhost’;
CREATE ROLE‘app_read’
DROP ROLE‘app_read’
SHOW CREATE USER finley
SET PASSWORD =‘auth_string’
SET ROLE DEFAULT;

授权

SQL

GRANT ALL ON db1.* TO‘jeffrey’@‘localhost’
GRANT SELECT ON world.* TO‘role3’;
GRANT‘role1’,‘role2’TO‘user1’@‘localhost’
REVOKE INSERT ON . FROM‘jeffrey’@‘localhost’
REVOKE‘role1’,‘role2’FROM‘user1’@‘localhost’
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user_or_role
SHOW GRANTS FOR‘jeffrey’@‘localhost’
SHOW GRANTS FOR CURRENT_USER
FLUSH PRIVILEGES

PostgreSQL

PostgreSQL不支持的 SQL清单如下：
TODO

SQLServer

SQLServer不支持的 SQL清单如下：
TODO

4.1. 数据库兼容 22

Apache ShardingSphere document, v5.1.0

Oracle

Oracle不支持的 SQL清单如下：
TODO

SQL92

SQL92不支持的 SQL清单如下：
TODO

4.2 管控

4.2.1 背景

随着数据规模的不断膨胀，使用多节点集群的分布式方式逐渐成为趋势。对集群整体视角的统一管理能
力，和针对单独组件细粒度的控制能力，是基于存算分离的现代数据库体系中不可或缺的功能。

4.2.2 挑战

管控的挑战，在于对集群的集中化管理的统一管理能力以及在单点出现故障时精细化的操作能力。
集中化管理的挑战体现在将包括数据库存储节点和中间件计算节点的状态统一管理，并且能够实时的探
测到分布式环境下最新的变动情况，进一步为集群的控制和调度提供依据。
面对超负荷的流量下，针对某一节点进行熔断和限流，以保证整个数据库集群得以继续运行，是分布式
系统下对单一节点控制能力的挑战。

4.2.3 目标

实现从数据库到计算节点打通的一体化管理能力，在故障中为组件提供细粒度的控制能力，并尽可能的
提供自愈的可能，是 Apache ShardingSphere管控模块的主要设计目标。

4.2.4 核心概念

熔断

阻断 Apache ShardingSphere和数据库的连接。当某个 Apache ShardingSphere节点超过负载后，停止
该节点对数据库的访问，使数据库能够保证足够的资源为其他节点提供服务。

4.2. 管控 23

Apache ShardingSphere document, v5.1.0

限流

面对超负荷的请求开启限流，以保护部分请求可以得以高质量的响应。

4.3 数据分片

4.3.1 背景

传统的将数据集中存储至单一节点的解决方案，在性能、可用性和运维成本这三方面已经难于满足海量
数据的场景。
从性能方面来说，由于关系型数据库大多采用 B+树类型的索引，在数据量超过阈值的情况下，索引深度
的增加也将使得磁盘访问的 IO次数增加，进而导致查询性能的下降；同时，高并发访问请求也使得集中
式数据库成为系统的最大瓶颈。
从可用性的方面来讲，服务化的无状态性，能够达到较小成本的随意扩容，这必然导致系统的最终压力
都落在数据库之上。而单一的数据节点，或者简单的主从架构，已经越来越难以承担。数据库的可用性，
已成为整个系统的关键。
从运维成本方面考虑，当一个数据库实例中的数据达到阈值以上，对于 DBA的运维压力就会增大。数据
备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲，单一数据库实例的数据的阈值
在 1TB之内，是比较合理的范围。
在传统的关系型数据库无法满足互联网场景需要的情况下，将数据存储至原生支持分布式的NoSQL的尝
试越来越多。但NoSQL对 SQL的不兼容性以及生态圈的不完善，使得它们在与关系型数据库的博弈中始
终无法完成致命一击，而关系型数据库的地位却依然不可撼动。
数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能
瓶颈以及可用性的效果。数据分片的有效手段是对关系型数据库进行分库和分表。分库和分表均可以有
效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外，分库还能够用于有效的分散对数据库
单点的访问量；分表虽然无法缓解数据库压力，但却能够提供尽量将分布式事务转化为本地事务的可能，
一旦涉及到跨库的更新操作，分布式事务往往会使问题变得复杂。使用多主多从的分片方式，可以有效
的避免数据单点，从而提升数据架构的可用性。
通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下，以及对流量进行疏导应对高访
问量，是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。

垂直分片

按照业务拆分的方式称为垂直分片，又称为纵向拆分，它的核心理念是专库专用。在拆分之前，一个数
据库由多个数据表构成，每个表对应着不同的业务。而拆分之后，则是按照业务将表进行归类，分布到
不同的数据库中，从而将压力分散至不同的数据库。下图展示了根据业务需要，将用户表和订单表垂直
分片到不同的数据库的方案。

4.3. 数据分片 24

Apache ShardingSphere document, v5.1.0

垂直分片往往需要对架构和设计进行调整。通常来讲，是来不及应对互联网业务需求快速变化的；而且，
它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题，但无法根治。如果垂
直拆分之后，表中的数据量依然超过单节点所能承载的阈值，则需要水平分片来进一步处理。

水平分片

水平分片又称为横向拆分。相对于垂直分片，它不再将数据根据业务逻辑分类，而是通过某个字段（或
某几个字段），根据某种规则将数据分散至多个库或表中，每个分片仅包含数据的一部分。例如：根据主
键分片，偶数主键的记录放入 0库（或表），奇数主键的记录放入 1库（或表），如下图所示。

4.3. 数据分片 25

Apache ShardingSphere document, v5.1.0

水平分片从理论上突破了单机数据量处理的瓶颈，并且扩展相对自由，是数据分片的标准解决方案。

4.3.2 挑战

虽然数据分片解决了性能、可用性以及单点备份恢复等问题，但分布式的架构在获得了收益的同时，也
引入了新的问题。
面对如此散乱的分片之后的数据，应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其
中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
另一个挑战则是，能够正确的运行在单节点数据库中的 SQL，在分片之后的数据库中并不一定能够正确
运行。例如，分表导致表名称的修改，或者分页、排序、聚合分组等操作的不正确处理。
跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表，可以在降低单表数据量的情况下，
尽量使用本地事务，善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场
景，有些业务仍然需要保持事务的一致性。而基于 XA的分布式事务由于在并发度高的场景中性能无法满
足需要，并未被互联网巨头大规模使用，他们大多采用最终一致性的柔性事务代替强一致事务。

4.3. 数据分片 26

Apache ShardingSphere document, v5.1.0

4.3.3 目标

尽量透明化分库分表所带来的影响，让使用方尽量像使用一个数据库一样使用水平分片之后的数据库集
群，是 Apache ShardingSphere数据分片模块的主要设计目标。

4.3.4 核心概念

导览

本小节主要介绍数据分片的核心概念。

表

表是透明化数据分片的关键概念。Apache ShardingSphere通过提供多样化的表类型，适配不同场景下
的数据分片需求。

逻辑表

相同结构的水平拆分数据库（表）的逻辑名称，是 SQL中表的逻辑标识。例：订单数据根据主键尾数拆
分为 10张表，分别是 t_order_0到 t_order_9，他们的逻辑表名为 t_order。

真实表

在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0到 t_order_9。

绑定表

指分片规则一致的主表和子表。使用绑定表进行多表关联查询时，必须使用分片键进行关联，否则会出现笛
卡尔积关联或跨库关联，从而影响查询效率。例如：t_order表和 t_order_item表，均按照 order_id
分片，并且使用 order_id进行关联，则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
现笛卡尔积关联，关联查询效率将大大提升。举例说明，如果 SQL为：

SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

在不配置绑定表关系时，假设分片键 order_id将数值 10路由至第 0片，将数值 11路由至第 1片，那
么路由后的 SQL应该为 4条，它们呈现为笛卡尔积：

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

4.3. 数据分片 27

Apache ShardingSphere document, v5.1.0

SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

在配置绑定表关系，并且使用 order_id进行关联后，路由的 SQL应该为 2条：

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.
order_id in (10, 11);

其中 t_order在 FROM的最左侧，ShardingSphere将会以它作为整个绑定表的主表。所有路由计算将
会只使用主表的策略，那么 t_order_item表的分片计算将会使用 t_order的条件。因此，绑定表间
的分区键需要完全相同。

广播表

指所有的分片数据源中都存在的表，表结构及其数据在每个数据库中均完全一致。适用于数据量不大且
需要与海量数据的表进行关联查询的场景，例如：字典表。

单表

指所有的分片数据源中仅唯一存在的表。适用于数据量不大且无需分片的表。

数据节点

数据分片的最小单元，由数据源名称和真实表组成。例：ds_0.t_order_0。
逻辑表与真实表的映射关系，可分为均匀分布和自定义分布两种形式。

均匀分布

指数据表在每个数据源内呈现均匀分布的态势，例如：

db0
├── t_order0
└── t_order1

db1
├── t_order0
└── t_order1

数据节点的配置如下：

4.3. 数据分片 28

Apache ShardingSphere document, v5.1.0

db0.t_order0, db0.t_order1, db1.t_order0, db1.t_order1

自定义分布

指数据表呈现有特定规则的分布，例如：

db0
├── t_order0
└── t_order1

db1
├── t_order2
├── t_order3
└── t_order4

数据节点的配置如下：

db0.t_order0, db0.t_order1, db1.t_order2, db1.t_order3, db1.t_order4

分片

分片键

用于将数据库（表）水平拆分的数据库字段。例：将订单表中的订单主键的尾数取模分片，则订单主键
为分片字段。SQL 中如果无分片字段，将执行全路由，性能较差。除了对单分片字段的支持，Apache
ShardingSphere也支持根据多个字段进行分片。

分片算法

用于将数据分片的算法，支持 =、>=、<=、>、<、BETWEEN和 IN进行分片。分片算法可由开发者自行
实现，也可使用 Apache ShardingSphere内置的分片算法语法糖，灵活度非常高。

自动化分片算法

分片算法语法糖，用于便捷的托管所有数据节点，使用者无需关注真实表的物理分布。包括取模、哈希、
范围、时间等常用分片算法的实现。

4.3. 数据分片 29

Apache ShardingSphere document, v5.1.0

自定义分片算法

提供接口让应用开发者自行实现与业务实现紧密相关的分片算法，并允许使用者自行管理真实表的物理
分布。自定义分片算法又分为：

• 标准分片算法
用于处理使用单一键作为分片键的 =、IN、BETWEEN AND、>、<、>=、<=进行分片的场景。

• 复合分片算法
用于处理使用多键作为分片键进行分片的场景，包含多个分片键的逻辑较复杂，需要应用开发者自行处
理其中的复杂度。

• Hint分片算法
用于处理使用 Hint行分片的场景。

分片策略

包含分片键和分片算法，由于分片算法的独立性，将其独立抽离。真正可用于分片操作的是分片键 +分
片算法，也就是分片策略。

强制分片路由

对于分片字段并非由 SQL而是其他外置条件决定的场景，可使用 SQL Hint注入分片值。例：按照员工登
录主键分库，而数据库中并无此字段。SQL Hint支持通过 Java API和 SQL注释（待实现）两种方式使用。
详情请参见强制分片路由。

行表达式

实现动机

配置的简化与一体化是行表达式所希望解决的两个主要问题。
在繁琐的数据分片规则配置中，随着数据节点的增多，大量的重复配置使得配置本身不易被维护。通过
行表达式可以有效地简化数据节点配置工作量。
对于常见的分片算法，使用 Java代码实现并不有助于配置的统一管理。通过行表达式书写分片算法，可
以有效地将规则配置一同存放，更加易于浏览与存储。

4.3. 数据分片 30

https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/hint/

Apache ShardingSphere document, v5.1.0

语法说明

行表达式的使用非常直观，只需要在配置中使用 ${ expression }或 $->{ expression }标识行
表达式即可。目前支持数据节点和分片算法这两个部分的配置。行表达式的内容使用的是Groovy的语法，
Groovy能够支持的所有操作，行表达式均能够支持。例如：
${begin..end}表示范围区间
${[unit1, unit2, unit_x]}表示枚举值
行表达式中如果出现连续多个 ${ expression }或 $->{ expression }表达式，整个表达式最终
的结果将会根据每个子表达式的结果进行笛卡尔组合。
例如，以下行表达式：

${['online', 'offline']}_table${1..3}

最终会解析为：

online_table1, online_table2, online_table3, offline_table1, offline_table2,
offline_table3

配置

数据节点

对于均匀分布的数据节点，如果数据结构如下：

db0
├── t_order0
└── t_order1

db1
├── t_order0
└── t_order1

用行表达式可以简化为：

db${0..1}.t_order${0..1}

或者

db$->{0..1}.t_order$->{0..1}

对于自定义的数据节点，如果数据结构如下：

db0
├── t_order0
└── t_order1

db1

4.3. 数据分片 31

Apache ShardingSphere document, v5.1.0

├── t_order2
├── t_order3
└── t_order4

用行表达式可以简化为：

db0.t_order${0..1},db1.t_order${2..4}

或者

db0.t_order$->{0..1},db1.t_order$->{2..4}

对于有前缀的数据节点，也可以通过行表达式灵活配置，如果数据结构如下：

db0
├── t_order_00
├── t_order_01
├── t_order_02
├── t_order_03
├── t_order_04
├── t_order_05
├── t_order_06
├── t_order_07
├── t_order_08
├── t_order_09
├── t_order_10
├── t_order_11
├── t_order_12
├── t_order_13
├── t_order_14
├── t_order_15
├── t_order_16
├── t_order_17
├── t_order_18
├── t_order_19
└── t_order_20

db1
├── t_order_00
├── t_order_01
├── t_order_02
├── t_order_03
├── t_order_04
├── t_order_05
├── t_order_06
├── t_order_07
├── t_order_08
├── t_order_09
├── t_order_10
├── t_order_11

4.3. 数据分片 32

Apache ShardingSphere document, v5.1.0

├── t_order_12
├── t_order_13
├── t_order_14
├── t_order_15
├── t_order_16
├── t_order_17
├── t_order_18
├── t_order_19
└── t_order_20

可以使用分开配置的方式，先配置包含前缀的数据节点，再配置不含前缀的数据节点，再利用行表达式
笛卡尔积的特性，自动组合即可。上面的示例，用行表达式可以简化为：

db${0..1}.t_order_0${0..9}, db${0..1}.t_order_${10..20}

或者

db$->{0..1}.t_order_0$->{0..9}, db$->{0..1}.t_order_$->{10..20}

分片算法

对于只有一个分片键的使用 =和 IN进行分片的 SQL，可以使用行表达式代替编码方式配置。
行表达式内部的表达式本质上是一段 Groovy代码，可以根据分片键进行计算的方式，返回相应的真实数
据源或真实表名称。
例如：分为 10个库，尾数为 0的路由到后缀为 0的数据源，尾数为 1的路由到后缀为 1的数据源，以此
类推。用于表示分片算法的行表达式为：

ds${id % 10}

或者

ds$->{id % 10}

分布式主键

实现动机

传统数据库软件开发中，主键自动生成技术是基本需求。而各个数据库对于该需求也提供了相应的支持，
比如MySQL的自增键，Oracle的自增序列等。数据分片后，不同数据节点生成全局唯一主键是非常棘手
的问题。同一个逻辑表内的不同实际表之间的自增键由于无法互相感知而产生重复主键。虽然可通过约
束自增主键初始值和步长的方式避免碰撞，但需引入额外的运维规则，使解决方案缺乏完整性和可扩展
性。
目前有许多第三方解决方案可以完美解决这个问题，如UUID等依靠特定算法自生成不重复键，或者通过
引入主键生成服务等。为了方便用户使用、满足不同用户不同使用场景的需求，Apache ShardingSphere

4.3. 数据分片 33

Apache ShardingSphere document, v5.1.0

不仅提供了内置的分布式主键生成器，例如 UUID、SNOWFLAKE，还抽离出分布式主键生成器的接口，
方便用户自行实现自定义的自增主键生成器。

内置的主键生成器

UUID

采用 UUID.randomUUID()的方式产生分布式主键。

SNOWFLAKE

在分片规则配置模块可配置每个表的主键生成策略，默认使用雪花算法（snowflake）生成 64bit的长整
型数据。
雪花算法是由 Twitter公布的分布式主键生成算法，它能够保证不同进程主键的不重复性，以及相同进程
主键的有序性。

实现原理

在同一个进程中，它首先是通过时间位保证不重复，如果时间相同则是通过序列位保证。同时由于时间
位是单调递增的，且各个服务器如果大体做了时间同步，那么生成的主键在分布式环境可以认为是总体
有序的，这就保证了对索引字段的插入的高效性。例如MySQL的 Innodb存储引擎的主键。
使用雪花算法生成的主键，二进制表示形式包含 4部分，从高位到低位分表为：1bit符号位、41bit时间
戳位、10bit工作进程位以及 12bit序列号位。

• 符号位（1bit）
预留的符号位，恒为零。

• 时间戳位（41bit）
41位的时间戳可以容纳的毫秒数是 2的 41次幂，一年所使用的毫秒数是：365 * 24 * 60 * 60 *
1000。通过计算可知：

Math.pow(2, 41) / (365 * 24 * 60 * 60 * 1000L);

结果约等于 69.73年。Apache ShardingSphere的雪花算法的时间纪元从 2016 年 11 月 1 日零点开
始，可以使用到 2086年，相信能满足绝大部分系统的要求。

• 工作进程位（10bit）
该标志在 Java进程内是唯一的，如果是分布式应用部署应保证每个工作进程的 id是不同的。该值默认为
0，可通过属性设置。

• 序列号位（12bit）
该序列是用来在同一个毫秒内生成不同的 ID。如果在这个毫秒内生成的数量超过 4096 (2的 12次幂)，那
么生成器会等待到下个毫秒继续生成。
雪花算法主键的详细结构见下图。

4.3. 数据分片 34

Apache ShardingSphere document, v5.1.0

时钟回拨

服务器时钟回拨会导致产生重复序列，因此默认分布式主键生成器提供了一个最大容忍的时钟回拨毫秒
数。如果时钟回拨的时间超过最大容忍的毫秒数阈值，则程序报错；如果在可容忍的范围内，默认分布
式主键生成器会等待时钟同步到最后一次主键生成的时间后再继续工作。最大容忍的时钟回拨毫秒数的
默认值为 0，可通过属性设置。

强制分片路由

实现动机

通过解析 SQL语句提取分片键列与值并进行分片是 Apache ShardingSphere对 SQL零侵入的实现方式。
若 SQL语句中没有分片条件，则无法进行分片，需要全路由。
在一些应用场景中，分片条件并不存在于 SQL，而存在于外部业务逻辑。因此需要提供一种通过外部指
定分片结果的方式，在 Apache ShardingSphere中叫做Hint。

实现机制

Apache ShardingSphere使用 ThreadLocal管理分片键值。可以通过编程的方式向 HintManager中
添加分片条件，该分片条件仅在当前线程内生效。
除了通过编程的方式使用强制分片路由，Apache ShardingSphere还可以通过 SQL中的特殊注释的方式
引用Hint，使开发者可以采用更加透明的方式使用该功能。
指定了强制分片路由的 SQL将会无视原有的分片逻辑，直接路由至指定的真实数据节点。

4.3. 数据分片 35

Apache ShardingSphere document, v5.1.0

4.3.5 使用规范

背景

虽然 Apache ShardingSphere希望能够完全兼容所有的 SQL以及单机数据库，但分布式为数据库带来了
更加复杂的场景。Apache ShardingSphere希望能够优先解决海量数据 OLTP的问题，OLAP的相关支持，
会一点一点的逐渐完善。

SQL

SQL支持程度

兼容全部常用的路由至单数据节点的 SQL；路由至多数据节点的 SQL由于场景复杂，分为稳定支持、实
验性支持和不支持这三种情况。

稳定支持

全面支持 DML、DDL、DCL、TCL和常用 DAL。支持分页、去重、排序、分组、聚合、表关联等复杂查询。

常规查询

• SELECT主语句

SELECT select_expr [, select_expr ...] FROM table_reference [, table_reference ...]
[WHERE predicates]
[GROUP BY {col_name | position} [ASC | DESC], ...]
[ORDER BY {col_name | position} [ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

• select_expr

* |
[DISTINCT] COLUMN_NAME [AS] [alias] |
(MAX | MIN | SUM | AVG)(COLUMN_NAME | alias) [AS] [alias] |
COUNT(* | COLUMN_NAME | alias) [AS] [alias]

• table_reference

tbl_name [AS] alias] [index_hint_list]
| table_reference ([INNER] | {LEFT|RIGHT} [OUTER]) JOIN table_factor [JOIN ON
conditional_expr | USING (column_list)]

4.3. 数据分片 36

Apache ShardingSphere document, v5.1.0

子查询

子查询和外层查询同时指定分片键，且分片键的值保持一致时，由内核提供稳定支持。
例如：

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 1;

用于分页的子查询，由内核提供稳定支持。
例如：

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT * FROM t_order) row_
WHERE rownum <= ?) WHERE rownum > ?;

运算表达式中包含分片键

当分片键处于运算表达式中时，无法通过 SQL字面提取用于分片的值，将导致全路由。
例如，假设 create_time为分片键：

SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01';

实验性支持

实验性支持特指使用 Federation执行引擎提供支持。该引擎处于快速开发中，用户虽基本可用，但仍需
大量优化，是实验性产品。

子查询

子查询和外层查询未同时指定分片键，或分片键的值不一致时，由 Federation执行引擎提供支持。
例如：

SELECT * FROM (SELECT * FROM t_order) o;

SELECT * FROM (SELECT * FROM t_order) o WHERE o.order_id = 1;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o;

SELECT * FROM (SELECT * FROM t_order WHERE order_id = 1) o WHERE o.order_id = 2;

4.3. 数据分片 37

https://shardingsphere.apache.org/document/current/cn/features/sharding/use-norms/pagination

Apache ShardingSphere document, v5.1.0

跨库关联查询

当关联查询中的多个表分布在不同的数据库实例上时，由 Federation执行引擎提供支持。假设 t_order
和 t_order_item是多数据节点的分片表，并且未配置绑定表规则，t_user和 t_user_role是分布
在不同的数据库实例上的单表，那么 Federation执行引擎能够支持如下常用的关联查询：

SELECT * FROM t_order o INNER JOIN t_order_item i ON o.order_id = i.order_id WHERE
o.order_id = 1;

SELECT * FROM t_order o INNER JOIN t_user u ON o.user_id = u.user_id WHERE o.user_
id = 1;

SELECT * FROM t_order o LEFT JOIN t_user_role r ON o.user_id = r.user_id WHERE o.
user_id = 1;

SELECT * FROM t_order_item i LEFT JOIN t_user u ON i.user_id = u.user_id WHERE i.
user_id = 1;

SELECT * FROM t_order_item i RIGHT JOIN t_user_role r ON i.user_id = r.user_id
WHERE i.user_id = 1;

SELECT * FROM t_user u RIGHT JOIN t_user_role r ON u.user_id = r.user_id WHERE u.
user_id = 1;

不支持

以下 CASEWHEN语句不支持：
• CASE WHEN中包含子查询
• CASE WHEN中使用逻辑表名（请使用表别名）

4.3. 数据分片 38

Apache ShardingSphere document, v5.1.0

SQL示例

稳定支持的 SQL 必要条件
SELECT * FROM tbl_name
SELECT * FROM tbl_nameWHERE (col1 = ? or col2 = ?) and col3 = ?
SELECT * FROM tbl_name WHERE col1 = ? ORDER BY col2 DESC
LIMIT ?
SELECT COUNT(*), SUM(col1), MIN(col1), MAX(col1), AVG(col1)
FROM tbl_nameWHERE col1 = ?
SELECT COUNT(col1) FROM tbl_name WHERE col2 = ? GROUP BY
col1 ORDER BY col3 DESC LIMIT ?, ?
SELECT DISTINCT * FROM tbl_nameWHERE col1 = ?
SELECT COUNT(DISTINCT col1), SUM(DISTINCT col1) FROM
tbl_name
(SELECT * FROM tbl_name)
SELECT * FROM (SELECT * FROM tbl_name WHERE col1 = ?) o
WHERE o.col1 = ?

子查询和外层查询在同一分
片后的数据节点

INSERT INTO tbl_name (col1, col2,⋯) VALUES (?, ?,⋯.)
INSERT INTO tbl_name VALUES (?, ?,⋯.)
INSERT INTO tbl_name (col1, col2,⋯) VALUES(1 + 2, ?,⋯)
INSERT INTO tbl_name (col1, col2,⋯) VALUES (?, ?,⋯.), (?, ?,⋯.)
INSERT INTO tbl_name (col1, col2, ⋯) SELECT col1, col2, ⋯FROM
tbl_nameWHERE col3 = ?

INSERT表和 SELECT表相同
表或绑定表

REPLACE INTO tbl_name (col1, col2,⋯) SELECT col1, col2,⋯FROM
tbl_nameWHERE col3 = ?

REPLACE表和 SELECT表相
同表或绑定表

UPDATE tbl_name SET col1 = ? WHERE col2 = ?
DELETE FROM tbl_nameWHERE col1 = ?
CREATE TABLE tbl_name (col1 int,⋯)
ALTER TABLE tbl_name ADD col1 varchar(10)
DROP TABLE tbl_name
TRUNCATE TABLE tbl_name
CREATE INDEX idx_name ON tbl_name
DROP INDEX idx_name ON tbl_name
DROP INDEX idx_name

4.3. 数据分片 39

Apache ShardingSphere document, v5.1.0

实验性支持的 SQL 必要条件
SELECT * FROM (SELECT * FROM tbl_name) o
SELECT * FROM (SELECT * FROM tbl_name) o WHERE o.col1
= ?
SELECT * FROM (SELECT * FROM tbl_nameWHERE col1 = ?) o
SELECT * FROM (SELECT * FROM tbl_nameWHERE col1 = ?) o
WHERE o.col1 = ?

子查询和外层查询不在同一分片后
的数据节点

SELECT (SELECT MAX(col1) FROM tbl_name) a, col2 from
tbl_name
SELECT SUM(DISTINCT col1), SUM(col1) FROM tbl_name
SELECT col1, SUM(col2) FROM tbl_name GROUP BY col1 HAV‐
ING SUM(col2) > ?
SELECT col1, col2 FROM tbl_name UNION SELECT col1, col2
FROM tbl_name
SELECT col1, col2 FROM tbl_name UNION ALL SELECT col1,
col2 FROM tbl_name

慢 SQL 原因
SELECT * FROM tbl_name WHERE to_date(create_time, ‘yyyy‐
mm‐dd’) = ?

分片键在运算表达式中，导致全
路由

不支持的 SQL 原因 解决方
案

INSERT INTO tbl_name (col1, col2,⋯) SELECT * FROM
tbl_nameWHERE col3 = ?

SELECT子句不支持 *和内置分
布式主键生成器

无

REPLACE INTO tbl_name (col1, col2, ⋯) SELECT *
FROM tbl_nameWHERE col3 = ?

SELECT子句不支持 *和内置分
布式主键生成器

无

SELECT MAX(tbl_name.col1) FROM tbl_name 查询列是函数表达式时，查询列
前不能使用表名

使用表
别名

分页

完全支持MySQL、PostgreSQL和 Oracle的分页查询，SQLServer由于分页查询较为复杂，仅部分支持。

4.3. 数据分片 40

Apache ShardingSphere document, v5.1.0

分页性能

性能瓶颈

查询偏移量过大的分页会导致数据库获取数据性能低下，以MySQL为例：

SELECT * FROM t_order ORDER BY id LIMIT 1000000, 10

这句 SQL会使得MySQL在无法利用索引的情况下跳过 1,000,000条记录后，再获取 10条记录，其性能
可想而知。而在分库分表的情况下（假设分为 2个库），为了保证数据的正确性，SQL会改写为：

SELECT * FROM t_order ORDER BY id LIMIT 0, 1000010

即将偏移量前的记录全部取出，并仅获取排序后的最后 10 条记录。这会在数据库本身就执行很慢的情
况下，进一步加剧性能瓶颈。因为原 SQL仅需要传输 10条记录至客户端，而改写之后的 SQL则会传输
1,000,010 * 2的记录至客户端。

ShardingSphere的优化

ShardingSphere进行了 2个方面的优化。
首先，采用流式处理 +归并排序的方式来避免内存的过量占用。由于 SQL改写不可避免的占用了额外的带
宽，但并不会导致内存暴涨。与直觉不同，大多数人认为 ShardingSphere会将 1,000,010 * 2记录全部
加载至内存，进而占用大量内存而导致内存溢出。但由于每个结果集的记录是有序的，因此 ShardingSphere
每次比较仅获取各个分片的当前结果集记录，驻留在内存中的记录仅为当前路由到的分片的结果集的当
前游标指向而已。对于本身即有序的待排序对象，归并排序的时间复杂度仅为 O(nlogn)，性能损耗很
小。
其次，ShardingSphere对仅落至单分片的查询进行进一步优化。落至单分片查询的请求并不需要改写 SQL
也可以保证记录的正确性，因此在此种情况下，ShardingSphere并未进行 SQL改写，从而达到节省带宽
的目的。

分页方案优化

由于 LIMIT并不能通过索引查询数据，因此如果可以保证 ID的连续性，通过 ID进行分页是比较好的解
决方案：

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id

或通过记录上次查询结果的最后一条记录的 ID进行下一页的查询：

SELECT * FROM t_order WHERE id > 100000 LIMIT 10

4.3. 数据分片 41

Apache ShardingSphere document, v5.1.0

分页子查询

Oracle和 SQLServer的分页都需要通过子查询来处理，ShardingSphere支持分页相关的子查询。
• Oracle

支持使用 rownum进行分页：

SELECT * FROM (SELECT row_.*, rownum rownum_ FROM (SELECT o.order_id as order_id
FROM t_order o JOIN t_order_item i ON o.order_id = i.order_id) row_ WHERE rownum <=
?) WHERE rownum > ?

目前不支持 rownum + BETWEEN的分页方式。
• SQLServer

支持使用 TOP + ROW_NUMBER() OVER配合进行分页：

SELECT * FROM (SELECT TOP (?) ROW_NUMBER() OVER (ORDER BY o.order_id DESC) AS
rownum, * FROM t_order o) AS temp WHERE temp.rownum > ? ORDER BY temp.order_id

支持 SQLServer 2012之后的 OFFSET FETCH的分页方式：

SELECT * FROM t_order o ORDER BY id OFFSET ? ROW FETCH NEXT ? ROWS ONLY

目前不支持使用WITH xxx AS (SELECT⋯)的方式进行分页。由于 Hibernate自动生成的 SQLServer分
页语句使用了WITH语句，因此目前并不支持基于Hibernate的 SQLServer分页。目前也不支持使用两
个 TOP +子查询的方式实现分页。

• MySQL, PostgreSQL

MySQL和 PostgreSQL都支持 LIMIT分页，无需子查询：

SELECT * FROM t_order o ORDER BY id LIMIT ? OFFSET ?

4.4 分布式事务

4.4.1 背景

数据库事务需要满足 ACID（原子性、一致性、隔离性、持久性）四个特性。
• 原子性（Atomicity）指事务作为整体来执行，要么全部执行，要么全不执行；
• 一致性（Consistency）指事务应确保数据从一个一致的状态转变为另一个一致的状态；
• 隔离性（Isolation）指多个事务并发执行时，一个事务的执行不应影响其他事务的执行；
• 持久性（Durability）指已提交的事务修改数据会被持久保存。

在单一数据节点中，事务仅限于对单一数据库资源的访问控制，称之为本地事务。几乎所有的成熟的关系
型数据库都提供了对本地事务的原生支持。但是在基于微服务的分布式应用环境下，越来越多的应用场
景要求对多个服务的访问及其相对应的多个数据库资源能纳入到同一个事务当中，分布式事务应运而生。

4.4. 分布式事务 42

Apache ShardingSphere document, v5.1.0

关系型数据库虽然对本地事务提供了完美的 ACID原生支持。但在分布式的场景下，它却成为系统性能的
桎梏。如何让数据库在分布式场景下满足 ACID的特性或找寻相应的替代方案，是分布式事务的重点工
作。

本地事务

在不开启任何分布式事务管理器的前提下，让每个数据节点各自管理自己的事务。它们之间没有协调以
及通信的能力，也并不互相知晓其他数据节点事务的成功与否。本地事务在性能方面无任何损耗，但在
强一致性以及最终一致性方面则力不从心。

两阶段提交

XA协议最早的分布式事务模型是由 X/Open国际联盟提出的 X/Open Distributed Transaction
Processing (DTP)模型，简称 XA协议。
基于 XA协议实现的分布式事务对业务侵入很小。它最大的优势就是对使用方透明，用户可以像使用本地
事务一样使用基于 XA协议的分布式事务。XA协议能够严格保障事务 ACID特性。
严格保障事务 ACID特性是一把双刃剑。事务执行在过程中需要将所需资源全部锁定，它更加适用于执行
时间确定的短事务。对于长事务来说，整个事务进行期间对数据的独占，将导致对热点数据依赖的业务系
统并发性能衰退明显。因此，在高并发的性能至上场景中，基于 XA协议的分布式事务并不是最佳选择。

柔性事务

如果将实现了 ACID的事务要素的事务称为刚性事务的话，那么基于 BASE事务要素的事务则称为柔性事
务。BASE是基本可用、柔性状态和最终一致性这三个要素的缩写。

• 基本可用（Basically Available）保证分布式事务参与方不一定同时在线；
• 柔性状态（Soft state）则允许系统状态更新有一定的延时，这个延时对客户来说不一定能够察觉；
• 最终一致性（Eventually consistent）通常是通过消息传递的方式保证系统的最终一致性。

在 ACID事务中对隔离性的要求很高，在事务执行过程中，必须将所有的资源锁定。柔性事务的理念则是
通过业务逻辑将互斥锁操作从资源层面上移至业务层面。通过放宽对强一致性要求，来换取系统吞吐量
的提升。
基于 ACID的强一致性事务和基于 BASE的最终一致性事务都不是银弹，只有在最适合的场景中才能发挥
它们的最大长处。可通过下表详细对比它们之间的区别，以帮助开发者进行技术选型。

本地事务 两（三）阶段事务 柔性事务

业务改造 无 无 实现相关接口
一致性 不支持 支持 最终一致
隔离性 不支持 支持 业务方保证
并发性能 无影响 严重衰退 略微衰退
适合场景 业务方处理不一致 短事务 &低并发 长事务 &高并发

4.4. 分布式事务 43

Apache ShardingSphere document, v5.1.0

4.4.2 挑战

由于应用的场景不同，需要开发者能够合理的在性能与功能之间权衡各种分布式事务。
强一致的事务与柔性事务的 API和功能并不完全相同，在它们之间并不能做到自由的透明切换。在开发
决策阶段，就不得不在强一致的事务和柔性事务之间抉择，使得设计和开发成本被大幅增加。
基于 XA的强一致事务使用相对简单，但是无法很好的应对互联网的高并发或复杂系统的长事务场景；柔
性事务则需要开发者对应用进行改造，接入成本非常高，并且需要开发者自行实现资源锁定和反向补偿。

4.4.3 目标

整合现有的成熟事务方案，为本地事务、两阶段事务和柔性事务提供统一的分布式事务接口，并弥补当
前方案的不足，提供一站式的分布式事务解决方案是Apache ShardingSphere分布式事务模块的主要设
计目标。

4.4.4 核心概念

导览

本小节主要介绍分布式事务的核心概念，主要包括：
• 基于 XA协议的两阶段事务
• 基于最终一致性的柔性事务

XA事务

两阶段事务提交采用的是 X/OPEN组织所定义的 DTP模型所抽象的 AP（应用程序）, TM（事务管理器）
和 RM（资源管理器）概念来保证分布式事务的强一致性。其中 TM与 RM间采用 XA的协议进行双向通
信。与传统的本地事务相比，XA事务增加了准备阶段，数据库除了被动接受提交指令外，还可以反向通
知调用方事务是否可以被提交。TM可以收集所有分支事务的准备结果，并于最后进行原子提交，以保证
事务的强一致性。
Java通过定义 JTA接口实现了 XA模型，JTA接口中的 ResourceManager需要数据库厂商提供 XA驱动
实现，TransactionManager则需要事务管理器的厂商实现，传统的事务管理器需要同应用服务器绑
定，因此使用的成本很高。而嵌入式的事务管器可以通过 jar形式提供服务，同 Apache ShardingSphere
集成后，可保证分片后跨库事务强一致性。
通常，只有使用了事务管理器厂商所提供的XA事务连接池，才能支持XA的事务。Apache ShardingSphere
在整合 XA事务时，采用分离 XA事务管理和连接池管理的方式，做到对应用程序的零侵入。

4.4. 分布式事务 44

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Apache ShardingSphere document, v5.1.0

柔性事务

柔性事务在 2008年发表的一篇论文中被最早提到，它提倡采用最终一致性放宽对强一致性的要求，以达
到事务处理并发度的提升。
TCC和 Saga是两种常见实现方案。他们主张开发者自行实现对数据库的反向操作，来达到数据在回滚时
仍能够保证最终一致性。SEATA实现了 SQL反向操作的自动生成，可以使柔性事务不再必须由开发者介
入才能使用。
Apache ShardingSphere集成了 SEATA作为柔性事务的使用方案。

4.4.5 使用规范

背景

虽然Apache ShardingSphere希望能够完全兼容所有的分布式事务场景，并在性能上达到最优，但在 CAP
定理所指导下，分布式事务必然有所取舍。Apache ShardingSphere希望能够将分布式事务的选择权交
给使用者，在不同的场景用使用最适合的分布式事务解决方案。

本地事务

支持项

• 完全支持非跨库事务，例如：仅分表，或分库但是路由的结果在单库中；
• 完全支持因逻辑异常导致的跨库事务。例如：同一事务中，跨两个库更新。更新完毕后，抛出空指
针，则两个库的内容都能够回滚。

不支持项

• 不支持因网络、硬件异常导致的跨库事务。例如：同一事务中，跨两个库更新，更新完毕后、未提
交之前，第一个库宕机，则只有第二个库数据提交，且无法回滚。

XA事务

支持项

• 支持数据分片后的跨库事务；
• 两阶段提交保证操作的原子性和数据的强一致性；
• 服务宕机重启后，提交/回滚中的事务可自动恢复；
• 支持同时使用 XA和非 XA的连接池。

4.4. 分布式事务 45

https://queue.acm.org/detail.cfm?id=1394128
https://github.com/seata/seata

Apache ShardingSphere document, v5.1.0

不支持项

• 服务宕机后，在其它机器上恢复提交/回滚中的数据。

通过 XA语句控制的分布式事务

• 通过 XA START可以手动开启 XA事务，注意该事务完全由用户管理，ShardingSphere只负责将语
句转发至后端数据库；

• 服务宕机后，需要通过 XA RECOVER获取未提交或回滚的事务，也可以在 COMMIT时使用 ONE
PHASE跳过 PERPARE。

MySQL [(none)]> use test1
│MySQL [(none)]> use test2

Reading table information for completion of table and column names
│Reading table information for completion of table and column

names
You can turn off this feature to get a quicker startup with -A

│You can turn off this feature to get a quicker startup with -A

│
Database changed

│Database changed
MySQL [test1]> XA START '61c052438d3eb';

│MySQL [test2]> XA START '61c0524390927';
Query OK, 0 rows affected (0.030 sec)

│Query OK, 0 rows affected (0.009 sec)

│
MySQL [test1]> update test set val = 'xatest1' where id = 1;

│MySQL [test2]> update test set val = 'xatest2' where id = 1;
Query OK, 1 row affected (0.077 sec)

│Query OK, 1 row affected (0.010 sec)

│
MySQL [test1]> XA END '61c052438d3eb';

│MySQL [test2]> XA END '61c0524390927';
Query OK, 0 rows affected (0.006 sec)

│Query OK, 0 rows affected (0.008 sec)

│
MySQL [test1]> XA PREPARE '61c052438d3eb';

│MySQL [test2]> XA PREPARE '61c0524390927';
Query OK, 0 rows affected (0.018 sec)

│Query OK, 0 rows affected (0.011 sec)

│
MySQL [test1]> XA COMMIT '61c052438d3eb';

4.4. 分布式事务 46

Apache ShardingSphere document, v5.1.0

│MySQL [test2]> XA COMMIT '61c0524390927';
Query OK, 0 rows affected (0.011 sec)

│Query OK, 0 rows affected (0.018 sec)

│
MySQL [test1]> select * from test where id = 1;

│MySQL [test2]> select * from test where id = 1;
+----+---------+

│+----+---------+
| id | val |

│| id | val |
+----+---------+

│+----+---------+
| 1 | xatest1 |

│| 1 | xatest2 |
+----+---------+

│+----+---------+
1 row in set (0.016 sec)

│1 row in set (0.129 sec)

MySQL [test1]> XA START '61c05243994c3';
│MySQL [test2]> XA START '61c052439bd7b';

Query OK, 0 rows affected (0.047 sec)
│Query OK, 0 rows affected (0.006 sec)

│
MySQL [test1]> update test set val = 'xarollback' where id = 1;

│MySQL [test2]> update test set val = 'xarollback' where id =
1;
Query OK, 1 row affected (0.175 sec)

│Query OK, 1 row affected (0.008 sec)

│
MySQL [test1]> XA END '61c05243994c3';

│MySQL [test2]> XA END '61c052439bd7b';
Query OK, 0 rows affected (0.007 sec)

│Query OK, 0 rows affected (0.014 sec)

│
MySQL [test1]> XA PREPARE '61c05243994c3';

│MySQL [test2]> XA PREPARE '61c052439bd7b';
Query OK, 0 rows affected (0.013 sec)

│Query OK, 0 rows affected (0.019 sec)

│
MySQL [test1]> XA ROLLBACK '61c05243994c3';

│MySQL [test2]> XA ROLLBACK '61c052439bd7b';
Query OK, 0 rows affected (0.010 sec)

4.4. 分布式事务 47

Apache ShardingSphere document, v5.1.0

│Query OK, 0 rows affected (0.010 sec)

│
MySQL [test1]> select * from test where id = 1;

│MySQL [test2]> select * from test where id = 1;
+----+---------+

│+----+---------+
| id | val |

│| id | val |
+----+---------+

│+----+---------+
| 1 | xatest1 |

│| 1 | xatest2 |
+----+---------+

│+----+---------+
1 row in set (0.009 sec)

│1 row in set (0.083 sec)

MySQL [test1]> XA START '61c052438d3eb';
Query OK, 0 rows affected (0.030 sec)

MySQL [test1]> update test set val = 'recover' where id = 1;
Query OK, 1 row affected (0.072 sec)

MySQL [test1]> select * from test where id = 1;
+----+---------+
| id | val |
+----+---------+
| 1 | recover |
+----+---------+
1 row in set (0.039 sec)

MySQL [test1]> XA END '61c052438d3eb';
Query OK, 0 rows affected (0.005 sec)

MySQL [test1]> XA PREPARE '61c052438d3eb';
Query OK, 0 rows affected (0.020 sec)

MySQL [test1]> XA RECOVER;
+----------+--------------+--------------+---------------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+---------------+
| 1 | 13 | 0 | 61c052438d3eb |
+----------+--------------+--------------+---------------+
1 row in set (0.010 sec)

MySQL [test1]> XA RECOVER CONVERT XID;
+----------+--------------+--------------+------------------------------+

4.4. 分布式事务 48

Apache ShardingSphere document, v5.1.0

| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+------------------------------+
| 1 | 13 | 0 | 0x36316330353234333864336562 |
+----------+--------------+--------------+------------------------------+
1 row in set (0.011 sec)

MySQL [test1]> XA COMMIT 0x36316330353234333864336562;
Query OK, 0 rows affected (0.029 sec)

MySQL [test1]> XA RECOVER;
Empty set (0.011 sec)

柔性事务

支持项

• 支持数据分片后的跨库事务；
• 支持 RC隔离级别；
• 通过 undo快照进行事务回滚；
• 支持服务宕机后的，自动恢复提交中的事务。

不支持项

• 不支持除 RC之外的隔离级别。

待优化项

• Apache ShardingSphere和 SEATA重复 SQL解析。

4.5 读写分离

4.5.1 背景

面对日益增加的系统访问量，数据库的吞吐量面临着巨大瓶颈。对于同一时刻有大量并发读操作和较少
写操作类型的应用系统来说，将数据库拆分为主库和从库，主库负责处理事务性的增删改操作，从库负
责处理查询操作，能够有效的避免由数据更新导致的行锁，使得整个系统的查询性能得到极大的改善。
通过一主多从的配置方式，可以将查询请求均匀的分散到多个数据副本，能够进一步的提升系统的处理
能力。使用多主多从的方式，不但能够提升系统的吞吐量，还能够提升系统的可用性，可以达到在任何
一个数据库宕机，甚至磁盘物理损坏的情况下仍然不影响系统的正常运行。
与将数据根据分片键打散至各个数据节点的水平分片不同，读写分离则是根据 SQL语义的分析，将读操
作和写操作分别路由至主库与从库。

4.5. 读写分离 49

Apache ShardingSphere document, v5.1.0

读写分离的数据节点中的数据内容是一致的，而水平分片的每个数据节点的数据内容却并不相同。将水
平分片和读写分离联合使用，能够更加有效的提升系统性能。

4.5.2 挑战

读写分离虽然可以提升系统的吞吐量和可用性，但同时也带来了数据不一致的问题。这包括多个主库之
间的数据一致性，以及主库与从库之间的数据一致性的问题。并且，读写分离也带来了与数据分片同样
的问题，它同样会使得应用开发和运维人员对数据库的操作和运维变得更加复杂。下图展现了将数据分
片与读写分离一同使用时，应用程序与数据库集群之间的复杂拓扑关系。

4.5. 读写分离 50

Apache ShardingSphere document, v5.1.0

4.5.3 目标

透明化读写分离所带来的影响，让使用方尽量像使用一个数据库一样使用主从数据库集群，是 Apache
ShardingSphere读写分离模块的主要设计目标。

4.5.4 核心概念

主库

添加、更新以及删除数据操作所使用的数据库，目前仅支持单主库。

从库

查询数据操作所使用的数据库，可支持多从库。

4.5. 读写分离 51

Apache ShardingSphere document, v5.1.0

主从同步

将主库的数据异步的同步到从库的操作。由于主从同步的异步性，从库与主库的数据会短时间内不一致。

负载均衡策略

通过负载均衡策略将查询请求疏导至不同从库。

4.5.5 使用规范

支持项

• 提供一主多从的读写分离配置，可独立使用，也可配合数据分片使用；
• 事务中的数据读写均用主库；
• 基于Hint的强制主库路由。

不支持项

• 主库和从库的数据同步；
• 主库和从库的数据同步延迟导致的数据不一致；
• 主库多写；
• 主从库间的事务一致性。主从模型中，事务中的数据读写均用主库。

4.6 高可用

4.6.1 背景

高可用是现代系统的最基本诉求，作为系统基石的数据库，对于高可用的要求也是必不可少的。
在存算分离的分布式数据库体系中，存储节点和计算节点的高可用方案是不同的。对于有状态的存储节
点来说，需要其自身具备数据一致性同步、探活、主节点选举等能力；对于无状态的计算节点来说，需要
感知存储节点的变化的同时，还需要独立架设负载均衡器，并具备服务发现和请求分发的能力。
Apache ShardingSphere自身提供计算节点，并通过数据库作为存储节点。因此，它采用的高可用方案是
利用数据库自身的高可用方案做存储节点高可用，并自动识别其变化。

4.6. 高可用 52

Apache ShardingSphere document, v5.1.0

4.6.2 挑战

Apache ShardingSphere需要自动感知多样化的存储节点高可用方案的同时，也能够动态集成对读写分
离方案，是实现的主要挑战。

4.6.3 目标

**尽可能的保证 7*24小时不间断的数据库服务，是 Apache ShardingSphere高可用模块的主要设计目
标。**

4.6.4 核心概念

高可用类型

Apache ShardingSphere不提供数据库高可用的能力，它通过第三方提供的高可用方案感知数据库主从
关系的切换。确切来说，Apache ShardingSphere提供数据库发现的能力，自动感知数据库主从关系，并
修正计算节点对数据库的连接。

动态读写分离

高可用和读写分离一起使用时，读写分离无需配置具体的主库和从库。高可用的数据源会动态的修正读
写分离的主从关系，并正确的疏导读写流量。

4.6.5 使用规范

支持项

• MySQL MGR单主模式.

不支持项

• MySQL MGR多主模式.

4.7 弹性伸缩

4.7.1 背景

对于使用单数据库运行的系统来说，如何安全简单地将数据迁移至水平分片的数据库上，一直以来都是
一个迫切的需求；对于已经使用了 Apache ShardingSphere的用户来说，随着业务规模的快速变化，也
可能需要对现有的分片集群进行弹性扩容或缩容。

4.7. 弹性伸缩 53

Apache ShardingSphere document, v5.1.0

4.7.2 挑战

Apache ShardingSphere在分片算法上提供给用户极大的自由度，但却给弹性伸缩造成了极大的挑战。找
寻既能支持自定义的分片算法，又能高效地将数据节点进行扩缩容的方式，是弹性伸缩面临的第一个挑
战；
同时，在伸缩过程中，不应该对正在运行的业务造成影响。尽可能减少伸缩时数据不可用的时间窗口，甚
至做到用户完全无感知，是弹性伸缩的另一个挑战；
最后，弹性伸缩不应该对现有的数据造成影响，如何保证数据的正确性，是弹性伸缩的第三个挑战。
ShardingSphere‐Scaling是一个提供给用户的通用数据接入迁移及弹性伸缩的解决方案。

4.7.3 目标

支持自定义分片算法，减少数据伸缩及迁移时的业务影响，提供一站式的通用弹性伸缩解决方案，是
Apache ShardingSphere弹性伸缩的主要设计目标。

4.7.4 状态

ShardingSphere‐Scaling从 4.1.0版本开始向用户提供。当前处于 alpha开发阶段。

4.7.5 核心概念

弹性伸缩作业

指一次将数据由旧规则迁移至新规则的完整流程。

存量数据

在弹性伸缩作业开始前，数据节点中已有的数据。

增量数据

在弹性伸缩作业执行过程中，业务系统所产生的新数据。

4.7.6 使用规范

支持项

• 将外围数据迁移至 Apache ShardingSphere所管理的数据库；
• 将 Apache ShardingSphere的数据节点进行扩容或缩容。

4.7. 弹性伸缩 54

Apache ShardingSphere document, v5.1.0

不支持项

• 无主键表扩缩容；
• 复合主键表扩缩容；
• 不支持在当前存储节点之上做迁移，需要准备一个全新的数据库集群作为迁移目标库。

4.8 数据加密

4.8.1 背景

安全控制一直是治理的重要环节，数据加密属于安全控制的范畴。无论对互联网公司还是传统行业来说，
数据安全一直是极为重视和敏感的话题。数据加密是指对某些敏感信息通过加密规则进行数据的变形，实
现敏感隐私数据的可靠保护。涉及客户安全数据或者一些商业性敏感数据，如身份证号、手机号、卡号、
客户号等个人信息按照相关部门规定，都需要进行数据加密。
对于数据加密的需求，在现实的业务场景中一般分为两种情况：

1. 新业务上线，安全部门规定需将涉及用户敏感信息，例如银行、手机号码等进行加密后存储到数据
库，在使用的时候再进行解密处理。因为是全新系统，因而没有存量数据清洗问题，所以实现相对
简单。

2. 已上线业务，之前一直将明文存储在数据库中。相关部门突然需要对已上线业务进行加密整改。这
种场景一般需要处理 3个问题：

• 历史数据需要如何进行加密处理，即洗数。
• 如何能在不改动业务 SQL和逻辑情况下，将新增数据进行加密处理，并存储到数据库；在使用时，
再进行解密取出。

• 如何较为安全、无缝、透明化地实现业务系统在明文与密文数据间的迁移。

4.8.2 挑战

在真实业务场景中，相关业务开发团队则往往需要针对公司安全部门需求，自行实行并维护一套加解密
系统。而当加密场景发生改变时，自行维护的加密系统往往又面临着重构或修改风险。此外，对于已经
上线的业务，在不修改业务逻辑和 SQL的情况下，透明化、安全低风险地实现无缝进行加密改造也相对
复杂。

4.8. 数据加密 55

Apache ShardingSphere document, v5.1.0

4.8.3 目标

根据业界对加密的需求及业务改造痛点，提供了一套完整、安全、透明化、低改造成本的数据加密整合
解决方案，是 Apache ShardingSphere数据加密模块的主要设计目标。

4.8.4 核心概念

逻辑列

用于计算加解密列的逻辑名称，是 SQL中列的逻辑标识。逻辑列包含密文列（必须）、查询辅助列（可选）
和明文列（可选）。

密文列

加密后的数据列。

查询辅助列

用于查询的辅助列。对于一些安全级别更高的非幂等加密算法，提供不可逆的幂等列用于查询。

明文列

存储明文的列，用于在加密数据迁移过程中仍旧提供服务。在洗数结束后可以删除。

4.8.5 使用规范

支持项

• 对数据库表中某个或多个列进行加解密；
• 兼容所有常用 SQL。

不支持项

• 需自行处理数据库中原始的存量数据；
• 加密字段无法支持比较操作，如：大于、小于、ORDER BY、BETWEEN、LIKE等；
• 加密字段无法支持计算操作，如：AVG、SUM以及计算表达式。

4.8. 数据加密 56

Apache ShardingSphere document, v5.1.0

4.9 影子库压测

4.9.1 背景

在基于微服务的分布式应用架构下，业务需要多个服务是通过一系列的服务、中间件的调用来完成，所
以单个服务的压力测试已无法代表真实场景。在测试环境中，如果重新搭建一整套与生产环境类似的压
测环境，成本过高，并且往往无法模拟线上环境的复杂度以及流量。因此，业内通常选择全链路压测的
方式，即在生产环境进行压测，这样所获得的测试结果能够准确地反应系统真实容量和性能水平。

4.9.2 挑战

全链路压测是一项复杂而庞大的工作。需要各个微服务、中间件之间配合与调整，以应对不同流量以及压
测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离，为
了保证生产数据的可靠性与完整性，需要将压测产生的数据路由到压测环境数据库，防止压测数据对生
产数据库中真实数据造成污染。这就要求业务应用在执行 SQL前，能够根据透传的压测标识，做好数据
分类，将相应的 SQL路由到与之对应的数据源。

4.9.3 目标

Apache ShardingSphere关注于全链路压测场景下，数据库层面的解决方案。将压测数据自动路由至用
户指定的数据库，是 Apache ShardingSphere影子库模块的主要设计目标。

4.9.4 核心概念

生产库

生产环境使用的数据库。

影子库

压测数据隔离的影子数据库，与生产数据库应当使用相同的配置。

影子算法

影子算法和业务实现紧密相关，目前提供 2种类型影子算法。
• 基于列的影子算法

通过识别 SQL中的数据，匹配路由至影子库的场景。适用于由压测数据名单驱动的压测场景。
• 基于Hint的影子算法

通过识别 SQL中的注释，匹配路由至影子库的场景。适用于由上游系统透传标识驱动的压测场景。

4.9. 影子库压测 57

Apache ShardingSphere document, v5.1.0

4.9.5 使用规范

支持项

• 基于Hint的影子算法支持全部 SQL；
• 基于列的影子算法仅支持部分 SQL。

不支持项

基于Hint的影子算法

• 无

基于列的影子算法

• 不支持 DDL；
• 不支持范围、分组和子查询，如：BETWEEN、GROUP BY⋯HAVING等。

SQL支持列表：
• INSERT

SQL 是否支持
INSERT INTO table (column,⋯) VALUES (value,⋯) 支持
INSERT INTO table (column,⋯) VALUES (value,⋯),(value,⋯),⋯ 支持
INSERT INTO table (column,⋯) SELECT column1 from table1 where column1 = value1 不支持

• SELECT/UPDATE/DELETE

4.9. 影子库压测 58

Apache ShardingSphere document, v5.1.0

条件类型 SQL •
是否支持 *

= SELECT/UPDATE/DELETE ⋯
WHERE column = value

支持

LIKE/NOT LIKE SELECT/UPDATE/DELETE ⋯
WHERE column LIKE/NOT
LIKE value

支持

IN/NOT IN SELECT/UPDATE/DELETE ⋯
WHERE column IN/NOT IN
(value1,value2,⋯)

支持

BETWEEN SELECT/UPDATE/DELETE ⋯
WHERE column BETWEEN
value1 AND value2

不支持

GROUP BY⋯HAVING⋯ SELECT/UPDATE/DELETE ⋯
WHERE ⋯GROUP BY column
HAVING column > value

不支持

子查询 SELECT/UPDATE/DELETE ⋯
WHERE column = (SELECT
column FROM table WHERE
column = value)

不支持

4.10 可观察性

4.10.1 背景

如何观测集群的运行状态，使运维人员可以快速掌握当前系统现状，并进行进一步的维护工作，是分布式
系统的全新挑战。登录到具体服务器的点对点运维方式，无法适用于面向大量分布式服务器的场景。通
过对可系统观察性数据的遥测是分布式系统推荐的运维方式。Tracing（链路跟踪）、Metrics（指标监控）
和 Logging（日志）是系统运行状况的可观察性数据重要的获取手段。
APM（应用性能监控）是通过对系统可观察性数据进行采集、存储和分析，进行系统的性能监控与诊断，
主要功能包括性能指标监控、调用链分析，应用拓扑图等。
Apache ShardingSphere并不负责如何采集、存储以及展示应用性能监控的相关数据，而是为应用监控
系统提供必要的指标数据。换句话说，Apache ShardingSphere仅负责产生具有价值的数据，并通过标准
协议或插件化的方式递交给相关系统。
Tracing用于获取 SQL解析与 SQL执行的链路跟踪信息。Apache ShardingSphere默认提供了对 SkyWalk‐
ing，Zipkin，Jaeger和 OpenTelemetry的支持，也支持用户通过插件化的方式开发自定义的 Tracing组
件。

• 使用 Zipkin和 Jaeger

通过在 agent配置文件中开启对应的插件，并配置好 Zipkin或者 Jaeger服务器信息即可。
• 使用 OpenTelemetry

4.10. 可观察性 59

Apache ShardingSphere document, v5.1.0

OpenTelemetry在 2019年由 OpenTracing和 OpenCencus合并而来。使用这种方式，只需要在 agent配
置文件中，根据 OpenTelemetry SDK自动配置说明，填写合适的配置即可。

• 使用 SkyWalking

需要在 agent配置中配置启用对应插件，并且需要同时配置使用 SkyWalking的 apm‐toolkit工具。
• 使用 SkyWalking的内置自动探针

Apache ShardingSphere 团队与Apache SkyWalking 团队共同合作，在 SkyWalking 中实现了 Apache
ShardingSphere自动探针，可以将相关的应用性能数据自动发送到 SkyWalking中。注意这种方式的自
动探针不能与 Apache ShardingSphere插件探针同时使用。
Metrics则用于收集和展示整个集群的统计指标。Apache ShardingSphere默认提供了对 Prometheus的
支持。

4.10.2 挑战

Tracing和Metrics需要通过埋点来收集系统信息。大量的埋点使项目核心代码支离破碎，难于维护，且
不易定制化统计指标。

4.10.3 目标

提供尽量多的性能和统计指标，并隔离核心代码和埋点代码，是 Apache ShardingSphere可观察性模块
的设计目标。

4.10.4 核心概念

代理

基于字节码增强和插件化设计，以提供 tracing和metrics埋点，以及日志输出功能。需要开启代理的插
件功能后，才能将监控指标数据输出至第三方 APM中展示。

APM

APM是应用性能监控的缩写。着眼于分布式系统的性能诊断，其主要功能包括调用链展示，应用拓扑分
析等。

Tracing

链路跟踪，通过探针收集调用链数据，并发送到第三方 APM系统。

4.10. 可观察性 60

https://github.com/open-telemetry/opentelemetry-java/tree/main/sdk-extensions/autoconfigure
https://shardingsphere.apache.org
https://skywalking.apache.org

Apache ShardingSphere document, v5.1.0

Metrics

系统统计指标，通过探针收集，并且写入到时序数据库，供第三方应用展示。

4.10.5 使用规范

源码编译

从 Github下载 Apache ShardingSphere源码，对源码进行编译，操作命令如下。

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

agent 包 输 出 目 录 为 shardingsphere‐agent/shardingsphere‐agent‐distribution/target/apache‐
shardingsphere‐${latest.release.version}‐shardingsphere‐agent‐bin.tar.gz

agent配置

• 目录说明
创建 agent目录，解压 agent二进制包到 agent目录。

mkdir agent
tar -zxvf apache-shardingsphere-${latest.release.version}-shardingsphere-agent-bin.
tar.gz -C agent
cd agent
tree
.
├── conf
│ ├── agent.yaml
│ └── logback.xml
├── plugins
│ ├── shardingsphere-agent-logging-base-${latest.release.version}.jar
│ ├── shardingsphere-agent-metrics-prometheus-${latest.release.version}.jar
│ ├── shardingsphere-agent-tracing-jaeger-${latest.release.version}.jar
│ ├── shardingsphere-agent-tracing-opentelemetry-${latest.release.version}.jar
│ ├── shardingsphere-agent-tracing-opentracing-${latest.release.version}.jar
│ └── shardingsphere-agent-tracing-zipkin-${latest.release.version}.jar
└── shardingsphere-agent.jar

• 配置说明
agent.yaml是配置文件，插件有 Jaeger、OpenTracing、Zipkin、OpenTelemetry、Logging、Prometheus。
如果需要开启插件时，只需要注释掉 ignoredPluginNames中对应的插件即可。

4.10. 可观察性 61

Apache ShardingSphere document, v5.1.0

applicationName: shardingsphere-agent
ignoredPluginNames:
- Jaeger
- OpenTracing
- Zipkin
- OpenTelemetry
- Logging
- Prometheus

plugins:
Prometheus:

host: "localhost"
port: 9090
props:
JVM_INFORMATION_COLLECTOR_ENABLED : "true"

Jaeger:
host: "localhost"
port: 5775
props:
SERVICE_NAME: "shardingsphere-agent"
JAEGER_SAMPLER_TYPE: "const"
JAEGER_SAMPLER_PARAM: "1"

Zipkin:
host: "localhost"
port: 9411
props:
SERVICE_NAME: "shardingsphere-agent"
URL_VERSION: "/api/v2/spans"
SAMPLER_TYPE: "const"
SAMPLER_PARAM: "1"

OpenTracing:
props:
OPENTRACING_TRACER_CLASS_NAME: "org.apache.skywalking.apm.toolkit.

opentracing.SkywalkingTracer"
OpenTelemetry:

props:
otel.resource.attributes: "service.name=shardingsphere-agent"
otel.traces.exporter: "zipkin"

Logging:
props:
LEVEL: "INFO"

• 参数说明；

4.10. 可观察性 62

Apache ShardingSphere document, v5.1.0

名称 说明 取值范围 默认值
JVM _INFOR‐
MATION_CO
LLEC‐
TOR_ENABLED

是 否 开
启 JVM
采集器

true、false true

SER‐
VICE_NAME

链 路 跟
踪 的 服
务名称

自定义 shardi
ngsphere‐
agent

JAEG
ER_SAMPLER_TYPE

Jaeger
采 样 率
类型

const、proba bilistic、ratel imiting、remote const

JAEGE
R_SAMPLER_PARAM

Jaeger
采 样 率
参数

c onst：0、1，probabilistic：0.0 ‐ 1.0，ratelimiting：> 0，自定义
每秒采集数量，remot e：需要自定义配置远程采样率管理
服务地址，JA EGER_SAMPLER_MANAGER_HOST_PORT

1（const类
型）

SAM‐
PLER_TYPE

Zipkin
采 样 率
类型

const、co unting、ratelim iting、boundary const

SAM‐
PLER_PARAM

Zipkin
采 样 率
参数

const：0、1，counting：0.01 ‐ 1.0，ratelimiting：> 0，自
定义每秒采集数量，boundary: 0.0001 ‐ 1.0

1（const类
型）

otel.reso
urce.attributes

open‐
teleme‐
try 资源
属性

字符串键值对（,分割） servi
ce.name=shardi
ngsphere‐
agent

otel.
traces.exporter

Tracing
expoter

zipkin、jaeger zipkin

otel
.traces.sampler

open‐
teleme‐
try 采样
率类型

alway s_on、always_of f、traceidratio always_on

otel.tra
ces.sampler.arg

open‐
teleme‐
try 采样
率参数

tr aceidratio：0.0 ‐ 1.0 1.0

ShardingSphere-Proxy中使用

• 启动脚本
配置 shardingsphere‐agent.jar的绝对路径到 ShardingSphere‐Proxy的 start.sh启动脚本中，请注
意配置自己对应的绝对路径。

nohup java ${JAVA_OPTS} ${JAVA_MEM_OPTS} \
-javaagent:/xxxxx/agent/shardingsphere-agent.jar \

4.10. 可观察性 63

Apache ShardingSphere document, v5.1.0

-classpath ${CLASS_PATH} ${MAIN_CLASS} >> ${STDOUT_FILE} 2>&1 &

• 启动插件
通过改造后的 ShardingSphere‐Proxy的启动脚本启动。

bin/start.sh

正常启动可以在对应的 ShardingSphere‐Proxy日志查看到 plugin的启动日志，访问 Proxy后，可以通过
配置的地址查看到Metric和 Tracing的数据。

4.10. 可观察性 64

5
用户手册

本章节面向 Apache ShardingSphere的用户，详细阐述项目的使用说明。

5.1 ShardingSphere-JDBC

配置是 ShardingSphere‐JDBC 中唯一与应用开发者交互的模块，通过它可以快速清晰的理解
ShardingSphere‐JDBC所提供的功能。
本章节是 ShardingSphere‐JDBC的配置参考手册，需要时可当做字典查阅。
ShardingSphere‐JDBC提供了 4种配置方式，用于不同的使用场景。通过配置，应用开发者可以灵活的使
用数据分片、读写分离、数据加密、影子库等功能，并且能够叠加使用。
混合规则配置与单一规则配置一脉相承，只是从配置单一的规则项到配置多个规则项的异同。
需要注意的是，规则项之间的叠加使用是通过数据源名称和表名称关联的。如果前一个规则是面向数据
源聚合的，下一个规则在配置数据源时，则需要使用前一个规则配置的聚合后的逻辑数据源名称；同理，
如果前一个规则是面向表聚合的，下一个规则在配置表时，则需要使用前一个规则配置的聚合后的逻辑
表名称。
更多使用细节请参见使用示例。

5.1.1 Java API

简介

Java API是 ShardingSphere‐JDBC中所有配置方式的基础，其他配置最终都将转化成为 Java API的配置
方式。
Java API是最繁琐也是最灵活的配置方式，适合需要通过编程进行动态配置的场景下使用。

65

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-jdbc-example

Apache ShardingSphere document, v5.1.0

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

构建数据源

ShardingSphere‐JDBC的 Java API通过 Schema名称、运行模式、数据源集合、规则集合以及属性配置
组成。
通过 ShardingSphereDataSourceFactory工厂创建的 ShardingSphereDataSource实现自 JDBC的标准接
口 DataSource。

String schemaName = "foo_schema"; // 指定逻辑 Schema 名称
ModeConfiguration modeConfig = ... // 构建运行模式
Map<String, DataSource> dataSourceMap = ... // 构建真实数据源
Collection<RuleConfiguration> ruleConfigs = ... // 构建具体规则
Properties props = ... // 构建属性配置
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

模式详情请参见模式配置。
数据源详情请参见数据源配置。
规则详情请参见规则配置。

使用数据源

可通过 DataSource选择使用原生 JDBC，或 JPA、Hibernate、MyBatis等 ORM框架。
以原生 JDBC使用方式为例：

// 创建 ShardingSphereDataSource
DataSource dataSource = ShardingSphereDataSourceFactory.
createDataSource(schemaName, modeConfig, dataSourceMap, ruleConfigs, props);

String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_
id WHERE o.user_id=? AND o.order_id=?";
try (

Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement(sql)) {

ps.setInt(1, 10);

5.1. ShardingSphere-JDBC 66

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/mode
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/data-source
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/java-api/rules

Apache ShardingSphere document, v5.1.0

ps.setInt(2, 1000);
try (ResultSet rs = preparedStatement.executeQuery()) {

while(rs.next()) {
// ...

}
}

}

模式配置

配置入口

类名称：org.apache.shardingsphere.infra.config.mode.ModeConfiguration

可配置属性：

Standalone持久化配置

类名称：org.apache.shardingsphere.mode.repository.standalone.StandalonePersistRepositoryConfiguration

可配置属性：

名称 数据类型 说明
type String 持久化仓库类型
props Properties 持久化仓库所需属性

Cluster持久化配置

类名称：org.apache.shardingsphere.mode.repository.cluster.ClusterPersistRepositoryConfiguration

可配置属性：

名称 数据类型 说明
type String 持久化仓库类型
namespace String 注册中心命名空间
serverLists String 注册中心连接地址
props Properties 持久化仓库所需属性

持久化仓库类型的详情，请参见内置持久化仓库类型列表。

5.1. ShardingSphere-JDBC 67

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

数据源配置

ShardingSphere‐JDBC支持所有的数据库 JDBC驱动和连接池。

配置示例

示例的数据库驱动为MySQL，连接池为HikariCP，可以更换为其他数据库驱动和连接池。

Map<String, DataSource> dataSourceMap = new HashMap<>();

// 配置第 1 个数据源
HikariDataSource dataSource1 = new HikariDataSource();
dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
dataSource1.setJdbcUrl("jdbc:mysql://localhost:3306/ds_1");
dataSource1.setUsername("root");
dataSource1.setPassword("");
dataSourceMap.put("ds_1", dataSource1);

// 配置第 2 个数据源
HikariDataSource dataSource2 = new HikariDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setJdbcUrl("jdbc:mysql://localhost:3306/ds_2");
dataSource2.setUsername("root");
dataSource2.setPassword("");
dataSourceMap.put("ds_2", dataSource2);

// 配置其他数据源
...

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 Java规则配置
参考手册。

数据分片

配置入口

类名称：org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

可配置属性：

5.1. ShardingSphere-JDBC 68

Apache ShardingSphere document, v5.1.0

分片表配置

类名称：org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

可配置属性：

名称 数据类型 说明 默认值
logi cTable String 分片逻辑表名称 •

act ualDat aNodes (?) String 由数据源名+表名组成，
以小数点分隔。多个表
以逗号分隔，支持行表
达式

使用已知数据源与逻辑
表名称生成数据节点，
用于广播表或只分库不
分表且所有库的表结构
完全一致的情况

databa seShar dingSt
rategy (?)

S harding Strateg
yConfig uration

分库策略 使用默认分库策略

tab leShar dingSt rat‐
egy (?)

S harding Strateg
yConfig uration

分表策略 使用默认分表策略

k eyGene rateSt rategy
(?)

KeyG enerato rConfig
uration

自增列生成器 使用默认自增主键生成
器

自动分片表配置

类名称：org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

可配置属性：

名称 数据类型 说明 默认值
logicTable String 分片逻辑表名称 •

act ualDataSources (?) String 数据源名称，多个数据
源以逗号分隔

使用全部配置的数据源

sh ardingStrategy (?) S hardingStrateg yCon‐
figuration

分片策略 使用默认分片策略

keyGe nerateStrategy
(?)

KeyGenerato rConfig‐
uration

自增列生成器 使用默认自增主键生成
器

5.1. ShardingSphere-JDBC 69

Apache ShardingSphere document, v5.1.0

分片策略配置

标准分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration
可配置属性：

名称 数据类型 说明
shardingColumn String 分片列名称
shardingAlgorithmName String 分片算法名称

复合分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

可配置属性：

名称 数据类型 说明
shardingColumns String 分片列名称，多个列以逗号分隔
shardingAlgorithmName String 分片算法名称

Hint分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration

可配置属性：

名称 数据类型 说明
shardingAlgorithmName String 分片算法名称

不分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration
可配置属性：无
算法类型的详情，请参见内置分片算法列表。

5.1. ShardingSphere-JDBC 70

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding

Apache ShardingSphere document, v5.1.0

分布式序列策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration
可配置属性：

名称 数据类型 说明
column String 分布式序列列名称
keyGeneratorName String 分布式序列算法名称

算法类型的详情，请参见内置分布式序列算法列表。

读写分离

配置入口

类名称：org.apache.shardingsphere.readwritesplitting.api.ReadwriteSplittingRuleConfiguration

可配置属性：

名称 数据类型 说明
d ataSources (+) Collection<Read writeSplittingDataSourceRuleConfigu‐

ration>
读写数据源配置

loa dBalancers
(*)

Map<String, ShardingSphereAlgorithmConfiguration> 从库负载均衡算法配
置

主从数据源配置

类名称：org.apache.shardingsphere.readwritesplitting.api.rule.ReadwriteSplittingDataSourceRuleConfiguration
可配置属性：

名称 数据类型 说明 默认值
name S tring 读写分离数据源名称 •

type S tring 读写分离类型，分为静
态和动态。如 Static、Dy‐
namic

•

props Prope rties 读写分离所需属性，
如 静 态：write‐data‐
source‐name、read‐
data‐sourc e‐names，
动 态：auto‐aware‐
data‐source‐name

•

loadBala ncerName (?) S tring 读库负载均衡算法名称 轮询负载均衡算法

5.1. ShardingSphere-JDBC 71

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen

Apache ShardingSphere document, v5.1.0

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见使用规范。

高可用

配置入口

类名称：org.apache.shardingsphere.dbdiscovery.api.config.DatabaseDiscoveryRuleConfiguration

可配置属性：

名称 数据类型 说明
dataSources (+) Collection<Databa seDiscoveryDataSourceRuleConfig‐

uration>
数据源配置

disco veryHeartbeats
(+)

Map<String, D atabaseDiscoveryHeartBeatConfigura‐
tion>

监听心跳配置

discoveryTypes (+) Map<String, ShardingSphereAlgorithmConfiguration> 数据库发现类型
配置

数据源配置

类名称：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryDataSourceRuleConfiguration
可配置属性：

名称 数据类型 说明 默认值
groupName (+) String 数据库发现组名称 •

dataSourceNames (+) Co llection<String> 数据源名称，多个数据
源用逗号分隔如：ds_0,
ds_1

•

discov eryHeartbeat‐
Name (+)

String 监听心跳名称 •

d iscoveryTypeName
(+)

String 数据库发现类型名称 •

监听心跳配置

类名称：org.apache.shardingsphere.dbdiscovery.api.config.rule.DatabaseDiscoveryHeartBeatConfiguration

可配置属性：

5.1. ShardingSphere-JDBC 72

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/use-norms

Apache ShardingSphere document, v5.1.0

名称 数据类型 说明 •
默认值 *

props (+) Pr operties 监听心跳属性配置，
keep‐alive‐cron 属
性配置 cron 表达式，
如：‘0/5 * * * * ?’

•

数据库发现类型配置

类名称：org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

名称 数据类型 说明 默认值
type (+) String 数据库发现类型，如：

MGR、openGauss
•

props (?) Properties 数据库发现类型配
置，如 MGR 的 group‐
name属性配置

•

数据加密

配置入口

类名称：org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

可配置属性：

加密表规则配置

类名称：org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

可配置属性：

名称 数据类型 说明
name String 表名称
columns (+) Co llection<EncryptColu mnRuleConfigu‐

ration>
加密列规则配置列表

q ueryWithCipherCol‐
umn (?)

boolean 该表是否使用加密列进行
查询

5.1. ShardingSphere-JDBC 73

Apache ShardingSphere document, v5.1.0

加密列规则配置

类名称：org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

可配置属性：

名称 数据类型 说明
logicColumn String 逻辑列名称
cipherColumn String 密文列名称
assistedQueryColumn (?) String 查询辅助列名称
plainColumn (?) String 原文列名称
encryptorName String 加密算法名称

加解密算法配置

类名称：org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

可配置属性：

名称 数据类型 说明
name String 加解密算法名称
type String 加解密算法类型
properties Properties 加解密算法属性配置

算法类型的详情，请参见内置加密算法列表。

影子库

配置入口

类名称：org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

可配置属性：

影子数据源配置

类名称：org.apache.shardingsphere.shadow.api.config.datasource.ShadowDataSourceConfiguration

可配置属性：

名称 数据类型 说明
sourceDataSourceName String 生产数据源名称
shadowDataSourceName String 影子数据源名称

5.1. ShardingSphere-JDBC 74

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

影子表配置

类名称：org.apache.shardingsphere.shadow.api.config.table.ShadowTableConfiguration

可配置属性：

名称 数据类型 说明
dataSourceNames Collection<String> 影子表关联影子数据源映射名称列表
shadowAlgorithmNames Collection<String> 影子表关联影子算法名称列表

影子算法配置

算法类型的详情，请参见内置影子算法列表。

SQL解析

配置入口

类名称：org.apache.shardingsphere.parser.config.SQLParserRuleConfiguration

可配置属性：

名称 数据类型 说明
sqlCommentParseEnabled (?) boolean 是否解析 SQL注释
parseTreeCache (?) CacheOption 解析语法树本地缓存配置
sqlStatementCache (?) CacheOption sql语句本地缓存配置

本地缓存配置

类名称：org.apache.shardingsphere.sql.parser.api.CacheOption

可配置属性：

名称 数 据
类型

说明 默认值

initialCapac‐
ity

int 本地缓存初始容量 语法树本地缓存默认值 128，sql语句缓
存默认值 2000

maximum‐
Size

long 本地缓存最大容量 语法树本地缓存默认值 1024，sql语句
缓存默认值 65535

c oncurren‐
cyLevel

int 本地缓存并发级别，最多允许线程
并发更新的个数

4

5.1. ShardingSphere-JDBC 75

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/shadow

Apache ShardingSphere document, v5.1.0

混合规则

混合配置的规则项之间的叠加使用是通过数据源名称和表名称关联的。
如果前一个规则是面向数据源聚合的，下一个规则在配置数据源时，则需要使用前一个规则配置的聚合
后的逻辑数据源名称；同理，如果前一个规则是面向表聚合的，下一个规则在配置表时，则需要使用前
一个规则配置的聚合后的逻辑表名称。

配置项说明

/* 数据源配置 */
HikariDataSource writeDataSource0 = new HikariDataSource();
writeDataSource0.setDriverClassName("com.mysql.jdbc.Driver");
writeDataSource0.setJdbcUrl("jdbc:mysql://localhost:3306/db0?serverTimezone=UTC&
useSSL=false&useUnicode=true&characterEncoding=UTF-8");
writeDataSource0.setUsername("root");
writeDataSource0.setPassword("");

HikariDataSource writeDataSource1 = new HikariDataSource();
// ... 忽略其他数据库配置项

HikariDataSource read0OfwriteDataSource0 = new HikariDataSource();
// ... 忽略其他数据库配置项

HikariDataSource read1OfwriteDataSource0 = new HikariDataSource();
// ... 忽略其他数据库配置项

HikariDataSource read0OfwriteDataSource1 = new HikariDataSource();
// ... 忽略其他数据库配置项

HikariDataSource read1OfwriteDataSource1 = new HikariDataSource();
// ... 忽略其他数据库配置项

Map<String, DataSource> datasourceMaps = new HashMap<>(6);

datasourceMaps.put("write_ds0", writeDataSource0);
datasourceMaps.put("write_ds0_read0", read0OfwriteDataSource0);
datasourceMaps.put("write_ds0_read1", read1OfwriteDataSource0);

datasourceMaps.put("write_ds1", writeDataSource1);
datasourceMaps.put("write_ds1_read0", read0OfwriteDataSource1);
datasourceMaps.put("write_ds1_read1", read1OfwriteDataSource1);

/* 分片规则配置 */
// 表达式 ds_${0..1} 枚举值表示的是主从配置的逻辑数据源名称列表
ShardingTableRuleConfiguration tOrderRuleConfiguration = new
ShardingTableRuleConfiguration("t_order", "ds_${0..1}.t_order_${[0, 1]}");
tOrderRuleConfiguration.setKeyGenerateStrategy(new

5.1. ShardingSphere-JDBC 76

Apache ShardingSphere document, v5.1.0

KeyGenerateStrategyConfiguration("order_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy(new
StandardShardingStrategyConfiguration("order_id", "tOrderInlineShardingAlgorithm
"));
Properties tOrderShardingInlineProps = new Properties();
tOrderShardingInlineProps.setProperty("algorithm-expression", "t_order_${order_id %
2}");
tOrderRuleConfiguration.getShardingAlgorithms().putIfAbsent(
"tOrderInlineShardingAlgorithm", new ShardingSphereAlgorithmConfiguration("INLINE",
tOrderShardingInlineProps));

ShardingTableRuleConfiguration tOrderItemRuleConfiguration = new
ShardingTableRuleConfiguration("t_order_item", "ds_${0..1}.t_order_item_${[0, 1]}
");
tOrderItemRuleConfiguration.setKeyGenerateStrategy(new
KeyGenerateStrategyConfiguration("order_item_id", "snowflake"));
tOrderRuleConfiguration.setTableShardingStrategy(new
StandardShardingStrategyConfiguration("order_item_id",
"tOrderItemInlineShardingAlgorithm"));
Properties tOrderItemShardingInlineProps = new Properties();
tOrderItemShardingInlineProps.setProperty("algorithm-expression", "t_order_item_$
{order_item_id % 2}");
tOrderRuleConfiguration.getShardingAlgorithms().putIfAbsent(
"tOrderItemInlineShardingAlgorithm", new ShardingSphereAlgorithmConfiguration(
"INLINE",tOrderItemShardingInlineProps));

ShardingRuleConfiguration shardingRuleConfiguration = new
ShardingRuleConfiguration();
shardingRuleConfiguration.getTables().add(tOrderRuleConfiguration);
shardingRuleConfiguration.getTables().add(tOrderItemRuleConfiguration);
shardingRuleConfiguration.getBindingTableGroups().add("t_order, t_order_item");
shardingRuleConfiguration.getBroadcastTables().add("t_bank");
// 默认分库策略
shardingRuleConfiguration.setDefaultDatabaseShardingStrategy(new
StandardShardingStrategyConfiguration("user_id", "default_db_strategy_inline"));
Properties defaultDatabaseStrategyInlineProps = new Properties();
defaultDatabaseStrategyInlineProps.setProperty("algorithm-expression", "ds_${user_
id % 2}");
shardingRuleConfiguration.getShardingAlgorithms().put("default_db_strategy_inline",
new ShardingSphereAlgorithmConfiguration("INLINE",
defaultDatabaseStrategyInlineProps));
// 分布式序列算法配置
Properties snowflakeProperties = new Properties();
shardingRuleConfiguration.getKeyGenerators().put("snowflake", new
ShardingSphereAlgorithmConfiguration("SNOWFLAKE", snowflakeProperties));

/* 数据加密规则配置 */
Properties encryptProperties = new Properties();

5.1. ShardingSphere-JDBC 77

Apache ShardingSphere document, v5.1.0

encryptProperties.setProperty("aes-key-value", "123456");
EncryptColumnRuleConfiguration columnConfigAes = new
EncryptColumnRuleConfiguration("username", "username", "", "username_plain", "name_
encryptor");
EncryptColumnRuleConfiguration columnConfigTest = new
EncryptColumnRuleConfiguration("pwd", "pwd", "assisted_query_pwd", "", "pwd_
encryptor");
EncryptTableRuleConfiguration encryptTableRuleConfig = new
EncryptTableRuleConfiguration("t_user", Arrays.asList(columnConfigAes,
columnConfigTest));

Map<String, ShardingSphereAlgorithmConfiguration> encryptAlgorithmConfigs = new
LinkedHashMap<>(2, 1);
encryptAlgorithmConfigs.put("name_encryptor", new
ShardingSphereAlgorithmConfiguration("AES", encryptProperties));
encryptAlgorithmConfigs.put("pwd_encryptor", new
ShardingSphereAlgorithmConfiguration("assistedTest", encryptProperties));
EncryptRuleConfiguration encryptRuleConfiguration = new
EncryptRuleConfiguration(Collections.singleton(encryptTableRuleConfig),
encryptAlgorithmConfigs);

/* 读写分离规则配置 */
Properties readwriteProps1 = new Properties();
readwriteProps1.setProperty("write-data-source-name", "write_ds0");
readwriteProps1.setProperty("read-data-source-names", "write_ds0_read0, write_ds0_
read1");
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration1 = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_0", "Static", readwriteProps1,
"roundRobin");
Properties readwriteProps2 = new Properties();
readwriteProps2.setProperty("write-data-source-name", "write_ds0");
readwriteProps2.setProperty("read-data-source-names", "write_ds1_read0, write_ds1_
read1");
ReadwriteSplittingDataSourceRuleConfiguration dataSourceConfiguration2 = new
ReadwriteSplittingDataSourceRuleConfiguration("ds_1", "Static", readwriteProps2,
"roundRobin");

//负载均衡算法
Map<String, ShardingSphereAlgorithmConfiguration> loadBalanceMaps = new HashMap<>
(1);
loadBalanceMaps.put("roundRobin", new ShardingSphereAlgorithmConfiguration("ROUND_
ROBIN", new Properties()));

ReadwriteSplittingRuleConfiguration readWriteSplittingyRuleConfiguration = new
ReadwriteSplittingRuleConfiguration(Arrays.asList(dataSourceConfiguration1,
dataSourceConfiguration2), loadBalanceMaps);

/* 其他配置 */

5.1. ShardingSphere-JDBC 78

Apache ShardingSphere document, v5.1.0

Properties otherProperties = new Properties();
otherProperties.setProperty("sql-show", "true");

/* shardingDataSource 就是最终被 ORM 框架或其他 jdbc 框架引用的数据源名称 */
DataSource shardingDataSource = ShardingSphereDataSourceFactory.
createDataSource(datasourceMaps, Arrays.asList(shardingRuleConfiguration,
readWriteSplittingyRuleConfiguration, encryptRuleConfiguration), otherProperties);

5.1.2 YAML配置

简介

YAML提供通过配置文件的方式与 ShardingSphere‐JDBC交互。配合治理模块一同使用时，持久化在配
置中心的配置均为 YAML格式。
YAML配置是最常见的配置方式，可以省略编程的复杂度，简化用户配置。

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

配置 YAML

ShardingSphere‐JDBC的 YAML配置文件通过 Schema名称、运行模式、数据源集合、规则集合以及属
性配置组成。

JDBC 中的数据源的别名。在集群模式，使用该参数联通 ShardingSphere-JDBC 与 ShardingSphere-
Proxy 共同使用。
默认值：logic_db
schemaName (?):

mode:

dataSources:

rules:
- !FOO_XXX

...
- !BAR_XXX

5.1. ShardingSphere-JDBC 79

Apache ShardingSphere document, v5.1.0

...

props:
key_1: value_1
key_2: value_2

模式详情请参见模式配置。
数据源详情请参见数据源配置。
规则详情请参见规则配置。

构建数据源

通过 YamlShardingSphereDataSourceFactory 工厂创建的 ShardingSphereDataSource 实现自 JDBC 的
标准接口 DataSource。

File yamlFile = // 指定 YAML 文件路径
DataSource dataSource = YamlShardingSphereDataSourceFactory.
createDataSource(yamlFile);

使用数据源

使用方式同 Java API。

语法说明

!!表示实例化该类
!表示自定义别名
-表示可以包含一个或多个
[]表示数组，可以与减号相互替换使用

模式配置

配置项说明

mode (?): # 不配置则默认内存模式
type: # 运行模式类型。可选配置：Memory、Standalone、Cluster
repository (?): # 久化仓库配置。Memory 类型无需持久化
overwrite: # 是否使用本地配置覆盖持久化配置

5.1. ShardingSphere-JDBC 80

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/mode
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/data-source
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules

Apache ShardingSphere document, v5.1.0

内存模式

mode:
type: Memory

单机模式

mode:
type: Standalone
repository:

type: # 持久化仓库类型
props: # 持久化仓库所需属性
foo_key: foo_value
bar_key: bar_value

overwrite: # 是否使用本地配置覆盖持久化配置

集群模式

mode:
type: Cluster
repository:

type: # 持久化仓库类型
props: # 持久化仓库所需属性
namespace: # 注册中心命名空间
server-lists: # 注册中心连接地址
foo_key: foo_value
bar_key: bar_value

overwrite: # 是否使用本地配置覆盖持久化配置

持久化仓库类型的详情，请参见内置持久化仓库类型列表。

数据源配置

数据源配置分为单数据源配置和多数据源配置。ShardingSphere‐JDBC支持所有的数据库 JDBC驱动和
连接池。
示例的数据库驱动为MySQL，连接池为HikariCP，可以更换为其他数据库驱动和连接池。

5.1. ShardingSphere-JDBC 81

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

配置项说明

dataSources: # 数据源配置，可配置多个 <data-source-name>
<data-source-name>: # 数据源名称

dataSourceClassName: # 数据源完整类名
driverClassName: # 数据库驱动类名，以数据库连接池自身配置为准
jdbcUrl: # 数据库 URL 连接，以数据库连接池自身配置为准
username: # 数据库用户名，以数据库连接池自身配置为准
password: # 数据库密码，以数据库连接池自身配置为准
... 数据库连接池的其它属性

配置示例

dataSources:
ds_1:

dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_1
username: root
password:

ds_2:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.jdbc.Driver
jdbcUrl: jdbc:mysql://localhost:3306/ds_2
username: root
password:

配置其他数据源

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 YAML规则配
置参考手册。

数据分片

配置项说明

rules:
- !SHARDING
tables: # 数据分片规则配置

<logic-table-name> (+): # 逻辑表名称
actualDataNodes (?): # 由数据源名 + 表名组成（参考 Inline 语法规则）
databaseStrategy (?): # 分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一

5.1. ShardingSphere-JDBC 82

Apache ShardingSphere document, v5.1.0

standard: # 用于单分片键的标准分片场景
shardingColumn: # 分片列名称
shardingAlgorithmName: # 分片算法名称

complex: # 用于多分片键的复合分片场景
shardingColumns: # 分片列名称，多个列以逗号分隔
shardingAlgorithmName: # 分片算法名称

hint: # Hint 分片策略
shardingAlgorithmName: # 分片算法名称

none: # 不分片
tableStrategy: # 分表策略，同分库策略
keyGenerateStrategy: # 分布式序列策略
column: # 自增列名称，缺省表示不使用自增主键生成器
keyGeneratorName: # 分布式序列算法名称

autoTables: # 自动分片表规则配置
t_order_auto: # 逻辑表名称
actualDataSources (?): # 数据源名称
shardingStrategy: # 切分策略
standard: # 用于单分片键的标准分片场景

shardingColumn: # 分片列名称
shardingAlgorithmName: # 自动分片算法名称

bindingTables (+): # 绑定表规则列表
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>

broadcastTables (+): # 广播表规则列表
- <table-name>
- <table-name>

defaultDatabaseStrategy: # 默认数据库分片策略
defaultTableStrategy: # 默认表分片策略
defaultKeyGenerateStrategy: # 默认的分布式序列策略
defaultShardingColumn: # 默认分片列名称

分片算法配置
shardingAlgorithms:

<sharding-algorithm-name> (+): # 分片算法名称
type: # 分片算法类型
props: # 分片算法属性配置
...

分布式序列算法配置
keyGenerators:

<key-generate-algorithm-name> (+): # 分布式序列算法名称
type: # 分布式序列算法类型
props: # 分布式序列算法属性配置
...

5.1. ShardingSphere-JDBC 83

Apache ShardingSphere document, v5.1.0

读写分离

配置项说明

rules:
- !READWRITE_SPLITTING
dataSources:

<data-source-name> (+): # 读写分离逻辑数据源名称
type: # 读写分离类型，比如：Static，Dynamic
props:

auto-aware-data-source-name: # 自动发现数据源名称 (与数据库发现配合使用)
write-data-source-name: # 写库数据源名称
read-data-source-names: # 读库数据源名称，多个从数据源用逗号分隔

loadBalancerName: # 负载均衡算法名称

负载均衡算法配置
loadBalancers:

<load-balancer-name> (+): # 负载均衡算法名称
type: # 负载均衡算法类型
props: # 负载均衡算法属性配置
...

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见使用规范。

高可用

配置项说明

rules:
- !DB_DISCOVERY
dataSources:

<data-source-name> (+): # 逻辑数据源名称
dataSourceNames: # 数据源名称列表
- <data-source>
- <data-source>

discoveryHeartbeatName: # 检测心跳名称
discoveryTypeName: # 数据库发现类型名称

心跳检测配置
discoveryHeartbeats:

<discovery-heartbeat-name> (+): # 心跳名称
props:
keep-alive-cron: # cron 表达式，如：'0/5 * * * * ?'

数据库发现类型配置
discoveryTypes:

<discovery-type-name> (+): # 数据库发现类型名称

5.1. ShardingSphere-JDBC 84

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/use-norms

Apache ShardingSphere document, v5.1.0

type: # 数据库发现类型，如： MGR、openGauss
props (?):
group-name: 92504d5b-6dec-11e8-91ea-246e9612aaf1 # 数据库发现类型必要参数，如

MGR 的 group-name

数据加密

配置项说明

rules:
- !ENCRYPT
tables:

<table-name> (+): # 加密表名称
columns:
<column-name> (+): # 加密列名称

cipherColumn: # 密文列名称
assistedQueryColumn (?): # 查询辅助列名称
plainColumn (?): # 原文列名称
encryptorName: # 加密算法名称

queryWithCipherColumn(?): # 该表是否使用加密列进行查询

加密算法配置
encryptors:

<encrypt-algorithm-name> (+): # 加解密算法名称
type: # 加解密算法类型
props: # 加解密算法属性配置
...

queryWithCipherColumn: # 是否使用加密列进行查询。在有原文列的情况下，可以使用原文列进行查询

算法类型的详情，请参见内置加密算法列表。

影子库

配置项说明

rules:
- !SHADOW
dataSources:

shadowDataSource:
sourceDataSourceName: # 生产数据源名称
shadowDataSourceName: # 影子数据源名称

tables:
<table-name>:
dataSourceNames: # 影子表关联影子数据源名称列表

5.1. ShardingSphere-JDBC 85

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

- <shadow-data-source>
shadowAlgorithmNames: # 影子表关联影子算法名称列表
- <shadow-algorithm-name>

defaultShadowAlgorithmName: # 默认影子算法名称
shadowAlgorithms:

<shadow-algorithm-name> (+): # 影子算法名称
type: # 影子算法类型
props: # 影子算法属性配置
...

混合规则

混合配置的规则项之间的叠加使用是通过数据源名称和表名称关联的。
如果前一个规则是面向数据源聚合的，下一个规则在配置数据源时，则需要使用前一个规则配置的聚合
后的逻辑数据源名称；同理，如果前一个规则是面向表聚合的，下一个规则在配置表时，则需要使用前
一个规则配置的聚合后的逻辑表名称。

配置项说明

dataSources: # 配置真实存在的数据源作为名称
write_ds:

... 省略具体配置
read_ds_0:

... 省略具体配置
read_ds_1:

... 省略具体配置

rules:
- !SHARDING # 配置数据分片规则

tables:
t_user:
actualDataNodes: ds.t_user_${0..1} # 数据源名称 `ds` 使用读写分离配置的逻辑数据源

名称
tableStrategy:

standard:
shardingColumn: user_id
shardingAlgorithmName: t_user_inline

shardingAlgorithms:
t_user_inline:

type: INLINE
props:

algorithm-expression: t_user_${user_id % 2}

- !ENCRYPT # 配置数据加密规则
tables:

5.1. ShardingSphere-JDBC 86

Apache ShardingSphere document, v5.1.0

t_user: # 表名称 `t_user` 使用数据分片配置的逻辑表名称
columns:

pwd:
plainColumn: plain_pwd
cipherColumn: cipher_pwd
encryptorName: encryptor_aes

encryptors:
encryptor_aes:

type: aes
props:

aes-key-value: 123456abc

- !READWRITE_SPLITTING # 配置读写分离规则
dataSources:
ds: # 读写分离的逻辑数据源名称 `ds` 用于在数据分片中使用
type: Static
props:

write-data-source-name: write_ds # 使用真实存在的数据源名称 `write_ds`
read-data-source-names: read_ds_0, read_ds_1 # 使用真实存在的数据源名称

`read_ds_0` `read_ds_1`
loadBalancerName: roundRobin

loadBalancers:
roundRobin:

type: ROUND_ROBIN

props:
sql-show: true

SQL解析

配置项说明

rules:
- !SQL_PARSER
sqlCommentParseEnabled: # 是否解析 SQL 注释
sqlStatementCache: # SQL 语句本地缓存配置项

initialCapacity: # 本地缓存初始容量
maximumSize: # 本地缓存最大容量
concurrencyLevel: # 本地缓存并发级别，最多允许线程并发更新的个数

parseTreeCache: # 解析树本地缓存配置项
initialCapacity: # 本地缓存初始容量
maximumSize: # 本地缓存最大容量
concurrencyLevel: # 本地缓存并发级别，最多允许线程并发更新的个数

5.1. ShardingSphere-JDBC 87

Apache ShardingSphere document, v5.1.0

5.1.3 Spring Boot Starter

简介

ShardingSphere‐JDBC提供官方的 Spring Boot Starter，使开发者可以非常便捷的整合 ShardingSphere‐
JDBC和 Spring Boot。

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

在 Spring中使用 ShardingSphere数据源

直接通过注入的方式即可使用 ShardingSphereDataSource；或者将 ShardingSphereDataSource配置在
JPA、Hibernate、MyBatis等 ORM框架中配合使用。

@Resource
private DataSource dataSource;

模式配置

缺省配置为使用内存模式。

配置项说明

spring.shardingsphere.mode.type= # 运行模式类型。可选配置：Memory、Standalone、Cluster
spring.shardingsphere.mode.repository= # 持久化仓库配置。Memory 类型无需持久化
spring.shardingsphere.mode.overwrite= # 是否使用本地配置覆盖持久化配置

5.1. ShardingSphere-JDBC 88

Apache ShardingSphere document, v5.1.0

内存模式

spring.shardingsphere.mode.type=Memory

单机模式

spring.shardingsphere.mode.type=Standalone
spring.shardingsphere.mode.repository.type= # 持久化仓库类型
spring.shardingsphere.mode.repository.props.<key>= # 持久化仓库所需属性
spring.shardingsphere.mode.overwrite= # 是否使用本地配置覆盖持久化配置

集群模式

spring.shardingsphere.mode.type=Cluster
spring.shardingsphere.mode.repository.type= # 持久化仓库类型
spring.shardingsphere.mode.repository.props.namespace= # 注册中心命名空间
spring.shardingsphere.mode.repository.props.server-lists= # 注册中心连接地址
spring.shardingsphere.mode.repository.props.<key>= # 持久化仓库所需属性
spring.shardingsphere.mode.overwrite= # 是否使用本地配置覆盖持久化配置

持久化仓库类型的详情，请参见内置持久化仓库类型列表。

数据源配置

使用本地数据源

配置项说明

spring.shardingsphere.datasource.names= # 真实数据源名称，多个数据源用逗号区分

<actual-data-source-name> 表示真实数据源名称
spring.shardingsphere.datasource.<actual-data-source-name>.type= # 数据库连接池全类名
spring.shardingsphere.datasource.<actual-data-source-name>.driver-class-name= # 数据
库驱动类名，以数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.jdbc-url= # 数据库 URL 连
接，以数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.username= # 数据库用户名，
以数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.password= # 数据库密码，以
数据库连接池自身配置为准
spring.shardingsphere.datasource.<actual-data-source-name>.<xxx>= # ... 数据库连接池的
其它属性

5.1. ShardingSphere-JDBC 89

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

配置示例

示例的数据库驱动为MySQL，连接池为HikariCP，可以更换为其他数据库驱动和连接池。

配置真实数据源
spring.shardingsphere.datasource.names=ds1,ds2

配置第 1 个数据源
spring.shardingsphere.datasource.ds1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds1.jdbc-url=jdbc:mysql://localhost:3306/ds1
spring.shardingsphere.datasource.ds1.username=root
spring.shardingsphere.datasource.ds1.password=

配置第 2 个数据源
spring.shardingsphere.datasource.ds2.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds2.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds2.jdbc-url=jdbc:mysql://localhost:3306/ds2
spring.shardingsphere.datasource.ds2.username=root
spring.shardingsphere.datasource.ds2.password=

使用 JNDI数据源

如果计划使用 JNDI 配置数据库，在应用容器（如 Tomcat）中使用 ShardingSphere‐JDBC 时，可使
用 spring.shardingsphere.datasource.${datasourceName}.jndiName 来代替数据源的一
系列配置。

配置项说明

spring.shardingsphere.datasource.names= # 真实数据源名称，多个数据源用逗号区分

<actual-data-source-name> 表示真实数据源名称
spring.shardingsphere.datasource.<actual-data-source-name>.jndi-name= # 数据源 JNDI

配置示例

配置真实数据源
spring.shardingsphere.datasource.names=ds1,ds2

配置第 1 个数据源
spring.shardingsphere.datasource.ds1.jndi-name=java:comp/env/jdbc/ds1
配置第 2 个数据源
spring.shardingsphere.datasource.ds2.jndi-name=java:comp/env/jdbc/ds2

5.1. ShardingSphere-JDBC 90

Apache ShardingSphere document, v5.1.0

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 Spring Boot
Starter规则配置参考手册。

数据分片

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

标准分片表配置
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= # 由数据
源名 + 表名组成，以小数点分隔。多个表以逗号分隔，支持 inline 表达式。缺省表示使用已知数据源与逻辑表
名称生成数据节点，用于广播表（即每个库中都需要一个同样的表用于关联查询，多为字典表）或只分库不分表且
所有库的表结构完全一致的情况

分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一

用于单分片键的标准分片场景
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-column= # 分片列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.sharding-algorithm-name= # 分片算法名称

用于多分片键的复合分片场景
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-columns= # 分片列名称，多个列以逗号分隔
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
sharding-algorithm-name= # 分片算法名称

用于 Hint 的分片策略
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.hint.
sharding-algorithm-name= # 分片算法名称

分表策略，同分库策略
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= # 省略

自动分片表配置
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.actual-data-
sources= # 数据源名

spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-column= # 分片列名称
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-algorithm-name= # 自动分片算法名称

5.1. ShardingSphere-JDBC 91

Apache ShardingSphere document, v5.1.0

分布式序列策略配置
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # 分布式序列列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # 分布式序列算法名称

spring.shardingsphere.rules.sharding.binding-tables[0]= # 绑定表规则列表
spring.shardingsphere.rules.sharding.binding-tables[1]= # 绑定表规则列表
spring.shardingsphere.rules.sharding.binding-tables[x]= # 绑定表规则列表

spring.shardingsphere.rules.sharding.broadcast-tables[0]= # 广播表规则列表
spring.shardingsphere.rules.sharding.broadcast-tables[1]= # 广播表规则列表
spring.shardingsphere.rules.sharding.broadcast-tables[x]= # 广播表规则列表

spring.shardingsphere.sharding.default-database-strategy.xxx= # 默认数据库分片策略
spring.shardingsphere.sharding.default-table-strategy.xxx= # 默认表分片策略
spring.shardingsphere.sharding.default-key-generate-strategy.xxx= # 默认分布式序列策略
spring.shardingsphere.sharding.default-sharding-column= # 默认分片列名称

分片算法配置
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
type= # 分片算法类型
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx=# 分片算法属性配置

分布式序列算法配置
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # 分布式序列算法类型
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # 分布式序列算法属性配置

算法类型的详情，请参见内置分片算法列表和内置分布式序列算法列表。

注意事项

行表达式标识符可以使用 ${...}或 $->{...}，但前者与 Spring本身的属性文件占位符冲突，因此在
Spring环境中使用行表达式标识符建议使用 $->{...}。

5.1. ShardingSphere-JDBC 92

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen

Apache ShardingSphere document, v5.1.0

读写分离

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.type= # 读写分离类型，如: Static，Dynamic
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.auto-aware-data-source-name= # 自动发现数据源名称 (与数据库发现配
合使用)
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.write-data-source-name= # 写数据源名称
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.props.read-data-source-names= # 读数据源名称，多个从数据源用逗号分隔
spring.shardingsphere.rules.readwrite-splitting.data-sources.<readwrite-splitting-
data-source-name>.load-balancer-name= # 负载均衡算法名称

负载均衡算法配置
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.type= # 负载均衡算法类型
spring.shardingsphere.rules.readwrite-splitting.load-balancers.<load-balance-
algorithm-name>.props.xxx= # 负载均衡算法属性配置

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见使用规范。

高可用

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.data-source-names= # 数据源名称，多个数据源用逗号分隔 如：ds_0, ds_1
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-heartbeat-name= # 检测心跳名称
spring.shardingsphere.rules.database-discovery.data-sources.<database-discovery-
data-source-name>.discovery-type-name= # 数据库发现类型名称

spring.shardingsphere.rules.database-discovery.discovery-heartbeats.<discovery-
heartbeat-name>.props.keep-alive-cron= # cron 表达式，如：'0/5 * * * * ?'

spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.type= # 数据库发现类型，如： MGR、openGauss
spring.shardingsphere.rules.database-discovery.discovery-types.<discovery-type-
name>.props.group-name= # 数据库发现类型必要参数，如 MGR 的 group-name

5.1. ShardingSphere-JDBC 93

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/use-norms

Apache ShardingSphere document, v5.1.0

数据加密

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.encrypt.tables.<table-name>.query-with-cipher-column= #
该表是否使用加密列进行查询
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
cipher-column= # 加密列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # 查询列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # 原文列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # 加密算法名称

加密算法配置
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= # 加密
算法类型
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
加密算法属性配置

spring.shardingsphere.rules.encrypt.queryWithCipherColumn= # 是否使用加密列进行查询。在
有原文列的情况下，可以使用原文列进行查询

算法类型的详情，请参见内置加密算法列表。

影子库

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置，请参考使用手册

spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.source-data-
source-name= # 生产数据源名称
spring.shardingsphere.rules.shadow.data-sources.shadow-data-source.shadow-data-
source-name= # 影子数据源名称

spring.shardingsphere.rules.shadow.tables.<table-name>.data-source-names= # 影子表关
联影子数据源名称列表（多个值用"," 隔开）
spring.shardingsphere.rules.shadow.tables.<table-name>.shadow-algorithm-names= # 影
子表关联影子算法名称列表（多个值用"," 隔开）

spring.shardingsphere.rules.shadow.defaultShadowAlgorithmName= # 默认影子算法名称，选配
项。

5.1. ShardingSphere-JDBC 94

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.type=
影子算法类型
spring.shardingsphere.rules.shadow.shadow-algorithms.<shadow-algorithm-name>.props.
xxx= # 影子算法属性配置

混合规则

混合配置的规则项之间的叠加使用是通过数据源名称和表名称关联的。
如果前一个规则是面向数据源聚合的，下一个规则在配置数据源时，则需要使用前一个规则配置的聚合
后的逻辑数据源名称；同理，如果前一个规则是面向表聚合的，下一个规则在配置表时，则需要使用前
一个规则配置的聚合后的逻辑表名称。

配置项说明

数据源配置
数据源名称，多数据源以逗号分隔
spring.shardingsphere.datasource.names= write-ds0,write-ds1,write-ds0-read0,write-
ds1-read0

spring.shardingsphere.datasource.write-ds0.url= # 数据库 URL 连接
spring.shardingsphere.datasource.write-ds0.type= # 数据库连接池类名称
spring.shardingsphere.datasource.write-ds0.driver-class-name= # 数据库驱动类名
spring.shardingsphere.datasource.write-ds0.username= # 数据库用户名
spring.shardingsphere.datasource.write-ds0.password= # 数据库密码
spring.shardingsphere.datasource.write-ds0.xxx= # 数据库连接池的其它属性

spring.shardingsphere.datasource.write-ds1.url= # 数据库 URL 连接
忽略其他数据库配置项

spring.shardingsphere.datasource.write-ds0-read0.url= # 数据库 URL 连接
忽略其他数据库配置项

spring.shardingsphere.datasource.write-ds1-read0.url= # 数据库 URL 连接
忽略其他数据库配置项

分片规则配置
分库策略
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
column=user_id
spring.shardingsphere.rules.sharding.default-database-strategy.standard.sharding-
algorithm-name=default-database-strategy-inline
绑定表规则，多组绑定规则使用数组形式配置
spring.shardingsphere.rules.sharding.binding-tables[0]=t_user,t_user_detail # 绑定表
名称，多个表之间以逗号分隔
spring.shardingsphere.rules.sharding.binding-tables[1]= # 绑定表名称，多个表之间以逗号分

5.1. ShardingSphere-JDBC 95

Apache ShardingSphere document, v5.1.0

隔
spring.shardingsphere.rules.sharding.binding-tables[x]= # 绑定表名称，多个表之间以逗号分
隔
广播表规则配置
spring.shardingsphere.rules.sharding.broadcast-tables= # 广播表名称，多个表之间以逗号分隔

分表策略
表达式 `ds_$->{0..1}`枚举的数据源为读写分离配置的逻辑数据源名称
spring.shardingsphere.rules.sharding.tables.t_user.actual-data-nodes=ds_$->{0..1}.
t_user_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.table-strategy.standard.
sharding-algorithm-name=user-table-strategy-inline

spring.shardingsphere.rules.sharding.tables.t_user_detail.actual-data-nodes=ds_$->
{0..1}.t_user_detail_$->{0..1}
spring.shardingsphere.rules.sharding.tables.t_user_detail.table-strategy.standard.
sharding-column=user_id
spring.shardingsphere.rules.sharding.tables.t_user_detail.table-strategy.standard.
sharding-algorithm-name=user-detail-table-strategy-inline

数据加密配置
`t_user` 使用分片规则配置的逻辑表名称
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.cipher-
column=username
spring.shardingsphere.rules.encrypt.tables.t_user.columns.username.encryptor-
name=name-encryptor
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.cipher-column=pwd
spring.shardingsphere.rules.encrypt.tables.t_user.columns.pwd.encryptor-name=pwd-
encryptor

数据加密算法配置
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.name-encryptor.props.aes-key-
value=123456abc
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.type=AES
spring.shardingsphere.rules.encrypt.encryptors.pwd-encryptor.props.aes-key-
value=123456abc

分布式序列策略配置
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.
column=user_id
spring.shardingsphere.rules.sharding.tables.t_user.key-generate-strategy.key-
generator-name=snowflake

分片算法配置
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-

5.1. ShardingSphere-JDBC 96

Apache ShardingSphere document, v5.1.0

inline.type=INLINE
表达式`ds_$->{user_id % 2}` 枚举的数据源为读写分离配置的逻辑数据源名称
spring.shardingsphere.rules.sharding.sharding-algorithms.default-database-strategy-
inline.algorithm-expression=ds_$->{user_id % 2}
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.user-table-strategy-
inline.algorithm-expression=t_user_$->{user_id % 2}

spring.shardingsphere.rules.sharding.sharding-algorithms.user-detail-table-
strategy-inline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.user-detail-table-
strategy-inline.algorithm-expression=t_user_detail_$->{user_id % 2}

分布式序列算法配置
spring.shardingsphere.rules.sharding.key-generators.snowflake.type=SNOWFLAKE

读写分离策略配置
ds_0,ds_1 为读写分离配置的逻辑数据源名称
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.type=Static
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.props.write-data-
source-name=write-ds0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.props.read-data-
source-names=write-ds0-read0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_0.load-balancer-
name=read-random
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.type=Static
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.props.write-data-
source-name=write-ds1
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.props.read-data-
source-names=write-ds1-read0
spring.shardingsphere.rules.readwrite-splitting.data-sources.ds_1.load-balancer-
name=read-random

负载均衡算法配置
spring.shardingsphere.rules.readwrite-splitting.load-balancers.read-random.
type=RANDOM

SQL解析

配置项说明

spring.shardingsphere.rules.sql-parser.sql-comment-parse-enabled= # 是否解析 SQL 注释

spring.shardingsphere.rules.sql-parser.sql-statement-cache.initial-capacity= # SQL
语句本地缓存初始容量

5.1. ShardingSphere-JDBC 97

Apache ShardingSphere document, v5.1.0

spring.shardingsphere.rules.sql-parser.sql-statement-cache.maximum-size= # SQL 语句
本地缓存最大容量
spring.shardingsphere.rules.sql-parser.sql-statement-cache.concurrency-level= # SQL
语句本地缓存并发级别，最多允许线程并发更新的个数

spring.shardingsphere.rules.sql-parser.parse-tree-cache.initial-capacity= # 解析树本
地缓存初始容量
spring.shardingsphere.rules.sql-parser.parse-tree-cache.maximum-size= # 解析树本地缓存
最大容量
spring.shardingsphere.rules.sql-parser.parse-tree-cache.concurrency-level= # 解析树本
地缓存并发级别，最多允许线程并发更新的个数

5.1.4 Spring命名空间

简介

ShardingSphere‐JDBC 提供官方的 Spring 命名空间，使开发者可以非常便捷的整合 ShardingSphere‐
JDBC和 Spring。

使用步骤

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

配置 Spring Bean

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‐5.0.0.xs
d

<shardingsphere:data‐source />

5.1. ShardingSphere-JDBC 98

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

名称 类型 说明
id 属性 Spring Bean Id
schema‐name (?) 属性 JDBC数据源别名
data‐source‐names 标签 数据源名称，多个数据源以逗号

分隔
rule‐refs 标签 规则名称，多个规则以逗号分隔
mode (?) 标签 运行模式配置
props (?) 标签

属性配置，详情请参见‘属性配
置

<https://shardingsphere
.apache.org/d

ocument/current/cn/user‐
manual/shardi ngsphere‐
jdbc/configuration/props>‘__

配置示例

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=

"..." rule-refs="...">
<shardingsphere:mode type="..." />
<props>

<prop key="xxx.xxx">${xxx.xxx}</prop>
</props>

</shardingsphere:data-source>
</beans>

5.1. ShardingSphere-JDBC 99

https://shardingsphere.apache.org/d
https://shardingsphere.apache.org/d

Apache ShardingSphere document, v5.1.0

在 Spring中使用 ShardingSphere数据源

使用方式同 Spring Boot Starter。

模式配置

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource‐5.1.0.xs
d

<shardingsphere:mode />

名称 类型 说明 默认值
type 属性 运行模式类型。可选配置：Memory、Standalone、Cluster
repository‐ref (?) 属性 持久化仓库 Bean引用。Memory类型无需持久化
overwrite (?) 属性 是否使用本地配置覆盖持久化配置 false

内存模式

缺省配置。

配置示例

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd">

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"..." rule-refs="..." />
</beans>

5.1. ShardingSphere-JDBC 100

http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/datasource/datasource-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

单机模式

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/mode‐repository/standalone/r
epository‐5.0.0.xsd

名称 类型 说明
id 属性 持久化仓库 Bean名称
type 属性 持久化仓库类型
props (?) 标签 持久化仓库所需属性

配置示例

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:standalone="http://shardingsphere.apache.org/schema/shardingsphere/

mode-repository/standalone"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/standalone

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/standalone/repository.xsd">

<standalone:repository id="standaloneRepository" type="File">
<props>

<prop key="path">target</prop>
</props>

</standalone:repository>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"..." rule-refs="..." >

<shardingsphere:mode type="Standalone" repository-ref="standaloneRepository
" overwrite="true" />

</shardingsphere:data-source>
</beans>

5.1. ShardingSphere-JDBC 101

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/standalone/repository-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

集群模式

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/mode‐repository/cluster/repo
sitory‐5.0.0.xsd

名称 类型 说明
id 属性 持久化仓库 Bean名称
type 属性 持久化仓库类型
namespace 属性 注册中心命名空间
server‐lists 属性 注册中心连接地址
props (?) 标签 持久化仓库所需属性

配置示例

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:cluster="http://shardingsphere.apache.org/schema/shardingsphere/mode-

repository/cluster"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster

http://shardingsphere.apache.org/schema/shardingsphere/
mode-repository/cluster/repository.xsd">

<cluster:repository id="clusterRepository" type="Zookeeper" namespace=
"regCenter" server-lists="localhost:3182">

<props>
<prop key="max-retries">3</prop>
<prop key="operation-timeout-milliseconds">1000</prop>

</props>
</cluster:repository>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"..." rule-refs="...">

<shardingsphere:mode type="Cluster" repository-ref="clusterRepository"
overwrite="true" />

5.1. ShardingSphere-JDBC 102

http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/mode-repository/cluster/repository-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

</shardingsphere:data-source>
</beans>

持久化仓库类型的详情，请参见内置持久化仓库类型列表。

数据源配置

任何配置成为 Spring Bean的数据源对象即可与 ShardingSphere‐JDBC的 Spring命名空间配合使用。

配置示例

示例的数据库驱动为MySQL，连接池为HikariCP，可以更换为其他数据库驱动和连接池。

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

">
<bean id="ds1" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close

">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="ds2" class="com.zaxxer.hikari.HikariDataSource" destroy-method="close
">

<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/ds2" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<shardingsphere:data-source id="ds" schema-name="foo_schema" data-source-names=
"ds1,ds2" rule-refs="..." />
</beans>

5.1. ShardingSphere-JDBC 103

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/metadata-repository/

Apache ShardingSphere document, v5.1.0

规则配置

规则是 Apache ShardingSphere面向可插拔的一部分。本章节是 ShardingSphere‐JDBC的 Spring命名空
间规则配置参考手册。

数据分片

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‐5.1.0.xsd

<sharding:rule />

名称 类型 说明
id 属性 Spring Bean Id
table‐rules (?) 标签 分片表规则配置
auto‐table‐rules (?) 标签 自动化分片表规则配置
binding‐table‐rules (?) 标签 绑定表规则配置
broadcast‐table‐rules (?) 标签 广播表规则配置
default‐database‐strategy‐ref (?) 属性 默认分库策略名称
default‐table‐strategy‐ref (?) 属性 默认分表策略名称
default‐key‐generate‐strategy‐ref (?) 属性 默认分布式序列策略名称
default‐sharding‐column (?) 属性 默认分片列名称

<sharding:table‐rule />

名称 •
类型 *

说明

logic‐table 属性 逻辑表名称
actual‐data‐nodes 属性 由数据源名 +表名组成，以小数

点分隔。多个表以逗号分隔，支
持 inline表达式。缺省表示使用
已知数据源与逻辑表名称生成
数据节点，用于广播表（即每个
库中都需要一个同样的表用于
关联查询，多为字典表）或只分
库不分表且所有库的表结构完
全一致的情况

actual‐data‐sources 属性 自动分片表数据源名
database‐strategy‐ref 属性 标准分片表分库策略名称
table‐strategy‐ref 属性 标准分片表分表策略名称
sharding‐strategy‐ref 属性 自动分片表策略名称
key‐generate‐strategy‐ref 属性 分布式序列策略名称

5.1. ShardingSphere-JDBC 104

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

<sharding:binding‐table‐rules />

名称 类型 说明
binding‐table‐rule (+) 标签 绑定表规则配置

<sharding:binding‐table‐rule />

名称 类型 说明
logic‐tables 属性 绑定表名称，多个表以逗号分隔

<sharding:broadcast‐table‐rules />

名称 类型 说明
broadcast‐table‐rule (+) 标签 广播表规则配置

<sharding:broadcast‐table‐rule />

名称 类型 说明
table 属性 广播表名称

<sharding:standard‐strategy />

名称 类型 说明
id 属性 标准分片策略名称
sharding‐column 属性 分片列名称
algorithm‐ref 属性 分片算法名称

<sharding:complex‐strategy />

名称 类型 说明
id 属性 复合分片策略名称
sharding‐columns 属性 分片列名称，多个列以逗号分隔
algorithm‐ref 属性 分片算法名称

<sharding:hint‐strategy />

名称 类型 说明
id 属性 Hint分片策略名称
algorithm‐ref 属性 分片算法名称

<sharding:none‐strategy />

名称 类型 说明
id 属性 分片策略名称

5.1. ShardingSphere-JDBC 105

Apache ShardingSphere document, v5.1.0

<sharding:key‐generate‐strategy />

名称 类型 说明
id 属性 分布式序列策略名称
column 属性 分布式序列列名称
algorithm‐ref 属性 分布式序列算法名称

<sharding:sharding‐algorithm />

名称 类型 说明
id 属性 分片算法名称
type 属性 分片算法类型
props (?) 标签 分片算法属性配置

<sharding:key‐generate‐algorithm />

名称 类型 说明
id 属性 分布式序列算法名称
type 属性 分布式序列算法类型
props (?) 标签 分布式序列算法属性配置

算法类型的详情，请参见内置分片算法列表和内置分布式序列算法列表。

注意事项

行表达式标识符可以使用 ${...}或 $->{...}，但前者与 Spring本身的属性文件占位符冲突，因此在
Spring环境中使用行表达式标识符建议使用 $->{...}。

读写分离

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/readwrite‐splitting/readwrite‐
splitting‐5.1.0.xsd

<readwrite‐splitting:rule />

名称 类型 说明
id 属性 Spring Bean Id
data‐source‐rule (+) 标签 读写分离数据源规则配置

<readwrite‐splitting:data‐source‐rule />

<readwrite‐splitting:load‐balance‐algorithm />

5.1. ShardingSphere-JDBC 106

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

名称 类型 说明
id 属性 负载均衡算法名称
type 属性 负载均衡算法类型
props (?) 标签 负载均衡算法属性配置

算法类型的详情，请参见内置负载均衡算法列表。查询一致性路由的详情，请参见使用规范。

高可用

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/database‐discovery/database‐
discovery‐5.1.0.xsd

<database‐discovery:rule />

名称 类型 说明
id 属性 Spring Bean Id
data‐source‐rule (+) 标签 数据源规则配置
discovery‐heartbeat (+) 标签 检测心跳规则配置

<database‐discovery:data‐source‐rule />

名称 类型 说明
id 属性 数据源规则名称
data‐source‐names 属性 数据源名称，多个数据源用逗号分隔如：ds_0, ds_1
discovery‐heartbeat‐name 属性 检测心跳名称
discovery‐type‐name 属性 数据库发现类型名称

<database‐discovery:discovery‐heartbeat />

名称 类型 说明
id 属性 监听心跳名称
props 标签 监听心跳属性配置，keep‐alive‐cron属性配置 cron表达式，如：‘0/5 * * * * ?’

<database‐discovery:discovery‐type />

名称 类型 说明
id 属性 数据库发现类型名称
type 属性 数据库发现类型，如：MGR、openGauss
props (?) 标签 数据库发现类型配置，如MGR的 group‐name属性配置

5.1. ShardingSphere-JDBC 107

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
https://shardingsphere.apache.org/document/current/cn/features/readwrite-splitting/use-norms
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/database-discovery/database-discovery-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

数据加密

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt‐5.1.0.xsd

<encrypt:rule />

名称 类
型

说明 默 认
值

id 属
性

Spring Bean Id

queryWithCipherCol‐
umn (?)

属
性

是否使用加密列进行查询。在有原文列的情况下，可以使用
原文列进行查询

true

table (+) 标
签

加密表配置

<encrypt:table />

名称 类
型

说明

name 属
性

加密表名称

column (+) 标
签

加密列配置

query‐with‐cipher‐
column(?)

属
性

该表是否使用加密列进行查询。在有原文列的情况下，可以使用原
文列进行查询

<encrypt:column />

名称 类型 说明
logic‐column 属性 加密列逻辑名称
cipher‐column 属性 加密列名称
assisted‐query‐column (?) 属性 查询辅助列名称
plain‐column (?) 属性 原文列名称
encrypt‐algorithm‐ref 属性 加密算法名称

<encrypt:encrypt‐algorithm />

名称 类型 说明
id 属性 加密算法名称
type 属性 加密算法类型
props (?) 标签 加密算法属性配置

算法类型的详情，请参见内置加密算法列表。

5.1. ShardingSphere-JDBC 108

http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.1.0.xsd
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

影子库

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow‐5.1.0.xsd

<shadow:rule />

名称 类型 说明
id 属性 Spring Bean Id
data‐source(?) 标签 影子数据源配置
default‐shadow‐algorithm‐name(?) 标签 默认影子算法配置
shadow‐table(?) 标签 影子表配置

<shadow:data‐source />

名称 类型 说明
id 属性 Spring Bean Id
source‐data‐source‐name 属性 生产数据源名称
shadow‐data‐source‐name 属性 影子数据源名称

<shadow:default‐shadow‐algorithm‐name />

名称 类型 说明
name 属性 默认影子算法名称

<shadow:shadow‐table />

名称 类型 说明
name 属性 影子表名称
data‐sources 属性 影子表关联影子数据源名称列表（多个值用”,“隔开）
algorithm (?) 标签 影子表关联影子算法配置

<shadow:algorithm />

名称 类型 说明
shadow‐algorithm‐ref 属性 影子表关联影子算法名称

<shadow:shadow‐algorithm />

名称 类型 说明
id 属性 影子算法名称
type 属性 影子算法类型
props (?) 标签 影子算法属性配置

5.1. ShardingSphere-JDBC 109

http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

SQL解析

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/sql‐parser/sql‐parser‐5.1.0.xsd

<sql‐parser:rule />

名称 类型 说明
id 属性 Spring Bean Id
sql‐comment‐parse‐enable 属性 是否解析 SQL注释
parse‐tree‐cache‐ref 属性 解析树本地缓存名称
sql‐statement‐cache‐ref 属性 SQL语句本地缓存名称

<sql‐parser:cache‐option />

名称 类型 说明
id 属性 本地缓存配置项名称
initial‐capacity 属性 本地缓存初始容量
maximum‐size 属性 本地缓存最大容量
concurrency‐level 属性 本地缓存并发级别，最多允许线程并发更新的个数

混合规则

混合配置的规则项之间的叠加使用是通过数据源名称和表名称关联的。
如果前一个规则是面向数据源聚合的，下一个规则在配置数据源时，则需要使用前一个规则配置的聚合
后的逻辑数据源名称；同理，如果前一个规则是面向表聚合的，下一个规则在配置表时，则需要使用前
一个规则配置的聚合后的逻辑表名称。

配置项说明

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:shardingsphere="http://shardingsphere.apache.org/schema/

shardingsphere/datasource"
xmlns:readwrite-splitting="http://shardingsphere.apache.org/schema/

shardingsphere/readwrite-splitting"
xmlns:encrypt="http://shardingsphere.apache.org/schema/shardingsphere/

encrypt"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
datasource

5.1. ShardingSphere-JDBC 110

http://shardingsphere.apache.org/schema/shardingsphere/sql-parser/sql-parser-5.1.0.xsd

Apache ShardingSphere document, v5.1.0

http://shardingsphere.apache.org/schema/shardingsphere/
datasource/datasource.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting

http://shardingsphere.apache.org/schema/shardingsphere/
readwrite-splitting/readwrite-splitting.xsd

http://shardingsphere.apache.org/schema/shardingsphere/
encrypt

http://shardingsphere.apache.org/schema/shardingsphere/
encrypt/encrypt.xsd

">
<bean id="write_ds0" class=" com.zaxxer.hikari.HikariDataSource" init-method=

"init" destroy-method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="jdbcUrl" value="jdbc:mysql://localhost:3306/write_ds?

useSSL=false&useUnicode=true&characterEncoding=UTF-8" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

<bean id="read_ds0_0" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- 省略详细数据源配置详情 -->
</bean>

<bean id="read_ds0_1" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- 省略详细数据源配置详情 -->
</bean>

<bean id="write_ds1" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- 省略详细数据源配置详情 -->
</bean>

<bean id="read_ds1_0" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- 省略详细数据源配置详情 -->
</bean>

<bean id="read_ds1_1" class=" com.zaxxer.hikari.HikariDataSource" init-method=
"init" destroy-method="close">

<!-- 省略详细数据源配置详情 -->
</bean>

<!-- 主从配置负载均衡策略 -->
<readwrite-splitting:load-balance-algorithm id="randomStrategy" type="RANDOM" /

>

5.1. ShardingSphere-JDBC 111

Apache ShardingSphere document, v5.1.0

<!-- 主从规则配置 -->
<readwrite-splitting:rule id="readWriteSplittingRule">

<readwrite-splitting:data-source-rule id="ds_0" type="Static" load-balance-
algorithm-ref="randomStrategy">

<props>
<prop key="write-data-source-name">write_ds0</prop>
<prop key="read-data-source-names">read_ds0_0, read_ds0_1</prop>

</props>
</readwrite-splitting:data-source-rule>
<readwrite-splitting:data-source-rule id="ds_1" type="Static" load-balance-

algorithm-ref="randomStrategy">
<props>

<prop key="write-data-source-name">write_ds1</prop>
<prop key="read-data-source-names">read_ds1_0, read_ds1_1</prop>

</props>
</readwrite-splitting:data-source-rule>

</readwrite-splitting:rule>

<!-- 分片策略配置 -->
<sharding:standard-strategy id="databaseStrategy" sharding-column="user_id"

algorithm-ref="inlineDatabaseStrategyAlgorithm" />
<sharding:standard-strategy id="orderTableStrategy" sharding-column="order_id"

algorithm-ref="inlineOrderTableStrategyAlgorithm" />
<sharding:standard-strategy id="orderItemTableStrategy" sharding-column="order_

item_id" algorithm-ref="inlineOrderItemTableStrategyAlgorithm" />

<sharding:sharding-algorithm id="inlineDatabaseStrategyAlgorithm" type="INLINE
">

<props>
<!-- 表达式枚举的数据源名称为主从配置的逻辑数据源名称 -->
<prop key="algorithm-expression">ds_${user_id % 2}</prop>

</props>
</sharding:sharding-algorithm>
<sharding:sharding-algorithm id="inlineOrderTableStrategyAlgorithm" type=

"INLINE">
<props>

<prop key="algorithm-expression">t_order_${order_id % 2}</prop>
</props>

</sharding:sharding-algorithm>
<sharding:sharding-algorithm id="inlineOrderItemTableStrategyAlgorithm" type=

"INLINE">
<props>

<prop key="algorithm-expression">t_order_item_${order_item_id % 2}</
prop>

</props>
</sharding:sharding-algorithm>

5.1. ShardingSphere-JDBC 112

Apache ShardingSphere document, v5.1.0

<!-- 分片规则配置 -->
<sharding:rule id="shardingRule">

<sharding:table-rules>
<!-- 表达式 ds_${0..1} 枚举的数据源名称为主从配置的逻辑数据源名称 -->
<sharding:table-rule logic-table="t_order" actual-data-nodes="ds_${0..

1}.t_order_${0..1}" database-strategy-ref="databaseStrategy" table-strategy-ref=
"orderTableStrategy" key-generate-strategy-ref="orderKeyGenerator"/>

<sharding:table-rule logic-table="t_order_item" actual-data-nodes="ds_$
{0..1}.t_order_item_${0..1}" database-strategy-ref="databaseStrategy" table-
strategy-ref="orderItemTableStrategy" key-generate-strategy-ref="itemKeyGenerator"/
>

</sharding:table-rules>
<sharding:binding-table-rules>

<sharding:binding-table-rule logic-tables="t_order, t_order_item"/>
</sharding:binding-table-rules>
<sharding:broadcast-table-rules>

<sharding:broadcast-table-rule table="t_address"/>
</sharding:broadcast-table-rules>

</sharding:rule>

<!-- 数据加密规则配置 -->
<encrypt:encrypt-algorithm id="name_encryptor" type="AES">

<props>
<prop key="aes-key-value">123456</prop>

</props>
</encrypt:encrypt-algorithm>
<encrypt:encrypt-algorithm id="pwd_encryptor" type="assistedTest" />

<encrypt:rule id="encryptRule">
<encrypt:table name="t_user">

<encrypt:column logic-column="username" cipher-column="username" plain-
column="username_plain" encrypt-algorithm-ref="name_encryptor" />

<encrypt:column logic-column="pwd" cipher-column="pwd" assisted-query-
column="assisted_query_pwd" encrypt-algorithm-ref="pwd_encryptor" />

</encrypt:table>
</encrypt:rule>

<!-- 数据源配置 -->
<!-- data-source-names 数据源名称为所有的数据源节点名称 -->
<shardingsphere:data-source id="readQueryDataSource" data-source-names="write_

ds0, read_ds0_0, read_ds0_1, write_ds1, read_ds1_0, read_ds1_1"
rule-refs="readWriteSplittingRule, shardingRule, encryptRule" >
<props>

<prop key="sql-show">true</prop>
</props>

</shardingsphere:data-source>
</beans>

5.1. ShardingSphere-JDBC 113

Apache ShardingSphere document, v5.1.0

5.1.5 属性配置

Apache ShardingSphere提供属性配置的方式配置系统级配置。

配置项说明

5.1.6 内置算法

简介

Apache ShardingSphere通过 SPI方式允许开发者扩展算法；与此同时，Apache ShardingSphere也提供
了大量的内置算法以便于开发者使用。

使用方式

内置算法均通过 type和 props进行配置，其中 type由算法定义在 SPI中，props用于传递算法的个性化
参数配置。
无论使用哪种配置方式，均是将配置完毕的算法命名，并传递至相应的规则配置中。本章节根据功能区
分并罗列 Apache ShardingSphere全部的内置算法，供开发者参考。

元数据持久化仓库

文件持久化

类型：File

适用模式：Standalone

可配置属性：

名称 数据类型 说明 默认值
path String 元数据存储路径 .shardingsphere

ZooKeeper持久化

类型：ZooKeeper

适用模式：Cluster

可配置属性：

5.1. ShardingSphere-JDBC 114

Apache ShardingSphere document, v5.1.0

名称 数据类型 说明 默认值
retryIntervalMilliseconds int 重试间隔毫秒数 500
maxRetries int 客户端连接最大重试次数 3
timeToLiveSeconds int 临时数据失效的秒数 60
operationTimeoutMilliseconds int 客户端操作超时的毫秒数 500
digest String 登录认证密码

Etcd持久化

类型：Etcd

适用模式：Cluster

可配置属性：

名称 数据类型 说明 默认值
timeToLiveSeconds long 临时数据失效的秒数 30
connectionTimeout long 连接超时秒数 30

分片算法

自动分片算法

取模分片算法

类型：MOD

可配置属性：

属性名称 数据类型 说明
sharding‐count int 分片数量

哈希取模分片算法

类型：HASH_MOD

可配置属性：

属性名称 数据类型 说明
sharding‐count int 分片数量

5.1. ShardingSphere-JDBC 115

Apache ShardingSphere document, v5.1.0

基于分片容量的范围分片算法

类型：VOLUME_RANGE

可配置属性：

属性名称 数据类型 说明
range‐lower long 范围下界，超过边界的数据会报错
range‐upper long 范围上界，超过边界的数据会报错
sharding‐volume long 分片容量

基于分片边界的范围分片算法

类型：BOUNDARY_RANGE

可配置属性：

属性名称 数据类型 说明
sharding‐ranges String 分片的范围边界，多个范围边界以逗号分隔

自动时间段分片算法

类型：AUTO_INTERVAL

可配置属性：

属性名称 •
数据类型 *

说明

datetim e‐lower St ri ng 分片的起始时间范围，时间戳格
式：yyyy‐MM‐dd HH:mm:ss

datetim e‐upper St ri ng 分片的结束时间范围，时间戳格
式：yyyy‐MM‐dd HH:mm:ss

sh arding‐ seconds lo ng 单一分片所能承载的最大时间，
单位：秒，允许分片键的时间戳
格式的秒带有时间精度，但秒后
的时间精度会被自动抹去

5.1. ShardingSphere-JDBC 116

Apache ShardingSphere document, v5.1.0

标准分片算法

Apache ShardingSphere内置的标准分片算法实现类包括：

行表达式分片算法

使用 Groovy的表达式，提供对 SQL语句中的 =和 IN的分片操作支持，只支持单分片键。对于简单的分
片算法，可以通过简单的配置使用，从而避免繁琐的 Java代码开发，如: t_user_$->{u_id % 8}表
示 t_user表根据 u_id模 8，而分成 8张表，表名称为 t_user_0到 t_user_7。详情请参见行表达式。
类型：INLINE

可配置属性：

时间范围分片算法

类型：INTERVAL

可配置属性：

复合分片算法

复合行表达式分片算法

详情请参见行表达式。
类型：COMPLEX_INLINE

Hint分片算法

Hint行表达式分片算法

详情请参见行表达式。
类型：HINT_INLINE

属性名称 数据类型 说明 默认值
algorithm‐expression (?) String 分片算法的行表达式 ${value}

5.1. ShardingSphere-JDBC 117

https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/inline-expression/
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/inline-expression/
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/inline-expression/

Apache ShardingSphere document, v5.1.0

自定义类分片算法

通过配置分片策略类型和算法类名，实现自定义扩展。
类型：CLASS_BASED

可配置属性：

属性名称 数 据 类
型

说明

strategy String 分片策略类型，支持 STANDARD、COMPLEX或 HINT（不区分大
小写）

algorithmClass‐
Name

String 分片算法全限定名

分布式序列算法

雪花算法

类型：SNOWFLAKE

可配置属性：

UUID

类型：UUID

可配置属性：无

负载均衡算法

轮询算法

类型：ROUND_ROBIN

可配置属性：无

随机访问算法

类型：RANDOM

可配置属性：无

5.1. ShardingSphere-JDBC 118

Apache ShardingSphere document, v5.1.0

权重访问算法

类型：WEIGHT

可配置属性：
使用中的读库都必须配置权重

属性名称 数据类型 说明

• (+)
double 属性名字使用读库名字，参数

填写读库对应的权重值。权重参
数范围最小值 >0，合计 <=Dou‐
ble.MAX_VALUE。

加密算法

MD5加密算法

类型：MD5

可配置属性：无

AES加密算法

类型：AES

可配置属性：

名称 数据类型 说明
aes‐key‐value String AES使用的 KEY

RC4加密算法

类型：RC4

可配置属性：

名称 数据类型 说明
rc4‐key‐value String RC4使用的 KEY

5.1. ShardingSphere-JDBC 119

Apache ShardingSphere document, v5.1.0

SM3加密算法

类型：SM3

可配置属性：

名称 数据类型 说明
sm3‐salt String SM3使用的 SALT（空或 8 Bytes）

SM4加密算法

类型：SM4

可配置属性：

名称 数 据 类
型

说明

sm4‐key String SM4使用的 KEY（16 Bytes）
sm4‐mode String SM4使用的MODE（CBC或 ECB）
sm4‐iv String SM4使用的 IV（MODE为 CBC时需指定，16 Bytes）
sm4‐
padding

String SM4 使用的 PADDING （PKCS5Padding 或 PKCS7Paddi ng，暂不支持
NoPadding）

影子算法

列影子算法

列值匹配影子算法

类型：VALUE_MATCH

可配置属性：

属性名称 数据类型 说明
column String 影子列
operation String SQL操作类型（INSERT, UPDATE, DELETE, SELECT）
value String 影子列匹配的值

5.1. ShardingSphere-JDBC 120

Apache ShardingSphere document, v5.1.0

列正则表达式匹配影子算法

类型：REGEX_MATCH

可配置属性：

属性名称 数据类型 说明
column String 匹配列
operation String SQL操作类型（INSERT, UPDATE, DELETE, SELECT）
regex String 影子列匹配正则表达式

Hint影子算法

简单Hint匹配影子算法

类型：SIMPLE_HINT

可配置属性：
至少配置一组任意的键值对。比如：foo:bar

属性名称 数据类型 说明
foo String bar

5.1.7 特殊 API

本章节将介绍 ShardingSphere‐JDBC的特殊场景 API。

数据分片

本章节将介绍 ShardingSphere‐JDBC的分片场景 API。

强制路由

简介

Apache ShardingSphere使用 ThreadLocal管理分片键值进行强制路由。可以通过编程的方式向
HintManager中添加分片值，该分片值仅在当前线程内生效。
Apache ShardingSphere还可以通过 SQL中增加注释的方式进行强制路由。

Hint的主要使用场景：
• 分片字段不存在 SQL和数据库表结构中，而存在于外部业务逻辑。
• 强制在主库进行某些数据操作。

5.1. ShardingSphere-JDBC 121

Apache ShardingSphere document, v5.1.0

• 强制在指定数据库进行某些数据操作。

使用方法

使用Hint分片

规则配置

Hint 分片算法需要用户实现 org.apache.shardingsphere.sharding.api.sharding.hint.
HintShardingAlgorithm接口。Apache ShardingSphere在进行路由时，将会从 HintManager中获
取分片值进行路由操作。
参考配置如下：

rules:
- !SHARDING
tables:

t_order:
actualDataNodes: demo_ds_${0..1}.t_order_${0..1}
databaseStrategy:
hint:

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
tableStrategy:
hint:

algorithmClassName: xxx.xxx.xxx.HintXXXAlgorithm
defaultTableStrategy:

none:
defaultKeyGenerateStrategy:

type: SNOWFLAKE
column: order_id

props:
sql-show: true

5.1. ShardingSphere-JDBC 122

Apache ShardingSphere document, v5.1.0

获取HintManager

HintManager hintManager = HintManager.getInstance();

添加分片键值

• 使用 hintManager.addDatabaseShardingValue来添加数据源分片键值。
• 使用 hintManager.addTableShardingValue来添加表分片键值。
分 库 不 分 表 情 况 下， 强 制 路 由 至 某 一 个 分 库 时， 可 使 用 hintManager.
setDatabaseShardingValue方式添加分片。

清除分片键值

分片键值保存在 ThreadLocal中，所以需要在操作结束时调用 hintManager.close()来清除 Thread‐
Local中的内容。
hintManager实现了 AutoCloseable接口，可推荐使用 try with resource自动关闭。

完整代码示例

// Sharding database and table with using HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.addDatabaseShardingValue("t_order", 1);
hintManager.addTableShardingValue("t_order", 2);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

// Sharding database without sharding table and routing to only one database with
using HintManager
String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

5.1. ShardingSphere-JDBC 123

Apache ShardingSphere document, v5.1.0

}
}

}

使用Hint强制主库路由

使用手动编程的方式

获取HintManager

与基于Hint的数据分片相同。

设置主库路由

• 使用 hintManager.setWriteRouteOnly设置主库路由。

清除分片键值

与基于Hint的数据分片相同。

完整代码示例

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setWriteRouteOnly();
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

使用 SQL注释的方式

使用规范

SQL Hint功能需要用户提前开启解析注释的配置，设置 sqlCommentParseEnabled为 true。注释格
式暂时只支持/* */，内容需要以 ShardingSphere hint:开始，属性名为 writeRouteOnly。

5.1. ShardingSphere-JDBC 124

Apache ShardingSphere document, v5.1.0

完整示例

/* ShardingSphere hint: writeRouteOnly=true */
SELECT * FROM t_order;

使用Hint路由至指定数据库

使用手动编程的方式

获取HintManager

与基于Hint的数据分片相同。

设置路由至指定数据库

• 使用 hintManager.setDataSourceName设置数据库名称。

完整代码示例

String sql = "SELECT * FROM t_order";
try (HintManager hintManager = HintManager.getInstance();

Connection conn = dataSource.getConnection();
PreparedStatement preparedStatement = conn.prepareStatement(sql)) {

hintManager.setDataSourceName("ds_0");
try (ResultSet rs = preparedStatement.executeQuery()) {

while (rs.next()) {
// ...

}
}

}

使用 SQL注释的方式

使用规范

SQL Hint功能需要用户提前开启解析注释的配置，设置 sqlCommentParseEnabled为 true，目前只
支持路由至一个数据源。注释格式暂时只支持/* */，内容需要以 ShardingSphere hint:开始，属
性名为 dataSourceName。

5.1. ShardingSphere-JDBC 125

Apache ShardingSphere document, v5.1.0

完整示例

/* ShardingSphere hint: dataSourceName=ds_0 */
SELECT * FROM t_order;

分布式事务

通过 Apache ShardingSphere使用分布式事务，与本地事务并无区别。除了透明化分布式事务的使用之
外，Apache ShardingSphere还能够在每次数据库访问时切换分布式事务类型。支持的事务类型包括本
地事务、XA事务和柔性事务。可在创建数据库连接之前设置，缺省为 Apache ShardingSphere启动时的
默认事务类型。

使用 Java API

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 BASE 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

5.1. ShardingSphere-JDBC 126

Apache ShardingSphere document, v5.1.0

使用分布式事务

TransactionTypeHolder.set(TransactionType.XA); // 支持 TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
try (Connection conn = dataSource.getConnection()) { // 使用
ShardingSphereDataSource

conn.setAutoCommit(false);
PreparedStatement ps = conn.prepareStatement("INSERT INTO t_order (user_id,

status) VALUES (?, ?)");
ps.setObject(1, 1000);
ps.setObject(2, "init");
ps.executeUpdate();
conn.commit();

}

使用 Spring Boot Starter

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 BASE 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

5.1. ShardingSphere-JDBC 127

Apache ShardingSphere document, v5.1.0

配置事务管理器

@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {

@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {

return new DataSourceTransactionManager(dataSource);
}

@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {

return new JdbcTemplate(dataSource);
}

}

使用分布式事务

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // 支持 TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();

});
}

使用 Spring命名空间

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-namespace</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>

5.1. ShardingSphere-JDBC 128

Apache ShardingSphere document, v5.1.0

<version>${shardingsphere.version}</version>
</dependency>

<!-- 使用 BASE 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-base-seata-at</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

配置事务管理器

<!-- ShardingDataSource 的相关配置 -->
<!-- ... -->

<bean id="transactionManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">

<property name="dataSource" ref="shardingDataSource" />
</bean>
<tx:annotation-driven />

<!-- 开启自动扫描 @ShardingSphereTransactionType 注解，使用 Spring 原生的 AOP 在类和方法上
进行增强 -->
<sharding:tx-type-annotation-driven />

使用分布式事务

@Transactional
@ShardingSphereTransactionType(TransactionType.XA) // 支持 TransactionType.LOCAL,
TransactionType.XA, TransactionType.BASE
public void insert() {

jdbcTemplate.execute("INSERT INTO t_order (user_id, status) VALUES (?, ?)",
(PreparedStatementCallback<Object>) ps -> {

ps.setObject(1, i);
ps.setObject(2, "init");
ps.executeUpdate();

});
}

5.1. ShardingSphere-JDBC 129

Apache ShardingSphere document, v5.1.0

Atomikos事务

Apache ShardingSphere默认的 XA事务管理器为 Atomikos。

数据恢复

在项目的 logs目录中会生成 xa_tx.log,这是 XA崩溃恢复时所需的日志，请勿删除。

修改配置

可以通过在项目的 classpath中添加 jta.properties来定制化 Atomikos配置项。
详情请参见Atomikos官方文档。

Narayana事务

引入Maven依赖

<properties>
<narayana.version>5.9.1.Final</narayana.version>
<jboss-transaction-spi.version>7.6.0.Final</jboss-transaction-spi.version>
<jboss-logging.version>3.2.1.Final</jboss-logging.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-narayana</artifactId>
<version>${shardingsphere.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.narayana.jta</groupId>
<artifactId>jta</artifactId>
<version>${narayana.version}</version>

5.1. ShardingSphere-JDBC 130

https://www.atomikos.com/Documentation/JtaProperties

Apache ShardingSphere document, v5.1.0

</dependency>
<dependency>

<groupId>org.jboss.narayana.jts</groupId>
<artifactId>narayana-jts-integration</artifactId>
<version>${narayana.version}</version>

</dependency>
<dependency>

<groupId>org.jboss</groupId>
<artifactId>jboss-transaction-spi</artifactId>
<version>${jboss-transaction-spi.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>${jboss-logging.version}</version>

</dependency>

定制化配置项

可以通过在项目的 classpath中添加 jbossts-properties.xml来定制化 Narayana配置项。
详情请参见 Narayana官方文档。

设置 XA事务管理类型

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Narayana

SpringBoot:

spring:
shardingsphere:

props:
xa-transaction-manager-type: Narayana

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Narayana</prop>
</props>

</shardingsphere:data-source>

5.1. ShardingSphere-JDBC 131

https://narayana.io/documentation/index.html

Apache ShardingSphere document, v5.1.0

Bitronix事务

引入Maven依赖

<properties>
<btm.version>2.1.3</btm.version>

</properties>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<!-- 使用 XA 事务时，需要引入此模块 -->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-core</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-transaction-xa-bitronix</artifactId>
<version>${shardingsphere.version}</version>

</dependency>

<dependency>
<groupId>org.codehaus.btm</groupId>
<artifactId>btm</artifactId>
<version>${btm.version}</version>

</dependency>

定制化配置项

详情请参见 Bitronix官方文档。

设置 XA事务管理类型

Yaml:

- !TRANSACTION
defaultType: XA
providerType: Bitronix

SpringBoot:

5.1. ShardingSphere-JDBC 132

https://github.com/bitronix/btm/wiki

Apache ShardingSphere document, v5.1.0

spring:
shardingsphere:

props:
xa-transaction-manager-type: Bitronix

Spring Namespace:

<shardingsphere:data-source id="xxx" data-source-names="xxx" rule-refs="xxx">
<props>

<prop key="xa-transaction-manager-type">Bitronix</prop>
</props>

</shardingsphere:data-source>

Seata事务

启动 Seata服务

按照 seata‐work‐shop中的步骤，下载并启动 Seata服务器。

创建日志表

在每一个分片数据库实例中执创建 undo_log表（以MySQL为例）。

CREATE TABLE IF NOT EXISTS `undo_log`
(
`id` BIGINT(20) NOT NULL AUTO_INCREMENT COMMENT 'increment id',
`branch_id` BIGINT(20) NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(100) NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as

serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME NOT NULL COMMENT 'modify datetime',
PRIMARY KEY (`id`),
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)

) ENGINE = InnoDB
AUTO_INCREMENT = 1
DEFAULT CHARSET = utf8 COMMENT ='AT transaction mode undo table';

5.1. ShardingSphere-JDBC 133

https://github.com/seata/seata-workshop

Apache ShardingSphere document, v5.1.0

修改配置

在 classpath中增加 seata.conf文件。

client {
application.id = example ## 应用唯一主键
transaction.service.group = my_test_tx_group ## 所属事务组

}

根据实际场景修改 Seata的 file.conf和 registry.conf文件。

可观察性

介绍如何使用可观察性探针和集成第三方应用。

使用探针

如何获取

本地构建

> cd shardingsphere/shardingsphere-agent
> mvn clean install

远程下载 (暂未发布)

> weget http://xxxxx/shardingsphere-agent.tar.gz
> tar -zxvcf shardingsphere-agent.tar.gz

配置

找到 agent.yaml文件：

applicationName: shardingsphere-agent
ignoredPluginNames: # 忽略的插件集合
- Opentracing
- Jaeger
- Zipkin
- Prometheus
- OpenTelemetry
- Logging

plugins:
Prometheus:

5.1. ShardingSphere-JDBC 134

Apache ShardingSphere document, v5.1.0

host: "localhost"
port: 9090
props:
JVM_INFORMATION_COLLECTOR_ENABLED : "true"

Jaeger:
host: "localhost"
port: 5775
props:
SERVICE_NAME: "shardingsphere-agent"
JAEGER_SAMPLER_TYPE: "const"
JAEGER_SAMPLER_PARAM: "1"
JAEGER_REPORTER_LOG_SPANS: "true"
JAEGER_REPORTER_FLUSH_INTERVAL: "1"

Zipkin:
host: "localhost"
port: 9411
props:
SERVICE_NAME: "shardingsphere-agent"
URL_VERSION: "/api/v2/spans"

Opentracing:
props:
OPENTRACING_TRACER_CLASS_NAME: "org.apache.skywalking.apm.toolkit.

opentracing.SkywalkingTracer"
OpenTelemetry:

props:
otel.resource.attributes: "service.name=shardingsphere-agent" # 多个配置用','分

隔
otel.traces.exporter: "zipkin"

Logging:
props:
LEVEL: "INFO"

启动

在启动脚本中添加参数：

-javaagent:\absolute path\shardingsphere-agent.jar

5.1. ShardingSphere-JDBC 135

Apache ShardingSphere document, v5.1.0

应用性能监控集成

使用方法

使用OpenTracing协议

• 方法 1：通过读取系统参数注入 APM系统提供的 Tracer实现类
启动时添加参数

-Dorg.apache.shardingsphere.tracing.opentracing.tracer.class=org.apache.skywalking.
apm.toolkit.opentracing.SkywalkingTracer

调用初始化方法

ShardingTracer.init();

• 方法 2：通过参数注入 APM系统提供的 Tracer实现类。

ShardingTracer.init(new SkywalkingTracer());

注意：使用 SkyWalking的OpenTracing探针时，不能同时使用Apache ShardingSphere Agent的OpenTracing
插件，以防止两种插件互相冲突。

使用 SkyWalking自动探针

请参考 SkyWalking部署手册。

使用OpenTelemetry

在 agent.yaml中填写好配置即可，例如将 Traces数据导出到 Zipkin。

OpenTelemetry:
props:
otel.resource.attributes: "service.name=shardingsphere-agent"
otel.traces.exporter: "zipkin"
otel.exporter.zipkin.endpoint: "http://127.0.0.1:9411/api/v2/spans"

效果展示

无论使用哪种方式，都可以方便的将 APM信息展示在对接的系统中，以下以 SkyWalking为例。

5.1. ShardingSphere-JDBC 136

https://github.com/apache/skywalking/blob/5.x/docs/cn/Quick-start-CN.md

Apache ShardingSphere document, v5.1.0

应用架构

使用 ShardingSphere‐Proxy访问两个数据库 192.168.0.1:3306和 192.168.0.2:3306，且每个数
据库中有两个分表。

拓扑图展示

从图中看，用户访问 18次 ShardingSphere‐Proxy应用，每次每个数据库访问了两次。这是由于每次访问
涉及到每个库中的两个分表，所以每次访问了四张表。

跟踪数据展示

从跟踪图中可以能够看到 SQL解析和执行的情况。
/Sharding-Sphere/parseSQL/:表示本次 SQL的解析性能。
/Sharding-Sphere/executeSQL/:表示具体执行的实际 SQL的性能。

异常情况展示

从跟踪图中可以能够看到发生异常的节点。
/Sharding-Sphere/executeSQL/:表示执行 SQL异常的结果。
/Sharding-Sphere/executeSQL/:表示执行 SQL异常的日志。

5.1.8 不支持项

DataSource接口

• 不支持 timeout相关操作

Connection接口

• 不支持存储过程，函数，游标的操作
• 不支持执行 native SQL

• 不支持 savepoint相关操作
• 不支持 Schema/Catalog的操作
• 不支持自定义类型映射

5.1. ShardingSphere-JDBC 137

Apache ShardingSphere document, v5.1.0

Statement和 PreparedStatement接口

• 不支持返回多结果集的语句（即存储过程，非 SELECT多条数据）
• 不支持国际化字符的操作

ResultSet接口

• 不支持对于结果集指针位置判断
• 不支持通过非 next方法改变结果指针位置
• 不支持修改结果集内容
• 不支持获取国际化字符
• 不支持获取 Array

JDBC 4.1

• 不支持 JDBC 4.1接口新功能
查询所有未支持方法，请阅读 org.apache.shardingsphere.driver.jdbc.unsupported包。

5.2 ShardingSphere-Proxy

配置是 ShardingSphere‐Proxy中唯一与开发者交互的模块，通过它可以快速清晰的理解 ShardingSphere‐
Proxy所提供的功能。
本章节是 ShardingSphere‐Proxy的配置参考手册，需要时可当做字典查阅。
ShardingSphere‐Proxy提供基于 YAML的配置方式，并使用 DistSQL进行交互。通过配置，应用开发者
可以灵活的使用数据分片、读写分离、数据加密、影子库等功能，并且能够叠加使用。
规则配置部分与 ShardingSphere‐JDBC的 YAML配置完全一致。DistSQL与 YAML配置能够相互取代。
更多使用细节请参见使用示例。

5.2.1 启动手册

本章节将介绍 ShardingSphere‐Proxy相关部署和启动等相关操作。

5.2. ShardingSphere-Proxy 138

https://github.com/apache/shardingsphere/tree/master/examples/shardingsphere-proxy-example

Apache ShardingSphere document, v5.1.0

使用二进制发布包

启动步骤

1. 下载 ShardingSphere‐Proxy的最新发行版。
2. 解压缩后修改 conf/server.yaml和以 config-前缀开头的文件，如：conf/config-xxx.

yaml文件，进行分片规则、读写分离规则配置。配置方式请参考配置手册。
3. Linux 操作系统请运行 bin/start.sh，Windows 操作系统请运行 bin/start.bat 启动

ShardingSphere‐Proxy。如需配置启动端口、配置文件位置，可参考快速入门。

选择数据库协议

使用 PostgreSQL

1. 使用任何 PostgreSQL的客户端连接。如: psql -U root -h 127.0.0.1 -p 3307

使用MySQL

1. 将MySQL的 JDBC驱动程序复制至目录 ext-lib/。
2. 使用任何MySQL的客户端连接。如: mysql -u root -h 127.0.0.1 -P 3307

使用 openGauss

1. 将以 org.opengauss包名为前缀的 openGauss的 JDBC驱动程序复制至目录 ext-lib/。
2. 使用任何 openGauss的客户端连接。如: gsql -U root -h 127.0.0.1 -p 3307

选择元数据持久化仓库

使用 ZooKeeper

默认集成 ZooKeeper Curator客户端。

使用 Etcd

1. 将 Etcd的客户端驱动程序复制至目录 ext-lib/。

5.2. ShardingSphere-Proxy 139

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/
https://shardingsphere.apache.org/document/current/cn/quick-start/shardingsphere-proxy-quick-start/

Apache ShardingSphere document, v5.1.0

使用分布式事务

与 ShardingSphere‐JDBC使用方式相同。具体可参考分布式事务。

使用自定义算法

当用户需要使用自定义的算法类时，可通过以下方式配置使用自定义算法，以分片为例：
1. 实现 ShardingAlgorithm接口定义的算法实现类。
2. 在项目 resources目录下创建 META-INF/services目录。
3. 在 META-INF/services 目录下新建文件 org.apache.shardingsphere.sharding.spi.

ShardingAlgorithm

4. 将 实 现 类 的 绝 对 路 径 写 入 至 文 件 org.apache.shardingsphere.sharding.spi.
ShardingAlgorithm

5. 将上述 Java文件打包成 jar包。
6. 将上述 jar包拷贝至 ShardingSphere‐Proxy解压后的 ext-lib/目录。
7. 将上述自定义算法实现类的 Java文件引用配置在 YAML文件中，具体可参考配置规则。

注意事项

1. ShardingSphere‐Proxy默认使用3307端口，可以通过启动脚本追加参数作为启动端口号。如: bin/
start.sh 3308

2. ShardingSphere‐Proxy使用 conf/server.yaml配置注册中心、认证信息以及公用属性。
3. ShardingSphere‐Proxy支持多逻辑数据源，每个以 config-前缀命名的 YAML配置文件，即为一
个逻辑数据源。

使用 Docker

拉取官方 Docker镜像

docker pull apache/shardingsphere-proxy

手动构建 Docker镜像（可选）

git clone https://github.com/apache/shardingsphere
mvn clean install
cd shardingsphere-distribution/shardingsphere-proxy-distribution
mvn clean package -Prelease,docker

5.2. ShardingSphere-Proxy 140

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/special-api/transaction/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/

Apache ShardingSphere document, v5.1.0

配置 ShardingSphere-Proxy

在 /${your_work_dir}/conf/创建 server.yaml和 config-xxx.yaml文件，进行服务器和分片
规则配置。配置规则，请参考配置手册。配置模板，请参考配置模板

运行 Docker

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -e PORT=3308
-p13308:3308 apache/shardingsphere-proxy:latest

说明
• 可以自定义端口 3308和 13308。3308表示 docker容器端口, 13308表示宿主机端口。
• 必须挂载配置路径到 /opt/shardingsphere-proxy/conf。

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -e JVM_OPTS=
"-Djava.awt.headless=true" -e PORT=3308 -p13308:3308 apache/shardingsphere-
proxy:latest

说明
• 可以自定义 JVM相关参数到环境变量 JVM_OPTS中。

docker run -d -v /${your_work_dir}/conf:/opt/shardingsphere-proxy/conf -v /${your_
work_dir}/ext-lib:/opt/shardingsphere-proxy/ext-lib -p13308:3308 apache/
shardingsphere-proxy:latest

说明
• 如需使用外部 jar包（例如MySQL/openGauss JDBC驱动、自定义算法等），可将其所在目录挂载
到 /opt/shardingsphere-proxy/ext-lib。

访问 ShardingSphere-Proxy

与连接 PostgreSQL的方式相同。

psql -U ${your_username} -h ${your_host} -p 13308

FAQ

问题 1：I/O exception (java.io.IOException) caught when processing request to {}‐>unix://localhost:80:
Connection refused？
回答：在构建镜像前，请确保 docker daemon进程已经运行。
问题 2：启动时报无法连接到数据库错误？

5.2. ShardingSphere-Proxy 141

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/
https://github.com/apache/shardingsphere/tree/master/shardingsphere-proxy/shardingsphere-proxy-bootstrap/src/main/resources/conf

Apache ShardingSphere document, v5.1.0

回答：请确保 /${your_work_dir}/conf/config-xxx.yaml配置文件中指定的 PostgreSQL数据
库的 IP可以被 Docker容器内部访问到。
问题 3：如何使用后端数据库为MySQL/openGauss的 ShardingSphere‐Proxy？
回答：将 mysql-connector.jar 或 opengauss-jdbc.jar 所在目录挂载到 /opt/
shardingsphere-proxy/ext-lib。
问题 4：如何使用自定义分片算法？
回答：实现对应的分片算法接口，将编译出的分片算法 jar 所在目录挂载到 /opt/
shardingsphere-proxy/ext-lib。

5.2.2 YAML配置

ShardingSphere‐JDBC 的 YAML 配置是 ShardingSphere‐Proxy 的子集。在 server.yaml 文件中，
ShardingSphere‐Proxy能够额外配置权限功能和更多的 Proxy专有属性。
本章节将介绍 ShardingSphere‐Proxy的 YAML额外配置。

权限

用于配置登录计算节点的初始用户，和存储节点数据授权。

配置项说明

rules:
- !AUTHORITY

users:
- # 用于登录计算节点的用户名，授权主机和密码的组合。格式：<username>@<hostname>:

<password>，hostname 为 % 或空字符串表示不限制授权主机
provider:
type: # 存储节点数据授权的权限提供者类型，缺省值为 ALL_PRIVILEGES_PERMITTED

配置示例

ALL_PRIVILEGES_PERMITTED

rules:
- !AUTHORITY

users:
- root@localhost:root
- my_user@:pwd

provider:
type: ALL_PRIVILEGES_PERMITTED

5.2. ShardingSphere-Proxy 142

Apache ShardingSphere document, v5.1.0

SCHEMA_PRIVILEGES_PERMITTED

rules:
- !AUTHORITY

users:
- root@:root
- my_user@:pwd

provider:
type: SCHEMA_PRIVILEGES_PERMITTED
props:
user-schema-mappings: root@=sharding_db, root@=test_db, my_user@127.0.0.

1=sharding_db

以上配置表示：‐ root用户从任意主机连接时，可访问 sharding_db ‐ root用户从任意主机连接时，可
访问 test_db ‐ my_user用户仅当从 127.0.0.1连接时，可访问 sharding_db

权限提供者具体实现可以参考权限提供者。

属性配置

简介

Apache ShardingSphere提供属性配置的方式配置系统级配置。

配置项说明

属性配置可以通过 DistSQL#RAL修改。支持动态修改的属性可以立即生效，不支持动态修改的属性需要
重启后生效。

5.2.3 DistSQL

本章节将介绍 DistSQL的详细语法。

语法

本章节将对 DistSQL的语法进行详细说明，并以实际的列子介绍 DistSQL的使用。

5.2. ShardingSphere-Proxy 143

https://shardingsphere.apache.org/document/current/cn/dev-manual/proxy
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/
https://shardingsphere.apache.org/document/current/cn/concepts/distsql/

Apache ShardingSphere document, v5.1.0

RDL语法

RDL (Resource & Rule Definition Language)为 Apache ShardingSphere的资源和规则定义语言。

资源定义

语法说明

ADD RESOURCE dataSource [, dataSource] ...

ALTER RESOURCE dataSource [, dataSource] ...

DROP RESOURCE dataSourceName [, dataSourceName] ... [ignore single tables]

dataSource:
simpleSource | urlSource

simpleSource:
dataSourceName(HOST=hostname,PORT=port,DB=dbName,USER=user [,PASSWORD=password]

[,PROPERTIES(poolProperty [,poolProperty]) ...])

urlSource:
dataSourceName(URL=url,USER=user [,PASSWORD=password] [,PROPERTIES(poolProperty

[,poolProperty]) ...])

poolProperty:
"key"= ("value" | value)

• 添加资源前请确认已经创建分布式数据库，并执行 use命令成功选择一个数据库
• 确认增加的资源是可以正常连接的，否则将不能添加成功
• 重复的 dataSourceName不允许被添加
• 在同一 dataSource的定义中，simpleSource和 urlSource语法不可混用
• poolProperty用于自定义连接池参数，key必须和连接池参数名一致，value支持 int和 String
类型

• ALTER RESOURCE修改资源时会发生连接池的切换，这个操作可能对进行中的业务造成影响，请
谨慎使用

• DROP RESOURCE只会删除逻辑资源，不会删除真实的数据源
• 被规则引用的资源将无法被删除
• 若资源只被 single table rule 引用，且用户确认可以忽略该限制，则可以添加可选参数
ignore single tables进行强制删除

5.2. ShardingSphere-Proxy 144

Apache ShardingSphere document, v5.1.0

示例

ADD RESOURCE resource_0 (
HOST=127.0.0.1,
PORT=3306,
DB=db0,
USER=root,
PASSWORD=root

),resource_1 (
HOST=127.0.0.1,
PORT=3306,
DB=db1,
USER=root

),resource_2 (
HOST=127.0.0.1,
PORT=3306,
DB=db2,
USER=root,
PROPERTIES("maximumPoolSize"=10)

),resource_3 (
URL="jdbc:mysql://127.0.0.1:3306/db3?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

ALTER RESOURCE resource_0 (
HOST=127.0.0.1,
PORT=3309,
DB=db0,
USER=root,
PASSWORD=root

),resource_1 (
URL="jdbc:mysql://127.0.0.1:3309/db1?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

DROP RESOURCE resource_0, resource_1;
DROP RESOURCE resource_2, resource_3 ignore single tables;

5.2. ShardingSphere-Proxy 145

Apache ShardingSphere document, v5.1.0

规则定义

本章节将对规则定义的语法进行详细说明。

数据分片

语法说明

Sharding Table Rule

CREATE SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

ALTER SHARDING TABLE RULE shardingTableRuleDefinition [,
shardingTableRuleDefinition] ...

DROP SHARDING TABLE RULE tableName [, tableName] ...

CREATE DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

ALTER DEFAULT SHARDING shardingScope STRATEGY (shardingStrategy)

DROP DEFAULT SHARDING shardingScope STRATEGY;

CREATE SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

ALTER SHARDING ALGORITHM shardingAlgorithmDefinition [,
shardingAlgorithmDefinition] ...

DROP SHARDING ALGORITHM algorithmName [, algorithmName] ...

CREATE SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

ALTER SHARDING KEY GENERATOR keyGeneratorDefinition [, keyGeneratorDefinition] ...

DROP SHARDING KEY GENERATOR keyGeneratorName [, keyGeneratorName] ...

shardingTableRuleDefinition:
shardingAutoTableRule | shardingTableRule

shardingAutoTableRule:
tableName(resources, shardingColumn, algorithmDefinition [,

keyGenerateDeclaration])

shardingTableRule:
tableName(dataNodes [, databaseStrategy] [, tableStrategy] [,

5.2. ShardingSphere-Proxy 146

Apache ShardingSphere document, v5.1.0

keyGenerateDeclaration])

resources:
RESOURCES(resource [, resource] ...)

dataNodes:
DATANODES(dataNode [, dataNode] ...)

resource:
resourceName | inlineExpression

dataNode:
resourceName | inlineExpression

shardingColumn:
SHARDING_COLUMN=columnName

algorithmDefinition:
TYPE(NAME=shardingAlgorithmType [, PROPERTIES([algorithmProperties])])

keyGenerateDeclaration:
keyGenerateDefinition | keyGenerateConstruction

keyGenerateDefinition:
KEY_GENERATE_STRATEGY(COLUMN=columnName, strategyDefinition)

shardingScope:
DATABASE | TABLE

databaseStrategy:
DATABASE_STRATEGY(shardingStrategy)

tableStrategy:
TABLE_STRATEGY(shardingStrategy)

keyGenerateConstruction
KEY_GENERATE_STRATEGY(COLUMN=columnName, KEY_

GENERATOR=keyGenerateAlgorithmName)

shardingStrategy:
TYPE=strategyType, shardingColumn, shardingAlgorithm

shardingAlgorithm:
existingAlgorithm | autoCreativeAlgorithm

existingAlgorithm:
SHARDING_ALGORITHM=shardingAlgorithmName

5.2. ShardingSphere-Proxy 147

Apache ShardingSphere document, v5.1.0

autoCreativeAlgorithm:
SHARDING_ALGORITHM(algorithmDefinition)

strategyDefinition:
TYPE(NAME=keyGenerateStrategyType [, PROPERTIES([algorithmProperties])])

shardingAlgorithmDefinition:
shardingAlgorithmName(algorithmDefinition)

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

keyGeneratorDefinition:
keyGeneratorName (algorithmDefinition)

• RESOURCES需使用 RDL管理的数据源资源
• shardingAlgorithmType指定自动分片算法类型，请参考自动分片算法
• keyGenerateStrategyType指定分布式主键生成策略，请参考分布式主键
• 重复的 tableName将无法被创建
• shardingAlgorithm 能够被不同的 Sharding Table Rule 复用，因此在执行 DROP
SHARDING TABLE RULE时，对应的 shardingAlgorithm不会被移除

• 如需移除 shardingAlgorithm，请执行 DROP SHARDING ALGORITHM

• strategyType指定分片策略，请参考分片策略
• Sharding Table Rule同时支持 Auto Table和 Table两种类型，两者在语法上有所差异，对
应配置文件请参考数据分片

• 使用 autoCreativeAlgorithm 方式指定 shardingStrategy 时，将会自动创建新的分
片算法，算法命名规则为 tableName_strategyType_shardingAlgorithmType，如
t_order_database_inline

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

ALTER SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

DROP SHARDING BINDING TABLE RULES bindTableRulesDefinition [,
bindTableRulesDefinition] ...

5.2. ShardingSphere-Proxy 148

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen/
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/sharding/#%E5%88%86%E7%89%87%E7%AD%96%E7%95%A5
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/

Apache ShardingSphere document, v5.1.0

bindTableRulesDefinition:
(tableName [, tableName] ...)

• ALTER会使用新的配置直接覆盖数据库内的绑定表配置

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

ALTER SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

DROP SHARDING BROADCAST TABLE RULES (tableName [, tableName] ...)

• ALTER会使用新的配置直接覆盖数据库内的广播表配置

Sharding Scaling Rule

CREATE SHARDING SCALING RULE scalingName [scalingRuleDefinition]

DROP SHARDING SCALING RULE scalingName

ENABLE SHARDING SCALING RULE scalingName

DISABLE SHARDING SCALING RULE scalingName

scalingRuleDefinition:
[inputDefinition] [, outputDefinition] [, streamChannel] [, completionDetector]

[, dataConsistencyChecker]

inputDefinition:
INPUT (workerThread, batchSize, rateLimiter)

outputDefinition:
INPUT (workerThread, batchSize, rateLimiter)

completionDetector:
COMPLETION_DETECTOR (algorithmDefinition)

dataConsistencyChecker:
DATA_CONSISTENCY_CHECKER (algorithmDefinition)

rateLimiter:
RATE_LIMITER (algorithmDefinition)

streamChannel:

5.2. ShardingSphere-Proxy 149

Apache ShardingSphere document, v5.1.0

STREAM_CHANNEL (algorithmDefinition)

workerThread:
WORKER_THREAD=intValue

batchSize:
BATCH_SIZE=intValue

intValue:
INT

• ENABLE用于设置启用哪个弹性伸缩配置
• DISABLE将禁用当前正在使用的配置
• 创建 schema中第一个弹性伸缩配置时，默认启用

示例

Sharding Table Rule

Key Generator

CREATE SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME=SNOWFLAKE)
);

ALTER SHARDING KEY GENERATOR snowflake_key_generator (
TYPE(NAME=SNOWFLAKE)
);

DROP SHARDING KEY GENERATOR snowflake_key_generator;

Auto Table

CREATE SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1),
SHARDING_COLUMN=order_id,TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=4)),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME=snowflake))
);

ALTER SHARDING TABLE RULE t_order (
RESOURCES(resource_0,resource_1,resource_2,resource_3),
SHARDING_COLUMN=order_id,TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=16)),
KEY_GENERATE_STRATEGY(COLUMN=another_id,TYPE(NAME=snowflake))
);

DROP SHARDING TABLE RULE t_order;

5.2. ShardingSphere-Proxy 150

Apache ShardingSphere document, v5.1.0

DROP SHARDING ALGORITHM t_order_hash_mod;

Table

CREATE SHARDING ALGORITHM table_inline (
TYPE(NAME=inline,PROPERTIES("algorithm-expression"="t_order_item_${order_id % 2}"))
);

CREATE SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..1}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM(TYPE(NAME=inline,PROPERTIES("algorithm-expression"="resource_${user_id %
2}")))),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator)
);

ALTER SHARDING ALGORITHM database_inline (
TYPE(NAME=inline,PROPERTIES("algorithm-expression"="resource_${user_id % 4}"))
),table_inline (
TYPE(NAME=inline,PROPERTIES("algorithm-expression"="t_order_item_${order_id % 4}"))
);

ALTER SHARDING TABLE RULE t_order_item (
DATANODES("resource_${0..3}.t_order_item${0..3}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=table_
inline),
KEY_GENERATE_STRATEGY(COLUMN=another_id,KEY_GENERATOR=snowflake_key_generator)
);

DROP SHARDING TABLE RULE t_order_item;

DROP SHARDING ALGORITHM database_inline;

CREATE DEFAULT SHARDING DATABASE STRATEGY (
TYPE = standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=database_inline
);

ALTER DEFAULT SHARDING DATABASE STRATEGY (
TYPE = standard,SHARDING_COLUMN=another_id,SHARDING_ALGORITHM=database_inline
);

DROP DEFAULT SHARDING DATABASE STRATEGY;

5.2. ShardingSphere-Proxy 151

Apache ShardingSphere document, v5.1.0

Sharding Binding Table Rule

CREATE SHARDING BINDING TABLE RULES (t_order,t_order_item),(t_1,t_2);

ALTER SHARDING BINDING TABLE RULES (t_order,t_order_item);

DROP SHARDING BINDING TABLE RULES;

DROP SHARDING BINDING TABLE RULES (t_order,t_order_item);

Sharding Broadcast Table Rule

CREATE SHARDING BROADCAST TABLE RULES (t_b,t_a);

ALTER SHARDING BROADCAST TABLE RULES (t_b,t_a,t_3);

DROP SHARDING BROADCAST TABLE RULES;

DROP SHARDING BROADCAST TABLE RULES t_b;

Sharding Scaling Rule

CREATE SHARDING SCALING RULE sharding_scaling(
INPUT(

WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER(TYPE(NAME=QPS, PROPERTIES("qps"=50)))

),
OUTPUT(
WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER(TYPE(NAME=TPS, PROPERTIES("tps"=2000)))

),
STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))),
COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-minute-
threshold"=30))),
DATA_CONSISTENCY_CHECKER(TYPE(NAME=DATA_MATCH, PROPERTIES("chunk-size"=1000)))
);

ENABLE SHARDING SCALING RULE sharding_scaling;

DISABLE SHARDING SCALING RULE sharding_scaling;

DROP SHARDING SCALING RULE sharding_scaling;

5.2. ShardingSphere-Proxy 152

Apache ShardingSphere document, v5.1.0

单表

定义

CREATE DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

ALTER DEFAULT SINGLE TABLE RULE singleTableRuleDefinition

DROP DEFAULT SINGLE TABLE RULE

singleTableRuleDefinition:
RESOURCE = resourceName

• RESOURCE需使用 RDL管理的数据源资源

示例

Single Table Rule

CREATE DEFAULT SINGLE TABLE RULE RESOURCE = ds_0

ALTER DEFAULT SINGLE TABLE RULE RESOURCE = ds_1

DROP DEFAULT SINGLE TABLE RULE

读写分离

语法说明

CREATE READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition] ...

ALTER READWRITE_SPLITTING RULE readwriteSplittingRuleDefinition [,
readwriteSplittingRuleDefinition] ...

DROP READWRITE_SPLITTING RULE ruleName [, ruleName] ...

readwriteSplittingRuleDefinition:
ruleName ([staticReadwriteSplittingRuleDefinition |

dynamicReadwriteSplittingRuleDefinition]
[, loadBanlancerDefinition])

staticReadwriteSplittingRuleDefinition:
WRITE_RESOURCE=writeResourceName, READ_RESOURCES(resourceName [, resourceName]

...)

5.2. ShardingSphere-Proxy 153

Apache ShardingSphere document, v5.1.0

dynamicReadwriteSplittingRuleDefinition:
AUTO_AWARE_RESOURCE=resourceName

loadBanlancerDefinition:
TYPE(NAME=loadBanlancerType [, PROPERTIES([algorithmProperties])])

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

• 支持创建静态读写分离规则和动态读写分离规则
• 动态读写分离规则依赖于数据库发现规则
• loadBanlancerType指定负载均衡算法类型，请参考负载均衡算法
• 重复的 ruleName将无法被创建

示例

// Static
CREATE READWRITE_SPLITTING RULE ms_group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1),
TYPE(NAME=random)
);

// Dynamic
CREATE READWRITE_SPLITTING RULE ms_group_1 (
AUTO_AWARE_RESOURCE=group_0,
TYPE(NAME=random,PROPERTIES(read_weight='2:1'))
);

ALTER READWRITE_SPLITTING RULE ms_group_1 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds_0,read_ds_1,read_ds_2),
TYPE(NAME=random,PROPERTIES(read_weight='2:0'))
);

DROP READWRITE_SPLITTING RULE ms_group_1;

5.2. ShardingSphere-Proxy 154

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance/

Apache ShardingSphere document, v5.1.0

数据库发现

语法说明

CREATE DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

ALTER DB_DISCOVERY RULE ruleDefinition [, ruleDefinition] ...

DROP DB_DISCOVERY RULE ruleName [, ruleName] ...

CREATE DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

ALTER DB_DISCOVERY TYPE databaseDiscoveryTypeDefinition [,
databaseDiscoveryTypeDefinition] ...

DROP DB_DISCOVERY TYPE discoveryTypeName [, discoveryTypeName] ...

CREATE DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

ALTER DB_DISCOVERY HEARTBEAT databaseDiscoveryHeartbaetDefinition [,
databaseDiscoveryHeartbaetDefinition] ...

DROP DB_DISCOVERY HEARTBEAT discoveryHeartbeatName [, discoveryHeartbeatName] ...

ruleDefinition:
(databaseDiscoveryRuleDefinition | databaseDiscoveryRuleConstruction)

databaseDiscoveryRuleDefinition
ruleName (resources, typeDefinition, heartbeatDefinition)

databaseDiscoveryRuleConstruction
ruleName (resources, TYPE = discoveryTypeName, HEARTBEAT =

discoveryHeartbeatName)

databaseDiscoveryTypeDefinition
discoveryTypeName (typeDefinition)

databaseDiscoveryHeartbaetDefinition
discoveryHeartbeatName (PROPERTIES (properties))

resources:
RESOURCES(resourceName [, resourceName] ...)

typeDefinition:
TYPE(NAME=typeName [, PROPERTIES([properties])])

5.2. ShardingSphere-Proxy 155

Apache ShardingSphere document, v5.1.0

heartbeatDefinition
HEARTBEAT (PROPERTIES (properties))

properties:
property [, property] ...

property:
key=value

• discoveryType指定数据库发现服务类型，ShardingSphere内置支持 MGR

• 重复的 ruleName将无法被创建
• 正在被使用的 discoveryType和 discoveryHeartbeat无法被删除
• 带有 -的命名在改动时需要使用 " "

• 移除 discoveryRule 时不会移除被该 discoveryRule 使用的 discoveryType 和
discoveryHeartbeat

示例

创建 discoveryRule时同时创建 discoveryType和 discoveryHeartbeat

CREATE DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

ALTER DB_DISCOVERY RULE db_discovery_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME=mgr,PROPERTIES('group-name'='246e9612-aaf1')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

DROP DB_DISCOVERY RULE db_discovery_group_0;

DROP DB_DISCOVERY TYPE db_discovery_group_0_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_0_heartbeat;

5.2. ShardingSphere-Proxy 156

Apache ShardingSphere document, v5.1.0

使用已有的 discoveryType和 discoveryHeartbeat创建 discoveryRule

CREATE DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec'))

);

CREATE DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/5 * * * * ?')

);

CREATE DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

ALTER DB_DISCOVERY TYPE db_discovery_group_1_mgr(
TYPE(NAME=mgr,PROPERTIES('group-name'='246e9612-aaf1'))

);

ALTER DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat(
PROPERTIES('keep-alive-cron'='0/10 * * * * ?')

);

ALTER DB_DISCOVERY RULE db_discovery_group_1 (
RESOURCES(ds_0, ds_1),
TYPE=db_discovery_group_1_mgr,
HEARTBEAT=db_discovery_group_1_heartbeat
);

DROP DB_DISCOVERY RULE db_discovery_group_1;

DROP DB_DISCOVERY TYPE db_discovery_group_1_mgr;

DROP DB_DISCOVERY HEARTBEAT db_discovery_group_1_heartbeat;

数据加密

语法说明

CREATE ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

ALTER ENCRYPT RULE encryptRuleDefinition [, encryptRuleDefinition] ...

DROP ENCRYPT RULE tableName [, tableName] ...

5.2. ShardingSphere-Proxy 157

Apache ShardingSphere document, v5.1.0

encryptRuleDefinition:
tableName(COLUMNS(columnDefinition [, columnDefinition] ...), QUERY_WITH_

CIPHER_COLUMN=queryWithCipherColumn)

columnDefinition:
(NAME=columnName [, PLAIN=plainColumnName] , CIPHER=cipherColumnName,

encryptAlgorithm)

encryptAlgorithm:
TYPE(NAME=encryptAlgorithmType [, PROPERTIES([algorithmProperties])])

algorithmProperties:
algorithmProperty [, algorithmProperty] ...

algorithmProperty:
key=value

• PLAIN指定明文数据列，CIPHER指定密文数据列
• encryptAlgorithmType指定加密算法类型，请参考加密算法
• 重复的 tableName将无法被创建
• queryWithCipherColumn支持大写或小写的 true或 false

示例

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER =order_cipher,TYPE(NAME=MD5))
),QUERY_WITH_CIPHER_COLUMN=true),
t_encrypt_2 (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id, CIPHER=order_cipher,TYPE(NAME=MD5))
), QUERY_WITH_CIPHER_COLUMN=FALSE);

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(
(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES('aes-
key-value'='123456abc'))),
(NAME=order_id,CIPHER=order_cipher,TYPE(NAME=MD5))
), QUERY_WITH_CIPHER_COLUMN=TRUE);

DROP ENCRYPT RULE t_encrypt,t_encrypt_2;

5.2. ShardingSphere-Proxy 158

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt/

Apache ShardingSphere document, v5.1.0

影子库压测

语法说明

CREATE SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

ALTER SHADOW RULE shadowRuleDefinition [, shadowRuleDefinition] ...

CREATE SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

ALTER SHADOW ALGORITHM shadowAlgorithm [, shadowAlgorithm] ...

DROP SHADOW RULE ruleName [, ruleName] ...

DROP SHADOW ALGORITHM algorithmName [, algorithmName] ...

CREATE DEFAULT SHADOW ALGORITHM NAME = algorithmName

shadowRuleDefinition: ruleName(resourceMapping, shadowTableRule [, shadowTableRule]
...)

resourceMapping: SOURCE=resourceName, SHADOW=resourceName

shadowTableRule: tableName(shadowAlgorithm [, shadowAlgorithm] ...)

shadowAlgorithm: ([algorithmName,] TYPE(NAME=shadowAlgorithmType,
PROPERTIES([algorithmProperties] ...)))

algorithmProperties: algorithmProperty [, algorithmProperty] ...

algorithmProperty: key=value

• 重复的 ruleName无法被创建
• resourceMapping指定源数据库和影子库的映射关系，需使用 RDL管理的 resource，请参考
数据源资源

• shadowAlgorithm可同时作用于多个 shadowTableRule

• algorithmName未指定时会根据 ruleName、tableName和 shadowAlgorithmType自动生
成

• shadowAlgorithmType目前支持 VALUE_MATCH、REGEX_MATCH和 SIMPLE_HINT

• shadowTableRule能够被不同的 shadowRuleDefinition复用，因此在执行 DROP SHADOW
RULE时，对应的 shadowTableRule不会被移除

• shadowAlgorithm能够被不同的 shadowTableRule复用，因此在执行 ALTER SHADOW RULE
时，对应的 shadowAlgorithm不会被移除

5.2. ShardingSphere-Proxy 159

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.1.0

示例

CREATE SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true",
foo="bar"))),(TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME=VALUE_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "value"='1')))));

ALTER SHADOW RULE shadow_rule(
SOURCE=demo_ds,
SHADOW=demo_ds_shadow,
t_order((simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true",
foo="bar"))),(TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "regex"='[1]')))),
t_order_item((TYPE(NAME=VALUE_MATCH, PROPERTIES("operation"="insert","column"=
"user_id", "value"='1')))));

CREATE SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="true", "foo"=
"bar"))),
(user_id_match_algorithm, TYPE(NAME=REGEX_MATCH,PROPERTIES("operation"="insert",
"column"="user_id", "regex"='[1]')));

ALTER SHADOW ALGORITHM
(simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("shadow"="false", "foo"=
"bar"))),
(user_id_match_algorithm, TYPE(NAME=VALUE_MATCH,PROPERTIES("operation"="insert",
"column"="user_id", "value"='1')));

DROP SHADOW RULE shadow_rule;

DROP SHADOW ALGORITHM simple_note_algorithm;

CREATE DEFAULT SHADOW ALGORITHM NAME = simple_hint_algorithm;

5.2. ShardingSphere-Proxy 160

Apache ShardingSphere document, v5.1.0

RQL语法

RQL (Resource & Rule Query Language)为 Apache ShardingSphere的资源和规则查询语言。

资源查询

语法说明

SHOW SCHEMA RESOURCES [FROM schemaName]

返回值说明

列 说明
name 数据源名称
type 数据源类型
host 数据源地址
port 数据源端口
db 数据库名称
attribute 数据源参数

示例

mysql> show schema resources;
+------+-------+-----------+------+------+---

---------------------------------+
| name | type | host | port | db | attribute

|
+------+-------+-----------+------+------+---

---------------------------------+
| ds_0 | MySQL | 127.0.0.1 | 3306 | ds_0 | {"minPoolSize":1,
"connectionTimeoutMilliseconds":30000,"maxLifetimeMilliseconds":1800000,"readOnly
":false,"idleTimeoutMilliseconds":60000,"maxPoolSize":50} |
| ds_1 | MySQL | 127.0.0.1 | 3306 | ds_1 | {"minPoolSize":1,
"connectionTimeoutMilliseconds":30000,"maxLifetimeMilliseconds":1800000,"readOnly
":false,"idleTimeoutMilliseconds":60000,"maxPoolSize":50} |
+------+-------+-----------+------+------+---

---------------------------------+
2 rows in set (0.84 sec)

5.2. ShardingSphere-Proxy 161

Apache ShardingSphere document, v5.1.0

规则查询

本章节将对规则查询的语法进行详细说明。

数据分片

语法说明

Sharding Table Rule

SHOW SHARDING TABLE tableRule | RULES [FROM schemaName]

SHOW SHARDING ALGORITHMS [FROM schemaName]

SHOW UNUSED SHARDING ALGORITHMS [FROM schemaName]

SHOW SHARDING KEY GENERATORS [FROM schemaName]

SHOW UNUSED SHARDING KEY GENERATORS [FROM schemaName]

SHOW DEFAULT SHARDING STRATEGY

SHOW SHARDING TABLE NODES;

tableRule:
RULE tableName

• 支持查询所有数据分片规则和指定表查询
• 支持查询所有分片算法

Sharding Binding Table Rule

SHOW SHARDING BINDING TABLE RULES [FROM schemaName]

Sharding Broadcast Table Rule

SHOW SHARDING BROADCAST TABLE RULES [FROM schemaName]

5.2. ShardingSphere-Proxy 162

Apache ShardingSphere document, v5.1.0

Sharding Scaling Rule

SHOW SHARDING SCALING RULES [FROM schemaName]

返回值说明

Sharding Table Rule

列 说明
table 逻辑表名
actual_data_nodes 实际的数据节点
actual_data_sources 实际的数据源（通过 RDL创建的规则时显示）
database_strategy_type 数据库分片策略类型
database_sharding_column 数据库分片键
database_sharding_algorithm_type 数据库分片算法类型
d atabase_sharding_algorithm_props 数据库分片算法参数
table_strategy_type 表分片策略类型
table_sharding_column 表分片键
table_sharding_algorithm_type 表分片算法类型
table_sharding_algorithm_props 表分片算法参数
key_generate_column 分布式主键生成列
key_generator_type 分布式主键生成器类型
key_generator_props 分布式主键生成器参数

Sharding Algorithms

列 说明
name 分片算法名称
type 分片算法类型
props 分片算法参数

Unused Sharding Algorithms

列 说明
name 分片算法名称
type 分片算法类型
props 分片算法参数

5.2. ShardingSphere-Proxy 163

Apache ShardingSphere document, v5.1.0

Sharding Key Generators

列 说明
name 分片列生成器名称
type 分片列生成器类型
props 分片列生成器参数

Unused Sharding Key Generators

列 说明
name 分片列生成器名称
type 分片列生成器类型
props 分片列生成器参数

Default Sharding Strategy

列 说明
name 策略名称
type 分片策略类型
sharding_column 分片键
sharding_algorithm_name 分片算法名称
sharding_algorithm_type 分片算法类型
sharding_algorithm_props 分片算法参数

Sharding Table Nodes

列 说明
name 分片规则名称
nodes 分片节点

Sharding Binding Table Rule

列 说明
sharding_binding_tables 绑定表名称

5.2. ShardingSphere-Proxy 164

Apache ShardingSphere document, v5.1.0

Sharding Broadcast Table Rule

列 说明
sharding_broadcast_tables 广播表名称

Sharding Scaling Rule

列 说明
name 弹性伸缩配置名称
input 数据读取配置
output 数据写入配置
stream_channel 数据通道配置
completion_detector 作业完成检测算法配置
data_consistency_checker 数据一致性校验算法配置

示例

Sharding Table Rule

SHOW SHARDING TABLE RULES

mysql> SHOW SHARDING TABLE RULES;
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_
strategy_type | database_sharding_column | database_sharding_algorithm_type |
database_sharding_algorithm_props | table_strategy_type | table_sharding_
column | table_sharding_algorithm_type | table_sharding_algorithm_props

| key_generate_column | key_generator_type | key_generator_props |
+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE

| user_id | INLINE | algorithm-
expression:ds_${user_id % 2} | INLINE | order_id | INLINE

| algorithm-expression:t_order_${order_id % 2} | order_id
| SNOWFLAKE | |

| t_order_item | ds_${0..1}.t_order_item_${0..1} | | INLINE
| user_id | INLINE | algorithm-

5.2. ShardingSphere-Proxy 165

Apache ShardingSphere document, v5.1.0

expression:ds_${user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_item_${order_id % 2} | order_item_id

| SNOWFLAKE | |
| t2 | | ds_0,ds_1 |

| | |
| mod | id | mod

| sharding-count:10 | |
| |

+--------------+---------------------------------+-------------------+-------------
---------+------------------------+-------------------------------+----------------
------------------------+-------------------+---------------------+----------------
------------+---+------------------
-+------------------+-------------------+
3 rows in set (0.02 sec)

SHOW SHARDING TABLE RULE tableName

mysql> SHOW SHARDING TABLE RULE t_order;
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+
| table | actual_data_nodes | actual_data_sources | database_strategy_
type | database_sharding_column | database_sharding_algorithm_type | database_
sharding_algorithm_props | table_strategy_type | table_sharding_column |
table_sharding_algorithm_type | table_sharding_algorithm_props |
key_generate_column | key_generator_type | key_generator_props |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+
| t_order | ds_${0..1}.t_order_${0..1} | | INLINE |
user_id | INLINE | algorithm-expression:ds_$
{user_id % 2} | INLINE | order_id | INLINE
| algorithm-expression:t_order_${order_id % 2} | order_id | SNOWFLAKE

| |
+---------+----------------------------+-------------------+----------------------
+------------------------+-------------------------------+-------------------------
---------------+-------------------+---------------------+-------------------------
---+--+-------------------+------------
------+-------------------+
1 row in set (0.01 sec)

SHOW SHARDING ALGORITHMS

5.2. ShardingSphere-Proxy 166

Apache ShardingSphere document, v5.1.0

mysql> SHOW SHARDING ALGORITHMS;
+-------------------------+--------+---
------+
| name | type | props

|
+-------------------------+--------+---
------+
| t_order_inline | INLINE | algorithm-expression=t_order_${order_id % 2}

|
| t_order_item_inline | INLINE | algorithm-expression=t_order_item_${order_id %
2} |
+-------------------------+--------+---
------+
2 row in set (0.01 sec)

SHOW UNUSED SHARDING ALGORITHMS

mysql> SHOW UNUSED SHARDING ALGORITHMS;
+---------------+--------+---+
| name | type | props |
+---------------+--------+---+
| t1_inline | INLINE | algorithm-expression=t_order_${order_id % 2} |
+---------------+--------+---+
1 row in set (0.01 sec)

SHOW SHARDING KEY GENERATORS

mysql> SHOW SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
t_order_snowflake	snowflake	
t_order_item_snowflake	snowflake	
uuid_key_generator	uuid	
+------------------------+-----------+-----------------+
3 row in set (0.01 sec)

SHOW UNUSED SHARDING KEY GENERATORS

mysql> SHOW UNUSED SHARDING KEY GENERATORS;
+------------------------+-----------+-----------------+
| name | type | props |
+------------------------+-----------+-----------------+
| uuid_key_generator | uuid | |
+------------------------+-----------+-----------------+
1 row in set (0.01 sec)

SHOW DEFAULT SHARDING STRATEGY

5.2. ShardingSphere-Proxy 167

Apache ShardingSphere document, v5.1.0

mysql> SHOW DEFAULT SHARDING STRATEGY ;

+----------+---------+--------------------+-------------------------+--------------
-----------+--+
| name | type | sharding_column | sharding_algorithm_name | sharding_
algorithm_type | sharding_algorithm_props |
+----------+---------+--------------------+-------------------------+--------------
-----------+--+
| TABLE | NONE | | |

| |
| DATABASE | STANDARD| order_id | database_inline | INLINE

| {algorithm-expression=ds_${user_id % 2}} |
+----------+---------+--------------------+-------------------------+--------------
-----------+--+
2 rows in set (0.07 sec)

SHOW SHARDING TABLE NODES

mysql> SHOW SHARDING TABLE NODES;
+---------+--+
| name | nodes |
+---------+--+
| t_order | ds_0.t_order_0, ds_1.t_order_1, ds_0.t_order_2, ds_1.t_order_3 |
+---------+--+
1 row in set (0.02 sec)

Sharding Binding Table Rule

mysql> SHOW SHARDING BINDING TABLE RULES;
+----------------------+
| sharding_binding_tables |
+----------------------+
| t_order,t_order_item |
| t1,t2 |
+----------------------+
2 rows in set (0.00 sec)

Sharding Broadcast Table Rule

mysql> SHOW SHARDING BROADCAST TABLE RULES;
+------------------------+
| sharding_broadcast_tables |
+------------------------+
| t_1 |
| t_2 |

5.2. ShardingSphere-Proxy 168

Apache ShardingSphere document, v5.1.0

+------------------------+
2 rows in set (0.00 sec)

Sharding Scaling Rule

mysql> SHOW SHARDING SCALING RULES;
+------------------+---
-------------------------+---
---------------------------------+---
-------+---+-
--+
| name | input

| output
| stream_channel

| completion_detector |
data_consistency_checker |
+------------------+---
-------------------------+---
---------------------------------+---
-------+---+-
--+
| sharding_scaling | {"workerThread":40,"batchSize":1000,"rateLimiter":{"type":"QPS
","props":{"qps":"50"}}} | {"workerThread":40,"batchSize":1000,"rateLimiter":{"type
":"TPS","props":{"tps":"2000"}}} | {"type":"MEMORY","props":{"block-queue-size":
"10000"}} | {"type":"IDLE","props":{"incremental-task-idle-minute-threshold":"30"}}
| {"type":"DATA_MATCH","props":{"chunk-size":"1000"}} |
+------------------+---
-------------------------+---
---------------------------------+---
-------+---+-
--+
1 row in set (0.00 sec)

单表

语法说明

SHOW SINGLE TABLE (tableRule | RULES) [FROM schemaName]

SHOW SINGLE TABLES

tableRule:
RULE tableName

5.2. ShardingSphere-Proxy 169

Apache ShardingSphere document, v5.1.0

返回值说明

Single Table Rule

列 说明
name 规则名称
resource_name 数据源名称

Single Table

列 说明
table_name 单表名称
resource_name 单表所在的数据源名称

示例

single table rules

sql> show single table rules;
+---------+---------------+
| name | resource_name |
+---------+---------------+
| default | ds_1 |
+---------+---------------+
1 row in set (0.01 sec)

single tables

mysql> show single tables;
+--------------+---------------+
| table_name | resource_name |
+--------------+---------------+
| t_single_0 | ds_0 |
| t_single_1 | ds_1 |
+--------------+---------------+
2 rows in set (0.02 sec)

5.2. ShardingSphere-Proxy 170

Apache ShardingSphere document, v5.1.0

读写分离

语法说明

SHOW READWRITE_SPLITTING RULES [FROM schemaName]

返回值说明

列 说明
name 规则名称
auto_aware_data_source_name 自动发现数据源名称（配置动态读写分离规则显示）
write_data_source_name 写数据源名称
read_data_source_names 读数据源名称列表
load_balancer_type 负载均衡算法类型
load_balancer_props 负载均衡算法参数

示例

静态读写分离规则

mysql> show readwrite_splitting rules;
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
| ms_group_0 | NULL | ds_primary | ds_slave_0,
ds_slave_1 | random | |
+------------+-----------------------------+------------------------+--------------
----------+--------------------+---------------------+
1 row in set (0.00 sec)

动态读写分离规则

mysql> show readwrite_splitting rules from readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | NULL |

| random | read_weight=2:1 |

5.2. ShardingSphere-Proxy 171

Apache ShardingSphere document, v5.1.0

+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.01 sec)

静态读写分离规则和动态读写分离规则

mysql> show readwrite_splitting rules from readwrite_splitting_db;
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| name | auto_aware_data_source_name | write_data_source_name | read_data_
source_names | load_balancer_type | load_balancer_props |
+--------------+-----------------------------+------------------------+------------
------------+--------------------+---------------------+
| readwrite_ds | ms_group_0 | write_ds | read_ds_0,
read_ds_1 | random | read_weight=2:1 |
+-------+-----------------------------+------------------------+-------------------
-----+--------------------+---------------------+
1 row in set (0.00 sec)

数据库发现

语法说明

SHOW DB_DISCOVERY RULES [FROM schemaName]

SHOW DB_DISCOVERY TYPES [FROM schemaName]

SHOW DB_DISCOVERY HEARTBEATS [FROM schemaName]

返回值说明

DB Discovery Rule

列 说明
group_name 规则名称
data_source_names 数据源名称列表
primary_data_source_name 主数据源名称
discovery_type 数据库发现服务类型
discovery_heartbeat 数据库发现服务心跳

5.2. ShardingSphere-Proxy 172

Apache ShardingSphere document, v5.1.0

DB Discovery Type

列 说明
name 类型名称
type 类型种类
props 类型参数

DB Discovery Heartbeat

列 说明
name 心跳名称
props 心跳参数

示例

DB Discovery Rule

mysql> show db_discovery rules;
+----------------------+-------------------+--------------------------+------------
---+-----------------
---+
| group_name | data_source_names | primary_data_source_name | discovery_
type | discovery_
heartbeat |
+----------------------+-------------------+--------------------------+------------
---+-----------------
---+
| db_discovery_group_0 | ds_0,ds_1,ds_2 | ds_0 | {name=db_
discovery_group_0_mgr, type=mgr, props={group-name=92504d5b-6dec}} | {name=db_
discovery_group_0_heartbeat, props={keep-alive-cron=0/5 * * * * ?}} |
+----------------------+-------------------+--------------------------+------------
--+----------------
---+
1 row in set (0.20 sec)

DB Discovery Type

mysql> show db_discovery types;
+--------------------------+------+----------------------------+
| name | type | props |
+--------------------------+------+----------------------------+
| db_discovery_group_0_mgr | mgr | {group-name=92504d5b-6dec} |
+--------------------------+------+----------------------------+
1 row in set (0.01 sec)

5.2. ShardingSphere-Proxy 173

Apache ShardingSphere document, v5.1.0

DB Discovery Heartbeat

mysql> show db_discovery heartbeats;
+--------------------------------+---------------------------------+
| name | props |
+--------------------------------+---------------------------------+
| db_discovery_group_0_heartbeat | {keep-alive-cron=0/5 * * * * ?} |
+---------------------------------+---------------------------------+
1 row in set (0.01 sec)

数据加密

语法说明

SHOW ENCRYPT RULES [FROM schemaName]

SHOW ENCRYPT TABLE RULE tableName [from schemaName]

• 支持查询所有的数据加密规则和指定逻辑表名查询

返回值说明

列 说明
table 逻辑表名
logic_column 逻辑列名
cipher_column 密文列名
plain_column 明文列名
encryptor_type 加密算法类型
encryptor_props 加密算法参数

示例

显示加密规则

mysql> show encrypt rules from encrypt_db;
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
| table | logic_column | cipher_column | plain_column | encryptor_type |
encryptor_props |
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
| t_encrypt | order_id | order_cipher | NULL | MD5 |

|
| t_encrypt | user_id | user_cipher | user_plain | AES | aes-

5.2. ShardingSphere-Proxy 174

Apache ShardingSphere document, v5.1.0

key-value=123456abc |
| t_order | item_id | order_cipher | NULL | MD5 |

|
| t_order | order_id | user_cipher | user_plain | AES | aes-
key-value=123456abc |
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
4 rows in set (0.01 sec)

显示加密表规则表名

mysql> show encrypt table rule t_encrypt;
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
| table | logic_column | cipher_column | plain_column | encryptor_type |
encryptor_props |
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
| t_encrypt | order_id | order_cipher | NULL | MD5 |

|
| t_encrypt | user_id | user_cipher | user_plain | AES | aes-
key-value=123456abc |
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
2 rows in set (0.00 sec)

mysql> show encrypt table rule t_encrypt from encrypt_db;
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
| table | logic_column | cipher_column | plain_column | encryptor_type |
encryptor_props |
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
| t_encrypt | order_id | order_cipher | NULL | MD5 |

|
| t_encrypt | user_id | user_cipher | user_plain | AES | aes-
key-value=123456abc |
+-----------+--------------+---------------+--------------+----------------+-------
------------------+
2 rows in set (0.00 sec)

5.2. ShardingSphere-Proxy 175

Apache ShardingSphere document, v5.1.0

影子库压测

语法说明

SHOW SHADOW shadowRule | RULES [FROM schemaName]

SHOW SHADOW TABLE RULES [FROM schemaName]

SHOW SHADOW ALGORITHMS [FROM schemaName]

shadowRule:
RULE ruleName

• 支持查询所有影子规则和指定表查询
• 支持查询所有表规则
• 支持查询所有影子算法

返回值说明

Shadow Rule

列 说明
rule_name 规则名称
source_name 源数据库
shadow_name 影子数据库
shadow_table 影子表

Shadow Table Rule

列 说明
shadow_table 影子表
shadow_algorithm_name 影子算法名称

Shadow Algorithms

列 说明
shadow_algorithm_name 影子算法名称
type 算法类型
props 算法参数
is_default 是否默认

5.2. ShardingSphere-Proxy 176

Apache ShardingSphere document, v5.1.0

Shadow Rule status

列 说明
status 是否启用

示例

SHOW SHADOW RULES

mysql> show shadow rules;
+--------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+--------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
| shadow_rule_2 | ds_2 | ds_shadow_2 | t_order_item |
+--------------------+-------------+-------------+--------------+
2 rows in set (0.02 sec)

SHOW SHADOW RULE ruleName

mysql> show shadow rule shadow_rule_1;
+------------------+-------------+-------------+--------------+
| rule_name | source_name | shadow_name | shadow_table |
+------------------+-------------+-------------+--------------+
| shadow_rule_1 | ds_1 | ds_shadow_1 | t_order |
+------------------+-------------+-------------+--------------+
1 rows in set (0.01 sec)

SHOW SHADOW TABLE RULES

mysql> show shadow table rules;
+--------------+---
-------------+
| shadow_table | shadow_algorithm_name

|
+--------------+---
-------------+
| t_order_1 | user_id_match_algorithm,simple_note_algorithm_1

|
+--------------+---
-------------+
1 rows in set (0.01 sec)

SHOW SHADOW ALGORITHMS

mysql> show shadow algorithms;
+-------------------------+--------------------+-----------------------------------

5.2. ShardingSphere-Proxy 177

Apache ShardingSphere document, v5.1.0

--------+----------------+
| shadow_algorithm_name | type | props

| is_default |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
| user_id_match_algorithm | COLUMN_REGEX_MATCH | operation=insert,column=user_id,
regex=[1] | false |
| simple_note_algorithm_1 | SIMPLE_NOTE | shadow=true,foo=bar

| false |
+-------------------------+--------------------+-----------------------------------
--------+----------------+
2 rows in set (0.01 sec)

RAL语法

RAL (Resource & Rule Administration Language)为 Apache ShardingSphere的管理语言，负责强制路
由、事务类型切换、弹性伸缩、分片执行计划查询等增量功能的操作。

强制路由

语句 说明 示例
set readwrite_splitting
hint source = [auto / write]

针对当前连接，设置读写分离的路由策略（自
动路由或强制到写库）

set re adwrite_splitting
hint source = write

set sharding hint
database_value = yy

针对当前连接，设置 hint仅对数据库分片有
效，并添加分片值，yy：数据库分片值

set sharding hint
database_value = 100

add sharding hint
database_value xx =
yy

针对当前连接，为表 xx添加分片值 yy，xx：
逻辑表名称，yy：数据库分片值

add sharding hint
database_value t_order=
100

add sharding hint ta‐
ble_value xx = yy

针对当前连接，为表 xx添加分片值 yy，xx：
逻辑表名称，yy：表分片值

add sharding hint ta‐
ble_value t_order =
100

clear hint 针对当前连接，清除 hint所有设置 clear hint
clear [sharding hint / read‐
write_splitting hint]

针对当前连接，清除 sharding 或 read‐
write_splitting的 hint设置

clear re ad‐
write_splitting hint

show [sharding / read‐
write_splitting] hint
status

针对当前连接，查询 sharding 或 read‐
write_splitting的 hint设置

show re ad‐
write_splitting hint
status

5.2. ShardingSphere-Proxy 178

Apache ShardingSphere document, v5.1.0

弹性伸缩

语句 说明 示例
show scaling list 查询运行列表 show scaling list
show scaling status xx 查询任务状态，xx：任务 id show scaling status 1234
start scaling xx 开始运行任务，xx：任务 id start scaling 1234
stop scaling xx 停止运行任务，xx：任务 id stop scaling 12345
drop scaling xx 移除任务，xx：任务 id drop scaling 1234
reset scaling xx 重置任务进度，xx：任务 id reset scaling 1234
check scaling xx 数据一致性校验，使用 server.yaml

里的校验算法，xx：任务 id
check scaling 1234

show scaling check algorithms 展示可用的一致性校验算法 show scaling check algo‐
rithms

check scaling {jobId} by type(n
ame={algorithmType})

数据一致性校验，使用指定的校验算法 check scaling 1234 by
type(name=DEFAULT)

stop scaling source writing xx 旧的 ShardingSphere数据源停写，xx：
任务 id

stop scaling source writ‐
ing 1234

apply scaling xx 切换至新的 ShardingSphere 元数据，
xx：任务 id

apply scaling 1234

熔断

语句 说明 示例
[enable / disable] readwrite_splitting read xxx
[from schema]

启用 /禁用读库 enable r eadwrite_splitting read
resource_0

[enable / disable] instance [IP=xxx, PORT=xxx
/ instanceId]

启用 / 禁用
proxy实例

disable instance 127.0.0.1@3307

show instance list 查询 proxy 实例
信息

show instance list

show readwrite_splitting read resources
[from schema]

查询所有读库的
状态

show r eadwrite_splitting read
resources

5.2. ShardingSphere-Proxy 179

mailto:127.0.0.1@3307

Apache ShardingSphere document, v5.1.0

全局规则

语句 说明 示例
SHOW AUTHORITY RULE 查询权限规则配置 SHOW AUTHORITY RULE
SHOW TRANSACTION RULE 查询事务规则配置 SHOW TRANSACTION RULE
SHOW SQL_PARSER RULE 查询解析引擎规则配置 SHOW SQL_PARSER RULE
ALTER TRANSACTION RULE(D
EFAULT=xx,TYPE(NAME=xxx,
PROPERTIES(“key1”=“val ue1”
,“key2”=“value2”⋯)))

更新事务规则配置，DE
FAULT：默认事务类型，
支持 LOCAL、XA、BASE；
N AME：事务管理器名
称，支持 Ato mikos、
Narayana和 Bitronix

ALTER TRANSAC‐
TION RULE(DEFAUL
T=XA,TYPE(NAME=Narayana,
PROPERTIE S(“databaseName”=
“jbosst s”,“host”=“127.0.0.1”)))

ALTER SQL_PARSER RULE SQL_
COMMENT_PARSE_ENABLE=xx,
PARSE_TREE_CA
CHE(INITIAL_CAPACITY=xx,
MAXIMUM_SIZE=xx, CON‐
CURRENCY_LEVEL=xx),
SQL_STATEMENT_CAC
HE(INITIAL_CAPACITY=xxx,
MAXIMUM_SIZE=xxx, CONCUR‐
RENCY_LEVEL=xxx)

更 新 解 析 引 擎 规 则
配 置，SQL_COMM
ENT_PARSE_ENABL
E：是否解析 SQL 注释，
“ PARSE_TREE_CACH
E“：语法树本地缓存配
置，SQL_STATEMENT
_CACHE：SQL语句本地
缓存配置项

ALTER SQL_PARSER
RULE SQL_COM
MENT_PARSE_ENABLE=false,
PARSE_TREE_CA
CHE(INITIAL_CAPACITY=10,
MAXIMUM_SIZE=11, CON‐
CURRENCY_LEVEL=1),
SQL_STATEMENT_CA
CHE(INITIAL_CAPACITY=11,
MAXIMUM_SIZE=11, CONCUR‐
RENCY_LEVEL=100)

5.2. ShardingSphere-Proxy 180

Apache ShardingSphere document, v5.1.0

其他

语句 说明 示例
show instance mode 查询当前 proxy的mode配置 show instance mode
count schema rules [from schema] 查询 schema中的规则数量 count schema rules
set variable proxy_property_name =
xx

proxy_property_name 为
proxy 的属性配置 ，需使用下
划线命名

set variable sql_show =
true

set variable transaction_type = xx 修改当前连接的事务类型, 支持
LOCAL，XA，BASE

set variable t ransac‐
tion_type = XA

set variable agent_plugins_enabled =
[true / false]

设置 agent插件的启用状态，默
认值 false

set variable agent_ plug‐
ins_enabled = true

show all variables 查询 proxy所有的属性配置 show all variables
show variable variable_name 查询 proxy属性，需使用下划线

命名
show variable sql_show

preview SQL 预览实际 SQL preview select * from
t_order

parse SQL 解析 SQL 并输出抽象语法树
parse select * from t_order

refresh table metadata 刷新所有表的元数据 refresh table metadata
refresh table metadata [tableName /
tableName from resource resource‐
Name]

刷新指定表的元数据 refresh table metadata
t_order from resource
ds_1

show table metadata tableName [,
tableName]⋯

查询表的元数据 show table metadata
t_order

export schema config [from
schema_name] [, file=“file_path”
]

查询 /导出 schema中的资源和
规则配置

export schema con‐
fig from readwri
te_splitting_db

注意事项

ShardingSphere‐Proxy默认不支持 hint，如需支持，请在 conf/server.yaml中，将 properties的
属性 proxy-hint-enabled设置为 true。

使用

本章节将结合 DistSQL的语法，并以实战的形式分别介绍如何使用 DistSQL管理分布式数据库下的资源
和规则。

5.2. ShardingSphere-Proxy 181

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/yaml-config/props/

Apache ShardingSphere document, v5.1.0

前置工作

以MySQL为例，其他数据库可直接替换。
1. 启动MySQL服务；
2. 创建待注册资源的MySQL数据库；
3. 在MySQL中为 ShardingSphere‐Proxy创建一个拥有创建权限的角色或者用户；
4. 启动 Zookeeper服务；
5. 添加 mode和 authentication配置参数到 server.yaml；
6. 启动 ShardingSphere‐Proxy；
7. 通过应用程序或终端连接到 ShardingSphere‐Proxy；

创建数据库

1. 创建逻辑库

CREATE DATABASE foo_db;

2. 使用新创建的逻辑库

USE foo_db;

资源操作

详见具体规则示例。

规则操作

详见具体规则示例。

注意事项

1. 当前, DROP DATABASE只会移除逻辑的分布式数据库，不会删除用户真实的数据库；
2. DROP TABLE会将逻辑分片表和数据库中真实的表全部删除；
3. CREATE DATABASE只会创建逻辑的分布式数据库，所以需要用户提前创建好真实的数据库。

5.2. ShardingSphere-Proxy 182

Apache ShardingSphere document, v5.1.0

数据分片

资源操作

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root
);

ADD RESOURCE ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root
);

规则操作

• 创建分片规则

CREATE SHARDING TABLE RULE t_order(
RESOURCES(ds_0,ds_1),
SHARDING_COLUMN=order_id,
TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=4)),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME=snowflake))
);

• 创建切分表

CREATE TABLE `t_order` (
`order_id` int NOT NULL,
`user_id` int NOT NULL,
`status` varchar(45) DEFAULT NULL,
PRIMARY KEY (`order_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

• 删除切分表

DROP TABLE t_order;

• 删除分片规则

5.2. ShardingSphere-Proxy 183

Apache ShardingSphere document, v5.1.0

DROP SHARDING TABLE RULE t_order;

• 删除数据源

DROP RESOURCE ds_0, ds_1;

• 删除分布式数据库

DROP DATABASE foo_db;

读写分离

资源操作

ADD RESOURCE write_ds (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root
),read_ds (
HOST=127.0.0.1,
PORT=3307,
DB=ds_0,
USER=root,
PASSWORD=root
);

规则操作

• 创建读写分离规则

CREATE READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME=random)
);

• 修改读写分离规则

ALTER READWRITE_SPLITTING RULE group_0 (
WRITE_RESOURCE=write_ds,
READ_RESOURCES(read_ds),
TYPE(NAME=random,PROPERTIES(read_weight='2:0'))
);

5.2. ShardingSphere-Proxy 184

Apache ShardingSphere document, v5.1.0

• 删除读写分离规则

DROP READWRITE_SPLITTING RULE group_0;

• 删除数据源

DROP RESOURCE write_ds,read_ds;

• 删除分布式数据库

DROP DATABASE readwrite_splitting_db;

数据加密

资源操作

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root

);

规则操作

• 创建加密规则

CREATE ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES(
'aes-key-value'='123456abc'))),

(NAME=order_id,PLAIN=order_plain,CIPHER =order_cipher,TYPE(NAME=RC4,
PROPERTIES('rc4-key-value'='123456abc')))
));

• 创建加密表

CREATE TABLE `t_encrypt` (
`id` int(11) NOT NULL,
`user_id` varchar(45) DEFAULT NULL,
`order_id` varchar(45) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

• 修改加密规则

5.2. ShardingSphere-Proxy 185

Apache ShardingSphere document, v5.1.0

ALTER ENCRYPT RULE t_encrypt (
COLUMNS(

(NAME=user_id,PLAIN=user_plain,CIPHER=user_cipher,TYPE(NAME=AES,PROPERTIES(
'aes-key-value'='123456abc'))),
));

• 删除加密规则

DROP ENCRYPT RULE t_encrypt;

• 删除数据源

DROP RESOURCE ds_0;

• 删除分布式数据库

DROP DATABASE encrypt_db;

数据库发现

资源操作

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root
),ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root
),ds_2 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root
);

5.2. ShardingSphere-Proxy 186

Apache ShardingSphere document, v5.1.0

规则操作

• 创建数据库发现规则

CREATE DB_DISCOVERY RULE ha_group_0 (
RESOURCES(ds_0, ds_1),
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• 修改数据库发现规则

ALTER DB_DISCOVERY RULE ha_group_0 (
RESOURCES(ds_0, ds_1, ds_2),
TYPE(NAME=mgr,PROPERTIES('group-name'='92504d5b-6dec')),
HEARTBEAT(PROPERTIES('keep-alive-cron'='0/5 * * * * ?'))
);

• 删除数据库发现规则

DROP DB_DISCOVERY RULE ha_group_0;

• 删除数据库发现类型

DROP DB_DISCOVERY TYPE ha_group_0_mgr;

• 删除数据库发现心跳

DROP DB_DISCOVERY HEARTBEAT ha_group_0_heartbeat;

• 删除数据源

DROP RESOURCE ds_0,ds_1,ds_2;

• 删除分布式数据库

DROP DATABASE discovery_db;

影子库压测

资源操作

ADD RESOURCE ds_0 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_0,
USER=root,
PASSWORD=root

5.2. ShardingSphere-Proxy 187

Apache ShardingSphere document, v5.1.0

),ds_1 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_1,
USER=root,
PASSWORD=root
),ds_2 (
HOST=127.0.0.1,
PORT=3306,
DB=ds_2,
USER=root,
PASSWORD=root
);

规则操作

• 创建影子库压测规则

CREATE SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_1,
t_order((simple_hint_algorithm, TYPE(NAME=SIMPLE_HINT, PROPERTIES("foo"="bar"))),
(TYPE(NAME=REGEX_MATCH, PROPERTIES("operation"="insert","column"="user_id", "regex
"='[1]')))),
t_order_item((TYPE(NAME=SIMPLE_HINT, PROPERTIES("foo"="bar")))));

• 修改影子库压测规则

ALTER SHADOW RULE group_0(
SOURCE=ds_0,
SHADOW=ds_2,
t_order_item((TYPE(NAME=SIMPLE_HINT, PROPERTIES("foo"="bar")))));

• 删除影子库压测规则

DROP SHADOW RULE group_0;

• 删除数据源

DROP RESOURCE ds_0,ds_1,ds_2;

9. 删除分布式数据库

DROP DATABASE foo_db;

5.2. ShardingSphere-Proxy 188

Apache ShardingSphere document, v5.1.0

5.3 ShardingSphere-Sidecar

5.3.1 简介

ShardingSphere‐Sidecar是 ShardingSphere的第三个产品，目前仍然在规划中。定位为 Kubernetes或
Mesos的云原生数据库代理，以 DaemonSet的形式代理所有对数据库的访问。
通过无中心、零侵入的方案提供与数据库交互的的啮合层，即DatabaseMesh，又可称数据网格。Database
Mesh的关注重点在于如何将分布式的数据访问应用与数据库有机串联起来，它更加关注的是交互，是将
杂乱无章的应用与数据库之间的交互进行有效地梳理。使用 Database Mesh，访问数据库的应用和数据
库终将形成一个巨大的网格体系，应用和数据库只需在网格体系中对号入座即可，它们都是被啮合层所
治理的对象。

5.3.2 对比

Shard ingSphere-JDBC Shardi ngSphere-Proxy Sharding Sphere-Sidecar

数据库 任意 M ySQL/PostgreSQL MyS QL/PostgreSQL
连接消耗数 高 低 高
异构语言 仅 Java 任意 任意
性能 损耗低 损耗略高 损耗低
无中心化 是 否 是
静态入口 无 有 无

5.3. ShardingSphere-Sidecar 189

Apache ShardingSphere document, v5.1.0

ShardingSphere‐Sidecar的优势在于对 Kubernetes和Mesos的云原生支持。

5.4 ShardingSphere-Scaling

5.4.1 简介

ShardingSphere‐Scaling是一个提供给用户的通用的 ShardingSphere数据接入迁移，及弹性伸缩的解决
方案。
于 4.1.0开始向用户提供，目前仍处于实验室版本。

5.4.2 运行部署

部署启动

1. 执行以下命令，编译生成 ShardingSphere‐Proxy二进制包：

git clone --depth 1 https://github.com/apache/shardingsphere.git
cd shardingsphere
mvn clean install -Dmaven.javadoc.skip=true -Dcheckstyle.skip=true -Drat.skip=true
-Djacoco.skip=true -DskipITs -DskipTests -Prelease

发 布 包：‐ /shardingsphere‐distribution/shardingsphere‐proxy‐distribution/target/apache‐
shardingsphere‐${latest.release.version}‐shardingsphere‐proxy‐bin.tar.gz

或者通过下载页面获取安装包。
Scaling还是实验性质的功能，建议使用master分支最新版本，点击此处下载每日构建版本

2. 解压缩 proxy发布包，修改配置文件 conf/config-sharding.yaml。详情请参见proxy启动手
册。

3. 修改配置文件 conf/server.yaml，详情请参见模式配置。
目前 mode必须是 Cluster，需要提前启动对应的注册中心。
配置示例：

mode:
type: Cluster
repository:

type: ZooKeeper
props:
namespace: governance_ds
server-lists: localhost:2181
retryIntervalMilliseconds: 500
timeToLiveSeconds: 60
maxRetries: 3

5.4. ShardingSphere-Scaling 190

https://shardingsphere.apache.org/document/current/cn/downloads/
https://github.com/apache/shardingsphere#nightly-builds
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/startup/bin/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/mode/

Apache ShardingSphere document, v5.1.0

operationTimeoutMilliseconds: 500
overwrite: false

4. 开启 scaling

方法 1：修改配置文件 conf/config-sharding.yaml的 scalingName和 scaling部分。
配置项说明：

rules:
- !SHARDING
忽略的配置

scalingName: # 启用的弹性伸缩配置名称
scaling:

<scaling-action-config-name> (+):
input: # 数据读取配置。如果不配置则部分参数默认生效。
workerThread: # 从源端摄取全量数据的线程池大小。如果不配置则使用默认值。
batchSize: # 一次查询操作返回的最大记录数。如果不配置则使用默认值。
rateLimiter: # 限流算法。如果不配置则不限流。

type: # 算法类型。可选项：QPS
props: # 算法属性
qps: # qps 属性。适用算法类型：QPS

output: # 数据写入配置。如果不配置则部分参数默认生效。
workerThread: # 数据写入到目标端的线程池大小。如果不配置则使用默认值。
batchSize: # 一次批量写入操作的最大记录数。如果不配置则使用默认值。
rateLimiter: # 限流算法。如果不配置则不限流。

type: # 算法类型。可选项：TPS
props: # 算法属性
tps: # tps 属性。适用算法类型：TPS

streamChannel: # 数据通道，连接生产者和消费者，用于 input 和 output 环节。如果不配置则
默认使用 MEMORY 类型

type: # 算法类型。可选项：MEMORY
props: # 算法属性

block-queue-size: # 属性：阻塞队列大小
completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤，可以通

过 DistSQL 手动操作。
type: # 算法类型。可选项：IDLE
props: # 算法属性

incremental-task-idle-minute-threshold: # 如果增量同步任务不再活动超过一定时间，
那么可以认为增量同步任务接近完成。适用算法类型：IDLE

dataConsistencyChecker: # 数据一致性校验算法。如果不配置则跳过这个步骤。
type: # 算法类型。可选项：DATA_MATCH, CRC32_MATCH
props: # 算法属性

chunk-size: # 一次查询操作返回的最大记录数

配置示例：

5.4. ShardingSphere-Scaling 191

Apache ShardingSphere document, v5.1.0

rules:
- !SHARDING
忽略的配置

scalingName: default_scaling
scaling:

default_scaling:
input:
workerThread: 40
batchSize: 1000
rateLimiter:

type: QPS
props:
qps: 50

output:
workerThread: 40
batchSize: 1000
rateLimiter:

type: TPS
props:
tps: 2000

streamChannel:
type: MEMORY
props:

block-queue-size: 10000
completionDetector:
type: IDLE
props:

incremental-task-idle-minute-threshold: 30
dataConsistencyChecker:
type: DATA_MATCH
props:

chunk-size: 1000

以上的 completionDetector，dataConsistencyChecker都可以通过实现 SPI自定义。可以参考
现有实现，详情请参见开发者手册 #弹性伸缩。
方法 2：通过 DistSQL配置 scaling

创建 scaling配置示例：

CREATE SHARDING SCALING RULE default_scaling (
INPUT(

WORKER_THREAD=40,
BATCH_SIZE=1000,
RATE_LIMITER(TYPE(NAME=QPS, PROPERTIES("qps"=50)))

),
OUTPUT(
WORKER_THREAD=40,

5.4. ShardingSphere-Scaling 192

https://shardingsphere.apache.org/document/current/cn/dev-manual/scaling/

Apache ShardingSphere document, v5.1.0

BATCH_SIZE=1000,
RATE_LIMITER(TYPE(NAME=TPS, PROPERTIES("tps"=2000)))

),
STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))),
COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-minute-
threshold"=3))),
DATA_CONSISTENCY_CHECKER(TYPE(NAME=DATA_MATCH, PROPERTIES("chunk-size"=1000)))
);

详情请参见RDL#数据分片。
5. 启动 ShardingSphere‐Proxy：

sh bin/start.sh

6. 查看 proxy日志 logs/stdout.log，看到日志中出现：

[INFO] [main] o.a.s.p.frontend.ShardingSphereProxy - ShardingSphere-Proxy start
success

确认启动成功。

结束

sh bin/stop.sh

5.4.3 使用手册

使用手册

环境要求

纯 JAVA开发，JDK建议 1.8以上版本。
支持迁移场景如下：

源端 目标端
MySQL(5.1.15 ~ 5.7.x) MySQL(5.1.15 ~ 5.7.x)
PostgreSQL(9.4 ~) PostgreSQL(9.4 ~)
openGauss(2.1.0) openGauss(2.1.0)

注意：
如果后端连接以下数据库，请下载相应 JDBC驱动 jar包，并将其放入${shardingsphere-proxy}/lib
目录。

5.4. ShardingSphere-Scaling 193

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/

Apache ShardingSphere document, v5.1.0

数 据
库

JDBC驱动 参考

MySQL ‘mysql‐co nnector‐java‐5.1.47.jar < https://repo1.maven.org/m
aven2/mysql/mysql‐connect or‐java/5.1.47/mysql‐conn ector‐java‐
5.1.47.jar>‘__

Con‐
nector/J
Versions

open‐
Gauss

opengauss‐jd bc‐2.0.1‐compatibility.ja r

功能支持情况：

功能 MySQL PostgreSQL openGauss

全量迁移 支持 支持 支持
增量迁移 支持 支持 支持
自动建表 支持 不支持 支持
DATA_MATCH一致性校验 支持 支持 支持
CRC32_MATCH一致性校验 支持 不支持 不支持

注意：
还没开启自动建表的数据库需要手动创建分表。

权限要求

MySQL

1. 开启 binlog

MySQL 5.7 my.cnf示例配置：

[mysqld]
server-id=1
log-bin=mysql-bin
binlog-format=row
binlog-row-image=full
max_connections=600

执行以下命令，确认是否有开启 binlog：

show variables like '%log_bin%';
show variables like '%binlog%';

如以下显示，则说明 binlog已开启

+---+---------------------------------------+
| Variable_name | Value |
+---+---------------------------------------+

5.4. ShardingSphere-Scaling 194

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://repo1.maven.org/maven2/org/opengauss/opengauss-jdbc/2.0.1-compatibility/opengauss-jdbc-2.0.1-compatibility.jar

Apache ShardingSphere document, v5.1.0

log_bin	ON
binlog_format	ROW
binlog_row_image	FULL
+---+---------------------------------------+

2. 赋予MySQL账号 Replication相关权限。
执行以下命令，查看该用户是否有迁移权限：

SHOW GRANTS 'user';

示例结果：

+--+
|Grants for ${username}@${host} |
+--+
|GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO ${username}@${host} |
|....... |
+--+

PostgreSQL

1. 开启 test_decoding

2. 调整WAL配置
postgresql.conf示例配置：

wal_level = logical
max_replication_slots = 10

详情请参见Write Ahead Log和 Replication。

DistSQL自动模式接口

预览当前分片规则

示例：

preview select count(1) from t_order;

返回信息：

mysql> preview select count(1) from t_order;
+------------------+--------------------------------+
| data_source_name | sql |
+------------------+--------------------------------+
| ds_0 | select count(1) from t_order_0 |

5.4. ShardingSphere-Scaling 195

https://www.postgresql.org/docs/9.4/test-decoding.html
https://www.postgresql.org/docs/9.6/runtime-config-wal.html
https://www.postgresql.org/docs/9.6/runtime-config-replication.html

Apache ShardingSphere document, v5.1.0

ds_0	select count(1) from t_order_1
ds_1	select count(1) from t_order_0
ds_1	select count(1) from t_order_1
+------------------+--------------------------------+
4 rows in set (0.00 sec)

创建迁移任务

1. 添加新的数据源
详情请参见RDL#数据源资源。
先在底层数据库系统创建需要的分库，下面的 DistSQL需要用到。
示例：

ADD RESOURCE ds_2 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_2?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

), ds_3 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_3?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

), ds_4 (
URL="jdbc:mysql://127.0.0.1:3306/scaling_ds_4?serverTimezone=UTC&useSSL=false",
USER=root,
PASSWORD=root,
PROPERTIES("maximumPoolSize"=10,"idleTimeout"="30000")

);

2. 修改所有表的分片规则
目前只有通过执行 ALTER SHARDING TABLE RULE DistSQL来触发迁移。
详情请参见RDL#数据分片。
SHARDING TABLE RULE支持 2种类型：TableRule和 AutoTableRule。以下是两种分片规则的对
比：

类型 AutoTableRule（自动分片） TableRule（自定义分片）
定义 自动化分片算法 自定义分片算法

DistSQL字段含义和 YAML配置保持一致，详情请参见YAML配置 #数据分片。
AutoTableRule修改示例：

5.4. ShardingSphere-Scaling 196

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/rule-definition/sharding/
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/sharding/#自动化分片算法
https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/sharding/#自定义分片算法
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sharding/

Apache ShardingSphere document, v5.1.0

ALTER SHARDING TABLE RULE t_order (
RESOURCES(ds_2, ds_3, ds_4),
SHARDING_COLUMN=order_id,
TYPE(NAME=hash_mod,PROPERTIES("sharding-count"=6)),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME=snowflake))
);

RESOURCES从 (ds_0, ds_1)改为了 (ds_2, ds_3, ds_4)，sharding-count从 4改为了 6，会
触发迁移。
TableRule修改示例：

ALTER SHARDING ALGORITHM database_inline (
TYPE(NAME=INLINE,PROPERTIES("algorithm-expression"="ds_${user_id % 3 + 2}"))
);

ALTER SHARDING TABLE RULE t_order (
DATANODES("ds_${2..4}.t_order_${0..1}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=t_order_
inline),
KEY_GENERATE_STRATEGY(COLUMN=order_id,TYPE(NAME=snowflake))
), t_order_item (
DATANODES("ds_${2..4}.t_order_item_${0..1}"),
DATABASE_STRATEGY(TYPE=standard,SHARDING_COLUMN=user_id,SHARDING_
ALGORITHM=database_inline),
TABLE_STRATEGY(TYPE=standard,SHARDING_COLUMN=order_id,SHARDING_ALGORITHM=t_order_
item_inline),
KEY_GENERATE_STRATEGY(COLUMN=order_item_id,TYPE(NAME=snowflake))
);

database_inline 的 algorithm-expression 从 ds_${user_id % 2} 改为 ds_${user_id
% 3 + 2}，t_order 的 DATANODES 从 ds_${0..1}.t_order_${0..1} 改为 ds_${2..4}.
t_order_${0..1}，会触发迁移。
目前 ALTER SHARDING ALGORITHM会即时生效、但是规则还没生效，可能会导致源端 insert异常，所
以建议优先修改为 AutoTableRule。

查询所有迁移任务

详情请参见RAL#弹性伸缩。
示例：

show scaling list;

返回信息：

5.4. ShardingSphere-Scaling 197

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/#%E5%BC%B9%E6%80%A7%E4%BC%B8%E7%BC%A9

Apache ShardingSphere document, v5.1.0

mysql> show scaling list;
+--------------------+-----------------------+----------------------+--------+-----
----------------+---------------------+
| id | tables | sharding_total_count | active |
create_time | stop_time |
+--------------------+-----------------------+----------------------+--------+-----
----------------+---------------------+
| 659853312085983232 | t_order_item, t_order | 2 | false |
2021-10-26 20:21:31 | 2021-10-26 20:24:01 |
| 660152090995195904 | t_order_item, t_order | 2 | false |
2021-10-27 16:08:43 | 2021-10-27 16:11:00 |
+--------------------+-----------------------+----------------------+--------+-----
----------------+---------------------+
2 rows in set (0.04 sec)

查询迁移任务进度

示例：

show scaling status {jobId};

返回信息：

mysql> show scaling status 660152090995195904;
+------+-------------+----------+-------------------------------+------------------
--------+
| item | data_source | status | inventory_finished_percentage | incremental_idle_
minutes |
+------+-------------+----------+-------------------------------+------------------
--------+
| 0 | ds_1 | FINISHED | 100 | 2834

|
| 1 | ds_0 | FINISHED | 100 | 2834

|
+------+-------------+----------+-------------------------------+------------------
--------+
2 rows in set (0.00 sec)

当前迁移任务已完成，新的分片规则已生效。如果迁移失败，新的分片规则不会生效。
status的取值：

5.4. ShardingSphere-Scaling 198

Apache ShardingSphere document, v5.1.0

取值 描述
PREPARING 准备中
RUNNING 运行中
EXECUTE_INVENTORY_TASK 全量迁移中
EXECUTE_INCREMENTAL_TASK 增量迁移中
FINISHED 已完成（整个流程完成了，新规则已生效）
PREPARING_FAILURE 准备阶段失败
EXECUTE_INVENTORY_TASK_FAILURE 全量迁移阶段失败
EXECUTE_INCREMENTAL_TASK_FAILURE 增量迁移阶段失败

如果 status出现失败的情况，可以查看 proxy的日志查看错误堆栈分析问题。

预览新的分片规则是否生效

示例：

preview select count(1) from t_order;

返回信息：

mysql> preview select count(1) from t_order;
+------------------+--------------------------------+
| data_source_name | sql |
+------------------+--------------------------------+
ds_2	select count(1) from t_order_0
ds_2	select count(1) from t_order_1
ds_3	select count(1) from t_order_0
ds_3	select count(1) from t_order_1
ds_4	select count(1) from t_order_0
ds_4	select count(1) from t_order_1
+------------------+--------------------------------+
6 rows in set (0.01 sec)

5.4. ShardingSphere-Scaling 199

Apache ShardingSphere document, v5.1.0

其他 DistSQL

详情请参见RAL#弹性伸缩。

DistSQL手动模式接口

数据校验、切换配置等操作可以手动执行。详情请参见：RAL#弹性伸缩。
注意：目前还在开发中，功能还不完善。

5.4. ShardingSphere-Scaling 200

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/#%E5%BC%B9%E6%80%A7%E4%BC%B8%E7%BC%A9
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/ral/#%E5%BC%B9%E6%80%A7%E4%BC%B8%E7%BC%A9

6
开发者手册

Apache ShardingSphere可插拔架构提供了数十个基于 SPI的扩展点。对于开发者来说，可以十分方便的
对功能进行定制化扩展。
本章节将 Apache ShardingSphere的 SPI扩展点悉数列出。如无特殊需求，用户可以使用 Apache Shard‐
ingSphere提供的内置实现；高级用户则可以参考各个功能模块的接口进行自定义实现。
Apache ShardingSphere社区非常欢迎开发者将自己的实现类反馈至开源社区，让更多用户从中收益。

6.1 运行模式

6.1.1 StandalonePersistRepository

SPI名称 详细说明
StandalonePersistRepository Standalone模式配置信息持久化

已知实现类 详细说明
FileRepository 基于 File的持久化

6.1.2 ClusterPersistRepository

SPI名称 详细说明
ClusterPersistRepository Cluster模式配置信息持久化

已知实现类 详细说明
CuratorZookeeperRepository 基于 ZooKeeper的持久化
EtcdRepository 基于 etcd的持久化

201

https://github.com/apache/shardingsphere/pulls

Apache ShardingSphere document, v5.1.0

6.1.3 GovernanceWatcher

SPI名称 详细说明
GovernanceWatcher 治理监听器

已知实现类 详细说明
StorageNodeStateChangedWatcher 存储节点状态变化监听器
ComputeNodeStateChangedWatcher 计算节点状态变化监听器
PropertiesChangedWatcher 属性变化监听器
PrivilegeNodeChangedWatcher 权限变化监听器
GlobalRuleChangedWatcher 全局规则配置变化监听器
MetaDataChangedWatcher 元数据变化监听器

6.2 配置

6.2.1 RuleBuilder

SPI名称 详细说明
RuleBuilder 用于将用户配置转化为规则对象

已知实现类 详细说明
Algori thmProvidedReadwriteSplittin‐
gRuleBuilder

用于将基于算法的读写分离用户配置转化为读写分离规
则对象

Algor ithmProvidedDatabaseDiscov‐
eryRuleBuilder

用于将基于算法的数据库发现用户配置转化为数据库发
现规则对象

AlgorithmProvidedShardingRuleBuilder 用于将基于算法的分片用户配置转化为分片规则对象
AlgorithmProvidedEncryptRuleBuilder 用于将基于算法的加密用户配置转化为加密规则对象
AlgorithmProvidedShadowRuleBuilder 用于将基于算法的影子库用户配置转化为影子库规则对

象
ReadwriteSplittingRuleBuilder 用于将读写分离用户配置转化为读写分离规则对象
DatabaseDiscoveryRuleBuilder 用于将数据库发现用户配置转化为数据库发现规则对象
SingleTableRuleBuilder 用于将单表用户配置转化为单表规则对象
AuthorityRuleBuilder 用于将权限用户配置转化为权限规则对象
ShardingRuleBuilder 用于将分片用户配置转化为分片规则对象
EncryptRuleBuilder 用于将加密用户配置转化为加密规则对象
ShadowRuleBuilder 用于将影子库用户配置转化为影子库规则对象
TransactionRuleBuilder 用于将事务用户配置转化为事务规则对象
SQLParserRuleBuilder 用于将 SQL解析用户配置转化为 SQL解析规则对象

6.2. 配置 202

Apache ShardingSphere document, v5.1.0

6.2.2 YamlRuleConfigurationSwapper

SPI名称 详细说明
YamlRuleConfigurationSwapper 用于将 YAML配置转化为标准用户配置

已知实现类 详细说明
ReadwriteSplittingRu leAlgorithmProviderConfigu‐
rationYamlSwapper

用于将基于算法的读写分离配置转化为读写
分离标准配置

DatabaseDiscoveryRu leAlgorithmProviderConfigu‐
rationYamlSwapper

用于将基于算法的数据库发现配置转化为数
据库发现标准配置

ShardingRu leAlgorithmProviderConfigura‐
tionYamlSwapper

用于将基于算法的分片配置转化为分片标准
配置

EncryptRu leAlgorithmProviderConfigurationYaml‐
Swapper

用于将基于算法的加密配置转化为加密标准
配置

ShadowRu leAlgorithmProviderConfigurationYaml‐
Swapper

用于将基于算法的影子库配置转化为影子库
标准配置

Rea dwriteSplittingRuleConfigurationYamlSwapper 用于将读写分离的 YAML 配置转化为读写分
离标准配置

Da tabaseDiscoveryRuleConfigurationYamlSwapper 用于将数据库发现的 YAML 配置转化为数据
库发现标准配置

AuthorityRuleConfigurationYamlSwapper 用于将权限规则的 YAML 配置转化为权限规
则标准配置

ShardingRuleConfigurationYamlSwapper 用于将分片的 YAML 配置转化为分片标准配
置

EncryptRuleConfigurationYamlSwapper 用于将加密的 YAML 配置转化为加密标准配
置

ShadowRuleConfigurationYamlSwapper 用于将影子库的 YAML 配置转化为影子库标
准配置

TransactionRuleConfigurationYamlSwapper 用于将事务的 YAML 配置转化为事务标准配
置

SingleTableRuleConfigurationYamlSwapper 用于将单表的 YAML 配置转化为单表标准配
置

SQLParserRuleConfigurationYamlSwapper 用于将 SQL解析的 YAML配置转化为 SQL解
析标准配置

6.2. 配置 203

Apache ShardingSphere document, v5.1.0

6.2.3 ShardingSphereYamlConstruct

SPI名称 详细说明
ShardingSphereYamlConstruct 用于将定制化对象和 YAML相互转化

已知实现类 详细说明
NoneShardingSt rategyConfigurationYamlConstruct 用于将不分片策略对象和 YAML相互转化

6.3 内核

6.3.1 SQLRouter

SPI名称 详细说明
SQLRouter 用于处理路由结果

已知实现类 详细说明
ReadwriteSplittingSQLRouter 用于处理读写分离路由结果
DatabaseDiscoverySQLRouter 用于处理数据库发现路由结果
SingleTableSQLRouter 用于处理单表路由结果
ShardingSQLRouter 用于处理分片路由结果
ShadowSQLRouter 用于处理影子库路由结果

6.3.2 SQLRewriteContextDecorator

SPI名称 详细说明
SQLRewriteContextDecorator 用于处理 SQL改写结果

已知实现类 详细说明
ShardingSQLRewriteContextDecorator 用于处理分片 SQL改写结果
EncryptSQLRewriteContextDecorator 用于处理加密 SQL改写结果

6.3. 内核 204

Apache ShardingSphere document, v5.1.0

6.3.3 SQLExecutionHook

SPI名称 详细说明
SQLExecutionHook SQL执行过程监听器

已知实现类 详细说明
TransactionalSQLExecutionHook 基于事务的 SQL执行过程监听器

6.3.4 ResultProcessEngine

SPI名称 详细说明
ResultProcessEngine 用于处理结果集

已知实现类 详细说明
ShardingResultMergerEngine 用于处理分片结果集归并
EncryptResultDecoratorEngine 用于处理加密结果集改写

6.3.5 StoragePrivilegeHandler

SPI名称 详细说明
StoragePrivilegeHandler 使用数据库方言处理权限信息

已知实现类 详细说明
PostgreSQLPrivilegeHandler 使用 PostgreSQL方言处理权限信息
SQLServerPrivilegeHandler 使用 SQLServer方言处理权限信息
OraclePrivilegeHandler 使用 Oracle方言处理权限信息
MySQLPrivilegeHandler 使用MySQL方言处理权限信息

6.4 数据源

6.4.1 DatabaseType

SPI名称 详细说明
DatabaseType 支持的数据库类型

6.4. 数据源 205

Apache ShardingSphere document, v5.1.0

已知实现类 详细说明
SQL92DatabaseType 遵循 SQL92标准的数据库类型
MySQLDatabaseType MySQL数据库
MariaDBDatabaseType MariaDB数据库
PostgreSQLDatabaseType PostgreSQL数据库
OracleDatabaseType Oracle数据库
SQLServerDatabaseType SQLServer数据库
H2DatabaseType H2数据库
OpenGaussDatabaseType OpenGauss数据库

6.4.2 DialectTableMetaDataLoader

SPI名称 详细说明
DialectTableMetaDataLoader 用于使用数据库方言快速加载元数据

已知实现类 详细说明
MySQLTableMetaDataLoader 使用MySQL方言加载元数据
OracleTableMetaDataLoader 使用 Oracle方言加载元数据
PostgreSQLTableMetaDataLoader 使用 PostgreSQL方言加载元数据
SQLServerTableMetaDataLoader 使用 SQLServer方言加载元数据
H2TableMetaDataLoader 使用H2方言加载元数据
OpenGaussTableMetaDataLoader 使用 OpenGauss方言加载元数据

6.4.3 DataSourcePoolMetaData

SPI名称 详细说明
DataSourcePoolMetaData 数据源连接池元数据

已知实现类 详细说明
DBCPDataSourcePoolMetaData DBCP数据库连接池元数据
HikariDataSourcePoolMetaData Hikari数据源连接池元数据
TomcatDBCPDataSourcePoolMetaData Tomcat DBCP数据源连接池元数据

6.4. 数据源 206

Apache ShardingSphere document, v5.1.0

6.4.4 DataSourcePoolDestroyer

SPI名称 详细说明
DataSourcePoolDestroyer 数据源连接池销毁器

已知实现类 详细说明
DefaultDataSourcePoolDestroyer 默认数据源连接池销毁器
HikariDataSourcePoolDestroyer Hikari数据源连接池销毁器

6.5 SQL解析

6.5.1 DatabaseTypedSQLParserFacade

SPI名称 详细说明
DatabaseTypedSQLParserFacade 配置用于 SQL解析的词法分析器和语法分析器入口

Implementation Class Description

MySQLParserFacade 基于MySQL的 SQL解析器入口
PostgreSQLParserFacade 基于 PostgreSQL的 SQL解析器入口
SQLServerParserFacade 基于 SQLServer的 SQL解析器入口
OracleParserFacade 基于 Oracle的 SQL解析器入口
SQL92ParserFacade 基于 SQL92的 SQL解析器入口
OpenGaussParserFacade 基于 openGauss的 SQL解析器入口

6.5.2 SQLVisitorFacade

SPI名称 详细说明
SQLVisitorFacade SQL语法树访问器入口

Implementation Class Description

MySQLStatementSQLVisitorFacade 基于MySQL的提取 SQL语句的语法树访问器
Pos tgreSQLStatementSQLVisitorFacade 基于 PostgreSQL的提取 SQL语句的语法树访问器
SQ LServerStatementSQLVisitorFacade 基于 SQLServer的提取 SQL语句的语法树访问器
OracleStatementSQLVisitorFacade 基于 Oracle的提取 SQL语句的语法树访问器
SQL92StatementSQLVisitorFacade 基于 SQL92的提取 SQL语句的语法树访问器

6.5. SQL解析 207

Apache ShardingSphere document, v5.1.0

6.6 代理端

6.6.1 DatabaseProtocolFrontendEngine

SPI名称 详细说明
DatabaseProtocolFrontendEngine 用于 ShardingSphe re‐Proxy解析与适配访问数据库的协议

已知实现类 详细说明
MySQLFrontendEngine 基于MySQL的数据库协议实现
PostgreSQLFrontendEngine 基于 PostgreSQL的数据库协议实现
OpenGaussFrontendEngine 基于 openGauss的数据库协议实现

6.6.2 JDBCDriverURLRecognizer

SPI名称 详细说明
JDBCDriverURLRecognizer 使用 JDBC驱动执行 SQL

已知实现类 详细说明
MySQLRecognizer 使用MySQL的 JDBC驱动执行 SQL
PostgreSQLRecognizer 使用 PostgreSQL的 JDBC驱动执行 SQL
OracleRecognizer 使用 Oracle的 JDBC驱动执行 SQL
SQLServerRecognizer 使用 SQLServer的 JDBC驱动执行 SQL
H2Recognizer 使用H2的 JDBC驱动执行 SQL
P6SpyDriverRecognizer 使用 P6Spy的 JDBC驱动执行 SQL
OpenGaussRecognizer 使用 openGauss的 JDBC驱动执行 SQL

6.6.3 AuthorityProvideAlgorithm

SPI名称 详细说明
AuthorityProvideAlgorithm 用户权限加载逻辑

6.6. 代理端 208

Apache ShardingSphere document, v5.1.0

已知实现类 Type 详细说明
Na tiveAuthorityProvide
rAlgorithm（已弃用）

NATIVE 基于后端数据库存取 server.yaml 中配置的权限信
息。如果用户不存在，则自动创建用户并默认赋予
最高权限。

AllPrivi legesPermit‐
tedAuthor ityProviderAl‐
gorithm

ALL_PRIV
ILEGES_P ER‐
MITTED

默认授予所有权限（不鉴权），不会与实际数据库交
互。

SchemaPrivi legesPermit‐
tedAuthor ityProviderAl‐
gorithm

SCH EMA_PRIV
ILEGES_P ER‐
MITTED

通过属性 user‐schema‐mappings配置的权限。

6.7 数据分片

6.7.1 ShardingAlgorithm

SPI名称 详细说明
ShardingAlgorithm 分片算法

已知实现类 详细说明
BoundaryBasedRangeShardingAlgorithm 基于分片边界的范围分片算法
VolumeBasedRangeShardingAlgorithm 基于分片容量的范围分片算法
ComplexInlineShardingAlgorithm 基于行表达式的复合分片算法
AutoIntervalShardingAlgorithm 基于可变时间范围的分片算法
ClassBasedShardingAlgorithm 基于自定义类的分片算法
HintInlineShardingAlgorithm 基于行表达式的Hint分片算法
IntervalShardingAlgorithm 基于固定时间范围的分片算法
HashModShardingAlgorithm 基于哈希取模的分片算法
InlineShardingAlgorithm 基于行表达式的分片算法
ModShardingAlgorithm 基于取模的分片算法

6.7.2 KeyGenerateAlgorithm

SPI名称 详细说明
KeyGenerateAlgorithm 分布式主键生成算法

已知实现类 详细说明
SnowflakeKeyGenerateAlgorithm 基于雪花算法的分布式主键生成算法
UUIDKeyGenerateAlgorithm 基于 UUID的分布式主键生成算法

6.7. 数据分片 209

Apache ShardingSphere document, v5.1.0

6.7.3 DatetimeService

SPI名称 详细说明
DatetimeService 获取当前时间进行路由

已知实现类 详细说明
DatabaseDatetimeServiceDelegate 从数据库中获取当前时间进行路由
SystemDatetimeService 从应用系统时间中获取当前时间进行路由

6.7.4 DatabaseSQLEntry

SPI名称 详细说明
DatabaseSQLEntry 获取当前时间的数据库方言

已知实现类 详细说明
MySQLDatabaseSQLEntry 从MySQL获取当前时间的数据库方言
PostgreSQLDatabaseSQLEntry 从 PostgreSQL获取当前时间的数据库方言
OracleDatabaseSQLEntry 从 Oracle获取当前时间的数据库方言
SQLServerDatabaseSQLEntry 从 SQLServer获取当前时间的数据库方言

6.8 读写分离

6.8.1 ReadwriteSplittingType

SPI名称 详细说明
ReadwriteSplittingType 读写分离类型

已知实现类 详细说明
StaticReadwriteSplittingType 静态读写分离类型
DynamicReadwriteSplittingType 动态读写分离类型

6.8. 读写分离 210

Apache ShardingSphere document, v5.1.0

6.8.2 ReplicaLoadBalanceAlgorithm

SPI名称 详细说明
ReplicaLoadBalanceAlgorithm 读库负载均衡算法

已知实现类 详细说明
RoundRobinReplicaLoadBalanceAlgorithm 基于轮询的读库负载均衡算法
RandomReplicaLoadBalanceAlgorithm 基于随机的读库负载均衡算法
WeightReplicaLoadBalanceAlgorithm 基于权重的读库负载均衡算法

6.9 高可用

6.9.1 DatabaseDiscoveryType

SPI名称 详细说明
DatabaseDiscoveryType 数据库发现类型

已知实现类 详细说明
MGRDatabaseDiscoveryType 基于MySQL MGR的数据库发现
OpenGaussDatabaseDiscoveryType 基于 openGauss的数据库发现

6.10 分布式事务

6.10.1 ShardingSphereTransactionManager

SPI名称 详细说明
ShardingSphereTransactionManager 分布式事务管理器

已知实现类 详细说明
XAShardingSphereTransactionManager 基于 XA的分布式事务管理器
SeataATShardingSphereTransactionManager 基于 Seata的分布式事务管理器

6.9. 高可用 211

Apache ShardingSphere document, v5.1.0

6.10.2 XATransactionManagerProvider

SPI名称 详细说明
XATransactionManagerProvider XA分布式事务管理器

已知实现类 详细说明
AtomikosTransactionManagerProvider 基于 Atomikos的 XA分布式事务管理器
NarayanaXATransactionManagerProvider 基于 Narayana的 XA分布式事务管理器
BitronixXATransactionManagerProvider 基于 Bitronix的 XA分布式事务管理器

6.10.3 XADataSourceDefinition

SPI名称 详细说明
XADataSourceDefinition 非 XA数据源自动转化为 XA数据源

已知实现类 详细说明
MySQ LXADataSourceDefinition 非 XA的MySQL数据源自动转化为 XA的MySQL数据源
MariaD BXADataSourceDefinition 非 XA的MariaDB数据源自动转化为 XA的MariaDB数据源
PostgreSQ LXADataSourceDefini‐
tion

非 XA的 PostgreSQL数据源自动转化为 XA的 PostgreSQL数
据源

Oracl eXADataSourceDefinition 非 XA的 Oracle数据源自动转化为 XA的 Oracle数据源
SQLServe rXADataSourceDefini‐
tion

非 XA的 SQLServer数据源自动转化为 XA的 SQLServer数据
源

H 2XADataSourceDefinition 非 XA的H2数据源自动转化为 XA的H2数据源

6.10.4 DataSourcePropertyProvider

SPI名称 详细说明
DataSourcePropertyProvider 用于获取数据源连接池的标准属性

已知实现类 详细说明
HikariCPPropertyProvider 用于获取HikariCP连接池的标准属性

6.10. 分布式事务 212

Apache ShardingSphere document, v5.1.0

6.11 弹性伸缩

6.11.1 ScalingEntry

SPI名称 详细说明
ScalingEntry 弹性伸缩入口

已知实现类 详细说明
MySQLScalingEntry 基于MySQL的弹性伸缩入口
PostgreSQLScalingEntry 基于 PostgreSQL的弹性伸缩入口
OpenGaussScalingEntry 基于 openGauss的弹性伸缩入口

6.11.2 JobCompletionDetectAlgorithm

SPI名称 详细说明
JobCompletionDetectAlgorithm 作业是否接近完成检测算法

已知实现类 详细说明
IdleRuleAlt eredJobCompletionDetectAlgorithm 基于增量迁移任务空闲时长的检测算法

6.11.3 DataConsistencyCheckAlgorithm

SPI名称 详细说明
DataConsistencyCheckAlgorithm 数据一致性校验算法

已知实现类 详细说明
DataMatch DataConsistencyCheckAlgo‐
rithm

基于数据匹配的一致性校验算法。类型名：DATA_MATCH。

CRC32Match DataConsistencyCheck‐
Algorithm

基于数据 CRC32 匹配的一致性校验算法。类型名：
CRC32_MATCH。

6.11. 弹性伸缩 213

Apache ShardingSphere document, v5.1.0

6.11.4 SingleTableDataCalculator

SPI名称 详细说明
SingleTableDataCalculator 给数据一致性校验使用的单表数据计算算法

已知实现类 详细说明
DataMatchS ingleTableDataCalcu‐
lator

给 DATA_MATCH 数据一致性校验算法使用的单表数据计算算
法。适用于所有数据库。

CRC32MatchMySQLS ingleTable‐
DataCalculator

给 CRC32_MATCH数据一致性校验算法使用的单表数据计算算
法。适用于MySQL。

6.12 SQL检查

6.12.1 SQLChecker

SPI名称 详细说明
SQLChecker SQL检查器

已知实现类 详细说明
AuthorityChecker 权限检查器

6.13 数据加密

6.13.1 EncryptAlgorithm

SPI名称 详细说明
EncryptAlgorithm 数据加密算法

已知实现类 详细说明
MD5EncryptAlgorithm 基于MD5的数据加密算法
AESEncryptAlgorithm 基于 AES的数据加密算法
RC4EncryptAlgorithm 基于 RC4的数据加密算法
SM4EncryptAlgorithm 基于 SM4的数据加密算法
SM3EncryptAlgorithm 基于 SM3的数据加密算法

6.12. SQL检查 214

Apache ShardingSphere document, v5.1.0

6.13.2 QueryAssistedEncryptAlgorithm

SPI名称 详细说明
QueryAssistedEncryptAlgorithm 包含查询辅助列的数据加密算法

已知实现类 详细说明
无

6.14 影子库

6.14.1 ShadowAlgorithm

SPI名称 详细说明
ShadowAlgorithm 影子库路由算法

已知实现类 详细说明
ColumnValueMatchShadowAlgorithm 基于字段值匹配影子算法
ColumnRegexMatchShadowAlgorithm 基于字段值正则匹配影子算法
SimpleHintShadowAlgorithm 基于Hint简单匹配影子算法

6.15 可观察性

6.15.1 PluginDefinitionService

SPI名称 详细说明
PluginDefinitionService Agent插件定义

已知实现类 详细说明
PrometheusPluginDefinitionService Prometheus plugin
BaseLoggingPluginDefinitionService Logging plugin
JaegerPluginDefinitionService Jaeger plugin
OpenTelemetryTracingPluginDefinitionService OpenTelemetryTracing plugin
OpenTracingPluginDefinitionService OpenTracing plugin
ZipkinPluginDefinitionService Zipkin plugin

6.14. 影子库 215

Apache ShardingSphere document, v5.1.0

6.15.2 PluginBootService

SPI名称 详细说明
PluginBootService 插件启动服务定义

已知实现类 详细说明
PrometheusPluginBootService Prometheus plugin启动类
BaseLoggingPluginBootService Logging plugin启动类
JaegerTracingPluginBootService Jaeger plugin启动类
OpenTelemetryTracingPluginBootService OpenTelemetryTracing plugin启动类
OpenTracingPluginBootService OpenTracing plugin启动类
ZipkinTracingPluginBootService Zipkin plugin启动类

6.15. 可观察性 216

7
技术参考

本章包含了 Apache ShardingSphere的技术实现细节和测试流程，供开发者和用户参考。

7.1 管控

7.1.1 注册中心数据结构

在定义的命名空间下，rules、props和 metadata节点以 YAML格式存储配置，可通过修改节点来实
现对于配置的动态管理。nodes存储数据库访问对象运行节点，用于区分不同数据库访问实例。

namespace
├──rules # 全局规则配置
├──props # 属性配置
├──metadata # Metadata 配置
├ ├──${schema_1} # Schema 名称 1
├ ├ ├──dataSources # 数据源配置
├ ├ ├──rules # 规则配置
├ ├ ├──tables # 表结构配置
├ ├ ├ ├──t_1
├ ├ ├ ├──t_2
├ ├──${schema_2} # Schema 名称 2
├ ├ ├──dataSources # 数据源配置
├ ├ ├──rules # 规则配置
├ ├ ├──tables # 表结构配置
├──nodes
├ ├──compute_nodes
├ ├ ├──online
├ ├ ├ ├──proxy
├ ├ ├ ├ ├──${your_instance_ip_a}@${your_instance_port_x}
├ ├ ├ ├ ├──${your_instance_ip_b}@${your_instance_port_y}
├ ├ ├ ├ ├──....
├ ├ ├ ├──jdbc
├ ├ ├ ├ ├──${your_instance_ip_a}@${your_instance_pid_x}

217

Apache ShardingSphere document, v5.1.0

├ ├ ├ ├ ├──${your_instance_ip_b}@${your_instance_pid_y}
├ ├ ├ ├ ├──....
├ ├ ├──attributies
├ ├ ├ ├──${your_instance_ip_a}@${your_instance_port_x}
├ ├ ├ ├ ├──status
├ ├ ├ ├ ├──label
├ ├ ├ ├──${your_instance_ip_b}@${your_instance_pid_y}
├ ├ ├ ├ ├──status
├ ├ ├ ├──....
├ ├──storage_nodes
├ ├ ├──disable
├ ├ ├ ├──${schema_1.ds_0}
├ ├ ├ ├──${schema_1.ds_1}
├ ├ ├ ├──....
├ ├ ├──primary
├ ├ ├ ├──${schema_2.ds_0}
├ ├ ├ ├──${schema_2.ds_1}
├ ├ ├ ├──....

/rules

全局规则配置，可包括访问 ShardingSphere‐Proxy用户名和密码的权限配置。

- !AUTHORITY
users:
- root@%:root
- sharding@127.0.0.1:sharding

provider:
type: ALL_PRIVILEGES_PERMITTED

/props

属性配置，详情请参见配置手册。

kernel-executor-size: 20
sql-show: true

7.1. 管控 218

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/props/

Apache ShardingSphere document, v5.1.0

/metadata/${schemaName}/dataSources

多个数据库连接池的集合，不同数据库连接池属性自适配（例如：DBCP，C3P0，Druid, HikariCP）。

ds_0:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_0?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-1

ds_1:
initializationFailTimeout: 1
validationTimeout: 5000
maxLifetime: 1800000
leakDetectionThreshold: 0
minimumIdle: 1
password: root
idleTimeout: 60000
jdbcUrl: jdbc:mysql://127.0.0.1:3306/ds_1?serverTimezone=UTC&useSSL=false
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
maximumPoolSize: 50
connectionTimeout: 30000
username: root
poolName: HikariPool-2

/metadata/${schemaName}/rules

规则配置，可包括数据分片、读写分离、数据加密、影子库压测等配置。

- !SHARDING
xxx

- !READWRITE_SPLITTING
xxx

- !ENCRYPT
xxx

7.1. 管控 219

Apache ShardingSphere document, v5.1.0

/metadata/${schemaName}/tables

表结构配置，每个表使用单独节点存储，暂不支持动态修改。

name: t_order # 表名
columns: # 列
id: # 列名

caseSensitive: false
dataType: 0
generated: false
name: id
primaryKey: trues

order_id:
caseSensitive: false
dataType: 0
generated: false
name: order_id
primaryKey: false

indexs: # 索引
t_user_order_id_index: # 索引名

name: t_user_order_id_index

/nodes/compute_nodes

数据库访问对象运行实例信息，子节点是当前运行实例的标识。运行实例标识由运行服务器的 IP地址和
PORT构成。运行实例标识均为临时节点，当实例上线时注册，下线时自动清理。注册中心监控这些节点
的变化来治理运行中实例对数据库的访问等。

/nodes/storage_nodes

可以治理读写分离从库，可动态添加删除以及禁用。

7.2 数据分片

ShardingSphere的 3个产品的数据分片主要流程是完全一致的，按照是否进行查询优化，可以分为 Stan‐
dard内核流程和 Federation执行引擎流程。Standard内核流程由SQL 解析 => SQL 路由 => SQL 改
写 => SQL 执行 => 结果归并组成，主要用于处理标准分片场景下的 SQL执行。Federation执行引擎
流程由 SQL 解析 => 逻辑优化 => 物理优化 => 优化执行 => Standard 内核流程组成，Federa‐
tion执行引擎内部进行逻辑优化和物理优化，在优化执行阶段依赖 Standard内核流程，对优化后的逻辑
SQL进行路由、改写、执行和归并。

7.2. 数据分片 220

Apache ShardingSphere document, v5.1.0

7.2.1 SQL解析

分为词法解析和语法解析。先通过词法解析器将 SQL拆分为一个个不可再分的单词。再使用语法解析器
对 SQL进行理解，并最终提炼出解析上下文。解析上下文包括表、选择项、排序项、分组项、聚合函数、
分页信息、查询条件以及可能需要修改的占位符的标记。

7.2.2 SQL路由

根据解析上下文匹配用户配置的分片策略，并生成路由路径。目前支持分片路由和广播路由。

7.2.3 SQL改写

将 SQL改写为在真实数据库中可以正确执行的语句。SQL改写分为正确性改写和优化改写。

7.2.4 SQL执行

通过多线程执行器异步执行。

7.2. 数据分片 221

Apache ShardingSphere document, v5.1.0

7.2.5 结果归并

将多个执行结果集归并以便于通过统一的 JDBC接口输出。结果归并包括流式归并、内存归并和使用装饰
者模式的追加归并这几种方式。

7.2.6 查询优化

由 Federation执行引擎（开发中）提供支持，对关联查询、子查询等复杂查询进行优化，同时支持跨多
个数据库实例的分布式查询，内部使用关系代数优化查询计划，通过最优计划查询出结果。

7.2.7 解析引擎

相对于其他编程语言，SQL是比较简单的。不过，它依然是一门完善的编程语言，因此对 SQL的语法进
行解析，与解析其他编程语言（如：Java语言、C语言、Go语言等）并无本质区别。

抽象语法树

解析过程分为词法解析和语法解析。词法解析器用于将 SQL拆解为不可再分的原子符号，称为 Token。并
根据不同数据库方言所提供的字典，将其归类为关键字，表达式，字面量和操作符。再使用语法解析器
将词法解析器的输出转换为抽象语法树。
例如，以下 SQL：

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

解析之后的为抽象语法树见下图。

7.2. 数据分片 222

Apache ShardingSphere document, v5.1.0

为了便于理解，抽象语法树中的关键字的 Token用绿色表示，变量的 Token用红色表示，灰色表示需要
进一步拆分。
最后，通过 visitor对抽象语法树遍历构造域模型，通过域模型（SQLStatement）去提炼分片所需的
上下文，并标记有可能需要改写的位置。供分片使用的解析上下文包含查询选择项（Select Items）、表信
息（Table）、分片条件（Sharding Condition）、自增主键信息（Auto increment Primary Key）、排序信
息（Order By）、分组信息（Group By）以及分页信息（Limit、Rownum、Top）。SQL的一次解析过程
是不可逆的，一个个 Token按 SQL原本的顺序依次进行解析，性能很高。考虑到各种数据库 SQL方言的
异同，在解析模块提供了各类数据库的 SQL方言字典。

SQL解析引擎

历史

SQL解析作为分库分表类产品的核心，其性能和兼容性是最重要的衡量指标。ShardingSphere的 SQL解
析器经历了 3代产品的更新迭代。
第一代 SQL解析器为了追求性能与快速实现，在 1.4.x之前的版本使用 Druid作为 SQL解析器。经实际
测试，它的性能远超其它解析器。
第二代 SQL解析器从 1.5.x版本开始，ShardingSphere采用完全自研的 SQL解析引擎。由于目的不同，
ShardingSphere并不需要将 SQL转为一颗完全的抽象语法树，也无需通过访问器模式进行二次遍历。它
采用对 SQL半理解的方式，仅提炼数据分片需要关注的上下文，因此 SQL解析的性能和兼容性得到了进
一步的提高。
第三代 SQL解析器从 3.0.x版本开始，尝试使用 ANTLR作为 SQL解析引擎的生成器，并采用 Visit的方

7.2. 数据分片 223

Apache ShardingSphere document, v5.1.0

式从 AST中获取 SQL Statement。从 5.0.x版本开始，解析引擎的架构已完成重构调整，同时通过将第一
次解析得到的 AST放入缓存，方便下次直接获取相同 SQL的解析结果，来提高解析效率。因此我们建议
用户采用 PreparedStatement这种 SQL预编译的方式来提升性能。

功能点

• 提供独立的 SQL解析功能
• 可以非常方便的对语法规则进行扩充和修改（使用了 ANTLR）
• 支持多种方言的 SQL解析

数据库 支持状态
MySQL 支持，完善
PostgreSQL 支持，完善
SQLServer 支持
Oracle 支持
SQL92 支持
openGauss 支持

• 提供 SQL格式化功能（开发中）
• 提供 SQL模板化功能（开发中）

API使用

引入Maven依赖

<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-engine</artifactId>
<version>${project.version}</version>

</dependency>
<!-- 根据需要引入指定方言的解析模块（以 MySQL 为例），可以添加所有支持的方言，也可以只添加使用到的
-->
<dependency>

<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-sql-parser-mysql</artifactId>
<version>${project.version}</version>

</dependency>

例子
• 获取语法树

/**
* databaseType type:String 可能值 MySQL, Oracle，PostgreSQL，SQL92，SQLServer,

openGauss

7.2. 数据分片 224

Apache ShardingSphere document, v5.1.0

* sql type:String 解析的 SQL
* useCache type:boolean 是否使用缓存
* @return parse context
*/
ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);

• 获取 SQLStatement

/**
* databaseType type:String 可能指 MySQL，Oracle，PostgreSQL，SQL92，SQLServer,

openGauss
* useCache type:boolean 是否使用缓存
* @return SQLStatement
*/

ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "STATEMENT
");
SQLStatement sqlStatement = sqlVisitorEngine.visit(parseContext);

• SQL格式化

/**
* databaseType type:String 可能指 MySQL
* useCache type:boolean 是否使用缓存
* @return String
*/
ParseContext parseContext = new SQLParserEngine(databaseType).parse(sql, useCache);
SQLVisitorEngine sqlVisitorEngine = new SQLVisitorEngine(databaseType, "FORMAT",
new Properties());
String formatedSql = sqlVisitorEngine.visit(parseContext);

例子：

7.2. 数据分片 225

Apache ShardingSphere document, v5.1.0

sql formatedSql

select a+1 as b, name n from table1 join ta‐
ble2 where id=1 and name=‘lu’;

SELECT a + 1 AS b, name nFROM table1 JOIN ta‐
ble2WHERE id = 1 and name =‘lu’
;

select id, name, age, sex, ss, yy from table1
where id=1;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1;

select id, name, age, count(*) as n, (select id,
name, age, sex from table2 where id=2) as
sid, yyyy from table1 where id=1;

SELECT id , name , age , COUNT(*)
AS n, (SELECT id
, name , age , sex
 FROM ta‐
ble2 WHERE
 id = 2) AS
sid, yyyy FROM table1WHERE id = 1;

select id, name, age, sex, ss, yy from table1
where id=1 and name=1 and a=1 and b=2 and
c=4 and d=3;

SELECT id , name , age , sex , ss , yy FROM
table1WHERE id = 1 and name =
1 and a = 1 and b = 2 and c
= 4 and d = 3;

ALTER TABLE t_order ADD column4
DATE, ADD column5 DATETIME, engine ss
max_rows 10,min_rows 2, ADD column6
TIMESTAMP, ADD column7 TIME;

ALTER TABLE t_order ADD col‐
umn4 DATE, ADD column5 DATE‐
TIME, ENGINE ss MAX_ROWS
10, MIN_ROWS 2, ADD column6
TIMESTAMP, ADD column7 TIME

CREATE TABLE IF NOT EX‐
ISTS “ runoob_tbl“(runoob_id
INT UNSIGNED AUTO_ INCRE‐
MENT,runoob_title VARCHAR(100)
NOT NULL,runoob_author VARCHAR(40)
NOT NULL,runoob_test NATIONAL CH
AR(40),submission_date DATE,PRIMARY
KEY (runoob_id))ENGINE=InnoDB DE‐
FAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS runoob_tbl
(runoob_id INT UNSIGNED
AUTO_INCREMENT, runoob_title VAR‐
CHAR(100) NOT NULL, runoob_author
VARCHAR(40) NOT NULL, runoob_test
NATIONAL CHAR(40), submission_date
DATE, PRIMARY KEY (runoob_id)) EN‐
GINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO t_order_item(order_id,
user_id, status, creation_date) values (1, 1,
‘insert’, ‘2017‐08‐08’), (2, 2, ‘insert’,
‘2017‐08‐08’) ON DUPLICATE KEY UPDATE
status =‘init’;

INSERT INTO t_order_item (order_id , user_id , sta‐
tus , creation_date)VALUES (1, 1,‘insert’,
‘2017‐08‐08’), (2, 2,‘insert’,‘2017‐08‐08’
)ON DUPLICATE KEY UPDATE status =‘init’;

INSERT INTO t_order SET order_id
= 1, user_id = 1, status = conv
ert(to_base64(aes_encrypt(1, ‘key’))
USING utf8) ON DUPLICATE KEY UPDATE
status = VALUES(status);

INSERT INTO t_order SET order_id =
1, user_id = 1, status = CON‐
VERT(to_base64(aes_encrypt(1 , ‘key’)) USING
utf8)ON DUPLICATE KEY UPDATE status = VAL‐
UES(status);

INSERT INTO t_order (order_id, user_id, sta‐
tus) SELECT order_id, user_id, status FROM
t_order WHERE order_id = 1；

INSERT INTO t_order (order_id , user_id , sta‐
tus) SELECT order_id , user_id , status FROM
t_orderWHERE order_id = 1;

7.2. 数据分片 226

Apache ShardingSphere document, v5.1.0

7.2.8 路由引擎

根据解析上下文匹配数据库和表的分片策略，并生成路由路径。对于携带分片键的 SQL，根据分片键的
不同可以划分为单片路由 (分片键的操作符是等号)、多片路由 (分片键的操作符是 IN)和范围路由 (分片
键的操作符是 BETWEEN)。不携带分片键的 SQL则采用广播路由。
分片策略通常可以采用由数据库内置或由用户方配置。数据库内置的方案较为简单，内置的分片策略大
致可分为尾数取模、哈希、范围、标签、时间等。由用户方配置的分片策略则更加灵活，可以根据使用方
需求定制复合分片策略。如果配合数据自动迁移来使用，可以做到无需用户关注分片策略，自动由数据
库中间层分片和平衡数据即可，进而做到使分布式数据库具有的弹性伸缩的能力。在 ShardingSphere的
线路规划中，弹性伸缩将于 4.x开启。

分片路由

用于根据分片键进行路由的场景，又细分为直接路由、标准路由和笛卡尔积路由这 3种类型。

直接路由

满足直接路由的条件相对苛刻，它需要通过Hint（使用HintAPI直接指定路由至库表）方式分片，并且
是只分库不分表的前提下，则可以避免 SQL解析和之后的结果归并。因此它的兼容性最好，可以执行包
括子查询、自定义函数等复杂情况的任意 SQL。直接路由还可以用于分片键不在 SQL中的场景。例如，设
置用于数据库分片的键为 3，

hintManager.setDatabaseShardingValue(3);

假如路由算法为 value % 2，当一个逻辑库 t_order对应 2个真实库 t_order_0和 t_order_1时，
路由后 SQL将在 t_order_1上执行。下方是使用 API的代码样例：

String sql = "SELECT * FROM t_order";
try (

HintManager hintManager = HintManager.getInstance();
Connection conn = dataSource.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql)) {

hintManager.setDatabaseShardingValue(3);
try (ResultSet rs = pstmt.executeQuery()) {

while (rs.next()) {
//...

}
}

}

7.2. 数据分片 227

Apache ShardingSphere document, v5.1.0

标准路由

标准路由是 ShardingSphere最为推荐使用的分片方式，它的适用范围是不包含关联查询或仅包含绑定表
之间关联查询的 SQL。当分片运算符是等于号时，路由结果将落入单库（表），当分片运算符是 BETWEEN
或 IN时，则路由结果不一定落入唯一的库（表），因此一条逻辑 SQL最终可能被拆分为多条用于执行的
真实 SQL。举例说明，如果按照 order_id的奇数和偶数进行数据分片，一个单表查询的 SQL如下：

SELECT * FROM t_order WHERE order_id IN (1, 2);

那么路由的结果应为：

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

绑定表的关联查询与单表查询复杂度和性能相当。举例说明，如果一个包含绑定表的关联查询的 SQL如
下：

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_
id IN (1, 2);

那么路由的结果应为：

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

可以看到，SQL拆分的数目与单表是一致的。

笛卡尔路由

笛卡尔路由是最复杂的情况，它无法根据绑定表的关系定位分片规则，因此非绑定表之间的关联查询需
要拆解为笛卡尔积组合执行。如果上个示例中的 SQL并未配置绑定表关系，那么路由的结果应为：

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE
order_id IN (1, 2);

笛卡尔路由查询性能较低，需谨慎使用。

7.2. 数据分片 228

Apache ShardingSphere document, v5.1.0

广播路由

对于不携带分片键的 SQL，则采取广播路由的方式。根据 SQL类型又可以划分为全库表路由、全库路由、
全实例路由、单播路由和阻断路由这 5种类型。

全库表路由

全库表路由用于处理对数据库中与其逻辑表相关的所有真实表的操作，主要包括不带分片键的 DQL 和
DML，以及 DDL等。例如：

SELECT * FROM t_order WHERE good_prority IN (1, 10);

则会遍历所有数据库中的所有表，逐一匹配逻辑表和真实表名，能够匹配得上则执行。路由后成为

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

全库路由

全库路由用于处理对数据库的操作，包括用于库设置的 SET类型的数据库管理命令，以及 TCL这样的事
务控制语句。在这种情况下，会根据逻辑库的名字遍历所有符合名字匹配的真实库，并在真实库中执行
该命令，例如：

SET autocommit=0;

在 t_order中执行，t_order有 2个真实库。则实际会在 t_order_0和 t_order_1上都执行这个命
令。

全实例路由

全实例路由用于 DCL操作，授权语句针对的是数据库的实例。无论一个实例中包含多少个 Schema，每
个数据库的实例只执行一次。例如：

CREATE USER customer@127.0.0.1 identified BY '123';

这个命令将在所有的真实数据库实例中执行，以确保 customer用户可以访问每一个实例。

7.2. 数据分片 229

Apache ShardingSphere document, v5.1.0

单播路由

单播路由用于获取某一真实表信息的场景，它仅需要从任意库中的任意真实表中获取数据即可。例如：

DESCRIBE t_order;

t_order的两个真实表 t_order_0，t_order_1的描述结构相同，所以这个命令在任意真实表上选择执行一
次。

阻断路由

阻断路由用于屏蔽 SQL对数据库的操作，例如：

USE order_db;

这个命令不会在真实数据库中执行，因为 ShardingSphere采用的是逻辑 Schema的方式，无需将切换数
据库 Schema的命令发送至数据库中。
路由引擎的整体结构划分如下图。

7.2. 数据分片 230

Apache ShardingSphere document, v5.1.0

7.2.9 改写引擎

工程师面向逻辑库与逻辑表书写的 SQL，并不能够直接在真实的数据库中执行，SQL改写用于将逻辑 SQL
改写为在真实数据库中可以正确执行的 SQL。它包括正确性改写和优化改写两部分。

正确性改写

在包含分表的场景中，需要将分表配置中的逻辑表名称改写为路由之后所获取的真实表名称。仅分库则
不需要表名称的改写。除此之外，还包括补列和分页信息修正等内容。

标识符改写

需要改写的标识符包括表名称、索引名称以及 Schema名称。
表名称改写是指将找到逻辑表在原始 SQL中的位置，并将其改写为真实表的过程。表名称改写是一个典
型的需要对 SQL进行解析的场景。从一个最简单的例子开始，若逻辑 SQL为：

SELECT order_id FROM t_order WHERE order_id=1;

假设该 SQL配置分片键 order_id，并且 order_id=1的情况，将路由至分片表 1。那么改写之后的 SQL应
该为：

SELECT order_id FROM t_order_1 WHERE order_id=1;

在这种最简单的 SQL场景中，是否将 SQL解析为抽象语法树似乎无关紧要，只要通过字符串查找和替换
就可以达到 SQL改写的效果。但是下面的场景，就无法仅仅通过字符串的查找替换来正确的改写 SQL了：

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

正确改写的 SQL应该是：

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

而非：

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

由于表名之外可能含有表名称的类似字符，因此不能通过简单的字符串替换的方式去改写 SQL。
下面再来看一个更加复杂的 SQL改写场景：

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order
xxx';

上面的 SQL将表名作为字段的标识符，因此在 SQL改写时需要一并修改：

SELECT t_order_1.order_id FROM t_order_1 WHERE t_order_1.order_id=1 AND remarks='
t_order xxx';

7.2. 数据分片 231

Apache ShardingSphere document, v5.1.0

而如果 SQL中定义了表的别名，则无需连同别名一起修改，即使别名与表名相同亦是如此。例如：

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

SQL改写则仅需要改写表名称就可以了：

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND
remarks=' t_order xxx';

索引名称是另一个有可能改写的标识符。在某些数据库中（如MySQL、SQLServer），索引是以表为维度
创建的，在不同的表中的索引是可以重名的；而在另外的一些数据库中（如 PostgreSQL、Oracle），索引
是以数据库为维度创建的，即使是作用在不同表上的索引，它们也要求其名称的唯一性。
在 ShardingSphere中，管理 Schema的方式与管理表如出一辙，它采用逻辑 Schema去管理一组数据源。
因此，ShardingSphere需要将用户在 SQL中书写的逻辑 Schema替换为真实的数据库 Schema。
ShardingSphere目前还不支持在 DQL和 DML语句中使用 Schema。它目前仅支持在数据库管理语句中
使用 Schema，例如：

SHOW COLUMNS FROM t_order FROM order_ds;

Schema 的改写指的是将逻辑 Schema 采用单播路由的方式，改写为随机查找到的一个正确的真实
Schema。

补列

需要在查询语句中补列通常由两种情况导致。第一种情况是 ShardingSphere需要在结果归并时获取相应
数据，但该数据并未能通过查询的 SQL返回。这种情况主要是针对 GROUP BY和 ORDER BY。结果归并
时，需要根据 GROUP BY和 ORDER BY的字段项进行分组和排序，但如果原始 SQL的选择项中若并未包
含分组项或排序项，则需要对原始 SQL进行改写。先看一下原始 SQL中带有结果归并所需信息的场景：

SELECT order_id, user_id FROM t_order ORDER BY user_id;

由于使用 user_id进行排序，在结果归并中需要能够获取到 user_id的数据，而上面的 SQL是能够获取
到 user_id数据的，因此无需补列。
如果选择项中不包含结果归并时所需的列，则需要进行补列，如以下 SQL：

SELECT order_id FROM t_order ORDER BY user_id;

由于原始 SQL中并不包含需要在结果归并中需要获取的 user_id，因此需要对 SQL进行补列改写。补列
之后的 SQL是：

SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_order ORDER BY user_id;

值得一提的是，补列只会补充缺失的列，不会全部补充，而且，在 SELECT语句中包含 *的 SQL，也会根
据表的元数据信息选择性补列。下面是一个较为复杂的 SQL补列场景：

7.2. 数据分片 232

Apache ShardingSphere document, v5.1.0

SELECT o.* FROM t_order o, t_order_item i WHERE o.order_id=i.order_id ORDER BY
user_id, order_item_id;

我们假设只有 t_order_item表中包含 order_item_id列，那么根据表的元数据信息可知，在结果归并时，
排序项中的 user_id是存在于 t_order表中的，无需补列；order_item_id并不在 t_order中，因此需要补
列。补列之后的 SQL是：

SELECT o.*, order_item_id AS ORDER_BY_DERIVED_0 FROM t_order o, t_order_item i
WHERE o.order_id=i.order_id ORDER BY user_id, order_item_id;

补列的另一种情况是使用 AVG聚合函数。在分布式的场景中，使用 avg1 + avg2 + avg3 / 3计算平均值并
不正确，需要改写为 (sum1 + sum2 + sum3) / (count1 + count2 + count3)。这就需要将包含 AVG的 SQL
改写为 SUM和 COUNT，并在结果归并时重新计算平均值。例如以下 SQL：

SELECT AVG(price) FROM t_order WHERE user_id=1;

需要改写为：

SELECT COUNT(price) AS AVG_DERIVED_COUNT_0, SUM(price) AS AVG_DERIVED_SUM_0 FROM t_
order WHERE user_id=1;

然后才能够通过结果归并正确的计算平均值。
最后一种补列是在执行 INSERT的 SQL语句时，如果使用数据库自增主键，是无需写入主键字段的。但
数据库的自增主键是无法满足分布式场景下的主键唯一的，因此 ShardingSphere提供了分布式自增主键
的生成策略，并且可以通过补列，让使用方无需改动现有代码，即可将分布式自增主键透明的替换数据库
现有的自增主键。分布式自增主键的生成策略将在下文中详述，这里只阐述与 SQL改写相关的内容。举
例说明，假设表 t_order的主键是 order_id，原始的 SQL为：

INSERT INTO t_order (`field1`, `field2`) VALUES (10, 1);

可以看到，上述 SQL中并未包含自增主键，是需要数据库自行填充的。ShardingSphere配置自增主键后，
SQL将改写为：

INSERT INTO t_order (`field1`, `field2`, order_id) VALUES (10, 1, xxxxx);

改写后的 SQL将在 INSERT FIELD和 INSERT VALUE的最后部分增加主键列名称以及自动生成的自增主
键值。上述 SQL中的 xxxxx表示自动生成的自增主键值。
如果 INSERT的 SQL中并未包含表的列名称，ShardingSphere也可以根据判断参数个数以及表元信息中
的列数量对比，并自动生成自增主键。例如，原始的 SQL为：

INSERT INTO t_order VALUES (10, 1);

改写的 SQL将只在主键所在的列顺序处增加自增主键即可：

INSERT INTO t_order VALUES (xxxxx, 10, 1);

自增主键补列时，如果使用占位符的方式书写 SQL，则只需要改写参数列表即可，无需改写 SQL本身。

7.2. 数据分片 233

Apache ShardingSphere document, v5.1.0

分页修正

从多个数据库获取分页数据与单数据库的场景是不同的。假设每 10条数据为一页，取第 2页数据。在分
片环境下获取 LIMIT 10, 10，归并之后再根据排序条件取出前 10条数据是不正确的。举例说明，若 SQL
为：

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

下图展示了不进行 SQL的改写的分页执行结果。

通过图中所示，想要取得两个表中共同的按照分数排序的第 2条和第 3条数据，应该是 95和 90。由于执
行的 SQL只能从每个表中获取第 2条和第 3条数据，即从 t_score_0表中获取的是 90和 80；从 t_score_1
表中获取的是 85和 75。因此进行结果归并时，只能从获取的 90，80，85和 75之中进行归并，那么结
果归并无论怎么实现，都不可能获得正确的结果。
正确的做法是将分页条件改写为 LIMIT 0, 3，取出所有前两页数据，再结合排序条件计算出正确的数
据。下图展示了进行 SQL改写之后的分页执行结果。

7.2. 数据分片 234

Apache ShardingSphere document, v5.1.0

越获取偏移量位置靠后数据，使用 LIMIT分页方式的效率就越低。有很多方法可以避免使用 LIMIT进行
分页。比如构建行记录数量与行偏移量的二级索引，或使用上次分页数据结尾 ID作为下次查询条件的分
页方式等。
分页信息修正时，如果使用占位符的方式书写 SQL，则只需要改写参数列表即可，无需改写 SQL本身。

批量拆分

在使用批量插入的 SQL时，如果插入的数据是跨分片的，那么需要对 SQL进行改写来防止将多余的数据
写入到数据库中。插入操作与查询操作的不同之处在于，查询语句中即使用了不存在于当前分片的分片
键，也不会对数据产生影响；而插入操作则必须将多余的分片键删除。举例说明，如下 SQL：

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, 'xxx');

假设数据库仍然是按照 order_id的奇偶值分为两片的，仅将这条 SQL中的表名进行修改，然后发送至数
据库完成 SQL的执行，则两个分片都会写入相同的记录。虽然只有符合分片查询条件的数据才能够被查
询语句取出，但存在冗余数据的实现方案并不合理。因此需要将 SQL改写为：

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');
INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

使用 IN的查询与批量插入的情况相似，不过 IN操作并不会导致数据查询结果错误。通过对 IN查询的改
写，可以进一步的提升查询性能。如以下 SQL：

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

改写为：

7.2. 数据分片 235

Apache ShardingSphere document, v5.1.0

SELECT * FROM t_order_0 WHERE order_id IN (2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 3);

可以进一步的提升查询性能。ShardingSphere暂时还未实现此改写策略，目前的改写结果是：

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

虽然 SQL的执行结果是正确的，但并未达到最优的查询效率。

优化改写

优化改写的目的是在不影响查询正确性的情况下，对性能进行提升的有效手段。它分为单节点优化和流
式归并优化。

单节点优化

路由至单节点的 SQL，则无需优化改写。当获得一次查询的路由结果后，如果是路由至唯一的数据节点，
则无需涉及到结果归并。因此补列和分页信息等改写都没有必要进行。尤其是分页信息的改写，无需将
数据从第 1条开始取，大量的降低了对数据库的压力，并且节省了网络带宽的无谓消耗。

流式归并优化

它仅为包含 GROUP BY的 SQL增加 ORDER BY以及和分组项相同的排序项和排序顺序，用于将内存归
并转化为流式归并。在结果归并的部分中，将对流式归并和内存归并进行详细说明。
改写引擎的整体结构划分如下图所示。

7.2. 数据分片 236

Apache ShardingSphere document, v5.1.0

7.2.10 执行引擎

ShardingSphere采用一套自动化的执行引擎，负责将路由和改写完成之后的真实 SQL安全且高效发送到
底层数据源执行。它不是简单地将 SQL通过 JDBC直接发送至数据源执行；也并非直接将执行请求放入
线程池去并发执行。它更关注平衡数据源连接创建以及内存占用所产生的消耗，以及最大限度地合理利
用并发等问题。执行引擎的目标是自动化的平衡资源控制与执行效率。

连接模式

从资源控制的角度看，业务方访问数据库的连接数量应当有所限制。它能够有效地防止某一业务操作过
多的占用资源，从而将数据库连接的资源耗尽，以致于影响其他业务的正常访问。特别是在一个数据库实
例中存在较多分表的情况下，一条不包含分片键的逻辑 SQL将产生落在同库不同表的大量真实 SQL，如
果每条真实 SQL都占用一个独立的连接，那么一次查询无疑将会占用过多的资源。
从执行效率的角度看，为每个分片查询维持一个独立的数据库连接，可以更加有效的利用多线程来提升
执行效率。为每个数据库连接开启独立的线程，可以将 I/O所产生的消耗并行处理。为每个分片维持一个
独立的数据库连接，还能够避免过早的将查询结果数据加载至内存。独立的数据库连接，能够持有查询
结果集游标位置的引用，在需要获取相应数据时移动游标即可。
以结果集游标下移进行结果归并的方式，称之为流式归并，它无需将结果数据全数加载至内存，可以有效
的节省内存资源，进而减少垃圾回收的频次。当无法保证每个分片查询持有一个独立数据库连接时，则

7.2. 数据分片 237

Apache ShardingSphere document, v5.1.0

需要在复用该数据库连接获取下一张分表的查询结果集之前，将当前的查询结果集全数加载至内存。因
此，即使可以采用流式归并，在此场景下也将退化为内存归并。
一方面是对数据库连接资源的控制保护，一方面是采用更优的归并模式达到对中间件内存资源的节省，如
何处理好两者之间的关系，是 ShardingSphere执行引擎需要解决的问题。具体来说，如果一条 SQL在经
过 ShardingSphere的分片后，需要操作某数据库实例下的 200张表。那么，是选择创建 200个连接并行
执行，还是选择创建一个连接串行执行呢？效率与资源控制又应该如何抉择呢？
针对上述场景，ShardingSphere提供了一种解决思路。它提出了连接模式（Connection Mode）的概念，
将其划分为内存限制模式（MEMORY_STRICTLY）和连接限制模式（CONNECTION_STRICTLY）这两种
类型。

内存限制模式

使用此模式的前提是，ShardingSphere对一次操作所耗费的数据库连接数量不做限制。如果实际执行的
SQL需要对某数据库实例中的 200张表做操作，则对每张表创建一个新的数据库连接，并通过多线程的
方式并发处理，以达成执行效率最大化。并且在 SQL满足条件情况下，优先选择流式归并，以防止出现
内存溢出或避免频繁垃圾回收情况。

连接限制模式

使用此模式的前提是，ShardingSphere严格控制对一次操作所耗费的数据库连接数量。如果实际执行的
SQL需要对某数据库实例中的 200张表做操作，那么只会创建唯一的数据库连接，并对其 200张表串行
处理。如果一次操作中的分片散落在不同的数据库，仍然采用多线程处理对不同库的操作，但每个库的
每次操作仍然只创建一个唯一的数据库连接。这样即可以防止对一次请求对数据库连接占用过多所带来
的问题。该模式始终选择内存归并。
内存限制模式适用于 OLAP操作，可以通过放宽对数据库连接的限制提升系统吞吐量；连接限制模式适
用于 OLTP操作，OLTP通常带有分片键，会路由到单一的分片，因此严格控制数据库连接，以保证在线
系统数据库资源能够被更多的应用所使用，是明智的选择。

自动化执行引擎

ShardingSphere最初将使用何种模式的决定权交由用户配置，让开发者依据自己业务的实际场景需求选
择使用内存限制模式或连接限制模式。
这种解决方案将两难的选择的决定权交由用户，使得用户必须要了解这两种模式的利弊，并依据业务场
景需求进行选择。这无疑增加了用户对 ShardingSphere的学习和使用的成本，并非最优方案。
这种一分为二的处理方案，将两种模式的切换交由静态的初始化配置，是缺乏灵活应对能力的。在实际的
使用场景中，面对不同 SQL以及占位符参数，每次的路由结果是不同的。这就意味着某些操作可能需要使
用内存归并，而某些操作则可能选择流式归并更优，具体采用哪种方式不应该由用户在 ShardingSphere
启动之前配置好，而是应该根据 SQL和占位符参数的场景，来动态的决定连接模式。
为了降低用户的使用成本以及连接模式动态化这两个问题，ShardingSphere提炼出自动化执行引擎的思
路，在其内部消化了连接模式概念。用户无需了解所谓的内存限制模式和连接限制模式是什么，而是交
由执行引擎根据当前场景自动选择最优的执行方案。

7.2. 数据分片 238

Apache ShardingSphere document, v5.1.0

自动化执行引擎将连接模式的选择粒度细化至每一次 SQL的操作。针对每次 SQL请求，自动化执行引擎
都将根据其路由结果，进行实时的演算和权衡，并自主地采用恰当的连接模式执行，以达到资源控制和
效率的最优平衡。针对自动化的执行引擎，用户只需配置maxConnectionSizePerQuery即可，该参数表
示一次查询时每个数据库所允许使用的最大连接数。
执行引擎分为准备和执行两个阶段。

准备阶段

顾名思义，此阶段用于准备执行的数据。它分为结果集分组和执行单元创建两个步骤。
结果集分组是实现内化连接模式概念的关键。执行引擎根据maxConnectionSizePerQuery配置项，结合
当前路由结果，选择恰当的连接模式。具体步骤如下：

1. 将 SQL的路由结果按照数据源的名称进行分组。
2. 通过下图的公式，可以获得每个数据库实例在 maxConnectionSizePerQuery的允许范围内，每
个连接需要执行的 SQL路由结果组，并计算出本次请求的最优连接模式。

在maxConnectionSizePerQuery允许的范围内，当一个连接需要执行的请求数量大于 1时，意味着当前
的数据库连接无法持有相应的数据结果集，则必须采用内存归并；反之，当一个连接需要执行的请求数
量等于 1时，意味着当前的数据库连接可以持有相应的数据结果集，则可以采用流式归并。
每一次的连接模式的选择，是针对每一个物理数据库的。也就是说，在同一次查询中，如果路由至一个
以上的数据库，每个数据库的连接模式不一定一样，它们可能是混合存在的形态。
通过上一步骤获得的路由分组结果创建执行的单元。当数据源使用数据库连接池等控制数据库连接数量
的技术时，在获取数据库连接时，如果不妥善处理并发，则有一定几率发生死锁。在多个请求相互等待
对方释放数据库连接资源时，将会产生饥饿等待，造成交叉的死锁问题。
举例说明，假设一次查询需要在某一数据源上获取两个数据库连接，并路由至同一个数据库的两个分表
查询。则有可能出现查询 A已获取到该数据源的 1个数据库连接，并等待获取另一个数据库连接；而查
询 B也已经在该数据源上获取到的一个数据库连接，并同样等待另一个数据库连接的获取。如果数据库
连接池的允许最大连接数是 2，那么这 2个查询请求将永久的等待下去。下图描绘了死锁的情况。

7.2. 数据分片 239

Apache ShardingSphere document, v5.1.0

ShardingSphere为了避免死锁的出现，在获取数据库连接时进行了同步处理。它在创建执行单元时，以
原子性的方式一次性获取本次 SQL请求所需的全部数据库连接，杜绝了每次查询请求获取到部分资源的
可能。由于对数据库的操作非常频繁，每次获取数据库连接时时都进行锁定，会降低 ShardingSphere的
并发。因此，ShardingSphere在这里进行了 2点优化：

1. 避免锁定一次性只需要获取 1个数据库连接的操作。因为每次仅需要获取 1个连接，则不会发生两
个请求相互等待的场景，无需锁定。对于大部分 OLTP的操作，都是使用分片键路由至唯一的数据
节点，这会使得系统变为完全无锁的状态，进一步提升了并发效率。除了路由至单分片的情况，读
写分离也在此范畴之内。

2. 仅针对内存限制模式时才进行资源锁定。在使用连接限制模式时，所有的查询结果集将在装载至内
存之后释放掉数据库连接资源，因此不会产生死锁等待的问题。

执行阶段

该阶段用于真正的执行 SQL，它分为分组执行和归并结果集生成两个步骤。
分组执行将准备执行阶段生成的执行单元分组下发至底层并发执行引擎，并针对执行过程中的每个关键
步骤发送事件。如：执行开始事件、执行成功事件以及执行失败事件。执行引擎仅关注事件的发送，它并
不关心事件的订阅者。ShardingSphere的其他模块，如：分布式事务、调用链路追踪等，会订阅感兴趣
的事件，并进行相应的处理。
ShardingSphere通过在执行准备阶段的获取的连接模式，生成内存归并结果集或流式归并结果集，并将
其传递至结果归并引擎，以进行下一步的工作。
执行引擎的整体结构划分如下图所示。

7.2. 数据分片 240

Apache ShardingSphere document, v5.1.0

7.2.11 归并引擎

将从各个数据节点获取的多数据结果集，组合成为一个结果集并正确的返回至请求客户端，称为结果归
并。
ShardingSphere支持的结果归并从功能上分为遍历、排序、分组、分页和聚合 5种类型，它们是组合而
非互斥的关系。从结构划分，可分为流式归并、内存归并和装饰者归并。流式归并和内存归并是互斥的，
装饰者归并可以在流式归并和内存归并之上做进一步的处理。
由于从数据库中返回的结果集是逐条返回的，并不需要将所有的数据一次性加载至内存中，因此，在进
行结果归并时，沿用数据库返回结果集的方式进行归并，能够极大减少内存的消耗，是归并方式的优先
选择。
流式归并是指每一次从结果集中获取到的数据，都能够通过逐条获取的方式返回正确的单条数据，它与
数据库原生的返回结果集的方式最为契合。遍历、排序以及流式分组都属于流式归并的一种。
内存归并则是需要将结果集的所有数据都遍历并存储在内存中，再通过统一的分组、排序以及聚合等计
算之后，再将其封装成为逐条访问的数据结果集返回。
装饰者归并是对所有的结果集归并进行统一的功能增强，目前装饰者归并有分页归并和聚合归并这 2种
类型。

7.2. 数据分片 241

Apache ShardingSphere document, v5.1.0

遍历归并

它是最为简单的归并方式。只需将多个数据结果集合并为一个单向链表即可。在遍历完成链表中当前数
据结果集之后，将链表元素后移一位，继续遍历下一个数据结果集即可。

排序归并

由于在 SQL中存在 ORDER BY语句，因此每个数据结果集自身是有序的，因此只需要将数据结果集当前
游标指向的数据值进行排序即可。这相当于对多个有序的数组进行排序，归并排序是最适合此场景的排
序算法。
ShardingSphere在对排序的查询进行归并时，将每个结果集的当前数据值进行比较（通过实现 Java的
Comparable接口完成），并将其放入优先级队列。每次获取下一条数据时，只需将队列顶端结果集的游
标下移，并根据新游标重新进入优先级排序队列找到自己的位置即可。
通过一个例子来说明 ShardingSphere的排序归并，下图是一个通过分数进行排序的示例图。图中展示
了 3张表返回的数据结果集，每个数据结果集已经根据分数排序完毕，但是 3个数据结果集之间是无序
的。将 3个数据结果集的当前游标指向的数据值进行排序，并放入优先级队列，t_score_0的第一个数据值
最大，t_score_2的第一个数据值次之，t_score_1的第一个数据值最小，因此优先级队列根据 t_score_0，
t_score_2和 t_score_1的方式排序队列。

下图则展现了进行 next调用的时候，排序归并是如何进行的。通过图中我们可以看到，当进行第一次 next
调用时，排在队列首位的 t_score_0将会被弹出队列，并且将当前游标指向的数据值（也就是 100）返回
至查询客户端，并且将游标下移一位之后，重新放入优先级队列。而优先级队列也会根据 t_score_0的当
前数据结果集指向游标的数据值（这里是 90）进行排序，根据当前数值，t_score_0排列在队列的最后一
位。之前队列中排名第二的 t_score_2的数据结果集则自动排在了队列首位。

7.2. 数据分片 242

Apache ShardingSphere document, v5.1.0

在进行第二次 next时，只需要将目前排列在队列首位的 t_score_2弹出队列，并且将其数据结果集游标
指向的值返回至客户端，并下移游标，继续加入队列排队，以此类推。当一个结果集中已经没有数据了，
则无需再次加入队列。

可以看到，对于每个数据结果集中的数据有序，而多数据结果集整体无序的情况下，ShardingSphere无
需将所有的数据都加载至内存即可排序。它使用的是流式归并的方式，每次 next仅获取唯一正确的一条
数据，极大的节省了内存的消耗。
从另一个角度来说，ShardingSphere的排序归并，是在维护数据结果集的纵轴和横轴这两个维度的有序
性。纵轴是指每个数据结果集本身，它是天然有序的，它通过包含 ORDER BY的 SQL所获取。横轴是指
每个数据结果集当前游标所指向的值，它需要通过优先级队列来维护其正确顺序。每一次数据结果集当
前游标的下移，都需要将该数据结果集重新放入优先级队列排序，而只有排列在队列首位的数据结果集
才可能发生游标下移的操作。

分组归并

分组归并的情况最为复杂，它分为流式分组归并和内存分组归并。流式分组归并要求 SQL的排序项与分
组项的字段以及排序类型（ASC或 DESC）必须保持一致，否则只能通过内存归并才能保证其数据的正确
性。
举例说明，假设根据科目分片，表结构中包含考生的姓名（为了简单起见，不考虑重名的情况）和分数。
通过 SQL获取每位考生的总分，可通过如下 SQL：

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

7.2. 数据分片 243

Apache ShardingSphere document, v5.1.0

在分组项与排序项完全一致的情况下，取得的数据是连续的，分组所需的数据全数存在于各个数据结果
集的当前游标所指向的数据值，因此可以采用流式归并。如下图所示。

进行归并时，逻辑与排序归并类似。下图展现了进行 next调用的时候，流式分组归并是如何进行的。

7.2. 数据分片 244

Apache ShardingSphere document, v5.1.0

通过图中我们可以看到，当进行第一次 next调用时，排在队列首位的 t_score_java将会被弹出队列，并
且将分组值同为“Jerry”的其他结果集中的数据一同弹出队列。在获取了所有的姓名为“Jerry”的同学
的分数之后，进行累加操作，那么，在第一次 next调用结束后，取出的结果集是“Jerry”的分数总和。
与此同时，所有的数据结果集中的游标都将下移至数据值“Jerry”的下一个不同的数据值，并且根据数
据结果集当前游标指向的值进行重排序。因此，包含名字顺着第二位的“John”的相关数据结果集则排
在的队列的前列。
流式分组归并与排序归并的区别仅仅在于两点：

1. 它会一次性的将多个数据结果集中的分组项相同的数据全数取出。
2. 它需要根据聚合函数的类型进行聚合计算。

对于分组项与排序项不一致的情况，由于需要获取分组的相关的数据值并非连续的，因此无法使用流式
归并，需要将所有的结果集数据加载至内存中进行分组和聚合。例如，若通过以下 SQL获取每位考生的
总分并按照分数从高至低排序：

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

那么各个数据结果集中取出的数据与排序归并那张图的上半部分的表结构的原始数据一致，是无法进行
流式归并的。
当 SQL中只包含分组语句时，根据不同数据库的实现，其排序的顺序不一定与分组顺序一致。但由于排
序语句的缺失，则表示此 SQL并不在意排序顺序。因此，ShardingSphere通过 SQL优化的改写，自动增
加与分组项一致的排序项，使其能够从消耗内存的内存分组归并方式转化为流式分组归并方案。

7.2. 数据分片 245

Apache ShardingSphere document, v5.1.0

聚合归并

无论是流式分组归并还是内存分组归并，对聚合函数的处理都是一致的。除了分组的 SQL之外，不进行
分组的 SQL也可以使用聚合函数。因此，聚合归并是在之前介绍的归并类的之上追加的归并能力，即装
饰者模式。聚合函数可以归类为比较、累加和求平均值这 3种类型。
比较类型的聚合函数是指 MAX和 MIN。它们需要对每一个同组的结果集数据进行比较，并且直接返回其
最大或最小值即可。
累加类型的聚合函数是指 SUM和 COUNT。它们需要将每一个同组的结果集数据进行累加。
求平均值的聚合函数只有 AVG。它必须通过 SQL改写的 SUM和 COUNT进行计算，相关内容已在 SQL改
写的内容中涵盖，不再赘述。

分页归并

上文所述的所有归并类型都可能进行分页。分页也是追加在其他归并类型之上的装饰器，ShardingSphere
通过装饰者模式来增加对数据结果集进行分页的能力。分页归并负责将无需获取的数据过滤掉。
ShardingSphere的分页功能比较容易让使用者误解，用户通常认为分页归并会占用大量内存。在分布式
的场景中，将 LIMIT 10000000, 10改写为 LIMIT 0, 10000010，才能保证其数据的正确性。用户
非常容易产生 ShardingSphere会将大量无意义的数据加载至内存中，造成内存溢出风险的错觉。其实，
通过流式归并的原理可知，会将数据全部加载到内存中的只有内存分组归并这一种情况。而通常来说，进
行 OLAP的分组 SQL，不会产生大量的结果数据，它更多的用于大量的计算，以及少量结果产出的场景。
除了内存分组归并这种情况之外，其他情况都通过流式归并获取数据结果集，因此 ShardingSphere会通
过结果集的 next方法将无需取出的数据全部跳过，并不会将其存入内存。
但同时需要注意的是，由于排序的需要，大量的数据仍然需要传输到 ShardingSphere的内存空间。因此，
采用 LIMIT这种方式分页，并非最佳实践。由于 LIMIT并不能通过索引查询数据，因此如果可以保证 ID
的连续性，通过 ID进行分页是比较好的解决方案，例如：

SELECT * FROM t_order WHERE id > 100000 AND id <= 100010 ORDER BY id;

或通过记录上次查询结果的最后一条记录的 ID进行下一页的查询，例如：

SELECT * FROM t_order WHERE id > 10000000 LIMIT 10;

归并引擎的整体结构划分如下图。

7.2. 数据分片 246

Apache ShardingSphere document, v5.1.0

7.3 分布式事务

7.3.1 导览

本小节主要介绍 Apache ShardingSphere分布式事务的实现原理
• 基于 XA协议的两阶段事务
• 基于 Seata的柔性事务

7.3.2 XA事务

XAShardingSphereTransactionManager为 Apache ShardingSphere的分布式事务的 XA实现类。
它主要负责对多数据源进行管理和适配，并且将相应事务的开启、提交和回滚操作委托给具体的 XA事务
管理器。

7.3. 分布式事务 247

Apache ShardingSphere document, v5.1.0

开启全局事务

收到接入端的 set autoCommit=0 时，XAShardingSphereTransactionManager 将调用具体的
XA事务管理器开启 XA全局事务，以 XID的形式进行标记。

执行真实分片 SQL

XAShardingSphereTransactionManager将数据库连接所对应的 XAResource注册到当前 XA事务
中之后，事务管理器会在此阶段发送 XAResource.start命令至数据库。数据库在收到 XAResource.
end命令之前的所有 SQL操作，会被标记为 XA事务。
例如:

XAResource1.start ## Enlist 阶段执行
statement.execute("sql1"); ## 模拟执行一个分片 SQL1
statement.execute("sql2"); ## 模拟执行一个分片 SQL2
XAResource1.end ## 提交阶段执行

示例中的 sql1和 sql2将会被标记为 XA事务。

7.3. 分布式事务 248

Apache ShardingSphere document, v5.1.0

提交或回滚事务

XAShardingSphereTransactionManager在接收到接入端的提交命令后，会委托实际的 XA事务管
理进行提交动作，事务管理器将收集到的当前线程中所有注册的XAResource，并发送 XAResource.end
指令，用以标记此 XA事务边界。接着会依次发送 prepare指令，收集所有参与 XAResource投票。若
所有 XAResource的反馈结果均为正确，则调用 commit指令进行最终提交；若有任意 XAResource的反
馈结果不正确，则调用 rollback指令进行回滚。在事务管理器发出提交指令后，任何 XAResource产
生的异常都会通过恢复日志进行重试，以保证提交阶段的操作原子性，和数据强一致性。
例如:

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: yes
XAResource1.commit
XAResource2.commit

XAResource1.prepare ## ack: yes
XAResource2.prepare ## ack: no
XAResource1.rollback
XAResource2.rollback

7.3.3 Seata柔性事务

整合 Seata AT事务时，需要将 TM，RM和 TC的模型融入 Apache ShardingSphere的分布式事务生态中。
在数据库资源上，Seata通过对接DataSource接口，让 JDBC操作可以同TC进行远程通信。同样，Apache
ShardingSphere也是面向 DataSource接口，对用户配置的数据源进行聚合。因此，将 DataSource
封装为基于 Seata的 DataSource后，就可以将 Seata AT事务融入到 Apache ShardingSphere的分片生
态中。

7.3. 分布式事务 249

Apache ShardingSphere document, v5.1.0

引擎初始化

包含 Seata柔性事务的应用启动时，用户配置的数据源会根据 seata.conf的配置，适配为 Seata事务
所需的 DataSourceProxy，并且注册至 RM中。

开启全局事务

TM控制全局事务的边界，TM通过向 TC发送 Begin指令，获取全局事务 ID，所有分支事务通过此全局
事务 ID，参与到全局事务中；全局事务 ID的上下文存放在当前线程变量中。

执行真实分片 SQL

处于 Seata全局事务中的分片 SQL通过 RM生成 undo快照，并且发送 participate指令至 TC，加入
到全局事务中。由于 Apache ShardingSphere的分片物理 SQL采取多线程方式执行，因此整合 Seata AT
事务时，需要在主线程和子线程间进行全局事务 ID的上下文传递。

7.3. 分布式事务 250

Apache ShardingSphere document, v5.1.0

提交或回滚事务

提交 Seata事务时，TM会向 TC发送全局事务的提交或回滚指令，TC根据全局事务 ID协调所有分支事
务进行提交或回滚。

7.4 弹性伸缩

7.4.1 原理说明

考虑到 Apache ShardingSphere的弹性伸缩模块的几个挑战，目前的弹性伸缩解决方案为：临时地使用
两个数据库集群，伸缩完成后切换的方式实现。
这种实现方式有以下优点：

1. 伸缩过程中，原始数据没有任何影响
2. 伸缩失败无风险
3. 不受分片策略限制

同时也存在一定的缺点：
1. 在一定时间内存在冗余服务器
2. 所有数据都需要移动

弹性伸缩模块会通过解析旧分片规则，提取配置中的数据源、数据节点等信息，之后创建伸缩作业工作
流，将一次弹性伸缩拆解为 4个主要阶段

1. 准备阶段
2. 存量数据迁移阶段
3. 增量数据同步阶段
4. 规则切换阶段

7.4.2 执行阶段说明

准备阶段

在准备阶段，弹性伸缩模块会进行数据源连通性及权限的校验，同时进行存量数据的统计、日志位点的
记录，最后根据数据量和用户设置的并行度，对任务进行分片。

7.4. 弹性伸缩 251

Apache ShardingSphere document, v5.1.0

存量数据迁移阶段

执行在准备阶段拆分好的存量数据迁移作业，存量迁移阶段采用 JDBC查询的方式，直接从数据节点中读
取数据，并使用新规则写入到新集群中。

增量数据同步阶段

由于存量数据迁移耗费的时间受到数据量和并行度等因素影响，此时需要对这段时间内业务新增的数据
进行同步。不同的数据库使用的技术细节不同，但总体上均为基于复制协议或WAL日志实现的变更数据
捕获功能。

• MySQL：订阅并解析 binlog

• PostgreSQL：采用官方逻辑复制 test_decoding

这些捕获的增量数据，同样会由弹性伸缩模块根据新规则写入到新数据节点中。当增量数据基本同步完
成时（由于业务系统未停止，增量数据是不断的），则进入规则切换阶段。

规则切换阶段

在此阶段，可能存在一定时间的业务只读窗口期，通过设置数据库只读或 ShardingSphere的熔断机制，
让旧数据节点中的数据短暂静态，确保增量同步已完全完成。
这个窗口期时间短则数秒，长则数分钟，取决于数据量和用户是否需要对数据进行强校验。确认完成后，
Apache ShardingSphere可通过配置中心修改配置，将业务导向新规则的集群，弹性伸缩完成。

7.5 数据加密

7.5.1 处理流程详解

Apache ShardingSphere 通过对用户输入的 SQL 进行解析，并依据用户提供的加密规则对 SQL 进行改
写，从而实现对原文数据进行加密，并将原文数据（可选）及密文数据同时存储到底层数据库。在用户查
询数据时，它仅从数据库中取出密文数据，并对其解密，最终将解密后的原始数据返回给用户。Apache
ShardingSphere自动化 &透明化了数据加密过程，让用户无需关注数据加密的实现细节，像使用普通数
据那样使用加密数据。此外，无论是已在线业务进行加密改造，还是新上线业务使用加密功能，Apache
ShardingSphere都可以提供一套相对完善的解决方案。

7.5. 数据加密 252

https://www.postgresql.org/docs/9.4/test-decoding.html

Apache ShardingSphere document, v5.1.0

整体架构

加密模块将用户发起的 SQL进行拦截，并通过 SQL语法解析器进行解析、理解 SQL行为，再依据用户传
入的加密规则，找出需要加密的字段和所使用的加解密算法对目标字段进行加解密处理后，再与底层数
据库进行交互。Apache ShardingSphere会将用户请求的明文进行加密后存储到底层数据库；并在用户
查询时，将密文从数据库中取出进行解密后返回给终端用户。通过屏蔽对数据的加密处理，使用户无需
感知解析 SQL、数据加密、数据解密的处理过程，就像在使用普通数据一样使用加密数据。

加密规则

在详解整套流程之前，我们需要先了解下加密规则与配置，这是认识整套流程的基础。加密配置主要分
为四部分：数据源配置，加密算法配置，加密表配置以及查询属性配置，其详情如下图所示：

7.5. 数据加密 253

Apache ShardingSphere document, v5.1.0

数据源配置：指数据源配置。
加密算法配置：指使用什么加密算法进行加解密。目前 ShardingSphere 内置了三种加解密算法：AES，
MD5和 RC4。用户还可以通过实现 ShardingSphere提供的接口，自行实现一套加解密算法。
加密表配置：用于告诉 ShardingSphere数据表里哪个列用于存储密文数据（cipherColumn）、哪个列用
于存储明文数据（plainColumn）以及用户想使用哪个列进行 SQL编写（logicColumn）。

如何理解用户想使用哪个列进行 SQL 编写（logicColumn）？
我们可以从加密模块存在的意义来理解。加密模块最终目的是希望屏蔽底层对数据的加密处
理，也就是说我们不希望用户知道数据是如何被加解密的、如何将明文数据存储到 plainCol‐
umn，将密文数据存储到 cipherColumn。换句话说，我们不希望用户知道 plainColumn和
cipherColumn的存在和使用。所以，我们需要给用户提供一个概念意义上的列，这个列可以
脱离底层数据库的真实列，它可以是数据库表里的一个真实列，也可以不是，从而使得用户
可以随意改变底层数据库的 plainColumn和 cipherColumn的列名。或者删除 plainColumn，
选择永远不再存储明文，只存储密文。只要用户的 SQL面向这个逻辑列进行编写，并在加密
规则里给出 logicColumn和 plainColumn、cipherColumn之间正确的映射关系即可。
为什么要这么做呢？答案在文章后面，即为了让已上线的业务能无缝、透明、安全地进行数据
加密迁移。

查询属性的配置：当底层数据库表里同时存储了明文数据、密文数据后，该属性开关用于决定是直接查
询数据库表里的明文数据进行返回，还是查询密文数据通过 Apache ShardingSphere解密后返回。

7.5. 数据加密 254

Apache ShardingSphere document, v5.1.0

加密处理过程

举例说明，假如数据库里有一张表叫做 t_user，这张表里实际有两个字段 pwd_plain，用于存放明文数
据、pwd_cipher，用于存放密文数据，同时定义 logicColumn为 pwd。那么，用户在编写 SQL时应该面
向 logicColumn进行编写，即 INSERT INTO t_user SET pwd = '123'。Apache ShardingSphere
接收到该 SQL，通过用户提供的加密配置，发现 pwd是 logicColumn，于是便对逻辑列及其对应的明文
数据进行加密处理。Apache ShardingSphere将面向用户的逻辑列与面向底层数据库的明文列和密文列
进行了列名以及数据的加密映射转换。如下图所示：

即依据用户提供的加密规则，将用户 SQL与底层数据表结构割裂开来，使得用户的 SQL编写不再依赖于
真实的数据库表结构。而用户与底层数据库之间的衔接、映射、转换交由 Apache ShardingSphere进行
处理。

7.5. 数据加密 255

Apache ShardingSphere document, v5.1.0

下方图片展示了使用加密模块进行增删改查时，其中的处理流程和转换逻辑，如下图所示。

7.5.2 解决方案详解

在了解了 Apache ShardingSphere加密处理流程后，即可将加密配置、加密处理流程与实际场景进行结
合。所有的设计开发都是为了解决业务场景遇到的痛点。那么面对之前提到的业务场景需求，又应该如
何使用 Apache ShardingSphere这把利器来满足业务需求呢？

新上线业务

业务场景分析：新上线业务由于一切从零开始，不存在历史数据清洗问题，所以相对简单。
解决方案说明：选择合适的加密算法，如 AES后，只需配置逻辑列（面向用户编写 SQL）和密文列（数
据表存密文数据）即可，逻辑列和密文列可以相同也可以不同。建议配置如下（YAML格式展示）：

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd:

7.5. 数据加密 256

Apache ShardingSphere document, v5.1.0

cipherColumn: pwd
encryptorName: aes_encryptor

使用这套配置，Apache ShardingSphere只需将 logicColumn和 cipherColumn进行转换，底层数据表
不存储明文，只存储了密文，这也是安全审计部分的要求所在。如果用户希望将明文、密文一同存储到
数据库，只需添加 plainColumn配置即可。整体处理流程如下图所示：

已上线业务改造

业务场景分析：由于业务已经在线上运行，数据库里必然存有大量明文历史数据。现在的问题是如何让
历史数据得以加密清洗、如何让增量数据得以加密处理、如何让业务在新旧两套数据系统之间进行无缝、
透明化迁移。
解决方案说明：在提供解决方案之前，我们先来头脑风暴一下：首先，既然是旧业务需要进行加密改造，
那一定存储了非常重要且敏感的信息。这些信息含金量高且业务相对基础重要。不应该采用停止业务禁
止新数据写入，再找个加密算法把历史数据全部加密清洗，再把之前重构的代码部署上线，使其能把存
量和增量数据进行在线加密解密。
那么另一种相对安全的做法是：重新搭建一套和生产环境一模一样的预发环境，然后通过相关迁移洗数
工具把生产环境的存量原文数据加密后存储到预发环境，而新增数据则通过例如MySQL主从复制及业务
方自行开发的工具加密后存储到预发环境的数据库里，再把重构后可以进行加解密的代码部署到预发环
境。这样生产环境是一套以明文为核心的查询修改的环境；预发环境是一套以密文为核心加解密查询修
改的环境。在对比一段时间无误后，可以夜间操作将生产流量切到预发环境中。此方案相对安全可靠，只
是时间、人力、资金、成本较高，主要包括：预发环境搭建、生产代码整改、相关辅助工具开发等。
业务开发人员最希望的做法是：减少资金费用的承担、最好不要修改业务代码、能够安全平滑迁移系统。
于是，ShardingSphere的加密功能模块便应运而生。可分为 3步进行：

1. 系统迁移前
假设系统需要对 t_user的 pwd字段进行加密处理，业务方使用 Apache ShardingSphere来代替标准化
的 JDBC接口，此举基本不需要额外改造（我们还提供了 Spring Boot Starter，Spring命名空间，YAML
等接入方式，满足不同业务方需求）。另外，提供一套加密配置规则，如下所示：

-!ENCRYPT
encryptors:

aes_encryptor:

7.5. 数据加密 257

Apache ShardingSphere document, v5.1.0

type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd:

plainColumn: pwd
cipherColumn: pwd_cipher
encryptorName: aes_encryptor

queryWithCipherColumn: false

依据上述加密规则可知，首先需要在数据库表 t_user里新增一个字段叫做 pwd_cipher，即 cipherCol‐
umn，用于存放密文数据，同时我们把 plainColumn设置为 pwd，用于存放明文数据，而把 logicColumn
也设置为 pwd。由于之前的代码 SQL就是使用 pwd进行编写，即面向逻辑列进行 SQL编写，所以业务
代码无需改动。通过 Apache ShardingSphere，针对新增的数据，会把明文写到 pwd列，并同时把明文
进行加密存储到 pwd_cipher列。此时，由于 queryWithCipherColumn设置为 false，对业务应用来
说，依旧使用 pwd这一明文列进行查询存储，却在底层数据库表 pwd_cipher上额外存储了新增数据的
密文数据，其处理流程如下图所示：

新增数据在插入时，就通过 Apache ShardingSphere加密为密文数据，并被存储到了 cipherColumn。而
现在就需要处理历史明文存量数据。由于 Apache ShardingSphere目前并未提供相关迁移洗数工具，此
时需要业务方自行将 “pwd“中的明文数据进行加密处理存储到 “pwd_cipher“。

2. 系统迁移中
新增的数据已被 Apache ShardingSphere将密文存储到密文列，明文存储到明文列；历史数据被业务方
自行加密清洗后，将密文也存储到密文列。也就是说现在的数据库里即存放着明文也存放着密文，只是
由于配置项中的 queryWithCipherColumn = false，所以密文一直没有被使用过。现在我们为了让
系统能切到密文数据进行查询，需要将加密配置中的 queryWithCipherColumn设置为 true。在重启系统
后，我们发现系统业务一切正常，但是 Apache ShardingSphere已经开始从数据库里取出密文列的数据，
解密后返回给用户；而对于用户的增删改需求，则依旧会把原文数据存储到明文列，加密后密文数据存
储到密文列。

7.5. 数据加密 258

Apache ShardingSphere document, v5.1.0

虽然现在业务系统通过将密文列的数据取出，解密后返回；但是，在存储的时候仍旧会存一份原文数据
到明文列，这是为什么呢？答案是：为了能够进行系统回滚。因为只要密文和明文永远同时存在，我们
就可以通过开关项配置自由将业务查询切换到 cipherColumn或 plainColumn。也就是说，如果将系统
切到密文列进行查询时，发现系统报错，需要回滚。那么只需将 queryWithCipherColumn = false，
Apache ShardingSphere将会还原，即又重新开始使用 plainColumn进行查询。处理流程如下图所示：

3. 系统迁移后
由于安全审计部门要求，业务系统一般不可能让数据库的明文列和密文列永久同步保留，我们需要在系统
稳定后将明文列数据删除。即我们需要在系统迁移后将 plainColumn，即 pwd进行删除。那问题来了，现
在业务代码都是面向 pwd进行编写 SQL的，把底层数据表中的存放明文的 pwd删除了，换用 pwd_cipher
进行解密得到原文数据，那岂不是意味着业务方需要整改所有 SQL，从而不使用即将要被删除的 pwd列？
还记得我们 Apache ShardingSphere的核心意义所在吗？

这也正是 Apache ShardingSphere核心意义所在，即依据用户提供的加密规则，将用户 SQL
与底层数据库表结构割裂开来，使得用户的 SQL编写不再依赖于真实的数据库表结构。而用
户与底层数据库之间的衔接、映射、转换交由 Apache ShardingSphere进行处理。

是的，因为有 logicColumn存在，用户的编写 SQL都面向这个虚拟列，Apache ShardingSphere就可以
把这个逻辑列和底层数据表中的密文列进行映射转换。于是迁移后的加密配置即为：

-!ENCRYPT
encryptors:

aes_encryptor:
type: AES
props:
aes-key-value: 123456abc

tables:
t_user:
columns:
pwd: # pwd 与 pwd_cipher 的转换映射

cipherColumn: pwd_cipher
encryptorName: aes_encryptor

7.5. 数据加密 259

Apache ShardingSphere document, v5.1.0

其处理流程如下：

至此，已在线业务加密整改解决方案全部叙述完毕。我们提供了 Java、YAML、Spring Boot Starter、Spring
命名空间多种方式供用户选择接入，力求满足业务不同的接入需求。该解决方案目前已在京东数科不断
落地上线，提供对内基础服务支撑。

7.5.3 中间件加密服务优势

1. 自动化 &透明化数据加密过程，用户无需关注加密中间实现细节。
2. 提供多种内置、第三方 (AKS)的加密算法，用户仅需简单配置即可使用。
3. 提供加密算法 API接口，用户可实现接口，从而使用自定义加密算法进行数据加密。
4. 支持切换不同的加密算法。
5. 针对已上线业务，可实现明文数据与密文数据同步存储，并通过配置决定使用明文列还是密文列进
行查询。可实现在不改变业务查询 SQL前提下，已上线系统对加密前后数据进行安全、透明化迁移。

7.5.4 加密算法解析

Apache ShardingSphere 提供了两种加密算法用于数据加密，这两种策略分别对应 Apache Sharding‐
Sphere的两种加解密的接口，即 EncryptAlgorithm和 QueryAssistedEncryptAlgorithm。
一方面，Apache ShardingSphere为用户提供了内置的加解密实现类，用户只需进行配置即可使用；另一
方面，为了满足用户不同场景的需求，我们还开放了相关加解密接口，用户可依据这两种类型的接口提
供具体实现类。再进行简单配置，即可让 Apache ShardingSphere调用用户自定义的加解密方案进行数
据加密。

7.5. 数据加密 260

Apache ShardingSphere document, v5.1.0

EncryptAlgorithm

该解决方案通过提供 encrypt(), decrypt() 两种方法对需要加密的数据进行加解密。在用户进行
INSERT, DELETE, UPDATE时，ShardingSphere会按照用户配置，对 SQL进行解析、改写、路由，并调
用 encrypt()将数据加密后存储到数据库,而在 SELECT时，则调用 decrypt()方法将从数据库中
取出的加密数据进行逆向解密，最终将原始数据返回给用户。
当前，Apache ShardingSphere针对这种类型的加密解决方案提供了三种具体实现类，分别是MD5(不可
逆)，AES(可逆)，RC4(可逆)，用户只需配置即可使用这三种内置的方案。

QueryAssistedEncryptAlgorithm

相比较于第一种加密方案，该方案更为安全和复杂。它的理念是：即使是相同的数据，如两个用户的密
码相同，它们在数据库里存储的加密数据也应当是不一样的。这种理念更有利于保护用户信息，防止撞
库成功。
它提供三种函数进行实现，分别是 encrypt(), decrypt(), queryAssistedEncrypt()。在
encrypt()阶段，用户通过设置某个变动种子，例如时间戳。针对原始数据 +变动种子组合的内容进行
加密，就能保证即使原始数据相同，也因为有变动种子的存在，致使加密后的加密数据是不一样的。在
decrypt()可依据之前规定的加密算法，利用种子数据进行解密。
虽然这种方式确实可以增加数据的保密性，但是另一个问题却随之出现：相同的数据在数据库里
存储的内容是不一样的，那么当用户按照这个加密列进行等值查询 (SELECT FROM table WHERE
encryptedColumnn = ?) 时会发现无法将所有相同的原始数据查询出来。为此，我们提出了辅助查
询列的概念。该辅助查询列通过 queryAssistedEncrypt()生成，与 decrypt()不同的是，该方
法通过对原始数据进行另一种方式的加密，但是针对原始数据相同的数据，这种加密方式产生的加密数
据是一致的。将 queryAssistedEncrypt()后的数据存储到数据中用于辅助查询真实数据。因此，数
据库表中多出这一个辅助查询列。
由于 queryAssistedEncrypt()和 encrypt()产生不同加密数据进行存储，而 decrypt()可逆，
queryAssistedEncrypt()不可逆。在查询原始数据的时候，我们会自动对 SQL进行解析、改写、路
由，利用辅助查询列进行 WHERE条件的查询，却利用 decrypt()对 encrypt()加密后的数据进行
解密，并将原始数据返回给用户。这一切都是对用户透明化的。
当前，Apache ShardingSphere针对这种类型的加密解决方案并没有提供具体实现类，却将该理念抽象
成接口，提供给用户自行实现。ShardingSphere将调用用户提供的该方案的具体实现类进行数据加密。

7.6 影子库

7.6.1 整体架构

Apache ShardingSphere通过解析 SQL，对传入的 SQL进行影子判定，根据配置文件中用户设置的影子
规则，路由到生产库或者影子库。

7.6. 影子库 261

Apache ShardingSphere document, v5.1.0

7.6.2 影子规则

影子规则包含影子数据源映射关系，影子表以及影子算法。

7.6. 影子库 262

Apache ShardingSphere document, v5.1.0

影子库映射：生产数据源名称和影子数据源名称映射关系。
影子表：压测相关的影子表。影子表必须存在于指定的影子库中，并且需要指定影子算法。
影子算法：SQL路由影子算法。
默认影子算法：默认影子算法。选配项，对于没有配置影子算法表的默认匹配算法。

7.6.3 路由过程

以 INSERT语句为例，在写入数据时，Apache ShardingSphere会对 SQL进行解析，再根据配置文件中
的规则，构造一条路由链。在当前版本的功能中，影子功能处于路由链中的最后一个执行单元，即，如果
有其他需要路由的规则存在，如分片，Apache ShardingSphere会首先根据分片规则，路由到某一个数据
库，再执行影子路由判定流程，判定执行 SQL满足影子规则的配置，数据路由到与之对应的影子库，生
产数据则维持不变。

7.6. 影子库 263

Apache ShardingSphere document, v5.1.0

7.6.4 影子判定流程

影子库功能对执行的 SQL语句进行影子判定。影子判定支持两种类型算法，用户可根据实际业务需求选
择一种或者组合使用。

DML语句

支持两种算法。影子判定会首先判断执行 SQL相关表与配置的影子表是否有交集。如果有交集，依次判
定交集部分影子表关联的影子算法，有任何一个判定成功。SQL语句路由到影子库。影子表没有交集或
者影子算法判定不成功，SQL语句路由到生产库。

DDL语句

仅支持注解影子算法。在压测场景下，DDL语句一般不需要测试。主要在初始化或者修改影子库中影子
表时使用。
影子判定会首先判断执行 SQL是否包含注解。如果包含注解，影子规则中配置的 HINT影子算法依次判
定。有任何一个判定成功。SQL语句路由到影子库。执行 SQL不包含注解或者 HINT影子算法判定不成
功，SQL语句路由到生产库。

7.6.5 影子算法

影子算法详情，请参见内置影子算法列表

7.6.6 使用案例

场景需求

假设一个电商网站要对下单业务进行压测。压测相关表 t_order为影子表，生产数据执行到 ds生产数
据库，压测数据执行到数据库 ds_shadow影子库。

影子库配置

建议配置如下（YAML格式展示）：

data-sources:
shadow-data-source:

source-data-source-name: ds
shadow-data-source-name: ds-shadow

tables:
t_order:

data-source-names: shadow-data-source
shadow-algorithm-names:
- simple-hint-algorithm
- user-id-value-match-algorithm

7.6. 影子库 264

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/shadow

Apache ShardingSphere document, v5.1.0

shadow-algorithms:
simple-hint-algorithm:

type: SIMPLE_HINT
props:
foo: bar

user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

sql-parser:
sql-comment-parse-enabled: true

注意：如果使用注解影子算法，需要开启解析 SQL注释配置项sql-comment-parse-enabled: true。
默认关闭。请参考 SQL解析配置

影子库环境

• 创建影子库 ds_shadow。
• 创建影子表，表结构与生产环境必须一致。假设在影子库创建 t_order表。创建表语句需要添加
SQL注释 /*foo:bar,...*/。即：

CREATE TABLE t_order (order_id INT(11) primary key, user_id int(11) not null, ...)
/*foo:bar,...*/

执行到影子库。
注意：如果使用MySQL客户端进行测试，链接需要使用参数：-c例如：

mysql> mysql -u root -h127.0.0.1 -P3306 -proot -c

参数说明：保留注释，发送注释到服务端。
执行包含注解 SQL例如：

SELECT * FROM table_name /*shadow:true,foo:bar*/;

不使用参数 -c会被MySQL客户端截取注释语句变为:

SELECT * FROM table_name;

影响测试结果。

7.6. 影子库 265

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/yaml-config/rules/sql-parser/

Apache ShardingSphere document, v5.1.0

影子算法使用

1. 列影子算法使用
假设 t_order表中包含下单用户 ID的 user_id列。实现的效果，当用户 ID为 0的用户创建订单产生
的数据。即：

INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...)

会执行到影子库，其他数据执行到生产库。
无需修改任何 SQL或者代码，只需要对压力测试的数据进行控制就可以实现在线的压力测试。
算法配置如下（YAML格式展示）：

shadow-algorithms:
user-id-value-match-algorithm:

type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

注意：影子表使用列影子算法时，相同类型操作（INSERT, UPDATE, DELETE, SELECT）目前仅支持单个
字段。

2. 使用Hint影子算法
假设 t_order表中不包含可以对值进行匹配的列。添加注解 /*foo:bar,...*/到执行 SQL中，即：

SELECT * FROM t_order WHERE order_id = xxx /*foo:bar,...*/

会执行到影子库，其他数据执行到生产库。
算法配置如下（YAML格式展示）：

shadow-algorithms:
simple-hint-algorithm:

type: SIMPLE_HINT
props:
foo: bar

3. 混合使用影子模式
假设对 t_order表压测需要覆盖以上两种场景，即，

INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...);

SELECT * FROM t_order WHERE order_id = xxx /*foo:bar,...*/;

都会执行到影子库，其他数据执行到生产库。
算法配置如下（YAML格式展示）：

7.6. 影子库 266

Apache ShardingSphere document, v5.1.0

shadow-algorithms:
user-id-value-match-algorithm:

type: VALUE_MATCH
props:
operation: insert
column: user_id
value: 0

simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

4. 使用默认影子算法
假设对 t_order表压测使用列影子算法，其他相关其他表都需要使用Hint影子算法。即,

INSERT INTO t_order (order_id, user_id, ...) VALUES (xxx..., 0, ...);

INSERT INTO t_xxx_1 (order_item_id, order_id, ...) VALUES (xxx..., xxx..., ...) /
foo:bar,.../;

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:bar,...*/;

SELECT * FROM t_xxx_3 WHERE order_id = xxx /*foo:bar,...*/;

都会执行到影子库，其他数据执行到生产库。
配置如下（YAML格式展示）：

data-sources:
shadow-data-source:

source-data-source-name: ds
shadow-data-source-name: ds-shadow

tables:
t_order:

data-source-names: shadow-data-source
shadow-algorithm-names:
- simple-hint-algorithm
- user-id-value-match-algorithm

default-shadow-algorithm-name: simple-note-algorithm
shadow-algorithms:

simple-hint-algorithm:
type: SIMPLE_HINT
props:
foo: bar

user-id-value-match-algorithm:
type: VALUE_MATCH
props:
operation: insert

7.6. 影子库 267

Apache ShardingSphere document, v5.1.0

column: user_id
value: 0

sql-parser:
sql-comment-parse-enabled: true

注意默认影子算法仅支持 Hint影子算法。使用时必须确保配置文件中 props的配置项小于等于 SQL注
释中的配置项，且配置文件的具体配置要和 SQL注释中写的配置一样，配置文件中配置项越少，匹配条
件越宽松

simple-note-algorithm:
type: SIMPLE_HINT
props:

foo: bar
foo1: bar1

如当前 props项中配置了 2条配置，在 SQL中可以匹配的写法有如下：

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:bar, foo1:bar1*/

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:bar, foo1:bar1, foo2:bar2, ...*/

simple-note-algorithm:
type: SIMPLE_HINT
props:

foo: bar

如当前 props项中配置了 1条配置，在 sql中可以匹配的写法有如下：

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:foo*/

SELECT * FROM t_xxx_2 WHERE order_id = xxx /*foo:foo, foo1:bar1, ...*/

7.6. 影子库 268

Apache ShardingSphere document, v5.1.0

7.7 测试

Apache ShardingSphere提供了完善的整合测试、模块测试和性能测试。

7.7.1 整合测试

通过真实的 Apache ShardingSphere和数据库的连接，提供端到端的测试。
整合测试引擎以 XML方式定义 SQL，分别为各个数据库独立运行测试用例。为了方便上手，测试引擎无
需修改任何 Java代码，只需修改相应的配置文件即可运行断言。测试引擎不依赖于任何第三方环境，用
于测试的 ShardingSphere‐Proxy计算节点和数据库均由 Docker镜像提供。

7.7.2 模块测试

将复杂的模块单独提炼成为测试引擎。
模块测试引擎同样以 XML方式定义 SQL，分别为各个数据库独立运行测试用例，包括 SQL解析和 SQL
改写模块。

7.7.3 性能测试

提供多样性的性能测试方法，包括 Sysbench、JMH、TPCC等。

7.7.4 集成测试

设计

集成测试包括 3个模块：测试用例、测试环境以及测试引擎。

测试用例

用于定义待测试的 SQL以及测试结果的断言数据。每个用例定义一条 SQL，SQL可定义多种数据库执行
类型。

测试环境

用于搭建运行测试用例的数据库和 ShardingSphere‐Proxy环境。环境又具体分为环境准备方式，数据库
类型和场景。
环境准备方式分为 Native和 Docker，未来还将增加 Embed类型的支持。

• Native环境用于测试用例直接运行在开发者提供的测试环境中，适于调试场景；
• Docker 环境由 Maven 运行 Docker‐Compose 插件直接搭建，适用于云编译环境和测试
ShardingSphere‐Proxy的场景，如：GitHub Action；

7.7. 测试 269

Apache ShardingSphere document, v5.1.0

• Embed环境由测试框架自动搭建嵌入式MySQL，适用于 ShardingSphere‐JDBC的本地环境测试。
当前默认采用 Native环境，使用 ShardingSphere‐JDBC + H2数据库运行测试用例。通过 Maven的 -P
-Pit.env.docker参数可以指定Docker环境的运行方式。未来将采用Embed环境的 ShardingSphere‐
JDBC + MySQL，替换 Native执行测试用例的默认环境类型。
数据库类型目前支持MySQL、PostgreSQL、SQLServer和 Oracle，并且可以支持使用 ShardingSphere‐
JDBC或是使用 ShardingSphere‐Proxy执行测试用例。
场景用于对 ShardingSphere支持规则进行测试，目前支持数据分片和读写分离的相关场景，未来会不断
完善场景的组合。

测试引擎

用于批量读取测试用例，并逐条执行和断言测试结果。
测试引擎通过将用例和环境进行排列组合，以达到用最少的用例测试尽可能多场景的目的。
每条 SQL会以数据库类型 * 接入端类型 * SQL 执行模式 * JDBC 执行模式 * 场景的组合方式生
成测试报告，目前各个维度的支持情况如下：

• 数据库类型：H2、MySQL、PostgreSQL、SQLServer和 Oracle；
• 接入端类型：ShardingSphere‐JDBC和 ShardingSphere‐Proxy；
• SQL执行模式：Statement和 PreparedStatement；
• JDBC执行模式：execute和 executeQuery (查询) / executeUpdate (更新)；
• 场景：分库、分表、读写分离和分库分表 +读写分离。

因此，1条 SQL会驱动：数据库类型 (5) * 接入端类型 (2) * SQL 执行模式 (2) * JDBC 执行
模式 (2) * 场景 (4) = 160个测试用例运行，以达到项目对于高质量的追求。

使用指南

模 块 路 径：shardingsphere-test/shardingsphere-integration-test/
shardingsphere-integration-test-suite

测试用例配置

SQL用例在 resources/cases/${SQL-TYPE}/${SQL-TYPE}-integration-test-cases.xml。
用例文件格式如下：

<integration-test-cases>
<test-case sql="${SQL}">

<assertion parameters="${value_1}:${type_1}, ${value_2}:${type_2}"
expected-data-file="${dataset_file_1}.xml" />

<!-- ... more assertions -->
<assertion parameters="${value_3}:${type_3}, ${value_4}:${type_4}"

expected-data-file="${dataset_file_2}.xml" />

7.7. 测试 270

Apache ShardingSphere document, v5.1.0

</test-case>

<!-- ... more test cases -->
</integration-test-cases>

expected-data-file 的查找规则是：1. 查找同级目录中 dataset\${SCENARIO_NAME}\
${DATABASE_TYPE}\${dataset_file}.xml 文件；2. 查找同级目录中 dataset\
${SCENARIO_NAME}\${dataset_file}.xml 文件；3. 查找同级目录中 dataset\
${dataset_file}.xml文件；4. 都找不到则报错。
断言文件格式如下：

<dataset>
<metadata>

<column name="column_1" />
<!-- ... more columns -->
<column name="column_n" />

</metadata>
<row values="value_01, value_02" />
<!-- ... more rows -->
<row values="value_n1, value_n2" />

</dataset>

环境配置

${SCENARIO-TYPE}表示场景名称，在测试引擎运行中用于标识唯一场景。${DATABASE-TYPE}表示
数据库类型。

Native环境配置

目录：src/test/resources/env/${SCENARIO-TYPE}

• scenario-env.properties: 数据源配置
• rules.yaml: 规则配置
• databases.xml: 真实库名称
• dataset.xml: 初始化数据
• init-sql\${DATABASE-TYPE}\init.sql: 初始化数据库表结构
• authority.xml: 待补充

7.7. 测试 271

Apache ShardingSphere document, v5.1.0

Docker环境配置

目录：src/test/resources/docker/${SCENARIO-TYPE}

• docker-compose.yml: Docker‐Compose配置文件，用于 Docker环境启动
• proxy/conf/config-${SCENARIO-TYPE}.yaml: 规则配置

Docker环境配置为 ShardingSphere‐Proxy提供了远程调试端口，可以在 “docker‐compose.yml“文件
的 “shardingsphere‐proxy“中找到第 2个暴露的端口用于远程调试。

运行测试引擎

配置测试引擎运行环境

通过配置 src/test/resources/env/engine-env.properties控制测试引擎。
所有的属性值都可以通过Maven命令行 -D的方式动态注入。

配置环境类型，只支持单值。可选值：docker 或空，默认值：空
it.env.type=${it.env}
待测试的接入端类型，多个值可用逗号分隔。可选值：jdbc, proxy，默认值：jdbc
it.adapters=jdbc

场景类型，多个值可用逗号分隔。可选值：db, tbl, dbtbl_with_replica_query, replica_query
it.scenarios=db,tbl,dbtbl_with_replica_query,replica_query

场景类型，多个值可用逗号分隔。可选值：H2, MySQL, Oracle, SQLServer, PostgreSQL
it.databases=H2,MySQL,Oracle,SQLServer,PostgreSQL

是否运行附加测试用例
it.run.additional.cases=false

运行调试模式

• 标 准 测 试 引 擎 运 行 org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.General${SQL-TYPE}IT以启动不同 SQL类型的测试引擎。

• 批量测试引擎运行 org.apache.shardingsphere.test.integration.engine.dml.
BatchDMLIT，以启动为 DML语句提供的测试 addBatch()的批量测试引擎。

• 附 加 测 试 引 擎 运 行 org.apache.shardingsphere.test.integration.engine.
${SQL-TYPE}.Additional${SQL-TYPE}IT 以启动使用更多 JDBC 方法调用的测试引擎。
附加测试引擎需要通过设置 it.run.additional.cases=true开启。

7.7. 测试 272

Apache ShardingSphere document, v5.1.0

运行 Docker模式

./mvnw -B clean install -f shardingsphere-test/shardingsphere-integration-test/pom.
xml -Pit.env.docker -Dit.adapters=proxy,jdbc -Dit.scenarios=${scenario_name_1,
scenario_name_1,scenario_name_n} -Dit.databases=MySQL

注意事项

1. 如需测试 Oracle，请在 pom.xml中增加 Oracle驱动依赖；
2. 为了保证测试数据的完整性和易读性，整合测试中的分库分表采用了 10库 10表的方式，完全运行
测试用例所需时间较长。

7.7.5 性能测试

提供各个压测工具的性能测试结果。

Sysbench性能测试

目标

对 ShardingSphere‐JDBC，ShardingSphere‐Proxy及MySQL进行性能对比。从业务角度考虑，在基本应
用场景（单路由，主从 +加密 +分库分表，全路由）下，INSERT+UPDATE+DELETE通常用作一个完整的
关联操作，用于性能评估，而 SELECT关注分片优化可用作性能评估的另一个操作；而主从模式下，可将
INSERT+SELECT+DELETE作为一组评估性能的关联操作。为了更好的观察效果，设计在一定数据量的
基础上，使用 jmeter 20并发线程持续压测半小时，进行增删改查性能测试，且每台机器部署一个MySQL
实例，而对比MySQL场景为单机单实例部署。

测试场景

单路由

在 1000数据量的基础上分库分表，根据 id分为 4个库，部署在同一台机器上，根据 k分为 1024个表，查
询操作路由到单库单表；作为对比，MySQL运行在 1000数据量的基础上，使用 INSERT+UPDATE+DELETE
和单路由查询语句。

7.7. 测试 273

Apache ShardingSphere document, v5.1.0

主从

基本主从场景，设置一主库一从库，部署在两台不同的机器上，在 10000数据量的基础上，观察读写性
能；作为对比，MySQL运行在 10000数据量的基础上，使用 INSERT+SELECT+DELETE语句。

主从 +加密 +分库分表

在 1000数据量的基础上，根据 id分为 4个库，部署在四台不同的机器上，根据 k分为 1024个表，c
使用 aes加密，pad使用md5加密，查询操作路由到单库单表；作为对比，MySQL运行在 1000数据量
的基础上，使用 INSERT+UPDATE+DELETE和单路由查询语句。

全路由

在 1000数据量的基础上，分库分表，根据 id分为 4个库，部署在四台不同的机器上，根据 k分为 1个表，
查询操作使用全路由。作为对比，MySQL运行在 1000数据量的基础上，使用 INSERT+UPDATE+DELETE
和全路由查询语句。

测试环境搭建

数据库表结构

此处表结构参考 sysbench的 sbtest表

CREATE TABLE `tbl` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`k` int(11) NOT NULL DEFAULT 0,
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`)

);

测试场景配置

ShardingSphere‐JDBC使用与 ShardingSphere‐Proxy一致的配置，MySQL直连一个库用作性能对比，下
面为四个场景的具体配置：

7.7. 测试 274

Apache ShardingSphere document, v5.1.0

单路由配置

schemaName: sharding_db

dataSources:
ds_0:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !SHARDING

tables:
tbl:
actualDataNodes: ds_${0..3}.tbl${0..1023}
tableStrategy:
standard:

shardingColumn: k
shardingAlgorithmName: tbl_table_inline

keyGenerateStrategy:
column: id

7.7. 测试 275

Apache ShardingSphere document, v5.1.0

keyGeneratorName: snowflake
defaultDatabaseStrategy:

standard:
shardingColumn: id
shardingAlgorithmName: default_db_inline

defaultTableStrategy:
none:

shardingAlgorithms:
tbl_table_inline:
type: INLINE
props:
algorithm-expression: tbl${k % 1024}

default_db_inline:
type: INLINE
props:
algorithm-expression: ds_${id % 4}

keyGenerators:
snowflake:
type: SNOWFLAKE

主从配置

schemaName: sharding_db

dataSources:
primary_ds:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_0:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !READWRITE_SPLITTING

dataSources:
readwrite_ds:
type: Static

7.7. 测试 276

Apache ShardingSphere document, v5.1.0

props:
write-data-source-name: primary_ds
read-data-source-names: replica_ds_0

主从 +加密 +分库分表配置

schemaName: sharding_db

dataSources:
primary_ds_0:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_0:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

primary_ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

primary_ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000

7.7. 测试 277

Apache ShardingSphere document, v5.1.0

idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

primary_ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

replica_ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !SHARDING

tables:
tbl:
actualDataNodes: readwrite_ds_${0..3}.tbl${0..1023}
databaseStrategy:
standard:

shardingColumn: id
shardingAlgorithmName: tbl_database_inline

tableStrategy:
standard:

shardingColumn: k
shardingAlgorithmName: tbl_table_inline

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

bindingTables:
- tbl

defaultDataSourceName: primary_ds_1
defaultTableStrategy:

none:

7.7. 测试 278

Apache ShardingSphere document, v5.1.0

shardingAlgorithms:
tbl_database_inline:
type: INLINE
props:
algorithm-expression: readwrite_ds_${id % 4}

tbl_table_inline:
type: INLINE
props:
algorithm-expression: tbl${k % 1024}

keyGenerators:
snowflake:
type: SNOWFLAKE

- !READWRITE_SPLITTING
dataSources:

readwrite_ds_0:
type: Static
props:
write-data-source-name: primary_ds_0
read-data-source-names: replica_ds_0

readwrite_ds_1:
type: Static
props:
write-data-source-name: primary_ds_1
read-data-source-names: replica_ds_1

loadBalancerName: round_robin
readwrite_ds_2:
type: Static
props:

write-data-source-name: primary_ds_2
read-data-source-names: replica_ds_2

loadBalancerName: round_robin
readwrite_ds_3:
type: Static
props:

write-data-source-name: primary_ds_3
read-data-source-names: replica_ds_3

loadBalancerName: round_robin
loadBalancers:

round_robin:
type: ROUND_ROBIN

- !ENCRYPT:
encryptors:

aes_encryptor:
type: AES
props:

aes-key-value: 123456abc
md5_encryptor:
type: MD5

7.7. 测试 279

Apache ShardingSphere document, v5.1.0

tables:
sbtest:
columns:
c:

plainColumn: c_plain
cipherColumn: c_cipher
encryptorName: aes_encryptor

pad:
cipherColumn: pad_cipher
encryptorName: md5_encryptor

全路由

schemaName: sharding_db

dataSources:
ds_0:

url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_1:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_2:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

ds_3:
url: jdbc:mysql://***.***.***.***:****/ds?serverTimezone=UTC&useSSL=false
username: test
password:
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000

7.7. 测试 280

Apache ShardingSphere document, v5.1.0

maxLifetimeMilliseconds: 1800000
maxPoolSize: 200

rules:
- !SHARDING

tables:
tbl:
actualDataNodes: ds_${0..3}.tbl1
tableStrategy:
standard:

shardingColumn: k
shardingAlgorithmName: tbl_table_inline

keyGenerateStrategy:
column: id
keyGeneratorName: snowflake

defaultDatabaseStrategy:
standard:
shardingColumn: id
shardingAlgorithmName: default_database_inline

defaultTableStrategy:
none:

shardingAlgorithms:
default_database_inline:
type: INLINE
props:
algorithm-expression: ds_${id % 4}

tbl_table_inline:
type: INLINE
props:
algorithm-expression: tbl1

keyGenerators:
snowflake:
type: SNOWFLAKE

测试结果验证

压测语句

INSERT+UPDATE+DELETE 语句：
INSERT INTO tbl(k, c, pad) VALUES(1, '###-###-###', '###-###');
UPDATE tbl SET c='####-####-####', pad='####-####' WHERE id=?;
DELETE FROM tbl WHERE id=?

全路由查询语句：
SELECT max(id) FROM tbl WHERE id%4=1

单路由查询语句：

7.7. 测试 281

Apache ShardingSphere document, v5.1.0

SELECT id, k FROM tbl ignore index(`PRIMARY`) WHERE id=1 AND k=1

INSERT+SELECT+DELETE 语句：
INSERT INTO tbl1(k, c, pad) VALUES(1, '###-###-###', '###-###');
SELECT count(id) FROM tbl1;
SELECT max(id) FROM tbl1 ignore index(`PRIMARY`);
DELETE FROM tbl1 WHERE id=?

压测类

参考shardingsphere‐benchmark实现，注意阅读其中的注释

编译

git clone https://github.com/apache/shardingsphere-benchmark.git
cd shardingsphere-benchmark/shardingsphere-benchmark
mvn clean install

压测执行

cp target/shardingsphere-benchmark-1.0-SNAPSHOT-jar-with-dependencies.jar apache-
jmeter-4.0/lib/ext
jmeter –n –t test_plan/test.jmx
test.jmx 参考 https://github.com/apache/shardingsphere-benchmark/tree/master/report/
script/test_plan/test.jmx

压测结果处理

注意修改为上一步生成的 result.jtl的位置。

sh shardingsphere-benchmark/report/script/gen_report.sh

历史压测数据展示

正在进行中，请等待。

7.7. 测试 282

https://github.com/apache/shardingsphere-benchmark/tree/master/shardingsphere-benchmark

Apache ShardingSphere document, v5.1.0

BenchmarkSQL性能测试

测试方法

ShardingSphere Proxy 支持通过 BenchmarkSQL 5.0 进行 TPC‐C 测试。除本文说明的内容外，Bench‐
markSQL操作步骤按照原文档 HOW-TO-RUN.txt即可。

测试工具微调

与单机数据库压测不同，分布式数据库解决方案难免在功能支持上有所取舍。使用 BenchmarkSQL压测
ShardingSphere Proxy建议进行如下调整。

移除外键与 extraHistID

修改 BenchmarkSQL目录下 run/runDatabaseBuild.sh，文件第 17行。
修改前：

AFTER_LOAD="indexCreates foreignKeys extraHistID buildFinish"

修改后：

AFTER_LOAD="indexCreates buildFinish"

压测相关参数建议

ShardingSphere数据分片建议

对 BenchmarkSQL的数据分片，可以考虑以 warehouse id作为分片键。其中一个表 bmsql_item没有
warehouse id，可以取 i_id作为分片键。
BenchmarkSQL中有如下 SQL涉及多表：

SELECT c_discount, c_last, c_credit, w_tax
FROM bmsql_customer

JOIN bmsql_warehouse ON (w_id = c_w_id)
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (

SELECT max(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
)

7.7. 测试 283

https://sourceforge.net/projects/benchmarksql/

Apache ShardingSphere document, v5.1.0

如果以 warehouse id作为分片键，以上 SQL涉及的表可以配置为 bindingTable：

rules:
- !SHARDING

bindingTables:
- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_line

以 warehouse id为分片键的数据分片配置可以参考本文附录。

PostgreSQL JDBC URL参数建议

对 BenchmarkSQL 所使用的配置文件中的 JDBC URL 进行调整，即参数名 conn 的值。增加参数
defaultRowFetchSize=1可能减少 Delivery业务耗时。
props.pg文件节选，建议修改的位置为第 3行 conn的参数值：

db=postgres
driver=org.postgresql.Driver
conn=jdbc:postgresql://localhost:5432/postgres?defaultRowFetchSize=1
user=benchmarksql
password=PWbmsql

warehouses=1
loadWorkers=4

terminals=1

ShardingSphere Proxy server.yaml参数建议

proxy-backend-query-fetch-size参数值默认值为 ‐1，修改为 1000可能减少Delivery业务耗时。
server.yaml文件节选：

props:
proxy-backend-query-fetch-size: 1000

其他参数如 max-connections-size-per-query等可以在压测过程中适当增大，比如取 Actual ta‐
bles最大的数量。假如有个表分 4库 x 4表，共 16个表，参数值可以尝试取 16。实际效果与取决于数据
分片方式，如果分片配置能够让所有 SQL都路由到单点，该参数可能对性能没有影响。

7.7. 测试 284

Apache ShardingSphere document, v5.1.0

附录

BenchmarkSQL数据分片参考配置

Pool size请根据实际压测情况适当调整。

schemaName: bmsql_sharding
dataSources:
ds_0:

url: jdbc:postgresql://db0.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_1:
url: jdbc:postgresql://db1.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_2:
url: jdbc:postgresql://db2.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

ds_3:
url: jdbc:postgresql://db3.ip:5432/bmsql
username: postgres
password: postgres
connectionTimeoutMilliseconds: 3000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 1000
minPoolSize: 1000

rules:
- !SHARDING

bindingTables:

7.7. 测试 285

Apache ShardingSphere document, v5.1.0

- bmsql_warehouse, bmsql_customer
- bmsql_stock, bmsql_district, bmsql_order_line

defaultDatabaseStrategy:
none:

defaultTableStrategy:
none:

keyGenerators:
snowflake:
type: SNOWFLAKE

tables:
bmsql_config:
actualDataNodes: ds_0.bmsql_config

bmsql_warehouse:
actualDataNodes: ds_${0..3}.bmsql_warehouse
databaseStrategy:

standard:
shardingColumn: w_id
shardingAlgorithmName: bmsql_warehouse_database_inline

bmsql_district:
actualDataNodes: ds_${0..3}.bmsql_district
databaseStrategy:

standard:
shardingColumn: d_w_id
shardingAlgorithmName: bmsql_district_database_inline

bmsql_customer:
actualDataNodes: ds_${0..3}.bmsql_customer
databaseStrategy:

standard:
shardingColumn: c_w_id
shardingAlgorithmName: bmsql_customer_database_inline

bmsql_item:
actualDataNodes: ds_${0..3}.bmsql_item
databaseStrategy:

standard:
shardingColumn: i_id
shardingAlgorithmName: bmsql_item_database_inline

bmsql_history:
actualDataNodes: ds_${0..3}.bmsql_history
databaseStrategy:

standard:
shardingColumn: h_w_id
shardingAlgorithmName: bmsql_history_database_inline

7.7. 测试 286

Apache ShardingSphere document, v5.1.0

bmsql_oorder:
actualDataNodes: ds_${0..3}.bmsql_oorder_${0..3}
databaseStrategy:

standard:
shardingColumn: o_w_id
shardingAlgorithmName: bmsql_oorder_database_inline

tableStrategy:
standard:
shardingColumn: o_c_id
shardingAlgorithmName: bmsql_oorder_table_inline

bmsql_stock:
actualDataNodes: ds_${0..3}.bmsql_stock
databaseStrategy:

standard:
shardingColumn: s_w_id
shardingAlgorithmName: bmsql_stock_database_inline

bmsql_new_order:
actualDataNodes: ds_${0..3}.bmsql_new_order
databaseStrategy:

standard:
shardingColumn: no_w_id
shardingAlgorithmName: bmsql_new_order_database_inline

bmsql_order_line:
actualDataNodes: ds_${0..3}.bmsql_order_line
databaseStrategy:

standard:
shardingColumn: ol_w_id
shardingAlgorithmName: bmsql_order_line_database_inline

shardingAlgorithms:
bmsql_warehouse_database_inline:

type: INLINE
props:

algorithm-expression: ds_${w_id & 3}

bmsql_district_database_inline:
type: INLINE
props:

algorithm-expression: ds_${d_w_id & 3}

bmsql_customer_database_inline:
type: INLINE
props:

algorithm-expression: ds_${c_w_id & 3}

7.7. 测试 287

Apache ShardingSphere document, v5.1.0

bmsql_item_database_inline:
type: INLINE
props:

algorithm-expression: ds_${i_id & 3}

bmsql_history_database_inline:
type: INLINE
props:

algorithm-expression: ds_${h_w_id & 3}

bmsql_oorder_database_inline:
type: INLINE
props:

algorithm-expression: ds_${o_w_id & 3}

bmsql_oorder_table_inline:
type: INLINE
props:

algorithm-expression: bmsql_oorder_${o_c_id & 3}

bmsql_stock_database_inline:
type: INLINE
props:

algorithm-expression: ds_${s_w_id & 3}

bmsql_new_order_database_inline:
type: INLINE
props:

algorithm-expression: ds_${no_w_id & 3}

bmsql_order_line_database_inline:
type: INLINE
props:

algorithm-expression: ds_${ol_w_id & 3}

BenchmarkSQL 5.0 PostgreSQL语句列表

Create tables

create table bmsql_config (
cfg_name varchar(30) primary key,
cfg_value varchar(50)

);

create table bmsql_warehouse (
w_id integer not null,

7.7. 测试 288

Apache ShardingSphere document, v5.1.0

w_ytd decimal(12,2),
w_tax decimal(4,4),
w_name varchar(10),
w_street_1 varchar(20),
w_street_2 varchar(20),
w_city varchar(20),
w_state char(2),
w_zip char(9)

);

create table bmsql_district (
d_w_id integer not null,
d_id integer not null,
d_ytd decimal(12,2),
d_tax decimal(4,4),
d_next_o_id integer,
d_name varchar(10),
d_street_1 varchar(20),
d_street_2 varchar(20),
d_city varchar(20),
d_state char(2),
d_zip char(9)

);

create table bmsql_customer (
c_w_id integer not null,
c_d_id integer not null,
c_id integer not null,
c_discount decimal(4,4),
c_credit char(2),
c_last varchar(16),
c_first varchar(16),
c_credit_lim decimal(12,2),
c_balance decimal(12,2),
c_ytd_payment decimal(12,2),
c_payment_cnt integer,
c_delivery_cnt integer,
c_street_1 varchar(20),
c_street_2 varchar(20),
c_city varchar(20),
c_state char(2),
c_zip char(9),
c_phone char(16),
c_since timestamp,
c_middle char(2),
c_data varchar(500)

);

7.7. 测试 289

Apache ShardingSphere document, v5.1.0

create sequence bmsql_hist_id_seq;

create table bmsql_history (
hist_id integer,
h_c_id integer,
h_c_d_id integer,
h_c_w_id integer,
h_d_id integer,
h_w_id integer,
h_date timestamp,
h_amount decimal(6,2),
h_data varchar(24)

);

create table bmsql_new_order (
no_w_id integer not null,
no_d_id integer not null,
no_o_id integer not null

);

create table bmsql_oorder (
o_w_id integer not null,
o_d_id integer not null,
o_id integer not null,
o_c_id integer,
o_carrier_id integer,
o_ol_cnt integer,
o_all_local integer,
o_entry_d timestamp

);

create table bmsql_order_line (
ol_w_id integer not null,
ol_d_id integer not null,
ol_o_id integer not null,
ol_number integer not null,
ol_i_id integer not null,
ol_delivery_d timestamp,
ol_amount decimal(6,2),
ol_supply_w_id integer,
ol_quantity integer,
ol_dist_info char(24)

);

create table bmsql_item (
i_id integer not null,
i_name varchar(24),
i_price decimal(5,2),

7.7. 测试 290

Apache ShardingSphere document, v5.1.0

i_data varchar(50),
i_im_id integer

);

create table bmsql_stock (
s_w_id integer not null,
s_i_id integer not null,
s_quantity integer,
s_ytd integer,
s_order_cnt integer,
s_remote_cnt integer,
s_data varchar(50),
s_dist_01 char(24),
s_dist_02 char(24),
s_dist_03 char(24),
s_dist_04 char(24),
s_dist_05 char(24),
s_dist_06 char(24),
s_dist_07 char(24),
s_dist_08 char(24),
s_dist_09 char(24),
s_dist_10 char(24)

);

Create indexes

alter table bmsql_warehouse add constraint bmsql_warehouse_pkey
primary key (w_id);

alter table bmsql_district add constraint bmsql_district_pkey
primary key (d_w_id, d_id);

alter table bmsql_customer add constraint bmsql_customer_pkey
primary key (c_w_id, c_d_id, c_id);

create index bmsql_customer_idx1
on bmsql_customer (c_w_id, c_d_id, c_last, c_first);

alter table bmsql_oorder add constraint bmsql_oorder_pkey
primary key (o_w_id, o_d_id, o_id);

create unique index bmsql_oorder_idx1
on bmsql_oorder (o_w_id, o_d_id, o_carrier_id, o_id);

alter table bmsql_new_order add constraint bmsql_new_order_pkey
primary key (no_w_id, no_d_id, no_o_id);

7.7. 测试 291

Apache ShardingSphere document, v5.1.0

alter table bmsql_order_line add constraint bmsql_order_line_pkey
primary key (ol_w_id, ol_d_id, ol_o_id, ol_number);

alter table bmsql_stock add constraint bmsql_stock_pkey
primary key (s_w_id, s_i_id);

alter table bmsql_item add constraint bmsql_item_pkey
primary key (i_id);

NewOrder业务

stmtNewOrderSelectWhseCust

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderSelectDist

SELECT d_tax, d_next_o_id
FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?
FOR UPDATE

stmtNewOrderUpdateDist

UPDATE bmsql_district
SET d_next_o_id = d_next_o_id + 1
WHERE d_w_id = ? AND d_id = ?

stmtNewOrderInsertOrder

INSERT INTO bmsql_oorder (
o_id, o_d_id, o_w_id, o_c_id, o_entry_d,
o_ol_cnt, o_all_local)

VALUES (?, ?, ?, ?, ?, ?, ?)

stmtNewOrderInsertNewOrder

INSERT INTO bmsql_new_order (
no_o_id, no_d_id, no_w_id)

VALUES (?, ?, ?)

stmtNewOrderSelectStock

SELECT s_quantity, s_data,
s_dist_01, s_dist_02, s_dist_03, s_dist_04,

7.7. 测试 292

Apache ShardingSphere document, v5.1.0

s_dist_05, s_dist_06, s_dist_07, s_dist_08,
s_dist_09, s_dist_10

FROM bmsql_stock
WHERE s_w_id = ? AND s_i_id = ?
FOR UPDATE

stmtNewOrderSelectItem

SELECT i_price, i_name, i_data
FROM bmsql_item
WHERE i_id = ?

stmtNewOrderUpdateStock

UPDATE bmsql_stock
SET s_quantity = ?, s_ytd = s_ytd + ?,

s_order_cnt = s_order_cnt + 1,
s_remote_cnt = s_remote_cnt + ?

WHERE s_w_id = ? AND s_i_id = ?

stmtNewOrderInsertOrderLine

INSERT INTO bmsql_order_line (
ol_o_id, ol_d_id, ol_w_id, ol_number,
ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_dist_info)

VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)

Payment业务

stmtPaymentSelectWarehouse

SELECT w_name, w_street_1, w_street_2, w_city,
w_state, w_zip

FROM bmsql_warehouse
WHERE w_id = ?

stmtPaymentSelectDistrict

SELECT d_name, d_street_1, d_street_2, d_city,
d_state, d_zip

FROM bmsql_district
WHERE d_w_id = ? AND d_id = ?

stmtPaymentSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer

7.7. 测试 293

Apache ShardingSphere document, v5.1.0

WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtPaymentSelectCustomer

SELECT c_first, c_middle, c_last, c_street_1, c_street_2,
c_city, c_state, c_zip, c_phone, c_since, c_credit,
c_credit_lim, c_discount, c_balance

FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?
FOR UPDATE

stmtPaymentSelectCustomerData

SELECT c_data
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateWarehouse

UPDATE bmsql_warehouse
SET w_ytd = w_ytd + ?
WHERE w_id = ?

stmtPaymentUpdateDistrict

UPDATE bmsql_district
SET d_ytd = d_ytd + ?
WHERE d_w_id = ? AND d_id = ?

stmtPaymentUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentUpdateCustomerWithData

UPDATE bmsql_customer
SET c_balance = c_balance - ?,

c_ytd_payment = c_ytd_payment + ?,
c_payment_cnt = c_payment_cnt + 1,
c_data = ?

WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtPaymentInsertHistory

7.7. 测试 294

Apache ShardingSphere document, v5.1.0

INSERT INTO bmsql_history (
h_c_id, h_c_d_id, h_c_w_id, h_d_id, h_w_id,
h_date, h_amount, h_data)

VALUES (?, ?, ?, ?, ?, ?, ?, ?)

Order Status业务

stmtOrderStatusSelectCustomerListByLast

SELECT c_id
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_last = ?
ORDER BY c_first

stmtOrderStatusSelectCustomer

SELECT c_first, c_middle, c_last, c_balance
FROM bmsql_customer
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

stmtOrderStatusSelectLastOrder

SELECT o_id, o_entry_d, o_carrier_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?
AND o_id = (

SELECT max(o_id)
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_c_id = ?

)

stmtOrderStatusSelectOrderLine

SELECT ol_i_id, ol_supply_w_id, ol_quantity,
ol_amount, ol_delivery_d

FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?
ORDER BY ol_w_id, ol_d_id, ol_o_id, ol_number

7.7. 测试 295

Apache ShardingSphere document, v5.1.0

Stock level业务

stmtStockLevelSelectLow

SELECT count(*) AS low_stock FROM (
SELECT s_w_id, s_i_id, s_quantity

FROM bmsql_stock
WHERE s_w_id = ? AND s_quantity < ? AND s_i_id IN (

SELECT ol_i_id
FROM bmsql_district
JOIN bmsql_order_line ON ol_w_id = d_w_id
AND ol_d_id = d_id
AND ol_o_id >= d_next_o_id - 20
AND ol_o_id < d_next_o_id
WHERE d_w_id = ? AND d_id = ?

)
) AS L

Delivery BG业务

stmtDeliveryBGSelectOldestNewOrder

SELECT no_o_id
FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ?
ORDER BY no_o_id ASC

stmtDeliveryBGDeleteOldestNewOrder

DELETE FROM bmsql_new_order
WHERE no_w_id = ? AND no_d_id = ? AND no_o_id = ?

stmtDeliveryBGSelectOrder

SELECT o_c_id
FROM bmsql_oorder
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGUpdateOrder

UPDATE bmsql_oorder
SET o_carrier_id = ?
WHERE o_w_id = ? AND o_d_id = ? AND o_id = ?

stmtDeliveryBGSelectSumOLAmount

7.7. 测试 296

Apache ShardingSphere document, v5.1.0

SELECT sum(ol_amount) AS sum_ol_amount
FROM bmsql_order_line
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateOrderLine

UPDATE bmsql_order_line
SET ol_delivery_d = ?
WHERE ol_w_id = ? AND ol_d_id = ? AND ol_o_id = ?

stmtDeliveryBGUpdateCustomer

UPDATE bmsql_customer
SET c_balance = c_balance + ?,

c_delivery_cnt = c_delivery_cnt + 1
WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?

7.7.6 模块测试

提供复杂模块的测试引擎。

SQL解析测试

数据准备

SQL解析无需真实的测试环境，开发者只需定义好待测试的 SQL，以及解析后的断言数据即可：

SQL数据

在集成测试的部分提到过 sql-case-id，其对应的 SQL，可以在不同模块共享。开发者只需
要 在 shardingsphere-sql-parser/shardingsphere-sql-parser-test/src/main/
resources/sql/supported/${SQL-TYPE}/*.xml添加待测试的 SQL即可。

断言数据

断言的解析数据保存在 shardingsphere-sql-parser/shardingsphere-sql-parser-test/
src/main/resources/case/${SQL-TYPE}/*.xml在 xml文件中，可以针对表名，token，SQL条
件等进行断言，例如如下的配置：

<parser-result-sets>
<parser-result sql-case-id="insert_with_multiple_values">

<tables>
<table name="t_order" />

</tables>

7.7. 测试 297

Apache ShardingSphere document, v5.1.0

<tokens>
<table-token start-index="12" table-name="t_order" length="7" />

</tokens>
<sharding-conditions>

<and-condition>
<condition column-name="order_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="1" type="int" />

</condition>
</and-condition>
<and-condition>

<condition column-name="order_id" table-name="t_order" operator=
"EQUAL">

<value literal="2" type="int" />
</condition>
<condition column-name="user_id" table-name="t_order" operator=

"EQUAL">
<value literal="2" type="int" />

</condition>
</and-condition>

</sharding-conditions>
</parser-result>

</parser-result-sets>

设 置 好 上 面 两 类 数 据， 开 发 者 就 可 以 通 过 shardingsphere-sql-parser/
shardingsphere-sql-parser-test下对应的测试引擎启动 SQL解析的测试了。

SQL改写测试

目标

面向逻辑库与逻辑表书写的 SQL，并不能够直接在真实的数据库中执行，SQL改写用于将逻辑 SQL改写
为在真实数据库中可以正确执行的 SQL。它包括正确性改写和优化改写两部分，所以 SQL改写的测试都
是基于这些改写方向进行校验的。

7.7. 测试 298

Apache ShardingSphere document, v5.1.0

测试

SQL改写测试用例位于 sharding-core/sharding-core-rewrite下的 test中。SQL改写的测试主
要依赖如下几个部分：

• 测试引擎
• 环境配置
• 验证数据

测试引擎是 SQL 改写测试的入口，跟其他引擎一样，通过 Junit 的 Parameterized 逐条读取 test\
resources目录中测试类型下对应的 xml文件，然后按读取顺序一一进行验证。
环境配置存放在test\resources\yaml路径中测试类型下对应的 yaml中。配置了dataSources，shard‐
ingRule，encryptRule等信息，例子如下：

dataSources:
db: !!com.zaxxer.hikari.HikariDataSource

driverClassName: org.h2.Driver
jdbcUrl: jdbc:h2:mem:db;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:

sharding 规则
rules:
- !SHARDING
tables:

t_account:
actualDataNodes: db.t_account_${0..1}
tableStrategy:
standard:

shardingColumn: account_id
shardingAlgorithmName: account_table_inline

keyGenerateStrategy:
column: account_id
keyGeneratorName: snowflake

t_account_detail:
actualDataNodes: db.t_account_detail_${0..1}
tableStrategy:
standard:

shardingColumn: order_id
shardingAlgorithmName: account_detail_table_inline

bindingTables:
- t_account, t_account_detail

shardingAlgorithms:
account_table_inline:
type: INLINE
props:
algorithm-expression: t_account_${account_id % 2}

account_detail_table_inline:

7.7. 测试 299

https://github.com/junit-team/junit4/wiki/Parameterized-tests

Apache ShardingSphere document, v5.1.0

type: INLINE
props:
algorithm-expression: t_account_detail_${account_id % 2}

keyGenerators:
snowflake:
type: SNOWFLAKE

验证数据存放在 test\resources路径中测试类型下对应的 xml文件中。验证数据中，yaml-rule指
定了环境以及 rule的配置文件，input指定了待测试的 SQL以及参数，output指定了期待的 SQL以及
参数。其中 db-type决定了 SQL解析的类型，默认为 SQL92,例如：

<rewrite-assertions yaml-rule="yaml/sharding/sharding-rule.yaml">
<!-- 替换数据库类型需要在这里更改 db-type -->
<rewrite-assertion id="create_index_for_mysql" db-type="MySQL">

<input sql="CREATE INDEX index_name ON t_account ('status')" />
<output sql="CREATE INDEX index_name ON t_account_0 ('status')" />
<output sql="CREATE INDEX index_name ON t_account_1 ('status')" />

</rewrite-assertion>
</rewrite-assertions>

只需在 xml文件中编写测试数据，配置好相应的 yaml配置文件，就可以在不更改任何 Java代码的情况
下校验对应的 SQL了。

7.8 FAQ

7.8.1 [JDBC] 为什么配置了某个数据连接池的 spring-boot-starter（比如 druid）和
shardingsphere-jdbc-spring-boot-starter时，系统启动会报错？

回答：
1. 因为数据连接池的 starter（比如 druid）可能会先加载并且其创建一个默认数据源，这将会使得

ShardingSphere‐JDBC创建数据源时发生冲突。
2. 解决办法为，去掉数据连接池的 starter即可，ShardingSphere‐JDBC自己会创建数据连接池。

7.8.2 [JDBC]使用 Spring命名空间时找不到 xsd?

回答：
Spring命名空间使用规范并未强制要求将 xsd文件部署至公网地址，但考虑到部分用户的需求，我们也
将相关 xsd文件部署至 ShardingSphere官网。
实际上 shardingsphere‐jdbc‐spring‐namespace 的 jar 包中 META‐INF:raw‐latex:spring.schemas 配
置了 xsd 文件的位置：META‐INF:raw‐latex:namespace:raw‐latex:‘\sharding‘.xsd 和 META‐INF:raw‐
latex:namespace:raw‐latex:‘\replica‘‐query.xsd，只需确保 jar包中该文件存在即可。

7.8. FAQ 300

Apache ShardingSphere document, v5.1.0

7.8.3 [JDBC]引入 shardingsphere-transaction-xa-core后，如何避免 spring-
boot自动加载默认的 JtaTransactionManager？

回答:

1. 需 要 在 spring‐boot 的 引 导 类 中 添 加 @SpringBootApplication(exclude =
JtaAutoConfiguration.class)。

7.8.4 [Proxy] Windows环境下，运行 ShardingSphere-Proxy，找不到或无法加载主类
org.apache.shardingsphere.proxy.Bootstrap，如何解决？

回答：
某些解压缩工具在解压 ShardingSphere‐Proxy二进制包时可能将文件名截断，导致找不到某些类。
解决方案：
打开 cmd.exe并执行下面的命令：

tar zxvf apache-shardingsphere-${RELEASE.VERSION}-shardingsphere-proxy-bin.tar.gz

7.8.5 [Proxy]在使用ShardingSphere-Proxy的时候，如何动态在添加新的 logic schema？

回答：
使用 ShardingSphere‐Proxy时，可以通过 DistSQL动态的创建或移除 logic schema，语法如下：

CREATE (DATABASE | SCHEMA) [IF NOT EXISTS] schemaName;

DROP (DATABASE | SCHEMA) [IF EXISTS] schemaName;

例：

CREATE DATABASE sharding_db;

DROP SCHEMA sharding_db;

7.8.6 [Proxy] 在使用 ShardingSphere-Proxy 时，怎么使用合适的工具连接到
ShardingSphere-Proxy？

回答：
1. ShardingSphere‐Proxy可以看做是一个 database server，所以首选支持 SQL命令连接和操作。
2. 如果使用其他第三方数据库工具，可能由于不同工具的特定实现导致出现异常。
3. 目前已测试的第三方数据库工具如下：

7.8. FAQ 301

Apache ShardingSphere document, v5.1.0

• Navicat：11.1.13、15.0.20。
• DataGrip：2020.1、2021.1（使用 IDEA/DataGrip 时打开 introspect using JDBC
metadata选项）。

• WorkBench：8.0.25。

7.8.7 [Proxy]使用 Navicat等第三方数据库工具连接 ShardingSphere-Proxy时，如果
ShardingSphere-Proxy没有创建 Schema或者没有添加 Resource，连接失败？

回答：
1. 第三方数据库工具在连接 ShardingSphere‐Proxy 时会发送一些 SQL 查询元数据，当

ShardingSphere‐Proxy没有创建 schema或者没有添加 resource时，ShardingSphere‐Proxy无
法执行 SQL。

2. 推荐先创建 schema和 resource之后再使用第三方数据库工具连接。
3. 有关 resource的详情请参考。相关介绍

7.8.8 [分片] Cloud not resolve placeholder⋯in string value⋯异常的解决方法?

回答：
行表达式标识符可以使用 ${...}或 $->{...}，但前者与 Spring本身的属性文件占位符冲突，因此
在 Spring环境中使用行表达式标识符建议使用 $->{...}。

7.8.9 [分片] inline表达式返回结果为何出现浮点数？

回答：
Java的整数相除结果是整数，但是对于 inline表达式中的 Groovy语法则不同，整数相除结果是浮点数。
想获得除法整数结果需要将 A/B改为 A.intdiv(B)。

7.8.10 [分片]如果只有部分数据库分库分表，是否需要将不分库分表的表也配置在分
片规则中？

回答：
不需要，ShardingSphere会自动识别。

7.8. FAQ 302

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.1.0

7.8.11 [分片]指定了泛型为 Long的 SingleKeyTableShardingAlgorithm，遇到
ClassCastException: Integer can not cast to Long?

回答：
必须确保数据库表中该字段和分片算法该字段类型一致，如：数据库中该字段类型为 int(11)，泛型所对
应的分片类型应为 Integer，如果需要配置为 Long类型，请确保数据库中该字段类型为 bigint。

7.8.12 [分片、PROXY] 实现 StandardShardingAlgorithm 自定义算法时，指定
了 Comparable 的具体类型为 Long, 且数据库表中字段类型为 bigint，出现
ClassCastException: Integer can not cast to Long异常。

回答：
实现 doSharding方法时，不建议指定方法声明中 Comparable具体的类型，而是在 doSharding方
法实现中对类型进行转换，可以参考 ModShardingAlgorithm#doSharding方法

7.8.13 [分片] ShardingSphere提供的默认分布式自增主键策略为什么是不连续的，且
尾数大多为偶数？

回答：
ShardingSphere采用 snowflake算法作为默认的分布式自增主键策略，用于保证分布式的情况下可以无
中心化的生成不重复的自增序列。因此自增主键可以保证递增，但无法保证连续。
而 snowflake算法的最后 4位是在同一毫秒内的访问递增值。因此，如果毫秒内并发度不高，最后 4位为
零的几率则很大。因此并发度不高的应用生成偶数主键的几率会更高。
在 3.1.0版本中，尾数大多为偶数的问题已彻底解决，参见：https://github.com/apache/shardingsphe
re/issues/1617

7.8.14 [分片]如何在 inline分表策略时，允许执行范围查询操作（BETWEENAND、>、<、
>=、<=）？

回答：
1. 需要使用 4.1.0或更高版本。
2. 调整以下配置项（需要注意的是，此时所有的范围查询将会使用广播的方式查询每一个分表）：
• 4.x版本：allow.range.query.with.inline.sharding设置为 true即可（默认为 false）。
• 5.x版本：在 InlineShardingStrategy中将 allow-range-query-with-inline-sharding设
置为 true即可（默认为 false）。

7.8. FAQ 303

https://github.com/apache/shardingsphere/issues/1617
https://github.com/apache/shardingsphere/issues/1617

Apache ShardingSphere document, v5.1.0

7.8.15 [分片]为什么我实现了 KeyGenerateAlgorithm接口，也配置了 Type，但是
自定义的分布式主键依然不生效？

回答：
Service Provider Interface (SPI) 是一种为了被第三方实现或扩展的 API，除了实现接口外，还需要在
META‐INF/services中创建对应文件来指定 SPI的实现类，JVM才会加载这些服务。
具体的 SPI使用方式，请大家自行搜索。
与分布式主键 KeyGenerateAlgorithm接口相同，其他 ShardingSphere的扩展功能也需要用相同的
方式注入才能生效。

7.8.16 [分片] ShardingSphere除了支持自带的分布式自增主键之外，还能否支持原生
的自增主键？

回答：是的，可以支持。但原生自增主键有使用限制，即不能将原生自增主键同时作为分片键使用。
由于 ShardingSphere并不知晓数据库的表结构，而原生自增主键是不包含在原始 SQL中内的，因此 Shard‐
ingSphere无法将该字段解析为分片字段。如自增主键非分片键，则无需关注，可正常返回；若自增主键
同时作为分片键使用，ShardingSphere无法解析其分片值，导致 SQL路由至多张表，从而影响应用的正
确性。
而原生自增主键返回的前提条件是 INSERT SQL必须最终路由至一张表，因此，面对返回多表的 INSERT
SQL，自增主键则会返回零。

7.8.17 [数据加密] JPA和数据加密无法一起使用，如何解决？

回答：
由于数据加密的 DDL尚未开发完成，因此对于自动生成 DDL语句的 JPA与数据加密一起使用时，会导
致 JPA的实体类 (Entity)无法同时满足 DDL和 DML的情况。
解决方案如下：

1. 以需要加密的逻辑列名编写 JPA的实体类 (Entity)。
2. 关闭 JPA的 auto‐ddl，如 auto‐ddl=none。
3. 手 动 建 表， 建 表 时 应 使 用 数 据 加 密 配 置 的 cipherColumn,plainColumn 和

assistedQueryColumn代替逻辑列。

7.8. FAQ 304

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://shardingsphere.apache.org/document/current/cn/concepts/pluggable/

Apache ShardingSphere document, v5.1.0

7.8.18 [DistSQL]使用 DistSQL添加数据源时，如何设置自定义的 JDBC连接参数或连
接池属性？

回答：
1. 如需自定义 JDBC参数，请使用 urlSource的方式定义 dataSource。
2. ShardingSphere预置了必要的连接池参数，如 maxPoolSize、idleTimeout等。如需增加或覆
盖参数配置，请在 dataSource中通过 PROPERTIES指定。

3. 以上规则请参考相关介绍

7.8.19 [DistSQL] 使用 DistSQL 删除资源时，出现 Resource [xxx] is still
used by [SingleTableRule]。

回答：
1. 被规则引用的资源将无法被删除
2. 若资源只被 single table rule引用，且用户确认可以忽略该限制，则可以添加可选参数 ignore single

tables进行强制删除

7.8.20 [DistSQL] 使用 DistSQL 添加资源时，出现 Failed to get driver
instance for jdbcURL=xxx。

回答：
ShardingSphere‐Proxy在部署过程中没有添加 jdbc驱动，需要将 jdbc驱动放入 ShardingSphere‐Proxy
解压后的 ext‐lib目录，例如：mysql-connector。

7.8.21 [其他]如果 SQL在 ShardingSphere中执行不正确，该如何调试？

回答：
在 ShardingSphere‐Proxy以及 ShardingSphere‐JDBC 1.5.0版本之后提供了 sql.show的配置，可以将
解析上下文和改写后的 SQL以及最终路由至的数据源的细节信息全部打印至 info日志。sql.show配置
默认关闭，如果需要请通过配置开启。

注意：5.x版本以后，sql.show参数调整为 sql-show。

7.8. FAQ 305

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-proxy/distsql/syntax/rdl/resource-definition/

Apache ShardingSphere document, v5.1.0

7.8.22 [其他]阅读源码时为什么会出现编译错误? IDEA不索引生成的代码？

回答：
ShardingSphere使用 lombok实现极简代码。关于更多使用和安装细节，请参考lombok官网。
org.apache.shardingsphere.sql.parser.autogen包下的代码由 ANTLR生成，可以执行以下
命令快速生成：

./mvnw -Dcheckstyle.skip=true -Drat.skip=true -Dmaven.javadoc.skip=true -Djacoco.
skip=true -DskipITs -DskipTests install -T1C

生 成 的 代 码 例 如 org.apache.shardingsphere.sql.parser.autogen.
PostgreSQLStatementParser 等 Java 文件由于较大，默认配置的 IDEA 可能不会索引该文件。
可以调整 IDEA的属性：idea.max.intellisense.filesize=10000

7.8.23 [其他]使用 SQLSever和 PostgreSQL时，聚合列不加别名会抛异常？

回答：
SQLServer和 PostgreSQL获取不加别名的聚合列会改名。例如，如下 SQL：

SELECT SUM(num), SUM(num2) FROM tablexxx;

SQLServer获取到的列为空字符串和 (2)，PostgreSQL获取到的列为空 sum和 sum(2)。这将导致 Shard‐
ingSphere在结果归并时无法找到相应的列而出错。
正确的 SQL写法应为：

SELECT SUM(num) AS sum_num, SUM(num2) AS sum_num2 FROM tablexxx;

7.8.24 [其他] Oracle数据库使用Timestamp类型的OrderBy语句抛出异常提示“Order
by valuemust implements Comparable”?

回答：
针对上面问题解决方式有两种：1.配置启动 JVM参数“‐oracle.jdbc.J2EE13Compliant=true”2.通过代
码在项目初始化时设置 System.getProperties().setProperty(“oracle.jdbc.J2EE13Compliant”,“true”);
原因如下:

org.apache.shardingsphere.sharding.merge.dql.orderby.OrderByValue#getOrderValues()
方法如下:

private List<Comparable<?>> getOrderValues() throws SQLException {
List<Comparable<?>> result = new ArrayList<>(orderByItems.size());
for (OrderItem each : orderByItems) {

Object value = resultSet.getObject(each.getIndex());
Preconditions.checkState(null == value || value instanceof Comparable,

"Order by value must implements Comparable");

7.8. FAQ 306

https://projectlombok.org/download.html

Apache ShardingSphere document, v5.1.0

result.add((Comparable<?>) value);
}
return result;

}

使用了 resultSet.getObject(int index)方法，针对TimeStamporacle会根据 oracle.jdbc.J2EE13Compliant
属性判断返回 java.sql.TimeStamp 还是自定义 oralce.sql.TIMESTAMP 详见 ojdbc 源码 ora‐
cle.jdbc.driver.TimestampAccessor#getObject(int var1)方法:

Object getObject(int var1) throws SQLException {
Object var2 = null;
if(this.rowSpaceIndicator == null) {

DatabaseError.throwSqlException(21);
}

if(this.rowSpaceIndicator[this.indicatorIndex + var1] != -1) {
if(this.externalType != 0) {

switch(this.externalType) {
case 93:

return this.getTimestamp(var1);
default:

DatabaseError.throwSqlException(4);
return null;

}
}

if(this.statement.connection.j2ee13Compliant) {
var2 = this.getTimestamp(var1);

} else {
var2 = this.getTIMESTAMP(var1);

}
}

return var2;
}

7.8.25 [其他] Windows环境下，通过 Git克隆 ShardingSphere源码时为什么提示文件
名过长，如何解决？

回答：
为保证源码的可读性，ShardingSphere编码规范要求类、方法和变量的命名要做到顾名思义，避免使用
缩写，因此可能导致部分源码文件命名较长。由于Windows版本的 Git是使用msys编译的，它使用了
旧版本的Windows Api，限制文件名不能超过 260个字符。
解决方案如下：
打开 cmd.exe（你需要将 git添加到环境变量中）并执行下面的命令，可以让 git支持长文件名：

7.8. FAQ 307

Apache ShardingSphere document, v5.1.0

git config --global core.longpaths true

如果是 Windows 10，还需要通过注册表或组策略，解除操作系统的文件名长度限制（需要重
启） ：> 在注册表编辑器中创建 HKLM\SYSTEM\CurrentControlSet\Control\FileSystem
LongPathsEnabled，类型为 REG_DWORD，并设置为 1。>或者从系统菜单点击设置图标，输入“编
辑组策略”，然后在打开的窗口依次进入“计算机管理”>“管理模板”>“系统”>“文件系统”，在右
侧双击“启用 win32长路径”。
参考资料：https://docs.microsoft.com/zh‐cn/windows/desktop/FileIO/naming‐a‐file https://ourcod
eworld.com/articles/read/109/how‐to‐solve‐filename‐too‐long‐error‐in‐git‐powershell‐and‐github‐a
pplication‐for‐windows

7.8.26 [其他] Type is required异常的解决方法?

回答：
ShardingSphere中很多功能实现类的加载方式是通过 SPI注入的方式完成的，如分布式主键，注册中心
等；这些功能通过配置中 type类型来寻找对应的 SPI实现，因此必须在配置文件中指定类型。

7.8.27 [其他]服务启动时如何加快 metadata加载速度？

回答：
1. 升级到 4.0.1以上的版本，以提高metadata的加载速度。
2. 参照你采用的连接池，将：
• 配置项 max.connections.size.per.query（默认值为 1）调高（版本>= 3.0.0.M3且低于 5.0.0）。
• 配置项 max-connections-size-per-query（默认值为 1）调高（版本 >= 5.0.0）。

7.8.28 [其他] ANTLR插件在 src同级目录下生成代码，容易误提交，如何避免？

回答：
进入 Settings ‐> Languages & Frameworks ‐> ANTLR v4 default project settings配置生成代码的输出目
录为 target/gen，如图：

7.8. FAQ 308

https://docs.microsoft.com/zh-cn/windows/desktop/FileIO/naming-a-file
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://ourcodeworld.com/articles/read/109/how-to-solve-filename-too-long-error-in-git-powershell-and-github-application-for-windows
https://shardingsphere.apache.org/document/current/cn/concepts/pluggable/
jetbrains://idea/settings?name=Languages+%26+Frameworks--ANTLR+v4+default+project+settings

Apache ShardingSphere document, v5.1.0

7.8.29 [其他]使用 Proxool时分库结果不正确？

回答：
使用 Proxool配置多个数据源时，应该为每个数据源设置 alias，因为 Proxool在获取连接时会判断连接
池中是否包含已存在的 alias，不配置 alias会造成每次都只从一个数据源中获取连接。
以下是 Proxool源码中 ProxoolDataSource类 getConnection方法的关键代码：

if(!ConnectionPoolManager.getInstance().isPoolExists(this.alias)) {
this.registerPool();

}

更多关于 alias使用方法请参考 Proxool官网。
PS：sourceforge网站需要翻墙访问。

7.8. FAQ 309

http://proxool.sourceforge.net/configure.html

Apache ShardingSphere document, v5.1.0

7.8.30 [其他]使用 Spring Boot 2.x集成 ShardingSphere时，配置文件中的属性设置不
生效？

回答：
需要特别注意，Spring Boot 2.x环境下配置文件的属性名称约束为仅允许小写字母、数字和短横线，即
[a-z][0-9]和-。
原因如下:

Spring Boot 2.x环境下，ShardingSphere通过 Binder来绑定配置文件，属性名称不规范（如：驼峰或下
划线等）会导致属性设置不生效从而校验属性值时抛出 NullPointerException异常。参考以下错误
示例：
下划线示例：database_inline

spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.
type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.database_inline.props.
algorithm-expression=ds-$->{user_id % 2}

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'database_inline': Initialization of bean failed; nested exception
is java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)
at org.apache.shardingsphere.spring.boot.registry.

AbstractAlgorithmProvidedBeanRegistry.
postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)

at org.springframework.beans.factory.support.
AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

驼峰示例：databaseInline

spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.databaseInline.props.
algorithm-expression=ds-$->{user_id % 2}

7.8. FAQ 310

Apache ShardingSphere document, v5.1.0

Caused by: org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'databaseInline': Initialization of bean failed; nested exception is
java.lang.NullPointerException: Inline sharding algorithm expression cannot be
null.

...
Caused by: java.lang.NullPointerException: Inline sharding algorithm expression
cannot be null.

at com.google.common.base.Preconditions.checkNotNull(Preconditions.java:897)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.getAlgorithmExpression(InlineShardingAlgorithm.java:58)
at org.apache.shardingsphere.sharding.algorithm.sharding.inline.

InlineShardingAlgorithm.init(InlineShardingAlgorithm.java:52)
at org.apache.shardingsphere.spring.boot.registry.

AbstractAlgorithmProvidedBeanRegistry.
postProcessAfterInitialization(AbstractAlgorithmProvidedBeanRegistry.java:98)

at org.springframework.beans.factory.support.
AbstractAutowireCapableBeanFactory.
applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.
java:431)

...

从异常堆栈中分析可知：AbstractAlgorithmProvidedBeanRegistry.registerBean方法调用
PropertyUtil.containPropertyPrefix(environment, prefix)方法判断指定前缀 prefix
的配置是否存在，而PropertyUtil.containPropertyPrefix(environment, prefix)方法，在
Spring Boot 2.x环境下使用了 Binder，不规范的属性名称（如：驼峰或下划线等）会导致属性设置不生
效。

7.9 API变更历史

本章包含 Apache ShardingSphere项目 API的变更历史记录。

7.9.1 ShardingSphere-JDBC

本章包含 Apache ShardingSphere‐JDBC API的变更历史。

YAML配置

5.0.0-alpha

数据分片

7.9. API变更历史 311

Apache ShardingSphere document, v5.1.0

配置项说明

dataSources: # 省略数据源配置，请参考使用手册

rules:
- !SHARDING
tables: # 数据分片规则配置

<logic-table-name> (+): # 逻辑表名称
actualDataNodes (?): # 由数据源名 + 表名组成（参考 Inline 语法规则）
databaseStrategy (?): # 分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一
standard: # 用于单分片键的标准分片场景

shardingColumn: # 分片列名称
shardingAlgorithmName: # 分片算法名称

complex: # 用于多分片键的复合分片场景
shardingColumns: # 分片列名称，多个列以逗号分隔
shardingAlgorithmName: # 分片算法名称

hint: # Hint 分片策略
shardingAlgorithmName: # 分片算法名称

none: # 不分片
tableStrategy: # 分表策略，同分库策略
keyGenerateStrategy: # 分布式序列策略
column: # 自增列名称，缺省表示不使用自增主键生成器
keyGeneratorName: # 分布式序列算法名称

autoTables: # 自动分片表规则配置
t_order_auto: # 逻辑表名称
actualDataSources (?): # 数据源名称
shardingStrategy: # 切分策略
standard: # 用于单分片键的标准分片场景

shardingColumn: # 分片列名称
shardingAlgorithmName: # 自动分片算法名称

bindingTables (+): # 绑定表规则列表
- <logic_table_name_1, logic_table_name_2, ...>
- <logic_table_name_1, logic_table_name_2, ...>

broadcastTables (+): # 广播表规则列表
- <table-name>
- <table-name>

defaultDatabaseStrategy: # 默认数据库分片策略
defaultTableStrategy: # 默认表分片策略
defaultKeyGenerateStrategy: # 默认的分布式序列策略

分片算法配置
shardingAlgorithms:

<sharding-algorithm-name> (+): # 分片算法名称
type: # 分片算法类型
props: # 分片算法属性配置
...

分布式序列算法配置

7.9. API变更历史 312

Apache ShardingSphere document, v5.1.0

keyGenerators:
<key-generate-algorithm-name> (+): # 分布式序列算法名称
type: # 分布式序列算法类型
props: # 分布式序列算法属性配置
...

props:
...

读写分离

配置项说明

dataSources: # 省略数据源配置，请参考使用手册

rules:
- !REPLICA_QUERY
dataSources:

<data-source-name> (+): # 读写分离逻辑数据源名称
primaryDataSourceName: # 主库数据源名称
replicaDataSourceNames:
- <replica-data_source-name> (+) # 从库数据源名称

loadBalancerName: # 负载均衡算法名称

负载均衡算法配置
loadBalancers:

<load-balancer-name> (+): # 负载均衡算法名称
type: # 负载均衡算法类型
props: # 负载均衡算法属性配置
...

props:
...

算法类型的详情，请参见内置负载均衡算法列表。

数据加密

配置项说明

dataSource: # 省略数据源配置，请参考使用手册

rules:
- !ENCRYPT
tables:

7.9. API变更历史 313

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance

Apache ShardingSphere document, v5.1.0

<table-name> (+): # 加密表名称
columns:
<column-name> (+): # 加密列名称

cipherColumn: # 密文列名称
assistedQueryColumn (?): # 查询辅助列名称
plainColumn (?): # 原文列名称
encryptorName: # 加密算法名称

加密算法配置
encryptors:

<encrypt-algorithm-name> (+): # 加解密算法名称
type: # 加解密算法类型
props: # 加解密算法属性配置
...

queryWithCipherColumn: # 是否使用加密列进行查询。在有原文列的情况下，可以使用原文列进行查询

算法类型的详情，请参见内置加密算法列表。

影子库

配置项说明

dataSources: # 省略数据源配置，请参考使用手册

rules:
- !SHADOW
column: # 影子字段名
sourceDataSourceNames: # 影子前数据库名

...
shadowDataSourceNames: # 对应的影子库名

...

props:
...

分布式治理

配置项说明

governance:
name: # 治理名称
registryCenter: # 注册中心

type: # 治理持久化类型。如：Zookeeper, etcd
serverLists: # 治理服务列表。包括 IP 地址和端口号。多个地址用逗号分隔。如: host1:2181,

7.9. API变更历史 314

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

host2:2181
overwrite: # 本地配置是否覆盖配置中心配置。如果可覆盖，每次启动都以本地配置为准

ShardingSphere-4.x

数据分片

配置项说明

dataSources: # 数据源配置，可配置多个 data_source_name
<data_source_name>: # <!! 数据库连接池实现类> `!!`表示实例化该类

driverClassName: # 数据库驱动类名
url: # 数据库 url 连接
username: # 数据库用户名
password: # 数据库密码
... 数据库连接池的其它属性

shardingRule:
tables: # 数据分片规则配置，可配置多个 logic_table_name

<logic_table_name>: # 逻辑表名称
actualDataNodes: # 由数据源名 + 表名组成，以小数点分隔。多个表以逗号分隔，支持 inline

表达式。缺省表示使用已知数据源与逻辑表名称生成数据节点，用于广播表（即每个库中都需要一个同样的表用于
关联查询，多为字典表）或只分库不分表且所有库的表结构完全一致的情况

databaseStrategy: # 分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一
standard: # 用于单分片键的标准分片场景

shardingColumn: # 分片列名称
preciseAlgorithmClassName: # 精确分片算法类名称，用于 = 和 IN。。该类需实现

PreciseShardingAlgorithm 接口并提供无参数的构造器
rangeAlgorithmClassName: # 范围分片算法类名称，用于 BETWEEN，可选。。该类需实现

RangeShardingAlgorithm 接口并提供无参数的构造器
complex: # 用于多分片键的复合分片场景

shardingColumns: # 分片列名称，多个列以逗号分隔
algorithmClassName: # 复合分片算法类名称。该类需实现

ComplexKeysShardingAlgorithm 接口并提供无参数的构造器
inline: # 行表达式分片策略

shardingColumn: # 分片列名称
algorithmInlineExpression: # 分片算法行表达式，需符合 groovy 语法

hint: # Hint 分片策略
algorithmClassName: # Hint 分片算法类名称。该类需实现 HintShardingAlgorithm 接

口并提供无参数的构造器
none: # 不分片

tableStrategy: # 分表策略，同分库策略
keyGenerator:
column: # 自增列名称，缺省表示不使用自增主键生成器
type: # 自增列值生成器类型，缺省表示使用默认自增列值生成器。可使用用户自定义的列值生成器

7.9. API变更历史 315

Apache ShardingSphere document, v5.1.0

或选择内置类型：SNOWFLAKE/UUID
props: # 属性配置, 注意：使用 SNOWFLAKE 算法，需要配置 max.tolerate.time.

difference.milliseconds 属性。若使用此算法生成值作分片值，建议配置 max.vibration.offset 属性
<property-name>: # 属性名称

bindingTables: # 绑定表规则列表
- <logic_table_name1, logic_table_name2, ...>
- <logic_table_name3, logic_table_name4, ...>
- <logic_table_name_x, logic_table_name_y, ...>

broadcastTables: # 广播表规则列表
- table_name1
- table_name2
- table_name_x

defaultDataSourceName: # 未配置分片规则的表将通过默认数据源定位
defaultDatabaseStrategy: # 默认数据库分片策略，同分库策略
defaultTableStrategy: # 默认表分片策略，同分库策略
defaultKeyGenerator: # 默认的主键生成算法 如果没有设置, 默认为 SNOWFLAKE 算法

type: # 默认自增列值生成器类型，缺省将使用 org.apache.shardingsphere.core.keygen.
generator.impl.SnowflakeKeyGenerator。可使用用户自定义的列值生成器或选择内置类型：
SNOWFLAKE/UUID

props:
<property-name>: # 自增列值生成器属性配置, 比如 SNOWFLAKE 算法的 max.tolerate.time.

difference.milliseconds

masterSlaveRules: # 读写分离规则，详见读写分离部分
<data_source_name>: # 数据源名称，需要与真实数据源匹配，可配置多个 data_source_name
masterDataSourceName: # 详见读写分离部分
slaveDataSourceNames: # 详见读写分离部分
loadBalanceAlgorithmType: # 详见读写分离部分
props: # 读写分离负载算法的属性配置
<property-name>: # 属性值

props: # 属性配置
sql.show: # 是否开启 SQL 显示，默认值: false
executor.size: # 工作线程数量，默认值: CPU 核数
max.connections.size.per.query: # 每个查询可以打开的最大连接数量, 默认为 1
check.table.metadata.enabled: # 是否在启动时检查分表元数据一致性，默认值: false

7.9. API变更历史 316

Apache ShardingSphere document, v5.1.0

读写分离

配置项说明

dataSources: # 省略数据源配置，与数据分片一致

masterSlaveRule:
name: # 读写分离数据源名称
masterDataSourceName: # 主库数据源名称
slaveDataSourceNames: # 从库数据源名称列表

- <data_source_name1>
- <data_source_name2>
- <data_source_name_x>

loadBalanceAlgorithmType: # 从库负载均衡算法类型，可选值：ROUND_ROBIN，RANDOM。若
`loadBalanceAlgorithmClassName` 存在则忽略该配置
props: # 读写分离负载算法的属性配置

<property-name>: # 属性值

通过 YamlMasterSlaveDataSourceFactory工厂类创建 DataSource：

DataSource dataSource = YamlMasterSlaveDataSourceFactory.
createDataSource(yamlFile);

数据脱敏

配置项说明

dataSource: # 省略数据源配置

encryptRule:
encryptors:

<encryptor-name>:
type: # 加解密器类型，可自定义或选择内置类型：MD5/AES
props: # 属性配置, 注意：使用 AES 加密器，需要配置 AES 加密器的 KEY 属性：aes.key.

value
aes.key.value:

tables:
<table-name>:
columns:

<logic-column-name>:
plainColumn: # 存储明文的字段
cipherColumn: # 存储密文的字段
assistedQueryColumn: # 辅助查询字段，针对 ShardingQueryAssistedEncryptor 类型

的加解密器进行辅助查询
encryptor: # 加密器名字

7.9. API变更历史 317

Apache ShardingSphere document, v5.1.0

治理

配置项说明

dataSources: # 省略数据源配置
shardingRule: # 省略分片规则配置
masterSlaveRule: # 省略读写分离规则配置
encryptRule: # 省略数据脱敏规则配置

orchestration:
name: # 治理实例名称
overwrite: # 本地配置是否覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准
registry: # 注册中心配置

type: # 配置中心类型。如：zookeeper
serverLists: # 连接注册中心服务器的列表。包括 IP 地址和端口号。多个地址用逗号分隔。如:

host1:2181,host2:2181
namespace: # 注册中心的命名空间
digest: # 连接注册中心的权限令牌。缺省为不需要权限验证
operationTimeoutMilliseconds: # 操作超时的毫秒数，默认 500 毫秒
maxRetries: # 连接失败后的最大重试次数，默认 3 次
retryIntervalMilliseconds: # 重试间隔毫秒数，默认 500 毫秒
timeToLiveSeconds: # 临时节点存活秒数，默认 60 秒

ShardingSphere-3.x

数据分片

配置项说明

以下配置截止版本为 3.1
配置文件中, 必须配置的项目为 schemaName,dataSources, 并且 shardingRule,
masterSlaveRule, 配置其中一个 (注意, 除非 server.yaml 中定义了 Orchestration, 否则必须至少
有一个 config-xxxx 配置文件), 除此之外的其他项目为可选项
schemaName: test # schema 名称, 每个文件都是单独的 schema, 多个 schema 则是多个 yaml 文件,
yaml 文件命名要求是 config-xxxx.yaml 格式, 虽然没有强制要求, 但推荐名称中的 xxxx 与配置的
schemaName 保持一致, 方便维护

dataSources: # 配置数据源列表, 必须是有效的 jdbc 配置, 目前仅支持 MySQL 与 PostgreSQL, 另外
通过一些未公开 (代码中可查, 但可能会在未来有变化) 的变量, 可以配置来兼容其他支持 JDBC 的数据库,
但由于没有足够的测试支持, 可能会有严重的兼容性问题, 配置时候要求至少有一个
master_ds_0: # 数据源名称, 可以是合法的字符串, 目前的校验规则中, 没有强制性要求, 只要是合法的

yaml 字符串即可, 但如果要用于分库分表配置, 则需要有有意义的标志 (在分库分表配置中详述), 以下为目
前公开的合法配置项目, 不包含内部配置参数

以下参数为必备参数
url: jdbc:mysql://127.0.0.1:3306/demo_ds_slave_1?serverTimezone=UTC&

useSSL=false # 这里的要求合法的 jdbc 连接串即可, 目前尚未兼容 MySQL 8.x, 需要在 maven 编译时

7.9. API变更历史 318

Apache ShardingSphere document, v5.1.0

候, 升级 MySQL JDBC 版本到 5.1.46 或者 47 版本 (不建议升级到 JDBC 的 8.x 系列版本, 需要修改
源代码, 并且无法通过很多测试 case)

username: root # MySQL 用户名
password: password # MySQL 用户的明文密码
以下参数为可选参数, 给出示例为默认配置, 主要用于连接池控制
connectionTimeoutMilliseconds: 30000 # 连接超时控制
idleTimeoutMilliseconds: 60000 # 连接空闲时间设置
maxLifetimeMilliseconds: 0 # 连接的最大持有时间,0 为无限制
maxPoolSize: 50 # 连接池中最大维持的连接数量
minPoolSize: 1 # 连接池的最小连接数量
maintenanceIntervalMilliseconds: 30000 # 连接维护的时间间隔 atomikos 框架需求

以下配置的假设是,3307 是 3306 的从库,3309,3310 是 3308 的从库
slave_ds_0:

url: jdbc:mysql://127.0.0.1:3307/demo_ds_slave_1?serverTimezone=UTC&
useSSL=false

username: root
password: password

master_ds_1:
url: jdbc:mysql://127.0.0.1:3308/demo_ds_slave_1?serverTimezone=UTC&

useSSL=false
username: root
password: password

slave_ds_1:
url: jdbc:mysql://127.0.0.1:3309/demo_ds_slave_1?serverTimezone=UTC&

useSSL=false
username: root
password: password

slave_ds_1_slave2:
url: jdbc:mysql://127.0.0.1:3310/demo_ds_slave_1?serverTimezone=UTC&

useSSL=false
username: root
password: password

masterSlaveRule: # 这里配置这个规则的话, 相当于是全局读写分离配置
name: ds_rw # 名称, 合法的字符串即可, 但如果涉及到在读写分离的基础上设置分库分表, 则名称需要有

意义才可以, 另外, 虽然目前没有强制要求, 但主从库配置需要配置在实际关联的主从库上, 如果配置的数据源
之间主从是断开的状态, 那么可能会发生写入的数据对于只读会话无法读取到的问题

如果一个会话发生了写入并且没有提交 (显式打开事务),sharding sphere 在后续的路由中,select 都
会在主库执行, 直到会话提交
masterDataSourceName: master_ds_0 # 主库的 DataSource 名称
slaveDataSourceNames: # 从库的 DataSource 列表, 至少需要有一个

- slave_ds_0
loadBalanceAlgorithmClassName: io.shardingsphere.api.algorithm.masterslave #

MasterSlaveLoadBalanceAlgorithm 接口的实现类, 允许自定义实现 默认提供两个, 配置路径为 io.
shardingsphere.api.algorithm.masterslave 下的
RandomMasterSlaveLoadBalanceAlgorithm(随机 Random) 与
RoundRobinMasterSlaveLoadBalanceAlgorithm(轮询: 次数 % 从库数量)
loadBalanceAlgorithmType: # 从库负载均衡算法类型，可选值：ROUND_ROBIN，RANDOM。若

loadBalanceAlgorithmClassName 存在则忽略该配置, 默认为 ROUND_ROBIN

7.9. API变更历史 319

Apache ShardingSphere document, v5.1.0

shardingRule: # sharding 的配置
配置主要分两类, 一类是对整个 sharding 规则所有表生效的默认配置, 一个是 sharing 具体某张表时

候的配置
首先说默认配置
masterSlaveRules: # 在 shardingRule 中也可以配置 shardingRule, 对分片生效, 具体内容与全

局 masterSlaveRule 一致, 但语法为:
master_test_0:
masterDataSourceName: master_ds_0
slaveDataSourceNames:
- slave_ds_0

master_test_1:
masterDataSourceName: master_ds_1
slaveDataSourceNames:
- slave_ds_1
- slave_ds_1_slave2

defaultDataSourceName: master_test_0 # 这里的数据源允许是 dataSources 的配置项目或者
masterSlaveRules 配置的名称, 配置为 masterSlaveRule 的话相当于就是配置读写分离了
broadcastTables: # 广播表 这里配置的表列表, 对于发生的所有数据变更, 都会不经 sharding 处理,

而是直接发送到所有数据节点, 注意此处为列表, 每个项目为一个表名称
- broad_1
- broad_2

bindingTables: # 绑定表, 也就是实际上哪些配置的 sharding 表规则需要实际生效的列表, 配置为
yaml 列表, 并且允许单个条目中以逗号切割, 所配置表必须已经配置为逻辑表

- sharding_t1
- sharding_t2,sharding_t3

defaultDatabaseShardingStrategy: # 默认库级别 sharding 规则, 对应代码中
ShardingStrategy 接口的实现类, 目前支持 none,inline,hint,complex,standard 五种配置 注意此
处默认配置仅可以配置五个中的一个

规则配置同样适合表 sharding 配置, 同样是在这些算法中选择
none: # 不配置任何规则,SQL 会被发给所有节点去执行, 这个规则没有子项目可以配置
inline: # 行表达式分片
shardingColumn: test_id # 分片列名称
algorithmExpression: master_test_${test_id % 2} # 分片表达式, 根据指定的表达式计算

得到需要路由到的数据源名称 需要是合法的 groovy 表达式, 示例配置中, 取余为 0 则语句路由到
master_test_0, 取余为 1 则路由到 master_test_1

hint: # 基于标记的 sharding 分片
shardingAlgorithm: # 需要是 HintShardingAlgorithm 接口的实现, 目前代码中, 仅有为测

试目的实现的 OrderDatabaseHintShardingAlgorithm, 没有生产环境可用的实现
complex: # 支持多列的 sharding, 目前无生产可用实现
shardingColumns: # 逗号切割的列
shardingAlgorithm: # ComplexKeysShardingAlgorithm 接口的实现类

standard: # 单列 sharding 算法, 需要配合对应的 preciseShardingAlgorithm,
rangeShardingAlgorithm 接口的实现使用, 目前无生产可用实现

shardingColumn: # 列名, 允许单列
preciseShardingAlgorithm: # preciseShardingAlgorithm 接口的实现类
rangeShardingAlgorithm: # rangeShardingAlgorithm 接口的实现类

defaultTableStrategy: # 配置参考 defaultDatabaseShardingStrategy, 区别在于,inline 算

7.9. API变更历史 320

Apache ShardingSphere document, v5.1.0

法的配置中,algorithmExpression 的配置算法结果需要是实际的物理表名称, 而非数据源名称
defaultKeyGenerator: # 默认的主键生成算法 如果没有设置, 默认为 SNOWFLAKE 算法

column: # 自增键对应的列名称
type: # 自增键的类型, 主要用于调用内置的主键生成算法有三个可用值:SNOWFLAKE(时间戳 +worker

id+ 自增 id),UUID(java.util.UUID 类生成的随机 UUID),LEAF, 其中 Snowflake 算法与 UUID 算
法已经实现,LEAF 目前 (2018-01-14) 尚未实现

className: # 非内置的其他实现了 KeyGenerator 接口的类, 需要注意, 如果设置这个, 就不能设置
type, 否则 type 的设置会覆盖 class 的设置

props:
定制算法需要设置的参数, 比如 SNOWFLAKE 算法的 max.tolerate.time.difference.

milliseconds
tables: # 配置表 sharding 的主要位置

sharding_t1:
actualDataNodes: master_test_${0..1}.t_order${0..1} # sharding 表对应的数据源以

及物理名称, 需要用表达式处理, 表示表实际上在哪些数据源存在, 配置示例中, 意思是总共存在 4 个分片
master_test_0.t_order0,master_test_0.t_order1,master_test_1.t_order0,master_test_1.
t_order1

需要注意的是, 必须保证设置 databaseStrategy 可以路由到唯一的 dataSource,
tableStrategy 可以路由到 dataSource 中唯一的物理表上, 否则可能导致错误: 一个 insert 语句被插
入到多个实际物理表中

databaseStrategy: # 局部设置会覆盖全局设置, 参考 defaultDatabaseShardingStrategy
tableStrategy: # 局部设置会覆盖全局设置, 参考 defaultTableStrategy
keyGenerator: # 局部设置会覆盖全局设置, 参考 defaultKeyGenerator
logicIndex: # 逻辑索引名称 由于 Oracle,PG 这种数据库中, 索引与表共用命名空间, 如果接受

到 drop index 语句, 执行之前, 会通过这个名称配置的确定对应的实际物理表名称
props:
sql.show: # 是否开启 SQL 显示，默认值: false
acceptor.size: # accept 连接的线程数量, 默认为 cpu 核数 2 倍
executor.size: # 工作线程数量最大，默认值: 无限制
max.connections.size.per.query: # 每个查询可以打开的最大连接数量, 默认为 1
proxy.frontend.flush.threshold: # proxy 的服务时候, 对于单个大查询, 每多少个网络包返回一

次
check.table.metadata.enabled: # 是否在启动时检查分表元数据一致性，默认值: false
proxy.transaction.type: # 默认 LOCAL,proxy 的事务模型 允许 LOCAL,XA,BASE 三个值 LOCAL

无分布式事务,XA 则是采用 atomikos 实现的分布式事务 BASE 目前尚未实现
proxy.opentracing.enabled: # 是否启用 opentracing
proxy.backend.use.nio: # 是否采用 netty 的 NIO 机制连接后端数据库, 默认 False , 使用

epoll 机制
proxy.backend.max.connections: # 使用 NIO 而非 epoll 的话,proxy 后台连接每个 netty 客

户端允许的最大连接数量 (注意不是数据库连接限制) 默认为 8
proxy.backend.connection.timeout.seconds: # 使用 nio 而非 epoll 的话,proxy 后台连接的

超时时间, 默认 60s
check.table.metadata.enabled: # 是否在启动时候, 检查 sharing 的表的实际元数据是否一致, 默

认 False

configMap: # 用户自定义配置
key1: value1
key2: value2

7.9. API变更历史 321

Apache ShardingSphere document, v5.1.0

keyx: valuex

读写分离

配置项说明

dataSources: # 省略数据源配置，与数据分片一致

masterSlaveRule:
name: # 读写分离数据源名称
masterDataSourceName: # 主库数据源名称
slaveDataSourceNames: # 从库数据源名称列表

- <data_source_name1>
- <data_source_name2>
- <data_source_name_x>

loadBalanceAlgorithmClassName: # 从库负载均衡算法类名称。该类需实现
MasterSlaveLoadBalanceAlgorithm 接口且提供无参数构造器
loadBalanceAlgorithmType: # 从库负载均衡算法类型，可选值：ROUND_ROBIN，RANDOM。若

`loadBalanceAlgorithmClassName` 存在则忽略该配置

props: # 属性配置
sql.show: # 是否开启 SQL 显示，默认值: false
executor.size: # 工作线程数量，默认值: CPU 核数
check.table.metadata.enabled: # 是否在启动时检查分表元数据一致性，默认值: false

configMap: # 用户自定义配置
key1: value1
key2: value2
keyx: valuex

通过 MasterSlaveDataSourceFactory工厂类创建 DataSource：

DataSource dataSource = MasterSlaveDataSourceFactory.createDataSource(yamlFile);

治理

配置项说明

dataSources: # 省略数据源配置
shardingRule: # 省略分片规则配置
masterSlaveRule: # 省略读写分离规则配置

orchestration:
name: # 数据治理实例名称
overwrite: # 本地配置是否覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准

7.9. API变更历史 322

Apache ShardingSphere document, v5.1.0

registry: # 注册中心配置
serverLists: # 连接注册中心服务器的列表。包括 IP 地址和端口号。多个地址用逗号分隔。如:

host1:2181,host2:2181
namespace: # 注册中心的命名空间
digest: # 连接注册中心的权限令牌。缺省为不需要权限验证
operationTimeoutMilliseconds: # 操作超时的毫秒数，默认 500 毫秒
maxRetries: # 连接失败后的最大重试次数，默认 3 次
retryIntervalMilliseconds: # 重试间隔毫秒数，默认 500 毫秒
timeToLiveSeconds: # 临时节点存活秒数，默认 60 秒

ShardingSphere-2.x

数据分片

配置项说明

dataSources:
db0: !!org.apache.commons.dbcp.BasicDataSource

driverClassName: org.h2.Driver
url: jdbc:h2:mem:db0;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:
maxActive: 100

db1: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: org.h2.Driver
url: jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:
maxActive: 100

shardingRule:
tables:

config:
actualDataNodes: db${0..1}.t_config

t_order:
actualDataNodes: db${0..1}.t_order_${0..1}
databaseStrategy:
standard:

shardingColumn: user_id
preciseAlgorithmClassName: io.shardingjdbc.core.yaml.fixture.

SingleAlgorithm
tableStrategy:
inline:

shardingColumn: order_id
algorithmInlineExpression: t_order_${order_id % 2}

keyGeneratorColumnName: order_id

7.9. API变更历史 323

Apache ShardingSphere document, v5.1.0

keyGeneratorClass: io.shardingjdbc.core.yaml.fixture.IncrementKeyGenerator
t_order_item:
actualDataNodes: db${0..1}.t_order_item_${0..1}
绑定表中其余的表的策略与第一张表的策略相同
databaseStrategy:
standard:

shardingColumn: user_id
preciseAlgorithmClassName: io.shardingjdbc.core.yaml.fixture.

SingleAlgorithm
tableStrategy:
inline:

shardingColumn: order_id
algorithmInlineExpression: t_order_item_${order_id % 2}

bindingTables:
- t_order,t_order_item

默认数据库分片策略
defaultDatabaseStrategy:

none:
defaultTableStrategy:

complex:
shardingColumns: id, order_id
algorithmClassName: io.shardingjdbc.core.yaml.fixture.MultiAlgorithm

props:
sql.show: true

读写分离

概念

为了缓解数据库压力，将写入和读取操作分离为不同数据源，写库称为主库，读库称为从库，一主库可
配置多从库。

支持项

1. 提供了一主多从的读写分离配置，可独立使用，也可配合分库分表使用。
2. 独立使用读写分离支持 SQL透传。
3. 同一线程且同一数据库连接内，如有写入操作，以后的读操作均从主库读取，用于保证数据一致性。
4. Spring命名空间。
5. 基于Hin t的强制主库路由。

7.9. API变更历史 324

Apache ShardingSphere document, v5.1.0

不支持范围

1. 主库和从库的数据同步。
2. 主库和从库的数据同步延迟导致的数据不一致。
3. 主库双写或多写。

配置规则

dataSources:
db_master: !!org.apache.commons.dbcp.BasicDataSource

driverClassName: org.h2.Driver
url: jdbc:h2:mem:db_master;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;MODE=MYSQL
username: sa
password:
maxActive: 100

db_slave_0: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: org.h2.Driver
url: jdbc:h2:mem:db_slave_0;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;

MODE=MYSQL
username: sa
password:
maxActive: 100

db_slave_1: !!org.apache.commons.dbcp.BasicDataSource
driverClassName: org.h2.Driver
url: jdbc:h2:mem:db_slave_1;DB_CLOSE_DELAY=-1;DATABASE_TO_UPPER=false;

MODE=MYSQL
username: sa
password:
maxActive: 100

masterSlaveRule:
name: db_ms
masterDataSourceName: db_master
slaveDataSourceNames: [db_slave_0, db_slave_1]
configMap:

key1: value1

通过 MasterSlaveDataSourceFactory工厂类创建 DataSource：

DataSource dataSource = MasterSlaveDataSourceFactory.createDataSource(yamlFile);

7.9. API变更历史 325

Apache ShardingSphere document, v5.1.0

治理

配置项说明

Zookeeper分库分表编排配置项说明

dataSources: # 数据源配置

shardingRule: # 分片规则配置

orchestration: # Zookeeper 编排配置
name: # 编排服务节点名称
overwrite: # 本地配置是否可覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准
zookeeper: # Zookeeper 注册中心配置

namespace: # Zookeeper 的命名空间
serverLists: # 连接 Zookeeper 服务器的列表。包括 IP 地址和端口号。多个地址用逗号分隔。如:

host1:2181,host2:2181
baseSleepTimeMilliseconds: # 等待重试的间隔时间的初始值。单位：毫秒
maxSleepTimeMilliseconds: # 等待重试的间隔时间的最大值。单位：毫秒
maxRetries: # 最大重试次数
sessionTimeoutMilliseconds: # 会话超时时间。单位：毫秒
connectionTimeoutMilliseconds: # 连接超时时间。单位：毫秒
digest: # 连接 Zookeeper 的权限令牌。缺省为不需要权限验证

Etcd分库分表编排配置项说明

dataSources: # 数据源配置

shardingRule: # 分片规则配置

orchestration: # Etcd 编排配置
name: # 编排服务节点名称
overwrite: # 本地配置是否可覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准
etcd: # Etcd 注册中心配置

serverLists: # 连接 Etcd 服务器的列表。包括 IP 地址和端口号。多个地址用逗号分隔。如:
http://host1:2379,http://host2:2379

timeToLiveSeconds: # 临时节点存活时间。单位：秒
timeoutMilliseconds: # 每次请求的超时时间。单位：毫秒
maxRetries: # 每次请求的最大重试次数
retryIntervalMilliseconds: # 重试间隔时间。单位：毫秒

分库分表编排数据源构建方式

DataSource dataSource = OrchestrationShardingDataSourceFactory.
createDataSource(yamlFile);

读写分离数据源构建方式

7.9. API变更历史 326

Apache ShardingSphere document, v5.1.0

DataSource dataSource = OrchestrationMasterSlaveDataSourceFactory.
createDataSource(yamlFile);

Java API

5.0.0-beta

数据分片

配置入口

类名称：org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration

可配置属性：

分片表配置

类名称：org.apache.shardingsphere.sharding.api.config.ShardingTableRuleConfiguration

可配置属性：

名称 数据类型 说明 默认值
logi cTable String 分片逻辑表名称 •

act ualDat aNodes (?) String 由数据源名+表名组成，
以小数点分隔。多个表
以逗号分隔，支持行表
达式

使用已知数据源与逻辑
表名称生成数据节点，
用于广播表或只分库不
分表且所有库的表结构
完全一致的情况

databa seShar dingSt
rategy (?)

S harding Strateg
yConfig uration

分库策略 使用默认分库策略

tab leShar dingSt rat‐
egy (?)

S harding Strateg
yConfig uration

分表策略 使用默认分表策略

k eyGene rateSt rategy
(?)

KeyG enerato rConfig
uration

自增列生成器 使用默认自增主键生成
器

7.9. API变更历史 327

Apache ShardingSphere document, v5.1.0

自动分片表配置

类名称：org.apache.shardingsphere.sharding.api.config.ShardingAutoTableRuleConfiguration

可配置属性：

名称 数据类型 说明 默认值
logicTable String 分片逻辑表名称 •

act ualDataSources (?) String 数据源名称，多个数据
源以逗号分隔

使用全部配置的数据源

sh ardingStrategy (?) S hardingStrateg yCon‐
figuration

分片策略 使用默认分片策略

keyGe nerateStrategy
(?)

KeyGenerato rConfig‐
uration

自增列生成器 使用默认自增主键生成
器

分片策略配置

标准分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.StandardShardingStrategyConfiguration
可配置属性：

名称 数据类型 说明
shardingColumn String 分片列名称
shardingAlgorithmName String 分片算法名称

复合分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.ComplexShardingStrategyConfiguration

可配置属性：

名称 数据类型 说明
shardingColumns String 分片列名称，多个列以逗号分隔
shardingAlgorithmName String 分片算法名称

7.9. API变更历史 328

Apache ShardingSphere document, v5.1.0

Hint分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.HintShardingStrategyConfiguration

可配置属性：

名称 数据类型 说明
shardingAlgorithmName String 分片算法名称

不分片策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.sharding.NoneShardingStrategyConfiguration
可配置属性：无
算法类型的详情，请参见内置分片算法列表。

分布式序列策略配置

类名称：org.apache.shardingsphere.sharding.api.config.strategy.keygen.KeyGenerateStrategyConfiguration
可配置属性：

名称 数据类型 说明
column String 分布式序列列名称
keyGeneratorName String 分布式序列算法名称

算法类型的详情，请参见内置分布式序列算法列表。

读写分离

配置入口

类名称：ReadwriteSplittingRuleConfiguration

可配置属性：

名称 数据类型 说明
d ataSources (+) Collection<Read writeSplittingDataSourceRuleConfigu‐

ration>
读写数据源配置

loa dBalancers
(*)

Map<String, ShardingSphereAlgorithmConfiguration> 从库负载均衡算法配
置

7.9. API变更历史 329

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen

Apache ShardingSphere document, v5.1.0

读写分离数据源配置

类名称：ReadwriteSplittingDataSourceRuleConfiguration

可配置属性：

名称 数据类型 说明 默认值
name String 读写分离数据源名称 •

write DataSource‐
Name

String 写库数据源名称 •

readD ataSource‐
Names (+)

Coll ection<String> 读库数据源名称列表 •

lo adBalancerName (?) String 读库负载均衡算法名称 轮询负载均衡算法

算法类型的详情，请参见内置负载均衡算法列表。

数据加密

配置入口

类名称：org.apache.shardingsphere.encrypt.api.config.EncryptRuleConfiguration

可配置属性：

加密表规则配置

类名称：org.apache.shardingsphere.encrypt.api.config.rule.EncryptTableRuleConfiguration

可配置属性：

名称 数据类型 说明
name String 表名称
columns (+) Collection<EncryptColumnRuleConfiguration> 加密列规则配置列表

加密列规则配置

类名称：org.apache.shardingsphere.encrypt.api.config.rule.EncryptColumnRuleConfiguration

可配置属性：

7.9. API变更历史 330

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance

Apache ShardingSphere document, v5.1.0

名称 数据类型 说明
logicColumn String 逻辑列名称
cipherColumn String 密文列名称
assistedQueryColumn (?) String 查询辅助列名称
plainColumn (?) String 原文列名称
encryptorName String 加密算法名称

加解密算法配置

类名称：org.apache.shardingsphere.infra.config.algorithm.ShardingSphereAlgorithmConfiguration

可配置属性：

名称 数据类型 说明
name String 加解密算法名称
type String 加解密算法类型
properties Properties 加解密算法属性配置

算法类型的详情，请参见内置加密算法列表。

影子库

配置入口

类名称：org.apache.shardingsphere.shadow.api.config.ShadowRuleConfiguration

可配置属性：

名称 数据类型 说明
column String SQL中的影子字段名，该值为 true的 SQL会路由到影子库

执行
sourceDataSource‐
Names

List<String> 生产数据库名称

shadowDataSource‐
Names

List<String> 影子数据库名称，与上面一一对应

7.9. API变更历史 331

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt

Apache ShardingSphere document, v5.1.0

分布式治理

配置项说明

治理

配置入口
类名称：org.apache.shardingsphere.governance.repository.api.config.GovernanceConfiguration

可配置属性：

名称 数据类型 说明
name String 注册中心实例名称
registr yCenterCon‐
figuration

Registr yCenterCon‐
figuration

注册中心实例的配置

overwrite boolean 本地配置是否覆盖配置中心配置，如果可覆盖，每次
启动都以本地配置为准

注册中心的类型可以为 Zookeeper或 etcd。
治理实例配置
类名称：org.apache.shardingsphere.governance.repository.api.config.RegistryCenterConfiguration

可配置属性：

名称 数 据 类
型

说明

type String 治理实例类型，如：Zookeeper, etcd
serverLists String 治理服务列表，包括 IP 地址和端口号，多个地址用逗号分隔，如:

host1:2181,host2:2181
props Proper‐

ties
配置本实例需要的其他参数，例如 ZooKeeper的连接参数等

over‐
write

boolean 本地配置是否覆盖配置中心配置；如果覆盖，则每次启动都参考本地配置

ZooKeeper属性配置

名称 数据类型 说明 默认值
digest (?) String 连接注册中心的权限令牌 无需验证
operation TimeoutMilliseconds (?) int 操作超时的毫秒数 500毫秒
maxRetries (?) int 连接失败后的最大重试次数 3次
retryI ntervalMilliseconds (?) int 重试间隔毫秒数 500毫秒
timeToLiveSeconds (?) int 临时节点存活秒数 60秒

Etcd属性配置

7.9. API变更历史 332

Apache ShardingSphere document, v5.1.0

名称 数据类型 说明 默认值
timeToLiveSeconds (?) long 数据存活秒数 30秒

ShardingSphere-4.x

数据分片

ShardingDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> 数据源配置
shardingRuleConfig ShardingRuleConfiguration 数据分片规则配置
props (?) Properties 属性配置

ShardingRuleConfiguration

名称 数据类型 说明
tableRuleCon‐
figs

Collection 分片规则列表

bindingTable‐
Groups (?)

Collection 绑定表规则列表

broadcastTa‐
bles (?)

Collection 广播表规则列表

defaultData‐
SourceName
(?)

String 未配置分片规则的表将根据默认数据源定位

default‐
Database
ShardingStrat‐
egyConfig
(?)

Shardin
gStrategy‐
Configura‐
tion

默认数据库分片策略

defaultTable
ShardingStrat‐
egyConfig
(?)

Shardin
gStrategy‐
Configura‐
tion

默认分表策略

def aultKey‐
GeneratorCon‐
fig (?)

Key Gen‐
eratorCon‐
figuration

默认密钥生成器配置，使用用户定义的或内置的，例如雪花/UUID
。默认密钥生成器是 org. apache.shardingsph ere.core.
keygen.ge nerator.impl.Snowf lakeKeyGenerator

master‐
SlaveRule‐
Configs (?)

Collection 读写分离规则，默认值表示不使用读写分离

7.9. API变更历史 333

Apache ShardingSphere document, v5.1.0

TableRuleConfiguration

名称 数据类型 说明
logicTable String 逻辑表名称
actualDataN‐
odes (?)

String 描述数据源名称和实际表，分隔符为点，多个数据节点用逗号分
割，支持内联表达式。不存在意味着仅分片数据库。示例：ds:
math:{0..7}.tbl{0..7}

databaseSha
rdingStrategy‐
Config (?)

ShardingStr
ategyConfig‐
uration

数据库分片策略，如果不存在则使用默认的数据库分片策略

tableSha rd‐
ingStrategy‐
Config (?)

ShardingStr
ategyConfig‐
uration

表分片策略，如果不存在则使用默认的数据库分片策略

keyGenerator‐
Config (?)

KeyGene
ratorConfigu‐
ration

主键生成器配置，如果不存在则使用默认主键生成器

enc ryptorCon‐
figuration (?)

Encr yptor‐
Configura‐
tion

加密生成器配置

StandardShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类

名称 数据类型 说明
shardingColumn String 分片键
prec iseShardingAlgorithm Prec iseShardingAlgorithm =和 IN中使用的精确分片算法
ra ngeShardingAlgorithm (?) Ra ngeShardingAlgorithm BETWEEN中使用的范围分片算法

ComplexShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于具有多个分片键的复杂分片情况。

名称 数据类型 说明
shardingColumns String 分片键，以逗号分隔
shardingAlgorithm ComplexKeysShardingAlgorithm 复杂分片算法

7.9. API变更历史 334

Apache ShardingSphere document, v5.1.0

InlineShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于行表达式的分片策略。

名称 数据类
型

说明

shardingColumns String 分片列名，以逗号分隔
algorithmExpres‐
sion

String 行表达式的分片策略，应符合 groovy语法；有关更多详细信息，请参
阅行表达式

HintShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于配置强制分片策略。

名称 数据类型 说明
shardingAlgorithm HintShardingAlgorithm 强制分片算法

NoneShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于配置非分片策略。

自增主键生成器

名称 数据类型 说明
column String 主键
type String 主键生成器的类型，使用用户定义的或内置的，例如雪花，UUID
props Properties 主键生成器的属性配置

属性配置

属性配置项，可以是以下属性。
SNOWFLAKE

7.9. API变更历史 335

Apache ShardingSphere document, v5.1.0

名称 数
据
类
型

说明

max.tolerate.ti
me.difference.milliseconds
(?)

long 最大容忍时钟回退时间，单位：毫秒。默认为 10毫秒

max.vibration.offset
(?)

int 最大抖动上限值，范围 [0, 4096)，默认为 1。注：若使用此算法生成值作分片
值，建议配置此属性。此算法在不同毫秒内所生成的 key取模 2^n (2^n一般
为分库或分表数)之后结果总为 0或 1。为防止上述分片问题，建议将此属性值
配置为 (2^n)‐1

读写分离

MasterSlaveDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> 数据源及其名称的映射
masterSlaveRuleConfig MasterSlaveRuleConfiguration 读写分离规则配置
props (?) Properties 属性配置

MasterSlaveRuleConfiguration

名称 数据类型 说明
name String 读写分离数据源名称
masterDataSourceName String 主数据库源名称
slaveDataSourceNames Collection 从数据库源名称列表
loadBalanceAlgorithm (?) MasterSlav eLoadBalanceAlgorithm 从库负载均衡算法

7.9. API变更历史 336

Apache ShardingSphere document, v5.1.0

属性配置

属性配置项，可以是以下属性。

名称 数据类
型

说明

sql.show (?) boolean 是否打印 SQL日志，默认值：false
executor.size (?) int 用于 SQL实现的工作线程号；如果为 0，则没有限制。默

认值：0
max.c onnec‐
tions.size.per.query (?)

int 每个物理数据库每次查询分配的最大连接数，默认值：1

che ck.table.metadata.enabled
(?)

boolean 初始化时是否检查元数据的一致性，默认值：false

数据脱敏

EncryptDataSourceFactory

名称 数据类型 说明
dataSource DataSource 数据源
encryptRuleConfig EncryptRuleConfiguration 加密规则配置
props (?) Properties 属性配置

EncryptRuleConfiguration

名称 数据类型 说明
encryptors Map<String, EncryptorRuleConfiguration> 加密器名称和加密器
tables Map<String, EncryptTableRuleConfiguration> 加密表名和加密表

属性配置

属性配置项，可以是以下属性。

名称 数据类型 说明
sql.show (?) boolean 是否打印 SQL日志，默认值：false
query.with.cipher.column (?) boolean 有普通列时，是否使用加密列查询，默认值：true

7.9. API变更历史 337

Apache ShardingSphere document, v5.1.0

编排

OrchestrationShardingDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> 与 S hardingDataSourceFactory相同
sha rdingRuleConfig Shar dingRuleConfiguration 与 S hardingDataSourceFactory相同
props (?) Properties 与 S hardingDataSourceFactory相同
orch estrationConfig Orche strationConfiguration 编排规则配置

OrchestrationMasterSlaveDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> 与 Mas terSlaveDataSourceFactory

相同
master SlaveRuleCon‐
fig

MasterS laveRuleConfigura‐
tion

与 Mas terSlaveDataSourceFactory
相同

configMap (?) Map<String, Object> 与 Mas terSlaveDataSourceFactory
相同

props (?) Properties 与 Mas terSlaveDataSourceFactory
相同

orch estrationConfig Orche strationConfiguration 编排规则配置

OrchestrationEncryptDataSourceFactory

名称 数据类型 说明
dataSource DataSource 与 Encryp tDataSourceFactory相同
encryptRuleConfig Encr yptRuleConfiguration 与 Encryp tDataSourceFactory相同
props (?) Properties 与 Encryp tDataSourceFactory相同
orchestrationConfig Orches trationConfiguration 编排规则配置

OrchestrationConfiguration

名称 数据类型 说明
instanceC on‐
figurationMap

Map<String, Cen‐
terConfiguration>

co nfig‐center®istry‐center的配置，key是 center的名
称，value是 co nfig‐center/registry‐center

7.9. API变更历史 338

Apache ShardingSphere document, v5.1.0

CenterConfiguration

名称 数据
类型

说明

type String 注册中心类型 (z ookeeper/etcd/apollo/nacos)
proper‐
ties

String 注册中心的配置属性，例如 zookeeper的配置属性

or ches‐
tra‐
tionType

String 编排中心的类型：config‐center 或 regi stry‐center，如果两者都使用 se
tOrchestrationType("registr y_center,config_center");

serverLists String 注册中心服务列表，包括 IP 地址和端口号，多个地址用逗号分隔，如:
host1:2181,host2:2181

names‐
pace
(?)

String 命名空间

属性配置

属性配置项，可以是以下属性。

名称 数据类型 说明
overwrite boolean 本地配置是否覆盖配置中心配置；如果覆盖，则每次启动都参考本地配置

如果注册中心类型是 zookeeper，则可以使用以下选项设置属性：

名称 数据类型 说明
digest (?) String 连接注册中心的权限令牌；默认表示不需要权限
ope rationTimeoutMilliseconds (?) int 操作超时毫秒数，默认为 500毫秒
maxRetries (?) int 最大重试次数，默认为 3次
retryIntervalMilliseconds (?) int 重试间隔毫秒数，默认为 500毫秒
timeToLiveSeconds (?) int 临时节点的存活时间，默认 60秒

如果注册中心类型是 etcd，则可以使用以下选项设置属性：

名称 数据类型 说明
timeToLiveSeconds (?) long etcd TTL秒，默认为 30秒

如果注册中心类型是 apollo，则可以使用以下选项设置属性：

7.9. API变更历史 339

Apache ShardingSphere document, v5.1.0

名称 数据类型 说明
appId (?) String Apollo appId， 默 认 为

APOLLO_SHADINGSPHERE
env (?) String Apollo env，默认为 DEV
clusterName (?) String Apollo clusterName，默认为

default
administrator (?) String Apollo administrator，默认为“|

| token (?)
String

Apollo token，默认为 “

portalUrl (?) String Apollo portalUrl，默认为 “
connectTimeout (?) int Apollo connectTimeout，默认为

1000毫秒
readTimeout (?) int Apollo readTimeout，默认为

5000毫秒

如果注册中心类型是 nacos，则可以使用以下选项设置属性：

名称 数据类型 说明
group (?) String Nacos组，默认为 SHADING_SPHERE_DEFAULT_GROUP
timeout (?) long Nacos超时时间，默认为 3000毫秒

ShardingSphere-3.x

数据分片

ShardingDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> 数据源配置
shardingRuleConfig ShardingRuleConfiguration 数据分片规则配置
configMap (?) Map<String, Object> 用户自定义的参数
props (?) Properties 属性配置

7.9. API变更历史 340

Apache ShardingSphere document, v5.1.0

ShardingRuleConfiguration

名称 数据类型 说明
tableRuleCon‐
figs

Collection 分片规则列表

bindingTable‐
Groups (?)

Collection 绑定表规则列表

broadcastTables
(?)

Collection 广播表规则列表

defaultData‐
SourceName
(?)

String 未配置分片规则的表将根据默认数据源定位

defaultDatabase
ShardingStrate‐
gyConfig (?)

Sharding
Strategy‐
Configura‐
tion

默认数据库分片策略

defaultTable
ShardingStrate‐
gyConfig (?)

Sharding
Strategy‐
Configura‐
tion

默认分表策略

def aultKeyGen‐
eratorConfig (?)

KeyG ener‐
atorConfig‐
uration

默认密钥生成器配置，使用用户定义的或内置的，例如雪花/UUI
D。默认密钥生成器是 “ org.apache.sharding sphere.core.keygen.
generator.impl.Snow flakeKeyGenerator“

master‐
SlaveRule‐
Configs (?)

Collection 读写分离规则，默认值表示不使用读写分离

7.9. API变更历史 341

Apache ShardingSphere document, v5.1.0

TableRuleConfiguration

名称 数据类型 说明
logicTable String 逻辑表名称
actualDataN‐
odes (?)

String 描述数据源名称和实际表，分隔符为点，多个数据节点用逗号
分割，支持内联表达式。不存在意味着仅分片数据库。示例：
ds0..7.tbl{0..7}

databaseSh
ardingStrategy‐
Config (?)

ShardingStrat
egyConfigura‐
tion

数据库分片策略，如果不存在则使用默认的数据库分片策略

tableSh ard‐
ingStrategyCon‐
fig (?)

ShardingStrat
egyConfigura‐
tion

表分片策略，如果不存在则使用默认的数据库分片策略

logicIndex (?) String 逻辑索引，如果在Oracle/PostgreSQL中使用DROP INDEX XXX
SQL，则需要设置此属性以查找实际表

keyGenerator‐
Config (?)

String 主键列配置，如果不存在则使用默认主键列

keyGenerator (?) KeyGenerator 主键生成器配置，如果不存在则使用默认主键生成器

StandardShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类

名称 数据类型 说明
shardingColumn String 分片键
prec iseShardingAlgorithm Prec iseShardingAlgorithm =和 IN中使用的精确分片算法
ra ngeShardingAlgorithm (?) Ra ngeShardingAlgorithm BETWEEN中使用的范围分片算法

ComplexShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于具有多个分片键的复杂分片策略。

名称 数据类型 说明
shardingColumns String 分片键，以逗号分隔
shardingAlgorithm ComplexKeysShardingAlgorithm 复杂分片算法

7.9. API变更历史 342

Apache ShardingSphere document, v5.1.0

InlineShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于行表达式的分片策略。

名称 数据类
型

说明

shardingColumns String 分片列名，以逗号分隔
algorithmExpres‐
sion

String 行表达式的分片策略，应符合 groovy语法；有关更多详细信息，请参
阅行表达式

HintShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于配置强制分片策略。

名称 数据类型 说明
shardingAlgorithm HintShardingAlgorithm 强制分片算法

NoneShardingStrategyConfiguration

ShardingStrategyConfiguration的实现类，用于配置非分片策略。

属性配置

枚举属性

名称 数据类
型

说明

sql.show (?) boolean 是否打印 SQL日志，默认值：false
executor.size (?) int 用于 SQL实现的工作线程号；如果为 0，则没有限制。默

认值：0
max.c onnec‐
tions.size.per.query (?)

int 每个物理数据库每次查询分配的最大连接数，默认值：1

che ck.table.metadata.enabled
(?)

boolean 初始化时是否检查元数据的一致性，默认值：false

7.9. API变更历史 343

Apache ShardingSphere document, v5.1.0

configMap

用户定义的参数。

读写分离

MasterSlaveDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> 数据源及其名称的映射
masterSlaveRuleConfig MasterSlaveRuleConfiguration 读写分离规则配置
configMap (?) Map<String, Object> 用户自定义的参数
props (?) Properties 属性配置

MasterSlaveRuleConfiguration

名称 数据类型 说明
name String 读写分离数据源名称
masterDataSourceName String 主数据库源名称
slaveDataSourceNames Collection 从数据库源名称列表
loadBalanceAlgorithm (?) MasterSlav eLoadBalanceAlgorithm 从库负载均衡算法

configMap

用户定义的参数。

PropertiesConstant

枚举属性。

名称 数据类
型

说明

sql.show (?) boolean 是否打印 SQL日志，默认值：false
executor.size (?) int 用于 SQL实现的工作线程号；如果为 0，则没有限制。默

认值：0
max.c onnec‐
tions.size.per.query (?)

int 每个物理数据库每次查询分配的最大连接数，默认值：1

che ck.table.metadata.enabled
(?)

boolean 初始化时是否检查元数据的一致性，默认值：false

7.9. API变更历史 344

Apache ShardingSphere document, v5.1.0

编排

OrchestrationShardingDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> ShardingDataSourceFactory“相同
sha rdingRuleConfig Shar dingRuleConfiguration ShardingDataSourceFactory“相同
configMap (?) Map<String, Object> ShardingDataSourceFactory“相同
props (?) Properties ShardingDataSourceFactory“相同
orch estrationConfig Orche strationConfiguration 编排规则配置

OrchestrationMasterSlaveDataSourceFactory

名称 数据类型 说明
dataSourceMap Map<String, DataSource> 与 Mas terSlaveDataSourceFactory

相同
master SlaveRuleCon‐
fig

MasterS laveRuleConfigura‐
tion

与 Mas terSlaveDataSourceFactory
相同

configMap (?) Map<String, Object> 与 Mas terSlaveDataSourceFactory
相同

props (?) Properties 与 Mas terSlaveDataSourceFactory
相同

orch estrationConfig Orche strationConfiguration 编排规则配置

OrchestrationConfiguration

名称 数据类型 说明
name String 编排实例名称
overwrite boolean 本地配置是否覆盖配置中心配置；如果覆盖，则每次启动

都参考本地配置
regCenter‐
Config

Regis tryCenterConfig‐
uration

注册中心配置

7.9. API变更历史 345

Apache ShardingSphere document, v5.1.0

RegistryCenterConfiguration

名称 数 据
类型

说明

serverLists String 注册中心服务列表，包括 IP地址和端口号，多个地址用逗号分隔，
如: host1:2181,host2:2181

namespace (?) String 命名空间
digest (?) String 连接注册中心的权限令牌；默认表示不需要权限
operati onTimeoutMil‐
liseconds (?)

int 操作超时毫秒数，默认为 500毫秒

maxRetries (?) int 最大重试次数，默认为 3次
retr yIntervalMillisec‐
onds (?)

int 重试间隔毫秒数，默认为 500毫秒

timeToLiveSeconds (?) int 临时节点的存活时间，默认 60秒

ShardingSphere-2.x

读写分离

概念

为了缓解数据库压力，将写入和读取操作分离为不同数据源，写库称为主库，读库称为从库，一主库可
配置多从库。

支持项

1. 提供了一主多从的读写分离配置，可独立使用，也可配合分库分表使用。
2. 独立使用读写分离支持 SQL透传。
3. 同一线程且同一数据库连接内，如有写入操作，以后的读操作均从主库读取，用于保证数据一致性。
4. Spring命名空间。
5. 基于Hint的强制主库路由。

不支持项

1. 主库和从库的数据同步。
2. 主库和从库的数据同步延迟导致的数据不一致。
3. 主库双写或多写。

7.9. API变更历史 346

Apache ShardingSphere document, v5.1.0

代码开发示例

读写分离

// 构造一个读写分离数据源，读写分离数据源实现了 DataSource 接口，可以直接作为数据源进行处理。
masterDataSource、slaveDataSource0、slaveDataSource1 等都是使用 DBCP 等连接池配置的真实数
据源。
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("masterDataSource", masterDataSource);
dataSourceMap.put("slaveDataSource0", slaveDataSource0);
dataSourceMap.put("slaveDataSource1", slaveDataSource1);

// 构建读写分离配置
MasterSlaveRuleConfiguration masterSlaveRuleConfig = new
MasterSlaveRuleConfiguration();
masterSlaveRuleConfig.setName("ms_ds");
masterSlaveRuleConfig.setMasterDataSourceName("masterDataSource");
masterSlaveRuleConfig.getSlaveDataSourceNames().add("slaveDataSource0");
masterSlaveRuleConfig.getSlaveDataSourceNames().add("slaveDataSource1");

DataSource dataSource = MasterSlaveDataSourceFactory.
createDataSource(dataSourceMap, masterSlaveRuleConfig);

分库分表 +读写分离

// 构造一个读写分离数据源，读写分离数据源实现了 DataSource 接口，可以直接作为数据源进行处理。
masterDataSource、slaveDataSource0、slaveDataSource1 等都是使用 DBCP 等连接池配置的真实数
据源。
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("masterDataSource0", masterDataSource0);
dataSourceMap.put("slaveDataSource00", slaveDataSource00);
dataSourceMap.put("slaveDataSource01", slaveDataSource01);

dataSourceMap.put("masterDataSource1", masterDataSource1);
dataSourceMap.put("slaveDataSource10", slaveDataSource10);
dataSourceMap.put("slaveDataSource11", slaveDataSource11);

// 构建读写分离配置
MasterSlaveRuleConfiguration masterSlaveRuleConfig0 = new
MasterSlaveRuleConfiguration();
masterSlaveRuleConfig0.setName("ds_0");
masterSlaveRuleConfig0.setMasterDataSourceName("masterDataSource0");
masterSlaveRuleConfig0.getSlaveDataSourceNames().add("slaveDataSource00");
masterSlaveRuleConfig0.getSlaveDataSourceNames().add("slaveDataSource01");

MasterSlaveRuleConfiguration masterSlaveRuleConfig1 = new

7.9. API变更历史 347

Apache ShardingSphere document, v5.1.0

MasterSlaveRuleConfiguration();
masterSlaveRuleConfig1.setName("ds_1");
masterSlaveRuleConfig1.setMasterDataSourceName("masterDataSource1");
masterSlaveRuleConfig1.getSlaveDataSourceNames().add("slaveDataSource10");
masterSlaveRuleConfig1.getSlaveDataSourceNames().add("slaveDataSource11");

// 继续通过 ShardingSlaveDataSourceFactory 创建 ShardingDataSource
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
shardingRuleConfig.getMasterSlaveRuleConfigs().add(masterSlaveRuleConfig0);
shardingRuleConfig.getMasterSlaveRuleConfigs().add(masterSlaveRuleConfig1);

DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap,
shardingRuleConfig);

ShardingSphere-1.x

读写分离

概念

为了缓解数据库压力，将写入和读取操作分离为不同数据源，写库称为主库，读库称为从库，一主库可
配置多从库。

支持项

1. 提供了一主多从的读写分离配置，可独立使用，也可配合分库分表使用。
2. 同一线程且同一数据库连接内，如有写入操作，以后的读操作均从主库读取，用于保证数据一致性。
3. Spring命名空间。
4. 基于Hint的强制主库路由。

不支持项

1. 主库和从库的数据同步。
2. 主库和从库的数据同步延迟导致的数据不一致。
3. 主库双写或多写。

7.9. API变更历史 348

Apache ShardingSphere document, v5.1.0

代码开发示例

// 构造一个读写分离数据源，读写分离数据源实现了 DataSource 接口，可以直接作为数据源进行处理。
masterDataSource、slaveDataSource0、slaveDataSource1 等都是使用 DBCP 等连接池配置的真实数
据源。
Map<String, DataSource> slaveDataSourceMap0 = new HashMap<>();
slaveDataSourceMap0.put("slaveDataSource00", slaveDataSource00);
slaveDataSourceMap0.put("slaveDataSource01", slaveDataSource01);
// You can choose the master-slave library load balancing strategy, the default is
ROUND_ROBIN, and there is RANDOM to choose from, or customize the load strategy
DataSource masterSlaveDs0 = MasterSlaveDataSourceFactory.createDataSource("ms_0",
"masterDataSource0", masterDataSource0, slaveDataSourceMap0,
MasterSlaveLoadBalanceStrategyType.ROUND_ROBIN);

Map<String, DataSource> slaveDataSourceMap1 = new HashMap<>();
slaveDataSourceMap1.put("slaveDataSource10", slaveDataSource10);
slaveDataSourceMap1.put("slaveDataSource11", slaveDataSource11);
DataSource masterSlaveDs1 = MasterSlaveDataSourceFactory.createDataSource("ms_1",
"masterDataSource1", masterDataSource1, slaveDataSourceMap1,
MasterSlaveLoadBalanceStrategyType.ROUND_ROBIN);

// 构建读写分离配置
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("ms_0", masterSlaveDs0);
dataSourceMap.put("ms_1", masterSlaveDs1);

Spring命名空间配置

ShardingSphere-5.0.0-beta

数据分片

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‐5.0.0.xsd

<sharding:rule />

7.9. API变更历史 349

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

名称 类型 说明
id 属性 Spring Bean Id
table‐rules (?) 标签 分片表规则配置
auto‐table‐rules (?) 标签 自动化分片表规则配置
binding‐table‐rules (?) 标签 绑定表规则配置
broadcast‐table‐rules (?) 标签 广播表规则配置
default‐database‐strategy‐ref (?) 属性 默认分库策略名称
default‐table‐strategy‐ref (?) 属性 默认分表策略名称
default‐key‐generate‐strategy‐ref (?) 属性 默认分布式序列策略名称

<sharding:table‐rules />

名称 类型 说明
table‐rule (+) 标签 分片表规则配置

<sharding:table‐rule />

名称 •
类型 *

说明

logic‐table 属性 逻辑表名称
actual‐data‐nodes 属性 由数据源名 +表名组成，以小数

点分隔。多个表以逗号分隔，支
持 inline表达式。缺省表示使用
已知数据源与逻辑表名称生成
数据节点，用于广播表（即每个
库中都需要一个同样的表用于
关联查询，多为字典表）或只分
库不分表且所有库的表结构完
全一致的情况

database‐strategy‐ref 属性 标准分片表分库策略名称
table‐strategy‐ref 属性 标准分片表分表策略名称
key‐generate‐strategy‐ref 属性 分布式序列策略名称

<auto‐table‐rules/>

名称 类型 说明
auto‐table‐rule (+) 标签 自动化分片表规则配置

<auto‐table‐rule/> |名称 |类型 |说明 | |————————‐ |—–|—————| | logic‐table |属性 |逻辑表名称 |
| actual‐data‐sources |属性 |自动分片表数据源名 | | sharding‐strategy‐ref |属性 |自动分片表策略名称 |
| key‐generate‐strategy‐ref |属性 |分布式序列策略名称 |

<sharding:binding‐table‐rules />

7.9. API变更历史 350

Apache ShardingSphere document, v5.1.0

名称 类型 说明
binding‐table‐rule (+) 标签 绑定表规则配置

<sharding:binding‐table‐rule />

名称 类型 说明
logic‐tables 属性 绑定表名称，多个表以逗号分隔

<sharding:broadcast‐table‐rules />

名称 类型 说明
broadcast‐table‐rule (+) 标签 广播表规则配置

<sharding:broadcast‐table‐rule />

名称 类型 说明
table 属性 广播表名称

<sharding:standard‐strategy />

名称 类型 说明
id 属性 标准分片策略名称
sharding‐column 属性 分片列名称
algorithm‐ref 属性 分片算法名称

<sharding:complex‐strategy />

名称 类型 说明
id 属性 复合分片策略名称
sharding‐columns 属性 分片列名称，多个列以逗号分隔
algorithm‐ref 属性 分片算法名称

<sharding:hint‐strategy />

名称 类型 说明
id 属性 Hint分片策略名称
algorithm‐ref 属性 分片算法名称

<sharding:none‐strategy />

名称 类型 说明
id 属性 分片策略名称

7.9. API变更历史 351

Apache ShardingSphere document, v5.1.0

<sharding:key‐generate‐strategy />

名称 类型 说明
id 属性 分布式序列策略名称
column 属性 分布式序列列名称
algorithm‐ref 属性 分布式序列算法名称

<sharding:sharding‐algorithm />

名称 类型 说明
id 属性 分片算法名称
type 属性 分片算法类型
props (?) 标签 分片算法属性配置

<sharding:key‐generate‐algorithm />

名称 类型 说明
id 属性 分布式序列算法名称
type 属性 分布式序列算法类型
props (?) 标签 分布式序列算法属性配置

算法类型的详情，请参见内置分片算法列表和内置分布式序列算法列表。

注意事项

行表达式标识符可以使用 ${...}或 $->{...}，但前者与 Spring本身的属性文件占位符冲突，因此在
Spring环境中使用行表达式标识符建议使用 $->{...}。

读写分离

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/readwrite‐splitting/readwrite‐
splitting‐5.0.0.xsd

<readwrite‐splitting:rule />

名称 类型 说明
id 属性 Spring Bean Id
data‐source‐rule (+) 标签 读写分离数据源规则配置

<readwrite‐splitting:data‐source‐rule />

7.9. API变更历史 352

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/sharding
https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/keygen
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/readwrite-splitting/readwrite-splitting-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

名称 类型 说明
id 属性 读写分离数据源规则名称
auto‐aware‐data‐source‐name (?) 属性 自动感知数据源名称
write‐data‐source‐name 属性 写数据源名称
read‐data‐source‐names 属性 读数据源名称，多个读数据源用逗号分隔
load‐balance‐algorithm‐ref (?) 属性 负载均衡算法名称

<readwrite‐splitting:load‐balance‐algorithm />

名称 类型 说明
id 属性 负载均衡算法名称
type 属性 负载均衡算法类型
props (?) 标签 负载均衡算法属性配置

算法类型的详情，请参见内置负载均衡算法列表。

数据加密

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt‐5.0.0.xsd

<encrypt:rule />

名称 类
型

说明 默 认
值

id 属
性

Spring Bean Id

queryWithCipherCol‐
umn (?)

属
性

是否使用加密列进行查询。在有原文列的情况下，可以使用
原文列进行查询

true

table (+) 标
签

加密表配置

<encrypt:table />

名称 类型 说明
name 属性 加密表名称
column (+) 标签 加密列配置

<encrypt:column />

7.9. API变更历史 353

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/load-balance
http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

名称 类型 说明
logic‐column 属性 加密列逻辑名称
cipher‐column 属性 加密列名称
assisted‐query‐column (?) 属性 查询辅助列名称
plain‐column (?) 属性 原文列名称
encrypt‐algorithm‐ref 属性 加密算法名称

<encrypt:encrypt‐algorithm />

名称 类型 说明
id 属性 加密算法名称
type 属性 加密算法类型
props (?) 标签 加密算法属性配置

算法类型的详情，请参见内置加密算法列表。

影子库

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow‐5.0.0.xsd

<shadow:rule />

名称 类型 说明
id 属性 Spring Bean Id
column 属性 影子字段名称
mappings(?) 标签 生产数据库与影子数据库的映射关系配置

<shadow:mapping />

名称 类型 说明
product‐data‐source‐name 属性 生产数据库名称
shadow‐data‐source‐name 属性 影子数据库名称

分布式治理

配置项说明

命名空间: http://shardingsphere.apache.org/schema/shardingsphere/governance/governance‐5.0.0.
xsd

<governance:reg‐center />

7.9. API变更历史 354

https://shardingsphere.apache.org/document/current/cn/user-manual/shardingsphere-jdbc/builtin-algorithm/encrypt
http://shardingsphere.apache.org/schema/shardingsphere/shadow/shadow-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/governance/governance-5.0.0.xsd
http://shardingsphere.apache.org/schema/shardingsphere/governance/governance-5.0.0.xsd

Apache ShardingSphere document, v5.1.0

名称 类
型

说明

id 属
性

注册中心实例名称

schema‐name
(?)

属
性

JDBC数据源别名，该参数可实现 JDBC与 PROXY共享配置

type 属
性

注册中心类型。如：ZooKeeper, etcd

namespace 属
性

注册中心命名空间

server‐lists 属
性

注册中心服务列表。包括 IP 地址和端口号。多个地址用逗号分隔。如:
host1:2181,host2:2181

props (?) 属
性

配置本实例需要的其他参数，例如 ZooKeeper的连接参数等

ShardingSphere-4.x

数据分片

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding‐4.0.0.xsd

<sharding:data‐source />

名称 类型 说明
id 属性 Spring Bean Id
sharding‐rule 标签 数据分片配置规则
props (?) 标签 属性配置

<sharding:sharding‐rule />

7.9. API变更历史 355

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding-4.0.0.xsd

Apache ShardingSphere document, v5.1.0

名称 • 说明
类 |型 | * |

data‐source‐names 属 |数据源 Bean列表，多个 Bean以逗号分隔性 |
table‐rules 标 |表分片规则配置对象签 |
binding‐table‐rules (?) 标 |绑定表规则列表签 |
broadcast‐table‐rules (?) 标 |广播表规则列表签 |
def ault‐data‐source‐name (?) 属 |未配置分片规则的表将通过默认数据源定位性 |

default‐ database‐strategy‐ref
(?)

属 |默认数据库分片策略，对应性 | <sharding:xxx‐strategy>
中的策略 Id，缺省表示不分库

defau lt‐table‐strategy‐ref (?) 属 |默认表分片策略，对应性 | <sharding:xxx‐strategy>
中的策略 Id，缺省表示不分表

defa ult‐key‐generator‐ref (?) 属 | 默认自增列值生成器引用，缺省使用性 |
org.apache.shardingsphere.core.key

gen.generator.impl.SnowflakeKeyGenerator
encrypt‐rule (?) 标 |脱敏规则签 |

<sharding:table‐rules />

名称 类型 说明
table‐rule (+) 标签 表分片规则配置对象

<sharding:table‐rule />

<sharding:binding‐table‐rules />

名称 类型 说明
binding‐table‐rule (+) 标签 绑定表规则

<sharding:binding‐table‐rule />

名称 类型 说明
logic‐tables 属性 绑定规则的逻辑表名，多表以逗号分隔

<sharding:broadcast‐table‐rules />

名称 类型 说明
broadcast‐table‐rule (+) 标签 广播表规则

<sharding:broadcast‐table‐rule />

名称 类型 说明
table 属性 广播规则的表名

7.9. API变更历史 356

Apache ShardingSphere document, v5.1.0

<sharding:standard‐strategy />

<sharding:complex‐strategy />

名称 类型 说明
id 属性 Spring Bean Id
sharding‐columns 属性 分片列名称，多个列以逗号分隔
algorithm‐ref 属性 复合分片算法引用。该类需实现 ComplexKeysShardingAlgorithm接口

<sharding:inline‐strategy />

名称 类型 说明
id 属性 Spring Bean Id
sharding‐column 属性 分片列名称
algorithm‐expression 属性 分片算法行表达式，需符合 groovy语法

<sharding:hint‐database‐strategy />

名称 类型 说明
id 属性 Spring Bean Id
algorithm‐ref 属性 Hint分片算法。该类需实现HintShardingAlgorithm接口

<sharding:none‐strategy />

名称 类型 说明
id 属性 Spring Bean Id

<sharding:key‐generator />

名称 类型 说明
column 属性 自增列名称
type 属性 自增列值生成器类型，可自定义或选择内置类型：SNOWFLAKE/UUID
props‐ref 属性 自增列值生成器的属性配置引用

Properties

属性配置项，可以为以下自增列值生成器的属性。
SNOWFLAKE

7.9. API变更历史 357

Apache ShardingSphere document, v5.1.0

名称 • 说明
类 |型 | * |

max.tolerate.ti
me.difference.milliseconds
(?)

l o n g 最大容忍时钟回退时间，单位：毫
秒。默认为 10毫秒

max.vibration.offset (?) i n t 最大抖动上限值，范围 [0, 4096)，
默认为 1。注：若使用此算法生成
值作分片值，建议配置此属性。此
算法在不同毫秒内所生成的 key
取模 2^n (2^n 一般为分库或分
表数)之后结果总为 0或 1。为防
止上述分片问题，建议将此属性
值配置为 (2^n)‐1

<sharding:encrypt‐rule />

名称 类型 说明
encrypt:encrypt‐rule (?) 标签 加解密规则

名称 类
型

说明

sql.show (?) 属
性

是否开启 SQL显示，默认值: false

executor.size (?) 属
性

工作线程数量，默认值: CPU核数

max .connections.size.per.query
(?)

属
性

每个物理数据库为每次查询分配的最大连接数量。默认值:
1

c heck.table.metadata.enabled (?) 属
性

是否在启动时检查分表元数据一致性，默认值: false

query.with.cipher.column (?) 属
性

当存在明文列时，是否使用密文列查询，默认值: true

读写分离

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/masterslave/master‐slave.xsd

<master‐slave:data‐source />

<master‐slave:props />

7.9. API变更历史 358

http://shardingsphere.apache.org/schema/shardingsphere/masterslave/master-slave.xsd

Apache ShardingSphere document, v5.1.0

名称 类
型

说明

sql.show (?) 属
性

是否开启 SQL显示，默认值: false

executor.size (?) 属
性

工作线程数量，默认值: CPU核数

max .connections.size.per.query
(?)

属
性

每个物理数据库为每次查询分配的最大连接数量。默认值:
1

c heck.table.metadata.enabled (?) 属
性

是否在启动时检查分表元数据一致性，默认值: false

<master‐slave:load‐balance‐algorithm /> 4.0.0‐RC2版本添加

名称 类型 说明
id 属性 Spring Bean Id
type (?) 属性 负载均衡算法类型，‘RANDOM’或’ROUND_ROBIN’，支持自定义拓展
props‐ref (?) 属性 负载均衡算法配置参数

数据脱敏

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt.xsd

<encrypt:data‐source />

名称 类型 说明
id 属性 Spring Bean Id
data‐source‐name 属性 加密数据源 Bean Id
props (?) 标签 属性配置

<encrypt:encryptors />

名称 类型 说明
encryptor (+) 标签 加密器配置

<encrypt:encryptor />

7.9. API变更历史 359

http://shardingsphere.apache.org/schema/shardingsphere/encrypt/encrypt.xsd

Apache ShardingSphere document, v5.1.0

名称 类
型

说明

id 属
性

加密器的名称

type 属
性

加解密器类型，可自定义或选择内置类型：MD5/AES

props‐
ref

属
性

属性配置,注意：使用AES加密器，需要配置AES加密器的KEY属性：aes.key.value

<encrypt:tables />

名称 类型 说明
table (+) 标签 加密表配置

<encrypt:table />

名称 类型 说明
column (+) 标签 加密列配置

<encrypt:column />

<encrypt:props />

名称 类型 说明
sql.show (?) 属性 是否开启 SQL显示，默认值: false
query.with.cipher.column (?) 属性 当存在明文列时，是否使用密文列查询，默认值: true

治理

数据分片 +治理

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

<orchestration:sharding‐data‐source />

7.9. API变更历史 360

http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

Apache ShardingSphere document, v5.1.0

名称 类
型

说明

id 属
性

ID

data‐source‐ref
(?)

属
性

被治理的数据库 id

registry‐
center‐ref

属
性

注册中心 id

overwrite 属
性

本地配置是否覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准。
缺省为不覆盖

读写分离 +治理

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

<orchestration:master‐slave‐data‐source />

名称 类
型

说明

id 属
性

ID

data‐source‐ref
(?)

属
性

被治理的数据库 id

registry‐
center‐ref

属
性

注册中心 id

overwrite 属
性

本地配置是否覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准。
缺省为不覆盖

数据脱敏 +治理

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

<orchestration:encrypt‐data‐source />

7.9. API变更历史 361

http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

Apache ShardingSphere document, v5.1.0

名称 类
型

说明

id 属
性

ID

data‐source‐ref
(?)

属
性

被治理的数据库 id

registry‐
center‐ref

属
性

注册中心 id

overwrite 属
性

本地配置是否覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准。
缺省为不覆盖

治理注册中心

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

<orchestration:registry‐center />

名称 类
型

说明

id 属
性

注册中心的 Spring Bean Id

type 属
性

注册中心类型。如：zookeeper

server‐lists 属
性

连接注册中心服务器的列表，包括 IP地址和端口号，多个地址用逗
号分隔。如: host1:2181,host2:2181

namespace (?) 属
性

注册中心的命名空间

digest (?) 属
性

连接注册中心的权限令牌。缺省为不需要权限验证

ope ration‐timeout‐
milliseconds (?)

属
性

操作超时的毫秒数，默认 500毫秒

max‐retries (?) 属
性

连接失败后的最大重试次数，默认 3次

retry‐interval‐
milliseconds (?)

属
性

重试间隔毫秒数，默认 500毫秒

time‐to‐live‐seconds (?) 属
性

临时节点存活秒数，默认 60秒

props‐ref (?) 属
性

配置中心其它属性

7.9. API变更历史 362

http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

Apache ShardingSphere document, v5.1.0

ShardingSphere-3.x

数据分片

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding.xsd

<sharding:data‐source />

名称 类型 说明
id 属性 Spring Bean Id
sharding‐rule 标签 数据分片配置规则
config‐map (?) 标签 用户自定义配置
props (?) 标签 属性配置

<sharding:sharding‐rule />

名称 • 说明
类 |型 | * |

data‐source‐names 属 |数据源 Bean列表，多个 Bean以逗号分隔性 |
table‐rules 标 |表分片规则配置对象签 |
binding‐table‐rules (?) 标 |绑定表规则列表签 |
broadcast‐table‐rules (?) 标 |广播表规则列表签 |
def ault‐data‐source‐name (?) 属 |未配置分片规则的表将通过默认数据源定位性 |

default‐ database‐strategy‐ref
(?)

属 |默认数据库分片策略，对应性 | <sharding:xxx‐strategy>
中的策略 Id，缺省表示不分库

defau lt‐table‐strategy‐ref (?) 属 |默认表分片策略，对应性 | <sharding:xxx‐strategy>
中的策略 Id，缺省表示不分表

defa ult‐key‐generator‐ref (?) 属 | 默认自增列值生成器引用，缺省使用性 |
io.shardingsphere.core.keygen.Default

KeyGenerator。该类需实现 KeyGenerator接口

<sharding:table‐rules />

名称 类型 说明
table‐rule (+) 标签 表分片规则配置对象

<sharding:table‐rule />

7.9. API变更历史 363

http://shardingsphere.apache.org/schema/shardingsphere/sharding/sharding.xsd

Apache ShardingSphere document, v5.1.0

名称 • 说明
类 |型 | * |

logic‐table 属 |逻辑表名称性 |
actual‐data‐nodes (?) 属 |由数据源名 +性 |表名组成

，以小数点分隔。多个表以逗号分隔，支持 inli

ne表达式。缺省表示使用已知数据源与逻辑表名
称生成数据节点。用于广播表（即每个库中都需
要一个同样的表用于关联查询，多为字典表）或
只分库不分表且所有库的表结构完全一致的情况

dat abase‐strategy‐ref (?) 属 |数据库分片策略，对应性 | <sharding:xxx‐strategy>
中的策略 Id，缺省表示使用
<sharding:sharding‐rule />

配置的默认数据库分片策略
table‐strategy‐ref (?) 属 |表分片策略，对应 <sharding:xxx‐strategy>性 |中的策略 Id，缺

省表示使用
<sharding:sharding‐rule />

配置的默认表分片策略
genera te‐key‐column‐name (?) 属 |自增列名称，缺省表示不使用自增主键生成器性 |

key‐generator‐ref (?) 属 |自增列值生成器引用，缺省表示使用默认性 |自增列值生成器.
该类需实现 KeyGenerator接口

logic‐index (?) 属 |逻辑索引名称性 |，对于分表的 Oracle/PostgreSQL数据库中
DROP

INDEX

XXX语句，需要通
过配置逻辑索引名称定位所执行 SQL的真实分表

<sharding:binding‐table‐rules />

名称 类型 说明
binding‐table‐rule (+) 标签 绑定表规则

名称 类型 说明
table 属性 广播规则的表名

<sharding:standard‐strategy />

<sharding:complex‐strategy />

7.9. API变更历史 364

Apache ShardingSphere document, v5.1.0

名称 类型 说明
id 属性 Spring Bean Id
sharding‐columns 属性 分片列名称，多个列以逗号分隔
algorithm‐ref 属性 复合分片算法引用。该类需实现 ComplexKeysShardingAlgorithm接口

<sharding:inline‐strategy />

名称 类型 说明
id 属性 Spring Bean Id
sharding‐column 属性 分片列名称
algorithm‐expression 属性 分片算法行表达式，需符合 groovy语法

<sharding:hint‐database‐strategy />

名称 类型 说明
id 属性 Spring Bean Id
algorithm‐ref 属性 Hint分片算法。该类需实现HintShardingAlgorithm接口

<sharding:none‐strategy />

名称 类型 说明
id 属性 Spring Bean Id

<sharding:props />

名称 类
型

说明

sql.show (?) 属
性

是否开启 SQL显示，默认值: false

executor.size (?) 属
性

工作线程数量，默认值: CPU核数

max .connections.size.per.query
(?)

属
性

每个物理数据库为每次查询分配的最大连接数量。默认值:
1

c heck.table.metadata.enabled (?) 属
性

是否在启动时检查分表元数据一致性，默认值: false

<sharding:config‐map />

7.9. API变更历史 365

Apache ShardingSphere document, v5.1.0

读写分离

配置项说明

命名空间：http://apache.shardingsphere.org/schema/shardingsphere/masterslave/master‐slave.xsd

<master‐slave:data‐source />

名称 类
型

说明

id 属
性

Spring Bean Id

master‐da ta‐
source‐name

属
性

主库数据源 Bean Id

slave‐dat a‐source‐
names

属
性

从库数据源 Bean Id列表，多个 Bean以逗号分隔

strategy‐ref (?) 属
性

从库负载均衡算法引用。该类需实现MasterSlaveLoadBalanceAlgorithm
接口

strategy‐type (?) 属
性

从库负载均衡算法类型，可选值：ROUND_ROBIN，RANDOM。若 strategy‐
ref存在则忽略该配置

config‐map (?) 属
性

用户自定义配置

props (?) 属
性

属性配置

<master‐slave:config‐map />

<master‐slave:props />

名称 类
型

说明

sql.show (?) 属
性

是否开启 SQL显示，默认值: false

executor.size (?) 属
性

工作线程数量，默认值: CPU核数

max .connections.size.per.query
(?)

属
性

每个物理数据库为每次查询分配的最大连接数量。默认值:
1

c heck.table.metadata.enabled (?) 属
性

是否在启动时检查分表元数据一致性，默认值: false

7.9. API变更历史 366

http://apache.shardingsphere.org/schema/shardingsphere/masterslave/master-slave.xsd

Apache ShardingSphere document, v5.1.0

治理

数据分片 +数据治理

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

<orchestration:sharding‐data‐source />

名称 类
型

说明

id 属
性

ID

data‐source‐ref
(?)

属
性

被治理的数据库 id

registry‐
center‐ref

属
性

注册中心 id

overwrite (?) 属
性

本地配置是否覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准。
缺省为不覆盖

读写分离 +数据治理

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

<orchestration:master‐slave‐data‐source />

名称 类
型

说明

id 属
性

ID

data‐source‐ref
(?)

属
性

被治理的数据库 id

registry‐
center‐ref

属
性

注册中心 id

overwrite (?) 属
性

本地配置是否覆盖注册中心配置。如果可覆盖，每次启动都以本地配置为准。
缺省为不覆盖

7.9. API变更历史 367

http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd
http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

Apache ShardingSphere document, v5.1.0

数据治理注册中心

配置项说明

命名空间：http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

<orchestration:registry‐center />

名称 类
型

说明

id 属
性

注册中心的 Spring Bean Id

server‐lists 属
性

连接注册中心服务器的列表，包括 IP地址和端口号，多个地址用逗
号分隔。如: host1:2181,host2:2181

namespace (?) 属
性

注册中心的命名空间

digest (?) 属
性

连接注册中心的权限令牌。缺省为不需要权限验证

ope ration‐timeout‐
milliseconds (?)

属
性

操作超时的毫秒数，默认 500毫秒

max‐retries (?) 属
性

连接失败后的最大重试次数，默认 3次

retry‐interval‐
milliseconds (?)

属
性

重试间隔毫秒数，默认 500毫秒

time‐to‐live‐seconds (?) 属
性

临时节点存活秒数，默认 60秒

ShardingSphere-2.x

数据分片

配置项说明

<sharding:data‐source/>

定义 sharding‐jdbc数据源

7.9. API变更历史 368

http://shardingsphere.apache.org/schema/shardingsphere/orchestration/orchestration.xsd

Apache ShardingSphere document, v5.1.0

名称 类型 数据类型 必填 说明
id 属性 String 是 Spring Bean ID
sharding‐rule 标签 • 是 分片规则

binding‐table‐
rules (?)

标签 • 否 分片规则

props (?) 标签 • 否 相关属性配置

<sharding:sharding‐rule/>

<sharding:table‐rules/>

名称 类型 数据类型 必填 说明
table‐rule(+) 标签 • 是 分片规则

<sharding:table‐rule/>

<sharding:binding‐table‐rules/>

名称 类型 数据类型 必填 说明
binding‐table‐
rule

标签 • 是 绑定规则

<sharding:binding‐table‐rule/>

名称 类型 数据类型 必填 说明
logic‐tables 属性 String 是 逻辑表名，多个表名以逗号分隔

<sharding:standard‐strategy/>标准分片策略，用于单分片键的场景

名称
• *数

类 |据型 |类 * |型 *

• 说明
必 |填 | * |

sha rding‐column 属 | Str |是 |分片列名性 | ing | |
precise‐alg
orithm‐class

属 | Str |是 |精性 | ing | |确的分片算法类名称，用于 =和 IN。该类需
| |使用默认的构造器或者提供无参数的构造器

range‐alg orithm‐
class (?)

属 | Str |否 |范围性 | ing | |的分片算法类名称，用于 BETWEEN。该类需
| |使用默认的构造器或者提供无参数的构造器

<sharding:complex‐strategy/>复合分片策略，用于多分片键的场景

7.9. API变更历史 369

Apache ShardingSphere document, v5.1.0

名称 类
型

数据类
型

必
填

说明

sharding‐
columns

属
性

String 是 分片列名，多个列以逗号分隔

algorithm‐class 属
性

String 是 分片算法全类名，该类需使用默认的构造器或者提供无参
数的构造器

<sharding:inline‐strategy/> inline表达式分片策略

名称 类型 数据类型 必填 说明
sharding‐column 属性 String 是 分片列名
algorithm‐expression 属性 String 是 分片算法表达式

<sharding:hint‐database‐strategy/> Hint方式分片策略

名称 类
型

数据类
型

必
填

说明

algorithm‐
class

属
性

String 是 分片算法全类名，该类需使用默认的构造器或者提供无参数
的构造器

<sharding:none‐strategy/>不分片的策略
<sharding:props/>

名称 类型 数据类型 必填 说明
sql.show 属性 boolean 是 是否开启 SQL显示，默认为 false不开启
executor.size (?) 属性 int 否 最大工作线程数量

读写分离

配置项说明

<master‐slave:data‐source/>定义 sharding‐jdbc读写分离的数据源

Spring格式特别说明

如需使用 inline表达式，需配置 ignore‐unresolvable为 true，否则 placeholder会把 inline表达式当成
属性 key值导致出错。

7.9. API变更历史 370

Apache ShardingSphere document, v5.1.0

分片算法表达式语法说明

inline表达式特别说明

${begin..end}表示范围区间
${[unit1, unit2, unitX]}表示枚举值
inline表达式中连续多个 ${⋯}表达式，整个 inline最终的结果将会根据每个子表达式的结果进行笛卡尔
组合，例如正式表 inline表达式如下：

dbtbl_${['online', 'offline']}_${1..3}

最终会解析为 dbtbl_online_1，dbtbl_online_2，dbtbl_online_3，dbtbl_offline_1，dbtbl_offline_2 和
dbtbl_offline_3这 6张表。

字符串内嵌 groovy代码

表达式本质上是一段字符串，字符串中使用 ${}来嵌入 groovy代码。

data_source_${id % 2 + 1}

上面的表达式中 data_source_是字符串前缀，id % 2 + 1是 groovy代码。

治理

7.9. API变更历史 371

Apache ShardingSphere document, v5.1.0

Zookeeper标签说明

名称 类
型

是否
必填

缺
省
值

描述

id Str
ing

是 注册中心在 Spring容器中的主键

se rver‐lists Str
ing

是 连接 Zookeeper服务器的列表包括 IP地址和端口号多
个地址用逗号分隔如: host1:2181,host2:2181

namespace Str
ing

是 Zookeeper的命名空间

base‐sle ep‐time‐mi
lliseconds (?)

int 否 1
000

等待重试的间隔时间的初始值单位：毫秒

max‐sle ep‐time‐mi
lliseconds (?)

int 否 3
000

等待重试的间隔时间的最大值单位：毫秒

m ax‐retries (?) int 否 3 最大重试次数
session‐ timeout‐mi
lliseconds (?)

int 否 60
000

会话超时时间单位：毫秒

c onnection‐
timeout‐mi llisec‐
onds (?)

int 否 15
000

连接超时时间单位：毫秒

digest (?) Str
ing

否 连接 Zookeep er的权限令牌缺省为不需要权限验证

7.9. API变更历史 372

Apache ShardingSphere document, v5.1.0

Etcd配置示例

名称
• *是

类 |否型 |必 * |填 *

•
缺省值 *

描述

id S t r i n g 是 注 册 中 心 在
Spring 容器中的
主键

server‐lists S t r i n g 是 连接 Etcd 服务
器 的 列 表 包 括
I P 地址和端口
号 多 个 地 址 用
逗号分隔如: h
ttp://host1:2379,http://host2:2379

time‐ to‐live‐
seconds (?)

i n t 否 60 临时节点存活时
间单位：秒

timeo ut‐
milliseconds
(?)

i n t 否 5 00 每次请求的超时
时间单位：毫秒

max‐retries (?) i n t 否 3 每次请求的最大
重试次数

retry‐interv al‐
milliseconds
(?)

i n t 否 2 00 重试间隔时间单
位：毫秒

Spring Boot Start配置

5.0.0-alpha

数据分片

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置

标准分片表配置
spring.shardingsphere.rules.sharding.tables.<table-name>.actual-data-nodes= # 由数据
源名 + 表名组成，以小数点分隔。多个表以逗号分隔，支持 inline 表达式。缺省表示使用已知数据源与逻辑表
名称生成数据节点，用于广播表（即每个库中都需要一个同样的表用于关联查询，多为字典表）或只分库不分表且
所有库的表结构完全一致的情况

分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一

7.9. API变更历史 373

Apache ShardingSphere document, v5.1.0

用于单分片键的标准分片场景
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.<sharding-algorithm-name>.sharding-column= # 分片列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.
standard.<sharding-algorithm-name>.sharding-algorithm-name= # 分片算法名称

用于多分片键的复合分片场景
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
<sharding-algorithm-name>.sharding-columns= # 分片列名称，多个列以逗号分隔
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.complex.
<sharding-algorithm-name>.sharding-algorithm-name= # 分片算法名称

用于 Hint 的分片策略
spring.shardingsphere.rules.sharding.tables.<table-name>.database-strategy.hint.
<sharding-algorithm-name>.sharding-algorithm-name= # 分片算法名称

分表策略，同分库策略
spring.shardingsphere.rules.sharding.tables.<table-name>.table-strategy.xxx= # 省略

自动分片表配置
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.actual-data-
sources= # 数据源名

spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-column= # 分片列名称
spring.shardingsphere.rules.sharding.auto-tables.<auto-table-name>.sharding-
strategy.standard.sharding-algorithm= # 自动分片算法名称

分布式序列策略配置
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.
column= # 分布式序列列名称
spring.shardingsphere.rules.sharding.tables.<table-name>.key-generate-strategy.key-
generator-name= # 分布式序列算法名称

spring.shardingsphere.rules.sharding.binding-tables[0]= # 绑定表规则列表
spring.shardingsphere.rules.sharding.binding-tables[1]= # 绑定表规则列表
spring.shardingsphere.rules.sharding.binding-tables[x]= # 绑定表规则列表

spring.shardingsphere.rules.sharding.broadcast-tables[0]= # 广播表规则列表
spring.shardingsphere.rules.sharding.broadcast-tables[1]= # 广播表规则列表
spring.shardingsphere.rules.sharding.broadcast-tables[x]= # 广播表规则列表

spring.shardingsphere.sharding.default-database-strategy.xxx= # 默认数据库分片策略
spring.shardingsphere.sharding.default-table-strategy.xxx= # 默认表分片策略
spring.shardingsphere.sharding.default-key-generate-strategy.xxx= # 默认分布式序列策略

分片算法配置
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.

7.9. API变更历史 374

Apache ShardingSphere document, v5.1.0

type= # 分片算法类型
spring.shardingsphere.rules.sharding.sharding-algorithms.<sharding-algorithm-name>.
props.xxx=# 分片算法属性配置

分布式序列算法配置
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
type= # 分布式序列算法类型
spring.shardingsphere.rules.sharding.key-generators.<key-generate-algorithm-name>.
props.xxx= # 分布式序列算法属性配置

读写分离

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置

spring.shardingsphere.rules.replica-query.data-sources.<replica-query-data-source-
name>.primary-data-source-name= # 主数据源名称
spring.shardingsphere.rules.replica-query.data-sources.<replica-query-data-source-
name>.replica-data-source-names= # 从数据源名称，多个从数据源用逗号分隔
spring.shardingsphere.rules.replica-query.data-sources.<replica-query-data-source-
name>.load-balancer-name= # 负载均衡算法名称

负载均衡算法配置
spring.shardingsphere.rules.replica-query.load-balancers.<load-balance-algorithm-
name>.type= # 负载均衡算法类型
spring.shardingsphere.rules.replica-query.load-balancers.<load-balance-algorithm-
name>.props.xxx= # 负载均衡算法属性配置

数据加密

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置

spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
cipher-column= # 加密列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
assisted-query-column= # 查询列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
plain-column= # 原文列名称
spring.shardingsphere.rules.encrypt.tables.<table-name>.columns.<column-name>.
encryptor-name= # 加密算法名称

7.9. API变更历史 375

Apache ShardingSphere document, v5.1.0

加密算法配置
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.type= # 加密
算法类型
spring.shardingsphere.rules.encrypt.encryptors.<encrypt-algorithm-name>.props.xxx=
加密算法属性配置

影子库

配置项说明

spring.shardingsphere.datasource.names= # 省略数据源配置

spring.shardingsphere.rules.shadow.column= # 影子字段名称
spring.shardingsphere.rules.shadow.shadow-mappings.<product-data-source-name>= # 影
子数据库名称

分布式治理

配置项说明

spring.shardingsphere.governance.name= # 治理名称
spring.shardingsphere.governance.registry-center.type= # 治理持久化类型。如：Zookeeper,
etcd, Apollo, Nacos
spring.shardingsphere.governance.registry-center.server-lists= # 治理服务列表。包括 IP
地址和端口号。多个地址用逗号分隔。如: host1:2181,host2:2181
spring.shardingsphere.governance.registry-center.props= # 其它配置
spring.shardingsphere.governance.additional-config-center.type= # 可选的配置中心类型。
如：Zookeeper, etcd, Apollo, Nacos
spring.shardingsphere.governance.additional-config-center.server-lists= # 可选的配置
中心服务列表。包括 IP 地址和端口号。多个地址用逗号分隔。如: host1:2181,host2:2181
spring.shardingsphere.governance.additional-config-center.props= # 可选的配置中心其它配
置
spring.shardingsphere.governance.overwrite= # 本地配置是否覆盖配置中心配置。如果可覆盖，每
次启动都以本地配置为准.

7.9. API变更历史 376

Apache ShardingSphere document, v5.1.0

ShardingSphere-4.x

数据分片

配置项说明

spring.shardingsphere.datasource.names= # 数据源名称，多数据源以逗号分隔

spring.shardingsphere.datasource.<data-source-name>.type= # 数据库连接池类名称
spring.shardingsphere.datasource.<data-source-name>.driver-class-name= # 数据库驱动类
名
spring.shardingsphere.datasource.<data-source-name>.url= # 数据库 url 连接
spring.shardingsphere.datasource.<data-source-name>.username= # 数据库用户名
spring.shardingsphere.datasource.<data-source-name>.password= # 数据库密码
spring.shardingsphere.datasource.<data-source-name>.xxx= # 数据库连接池的其它属性

spring.shardingsphere.sharding.tables.<logic-table-name>.actual-data-nodes= # 由数据
源名 + 表名组成，以小数点分隔。多个表以逗号分隔，支持 inline 表达式。缺省表示使用已知数据源与逻辑表
名称生成数据节点，用于广播表（即每个库中都需要一个同样的表用于关联查询，多为字典表）或只分库不分表且
所有库的表结构完全一致的情况

分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一

用于单分片键的标准分片场景
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.
standard.sharding-column= # 分片列名称
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.
standard.precise-algorithm-class-name= # 精确分片算法类名称，用于 = 和 IN。该类需实现
PreciseShardingAlgorithm 接口并提供无参数的构造器
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.
standard.range-algorithm-class-name= # 范围分片算法类名称，用于 BETWEEN，可选。该类需实现
RangeShardingAlgorithm 接口并提供无参数的构造器

用于多分片键的复合分片场景
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.
sharding-columns= # 分片列名称，多个列以逗号分隔
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.complex.
algorithm-class-name= # 复合分片算法类名称。该类需实现 ComplexKeysShardingAlgorithm 接口
并提供无参数的构造器

行表达式分片策略
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.
sharding-column= # 分片列名称
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.inline.
algorithm-expression= # 分片算法行表达式，需符合 groovy 语法

Hint 分片策略
spring.shardingsphere.sharding.tables.<logic-table-name>.database-strategy.hint.

7.9. API变更历史 377

Apache ShardingSphere document, v5.1.0

algorithm-class-name= # Hint 分片算法类名称。该类需实现 HintShardingAlgorithm 接口并提供无
参数的构造器

分表策略，同分库策略
spring.shardingsphere.sharding.tables.<logic-table-name>.table-strategy.xxx= # 省略

spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.column= # 自
增列名称，缺省表示不使用自增主键生成器
spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.type= # 自增
列值生成器类型，缺省表示使用默认自增列值生成器。可使用用户自定义的列值生成器或选择内置类型：
SNOWFLAKE/UUID
spring.shardingsphere.sharding.tables.<logic-table-name>.key-generator.props.
<property-name>= # 属性配置, 注意：使用 SNOWFLAKE 算法，需要配置 max.tolerate.time.
difference.milliseconds 属性。若使用此算法生成值作分片值，建议配置 max.vibration.offset 属性

spring.shardingsphere.sharding.binding-tables[0]= # 绑定表规则列表
spring.shardingsphere.sharding.binding-tables[1]= # 绑定表规则列表
spring.shardingsphere.sharding.binding-tables[x]= # 绑定表规则列表

spring.shardingsphere.sharding.broadcast-tables[0]= # 广播表规则列表
spring.shardingsphere.sharding.broadcast-tables[1]= # 广播表规则列表
spring.shardingsphere.sharding.broadcast-tables[x]= # 广播表规则列表

spring.shardingsphere.sharding.default-data-source-name= # 未配置分片规则的表将通过默认
数据源定位
spring.shardingsphere.sharding.default-database-strategy.xxx= # 默认数据库分片策略，同
分库策略
spring.shardingsphere.sharding.default-table-strategy.xxx= # 默认表分片策略，同分表策略
spring.shardingsphere.sharding.default-key-generator.type= # 默认自增列值生成器类型，缺
省将使用 org.apache.shardingsphere.core.keygen.generator.impl.SnowflakeKeyGenerator。
可使用用户自定义的列值生成器或选择内置类型：SNOWFLAKE/UUID
spring.shardingsphere.sharding.default-key-generator.props.<property-name>= # 自增列
值生成器属性配置, 比如 SNOWFLAKE 算法的 max.tolerate.time.difference.milliseconds

spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= # 详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= # 详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= # 详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= # 详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= # 详见读写分离部分
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= # 详见读写分离部分

spring.shardingsphere.props.sql.show= # 是否开启 SQL 显示，默认值: false

7.9. API变更历史 378

Apache ShardingSphere document, v5.1.0

spring.shardingsphere.props.executor.size= # 工作线程数量，默认值: CPU 核数

读写分离

配置项说明

省略数据源配置，与数据分片一致

spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= # 主库数据源名称
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= # 从库数据源名称列表
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= # 从库数据源名称列表
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= # 从库数据源名称列表
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= # 从库负载均衡算法类名称。该类需实现
MasterSlaveLoadBalanceAlgorithm 接口且提供无参数构造器
spring.shardingsphere.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= # 从库负载均衡算法类型，可选值：ROUND_ROBIN，RANDOM。若
`load-balance-algorithm-class-name` 存在则忽略该配置

spring.shardingsphere.props.sql.show= # 是否开启 SQL 显示，默认值: false
spring.shardingsphere.props.executor.size= # 工作线程数量，默认值: CPU 核数
spring.shardingsphere.props.check.table.metadata.enabled= # 是否在启动时检查分表元数据一
致性，默认值: false

数据脱敏

配置项说明

省略数据源配置，与数据分片一致

spring.shardingsphere.encrypt.encryptors.<encryptor-name>.type= # 加解密器类型，可自定
义或选择内置类型：MD5/AES
spring.shardingsphere.encrypt.encryptors.<encryptor-name>.props.<property-name>= #
属性配置, 注意：使用 AES 加密器，需要配置 AES 加密器的 KEY 属性：aes.key.value
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
plainColumn= # 存储明文的字段
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
cipherColumn= # 存储密文的字段
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
assistedQueryColumn= # 辅助查询字段，针对 ShardingQueryAssistedEncryptor 类型的加解密器进

7.9. API变更历史 379

Apache ShardingSphere document, v5.1.0

行辅助查询
spring.shardingsphere.encrypt.tables.<table-name>.columns.<logic-column-name>.
encryptor= # 加密器名字

治理

配置项说明

省略数据源、数据分片、读写分离和数据脱敏配置

spring.shardingsphere.orchestration.name= # 治理实例名称
spring.shardingsphere.orchestration.overwrite= # 本地配置是否覆盖注册中心配置。如果可覆盖，
每次启动都以本地配置为准
spring.shardingsphere.orchestration.registry.type= # 配置中心类型。如：zookeeper
spring.shardingsphere.orchestration.registry.server-lists= # 连接注册中心服务器的列表。
包括 IP 地址和端口号。多个地址用逗号分隔。如: host1:2181,host2:2181
spring.shardingsphere.orchestration.registry.namespace= # 注册中心的命名空间
spring.shardingsphere.orchestration.registry.digest= # 连接注册中心的权限令牌。缺省为不需
要权限验证
spring.shardingsphere.orchestration.registry.operation-timeout-milliseconds= # 操作
超时的毫秒数，默认 500 毫秒
spring.shardingsphere.orchestration.registry.max-retries= # 连接失败后的最大重试次数，默
认 3 次
spring.shardingsphere.orchestration.registry.retry-interval-milliseconds= # 重试间隔
毫秒数，默认 500 毫秒
spring.shardingsphere.orchestration.registry.time-to-live-seconds= # 临时节点存活秒数，
默认 60 秒
spring.shardingsphere.orchestration.registry.props= # 配置中心其它属性

ShardingSphere-3.x

数据分片

配置项说明

sharding.jdbc.datasource.names= # 数据源名称，多数据源以逗号分隔

sharding.jdbc.datasource.<data-source-name>.type= # 数据库连接池类名称
sharding.jdbc.datasource.<data-source-name>.driver-class-name= # 数据库驱动类名
sharding.jdbc.datasource.<data-source-name>.url= # 数据库 url 连接
sharding.jdbc.datasource.<data-source-name>.username= # 数据库用户名
sharding.jdbc.datasource.<data-source-name>.password= # 数据库密码
sharding.jdbc.datasource.<data-source-name>.xxx= # 数据库连接池的其它属性

7.9. API变更历史 380

Apache ShardingSphere document, v5.1.0

sharding.jdbc.config.sharding.tables.<logic-table-name>.actual-data-nodes= # 由数据源
名 + 表名组成，以小数点分隔。多个表以逗号分隔，支持 inline 表达式。缺省表示使用已知数据源与逻辑表名
称生成数据节点。用于广播表（即每个库中都需要一个同样的表用于关联查询，多为字典表）或只分库不分表且所
有库的表结构完全一致的情况

分库策略，缺省表示使用默认分库策略，以下的分片策略只能选其一

用于单分片键的标准分片场景
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.standard.
sharding-column= # 分片列名称
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.standard.
precise-algorithm-class-name= # 精确分片算法类名称，用于 = 和 IN。该类需实现
PreciseShardingAlgorithm 接口并提供无参数的构造器
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.standard.
range-algorithm-class-name= # 范围分片算法类名称，用于 BETWEEN，可选。该类需实现
RangeShardingAlgorithm 接口并提供无参数的构造器

用于多分片键的复合分片场景
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.complex.
sharding-columns= # 分片列名称，多个列以逗号分隔
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.complex.
algorithm-class-name= # 复合分片算法类名称。该类需实现 ComplexKeysShardingAlgorithm 接口
并提供无参数的构造器

行表达式分片策略
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.inline.
sharding-column= # 分片列名称
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.inline.
algorithm-expression= # 分片算法行表达式，需符合 groovy 语法

Hint 分片策略
sharding.jdbc.config.sharding.tables.<logic-table-name>.database-strategy.hint.
algorithm-class-name= # Hint 分片算法类名称。该类需实现 HintShardingAlgorithm 接口并提供无
参数的构造器

分表策略，同分库策略
sharding.jdbc.config.sharding.tables.<logic-table-name>.table-strategy.xxx= # 省略

sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-column-name=
自增列名称，缺省表示不使用自增主键生成器
sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-class-name= #
自增列值生成器类名称，缺省表示使用默认自增列值生成器。该类需提供无参数的构造器

sharding.jdbc.config.sharding.tables.<logic-table-name>.logic-index= # 逻辑索引名称，
对于分表的 Oracle/PostgreSQL 数据库中 DROP INDEX XXX 语句，需要通过配置逻辑索引名称定位所执行
SQL 的真实分表

sharding.jdbc.config.sharding.binding-tables[0]= # 绑定表规则列表

7.9. API变更历史 381

Apache ShardingSphere document, v5.1.0

sharding.jdbc.config.sharding.binding-tables[1]= # 绑定表规则列表
sharding.jdbc.config.sharding.binding-tables[x]= # 绑定表规则列表

sharding.jdbc.config.sharding.broadcast-tables[0]= # 广播表规则列表
sharding.jdbc.config.sharding.broadcast-tables[1]= # 广播表规则列表
sharding.jdbc.config.sharding.broadcast-tables[x]= # 广播表规则列表

sharding.jdbc.config.sharding.default-data-source-name= # 未配置分片规则的表将通过默认数
据源定位
sharding.jdbc.config.sharding.default-database-strategy.xxx= # 默认数据库分片策略，同分
库策略
sharding.jdbc.config.sharding.default-table-strategy.xxx= # 默认表分片策略，同分表策略
sharding.jdbc.config.sharding.default-key-generator-class-name= # 默认自增列值生成器类
名称，缺省使用 io.shardingsphere.core.keygen.DefaultKeyGenerator。该类需实现
KeyGenerator 接口并提供无参数的构造器

sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= # 详见读写分离部分
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= # 详见读写分离部分
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= # 详见读写分离部分
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= # 详见读写分离部分
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= # 详见读写分离部分
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= # 详见读写分离部分
sharding.jdbc.config.config.map.key1= # 详见读写分离部分
sharding.jdbc.config.config.map.key2= # 详见读写分离部分
sharding.jdbc.config.config.map.keyx= # 详见读写分离部分

sharding.jdbc.config.props.sql.show= # 是否开启 SQL 显示，默认值: false
sharding.jdbc.config.props.executor.size= # 工作线程数量，默认值: CPU 核数

sharding.jdbc.config.config.map.key1= # 用户自定义配置
sharding.jdbc.config.config.map.key2= # 用户自定义配置
sharding.jdbc.config.config.map.keyx= # 用户自定义配置

7.9. API变更历史 382

Apache ShardingSphere document, v5.1.0

读写分离

配置项说明

省略数据源配置，与数据分片一致

sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
master-data-source-name= # 主库数据源名称
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[0]= # 从库数据源名称列表
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[1]= # 从库数据源名称列表
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
slave-data-source-names[x]= # 从库数据源名称列表
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-class-name= # 从库负载均衡算法类名称。该类需实现
MasterSlaveLoadBalanceAlgorithm 接口且提供无参数构造器
sharding.jdbc.config.sharding.master-slave-rules.<master-slave-data-source-name>.
load-balance-algorithm-type= # 从库负载均衡算法类型，可选值：ROUND_ROBIN，RANDOM。若
`load-balance-algorithm-class-name` 存在则忽略该配置

sharding.jdbc.config.config.map.key1= # 用户自定义配置
sharding.jdbc.config.config.map.key2= # 用户自定义配置
sharding.jdbc.config.config.map.keyx= # 用户自定义配置

sharding.jdbc.config.props.sql.show= # 是否开启 SQL 显示，默认值: false
sharding.jdbc.config.props.executor.size= # 工作线程数量，默认值: CPU 核数
sharding.jdbc.config.props.check.table.metadata.enabled= # 是否在启动时检查分表元数据一
致性，默认值: false

治理

配置项说明

省略数据源、数据分片和读写分离配置

sharding.jdbc.config.sharding.orchestration.name= # 数据治理实例名称
sharding.jdbc.config.sharding.orchestration.overwrite= # 本地配置是否覆盖注册中心配置。如
果可覆盖，每次启动都以本地配置为准
sharding.jdbc.config.sharding.orchestration.registry.server-lists= # 连接注册中心服务
器的列表。包括 IP 地址和端口号。多个地址用逗号分隔。如: host1:2181,host2:2181
sharding.jdbc.config.sharding.orchestration.registry.namespace= # 注册中心的命名空间
sharding.jdbc.config.sharding.orchestration.registry.digest= # 连接注册中心的权限令牌。
缺省为不需要权限验证
sharding.jdbc.config.sharding.orchestration.registry.operation-timeout-
milliseconds= # 操作超时的毫秒数，默认 500 毫秒

7.9. API变更历史 383

Apache ShardingSphere document, v5.1.0

sharding.jdbc.config.sharding.orchestration.registry.max-retries= # 连接失败后的最大重
试次数，默认 3 次
sharding.jdbc.config.sharding.orchestration.registry.retry-interval-milliseconds= #
重试间隔毫秒数，默认 500 毫秒
sharding.jdbc.config.sharding.orchestration.registry.time-to-live-seconds= # 临时节点
存活秒数，默认 60 秒

ShardingSphere-2.x

分库分表

配置项说明

忽略数据源配置

sharding.jdbc.config.sharding.default-data-source-name= # 未配置分片规则的表将通过默认数
据源定位
sharding.jdbc.config.sharding.default-database-strategy.inline.sharding-column= # 分
片列名称
sharding.jdbc.config.sharding.default-database-strategy.inline.algorithm-
expression= # 分片算法行表达式，需符合 groovy 语法
sharding.jdbc.config.sharding.tables.t_order.actualDataNodes= # 由数据源名 + 表名组成，
以小数点分隔。多个表以逗号分隔，支持 inline 表达式。缺省表示使用已知数据源与逻辑表名称生成数据节点，
用于广播表（即每个库中都需要一个同样的表用于关联查询，多为字典表）或只分库不分表且所有库的表结构完全
一致的情况
sharding.jdbc.config.sharding.tables.t_order.tableStrategy.inline.shardingColumn= #
分片列名称
sharding.jdbc.config.sharding.tables.t_order.tableStrategy.inline.
algorithmInlineExpression= # 分片算法行表达式，需符合 groovy 语法
sharding.jdbc.config.sharding.tables.t_order.keyGeneratorColumnName= # 自增列名称，缺
省表示不使用自增主键生成器

sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-column-name=
自增列名称，缺省表示不使用自增主键生成器
sharding.jdbc.config.sharding.tables.<logic-table-name>.key-generator-class-name= #
默认自增列值生成器类型

7.9. API变更历史 384

Apache ShardingSphere document, v5.1.0

读写分离

配置项说明

忽略数据源配置

sharding.jdbc.config.masterslave.load-balance-algorithm-type= # 从库负载均衡算法类型，
可选值：ROUND_ROBIN，RANDOM。若 `load-balance-algorithm-class-name` 存在则忽略该配置
sharding.jdbc.config.masterslave.name= # 主节点名称
sharding.jdbc.config.masterslave.master-data-source-name= # 主数据源的名称
sharding.jdbc.config.masterslave.slave-data-source-names= # 从数据源的名称

编排治理

配置项说明

忽略数据源配置

sharding.jdbc.config.orchestration.name= # 数据治理实例名称
sharding.jdbc.config.orchestration.overwrite= # 本地配置是否覆盖注册中心配置。如果可覆盖，
每次启动都以本地配置为准

sharding.jdbc.config.sharding.orchestration.name= # 数据治理实例名称
sharding.jdbc.config.sharding.orchestration.overwrite= # 本地配置是否覆盖注册中心配置。如
果可覆盖，每次启动都以本地配置为准
sharding.jdbc.config.sharding.orchestration.registry.server-lists= # 连接注册中心服务
器的列表。包括 IP 地址和端口号。多个地址用逗号分隔。如: host1:2181,host2:2181
sharding.jdbc.config.sharding.orchestration.registry.namespace= # 注册中心的命名空间
sharding.jdbc.config.sharding.orchestration.registry.digest= # 连接注册中心的权限令牌。
缺省为不需要权限验证
sharding.jdbc.config.sharding.orchestration.registry.operation-timeout-
milliseconds= # 操作超时的毫秒数，默认 500 毫秒
sharding.jdbc.config.sharding.orchestration.registry.max-retries= # 连接失败后的最大重
试次数，默认 3 次
sharding.jdbc.config.sharding.orchestration.registry.retry-interval-milliseconds= #
重试间隔毫秒数，默认 500 毫秒
sharding.jdbc.config.sharding.orchestration.registry.time-to-live-seconds= # 临时节点
存活秒数，默认 60 秒

Zookeeper 配置
sharding.jdbc.config.orchestration.zookeeper.namespace= # Zookeeper 注册中心的命名空间
sharding.jdbc.config.orchestration.zookeeper.server-lists= # Zookeeper 注册中心服务器
的列表。包括 IP 地址和端口号。多个地址用逗号分隔。如: host1:2181,host2:2181

Etcd 配置
sharding.jdbc.config.orchestration.etcd.server-lists= # Etcd 注册中心服务器的列表。包括

7.9. API变更历史 385

Apache ShardingSphere document, v5.1.0

IP 地址和端口号。多个地址用逗号分隔。如: host1:2181,host2:2181

7.9.2 ShardingSphere-Proxy

5.0.0-beta

数据源配置项说明

schemaName: # 逻辑数据源名称

dataSources: # 数据源配置，可配置多个 <data-source-name>
<data-source-name>: # 与 ShardingSphere-JDBC 配置不同，无需配置数据库连接池

url: # 数据库 URL 连接
username: # 数据库用户名
password: # 数据库密码
connectionTimeoutMilliseconds: # 连接超时毫秒数
idleTimeoutMilliseconds: # 空闲连接回收超时毫秒数
maxLifetimeMilliseconds: # 连接最大存活时间毫秒数
maxPoolSize: 50 # 最大连接数
minPoolSize: 1 # 最小连接数

rules: # 与 ShardingSphere-JDBC 配置一致
...

权限配置

用于执行登录 Sharding Proxy的权限验证。配置用户名、密码、可访问的数据库后，必须使用正确的用
户名、密码才可登录。

rules:
- !AUTHORITY

users:
- root@localhost:root # <username>@<hostname>:<password>，hostname 为 % 或空字

符串，则代表不限制 host。
- sharding@:sharding

provider:
type: NATIVE # 必须显式指定

hostname为%或空字符串，则代表不限制 host。
provider的 type必须显式指定，具体实现可以参考 5.11 Proxy

7.9. API变更历史 386

https://shardingsphere.apache.org/document/5.0.0-beta/cn/dev-manual/proxy/

Apache ShardingSphere document, v5.1.0

Proxy属性

props:
sql-show: # 是否在日志中打印 SQL。打印 SQL 可以帮助开发者快速定位系统问题。日志内容包含：逻辑

SQL，真实 SQL 和 SQL 解析结果。如果开启配置，日志将使用 Topic ShardingSphere-SQL，日志级别是
INFO。
sql-simple: # 是否在日志中打印简单风格的 SQL。
executor-size: # 用于设置任务处理线程池的大小。每个 ShardingSphereDataSource 使用一个独立

的线程池，同一个 JVM 的不同数据源不共享线程池。
max-connections-size-per-query: # 一次查询请求在每个数据库实例中所能使用的最大连接数。
check-table-metadata-enabled: # 是否在程序启动和更新时检查分片元数据的结构一致性。
proxy-frontend-flush-threshold: # 在 ShardingSphere-Proxy 中设置传输数据条数的 IO 刷新

阈值。
proxy-transaction-type: # ShardingSphere-Proxy 中使用的默认事务类型。包括：LOCAL、XA 和

BASE。
proxy-opentracing-enabled: # 是否允许在 ShardingSphere-Proxy 中使用 OpenTracing。
proxy-hint-enabled: # 是否允许在 ShardingSphere-Proxy 中使用 Hint。使用 Hint 会将

Proxy 的线程处理模型由 IO 多路复用变更为每个请求一个独立的线程，会降低 Proxy 的吞吐量。
xa-transaction-manager-type: # XA 事务管理器类型。列如：Atomikos，Narayana，Bitronix。

5.0.0-alpha

数据源配置项说明

schemaName: # 逻辑数据源名称

dataSourceCommon:
username: # 数据库用户名
password: # 数据库密码
connectionTimeoutMilliseconds: # 连接超时毫秒数
idleTimeoutMilliseconds: # 空闲连接回收超时毫秒数
maxLifetimeMilliseconds: # 连接最大存活时间毫秒数
maxPoolSize: 50 # 最大连接数
minPoolSize: 1 # 最小连接数

dataSources: # 数据源配置，可配置多个 <data-source-name>
<data-source-name>: # 与 ShardingSphere-JDBC 配置不同，无需配置数据库连接池

url: # 数据库 URL 连接
rules: # 与 ShardingSphere-JDBC 配置一致
...

7.9. API变更历史 387

Apache ShardingSphere document, v5.1.0

覆盖 dataSourceCommon说明

上面配置了每个库的公共数据源配置，如果你想覆盖 dataSourceCommon属性，请在每个数据源单独配
置。

dataSources: # 数据源配置，可配置多个 <data-source-name>
<data-source-name>: # 与 ShardingSphere-JDBC 配置不同，无需配置数据库连接池

url: # 数据库 URL 连接
username: # 数据库用户名，覆盖 dataSourceCommon 配置
password: # 数据库密码，覆盖 dataSourceCommon 配置
connectionTimeoutMilliseconds: # 连接超时毫秒数，覆盖 dataSourceCommon 配置
idleTimeoutMilliseconds: # 空闲连接回收超时毫秒数，覆盖 dataSourceCommon 配置
maxLifetimeMilliseconds: # 连接最大存活时间毫秒数，覆盖 dataSourceCommon 配置
maxPoolSize: # 最大连接数，覆盖 dataSourceCommon 配置

权限配置

用于执行登录 Sharding Proxy的权限验证。配置用户名、密码、可访问的数据库后，必须使用正确的用
户名、密码才可登录。

authentication:
users:

root: # 自定义用户名
password: root # 自定义用户名

sharding: # 自定义用户名
password: sharding # 自定义用户名
authorizedSchemas: sharding_db, replica_query_db # 该用户授权可访问的数据库，多个用

逗号分隔。缺省将拥有 root 权限，可访问全部数据库。

Proxy属性

props:
sql-show: # 是否在日志中打印 SQL。打印 SQL 可以帮助开发者快速定位系统问题。日志内容包含：逻辑

SQL，真实 SQL 和 SQL 解析结果。如果开启配置，日志将使用 Topic ShardingSphere-SQL，日志级别是
INFO。
sql-simple: # 是否在日志中打印简单风格的 SQL。
acceptor-size: # 用于设置接收 TCP 请求线程池的大小。
executor-size: # 用于设置任务处理线程池的大小。每个 ShardingSphereDataSource 使用一个独立

的线程池，同一个 JVM 的不同数据源不共享线程池。
max-connections-size-per-query: # 一次查询请求在每个数据库实例中所能使用的最大连接数。
check-table-metadata-enabled: # 是否在程序启动和更新时检查分片元数据的结构一致性。
query-with-cipher-column: # 是否使用加密列进行查询。在有原文列的情况下，可以使用原文列进行查

询。
proxy-frontend-flush-threshold: # 在 ShardingSphere-Proxy 中设置传输数据条数的 IO 刷新

阈值。
proxy-transaction-type: # ShardingSphere-Proxy 中使用的默认事务类型。包括：LOCAL、XA 和

7.9. API变更历史 388

Apache ShardingSphere document, v5.1.0

BASE。
proxy-opentracing-enabled: # 是否允许在 ShardingSphere-Proxy 中使用 OpenTracing。
proxy-hint-enabled: # 是否允许在 ShardingSphere-Proxy 中使用 Hint。使用 Hint 会将

Proxy 的线程处理模型由 IO 多路复用变更为每个请求一个独立的线程，会降低 Proxy 的吞吐量。

ShardingSphere-4.x

数据源与分片配置项说明

数据分片

schemaName: # 逻辑数据源名称

dataSources: # 数据源配置，可配置多个 data_source_name
<data_source_name>: # 与 Sharding-JDBC 配置不同，无需配置数据库连接池

url: # 数据库 url 连接
username: # 数据库用户名
password: # 数据库密码
connectionTimeoutMilliseconds: 30000 # 连接超时毫秒数
idleTimeoutMilliseconds: 60000 # 空闲连接回收超时毫秒数
maxLifetimeMilliseconds: 1800000 # 连接最大存活时间毫秒数
maxPoolSize: 65 # 最大连接数

shardingRule: # 省略数据分片配置，与 Sharding-JDBC 配置一致

读写分离

schemaName: # 逻辑数据源名称

dataSources: # 省略数据源配置，与数据分片一致

masterSlaveRule: # 省略读写分离配置，与 Sharding-JDBC 配置一致

数据脱敏

dataSource: # 省略数据源配置

encryptRule:
encryptors:

<encryptor-name>:
type: # 加解密器类型，可自定义或选择内置类型：MD5/AES
props: # 属性配置, 注意：使用 AES 加密器，需要配置 AES 加密器的 KEY 属性：aes.key.

value

7.9. API变更历史 389

Apache ShardingSphere document, v5.1.0

aes.key.value:
tables:
<table-name>:
columns:

<logic-column-name>:
plainColumn: # 存储明文的字段
cipherColumn: # 存储密文的字段
assistedQueryColumn: # 辅助查询字段，针对 ShardingQueryAssistedEncryptor 类型

的加解密器进行辅助查询
encryptor: # 加密器名字

props:
query.with.cipher.column: true # 是否使用密文列查询

全局配置项说明

治理

与 Sharding‐JDBC配置一致。

Proxy属性

省略与 Sharding-JDBC 一致的配置属性

props:
acceptor.size: # 用于设置接收客户端请求的工作线程个数，默认为 CPU 核数 *2
proxy.transaction.type: # 默认为 LOCAL 事务，允许 LOCAL，XA，BASE 三个值，XA 采用

Atomikos 作为事务管理器，BASE 类型需要拷贝实现 ShardingTransactionManager 的接口的 jar 包至
lib 目录中
proxy.opentracing.enabled: # 是否开启链路追踪功能，默认为不开启。详情请参见 [链路追

踪](https://shardingsphere.apache.org/document/current/cn/features/orchestration/
apm/)
check.table.metadata.enabled: # 是否在启动时检查分表元数据一致性，默认值: false
proxy.frontend.flush.threshold: # 对于单个大查询, 每多少个网络包返回一次

权限验证

用于执行登录 Sharding Proxy的权限验证。配置用户名、密码、可访问的数据库后，必须使用正确的用
户名、密码才可登录 Proxy。

authentication:
users:

root: # 自定义用户名
password: root # 自定义用户名

sharding: # 自定义用户名

7.9. API变更历史 390

Apache ShardingSphere document, v5.1.0

password: sharding # 自定义用户名
authorizedSchemas: sharding_db, masterslave_db # 该用户授权可访问的数据库，多个用逗

号分隔。缺省将拥有 root 权限，可访问全部数据库。

ShardingSphere-3.x

数据源与分片配置项说明

数据分片

schemaName: # 逻辑数据源名称

dataSources: # 数据源配置，可配置多个 data_source_name
<data_source_name>: # 与 Sharding-JDBC 配置不同，无需配置数据库连接池

url: # 数据库 url 连接
username: # 数据库用户名
password: # 数据库密码
autoCommit: true # hikari 连接池默认配置
connectionTimeout: 30000 # hikari 连接池默认配置
idleTimeout: 60000 # hikari 连接池默认配置
maxLifetime: 1800000 # hikari 连接池默认配置
maximumPoolSize: 65 # hikari 连接池默认配置

shardingRule: # 省略数据分片配置，与 Sharding-JDBC 配置一致

读写分离

schemaName: # 逻辑数据源名称

dataSources: # 省略数据源配置，与数据分片一致

masterSlaveRule: # 省略读写分离配置，与 Sharding-JDBC 配置一致

全局配置项说明

数据治理

与 Sharding‐JDBC配置一致。

7.9. API变更历史 391

Apache ShardingSphere document, v5.1.0

Proxy属性

省略与 Sharding-JDBC 一致的配置属性

props:
acceptor.size: # 用于设置接收客户端请求的工作线程个数，默认为 CPU 核数 *2
proxy.transaction.enabled: # 是否开启事务, 目前仅支持 XA 事务，默认为不开启
proxy.opentracing.enabled: # 是否开启链路追踪功能，默认为不开启。详情请参见 [链路追

踪](https://shardingsphere.apache.org/document/current/cn/features/orchestration/
apm/)
check.table.metadata.enabled: # 是否在启动时检查分表元数据一致性，默认值: false

权限验证

用于执行登录 Sharding Proxy的权限验证。配置用户名、密码后，必须使用正确的用户名、密码才可登
录 Proxy。

authentication:
username: root
password:

7.9. API变更历史 392

8
下载

8.1 最新版本

Apache ShardingSphere的发布版包括源码包及其对应的二进制包。由于下载内容分布在镜像服务器上，
所以下载后应该进行 GPG或 SHA‐512校验，以此来保证内容没有被篡改。

8.1.1 Apache ShardingSphere -版本: 5.0.0 (发布日期: Nov 10th, 2021)

• 源码: [SRC] [ASC] [SHA512]

• ShardingSphere‐JDBC二进制包: [TAR] [ASC] [SHA512]

• ShardingSphere‐Proxy二进制包: [TAR] [ASC] [SHA512]

8.2 全部版本

全部版本请到 Archive repository查看。全部孵化器版本请到 Archive incubator repository查看。

8.3 校验版本

PGP签名文件
使用 PGP或 SHA签名验证下载文件的完整性至关重要。可以使用 GPG或 PGP验证 PGP签名。请下载
KEYS以及发布的 asc签名文件。建议从主发布目录而不是镜像中获取这些文件。

gpg -i KEYS

或者

pgpk -a KEYS

或者

393

https://www.apache.org/dyn/closer.cgi/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-src.zip
https://downloads.apache.org/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-src.zip.asc
https://downloads.apache.org/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-src.zip.sha512
https://www.apache.org/dyn/closer.cgi/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-shardingsphere-jdbc-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-shardingsphere-jdbc-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-shardingsphere-jdbc-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.cgi/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-shardingsphere-proxy-bin.tar.gz
https://downloads.apache.org/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-shardingsphere-proxy-bin.tar.gz.asc
https://downloads.apache.org/shardingsphere/5.0.0/apache-shardingsphere-5.0.0-shardingsphere-proxy-bin.tar.gz.sha512
https://archive.apache.org/dist/shardingsphere/
https://archive.apache.org/dist/incubator/shardingsphere/
https://downloads.apache.org/shardingsphere/KEYS

Apache ShardingSphere document, v5.1.0

pgp -ka KEYS

要验证二进制文件或源代码，您可以从主发布目录下载相关的 asc文件，并按照以下指南进行操作。

gpg --verify apache-shardingsphere-********.asc apache-shardingsphere-*********

或者

pgpv apache-shardingsphere-********.asc

或者

pgp apache-shardingsphere-********.asc

8.3. 校验版本 394

	概览
	简介
	ShardingSphere-JDBC
	ShardingSphere-Proxy
	ShardingSphere-Sidecar（TODO）
	混合架构

	解决方案
	线路规划

	快速入门
	ShardingSphere-JDBC
	引入 maven 依赖
	规则配置
	创建数据源

	ShardingSphere-Proxy
	规则配置
	引入依赖
	启动服务
	使用 ShardingSphere-Proxy

	ShardingSphere-Scaling (Experimental)
	规则配置
	引入依赖
	启动服务
	任务管理
	相关文档

	概念
	接入端
	ShardingSphere-JDBC
	ShardingSphere-Proxy
	混合架构

	运行模式
	背景
	内存模式
	单机模式
	集群模式

	DistSQL
	背景
	挑战
	目标
	注意事项

	可插拔架构
	背景
	挑战
	目标
	实现
	L1 内核层
	L2 功能层
	L3 生态层

	功能
	数据库兼容
	背景
	挑战
	目标
	SQL 解析
	MySQL
	openGauss
	PostgreSQL
	SQLServer
	Oracle
	SQL92

	数据库协议
	特性支持
	MySQL
	用户和角色
	授权

	PostgreSQL
	SQLServer
	Oracle
	SQL92

	管控
	背景
	挑战
	目标
	核心概念
	熔断
	限流

	数据分片
	背景
	垂直分片
	水平分片

	挑战
	目标
	核心概念
	导览
	表
	逻辑表
	真实表
	绑定表
	广播表
	单表

	数据节点
	均匀分布
	自定义分布

	分片
	分片键
	分片算法
	自动化分片算法
	自定义分片算法

	分片策略
	强制分片路由

	行表达式
	实现动机
	语法说明
	配置
	数据节点
	分片算法

	分布式主键
	实现动机
	内置的主键生成器
	UUID
	SNOWFLAKE
	实现原理
	时钟回拨

	强制分片路由
	实现动机
	实现机制

	使用规范
	背景
	SQL
	SQL 支持程度
	稳定支持
	常规查询
	子查询
	运算表达式中包含分片键
	实验性支持
	子查询
	跨库关联查询
	不支持

	SQL 示例

	分页
	分页性能
	性能瓶颈
	ShardingSphere 的优化

	分页方案优化
	分页子查询

	分布式事务
	背景
	本地事务
	两阶段提交
	柔性事务

	挑战
	目标
	核心概念
	导览
	XA 事务
	柔性事务

	使用规范
	背景
	本地事务
	支持项
	不支持项

	XA 事务
	支持项
	不支持项
	通过 XA 语句控制的分布式事务

	柔性事务
	支持项
	不支持项
	待优化项

	读写分离
	背景
	挑战
	目标
	核心概念
	主库
	从库
	主从同步
	负载均衡策略

	使用规范
	支持项
	不支持项

	高可用
	背景
	挑战
	目标
	核心概念
	高可用类型
	动态读写分离

	使用规范
	支持项
	不支持项

	弹性伸缩
	背景
	挑战
	目标
	状态
	核心概念
	弹性伸缩作业
	存量数据
	增量数据

	使用规范
	支持项
	不支持项

	数据加密
	背景
	挑战
	目标
	核心概念
	逻辑列
	密文列
	查询辅助列
	明文列

	使用规范
	支持项
	不支持项

	影子库压测
	背景
	挑战
	目标
	核心概念
	生产库
	影子库
	影子算法

	使用规范
	支持项
	不支持项
	基于 Hint 的影子算法
	基于列的影子算法

	可观察性
	背景
	挑战
	目标
	核心概念
	代理
	APM
	Tracing
	Metrics

	使用规范
	源码编译
	agent 配置
	ShardingSphere-Proxy 中使用

	用户手册
	ShardingSphere-JDBC
	Java API
	简介
	使用步骤
	引入 Maven 依赖
	构建数据源
	使用数据源

	模式配置
	配置入口
	Standalone 持久化配置
	Cluster 持久化配置

	数据源配置
	配置示例

	规则配置
	数据分片
	配置入口
	分片表配置
	自动分片表配置
	分片策略配置
	标准分片策略配置
	复合分片策略配置
	Hint 分片策略配置
	不分片策略配置
	分布式序列策略配置

	读写分离
	配置入口
	主从数据源配置

	高可用
	配置入口
	数据源配置
	监听心跳配置
	数据库发现类型配置

	数据加密
	配置入口
	加密表规则配置
	加密列规则配置
	加解密算法配置

	影子库
	配置入口
	影子数据源配置
	影子表配置
	影子算法配置

	SQL解析
	配置入口
	本地缓存配置

	混合规则
	配置项说明

	YAML 配置
	简介
	使用步骤
	引入 Maven 依赖
	配置 YAML
	构建数据源
	使用数据源

	语法说明
	模式配置
	配置项说明
	内存模式
	单机模式
	集群模式

	数据源配置
	配置项说明
	配置示例

	规则配置
	数据分片
	配置项说明

	读写分离
	配置项说明

	高可用
	配置项说明

	数据加密
	配置项说明

	影子库
	配置项说明

	混合规则
	配置项说明

	SQL 解析
	配置项说明

	Spring Boot Starter
	简介
	使用步骤
	引入 Maven 依赖

	在 Spring 中使用 ShardingSphere 数据源
	模式配置
	配置项说明
	内存模式
	单机模式
	集群模式

	数据源配置
	使用本地数据源
	配置项说明
	配置示例

	使用 JNDI 数据源
	配置项说明
	配置示例

	规则配置
	数据分片
	配置项说明
	注意事项

	读写分离
	配置项说明

	高可用
	配置项说明

	数据加密
	配置项说明

	影子库
	配置项说明

	混合规则
	配置项说明

	SQL解析
	配置项说明

	Spring 命名空间
	简介
	使用步骤
	引入 Maven 依赖

	配置 Spring Bean
	配置项说明
	配置示例

	在 Spring 中使用 ShardingSphere 数据源
	模式配置
	配置项说明
	内存模式
	配置示例
	单机模式
	配置项说明
	配置示例
	集群模式
	配置项说明
	配置示例

	数据源配置
	配置示例

	规则配置
	数据分片
	配置项说明
	注意事项

	读写分离
	配置项说明

	高可用
	配置项说明

	数据加密
	配置项说明

	影子库
	配置项说明

	SQL解析
	配置项说明

	混合规则
	配置项说明

	属性配置
	配置项说明

	内置算法
	简介
	使用方式
	元数据持久化仓库
	文件持久化
	ZooKeeper 持久化
	Etcd 持久化

	分片算法
	自动分片算法
	取模分片算法
	哈希取模分片算法
	基于分片容量的范围分片算法
	基于分片边界的范围分片算法
	自动时间段分片算法

	标准分片算法
	行表达式分片算法
	时间范围分片算法

	复合分片算法
	复合行表达式分片算法

	Hint 分片算法
	Hint 行表达式分片算法

	自定义类分片算法

	分布式序列算法
	雪花算法
	UUID

	负载均衡算法
	轮询算法
	随机访问算法
	权重访问算法

	加密算法
	MD5 加密算法
	AES 加密算法
	RC4 加密算法
	SM3 加密算法
	SM4 加密算法

	影子算法
	列影子算法
	列值匹配影子算法
	列正则表达式匹配影子算法

	Hint 影子算法
	简单 Hint 匹配影子算法

	特殊 API
	数据分片
	强制路由
	简介
	使用方法
	使用 Hint 分片
	规则配置
	获取 HintManager
	添加分片键值
	清除分片键值
	完整代码示例
	使用 Hint 强制主库路由
	使用手动编程的方式
	获取 HintManager
	设置主库路由
	清除分片键值
	完整代码示例
	使用 SQL 注释的方式
	使用规范
	完整示例
	使用 Hint 路由至指定数据库
	使用手动编程的方式
	获取 HintManager
	设置路由至指定数据库
	完整代码示例
	使用 SQL 注释的方式
	使用规范
	完整示例

	分布式事务
	使用 Java API
	引入 Maven 依赖
	使用分布式事务

	使用 Spring Boot Starter
	引入 Maven 依赖
	配置事务管理器
	使用分布式事务

	使用 Spring 命名空间
	引入 Maven 依赖
	配置事务管理器
	使用分布式事务

	Atomikos 事务
	数据恢复
	修改配置

	Narayana 事务
	引入 Maven 依赖
	定制化配置项
	设置 XA 事务管理类型

	Bitronix 事务
	引入 Maven 依赖
	定制化配置项
	设置 XA 事务管理类型

	Seata 事务
	启动 Seata 服务
	创建日志表
	修改配置

	可观察性
	使用探针
	如何获取
	本地构建
	远程下载(暂未发布)
	配置
	启动

	应用性能监控集成
	使用方法
	使用 OpenTracing 协议
	使用 SkyWalking 自动探针
	使用 OpenTelemetry
	效果展示
	应用架构
	拓扑图展示
	跟踪数据展示
	异常情况展示

	不支持项
	DataSource 接口
	Connection 接口
	Statement 和 PreparedStatement 接口
	ResultSet 接口
	JDBC 4.1

	ShardingSphere-Proxy
	启动手册
	使用二进制发布包
	启动步骤
	选择数据库协议
	使用 PostgreSQL
	使用 MySQL
	使用 openGauss

	选择元数据持久化仓库
	使用 ZooKeeper
	使用 Etcd

	使用分布式事务
	使用自定义算法
	注意事项

	使用 Docker
	拉取官方 Docker 镜像
	手动构建 Docker 镜像（可选）
	配置 ShardingSphere-Proxy
	运行 Docker
	访问 ShardingSphere-Proxy
	FAQ

	YAML 配置
	权限
	配置项说明
	配置示例
	ALL_PRIVILEGES_PERMITTED
	SCHEMA_PRIVILEGES_PERMITTED

	属性配置
	简介
	配置项说明

	DistSQL
	语法
	RDL 语法
	资源定义
	语法说明
	示例
	规则定义
	数据分片
	语法说明
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	示例
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	单表
	定义
	示例
	Single Table Rule
	读写分离
	语法说明
	示例
	数据库发现
	语法说明
	示例
	创建 discoveryRule 时同时创建 discoveryType 和 discoveryHeartbeat
	使用已有的 discoveryType 和 discoveryHeartbeat 创建 discoveryRule
	数据加密
	语法说明
	示例
	影子库压测
	语法说明
	示例

	RQL 语法
	资源查询
	语法说明
	返回值说明
	示例
	规则查询
	数据分片
	语法说明
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	返回值说明
	Sharding Table Rule
	Sharding Algorithms
	Unused Sharding Algorithms
	Sharding Key Generators
	Unused Sharding Key Generators
	Default Sharding Strategy
	Sharding Table Nodes
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	示例
	Sharding Table Rule
	Sharding Binding Table Rule
	Sharding Broadcast Table Rule
	Sharding Scaling Rule
	单表
	语法说明
	返回值说明
	Single Table Rule
	Single Table
	示例
	读写分离
	语法说明
	返回值说明
	示例
	数据库发现
	语法说明
	返回值说明
	DB Discovery Rule
	DB Discovery Type
	DB Discovery Heartbeat
	示例
	数据加密
	语法说明
	返回值说明
	示例
	影子库压测
	语法说明
	返回值说明
	Shadow Rule
	Shadow Table Rule
	Shadow Algorithms
	Shadow Rule status
	示例

	RAL 语法
	强制路由
	弹性伸缩
	熔断
	全局规则
	其他
	注意事项

	使用
	前置工作
	创建数据库
	资源操作
	规则操作
	注意事项
	数据分片
	资源操作
	规则操作

	读写分离
	资源操作
	规则操作

	数据加密
	资源操作
	规则操作

	数据库发现
	资源操作
	规则操作

	影子库压测
	资源操作
	规则操作

	ShardingSphere-Sidecar
	简介
	对比

	ShardingSphere-Scaling
	简介
	运行部署
	部署启动
	结束

	使用手册
	使用手册
	环境要求
	权限要求
	MySQL
	PostgreSQL

	DistSQL 自动模式接口
	预览当前分片规则
	创建迁移任务
	查询所有迁移任务
	查询迁移任务进度
	预览新的分片规则是否生效
	其他DistSQL

	DistSQL 手动模式接口

	开发者手册
	运行模式
	StandalonePersistRepository
	ClusterPersistRepository
	GovernanceWatcher

	配置
	RuleBuilder
	YamlRuleConfigurationSwapper
	ShardingSphereYamlConstruct

	内核
	SQLRouter
	SQLRewriteContextDecorator
	SQLExecutionHook
	ResultProcessEngine
	StoragePrivilegeHandler

	数据源
	DatabaseType
	DialectTableMetaDataLoader
	DataSourcePoolMetaData
	DataSourcePoolDestroyer

	SQL 解析
	DatabaseTypedSQLParserFacade
	SQLVisitorFacade

	代理端
	DatabaseProtocolFrontendEngine
	JDBCDriverURLRecognizer
	AuthorityProvideAlgorithm

	数据分片
	ShardingAlgorithm
	KeyGenerateAlgorithm
	DatetimeService
	DatabaseSQLEntry

	读写分离
	ReadwriteSplittingType
	ReplicaLoadBalanceAlgorithm

	高可用
	DatabaseDiscoveryType

	分布式事务
	ShardingSphereTransactionManager
	XATransactionManagerProvider
	XADataSourceDefinition
	DataSourcePropertyProvider

	弹性伸缩
	ScalingEntry
	JobCompletionDetectAlgorithm
	DataConsistencyCheckAlgorithm
	SingleTableDataCalculator

	SQL 检查
	SQLChecker

	数据加密
	EncryptAlgorithm
	QueryAssistedEncryptAlgorithm

	影子库
	ShadowAlgorithm

	可观察性
	PluginDefinitionService
	PluginBootService

	技术参考
	管控
	注册中心数据结构
	/rules
	/props
	/metadata/${schemaName}/dataSources
	/metadata/${schemaName}/rules
	/metadata/${schemaName}/tables
	/nodes/compute_nodes
	/nodes/storage_nodes

	数据分片
	SQL 解析
	SQL 路由
	SQL 改写
	SQL 执行
	结果归并
	查询优化
	解析引擎
	抽象语法树
	SQL 解析引擎
	历史
	功能点
	API使用

	路由引擎
	分片路由
	直接路由
	标准路由
	笛卡尔路由

	广播路由
	全库表路由
	全库路由
	全实例路由
	单播路由
	阻断路由

	改写引擎
	正确性改写
	标识符改写
	补列
	分页修正
	批量拆分

	优化改写
	单节点优化
	流式归并优化

	执行引擎
	连接模式
	内存限制模式
	连接限制模式

	自动化执行引擎
	准备阶段
	执行阶段

	归并引擎
	遍历归并
	排序归并
	分组归并
	聚合归并
	分页归并

	分布式事务
	导览
	XA 事务
	开启全局事务
	执行真实分片SQL
	提交或回滚事务

	Seata 柔性事务
	引擎初始化
	开启全局事务
	执行真实分片SQL
	提交或回滚事务

	弹性伸缩
	原理说明
	执行阶段说明
	准备阶段
	存量数据迁移阶段
	增量数据同步阶段
	规则切换阶段

	数据加密
	处理流程详解
	整体架构
	加密规则
	加密处理过程

	解决方案详解
	新上线业务
	已上线业务改造

	中间件加密服务优势
	加密算法解析
	EncryptAlgorithm
	QueryAssistedEncryptAlgorithm

	影子库
	整体架构
	影子规则
	路由过程
	影子判定流程
	DML 语句
	DDL 语句

	影子算法
	使用案例
	场景需求
	影子库配置
	影子库环境
	影子算法使用

	测试
	整合测试
	模块测试
	性能测试
	集成测试
	设计
	测试用例
	测试环境
	测试引擎

	使用指南
	测试用例配置
	环境配置
	Native 环境配置
	Docker 环境配置

	运行测试引擎
	配置测试引擎运行环境
	运行调试模式
	运行 Docker 模式
	注意事项

	性能测试
	Sysbench 性能测试
	目标
	测试场景
	单路由
	主从
	主从+加密+分库分表
	全路由

	测试环境搭建
	数据库表结构
	测试场景配置
	单路由配置
	主从配置
	主从+加密+分库分表配置
	全路由

	测试结果验证
	压测语句
	压测类
	编译
	压测执行
	压测结果处理
	历史压测数据展示

	BenchmarkSQL 性能测试
	测试方法
	测试工具微调
	移除外键与 extraHistID

	压测相关参数建议
	ShardingSphere 数据分片建议
	PostgreSQL JDBC URL 参数建议
	ShardingSphere Proxy server.yaml 参数建议

	附录
	BenchmarkSQL 数据分片参考配置

	BenchmarkSQL 5.0 PostgreSQL 语句列表
	Create tables
	Create indexes
	New Order 业务
	Payment 业务
	Order Status 业务
	Stock level 业务
	Delivery BG 业务

	模块测试
	SQL 解析测试
	数据准备
	SQL数据
	断言数据

	SQL 改写测试
	目标
	测试

	FAQ
	[JDBC] 为什么配置了某个数据连接池的 spring-boot-starter（比如 druid）和 shardingsphere-jdbc-spring-boot-starter 时，系统启动会报错？
	[JDBC] 使用Spring命名空间时找不到xsd?
	[JDBC] 引入 shardingsphere-transaction-xa-core 后，如何避免 spring-boot 自动加载默认的 JtaTransactionManager？
	[Proxy] Windows 环境下，运行 ShardingSphere-Proxy，找不到或无法加载主类 org.apache.shardingsphere.proxy.Bootstrap，如何解决？
	[Proxy] 在使用 ShardingSphere-Proxy 的时候，如何动态在添加新的 logic schema？
	[Proxy] 在使用 ShardingSphere-Proxy时，怎么使用合适的工具连接到 ShardingSphere-Proxy？
	[Proxy] 使用 Navicat 等第三方数据库工具连接 ShardingSphere-Proxy 时，如果 ShardingSphere-Proxy 没有创建 Schema 或者没有添加 Resource，连接失败？
	[分片] Cloud not resolve placeholder … in string value …异常的解决方法?
	[分片] inline 表达式返回结果为何出现浮点数？
	[分片] 如果只有部分数据库分库分表，是否需要将不分库分表的表也配置在分片规则中？
	[分片] 指定了泛型为 Long 的 SingleKeyTableShardingAlgorithm，遇到 ClassCastException: Integer can not cast to Long?
	[分片、PROXY] 实现 StandardShardingAlgorithm 自定义算法时，指定了 Comparable 的具体类型为 Long, 且数据库表中字段类型为 bigint，出现 ClassCastException: Integer can not cast to Long 异常。
	[分片] ShardingSphere 提供的默认分布式自增主键策略为什么是不连续的，且尾数大多为偶数？
	[分片] 如何在 inline 分表策略时，允许执行范围查询操作（BETWEEN AND、>、<、>=、<=）？
	[分片] 为什么我实现了 KeyGenerateAlgorithm 接口，也配置了 Type，但是自定义的分布式主键依然不生效？
	[分片] ShardingSphere 除了支持自带的分布式自增主键之外，还能否支持原生的自增主键？
	[数据加密] JPA 和 数据加密无法一起使用，如何解决？
	[DistSQL] 使用 DistSQL 添加数据源时，如何设置自定义的 JDBC 连接参数或连接池属性？
	[DistSQL] 使用 DistSQL 删除资源时，出现 Resource [xxx] is still used by [SingleTableRule]。
	[DistSQL] 使用 DistSQL 添加资源时，出现 Failed to get driver instance for jdbcURL=xxx。
	[其他] 如果 SQL 在 ShardingSphere 中执行不正确，该如何调试？
	[其他] 阅读源码时为什么会出现编译错误? IDEA 不索引生成的代码？
	[其他] 使用 SQLSever 和 PostgreSQL 时，聚合列不加别名会抛异常？
	[其他] Oracle 数据库使用 Timestamp 类型的 Order By 语句抛出异常提示 “Order by value must implements Comparable”?
	[其他] Windows 环境下，通过 Git 克隆 ShardingSphere 源码时为什么提示文件名过长，如何解决？
	[其他] Type is required 异常的解决方法?
	[其他] 服务启动时如何加快 metadata 加载速度？
	[其他] ANTLR 插件在 src 同级目录下生成代码，容易误提交，如何避免？
	[其他] 使用 Proxool 时分库结果不正确？
	[其他] 使用 Spring Boot 2.x 集成 ShardingSphere 时，配置文件中的属性设置不生效？

	API 变更历史
	ShardingSphere-JDBC
	YAML 配置
	5.0.0-alpha
	数据分片
	配置项说明
	读写分离
	配置项说明
	数据加密
	配置项说明
	影子库
	配置项说明
	分布式治理
	配置项说明

	ShardingSphere-4.x
	数据分片
	配置项说明
	读写分离
	配置项说明
	数据脱敏
	配置项说明
	治理
	配置项说明

	ShardingSphere-3.x
	数据分片
	配置项说明
	读写分离
	配置项说明
	治理
	配置项说明

	ShardingSphere-2.x
	数据分片
	配置项说明
	读写分离
	概念
	支持项
	不支持范围
	配置规则
	治理
	配置项说明

	Java API
	5.0.0-beta
	数据分片
	配置入口
	分片表配置
	自动分片表配置
	分片策略配置
	标准分片策略配置
	复合分片策略配置
	Hint 分片策略配置
	不分片策略配置
	分布式序列策略配置
	读写分离
	配置入口
	读写分离数据源配置
	数据加密
	配置入口
	加密表规则配置
	加密列规则配置
	加解密算法配置
	影子库
	配置入口
	分布式治理
	配置项说明
	治理

	ShardingSphere-4.x
	数据分片
	ShardingDataSourceFactory
	ShardingRuleConfiguration
	TableRuleConfiguration
	StandardShardingStrategyConfiguration
	ComplexShardingStrategyConfiguration
	InlineShardingStrategyConfiguration
	HintShardingStrategyConfiguration
	NoneShardingStrategyConfiguration
	自增主键生成器
	属性配置
	读写分离
	MasterSlaveDataSourceFactory
	MasterSlaveRuleConfiguration
	属性配置
	数据脱敏
	EncryptDataSourceFactory
	EncryptRuleConfiguration
	属性配置
	编排
	OrchestrationShardingDataSourceFactory
	OrchestrationMasterSlaveDataSourceFactory
	OrchestrationEncryptDataSourceFactory
	OrchestrationConfiguration
	CenterConfiguration
	属性配置

	ShardingSphere-3.x
	数据分片
	ShardingDataSourceFactory
	ShardingRuleConfiguration
	TableRuleConfiguration
	StandardShardingStrategyConfiguration
	ComplexShardingStrategyConfiguration
	InlineShardingStrategyConfiguration
	HintShardingStrategyConfiguration
	NoneShardingStrategyConfiguration
	属性配置
	configMap
	读写分离
	MasterSlaveDataSourceFactory
	MasterSlaveRuleConfiguration
	configMap
	PropertiesConstant
	编排
	OrchestrationShardingDataSourceFactory
	OrchestrationMasterSlaveDataSourceFactory
	OrchestrationConfiguration
	RegistryCenterConfiguration

	ShardingSphere-2.x
	读写分离
	概念
	支持项
	不支持项
	代码开发示例
	读写分离
	分库分表 + 读写分离

	ShardingSphere-1.x
	读写分离
	概念
	支持项
	不支持项
	代码开发示例

	Spring 命名空间配置
	ShardingSphere-5.0.0-beta
	数据分片
	配置项说明
	注意事项
	读写分离
	配置项说明
	数据加密
	配置项说明
	影子库
	配置项说明
	分布式治理
	配置项说明

	ShardingSphere-4.x
	数据分片
	配置项说明
	Properties
	读写分离
	配置项说明
	数据脱敏
	配置项说明
	治理
	数据分片 + 治理
	配置项说明
	读写分离 + 治理
	配置项说明
	数据脱敏 + 治理
	配置项说明
	治理注册中心
	配置项说明

	ShardingSphere-3.x
	数据分片
	配置项说明
	读写分离
	配置项说明
	治理
	数据分片 + 数据治理
	配置项说明
	读写分离 + 数据治理
	配置项说明
	数据治理注册中心
	配置项说明

	ShardingSphere-2.x
	数据分片
	配置项说明
	读写分离
	配置项说明
	Spring格式特别说明
	分片算法表达式语法说明
	inline表达式特别说明
	字符串内嵌groovy代码
	治理
	Zookeeper标签说明
	Etcd配置示例

	Spring Boot Start 配置
	5.0.0-alpha
	数据分片
	配置项说明
	读写分离
	配置项说明
	数据加密
	配置项说明
	影子库
	配置项说明
	分布式治理
	配置项说明

	ShardingSphere-4.x
	数据分片
	配置项说明
	读写分离
	配置项说明
	数据脱敏
	配置项说明
	治理
	配置项说明

	ShardingSphere-3.x
	数据分片
	配置项说明
	读写分离
	配置项说明
	治理
	配置项说明

	ShardingSphere-2.x
	分库分表
	配置项说明
	读写分离
	配置项说明
	编排治理
	配置项说明

	ShardingSphere-Proxy
	5.0.0-beta
	数据源配置项说明
	权限配置
	Proxy 属性

	5.0.0-alpha
	数据源配置项说明
	覆盖 dataSourceCommon 说明
	权限配置
	Proxy 属性

	ShardingSphere-4.x
	数据源与分片配置项说明
	数据分片
	读写分离
	数据脱敏

	全局配置项说明
	治理
	Proxy 属性
	权限验证

	ShardingSphere-3.x
	数据源与分片配置项说明
	数据分片
	读写分离

	全局配置项说明
	数据治理
	Proxy 属性
	权限验证

	下载
	最新版本
	Apache ShardingSphere - 版本: 5.0.0 (发布日期: Nov 10th, 2021)

	全部版本
	校验版本

